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Abstract

In machine learning,model multiplicity is the existence of multiple models that perform equally well
for a given prediction task (also known as the “Rashomon effect” ). The set of near-optimal models
is referred to as the “Rashomon set.” Predictive multiplicity examines how predictions change over
this set of near-optimal models. If model outputs vary significantly across similar models, this in-
formation can offer insight into predictive arbitrariness. In this thesis, I introduce frameworks for
evaluating and leveraging predictive multiplicity in different settings.

First, I present methods to measure predictive multiplicity in probabilistic classification (predict-
ing the probability of a positive outcome) and develop optimization-based methods to compute
these measures efficiently and reliably for convex empirical risk minimization problems. Empirical
results show that real-world probabilistic classification tasks can in fact admit competing models
that assign substantially different risk estimates. Additionally, I provide insight into how predictive
multiplicity arises by analyzing dataset characteristics.

Second, I formulate predictive multiplicity analysis in a resource constrained setting recognizing
that predictive allocation tasks are governed by a resource budget. I also extend the multiplicity
framing, outlining the concept ofmulti-target multiplicity for quantifying the impact of choices
made in regard to target specification for a given predictive allocation task. With this framework, I
demonstrate how to fit separate models that are useful for predicting the three outcomes of interest
independently and arriving at a way of ranking patients that results in a more equitable allocation.

Third, I investigate the connections between predictive multiplicity and predictive churnwhich
is the change in predictions pre- and post- model update in response to a change in training data.
I present empirical and theoretical results on characterizing churn in terms of the Rashomon set.
Results show that churn unstable points overlap by more than 50 percent with ambiguity points.
This points to similarities in the two concepts. Theoretical results to characterize predictive churn
between two Rashomon sets as well as churn between models within one Rashomon set hinges on
the type of Rashomon set.

I focus on predictive multiplicity to advocate for transparency in the prediction model training
procedure. These methods to evaluate predictive multiplicity, as well as connections with predic-
tive churn, contribute to a larger effort for machine learning researchers to be accountable to the
individuals affected by model predictions. Similar to a person deciding between roads to take while
travelling, insight into alternative options (i.e., roads not taken) may provide insight into the signifi-
cance of the decisions made.

iii



Contents

title page i

copyright ii

abstract iii

contents v

dedication vi

acknowledgments viii

self citation ix

1 Introduction 1

2 PredictiveMultiplicity
in Probabilistic Classification 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Multi-TargetMultiplicity: Flexibility and Fairness in Target Spec-
ification under Resource Constraints 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Predictive multiplicity with resource constraints . . . . . . . . . . . . . . . . . . 48
3.4 Multi-target Multiplicity and Fairness . . . . . . . . . . . . . . . . . . . . . . . 59

iv



3.5 Stable points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Predictive Churnwith
the Set of GoodModels 78
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Unstable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Anticipating Unstable Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusion 109

References 127

v



Dedicated to my mother, Alisa Renee, whose unwavering love and sacrifices
are the bedrock of all my achievements. In loving memory of my grandmother,
Alisa Renee Sims, whose guidance and love continues to light my path.

vi



Acknowledgments

At the heart of my journey is my partner in life, Joel O. Anifowose, who has always seen the
light in me even at times when shadows clouded my own view. He has been my reviewer, my proof-
reader, my therapist, my coach - pushing me beyond my imagined limits, my challenger - calling me
to stand up in the strength that at times seemed lost, my companion - walking beside me, my dance
partner and above all, my friend in joy and hardship. For all the roles you play and for the life we
share, I pour out a song of thanks.

I owe so much to my family. My mother (Alisa Renee) was my first teacher in life fiercely advocat-
ing for her black female “gifted” child navigating predominantly white schools instilling in me the
importance of always remaining grounded in where and who I come from. True to that lesson, my
siblings have each played a special part in supporting me on this journey: my sister (Kiana R. Wat-
son), my brother (D’AngeloWatson), my twin brother (Jamal Watson-Daniels), my sister-cousin
(Precious Dabbs). To all of you and our larger extended family, I am indebted to your love.

To my son, whose birth was the cornerstone of my journey. Thank you for your lack of con-
cern with anything academic, anything prestigious, anything mathematical, anything reasonable,
anything already planned, anything feeding the anxiety in my mind. It has been your freedom and
commitment to play that has been the medicine I did not know I needed. Your laughter that made
me excited to face each new day. And your birth that awoke something inside me that I needed to
survive a global pandemic in isolation with a newborn. For joining me on this journey at precisely
the right moment to remind me to “enjoy life”, Jaiyeola, I thank you.

A special thank you to my friends and colleagues who have been the emotional backbone during
this process. Your community and presence have ensured I always had a listening ear, a shoulder to
cry on, gravity to ground me, perspective to help me build my confidence, music to dance, television
series to dissect, hope to move forward together. In no particular order, I list a few individuals to
whom I express my deepest gratitude: ShannonWhittaker, Jordan Deloach, Yinka Bode-George,
Lola Bode-George, Alexx Temeña, Jennifer Chien, Daniel Alabi, Abby Plummer, Mara Freilich,
LaNell Williams, Lily Xu, Alana Van Dervont, Alexander Tolbert and many more.

My time at Harvard was enriched by my community at Lowell House where I served as a resident
tutor to undergraduates. There will always be a place in my heart for the Lowell House community.
To mention a few transformative connections I made, I would like to thank the tutor community,
Dean Nina Zipser (faculty dean), Prof. David Laibson (faculty dean), Dean Caitlin Casey (former
resident dean), Beth Terry (admin), and all the students who made Lowell feel like home for 3 years.

vii



In preparing this document, I am appreciative of the writing support from Suzanne Smith, the
SEAS Graduate Writing Instructor. I am also thankful to Prof. Srijan Kumar and my friends at GA
Tech who have graciously welcomed me as a visiting researcher.

Thank you to myHarvard community of academic advisors, collaborators, mentors and more.
I came to Harvard in the Applied Physics program where I worked with Prof. Marko Loncar who
provided an exceptional community of researchers with whom I have built lasting relationships
with. With his full support, Marko encouraged me to follow my gut and make the switch into
machine learning. I am grateful. As I became acquainted with literature on algorithmic fairness,
Prof. Yiling Chen provided guidance and support through my transition from physics. There are
many nuggets of advice she offered that I carry with me to this day. Prof. David C. Parkes became
my main Harvard advisor and has been the best guide and example I could have asked for. His un-
matched work ethic, integrity, dedication to rigor and commitment to students have been invalu-
able to me. It has been an honor to know him, to be trained by him and to have learned so much
from him.

To my co-advisor, Prof. Berk Ustun. Beyond being an advisor, Berk has spent hours that turned
into days that turned into weeks helping me learn how to write a full research publication from
start to finish. He has pushed me to become a better writer and researcher always challenging me to
consider to larger narrative and story within my work. His insight and dedication to my growth have
left an immeasurable influence on my foundation and I am beyond thankful to have had him on this
journey.

A big thank you to Prof. Alexandra Chouldechova and Prof. Ariel Procaccia who have reviewed
these chapters in grave detail on numerous occasions providing feedback and suggestions to guide
progress in the completion of this dissertation. I want to underline that Alex Chouldechova has
gone above and beyond as a co-author and mentor. Her expertise in mathematics has greatly im-
proved my work. It is often said that we cannot be what we cannot see. In working alongside Alex,
I had the privilege of witnessing her balancing motherhood and scientific research (seemingly) flaw-
lessly. Having the opportunity to work closely with and be mentored by her has enabled me to envi-
sion converging on a balance for myself.

I come from people who paid a high price for freedom. People who could only dream of a promised
land of milk and honey or institutions where wealth and privilege flow freely. I give thanks and
honor to my ancestors for their strength and courage in that fight.

Most recently, my grandmother passed away in July 2023; I am admittedly still in the throws of
grief as I write this. It is difficult to overstate the central role she has played in my life and on this
journey in particular. Growing up, she stepped in as my mother’s secondary co-parent to help raise
me. Since beginning my PhD in 2018, almost every conversation ended with her reminding me that
she cannot wait to travel to Harvard one day in celebration of me finishing. I never imagined that
she would not physically be here to see that day. But I know that grief is one of the most common
threads that connects us as humans who have known love. And I know she is here with us in spirit.

To myMauMau, I write to you from the promised land, from the land of milk and honey, from
the ivory tower where eyes looked down on you, from atop the mountain you weren’t allowed to
climb just to say: I made it. You made it. We made it.

viii



Citation to Previously PublishedWork

1. A significant portion of the work presented in Chapter 2 is based on the following publi-
cation: Watson-Daniels, J., Parkes, D. C., & Ustun, B. (2023b). Predictive multiplicity
in probabilistic classification. In Proceedings of the Thirty-Seventh AAAI Conference on
Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23: AAAI Press

2. A significant portion of the work presented in Chapter 3 is based on the following publica-
tion: Watson-Daniels, J., Barocas, S., Hofman, J. M., & Chouldechova, A. (2023a). Multi-
target multiplicity: Flexibility and fairness in target specification under resource constraints.
In Proceedings of the 2023 ACMConference on Fairness, Accountability, and Transparency,
FAccT ’23 (pp. 297–311). New York, NY, USA: Association for ComputingMachinery

3. A significant portion of the work presented in Chapter 4 is based on the following working
paper: Watson-Daniels, J., du Pin Calmon, F., D’Amour, A., Long, C., Parkes, D. C., &
Ustun, B. (2024). Predictive churn with the set of good models. arXiv:2402.07745

ix



The function of freedom is to free someone else.

Toni Morrison

1
Introduction

Artificial intelligence and machine learning (ML) touch most aspects of modern life. Specifically,

ML prediction problems have become pervasive across many domains of decision-making89.

In these instances, predictions about future outcomes are used to influence policy decisions, re-

source allocation or intervention strategies. From education to health, ML predictions can affect

the lives of real people153,17. In healthcare, models assign predictions that inform treatment deci-

sions122,160,85. In consumer finance, lenders use model predictions to underwrite loans5,9. In crimi-
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nal justice, models assign predictions that guide sentencing and parole decisions6,102.

With the widespread use of ML, the discipline of algorithmic fairness has been catalyzed to focus

on potential biases in predictive models. In earlier work, Dwork et al. 50 introduced a framework

for studying fairness in classification from the perspective of individuals. This laid the groundwork

for what is known as individual fairnesswhere individuals who are similar should receive similar

outcomes50,81,99. On the other hand, work on group fairness is concerned with some notion of sta-

tistical parity for members of subgroups stratified by protected attributes (race or gender)29,34,91,135

The distinction between individual and group fairness resulted in much discussion about the trade-

offs and assumed conflict between the two types of fairness16,116.

In addition to developing methods in fair classification, research on how algorithms affect peo-

ple’s lives is also concerned with accountability15,178,44 and transparency141,45,2. In terms of ac-

countability, one line of research focuses on the recourse available to an individual receiving a pre-

diction by asking what actions an individual could take to change their classification outcome164.

In a sense, ensuring actionable recourse164 is seen as one way to hold the model accountable to the

individuals affected by that model.

Along with providing individuals with guidance as to the kinds of changes they could make to

change a classification outcome, researchers can ask whether decisions made by model developers

could change individual classification outcomes. In this questioning, ML researchers and engineers

can be accountable to the individuals affected by the model by being more transparent about the

MLmodel development process. To advocate for transparency in the prediction model training

procedure, an interesting question is: Are there multiple equally goodMLmodels that would have

changed this individual’s prediction? Said another way,What are the roads one could have taken to

arrive at the prediction model now used to inform individual decisions?

Consider a person deciding between roads to take while travelling. In terms of the fastest route,

there might be one road that beats the others. Or there may be two roads with equal travel time,
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in which case, other factors need to be taken into consideration like whether there is a gas station

on the route or the likelihood of increased traffic or preference for highway versus back roads. The

point is that insight into these options is valuable to the traveler while deciding which road to take.

In our context, the ML researcher or engineer becomes the traveler. Further, transparency into the

decision making process can help an outsider evaluate the significance of the decision, which can be

quantified by examining available alternative options.

In terms of decisions made during ML prediction problem formulation133, the consequences

can be characterized by understanding what changes over possible alternative model selection. For

instance, multiple models with near-optimal performance for a given prediction task can exist25.

If model outputs vary significantly between these similar models, then choosing one model over

another has relative importance. Further, the model selection decision might come under scrutiny

if a similar model with better fairness properties could have been selected20. Even long before de-

ployment, when translating high-level goals into tractable predictive tasks, many reasonable target

variable options may be worth considering133. Once again, target specification becomes especially

high stakes when one target leads to more disparate treatment than other options.

In ML,model multiplicity is the existence of multiple predictive models that perform equally

well for a given prediction task (also known as theRashomon Effect)25. The termRashomon comes

from a popular Japanese movie called Rashomon from 1950 where characters provide contradic-

tory reports of the same incident98. For ML prediction problems, the set of near-optimal models

with similar performance is referred to as theRashomon Set. Predictive multiplicity examines how

predictions change over theRashomon Set112.

Analyzing predictive multiplicity enhances transparency into the predictive arbitrariness of a

given training procedure, which can help calibrate trust in model predictions among stakeholders

interacting with the model82. For instance, clinical professionals are increasingly incorporating ML

into prediction tasks122,160,85. If there are individuals or patients whose prediction changes over the
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Rashomon Set, then, medical experts can use this information to take a second look at these patients.

In consumer finance, lenders use predictive models in support of predicting the likelihood that a

borrower will fail to make payments or default on a loan5,9. Consider a consumer who is denied a

loan based on the MLmodel output. If this individual’s prediction changes over theRashomon Set,

then that decision may be considered arbitrary and hard to justify22. Ultimately, if end-users are

informed about predictive multiplicity, they could abstain from prediction21,69, defer a decision to a

human expert124,94 or otherwise readjust their reliance on model outputs.

Given this compelling motivation and the timely need for transparency, predictive multiplicity is

the main focus of this dissertation. In the next three chapters, I introduce frameworks for evaluating

and leveraging predictive multiplicity in different settings. The main contributions in each chapter

are described below.

Chapter 2: Predictive Multiplicity in Probabilistic Classification

Probabilistic classification is often incorporated into real-world risk assessment tasks to inform

decisions. For instance, probabilistic classifiers that predict consumer default risk are used by lenders

to underwrite loans. We have developed a framework for investigating predictive multiplicity in

this setting. More precisely, predictive multiplicity is the prevalence of conflicting predictions over

the Rashomon set of near-optimal models112. For predictive multiplicity analysis with respect to

a baseline, we begin by training an optimal baselinemodel which is the solution to an empirical

risk minimization (ERM) problem. In probabilistic classification, the baseline model assigns a risk

estimate to each individual in the sample i.e. training dataset. We say that a risk estimate assigned by

a model in the Rashomon set is conflicting if it differs from the baseline risk estimate by at least some

deviation threshold. Our aim is to extend the predictive multiplicity measures introduced byMarx

et al. 112 for binary classification to probabilistic classification.

Marx et al. 112 define ambiguity and discrepancy as measures of predictive multiplicity. Ambi-

guity is the proportion of individuals assigned conflicting predictions over the Rashomon set of
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near-optimal models. Discrepancy is the maximum proportion of individuals assigned conflicting

predictions by a single model in the Rashomon set. Measuring multiplicity in probabilistic classifi-

cation is complicated by the need to clarify the meaning of conflicting. In effect, what constitutes a

conflicting risk prediction can change across applications (e.g., predictions that vary by 5% or 30%).

Likewise, what constitutes a near-optimal model can change across applications depending on how

the Rashomon set is defined. This chapter addresses both of these problems by introducing meth-

ods that allow users to specify near-optimal metric when defining the Rashomon Set and determine

what is meant by conflicting (deviation threshold).

To this end, we consider loss, accuracy, and calibration error as possible near-optimal metrics and

redefine the two measures, ambiguity and discrepancy, in this setting. We also introduce the viable

prediction range, which captures how individual predictions change over the Rashomon set. The

viable prediction range is the smallest and largest risk estimate assigned to an example over competing

models in the Rashomon set.

Our optimization-based methods compute our measures reliably. To compute ambiguity and

viable prediction ranges, we construct a pool of candidate models that assign a specific risk estimate

to each example. We train each of these models by solving a constrained convex optimization prob-

lem. From these models, we select those with performance within ε of the baseline model as the set

of competing models. Specifically, for each threshold probability p ∈ P, we train a candidate model

such that the probability assigned to the example is constrained to the threshold p. Marx et al. 112

use a similar candidate model approach but for 0-1 loss which is not immediately transferable to our

setting where we work with logistic regression.

To compute discrepancy, we formulate a mixed-integer non-linear program (MINLP), which

involves constructing a linear approximation of the loss using an iterative, outer-approximation

method to solve. This method is exact for computing discrepancy in terms of near-optimal loss. For

other metrics, we can again treat the intermediate solutions to the outer approximation algorithm

5



as candidate models and use these candidates to recover a lower bound similar to the method used

to compute ambiguity and viable prediction ranges. Marx et al. 112 follow a similar approach, but

in their case they compute discrepancy by solving a mixed integer program (MIP) rather than an

MINLP, where their MIP minimizes agreement while constraining the output model to be near-

optimal with respect to 0-1 loss.

Via systematic experiments on synthetic data, we offer insights into why predictive multiplic-

ity arises. We find that predictive multiplicity is more prevalent for examples that are both outliers

and close to the discriminant boundary, for datasets that are less separable, and for minority groups

when a dataset has a majority-minority structure.

Lastly, we present an empirical study on seven real-world risk assessment tasks: risk that a mam-

mogram shows breast cancer52, risk that a customer will default on a loan182, risk that a person

opens a bank account after a marketing call123, risk that a person earns over $50,00093, risk of re-

arrest for a crime3, risk a patient will be diagnosed with obstructive sleep apnea165. We show that

probabilistic classification tasks can in fact admit competing models that assign substantially differ-

ent risk estimates. For one set of selected near-optimal error tolerance, results show ambiguity values

of 35.3% (breastcancer), 95.8% (sleep apnea), and 51.4% (rearrest). For intuition, this means that

35.3% of breast cancer risk estimates vary by at least 20% over near-optimal models. Results also

show discrepancy values at 3.6% (breastcancer), 1.2% (sleep apnea), and 5.4% (rearrest).

Our results also demonstrate howmultiplicity can disproportionately impact marginalized in-

dividuals. For example, when analyzing predictive multiplicity for the task of predicting the risk of

rearrest, individuals who are ethnically Hispanic are disproportionately affected by predictive mul-

tiplicity: ambiguity is 39% for African Americans and 49% for Caucasians, compared to 98% for

Hispanics. Hence, reporting predictive multiplicity at the subgroup level can also reveal valuable

insights.

Chapter 3: Multi-Target Multiplicity: Flexibility and Fairness in Target Specification un-
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der Resource Constraints

As noted above, prediction problems are ubiquitous across many domains of decision-making,

from employment, to education, to health89. Yet real-world problems rarely present themselves as

fully formed machine learning tasks139. Critically, it is often not clear what target should be pre-

dicted to help decision makers achieve their goals70,133. It is far from obvious, for example, how

employers should go about making such choices in their hiring practices: if the goal is to hire the best

people, what exactly should the model be predicting8,133,87? For a sales position, employers might

choose to predict annual sales figures. But they could alternatively choose to predict how well the

applicant will work with others, whether customers will actually enjoy interacting with the appli-

cant, etc. Even in domains where target choice might seemmore obvious, there can still be a good

deal of flexibility in this choice.

A recent line of work has explored the implications of this flexibility in target variable choice

for algorithmic fairness considerations. In particular, researchers have pointed out that differ-

ent choices for the prediction target can lead to more or less disparity in selection rates across

groups133,129,77,121,125,111,87,55. One particularly well-known study by Obermeyer et al. 129 illus-

trates both the risks and benefits of target choice. The authors examine an algorithm developed by

a healthcare system used in determining patient eligibility for a high-risk coordinated care manage-

ment program. They find that the healthcare system’s choice to adopt healthcare costs as the target

of prediction led to notable and avoidable racial disparities. Because Black patients in the United

States generally incur lower health care costs at equal levels of underlying health care needs, predict-

ing costs results in a score that systematically prioritizes healthier White patients over less healthy

Black patients. The authors show that a good deal of the racial disparity could have been avoided

had the healthcare system instead chosen to predict a more direct measure of health outcomes. The

study has been received as a important lesson in the dangers of insufficiently careful target choice.

But it also highlights that practitioners can take advantage of the latitude afforded by target choice
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to reduce selection rate disparities.

Though existing literature offers several domain specific examples that highlight the potential im-

portance of target variable choice, prior work does not offer a more general mathematical or compu-

tational framework for characterizing the extent to which target variable choice affects individuals’

outcomes and selection rate disparities across groups. This work aims to fill this gap. Specifically, we

draw connections to recent work on predictive multiplicity. By analogy, in the motivatingmulti-

target setting—where there are many possible reasonable prediction targets to choose from—we

can consider the set of “good models” that arises frommodels that predict any of the individual

targets well, models that predict a combination of targets well, or that combine the predictions of

single-target models. We formalize these ideas and provide examples in the technical sections of the

chapter.

As the main contribution, we borrow the “multiplicity” framing to outline the concept of

“multi-target multiplicity” for quantifying the flexibility in target specification for a given predic-

tive allocation task: tasks where historical data is used to learn a “prioritization” or “risk” score and

that score serves as the basis for deciding how to allocate resources. We introduce the concept of

multi-target multiplicity alongside a framework for assessing multi-target multiplicity for predic-

tive allocation tasks. We demonstrate how the framework can assess fairness-related measures by

presenting a MIP that calculates the minimum and maximum attainable selection rate for a given

group. We demonstrate our framework on the healthcare dataset released by Obermeyer et al. 129 .

As expected, results replicate the original result where modeling active chronic conditions produces

the highest concentration of current illnesses in the high-risk set and there is more than a 10 per-

cent difference in the racial composition of the high-risk set. We show that the optimized composite

model does a reasonable job of capturing each of the individual targets that it is comprised of, but

also produces a high-risk set with a high concentration of Black patients. In essence, we are able to

fit separate models that are useful for predicting the three outcomes that are of interest on their own
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while also arriving at a way of ranking patients that results in a more equitable allocation of a scarce

resource using the proposed framework.

Then, we use semi-synthetic data to gain a better understanding of the conditions for which we

might (or might not) expect to see such gains in other datasets. The demonstration shows that the

optimized composite model can learn to average out unhelpful correlation structure between the

protected attribute and the target variables.

Our secondary contribution is to extend concepts from Chapter 2 to predictive allocation tasks.

There is only a finite amount of benefit, burden, or scrutiny that the system is able to allocate. For

instance, the algorithm investigated by Obermeyer et al. 129 was developed to help allocate coor-

dinated care management to a certain number of clients. Similarly, employers cannot offer jobs

to everyone they predict will be a sufficiently good employee, whatever target or set of targets they

choose to predict. Given their limited budgets, they are likely only able to offer jobs to a select few

applicants. This means that analyzing a set of good models might need to involve considerations for

changes in resource allocations in addition to classification outcomes.

Therefore, we formulate predictive multiplicity in the presence of decisions under resource con-

straints. Recall, prior work to compute ambiguity involves constructing a pool of candidate models

that change individual predictions. From that pool of models, those with near-optimal performance

are selected to compute ambiguity. These methods are indirect in that the optimization does not

directly constrain these candidate models to be within the Rashomon set. The previous models are

formulated to minimize loss such that individual predicted probability is constrained to deviate.

Under resource constraints, we develop a MIP that does include a constraint on the model perfor-

mance. The constraint to produce a model within the Rashomon set involves theoretically showing

how to include a constraint that neatly characterizes the Rashomon set for linear regression mod-

els. In this context, we say an individual instance is flippable if the selection decision (whether that

individual will be selected to receive the resource) changes between being selected to not being se-
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lected or vice versa. Additionally, we show theoretically that (i) one can efficiently determine that

many points are provably not flippable over the Rashomon set, and (ii) one can identify a subset of

flippable points by solving a proxy optimization problem with a closed-form solution that produces

a model within the Rashomon set thatmay flip some points into the top. This means that, in prac-

tice, we only need to solve the computationally expensive MIP for a small subset of points whose

flippability remains undetermined. This methodological improvement to methods in Chapter 2 is

enabled by the resource constrained setting.

Chapter 4: Predictive Churn with the Set of Good Models

One of the foremost challenges faced in the deployment of machine learning (ML) models used

in consumer-facing applications is unexpected changes over periodic updates. Model updates are

essential practice for maintaining and improving long-term performance in mass-market applica-

tions like recommendation and advertising. In applications like credit scoring and clinical decision

support, however, changes in individual predictions may lead to inadvertent effects on customer

retention and patient safety. Consider an individual applying for a loan or a patient being consid-

ered for a high-risk treatment program. It may be problematic if their approval or selection decision

hinges on whether they applied before or after a model update.

Unexpected or unreliable predictions after anMLmodel update can illicit safety concerns when

models influence human decision-making. Here, predictive instability after a model update can

lead to, say, loan denials to applicants who previously would have been approved – even if the new

model is more accurate on average. Hence, this chapter focuses on bridging together two facets of

predictive (in)stability in appliedML: predictive churn and predictive multiplicity.

Predictive Churn considers the differences in individual predictions between models pre- and

post-update, where the update is triggered by a change in training data. Predictive churn is formu-

lated in terms of two models: a current model, and an updated model resulting from training the

current model on additional fresh data 38. In several applications, a high level of predictive churn is
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undesirable.

The goal is to examine the relationship between predictive churn and predictive multiplicity. In

this chapter, the Rashomon Set considered is mainly an empirical Rashomon Set resulting from

varying random seed initialisation in training a deep neural network (DNN). This conceptualization

of the Rashomon Set has been adopted in prior work105,51. First, we examine whether individual

predictions that are unstable under model perturbations (predictive multiplicity) are also those that

are unstable under dataset perturbations (predictive churn). For a fixed test sample, we find that the

set of ambiguous examples does often contain most examples that churn over an update. In practice,

analyzing predictive multiplicity for a model could help anticipate examples that will churn over

future model updates.

Next, we theoretically characterize the expected churn between models within the Rashomon

set from different perspectives. First, we derive an upper bound on the churn between an optimal

baseline model and a competing model within the Rashomon set. Then, we show that the expected

churn difference between two models within an empirical Rashomon set is zero when we operate

without an optimal baseline and under a randomized training procedure. This analysis reveals that

the potential for reducing churn by substituting the current deployed model with an alternative

from the Rashomon set hinges on the training procedure employed to generate said Rashomon set.

It also implies that if future updated models are hypothetically confined to be with the Rashomon

set (with respect to a baseline), then the expected churn will be bounded. And finally, operating

under the premise that we only have access to Model A, we analyze whether one model within the

Rashomon set might result in less churn compared to another model within the Rashomon set. To

examine the expected churn difference between any two models within the ε-Rashomon set, we

derive an upper bound on the expected churn difference between two Rashomon sets with respect

to an optimal baseline model. The results also show that when updating frommodel A to model

B, we can produce both Rashomon sets and analytically compute an upper bound on the churn
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between them. Again, the feasibility of reducing churn by substituting the current model with an

alternative from the Rashomon set depends the type of Rashomon set.

Finally, we present empirical results on two model types: a standard DNN and an uncertainty

aware DNN. In particular, we implement a technique that is common in industry settings Spectral-

normalized Neural Gaussian Process (SNGP)104. Multiplicity and churn are defined in the same

way for both kinds of models, but we are interested to understand whether models with inherent

uncertainty quantification abilities might (i) exhibit less predictive multiplicity and (ii) whether the

uncertainty estimates for a prediction can be predictive as to which examples will be ambiguous, or

churn over model updates. Our findings show that in fact there can be more predictive multiplicity

for an uncertainty aware (UA) model, though the uncertainty estimates do prove helpful in antici-

pating unstable instances from the perspective of both predictive multiplicity and churn.
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We have been raised to fear the yes within ourselves, our

deepest cravings. But, once recognized, those which do not

enhance our future lose their power and can be altered.

The fear of our desires keeps them suspect and indiscrim-

inately powerful, for to suppress any truth is to give it

strength beyond endurance. The fear that we cannot grow

beyond whatever distortions we may find within ourselves

keeps us docile and loyal and obedient, externally defined,

and leads us to accept many facets of our oppression as

women.

Audre Lorde 2
Predictive Multiplicity

in Probabilistic Classification

2.1 Introduction

Probabilistic classification is often incorporated into real-world risk assessment tasks to inform de-

cisions. For instance, probabilistic classifiers that predict consumer default risk are used by lenders

13



to underwrite loans9,5. Similarly in clinical applications, physicians make treatment decisions us-

ing models that predict whether a person suffers from a serious illness160,85,31. In criminal justice,

judges often make parole and sentencing decisions guided by models that predict the probability

that a person will fail to appear in court6,102,35,183.

The standard approach to selecting a probabilistic classifier often involves optimizing a loss func-

tion via empirical risk minimization. But for a given prediction task, there may exist multiple models

that perform almost equally well, which is referred to in machine learning as modelmultiplicity25.

These near-optimal, competing models, have similar performance but characteristic differences - e.g.

their interpretability147, explainability56,47, counterfactual invariance51, or fairness40,19,1. These

differences can drastically change how we develop, choose, and use models22.

We investigate how predictions change across competing models by studying predictive multi-

plicity: the prevalence of conflicting predictions over competing models112. To understand our

motivation, consider the significance of competing models assigning vastly different predictions in

practice. In mortality prediction, a conflicting risk prediction would alter treatment decisions and

health outcomes122. In drug discovery, a conflicting risk prediction could switch the compounds

chosen for confirmatory experiments158. By measuring and reporting the prevalence of conflicts, we

can improve how we choose and use machine learning models. If end-users know that an individual

risk estimate conflicts over the set of competing models, they could abstain from prediction21,69 or

defer a decision to a human expert124,94. These implications underline the importance of measuring

and reporting predictive multiplicity more widely.

Our main contributions are:

1. We introduce measures of predictive multiplicity in our setting. The Viable Prediction

Range examines howmultiplicity affects predictions. Ambiguity and discrepancy reflect

the proportion of individuals assigned conflicting risk estimates by competing models.
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2. We develop optimization-based methods to compute our measures for convex empirical risk

minimization problems. This includes employing mixed-integer non-linear programming

and outer-approximation algorithms. Whereas previous work defines competing models

over a single performance metric, our methods enable developers to examine additional near-

optimal metrics.

3. We offer insights into why predictive multiplicity arises via systematic experiments on syn-

thetic data. We find that predictive multiplicity is more prevalent for examples that are both

outliers and close to the discriminant boundary, for datasets that are less separable, and for

minority groups when a dataset has a majority-minority structure.

4. We present an empirical study on seven real-world risk assessment tasks. We show that prob-

abilistic classification tasks can in fact admit competing models that assign substantially dif-

ferent risk estimates. Our results also demonstrate howmultiplicity can disproportionately

impact marginalized individuals.

2.2 RelatedWork

Our work is positioned alongside research onmodel multiplicity. This effect has been referenced

in the statistics literature. For example, Chatfield 30 calls for performing a sensitivity analysis over

competing models, while Breiman 25 cites multiplicity as a reason to avoid explaining a single model

to draw conclusions about the broader data-generating process. Recent advances in computation

make multiplicity analysis possible, leading to a stream of research on how competing models dif-

fer56,47,147,51,168,134,40,19,1. And there are growing discussions about the policy implications of the

existence of multiple equally good models22,20.

There is a growing body of research focused on Rashomon sets. Dong & Rudin 47 explore the

variability of feature importance across models in the Rashomon set and propose a method to help
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understand and visualize feature importance stability. Semenova et al. 148 examine the existence of

simpler models within the Rashomon set underlining that Rashomon sets can be leveraged to search

for simpler and more interpretable models. Xin et al. 180 focus on exploring the entire Rashomon

set of sparse decision trees which contributes understanding of diversity and quality of models

within the Rashomon set, specifically in the context of sparse decision trees. Liu et al. 103 present

a method for fast and accurate generation of interpretable risk scores from Rashomon sets with an

emphasis on interpretability. Wang et al. 173 introduce an interactive tool for exploring sparse de-

cision trees from Rashomon sets which provides a user-friendly interface to aid in model selection.

Wang et al. 172 also introduc an interactive tool for generalized additive models within Rashomon

sets with the goal of improving model interpretability for this particular type of Rashomon set.

Semenova et al. 146 show that introducing controlled noise into data can lead to simpler models

within the Rashomon set which further underlines how Rashomon sets can support interpretabil-

ity. Zhong et al. 185 go deeper into Rashomon sets with sparse Generalized Additive Models pre-

senting tools for finding more interpretable model within this set. Donnelly et al. 48 introduce the

Rashomon Importance Distribution for characterizing variable importance across the Rashomon

set which provides a more robust understanding of variable importance.

Similarly, research on multiplicity from the perspective of predictive arbitrariness has been on the

rise. Creel &Hellman 42 examine algorithmic decision-making systems and argue that deployment

often embodies a form of governance termed algorithmic leviathanwhich draws from a metaphor

in political philosophy. Long et al. 105 explore the fairness-accuracy tradeoff in the context of pre-

dictive multiplicity. Researchers also investigate the broader impact on group fairness from the per-

spective of predictive arbitrariness36 and randomness60. Also, Kulynych et al. 97 connect predictive

multiplicity directly to differential privacy demonstrating predictive multiplicity increases with the

level of privacy.

Our work is distinctly focused on howmultiplicity affects prediction. Our approach builds on
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Marx et al. 112 , who study this effect in classification tasks with yes-or-no predictions. As shown

in Figure 2.1, their measures and methods do not extend to our setting. We need definitions that

consider risk estimate change as opposed to just yes-no prediction change. Measuring multiplic-

ity in probabilistic classification is complicated by the need to clarify the meaning of “conflicting”.

In effect, what constitutes a conflicting risk prediction can change across applications (e.g., predic-

tions that vary by 5% or 30%). Likewise, what constitutes a “competing” model can change across

applications. The present work addresses both of these problems by introducing methods that al-

low users to specify what is “competing” (near-optimal metric) and what is “conflicting” (deviation

threshold). Also, previous work has yet to examine why predictive multiplicity arises, which we

contribute to. Note that Hsu &Calmon 76 introduce a metric calledRashomon Capacity, which

quantifies score variations among models in the Rashomon set in the setting of probabalistic classifi-

cation. Whereas we focus on extending existing measures to this setting, Hsu & Calmon 76 focuses

on adding an additional metric to the literature.

One way we compute predictive multiplicity is by constructing a range of individual risk predic-

tions as a way to quantify pointwise uncertainty resulting from an underspecified empirical risk min-

imization problem. This relates to methods for evaluating predictive uncertainty such as conformal

prediction150,143 as well as Bayesian approaches see e.g.,49,106. However, conformal prediction fo-

cuses on uncertainty that arises due to non-conformity between historical data and new data, which

is orthogonal to our goal. We focus on a non-Bayesian approach, recognizing that non-Bayesian

methods are very typical in applied machine learning. Our goals relate also to a line of work that

aims to quantify and communicate uncertainty in machine learning74,83,114,157,94? and calibrate

trust among stakeholders82. Other complementary work seeks interventions to resolve multiplicity1

or ensembling21.
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Figure 2.1: Classification models that make the same yes‐or‐no predictions can still assign conflicting risk predictions.
Here, we show a 2D classification task with n+ = 200 positive examples (blue) and n− = 200 negative examples
(orange). We plot the decision boundary of a baseline model h0 (black; log‐loss/AUC/calibration = 0.41/0.88/17%) and
a competing model that performs almost equally well h(xxxi) (green; log‐loss/AUC/calibration = 0.42/0.89/16%). As
shown, both classifiers make the same yes‐or‐no predictions, but assign conflicting risk estimates to individual examples
e.g., example xxxi is assigned a risk estimate of h0(xxxi) = 9.3% by the baseline model but h(xxxi) = 40.0% by the
competing model.

2.3 Framework

We consider a probabilistic classification task with a dataset of n examplesD = {(xxxi, yi)}ni=1. Each

example consists of a feature vector xxxi = [1, xi1, . . . , xid] ∈ X ⊆ Rd+1 and a label yi ∈ Y =

{−1,+1}, where yi = +1 is an event of interest (e.g., default on a loan). With the dataset, we train

a probabilistic classifier h : X → [0, 1] – i.e., a model that assigns a risk estimate to example xxxi as:

h(xxxi) := Pr(yi = +1|xxxi). We refer to this model as the baseline model, h0, because it is the optimal

solution to an empirical risk minimization (ERM) problem of the form:

min
h∈H

L(h;D), (2.1)

whereH is a family of probabilistic classifiers, and L( · ;D) is a loss function evaluated on the

datasetD. In what follows, we write L(h) instead of L(h;D) for conciseness. We evaluate the perfor-
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mance of a model in terms of L(h), as well as the following metrics:

1. Risk Calibration: A risk-calibrated model assigns risk predictions that match observed frequen-

cies126. We measure risk calibration in terms of expected calibration error:

ECE(h) =
B∑

b=1

nb
n
|p̂b(h)− p̄b|. (2.2)

Here: Ib is the index set of nb examples in bin b ∈ [B]; and p̂b(h) := 1
nb

∑
i∈Ib h(xxxi) and p̄b =

1
nb

∑
i∈Ib 1[yi = +1] are the mean predicted risk and mean observed risk of examples in bin

b ∈ [B], respectively.

2. Rank Accuracy: A rank-accurate model outputs risk predictions that can be used to correctly

order examples in terms of true risk. We assess rank accuracy using the area under the ROC curve:

AUC(h) =
1

n+n−
∑

i:yi=+1
k:yk=−1

1[h(xxxi) > h(xxxk)], (2.3)

where n+ = |{i : yi = +1}| and n− = |{i : yi = −1}|.

In what follows, we letM(h;D) ∈ R+ denote the performance of h ∈ H over a datasetD in

regards to performance metric M(g), where the convention is that lower values ofM(g) are better;

when working with AUC, we measure the AUC error: M(g) = 1− AUC(g).

2.3.1 CompetingModels

Competing models are classifiers with near-optimal performance compared to the baseline model. A

competing model is any model g ∈ H whose performance is within ε of the baseline model h0.

Definition 1 (ε-Level Set). Given a baseline model h0, metric M, and error tolerance ε > 0, the set of
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competing models (ε-level set) is the set:

Hε(h0) :={h ∈ H : M(h) ≤M(h0) + ε}.

Our methods consider multiplicity over a range of ε values. In practice, a suitable choice of ε

should reflect the epistemic uncertainty in the performance of the baseline model. For instance, one

could employ bootstrap re-sampling to measure the model uncertainty due to sample variation or

consider worst-case uncertainty through generalization bounds.

2.3.2 Measuring Viable Risk Predictions

To examine howmultiplicity affects predictions, we define a range of viable risk estimates that can be

assigned by competing models.

Definition 2 (Viable Prediction Range). The viable prediction range is the smallest and largest risk

estimate assigned to example i over competing models in the ε-level set:

Vε(xxxi) := [ min
h∈Hε(h0)

h(xxxi), max
h∈Hε(h0)

h(xxxi)]. (2.4)

For a prediction task, computing the viable prediction ranges over a sample illuminates the extent

to which competing models assign different risk estimates to individuals. Although we express the

prediction range over an ε-level set using [·, ·] interval notation, not all predictions between the min

and the max may be attainable by a competing model.

2.3.3 Measuring PredictiveMultiplicity

We say that a risk estimate is conflicting if it differs from the baseline risk estimate by at least some

deviation threshold, δ ∈ (0, 1). The appropriate value of δwill depend on the application; i.e. a
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conflicting risk prediction in a clinical decision support task may differ from that which constitutes

a conflicting risk prediction in recidivism prediction. The following example illustrates the impor-

tance of reporting predictive multiplicity over a range of δ values.

Recidivism Prediction: Consider predicting an individual’s risk of failing to appear in court us-

ing past arrest data106. Suppose there are four risk categories partitioned as follows– low: 0-10%,

medium-low: 10-20%, medium-high: 20-30%, high: 30-100%. In this example, a deviation threshold

δ = 10% is informative because it would flag a change in risk that is large enough for any individual

to go from “low” risk to “high” risk.

Medical Risk Prediction: Consider the task of predicting stroke risk for patients with atrial fibrilla-

tion (see e.g., the CHADS2 risk score at MDCalc.com). The individual risk estimates can be used

to inform blood thinner prescription decisions. One recommended usage suggests the following

partitioning– 0% - 0.3%: do not prescribe blood thinner, 0.3-2.8%: maybe prescribe blood thinner,

2.9%+: prescribe blood thinner. If we study predictive multiplicity for this model, a value such as

δ = 1% is informative because a risk estimate shift by 1% could change the decision to prescribe a

blood thinner for many individuals.

With a better understanding of the deviation threshold, we now define measures of predictive

multiplicity. Ambiguity and discrepancy reflect the proportion of examples in a sample S assigned

conflicting risk estimates by competing models. These definitions followMarx et al. 112 , who give

analogous definitions for the problem of multiplicity with binary predictions (see Figure 2.1 for an

illustration of the difference between this problem and the multiplicity of risk estimates).

Definition 3 (Ambiguity). The (ε, δ)-ambiguity of a probabilistic classification task over a sample S

is the proportion of examples in S whose baseline risk estimate changes by at least δ over the ε-level set:

Aδ,ε(h0; S) :=
1
|S|
∑
i∈S

1[ max
h∈Hε(h0)

|h(xxxi)− h0(xxxi)| ≥ δ].
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Relative to the baseline model, ambiguity makes a statement about the proportion of individ-

uals whose risk estimate is uncertain by at least δ. High ambiguity means more uncertainty in risk

predictions. Users may also consult the viable prediction range to guide decisions using the baseline

model.

Definition 4 (Discrepancy). The (ε, δ)-discrepancy of a probabilistic classification task over a sam-

ple S is the maximum proportion of examples in S whose risk estimates could change by at least δ by

switching the baseline model with a competing model in the ε-level set:

Dδ,ε(h0; S) := max
h∈Hε(h0)

1
|S|
∑
i∈S

1[|h(xxxi)− h0(xxxi)| ≥ δ].

Relative to the baseline model, discrepancy reflects the maximum the number of conflicting risk

estimates as a result of replacing baseline model with a competing model in the ε-level set.

Ambiguity and discrepancy differ in the stance they take in regard to the worst case. Discrepancy

measures the worst-case number of predictions that will change by switching the baseline model

with a competing model. In contrast, ambiguity focuses on the worst case for prediction variation

over the set of competing models. If we were to abstain from prediction on points that are assigned

a conflicting prediction by a competing model using e.g., selective classification methods21, then

ambiguity would reflect the abstention rate.

Computing Ambiguity with Viable Prediction Ranges. As shown in Figure 2.2, we can

use the viable prediction ranges of all points in a sample to compute ambiguity. Given the viable

prediction range for each example, we can calculate the maximum difference between the baseline

risk and that assigned by competing models. We can then compute ambiguity by measuring the

proportion of examples where this difference exceeds the deviation threshold.
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� = 20%

baseline

Figure 2.2: An illustration of how viable prediction ranges relate to ambiguity. Left, we plot the width of the viable
prediction ranges |Vε(xxxi)| on the y‐axis for each example on the x‐axis. Note that widths shifted to start from zero
and examples shown in increasing order. The plot also shows the individual baseline risk estimates for each example
in red h0(xxxi) − minh∈Hε(h0) h(xxxi) (shifted similarly). To interpret, the first example from the left has a width of
≈ 15% with a baseline risk estimate on the lower side of the range. The last example has a width of≈ 80% with
a baseline risk estimate closer to the higher side of the range. Using the viable prediction rangesVε(xxxi) directly, we
can extract the maximum difference from the baseline. On the right, we plot the maximum deviation from the baseline,
max |h(xxxi)− h0(xxxi)| for each example on the x‐axis (increasing order). To interpret, consider a deviation thresh‐
old δ = 20%, all examples with max deviation above that threshold are highlighted in yellow giving us ambiguity,
Aδ,ε(h0; S).

2.4 Methodology

In this section, we detail the procedure for computing measures of predictive multiplicity. This

methodology can be applied to any convex loss function L(·), and together with a training prob-

lem that employs a convex regularization term. We illustrate the methodology on the classifi-

cation task described in §2.3 by training a probabilistic classifier via logistic regression, with

h(xxxi) = 1
1+exp(−⟨www,xxxi⟩) , where www = [w0,w1, . . . ,wd]

⊤ ∈ Rd+1 is a coefficient vector.

We train this baseline model by solving Eq. (2.1) to minimize normalized logistic loss: L(www) =

1
n
∑n

i=1 log(1+ exp(−〈www, yixxxi〉)).
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2.4.1 Measuring Ambiguity

We first present a method for computing ambiguity for different choices of ε and δ. The method also

gives a conservative approximation of the viable prediction range for each example. We construct a

pool of candidate models that assign a specific risk estimate to each example. From these models, we

select those with performance within ε of the baseline model as the set of competing models.

Definition 5 (Candidate Model). Given a baseline model h0, a finite set of user-specified threshold

probabilities P ⊆ [0, 1], then for each p ∈ P a candidate model for example xxxi is an optimal solution to

the following constrained ERM:

min
www∈Rd+1

L(www)

s.t. h(xxxi) ≤ p, if p < h0(xxxi)

h(xxxi) ≥ p. if p > h0(xxxi)

(2.5)

For each threshold probability p ∈ P, we train a candidate model h such that the probability

assigned to the example is constrained to the threshold p. In this way, by training for each example

and threshold probability p ∈ P, we obtain the set of candidate models G := {h : i ∈ S, p ∈ P}. We

choose to solve the instances in order of increasing values of threshold probability p, which allows us

to warm-start the optimization using previous solutions.

Given the set of candidate models, we define a candidate ε-level set as

H̃ε(h0)={h ∈ G : M(h)≤M(h0)+ε}. (2.6)

We use the candidate ε-level set to compute measures of predictive multiplicity. This method

is exact for ambiguity defined in terms of near-optimal loss when the grid of threshold probabili-

ties P ⊆ [0, 1] aligns with h0(xi) ± δ (i.e., is selected as appropriate to the baseline prediction for
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an example and the value of δ). For other metrics, such as AUC, this approach to compute ambi-

guity gives a conservative estimate (i.e., lower bound)—the training of a candidate model does not

directly optimize for AUC, but we can retain only those candidate models that are competitive for

the appropriate ε-level set definition. Since H̃ε(h0) ⊆ Hε(h0), the candidate-model approach also

provides a conservative estimate of the viable prediction range (Eq. (2.4)) for an example.

2.4.2 Measuring Discrepancy

Discrepancy is the maximum proportion of examples assigned conflicting risk estimates by a single

competing model, h ∈ Hε(h0). Recall that a conflicting risk estimate differs from the baseline risk

estimate h0(xxxi) by at least some deviation threshold, δ > 0. Therefore, measuring discrepancy with

respect to a baseline model corresponds to solving the following maximization problem:

max
h∈Hε(h0)

∑
i∈S

1[|h(xxxi)− h0(xxxi)| ≥ δ]. (2.7)

Given a sample S, the baseline loss L0, error tolerance ε, and deviation threshold δ, we can formu-

late Eq. (2.7) as a mixed-integer non-linear program (MINLP):

max
www∈Rd+1

∑
i∈S

di

s.t. L(www)≤L0 + ε (2.8a)

di= vi,δ + zi,δ ∀i ∈ S (2.8b)

Mz,i(1− zi,δ)≥〈www, xxxi〉 − Ui,δ ∀i ∈ S (2.8c)

Mv,i(1− vi,δ)≥−〈www, xxxi〉+ Bi,δ ∀i ∈ S (2.8d)

di, zi,δ, vi,δ ∈ {0, 1} ∀i ∈ S

TheMINLP in (2.8) fits the parameters of a linear classifier that maximizes discrepancy . Here,
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the objective maximizes number of examples assigned a conflicting risk estimate using the indicator

variables di := 1[|h(xxxi) − h0(xxxi)| ≥ δ]. Each di is set to zi,δ := 1[h(xxxi) ≤ (h0(xxxi)− δ)] (or vi,δ :=

1[h(xxxi) ≥ (h0(xxxi) + δ)]) when the model assigns a risk estimate to example i that exceeds δ on the

low-side (or high-side) of the baseline risk estimate, respectively. We ensure the indicator behavior of

zi,δ and vi,δ through the “Big-M” constraints (2.8d) and (2.8c), which flag deviations in score space.

The Big-M parameters can be set asMz,i := −Ui,δ +maxwww〈www, xxxi〉 andMv,i := Bi,δ −minwww〈www, xxxi〉,

whereUi,δ := logit(h0(xxxi)− δ), and Bi,δ := logit(h0(xxxi) + δ). When the values ofUi,δ and Bi,δ

lie outside of the [0, 1] domain of the logit, we can drop the relevant indicator variable from the

formulation. We provide additional details in the below.

MIP Formulation for Discrepancy

To train a competing model that optimizes discrepancy, we solve a maximization problem of the

form:

max
h∈Hε(h0)

n∑
i=1

di
(2.9)

Here, di = 1[|h(xxxi) − h0(xxxi)| ≤ δ] can also be rewritten in terms of score di = 1[sw(xxxi) ≥

logit(δ + h0(xxxi))] + 1[sw(xxxi) ≤ logit(h0(xxxi)− δ)]. We recover the solution to (2.9) by solving the

following integer program:

max
www∈Rd+1

n∑
i=0

di

s.t. L(www)≤L(www0) + ε (2.10a)

di= vi,δ + zi,δ i = 1, ..., n (2.10b)
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Mz,i(1− zi,δ)≥ (sw(xxxi)− Ui,δ) i = 1, ..., n (2.10c)

Mv,i(1− vi,δ)≥−(sw(xxxi)− Bi,δ) i = 1, ..., n (2.10d)

sw(xxxi)=
d∑

j=0
wjxi,j i = 1, ..., n (2.10e)

di ∈ {0, 1} i = 1, ..., n (2.10f)

zi,δ ∈ {0, 1} i = 1, ..., n (2.10g)

vi,δ ∈ {0, 1} i = 1, ..., n (2.10h)

wj ∈ R j = 0, ..., d (2.10i)

Here:

• L(www0) := 1
n
∑n

i=1 log(1 + exp(−〈www0, yixxxi〉)) is the log-loss of the baseline classifier on the

training data

• ε ≥ 0 is the loss tolerance (i.e., the maximum additional loss of any competing classifier)

• Ui,δ is a parameter that we set asUi,δ := logit(h0(xxxi)− δ)

• Bi,δ is a parameter that we set as Bi,δ := logit(h0(xxxi) + δ)

• Mz,i is a Big-M parameter that we set asMz,i = −Ui,δ +maxwww
∑d

j=0 wjxij

• Mv,i is a Big-M parameter that we set asMv,i = Bi,δ −minwww
∑d

j=0 wjxij

• Wmax andWmin are user-defined coefficient bounds

Big-MDerivations Recall that by definition,

h(xxxi) := Pr(yi = +1|xxxi) =
1

1+ exp(−〈www, xxxi〉)
(2.11)
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Therefore, sw(xxx) = logit(h(xxxi)). Our goal is to write the objective, |h(xxxi)− h0(xxxi)| ≥ δ, in terms

of score, sw(xxxi).

di = 1[|h(xxxi)− h0(xxxi)| ≥ δ],

= 1[h(xxxi)− h0(xxxi) ≥ δ] + 1[h0(xxxi)− h(xxxi) ≥ δ]

= 1[h(xxxi) ≥ δ+ h0(xxxi)] + 1[−h(xxxi) ≥ δ− h0(xxxi)]

= 1[h(xxxi) ≥ h0(xxxi) + δ] + 1[h(xxxi) ≤ h0(xxxi)− δ]

Nowwe transform into score space

= 1[logit(h(xxxi)) ≥ logit(h0(xxxi) + δ)] + 1[logit(h(xxxi)) ≤ logit(h0(xxxi)− δ)]

= 1[sw(xxxi) ≥ logit(h0(xxxi) + δ)] + 1[sw(xxxi) ≤ logit(h0(xxxi)− δ)]

LetUi,δ = logit(h0(xxxi)− δ) and Bi,δ = logit(h0(xxxi) + δ).

= 1[sw(xxxi) ≥ Bi,δ] + 1[sw(xxxi) ≤ Ui,δ]

= vi,δ + zi,δ

To ensure that zi,δ = 1 whenever 1[sw(xxxi) ≤ Ui,δ] = 1, and zi,δ = 0 whenever 1[sw(xxxi) ≤ Ui,δ] =

0, we add the following Big-M constraint:

Mz,i(1− zi,δ) ≥ sw(xxxi)− Ui,δ
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Here we can set the Big-M parameter as:

Mz,i = max
www

(sw(xxxi)− Ui,δ),

= −Ui,δ +max
www

sw(xxxi),

= −Ui,δ +max
www
〈www, xxxi〉,

= −Ui,δ +max
www

d∑
j=0

wjxij

= −Ui,δ +Wmax
d∑

j=0
xij

Next, to ensure that vi,δ = 1 whenever 1[sw(xxxi) ≥ Bi,δ] = 1, and that vi,δ = 0 whenever

1[sw(xxxi) ≥ Bi,δ] = 0, we add the following Big-M constraint:

Mv,i(1− vi,δ) ≥ −(sw(xxxi)− Bi,δ)

Here, we can set the Big-M parameter as:

Mv,i = max
www

(Bi,δ − sw(xxxi)),

= Bi,δ +max
www
−sw(xxxi),

= Bi,δ −min
www

sw(xxxi),

= Bi,δ −min
www
〈www, xxxi〉,

= Bi,δ −min
www

d∑
j=0

wjxij,

= Bi,δ −Wmin
d∑

j=0
xij
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Outer-Approximation Algorithm

The challenge in solving (2.8) is that constraint (2.8a) is non-linear. We construct a linear approxi-

mation of the loss see e.g.,57,80 using an iterative, outer-approximation method see e.g.,163,13,12 to

solve. The algorithm recovers a globally optimal solution to the MINLP in (2.8), and can be im-

plemented using a mixed-integer programming solver with callback functions see e.g.,163,13,12. The

procedure builds a branch-and-bound tree to discover integer-feasible solutions that obey all con-

straints other than (2.8a). For each feasible solution identified, the procedure computes its loss to

determine if it is feasible with respect to constraint (2.8a). If feasible, the procedure retains the solu-

tion. Otherwise, it updates the loss function approximation by adding a new linear constraint.

This method is exact for computing discrepancy in terms of near-optimal loss. For other metrics,

we can again treat the intermediate solutions to the outer-approximation algorithm as candidate

models and use these candidates to recover a lower bound similar to the method used in § 2.4.1.

Now, we provide the technical details of our outer approximation implementation.

Loss Callback Formulation We let Lmax
ε := L0 + ε. This allows us to write the loss con-

straint L(www) ≤ L0 + ε as follows.

L(www) ≤ Lmax
ε (2.12)

L(www)− Lmax
ε ≤ 0 (2.13)

c(www) ≤ 0 (2.14)

We will present an algorithm where we approximate c(·) by a linear approximation at a fixed
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point wwwk ∈ Rd. The linear approximation has the form:

ĉk(www) := c(wwwk) +∇L(wwwk)(www− wwwk) (2.15)

= c(wwwk) +

d∑
j=1
∇L(wk

j )(wj − wk
j ) (2.16)

Recall that L(www) = 1
n
∑n

i=1 log(1+ exp(−〈wwwk, yixxxi〉)). The derivative evaluated at wwwk is therefore,

∇jL(wk
j ) =

1
n

n∑
i=1
∇j log(1+ exp(−〈wwwk, yixxxi〉)) (2.17)

=
1
n

n∑
i=1

[
1

1+ exp(−〈wwwk, yixxxi〉)
∗ exp(−〈wwwk, yixxxi〉) ∗ −yixxxi

]
(2.18)

To perform the outer approximation, we add the following loss cut if L(wwwk)− Lmax
ε > 0

0 ≥ L(wwwk)− Lmax
ε +

d∑
j=1
∇L(wk

j )(wj − wk
j ) (2.19)

0 ≥ L(wwwk)− Lmax
ε +

d∑
j=1
∇L(wk

j ) ∗ wj −
d∑
j=1
∇L(wk

j ) ∗ wk
j (2.20)

−
d∑
j=1
∇L(wk

j ) ∗ wj ≥ L(wwwk)− Lmax
ε −

d∑
j=1
∇L(wk

j ) ∗ wk
j (2.21)

2.5 Numerical Experiments

In this section, we present experiments on synthetic and real-world data. Our goals are to: (1) reveal

dataset characteristics that impact predictive multiplicity; and (2) determine the extent to which real

risk assessment tasks exhibit predictive multiplicity in practice.
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Name Outcome Variable n d Class Imbalance Train Loss Train AUC Train ECE

mammo52 mammogram
shows breast
cancer

961 12 0.86 0.471 85% 2.4%

credit182 customer
default on
loan

30,000 23 3.50 0.453 74% 1.6%

bank123 person opens
bank account
after market-
ing call

41,188 57 0.12 0.268 82% 0.9%

adult93 person in 1994
US census
earns over
$50,000

32,561 36 0.31 0.332 90% 0.8%

compas_arrest3 rearrest for any
crime

5,380 18 0.84 0.612 72% 1.1%

compas_violent3 rearrest for
violent crime

8,768 18 0.13 0.332 67% 0.3%

apnea165 patient diag-
nosed with
obstructive
sleep apnea

1,537 36 0.70 0.565 76% 3.3%

Table 2.1: Publicly available datasets used to train risk assessment models in §2.5.2. For each dataset, we report n, d,
the class imbalance ratio, |n+|/|n−|, and the performance metrics of the baseline model on training data. We work
with sub‐sampled versions of credit, bank and adult by randomly sampling n = 5000 points from each dataset.

2.5.1 Synthetic Datasets

Linear Separability. To demonstrate how separability informs predictive multiplicity, we

compute ambiguity while varying the degree of separability and show results in Figure 2.3 column

(A). We set δ = 20% and ε = 5% and control separability by increasing the variance of the data

from σ = 4 (top) to σ = 10 (bottom). A clear trend is that ambiguity increases as the data becomes

less separable from 1% to 21%. Notice, also that the ambiguous examples tend to be those near the

discriminant boundary and outliers.
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Outliers andMargin Distance. We examine how predictive multiplicity relates to outlier

distance from the discriminant boundary. We position outliers near and far from the discriminant

boundary and compute ambiguity. As shown in Figure 2.3 column (B), a clear trend is that exam-

ples that are outliers but far from the discriminant boundary (high margin) are less susceptible to

predictive multiplicity.

Majority-Minority Structure. We consider the effect of systematically varying the

majority-minority structure of data. For this, we generate a majority class that has a different sta-

tistical pattern of features than a minority class. Given the two groups, the model is faced with a

tradeoff between correctly predicting one group or the other. In Figure 2.3 column (C), we vary the

ratio in a majority-minority structure revealing that the minority group is more prone to predictive

multiplicity. The ambiguity of the minority group at 10:1 is substantially larger than for the major-

ity group. This shows the importance of evaluating multiplicity across subgroups.

2.5.2 Real-World Datasets

In this section, we evaluate predictive multiplicity in risk prediction tasks frommedicine, lending,

and criminal justice.* Altogether, we consider seven datasets that exhibit variations in sample size,

number of features, and class imbalance. For each dataset, we compute viable prediction ranges,

ambiguity and discrepancy using the methods outlined in §2.4. When training candidate models, we

adopt a grid of target predictions: P = {0.01, 0.1, 0.2, . . . , 0.9, 0.99}. We compute discrepancy by

solving the MINLP Eq. (2.7) with CPLEX v20.146 on a single CPU with 16GB RAM. Our results

are shown in Figure 2.4.

*This is not an endorsement of current usage of risk assessment tools in criminal justice. The use of pre-
diction software raises serious concerns in this domain. We do not condone building models on arrest data to
inform or justify increased policing.
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A B C
More Separable, Aδ,ε(h0; S) = 1% Large Margin, Aδ,ε(h0; S) = 1% Ratio 10:1, Aδ,ε(h0; S) = 7%

Less Separable, Aδ,ε(h0; S) = 21% Small Margin, Aδ,ε(h0; S) = 3% Ratio 1:1, Aδ,ε(h0; S) = 53%

Figure 2.3: Experiments on synthetic data. In (A), we vary separability and find that ambiguity increases as separability
decreases. In (B), we position outliers near and away from the discriminant boundary finding that outliers closer to the
boundary are more prone to ambiguity. In (C), we vary the ratio in a majority‐minority structured dataset: magenta
shading‐ majority group (circles), grey shading‐ minority group (squares) revealing that the minority group is more prone
to ambiguity. In the figures, Y = +1 examples are blue, Y = −1 examples are orange, and ambiguous examples are
highlighted red and we set δ = 20% and ε = 5%.

Viable Prediction Ranges. Our results show that competing models can assign risk estimates

that vary substantially. Viable prediction ranges are plotted in rows (A) and (B) of Figure 2.4, and

we see non-zero viable prediction ranges for all examples across all datasets. The viable ranges for

apnea andmammo appear much larger compared to compas_arrest. In terms of near-optimal loss,

apnea has the most variation, whilemammo has the most variation in terms of AUC. This points to

the value in varying near-optimal metric.
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mammo: breast cancer apnea: sleep apnea arrest: crime rearrest
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Figure 2.4: Predictive multiplicity in probabilistic classification onmammo, apnea and arrest. In rows (A) and (B) we
show the distribution of viable prediction ranges |Vε(xxxi)| on the y‐axis for each example on the x‐axis (relative baseline
estimates in red). Notice, pointwise viable prediction ranges are plotted in increasing order from left to right. We plot
viable prediction ranges for competing models with near‐optimal training AUC (A) and training loss (B). See illustration in
Figure 2.2. We also show ambiguity (C) and discrepancy (D) for competing models with respect to training loss.

Ambiguity andDiscrepancy. Ambiguity and discrepancy are shown in rows (C) and (D) of

Figure 2.4, respectively. For ε = 1% and δ = 20%, we see ambiguity values at 35.3% (mammo),

95.8% (apnea), and 51.4% (compas_arrest). This means that 35.3% of breast cancer risk estimates

35



vary by at least 20% over near-optimal models. We see discrepancy values at 3.6% (mammo), 1.2%

(apnea), and 5.4% (compas_arrest) for ε = 1% and δ = 20%. compas_arrest is the worst in terms

of discrepancy, while apnea has the most severe ambiguity. Thus, ambiguity and discrepancy are not

always coupled.

On the Choice of PerformanceMetric. In settings where we want a model that performs

well in terms of AUC, we should measure predictive multiplicity over a set of competing models

with near-optimal AUC. In practice, it is often convenient to measure predictive multiplicity over

a set of competing models that attain near-optimal loss (since the loss can be encoded into an opti-

mization problem). This is a problem because small variations in loss can lead to large variations in

AUC – thus models with near-optimal loss may not match models with near-optimal AUC. Our

results show that measures of predictive multiplicity vary considerably based on the performance

metric used to define the set of competing models. In particular, we find that discrepancy and ambi-

guity will vary when measured over competing models that attain near-optimal loss, AUC, or ECE.

For example, if we want to estimate the prevalence of samples whose predictions can change by

over δ = 20% on themammo dataset, we find that ambiguity= 35% for competing models with

loss within 1% of the baseline loss, but ambiguity= 45% over models with AUCwithin 0.5%

of the baseline AUC. These differences highlight the need for approaches that measure predictive

multiplicity in the terms of performance metric that we use to evaluate the model (e.g., AUC or

ECE).

On Samples Prone to Ambiguity. Our results reveal a relationship between ambiguity and

individual uniqueness (number of duplicates), class imbalance, and baseline risk estimate. Table 2.2

compares proportion of ambiguous examples in different subgroups. The subgroups are as follows:

label = +1, label = -1, zero duplicates, more than one duplicate, more than 20 duplicates, baseline as-
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Loss ε-level Set Subgroup ε: 0.005 ε: 0.01 ε: 0.02 ε: 0.05

Dataset Ambiguity 0.11 0.35 0.77 1.00

Y = +1 0.09 0.39 0.78 1.00

Y = -1 0.12 0.32 0.76 1.00

Duplicates = 0 0.71 0.92 1.00 1.00

Duplicates> 1 0.07 0.32 0.76 1.00

Duplicates> 20 0.00 0.08 0.63 1.00

Baseline prob< 10% 0.02 0.06 0.54 1.00

Baseline prob> 90% 0.00 0.00 1.00 1.00

Baseline prob [45% : 55%] 0.28 1.00 1.00 1.00

(a) Loss ε‐level set: Data setmammo

AUC ε-level Set Subgroup ε: 0.2% ε: 0.5% ε: 1% ε: 2%

Dataset Ambiguity 0.19 0.46 0.86 1.00

Y = +1 0.15 0.40 0.86 1.00

Y = -1 0.22 0.50 0.86 1.00

Duplicates = 0 0.58 0.92 1.00 1.00

Duplicates> 1 0.17 0.43 0.86 1.00

Duplicates> 20 0.05 0.31 0.78 1.00

Baseline prob< 10% 0.00 0.06 1.00 1.00

Baseline prob> 90% 0.00 0.00 0.00 1.00

Baseline prob [45% : 55%] 0.42 1.00 1.00 1.00

(b) AUC ε‐level set: Data setmammo

Loss ε-level Set Subgroup ε: 0.005 ε: 0.01 ε: 0.02 ε: 0.05

Dataset Ambiguity 0.49 0.72 0.89 1.00

Y = +1 0.78 0.98 1.00 1.00

Y = -1 0.40 0.63 0.85 1.00

Duplicates = 0 0.66 0.82 0.95 1.00

Duplicates> 1 0.38 0.65 0.85 1.00

Duplicates> 20 0.00 0.50 0.70 1.00

Baseline prob< 10% 0.16 0.43 0.77 1.00

Baseline prob> 90% 0.41 0.91 1.00 1.00

Baseline prob [45% : 55%] 1.00 1.00 1.00 1.00

(c) Loss ε‐level set: Data set adult

AUC ε-level Set Subgroup ε: 0.2% ε: 0.5% ε: 1% ε: 2%

Dataset Ambiguity 0.37 0.63 0.81 0.94

Y = +1 0.64 0.95 0.99 1.00

Y = -1 0.28 0.53 0.76 0.92

Duplicates = 0 0.55 0.76 0.91 0.99

Duplicates> 1 0.25 0.55 0.76 0.91

Duplicates> 20 0.00 0.37 0.57 0.76

Baseline prob< 10% 0.07 0.28 0.63 0.88

Baseline prob> 90% 0.20 0.87 1.00 1.00

Baseline prob [45% : 55%] 0.88 1.00 1.00 1.00

(d) AUC ε‐level set: Data set adult

Loss ε-level Set Subgroup ε: 0.005 ε: 0.01 ε: 0.02 ε: 0.05

Dataset Ambiguity 0.66 0.97 1.00 1.00

Y = +1 0.92 1.00 1.00 1.00

Y = -1 0.63 0.97 1.00 1.00

Duplicates = 0 0.68 0.97 1.00 1.00

Duplicates> 1 0.45 0.95 1.00 1.00

Duplicates> 20 nan nan nan nan

Baseline prob< 10% 0.52 0.96 1.00 1.00

Baseline prob> 90% 1.00 1.00 1.00 1.00

Baseline prob [45% : 55%] 1.00 1.00 1.00 1.00

(e) Loss ε‐level set: Data set bank

AUC ε-level Set Subgroup ε: 0.2% ε: 0.5% ε: 1% ε: 2%

Dataset Ambiguity 0.15 0.31 0.62 0.92

Y = +1 0.48 0.70 0.91 0.99

Y = -1 0.10 0.26 0.58 0.91

Duplicates = 0 0.15 0.33 0.64 0.93

Duplicates> 1 0.04 0.10 0.38 0.81

Duplicates> 20 nan nan nan nan

Baseline prob< 10% 0.01 0.12 0.46 0.88

Baseline prob> 90% 0.00 1.00 1.00 1.00

Baseline prob [45% : 55%] 1.00 1.00 1.00 1.00

(f) AUC ε‐level set: Data set bank

Table 2.2: The proportion of ambiguous points in different subgroup categories for data setsmammo, adult and
bank, considering metrics of loss and AUC and for additive ε‐level sets. The discrepancy threshold is set to Δ = 20%.
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signed risk less than 10%, baseline assigned risk greater than 90%, and baseline assigned risk between

45% and 55%.

For uniqueness, we find that across datasets, less than 10% of examples with more than 20 dupli-

cates are ambiguous. That unique examples are more prone to ambiguity is related to our findings

on outliers (see §2.5.1).

In terms of class imbalance, we find datasets with class imbalance skewed negative (adult, bank)

often exhibit multiplicity on positive examples. In comparison, datasets that are roughly balanced

by class (e.g.,mammo, compas_arrest) have the same level of ambiguity for each class. This can be

interpreted in light of the majority-minority effect from §2.5.1.

In terms of the baseline risk estimate, we see high ambiguity for examples with baseline risk near

50% on all datasets. For instance, all examples with baseline risk between 45% and 55% are ambigu-

ous for themammo dataset (ε = 0.5%AUC, δ = 20%). There is no reason to believe that high

ambiguity is less problematic for these samples. Rather, the importance of ambiguity will depend

on the risk thresholds that drive decisions in a particular domain.

On the Disparate Impact ofMultiplicity. Our results demonstrate howmultiplicity can

disproportionately impact individuals from historically marginalized groups. For example, when

predicting the risk of rearrest, individuals who are ethnically Hispanic are disproportionately af-

fected by predictive multiplicity: ambiguity is 39% for African Americans and 49% for Caucasians,

compared to 98% for Hispanics (ε = 1% and δ = 20%). Hence, reporting predictive multiplicity

for subgroups can reveal important fairness considerations when testing models deployed through-

out society.
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2.6 Concluding Remarks

We developed methods to evaluate the effect of slightly perturbing optimal model performance,

revealing that similar models do not always assign similar predictions. We studied how compet-

ing models can assign conflicting predictions in probabilistic classification tasks. The proposed

optimization-based methods compute our simple measures reliably. Compared to previous work,

our methods allow for flexibility in choosing near-optimal metric and deviation threshold. Using

synthetic data, we also present the first study providing insight into the kinds of data characteristics

that give rise to predictive multiplicity and show that separability, outliers and majority-minority

structure are informative. Empirically, we reveal concerning levels of predictive multiplicity in high-

stakes domains.

More research is needed to examine predictive multiplicity for other loss functions and model

classes (our methods immediately generalize to linear models with convex loss functions). Also, it

will be important to study how to effectively communicate these effects to practitioners and decision

makers. Also, when a practitioner encounters high predictive multiplicity, more work is needed on

response options and mitigation strategies. Given predictive multiplicity metrics, practitioners can

make better decisions in model selection while end-users can adjust their reliance on individual risk

predictions. Concisely, analyzing predictive multiplicity promotes accountability and transparency

in machine learning.
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Asking the proper question is the central action of

transformation- in fairy tales, in analysis, and in in-

dividuation. The key question causes germination of

consciousness. The properly shaped question always em-

anates from an essential curiosity about what stands

behind. Questions are the keys that cause the secret doors of

the psyche to swing open.

Clarissa Pinkola Estés

3
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Multi-Target Multiplicity: Flexibility and

Fairness in Target Specification under

Resource Constraints

3.1 Introduction

Scholars have argued that prediction problems are ubiquitous across many domains of decision-

making, from employment, to education, to health89. Yet real-world problems rarely present them-

selves as fully formed machine learning tasks139. Critically, it is often not clear what target should

be predicted to help decision makers achieve their goals70,133. For example, while it might seem self-

evident that creditors should be predicting default, what constitutes “default” is not a given. Credi-

tors need to make an affirmative choice about the number of months of missed payments that ulti-

mately count as “default”71. In some cases, the decision is not based on just one chosen target, but

instead a combination of targets. For example, many algorithmic tools currently used in criminal

justice and human services function by aggregating predictions of several different targets, ranging

from different types of criminal justice system encounters, to mental and physical health outcomes,

to measures of housing stability88,169.

A recent line of work has explored the implications of this flexibility in target variable choice

for fairness. In particular, researchers have pointed out that different choices for the prediction tar-

get can lead to more or less disparity in selection rates across groups133,129,77,121,125,111,87,55. As dis-
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cussed in the introduction of this thesis, one particularly well-known study by Obermeyer et al. 129

illustrates both the risks and benefits of target choice.

The existing literature offers several examples that highlight the potential importance of target

variable choice. Prior work does not, however, offer a more general mathematical or computational

framework for characterizing the extent to which target variable choice affects individuals’ outcomes

and selection rate disparities across groups. As discussed in the introduction, this chapter aims to fill

this gap.

Prior work on multiplicity has at times explicitly steered clear of viewing target choice as a source

of multiplicity, while at the same time acknowledging that it plays an important role in problem for-

mulation more generally22. One reason for this is that multiplicity has been studied with respect to

the task of predicting a pre-specified target. From this perspective, considering different outcomes

amounts to considering a different task. In our setting, however, we adopt a broader view of the

task for which multiplicity is being assessed. Specifically, we note that all the motivating examples

we have just discussed can be thought of as predictive allocation tasks—tasks where historical data is

used to learn a “prioritization” or “risk” score and where that score then serves as the basis for decid-

ing how to allocate resources, usually as part of human-in-the-loop decision processes. In practice,

predictive allocation tasks are governed by resource constraints. There is only a finite amount of ben-

efit, burden, or scrutiny that the system is able to allocate. For instance, the algorithm investigated

by Obermeyer et al. was developed to help allocate coordinated care management to a certain num-

ber of clients. Similarly, employers cannot offer jobs to everyone they predict will be a sufficiently

good employee, whatever target or set of targets they choose to predict to make such an assessment.

If a range of models trained to predict different targets can be similarly helpful in performing a pre-

dictive allocation task, then it is reasonable to understand the flexibility afforded by target choice in

terms of multiplicity as well.

In addition to introducing a framework for multi-target multiplicity, we also refine the standard
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treatment of predictive multiplicity in the single-target setting to account for additional practical

constraints inherent in predictive allocation tasks. Given their limited budgets, they are likely only

able to offer jobs to a select few applicants. This means that the set of “good models”, whether in the

single-target or multi-target setting, can only include models that satisfy the resource constraint. In

this work we demonstrate how to introduce resource constraints into the study of multiplicity.

In summary, our work introduces the concept of multi-target multiplicity, and provides a formal

and computational framework for quantifying the level of multiplicity that exists in a given predic-

tive allocation task. Along the way we introduce a refinement of single-target predictive multiplicity

to the resource constrained setting, and introduce corresponding computational methods. Our

primary contributions are as follows.

1. We introduce a framework for assessing single-target multiplicity in the presence of resource

constraints (§3.3). We define a newmeasure of predictive multiplicity (top-κ ambiguity) and

present a mixed integer program (MIP) to calculate this ambiguity measure for linear models.

2. We introduce the concept of multi-target multiplicity alongside a framework for assessing multi-

target multiplicity for predictive allocation tasks (§3.4.1).

3. We demonstrate how the framework can be used to assess fairness-related measures by presenting

a MIP that calculates the minimum and maximum attainable selection rate for a given group

(§3.4.4).

4. We demonstrate our framework on the healthcare dataset released by Obermeyer et al. and pro-

vide semi-synthetic experiments that aim to clarify how we might be able to improve fairness by

moving to a multi-target setting (§3.6). We reiterate the original results showing that modeling

active chronic conditions produces the highest concentration of current illnesses in the high-

risk set. Given a comparatively small variation in outcome concentration across different target
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variable choices, we do see a substantial difference in the racial composition of the high-risk set

(more than 10 percent difference). Findings show that the index model captures each of the indi-

vidual targets that it is comprised of and also produces a high-risk set with a high concentration

of Black patients, as per the objective of the multi-target group selection formulation. Using

the proposed framework, we arrive at a way of ranking patients that results in a more equitable

allocation of a scarce resource via the index model.

3.2 RelatedWork

Problem formulation and fairness. Prior work has grappled with many aspects of problem formula-

tion that have implications for fairness. Some scholars have focused on the fact that the underlying

goals driving the process of developing a machine learning model can be normatively suspect, re-

gardless of any particular properties of the resulting model59,73,84. Scholars have identified various

reasons why the choice of target might raise concerns with fairness: some outcomes or qualities of

interests might just be more evenly distributed across the population than others133,87; certain out-

comes or qualities of interests might be easier to predict with similar degrees of accuracy across the

population than others39; some kinds of selection bias might cause certain outcomes or qualities

of interest to be observed more or less frequently in certain groups rather than others, even if they

occur at similar rates in reality107; certain targets might suffer frommore so-called “label bias” than

others—that is, systematically less accurate observations of the true value of the target for members

of some groups than others78,40,77. Indeed, one way to understand the Obermeyer et al. study is as

a form of label bias since healthcare costs acted as a systematically inaccurate measure of underlying

healthcare needs. Our work departs frommuch of this literature by focusing on cases where there is

no obviously right or clearly preferable choice of target or proxy and thus uncertainty about which

to choose or whether to choose more than one.
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Multi-task learning, multi-criteria decision-making, latent variable modeling, and fairness. While

our use of the term “multi-target” might suggest a close connection to fairness considerations in

multi-task learning (see, e.g.,171), the problem we study is distinct. Whereas in multi-task learn-

ing the goal is to perform well on (and assess fairness for) each ofK prediction tasks by borrowing

strength across tasks, in our setting we are interested in arriving at a single model, which may not per-

form optimally on any individual task, but which successfully captures multiple desiderata. In this

sense, our setting is more closely related to recent work on latent variable modeling in recommender

systems that aims to optimize for a latent value using a combination of noisy observed measures,

such as clicks, replies, reshares, and other observable forms of user engagement120,90. A key differ-

ence is that we do not posit a specific notion of optimality, and instead explore the degree of multi-

plicity inherent in a class of learning procedures for forming a univariate prediction frommultiple

available targets. Lastly, our work connects to the extensive literature on multi-criteria decision-

making (MCDM) in operations research. Indeed, the index model and index variable approaches

we introduce in §3.4.1 parallel the classic weighted sumsmethod of combining multiple criteria (e.g.,

loss or other objective functions) into a single objective61. However, whereas the focus of MCDM

is in the values of the different objective functions, we examine multiplicity, which pertains to the

variability in prediction decisions for individual people or cases. Additionally, a similar concern for

arbitrariness that comes into machine learning through the choice of target arises in the context of

university and college ranking where the ranking of a school depends on the choice of target by the

agency responsible for ranking65.

Predictive multiplicity and fairness. There is also a growing literature that seeks to explore the

normative implications of multiplicity. Scholars have investigated the degree to which multiplicity

can be leveraged to improve interpretability147 and explainability56,47,134. Others have examined

the danger multiplicity poses for robustness51 and non-arbitrariness19,22,144,76,36. Still others have

focused on its implications for fairness112,1,40,22,176. Notably, some of this work has defined mea-
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sures and developed methods for evaluating predictive multiplicity in binary classification112 and

probabilistic classification176,76, focusing on so called “ambiguity” in models’ predictions (i.e., the

amount of disagreement in models’ predictions on different points). Our work is the first to extend

the analysis of multiplicity to the problem of predictive allocation under resource constraints. We

introduce measures of multiplicity for both single-target and multi-target settings, and introduce

efficient methods that, for a subset of points, can certify whether those points contribute to the

multiplicity measure.

We note that the resource allocation problem formulated in this chapter could, in theory, be

reduced to a binary classifier that predicts whether an example is above or below a threshold. An-

alyzing predictive multiplicity in binary classification112 has involved minimizing 0-1 loss directly.

For instance, Marx et al. 112 compute ambiguity by training candidate models that minimize 0-1 loss

such that a given prediction conflicts with the baseline prediction. Similar to Chapter 3, they then

select from those candidate models those with near-optimal performance to form the Rashomon set.

The integer programs formulated inMarx et al. 112 assume the binary classifier is logistic regression.

In this chapter, if one thinks of our problem as analyzing a selection classifier (predicting top-κ selec-

tion decision), this classifier would be distinct. Here, the rank of individual examples is a function

of a probabilistic classification output and predictive multiplicity metrics are defined in terms of this

individual rank. Additionally, we incorporate the near-optimal performance constraint directly into

the calculation of ambiguity and also analytically compute un-flippable examples removing them

from consideration before computation whereas the formulation inMarx et al. 112 requires running

the integer program for each example in the dataset without consideration for a resource constraint.

Resource constraints and fairness. Recent work on algorithmic fairness has noted the importance

of considering resource constraints. For instance, Black et al. 18 discuss how the increased cost of

auditing more complex tax filings can lead to prediction-based auditing strategies that dispropor-

tionately focus on lower income earners. Other work has emphasized the importance of considering
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resource constraints in the context of algorithmic fairness in healthcare137 and business analytics43.

Our work provides a conceptual and computational framework for reasoning about fairness in the

presence of resource constraints.

Group fairness. Our focus on selection rate disparities differs from traditional group fairness mea-

sures based on False Positive Rate (FPR) and True Positive Rate (TPR). FPR quantifies the propor-

tion of negative examples wrongly classified as positive54. TPR is the proportion of positive exam-

ples correctly classified54. These measures are typically used when there is a focus on accuracy or er-

ror in classification. And in terms of group fairness, these measures can help gain insight into model

performance across different subgroups. In the resource allocation setting, these measures would

be somewhat indirect in that they characterize performance but not necessarily impact on resource

distribution. The indirectness refers to the fact that these measures do not account for resource al-

location constraints. Another important metric, consider demographic parity50 or statistical parity

that requires the rate of positive outcomes to be the same across subgroups (stratified by protected

attribute). Satisfying demographic parity means each group would have an equal chance at receiving

a positive classification. This focus on equality in rates of positive outcomes across subgroups does

not consider prioritization in terms of whether each group has an equal chance at being selected

to receive the resource. Simply because resource budget is not the direct focus. Selection rate dis-

parity, which we focus on here, can be viewed as a variation in demographic parity that adjusts for

only a limited number of instances being selected. Consider another important metric, equal op-

portunity72, which requires that TPR be equal across subgroups. Equal opportunity specifically

focuses on accuracy of positive outcomes instead of the distribution of the outcomes with respect

to selection. In theory, it might be possible to achieve equal TPR while having unequal overall se-

lection rates. For this reason, we opt to use selection rate directly to emphasize access to constrained

resources instead of opting for traditional group fairness metrics.
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3.3 Predictive multiplicity with resource constraints

In this section, we introduce a framework for examining single-target predictive multiplicity under

resource constraints. Our goal is to study predictive consistency over models with near-optimal

performance for each target option. We provide key definitions for predictive multiplicity in §3.3.2,

present a computational framework based on mixed-integer programming (MIP) for linear models

in §3.3.4 and introduce methods for improving computational efficiency in §3.3.5.

3.3.1 Preliminaries

We consider a dataset,D = {(xi, ai, ỹ(k)i )}ni=1, consisting of n cases, where xi = [1, xi1, . . . , xid] ∈

X ⊆ Rd+1 is a feature vector, yi ∈ R is an outcome of interest (potentially binary), and ai ∈ A

is a protected attribute. We operate within the prediction-based allocation setting where a limited

resource is to be allocated to instances in descending order of the predicted value ŷi = ŷ(xi). If case i

is selected, it is allocated ri resources. Let κ denote the resource cap, and let i(j) = i(j)(ŷ) denote the

instance with the jth largest value of ŷi (so that i(1) is the index with the largest predicted value). Let

τi = τi(ŷ) denote the rank of instance i in descending order.

We assume that resources get allocated to instances i(1), . . . , i(J), where J is the largest value such

that
∑J

j=1 ri(j) ≤ κ. The most common prediction-based allocation setting in practice is where

there is simply a limit to the number of cases that can be selected (i.e., ri = 1 ∀i, in which case

J = κ). While we restrict our attention to this setting, all metrics and computational methods can be

extended to general ri ∈ R>0.

3.3.2 Measuring predictive multiplicity under resource constraints

Predictive multiplicity is the extent to which models with near-equivalent performance produce

different predictions or classifications. The set of models under consideration is often referred to as
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the set of “good models”47.

In prior work, Marx et al. 112 introduced predictive multiplicity metrics for binary classification,

andWatson-Daniels et al. 176 considered the setting of probabilistic classification. As in the stan-

dard predictive multiplicity setting112, we begin with a baseline model, h0, that is the solution to an

empirical risk minimization (ERM) problem of the formminh∈H L(h;D), over a hypothesis class,

H, with loss L( · ;D). In this context, one can consider the ε-Rashomon set, which is the set of all

models that achieve near-optimal loss.

Definition 6 (ε-Rashomon set). For a baseline model h0 and error tolerance ε > 0, the ε-Rashomon

set of competing models is:

Hε(h0) :={h ∈ H : L(h;D) ≤ L(h0;D) + ε}.

In112,H is assumed to be a class of binary classifiers, and one of the predictive multiplicity mea-

sures the authors introduce is the ambiguity of a prediction problem,

αε(h0) =
1
n

n∑
i=1

max
h∈Hε(h0)

1[h(xi) 6= h0(xi)].

Note that under this definition, a prediction problem will have high ambiguity if the positive clas-

sification rate, 1
n |{i : h(xi) = 1}|, differs greatly between h0 and models inHε(h0). That is, a high

ambiguity may simply result frommodels that allocate a very different number of resources.

To define an analogous measure for the resource constrained setting, we need to compare models

at the same resource cap, κ. Recall that, unlike in112, we considerH that is a class of prediction mod-

els returning continuous values inR, not binary classifiers. Given a prediction model h and resource
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cap κ, let

Top(i,h,κ) = 1[τi(h) ≤ κ], (3.1)

be the indicator of whether instance i is “in the top-κ” when ranked according to the predicted val-

ues, h. We define two notions of ambiguity in this setting over a dataset sample S ⊂ D.

Definition 7 (Top-κ ambiguity (all)). The (ε, κ)-ambiguity (all) over a sample, S, is the proportion of

examples for which the top-κ decision changes over the ε-Rashomon set:

Aε,κ(h; S) :=
1
|S|
∑
i∈S

max
h∈Hε(h0)

1[Top(i,h,κ) 6= Top(i,h0,κ)]. (3.2)

Definition 8 (Top-κ Ambiguity (top)). The (ε, κ)-ambiguity (top) over a sample, S, is the proportion

of top-κ examples according to h0 that fall outside the top-κ for some models in the ε-Rashomon set:

Aε,κ(h; S) :=
1
κ
∑
i∈S

max
h∈Hε(h0)

Top(i,h0,κ)
(
1− Top(i,h,κ)

)
. (3.3)

In addition to ambiguity over a sample, we can think about predictive consistency at the individ-

ual level. For an individual, we ask whether there is a model in the ε-Rashomon set that can flip the

top-κ selection decision. If there is a near-optimal model that flips the top-κ decision, then we can

say the point is flippable.

Definition 9 (Flippable point). An instance i is flippable inHε(h0) if either

Top(i,h0,κ) = 1 and max
h∈Hε(h0)

τi(h) > κ ; or

Top(i,h0,κ) = 0 and min
h∈Hε(h0)

τi(h) ≤ κ.
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Note that the top-κ ambiguity (all) is simply the fraction of instances that are flippable. Top-κ

ambiguity (top) is the fraction of instance in the top-κ of the baseline model h0 that are flippable out

of the top-κ by some h ∈ Hε(h0).

3.3.3 OnDiscrepancy

Recall, Marx et al. 112 introduced a second measure of predictive multiplicity called discrepancy. In

this chapter, we focus only on ambiguity because we investigate the overall flexibility in individual

predictions over the set of good models. Whereas, discrepancy provides insight into the worst-case

scenario by characterizing the maximum proportion of individual flips that would change if the

baseline model were replaced with some h ∈ Hε(h0). For completeness, we also provide analogous

definitions of discrepancy in the resource constrained setting here. But in our methodological details

and empirical investigation, we focus only on ambiguity.

Definition 10 (Top-κDiscrepancy (all)). The (ε, κ)-discrepancy (all) over a sample, S, is the maxi-

mum proportion of examples for which the top-κ decision changes for a model in the ε-Rashomon set:

Dε,κ(h; S) :=
1
|S|

max
h∈Hε(h0)

∑
i∈S

1[Top(i,h,κ) 6= Top(i,h0,κ)]. (3.4)

Definition 11 (Top-κDiscrepancy (top)). The (ε, κ)-ambiguity (top) over a sample, S, is the max-

imum proportion of top-κ examples according to h0 that fall outside the top-κ for a model in the ε-

Rashomon set:

Dε,κ(h; S) :=
1
κ

max
h∈Hε(h0)

∑
i∈S

Top(i,h0,κ)
(
1− Top(i,h,κ)

)
. (3.5)
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3.3.4 Computing top-κ ambiguity for linear models

In this section we describe the procedure for computing the two notions of top-κ ambiguity for

linear models,H = {h(x) = xTw : w ∈ Rd+1}, and squared error loss, L(h;D) = L(w;D) =

RSS(w;D) =
∑n

i=1(yi − xTi w)2. We use h and w notation interchangeably in the context of linear

models. Unless stated otherwise, we will assume throughout this section that the design matrix X

has been transformed to be orthonormal. The problem is invariant to this operation, but working

with an orthonormal X helps simplify expressions and reduce notational burden.

We begin by training the baseline model h0 that produces a ranking for each individual in our

sample. Our goal is to determine the most meaningful change to this baseline rank for each point

over the ε-Rashomon set of competing models. Therefore, for instances with a baseline rank

in the top-κ, Top(i,h0,κ) = 1, we calculate themaximum attainable rank for this individual,

maxh∈Hε(h0) τi(h). For instances with a baseline rank outside the top-κ, Top(i,h0,κ) = 0, we calcu-

late theminimum attainable rank for this individual, minh∈Hε(h0) τi(h). Based on these minimum

and maximum ranks, we can compute the proportion of examples whose baseline rank flips over the

ε-Rashomon set of competing models.

We employ integer programming for this computation. Prior work involves constructing a pool

of candidate models that change individual predictions112,176. From that pool of models, those with

near-optimal performance are selected to compute ambiguity. These methods are indirect in that

the MIPs do not directly constrain these candidate models to be within the ε-Rashomon set. In our

setting, we develop a MIP that does include this constraint. The following proposition allows us to

neatly characterize the ε-Rashomon set,Hε(h0), for linear models.

Proposition 1. Assume the design matrix Xn×(d+1) has been orthonormalized, and w0 =
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argminw∈Rd+1 ‖y− Xw‖22 is the least squares solution. Then

Hε(w0)={w ∈ Rd+1 : RSS(w) ≤ RSS(w0) + ε}

= {w ∈ Rd+1 : ‖w− w0‖ ≤ ε}.

We provide a simple proof, which follows as a corollary of Theorem 10 in Semenova et al. 147 .

Proof. Unpenalized linear regression is a special case of ridge regression

min
w

L(w; λ) = min
w

(y− Xw)T(y− Xw) + λ‖w‖22,

with λ = 0. Part 1 of Theorem 10 of Semenova et al. 147 shows that the ε-Rashomon set for ridge

regression is,

Hε(w0;X, λ) = {w : (w− w0)
T (XTX+ λId+1

)
(w− w0) ≤ ε}.

For orthonormal designs, XTX = Id+1. This, combined with taking λ = 0 to recover the unpenal-

ized linear regression setting gives the stated result.

With this result in hand, we formulate a MIP to calculate the minimum and maximum

rank assigned to each point over ε-Rashomon set of competing models, which we call

FlipTopKMIP(h0, xi; κ, ε):

min or max
I∈R2×(n−1),w∈Rd+1

∑
i′ ̸=i

I(i′>i)

s.t.
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I(i′>i) + I(i>i′)= 1 ∀i′ ∈ S \ i (3.6a)

(xi′ − xi)Tw≤M ∗ I(i′>i) ∀i′ ∈ S \ i (3.6b)

(xi − xi′)Tw≤M ∗ I(i′>i) ∀i′ ∈ S \ i (3.6c)

‖w− w0‖22≤ ε (3.6d)

wj∈ R j = 1, ..., d+ 1 (3.6e)

I(i′>i), I(i>i′)∈ {0, 1} ∀i′ ∈ S \ i (3.6f )

where we set,

M =

(√
‖w0‖22 + ε

)
max
i,j
‖xj − xi‖2.

Now, we provide details on theM bound in constraints (3.6b) and (3.6c). To ensure that I(i′>i)

whenever (xi′ − xi)Tw = ŷ(xi′)− ŷ(xi) > 0 we setM so that

M ≥ ŷ(xi′)− ŷ(xi) ∀i′, i, and ∀w ∈ Hε(w0)

Proposition 2.

ŷ(xi′)− ŷ(xi) ≤
(√
‖w0‖22 + ε

)
max
i,j
‖xj − xi‖2 ∀i′, i, and ∀w ∈ Hε(w0)

Proof.

max
w∈Hε(w0)

ŷi′ − ŷi = max
w∈Hε(w0)

(xi′ − xi)Tw

By Cauchy-Schwartz,

(xi′ − xi)Tw ≤ ‖xi′ − xi‖2‖w‖2 ≤ ‖xi′ − xi‖2 max
w∈Hε(w0)

‖w‖2.
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Noting that

‖w‖2 =
√
‖w0 + (w− w0)‖22 ≤

√
‖w0‖22 + ‖(w− w0)‖22 ≤

√
‖w0‖22 + ε ∀w ∈ Rε(w0),

we therefore get that,

Mi = max
i′

max
w∈Rε

ŷi′ − ŷi ≤
(√
‖w0‖22 + ε

)
max
i′
‖xi′ − xi‖2.

Taking the maximum over all i′ gives the desired result,

M = max
i,i′

max
w∈Hε(w0)

ŷi′ − Ŷi ≤
(√
‖w0‖22 + ε

)
max
i,i′
‖xi′ − xi‖2.

Note that the proof shows that one can setMi differently for each point iwe are aiming to flip in

the given run of the MIP.

The objective minimizes (or maximizes) the rank assigned to an individual i. The binary variables

I(i′>i) serve as indicators that one point ranks higher than another: ŷi′ = xTi′w ≥ xTi w = ŷi. So

the objective
∑

i′ ̸=i I(i′>i) = τi(w) − 1 is simply the rank (minus 1) of point i in model w. Con-

straint (3.6a) says that between two points, one point has to rank higher or lower making sure there

are no ties. We connect the indicators to the rank definition through constraints (3.6b) and (3.6c)

where the rank relationship is established using “Big-M” variableM. Constraint (3.6d) enforces that

w is in the ε-Rashomon set, as per Proposition (1).

FlipTopKMIP(h0, xi; κ, ε) outputs the minimum or maximum rank assigned to each indi-

vidual in our sample over the ε-Rashomon set. We use this output to determine which points are

flippable based on definition 3.4. Then, we simply calculate the proportion of flippable instances to

arrive at top-κ ambiguity.
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3.3.5 Improving efficiency by identifying provably (un)flippable points

Whereas prior related work on predictive multiplicity in binary112 and probabilistic176 classifica-

tion has involved solving a MIP for every point inD, we show this is not necessary in our setting.

Specifically, we show that (i) one can efficiently determine that many points are provably not flip-

pable over the ε-Rashomon set; and (ii) one can identify a subset of flippable points by solving a

proxy optimization problem with a closed-form solution that produces a w ∈ Hε(w0) that may flip

some points into the top-κ. This means that in practice we only need to solve the computationally

expensive FlipTopKMIP for a very small subset of points whose flippability remains undetermined

following the two efficient filtering steps. Our approach is grounded in the following three results,

whose proofs are below.

Proposition 3 (Prediction gap bound over the ε-Rashomon set). Define Δi,i′(w) := ŷi − ŷi′ =

xTi w − xTi′w to be the prediction gap between instances i′ and i under model w. For all i, i′ and w ∈

Hε(w0),

Δi,i′(w) ≤ Δi,i′(w0) +
√
ε‖xi − xi′‖2 =: B(i, i′; ε)

Proof of Proposition 3.

Δi,i′(www) = xTi www− xTi′www = (xi − xi)⊤www

= (xi − xi)⊤www+ (xi − xi′)⊤ŵww− (xi − xi)⊤ŵww

= (xi − xi′)⊤(www− ŵww) + (xi − xi′)⊤ŵww
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By Cauchy-Schwartz,

∣∣(xi − xi′)T(www− ŵww)
∣∣ ≤ ‖xi − xi′‖2‖www− ŵww‖2

≤
√
ε‖xi − xi′‖2,

where in the second step we use the fact that www ∈ Hε(w0).

Thus ∀www ∈ Hε(w0),

Δi,i′(www) ≤ Δi,i′(ŵww) +
√
ε‖xi − xi′‖2 = B(i, i′; ε).

So if B(i, i′; ε) < 0, we have Δi,i′(www) < 0 ∀w ∈ Hε(w0).

Corollary 1 (Provably unflippable points). Suppose i is not in the top-κ for model w0; i.e.,

Top(i,w0,κ) = 0. If#{i′ : B(i, i′; ε) < 0} ≥ κ, then Top(i,w,κ) = 0 ∀w ∈ Hε(w0).

Proof of Corollary 1. {i′ : B(i, i′; ε) < 0)} ≥ κmeans that there are at least κ points for which

Δi,i′(www) < 0 ∀www ∈ Hε(w0), so i cannot be in the top-κ set for any model in the ε-Rashomon

set.

Proof of Proposition 4. Let

w∗ = w0 +
√
ε

xi
‖xi‖2

.

Wewill show that ∀w ∈ Hε(w0), ŷi(w) ≤ ŷi(w∗). By construction,

ŷi(w∗) = xTw0 +
√
ε‖xi‖2.
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By Cauchy-Schwartz, for any w ∈ Hε(w0)

ŷi(w) = xTi w0 + xTi (w− w0)

≤ xTi w0 + ‖xi‖2‖w− w0‖2

≤ xTi w0 +
√
ε‖xi‖2

= ŷi(w∗)

Conceptually, Proposition 3 establishes a bound on the gap between the predicted values of any

two points over the whole ε-Rashomon set in terms of the prediction gap under the baseline model,

w0. Corollary 1 then says that if there are at least κ points, i′ 6= i, whose predicted value is guaran-

teed to exceed that of point i for every model w ∈ Hε(w0), then i is unflippable.

Proposition 4 (Prediction maximizing model). The predicted value of point i, ŷi = xTi w, over the

ε-Rashomon set is maximized at,

w∗ = argmax
w∈Hε(w0)

ŷi(w) = w0 +
√
ε

xi
‖xi‖2

. (3.7)

For points that are not ruled out by Corollary 1, Proposition 4 provides a candidate model within

the Rashomon set that may flip a point into the top-κ. Note that this result does not preclude the

possibility that Top(i,w∗,κ) = 0 while also Top(i,w′,κ) = 1 for some other w′ ∈ Hε(w0). Taken

together, these results often significantly reduce the number of points for which one needs to run

the MIP in order to determine their flippability.
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3.4 Multi-targetMultiplicity and Fairness

In the previous section, we introduced the top-κ ambiguity measure for characterizing predictive

multiplicity for a single target, y, over the ε-Rashomon set. As discussed at the outset, an important

potential source of multiplicity is in the specification of the target outcome itself. In this section, we

introduce a measure of multi-target multiplicity for the setting where the multiple targets will ulti-

mately be combined in some way to produce a single score that will be used to prioritize allocation.

We also discuss group fairness by examining how the selection rate for a given group varies depend-

ing on the specific choice of combining rule.

3.4.1 Multi-target ambiguity and index models

Given candidate targets, ỹ(1), . . . , ỹ(K), and features X, we consider a family of “combining proce-

dures,” cα, parameterized by α that map from training data (X, ỹ(1), . . . , ỹ(K)) to the space of pre-

diction modelsHα = {hα : X 7→ R}.Under a resource constraint of κ, resources will then be

allocated to the units with the κ highest values of hα(xi). We are interested in characterizing how the

top-κ set varies across the parameter α governing the combining procedure, cα. More formally, we

definemulti-target ambiguity as follows.

Definition 12 (Multi-target ambiguity). The (α, κ)-multi-target–ambiguity of a combining proce-

dure cα over a sample S is the proportion of examples whose top-κ decision varies depending on the choice

of α,

Aα,κ(S) :=
1
|S|
∑
i∈S

max
hα,hα′∈Hα

1[Top(i,hα,κ) 6= Top(i,hα′ ,κ)]. (3.8)

Whereas in the single target case we were interested in ambiguity over the ε-Rashomon set, here we

focus on ambiguity over the combining procedure. Conceptually, a point is “ambiguous” if whether
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it is in the top-κ depends on the particular choice of α in the combining procedure. The family of

models generated by the combining parameters α is the multi-target family of “good models.”

To make the discussion more concrete, we introduce two combining procedures inspired by

existing practice, the index model approach and the index variable approach.

Definition 13 (Index model). The index model is defined as

ŷIM(x; α) = cIMα (X, ỹ(1), . . . , ỹ(K))(x) =
K∑
k=1

αkŷk(x), (3.9)

where α is a weight vector in the K-simplex, α ∈ SK := {α ∈ RK :
∑K

k=1 α = 1, αk ≥ 0 ∀k}, and

ŷk(x) is a prediction model for target ỹ(k).

Note that for this definition to make sense, we assume that the individual predictors ŷk are first

standardized to an appropriate common scale, such as by rescaling ŷ ← ŷ−mean(̂y)
sd(̂y) or converting

to percentiles prior to combining. The choice of standardization function does influence results.

Choosing a single target outcome k0 is a special case of an index model with αk0 = 1 and αk = 0 for

k 6= k0. An advantage of the index model approach is that it places no restrictions on the training

procedure used to construct ŷ(k). Where appropriate, multi-task learning approaches can be used to

jointly learn models across the targets.

This approach is motivated by existing practice in domains such as criminal justice and human

services, where multiple so-called scales (i.e., ŷk’s) are constructed to predict different outcomes, and

are then aggregated into prioritization schemes or decision recommendations. For instance, the

Allegheny Housing Assessment (AHA) tool used to prioritize housing services for persons experi-

encing homelessness sums the predictions of three ỹ(k) assessed within 12 months of the assessment

date: (i) the likelihoood of inpatient mental health services; (ii) the likelihood of jail booking; and

(iii) the likelihood of 4 or more ER visits88.*

*These tools are presented as examples of models that have been constructed for real world applications.
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An alternative to index models is an index variable approach, where instead of first forming pre-

dictions and then aggregating the different scales, a composite target outcome is formed and then

that target is predicted.

Definition 14 (Index variable). Given candidate targets ỹ(1), . . . , ỹ(K), features X, and weights α ∈

SK, an index variable model, ŷIV(x; α) is defined by the minimizer,

ŷIV(x; α) = min
h∈H

L(h; ỹ(α)), where ỹ(α) =
K∑
k=1

αkỹ(k). (3.10)

Conceptually, the index variable approach can be thought of as first forming a composite out-

come that is believed to more comprehensively describe some latent quantity, and then finding the

optimal predictor for that outcome. Both for the index model and index variable formulation, the

parameter α captures potential underspecification in the choice of target. In the case of linear mod-

els, the index model and index variable approach coincide.

Proposition 5 (Equivalence of index model and index variable approaches for linear models.). If we

restrict consideration to linear models whose solution takes the form ŷ = MXy for some n × n matrix

MX that depends on X but not on y, then the index model and index variable approach are equivalent.

Proof of Proposition 5. Starting with the index variable definition, we get that

ŷ(α)IV = MXỹ(α) = MX

( K∑
k=1

αkỹ(k)
)

=

K∑
k=1

αkMXỹ(k) =
K∑
k=1

αkŷ(k) = ŷ(α)IM

Note that linear regression is a special case of a linear model, withMX = X(XTX)−1XT. Other

models such as regression splines fall into this class as well.

We are not endorsing the use of these other tools.
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In the remainder of this work we focus on the index model approach, as it can be analysed in a

computationally tractable way for general predictors ŷk. Due to the equivalence result, our methods

are directly applicable to the index variable approach in the case of linear models.

3.4.2 Computing multi-target top-κ ambiguity for index models

In this section, we introduce a MIP for computing multi-target ambiguity as defined in Eq. (3.8) for

the family of index models. TheMIP calculates the minimum and maximum rank attainable for

each individual point over the combining parameters, α. The multi-target ambiguity is then given as

the proportion of points for which the minimum rank is≤ κ while the maximum rank≥ κ.

For combining procedures parameterized by α, the min and max rank of each individual i ∈ S

can be obtained by solving the optimization problem, which we call FlipTopKMultiMIP(xi; κ):

min
I∈{0,1}n−1, α∈RK

∑
i′ ̸=i

I(i′>i) − 0.5
K∑
k=1

αK or

max
I∈{0,1}n−1, α∈RK

∑
i′ ̸=i

I(i′>i) + 0.5
K∑
k=1

αK

s.t.

I(i′>i) + I(i>i′)= 1 i′ = 1, ..., n \ i (3.11a)

ŷIM(xi′ ; α)− ŷIM(xi; α)≤M ∗ I(i′>i) i′ = 1, ..., n \ i (3.11b)

ŷIM(xi; α)− ŷIM(xi′ ; α)≤M ∗ I(i>i′) i′ = 1, ..., n \ i (3.11c)

0 ≤ αk≤ 1 k = 1, ...,K (3.11d)

0.1 ≤
K∑
k=1

αk≤ 1 (3.11e)

αk∈ R K = 0, ..., d (3.11f)

I(i′>i), I(i>i′)∈ {0, 1} i′ = 1, ..., n \ i (3.11g)
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where ŷIM(xi; α) is shorthand for
∑K

k=1 αkŷk(xi), and

M = max
i′,k

ŷ(k)(xi′)−min
i,k

ŷ(k)(xi).

FlipTopKMultiMIP(xi; κ) fits the parameters α that minimize (or maximize) the rank assigned

to individual i. The objective minimizes (or maximizes) the sum of individuals ranked higher than

individual iwith an additional term in the objective that forces
∑

αk = 1. Again, the binary vari-

ables I(i′>i) serve as indicators that one point ranks higher than another. And constraint (3.11a) says

one point has to rank higher or lower than another (i.e. there are no ties). We connect the indicators

to the ordering relations ŷIM(xi′ ; α) ≥ ŷIM(xi; α) and ŷIM(xi′ ; α) < ŷIM(xi; α) through constraints

(3.11b) and (3.11c), introducing the “Big-M” variable,M. Constraints (3.11d) and (3.11e) ensure

are a soft version of the constraint that α is in the simplex, SK.

This formulation is similar to FlipTopKMIP from the single-target case, but the objective has

an additional term, and the optimization here is over the combining weights α rather than the pa-

rameters of the individual predictors ŷk. As in the single target setting, we calculate ambiguity by

identifying flippable points using a MIP. In this setting, there is no baseline model, so the term ”flip-

pable” now refers to points where there exist two choices of combining parameters, α 6= α′, such

that Top(i,α,κ) 6= Top(i,α′,κ). Furthermore, the optimization here is no longer over an ε-Rashomon

set—a notion which does not naturally extend to the multiple target setting due to the absence of a

baseline model—but rather over the parameters α governing the combining rule.

As in the single-target context, we can once more reduce the number of times we need to run

the MIP by identifying points that provably cannot appear in the top-κ set for any choice of α, and

characterize the prediction-maximizing choice of α for each point. The results and accompanying

proofs are in § 3.4.3.
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3.4.3 Identifying certifiably (un)flippable points in the multi-target

settingwithout solving aMIP

Here, we provide more technical details for identifying (un)flippable points.

Proposition 6 (Prediction gap bound for index models.). Let Δi,i′(α) := ŷIM(xi; α) − ŷIM(xi′ ; α)

to be the prediction gap between instances i′ and i under combining parameters α. For all i, i′ and

α, α′ ∈ SK,

Δi,i′(α) ≤ Δi,i′(α′) +
K∑
k=1

|̂yk(xi)− ŷk(xi′)| =: BIM(i, i′; α).

Proof. For any two instances xi, xi′ ∈ X and combining parameter vectors α, α′ ∈ SK,

Δi,i′(α) = Δi,i′(α′) +
K∑
k=1

(αk − α′k) (ŷk(xi)− ŷk(xi′))

≤ Δi,i′(α′) +
K∑
k=1

|̂yk(xi)− ŷk(xi′)|

= BIM(i, i′; α)

Corollary 2 (Points that cannot appear in top-κ set for any index model). Suppose i is not in the top-

κ for an index model with parameter α̃; i.e., Top(i,α̃,κ) = 0. If#{i′ : B(i, i′; α̃) < 0} ≥ κ, then

Top(i,w,κ) = 0 ∀α ∈ SK.

Proof. {i′ : BIM(i, i′; α̃) < 0)} ≥ κmeans that there are at least κ points, i′, for which

Δi,i′(α) < 0∀α ∈ SK, so i cannot be in the top-κ set for any index model.

Proposition 6 establishes a bound on the gap between the predicted values of any two points

for all α ∈ SK in terms of the prediction gap under any one choice of combining parameters α.
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Corollary 2 then allows us to determine when i cannot be in the top-κ of any index model α ∈ SK

based on the prediction gap for a given α̃.

Proposition 7 (Prediction maximizing index model). The predicted value of point i is maximized at

α∗ ∈ SK where α∗k∗ = 1 for k∗ = argmaxk ŷk(xi) and α
∗
k = 0 for k 6= k∗.

Proof.

max
α∈SK

ŷ(α)IM(xi) = max
α∈SK

K∑
k=1

αkŷk ≤ max
k

ŷk
K∑
k=1

αk = max
k

ŷk,

which is achieved at the stated value of the combining parameter vector, α∗.

Proposition 7 provides a candidate α for which a given point may be in the index model’s top-κ.

Note that this result does not preclude the possibility that Top(i,α∗,κ) = 0 while also Top(i,α′,κ) = 1

for some other α′ ∈ SK. This result suggests the simple strategy of first identifying points whose

top-κ decision varies between the single-target prediction models ŷk.

3.4.4 Group-level selection rates in top-κ selectionwith multiple tar-

gets

In this section we demonstrate how our framework can be applied to examine group fairness con-

cerns. Specifically, we consider how the selection rate—i.e., the proportion of instances from a given

group, A = a, in the top-κ—varies with the combining weights α.†

We can compute the combining parameters that maximize the number of individuals in a given

group who are selected to be in the top-κ. That is, we consider,

min
α

ormax
α

n∑
i=1

1[A = a]Top(i,α,κ) = min
α

ormax
α

n∑
i∈Ga

Top(i,α,κ) (3.12)

†While, in principle, one can also examine measures such as the False Positive Rate and True Positive Rate
by analysing the subsample of instances for which ỹ(k) = 0 (or 1, for TPR), it is not entirely clear how such
quantities should be interpreted. How should one weigh a high FPR for a given target against a low FPR for a
different one in a setting where the ”correct” choice of target is itself in doubt?
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whereGa = {i : Ai = a} denotes all the instances that are in protected group A = a. While

the goal of our work is to characterize the variation in selection rates afforded by different choices of

combining parameters, α, the methods can also be used to select a particular model that maximizes

(or minimizes) those rates.

We compute the quantities in Eq. (3.12) through another MIP. For this purpose we introduce

variables Ti ∈ {0, 1} that play the role of the Top(i,α,κ) indicator. We refer to this MIP as

GroupSelectRateTopKMultiMIP(a; κ):

min
I∈{0,1}2n×|Ga|, T∈{0,1}|Ga|, α∈SK

∑
i∈Ga

Ti − 0.5
K∑
k=1

αk or

max
I∈{0,1}2n×|Ga|, T∈{0,1}|Ga|, α∈SK

∑
i∈Ga

Ti + 0.5
K∑
k=1

αk

s.t.

I(i′>i) + I(i>i′) = 1 ∀i ∈ Ga,∀i′ ∈ S \ i (3.13a)

ŷIM(xi′ ; α)− ŷIM(xi; α) ≤MI ∗ I(i′>i) ∀i ∈ Ga,∀i′ ∈ S \ i (3.13b)

ŷIM(xi; α)− ŷIM(xi′ ; α) ≤MI ∗ I(i>i′) ∀i ∈ Ga,∀i′ ∈ S \ i (3.13c)

κ −
∑
i′ ̸=i

I(i′>i) ≤ κ ∗ Ti i ∈ Ga (3.13d)1+
∑
i′ ̸=i

I(i′>i)

− κ ≤ (n− κ)(1− Ti)i ∈ Ga (3.13e)

0 ≤ αk ≤ 1 k = 1, ...,K (3.13f)

0.1 ≤
K∑
k=1

αk ≤ 1 (3.13g)

I(i′>i), I(i>i′) ∈ {0, 1} i 6= i′ = 1, ..., n (3.13h)

Ti ∈ {0, 1} i ∈ Ga (3.13i)
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The objective minimizes (or maximizes) the number of individuals in groupGa that are selected

to be in the top-κ. There is an additional term in the objective that forces
∑

αk = 1, which has the

effect of enforcing the simplex constraint on α. Recall, the binary variables I(i′>i) serve as indicators

that one point ranks higher than another. Thus, constraint (3.13a) means that one point has to rank

higher or lower making sure there are no ties. We connect the indicators to the ordering relations

ŷIM(xi′ ; α) ≥ ŷIM(xi; α) or ŷIM(xi′ ; α) < ŷIM(xi; α) through constraints (3.13b) and (3.13c) using

the “Big-M” variableMI. This value is set to be the max possible difference in prediction between

two pointsMI = maxi,k ŷ(k)(xi) − mini,k ŷ(k)(xi). To make sure Ti reflects whether individuals are

in groupGa and ranked in the top-κ, we have constraints (3.13d) and (3.13e). Constraints (3.13f)

and (3.13g) are other pieces of the simplex constraint.

3.5 Stable points

Thus far our focus has been on multiplicity and identifying flippable points—those whose decision

depends on the particular model chosen among the set G of good models.‡ In practice, however,

we may be equally interested in unflippable points. As prior work has pointed out, the presence

of multiplicity raises concerns about arbitrariness: What justification can you offer someone who

receives an adverse decision from the chosen model when there may exist another good model that

would have given them a favorable decision 22? Our work can speak to this as well. Concretely, our

proposed methods can be used to identify what we call stable points: cases whose decisions do not

change over the set of good models.

Definition 15. Let G be the set of “good models”. We say that i0 is a stable κ-selected point if

Top(i0,h,κ) = 1 ∀h ∈ G. Similarly, we say that i0 is a stable κ-unselected point if Top(i0,h,κ) =

0 ∀h ∈ G.
‡E.g., G = Hε(h0) in the single target setting, or the set of index models parameterized by α ∈ SK in the

multi-target setting.
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Stable points are instances for which the decision is non-arbitrary: their decisions are invariant to

the specific choice of model among those considered acceptable, which is strong justification for the

given decision. The fraction of stable κ-selected points out of κ is a useful quantifier of the arbitrari-

ness of a predictive allocation task. For instance, if this fraction is very low, this may highlight a need

for further principled deliberation on the specific choice of model, or affect the willingness to adopt

a predictive model for the given allocation task.
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Figure 3.1: (A) The concentration of various outcomes under models optimized for different targets. Each panel shows
the percent of an outcome captured by the highest‐risk patients relative to the entire outcome distribution across
all patients. Each bar represents one type of model. The transparent bars depict models trained to predict individual
targets, whereas the solid bars depict the index model, which re‐weights the individual predictions to maximize fairness.
(B) The percent of Black patients among highest‐risk patients identified by each model.
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3.6 Evaluation

In this section, we apply the techniques developed above to the healthcare dataset analyzed by

Obermeyer et al. to better understand the opportunities afforded by multiplicity among multi-

ple target variables. First, we describe the dataset in more detail and then apply our multi-target

multiplicity framework to it. We then construct a semi-synthetic version of this dataset to de-

velop intuition for the conditions under which we should (or should not) expect to see gains

from index models. Finally, we compare the degree of multiplicity that arises in resource con-

strained settings under a single target to the same under multiple targets. Throughout this sec-

tion, we solve all integer programs with Gurobi v.9.5.268. Our software implementation is at

https://github.com/JWatsonDaniels/multitarget-multiplicity.

3.6.1 Dataset

We demonstrate our framework on a dataset released by Obermeyer et al., which is unique in several

ways. The original paper examines patient data for all primary care patients at a large academic

hospital. However, due to the sensitivity of the data, the authors were unable to release the dataset

in its original form. Instead, they created a publicly available semi-synthetic version of the dataset

that is designed to closely mirror the original dataset.§

The released dataset contains several related but different outcomes for patients in a given year in-

cluding total healthcare costs, avoidable healthcare costs (emergency visits and hospitalizations), and

number of active chronic illnesses. It also contains a rich set of features about each patient, includ-

ing demographics (age, sex, race) and information about the patient’s health and healthcare costs

in the previous year. Specifically, there are indicators for individual chronic illnesses that a patient

had in the previous year, costs claimed by the patients’ insurer in the previous year, biomarkers for

§https://gitlab.com/labsysmed/dissecting-bias
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medical tests from the previous year, and medications taken in the previous year.

In the original paper, Obermeyer et al. examine a proprietary scoring system used by the hospital

to identify high-risk patients. The risk scores are generated by a model designed to predict health-

care costs in the current year based on patient demographics and healthcare information available

from the previous year. In particular, patients who are assigned risk scores that fall in the 97th per-

centile or above (i.e., the top 3% of assigned scores) are automatically identified for inclusion in the

hospital’s “high-risk care management” program.

The authors examine the assigned risk scores in detail and show that they contain a significant

racial bias. Specifically, they find that Black patients at a given risk score have worse health outcomes,

on average, than their White counterparts. The authors trace this bias back to the choice of predict-

ing healthcare costs as the target variable. Due to differences in access to healthcare, White patients

tend to have higher healthcare costs, on average, than Black patients of similar health. This differ-

ence is then reflected in the developed risk score, leading to the observed racial bias. Obermeyer et al.

then go on to show that there are different target variable choices that exhibit less of a racial bias—

specifically using either avoidable costs or active chronic illnesses as a target instead of total costs.

3.6.2 Optimizing across healthcare outcomes

We present a re-examination of this healthcare dataset to further explore the ways in which flexibility

in target variable choice can be used to address fairness concerns. Obermeyer et al. consider using

one of each of the three different target variables, which in our framework corresponds to an index

model with binary α weights. For example, the cost model can be thought of as ŷIM = 1 · ŷcosts +

0 · ŷavoidable costs + 0 · ŷactive illnesses. However, these are just three extremes among the possible set

of index models that can be formed with a continuous α to create a weighted average of the three

available target variables.

Our analysis explores whether exercising these extra degrees of freedom can lead to more equi-
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Figure 3.2: (A) A semi‐synthetic family of models ŷ2, which go from negatively correlated with age (b < 0) to positively
correlated with age (b > 0). Patients in the protected group are concentrated in the middle age range, indicated by
the green band. (B) A closer look at all three models for three different values of b. In the left panel, none of the models
peak in the middle age range. In the middle, the index model ŷIM (solid purple) learns to ignore ŷ1 (dotted red) in favor of
ŷ2 (dashed blue) to capture more of the protected group. On the right, neither of the individual models peak to capture
the protected group, but the index model averages them to do so. (C) A more detailed look at the concentration of
the protected group found by each model over the range of b values, showing that the index model dominates either
individual model over the entire range.

table outcomes. To address this, we replicate and extend the analysis in Table 2 of the original paper,

using the released dataset.¶ Specifically, we train separate models to predict each of the three target

variables (healthcare costs, avoidable costs, and active chronic illnesses) and use the fitted models to

rank a held-out set of patients.‖

We identify the top 3% of highest-risk patients according to each of the models and look at the

concentration of outcomes and the racial composition of the identified patients. For instance, when

considering total costs, we compute what percent of all costs (across all patients) are covered by just

the highest-risk patients. When considering active chronic illnesses, we instead compute the fraction

of all illnesses (across all patients) covered by this set. We then extend these results by running the

multi-target fairness mixed-integer programming (MIP),GroupSelectRateTopKMultiMIP, to

search for an index model that maximizes the fraction of Black patients concentrated among the

¶The original table is generated using the proprietary, unreleased data. Replicating the table with the
released dataset produces similar, but not identical results for this reason.

‖We use the train/holdout set specified by the authors in the released dataset. We train OLS linear regres-
sion models for each variable. In order to do so, we remove several co-linear features provided in the released
dataset, detailed in § 3.6.5.
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highest-risk set. Figure 3.3 outlines more details of this process.

The results are displayed in Fig. 3.1 and show several key observations. First, we see that, as ex-

pected, the model trained to predict a given individual outcome has the largest concentration of

that outcome in the high-risk patient set. Notice that the transparent bars on the far left panel of

Fig. 3.1A show that the model trained to predict total cost is the one that has the highest concentra-

tion of total costs in the high-risk patient set. Conversely, on the far right panel we see that modeling

active chronic conditions produces the highest concentration of current illnesses in the high-risk

set. Second, despite these differences we see comparatively small variation in outcome concentration

across different target variable choices, with less than a 5 percentage point difference across mod-

els in the first three panels. But, we do see a substantial difference in the racial composition of the

high-risk set, as indicated in Fig. 3.1B—amore than 10 percentage point difference.

The index model, in comparison, is shown in the solid bars of Fig. 3.1 for α = (0.05, 0.0, 0.95).

By comparing the solid bars to the transparent ones, we see that the index model does a reasonable

job of capturing each of the individual targets that it is comprised of, but also produces a high-risk

set with a high concentration of Black patients, as per the objective of the multi-target group selec-

tion formulation (3.12). In effect, this represents a “best of both worlds” solution: we are able to

fit separate models that are useful for predicting the three outcomes that may be of interest on their

own (i.e., for budgeting purposes), but we also arrive at a way of ranking patients that results in a

more equitable allocation of a scarce resource via the index model.

3.6.3 Exploring the conditions for effective multi-target optimization

In the example above, we found it was possible to learn an index model that combined individual

target variables from the healthcare dataset to improve group selection rates. In this section, we

use semi-synthetic data to gain a better understanding of the conditions for which we might (or

might not) expect to see such gains in other datasets. To do this, we modify the healthcare dataset
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target variable. In the tune phase, the fitted models are used to forecast each target variable, and the index model MIP is
run to find a fairness‐maximizing weighted combination of the targets. Finally, in the holdout phase a separate dataset is
used to calculate the weight index model predictions, from which fairness metrics are computed.

to systematically control the relationship between a protected group attribute a, a feature x, and the

different choices of target ỹ(k). We then vary these relationships and examine how this affects the

group selection rate that an index model can achieve.

Specifically, we construct a dataset with one feature (age) and two target variables ỹ(1) and ỹ(2),

along with a protected attribute.** We construct the protected attribute to be non-monotonically

correlated with age, with a higher concentration of patients in the protected group falling in the

middle age range compared to the rest of the population. We then construct one target variable ỹ(1)

that is negatively correlated with age and one target variable ỹ(2) whose correlation with age varies

from strongly positive to strongly negative, controlled by a parameter b, as shown in Fig. 3.2A. In

**While age is considered a protected attribute under various discrimination laws, for the purposes of our
evaluation in a healthcare setting, we treat it as an unprotected attribute.

73



x

0.0%

2.0%

4.0%

0.000 0.005 0.010 0.015 0.020 0.025

Maximum relative tolerance on MSE (ε)

A
m

bi
gu

ity

Target
Total
costs
Avoidable
costs
Active
chronic
conditions

Top−κ Ambiguity (all) (n = 1000, κ = 40)

(A)

20%

40%

60%

80%

0% 20% 40% 60%
Percent of points in top−κ set (κ/n)

P
er

ce
nt

 o
f s

ta
bl

e 
po

in
ts

 w
ith

in
 th

e 
to

p−
κ 

se
t

Stability (selected, n = 1000)

(B)
Figure 3.4: (A) Comparison of multiplicity within vs. between targets. Ambiguity within each individual target is shown
by the colored lines at different relative mean squared error tolerances (ε). Ambiguity across the three targets, shown
by the black ’x’ and dotted line, is much higher than ambiguity for any individual target. (B) Stability of points within the
top‐κ set as κ is increased. Even with relatively small values of κ, we find a sizeable set of stable points that, no matter
how targets are combined, fall in the top‐κ set.

this setting, prioritizing middle-aged patients maximizes the fraction of high-risk set that is in the

protected group, but fitting a model to ỹ(1) prioritizes young patients, resulting in a lower selection

rate. Conversely, when b is large and positive, ỹ(2) is positively correlated with age, and so fitting a

model to it will prioritize older patients, also leading to sub-optimal group selection. However, as

we show in Figs. 3.2B and 3.2C, an index model can be fit over a wide range of b values such that

the group selection rate is maximized. The intuition is that the index model can learn to average out

unhelpful correlation structure between the protected attribute and the target variables.

3.6.4 Multi-target versus individual-target multiplicity

Finally, we compare the latitude afforded by across-target multiplicity to that for within-target mul-

tiplicity. To do this we return to the original dataset released by Obermeyer et al. and work with a

subset of the features and examples for computational efficiency, as described in § 3.6.5.

We evaluate predictive multiplicity by computing the single-target top-κ ambiguity for each

choice of target variable Eq (3.3) by running FlipTopKMIP for different error tolerances ε. This

allows us to determine the proportion of top-κ points that can be flipped. The results are shown in
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Fig. 3.4A, with each color corresponding to a choice of target variable. From this, we see that single-

target ambiguity rises quickly with ε and then plateaus. This is a result of the resource constrained

predictive allocation setting: at a certain level, ε, the ε-Rashomon set contains the ”flipping” model

for each of the flippable points, so further increasing ε does not further increase ambiguity. We ob-

serve that the total cost variable has the highest ambiguity, slightly above 2%, whereas active chronic

conditions plateau just above 1%.

We compute the multi-target top-κ ambiguity (3.8) by running FlipTopKMultiMIP across the

three different target variables. This results in a multi-target ambiguity of nearly 5%, as indicated by

the black “x” and dashed horizontal line in Fig. 3.4A. From this we see that the across-target mul-

tiplicity is substantially higher than the within-target multiplicity—a much higher proportion of

points can be flipped into the top-κ set by re-weighting predictions for the different targets than by

entertaining slightly sub-optimal model fits for the individual targets.

Finally, in Fig. 3.4B we look at the complement of ambiguity, examining the set of stable points

that remain in the top-κ set over all possible index models, as defined in §3.5. Specifically, we plot

the percent of stable points in the top-κ set as we increase κ to cover more of the entire dataset. Inter-

estingly we see that the fraction of stable points grows rapidly with κ. For instance, when combining

individual targets under an index model to select the top 10% of highest risk patients, more than half

of the selected patients are the same regardless of which index model is used. This invariance lends

confidence to the decision to prioritize such patients.

3.6.5 Dataset details

We remove several co-linear features from the original Obermeyer et al. dataset so that models can

be fit with OLS regression (instead of regularized regression). Specifically, we remove features whose
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variable name matches the following regular expression:††

(gagne_sum_tm1|normal_tm1|esr_.*-low_tm1|

crp_(min|mean|max).*_tm1|ghba1c_.*-low_tm1)

This eliminates the sum of active illnesses (which are listed as individual binary features in the

dataset) as well as one-hot encoded indicators for individual test results that have low/normal/high

levels.

For §3.6.3 we use a smaller subset of features, for computational efficiency, taking only features

that match the following regular expression:

(gagne_sum_tm1|hypertension_elixhauser_tm1|^dem_|cost.*tm1)

This takes the count of total illnesses in the previous time period instead of individually coded ill-

nesses along with demographics and cost in the previous time period.

3.7 Concluding Remarks

In this paper, we introduced frameworks for assessing the level of multiplicity present in predictive

allocation tasks in both the single-target and multi-target setting. First, we show how to measure

multiplicity for a given target variable in settings where decision makers face constraints that limit

the total number of people who can receive a scarce resource. Second, we show that when faced with

a choice of multiple target variables, practitioners can develop index models that address fairness

concerns by re-weighting and combining predictions for each target. Our empirical results show

††See data dictionary for names and descriptions of variables here: https://gitlab.com/labsysmed/
dissecting-bias/-/blob/master/data/data_dictionary.md
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that both of these methods are effective for narrowing racial disparities in selection rates in allocat-

ing patients to a high-risk coordinated care management program. Notably, we find that the latitude

afforded by re-weighting predictions across target variables is substantially larger than the flexibility

provided by leveraging within-target multiplicity. This may represent a “best of both worlds” solu-

tion: we are able to fit separate models for predicting outcomes that may be interesting to model in

their own right, but we can also combine the predictions from these models to allocate resources

more equitably.
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Systems do not maintain themselves; even our lack of

intervention is an act of maintenance. Every structure in

every society is upheld by the active and passive assistance

of other human beings.

Sonya Renee Taylor

4
Predictive Churn with

the Set of GoodModels

4.1 Introduction

One of the foremost challenges faced in the deployment of machine learning (ML) models used in

consumer-facing applications is unexpected changes over periodic updates. Model updates are essen-
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tial practice for maintaining and improving long-term performance in mass-market applications like

recommendation and advertising. In applications like credit scoring and clinical decision support,

however, changes in individual predictions may lead to inadvertent effects on customer retention

and patient safety.

At the same time, prediction stability – i.e., consistent, reliable, and predictable behavior – is a

basic expectation of MLmodels used to support human decision-making. Hence, a challenge in

ML practice is guaranteeing the stability of predictions made by deployed models after they are

updated. Examples of model updates that may impact individual-level predictions include updat-

ing parameters via additional training steps on new data, adding input features, and quantizing

weights75,33,37,140.

Unexpected or unreliable predictions after anMLmodel update can illicit safety concerns when

models influence human decision-making. For instance, many clinicians use risk models to support

a range medical decisions, from diagnosis to prognosis to treatment122,160,85. Updates to a medical

model, though potentially rendering better average performance, may fundamentally impact the

treatment selected for individual patients. As another example, lenders also use risk models to sup-

port financial decision-making, i.e., predicting the risk that a borrower will fail to make payments or

default on a loan5,9. Here, instability after a model update can lead to loan denials to applicants who

previously would have been approved – even if the newmodel is more accurate on average.

In both examples, patients or borrowers impacted by inconsistent predictions merit further anal-

ysis to avoid arbitrary, harmful, and unfair decisions. Hence, a number of methods aim to ensure

that predictions do not change significantly after a model update – only enough to reflect an average

gain in predictive accuracy. For instance, recent work in interpretable ML imposes a “maximum de-

viation” constraint to control how far a supervised learning model deviates from a ‘safe’ baseline177.

The idea is that a significant deviation from expected behavior is problematic. Therefore, methods

for assessing this type of predictive (in)stability are a means by which to examine safety. This chapter
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focuses on exploring the relationship between two facets of (in)stability in appliedML: predictive

churn and predictive multiplicity.

Predictive Churn considers the differences in individual predictions between models pre- and

post-update. Predictive churn is formulated in terms of two models: a current deployed model, and

an updated model resulting from training the current model on additional fresh data 38. In several

applications, a high level of predictive churn is undesirable. For example, in loan approval, predictive

churn can lead to inconsistent applicant experiences (a loan previously granted being denied post-

model update).

PredictiveMultiplicity occurs when models that are “equally good” on average (e.g., achieve com-

parable test accuracy) assign conflicting predictions to individual samples112. Several recent works

demonstrate that manyML tasks admit a largeRashomon Set 56,47 of competing models that can

disagree on a significant fraction of individual predictions176,76,97,174. In ML-supported decision-

making, the arbitrary selection of a model from the Rashomon Set without regard for predictive

multiplicity can lead to unjustified and arbitrary decisions22,40. Within the literature on predic-

tive multiplicity, the Rashomon Set can be defined with respect to an optimal (baseline) model or

without. In this chapter, the Rashomon set defined without respect to a baseline is a set of models

with similar performance derived from varying random seed initialisations. This is distinct from the

Rashomon set considered in the two previous chapters.

The concepts are distinct in their motivation and methodological study. Model Multiplicity

tends to have motivations in fairness and interpretability. Meanwhile, predictive churn is motivated

by practical industry concerns about periodic model updates. They both involve slight perturba-

tions in the training pipeline though one from perturbing training data directly and the other from

perturbing the model directly. Intuitively, I imagine instances where a dataset perturbation might

be equivalent to a model perturbation. Similarly, there may be instances where they differ in impor-

tant ways. This chapter explores this relationship more closely. The main contributions include:

80



1. We examine whether individual predictions that are unstable under model perturbations (mul-

tiplicity) are also those that are unstable under dataset perturbations (churn). We compare be-

tween examples that are ε-Rashomon unstable and churn unstable. For a fixed test sample, we

find that the ε-Rashomon unstable set does often contain most examples within the churn unsta-

ble set. The proportion of churn unstable examples included in the Rashomon unstable ranges

from 50% to 100% across datasets and model types for a small dataset update. Results also show

that when a model exhibits high predictive multiplicity on one dataset relative to others, it also

exhibits high predictive churn (across both churn regimes) relative to other datasets. In practice,

analyzing predictive multiplicity (via an empirical ε-Rashomon set) can help anticipate the sever-

ity of predictive churn over future model updates.

2. We theoretically characterize the expected churn between models within the ε-Rashomon set

from different perspectives. Our analysis reveals that the potential for reducing churn by substi-

tuting the deployed model with an alternative from the ε-Rashomon set hinges on the training

procedure employed to generate said ε-Rashomon set. The results also show that when updating

frommodel A to model B, we can produce both ε-Rashomon sets (with respect to a baseline)

and analytically compute an upper bound on the churn between them.

3. We present empirical results showing that analyzing predictive multiplicity is useful for antici-

pating churn even when a model has been enhanced with uncertainty awareness. We question

whether models with inherent uncertainty quantification abilities might (i) exhibit less predictive

multiplicity and (ii) produce individual uncertainty estimates that indicate which examples will

be ε-Rashomon or churn unstable. Our findings show that in fact there can be more predictive

multiplicity for an uncertainty aware (UA) model though the uncertainty estimates do prove

helpful in anticipating unstable instances from either perspective.

81



4.2 RelatedWork

ModelMultiplicity Model multiplicity in machine learning often arises in the context of

model selection, where practitioners must arrive at a single model to deploy30,25, from amongst

a set of near-optimal models, known as the “Rashomon” set. There are a number of studies fo-

cused on examining the Rashomon set56,47,147,185,48. Predictive multiplicity is the prevalence of

conflicting predictions over the Rashomon set and has been studied in binary classification112,

probabilistic classification176,76, differentially private training97 and constrained resource alloca-

tion174. There is a growing body of research on the implications of differences in models within the

Rashomon set51,168,134,40,19,1,22,105 and on predictive arbitrariness and randomness in a more gen-

eral setting36,119,60. Distinctively, the present chapter applies the Rashomon perspective to uncover

insights about predictive churn.

Predictive Churn Predictive churn is a growing area of research. Cormier et al. 38 define

churn and present two methods of churn reduction: modifying data in future training, regulariz-

ing the updated model towards the older model using example weights. Churn reduction is of great

interest in applied machine learning41,66,7. Distillation4 has also been explored as a churn mitigation

technique, where researchers aim to transfer knowledge from a baseline model to a newmodel by

regularizing the predictions towards the baseline model 4,184,101,155,79. This chapter is complemen-

tary to this discourse offering a fresh perspective.

Backward Compatibility Model update regression or the decline in performance after a

model updates27 has been a topic of interest in appliedML151. Researchers have again explored var-

ious mitigation strategies including knowledge distillation181,179 and probabilistic approaches162.

This backward compatibility research is closely related to the concept of forgetting in machine learn-

ing where some component of learning is forgotten32,132,14,138,63,113.
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Uncertainty Quantification Uncertainty in deep learning is most often examined from

a Bayesian perspective108,128. Many approximate methods for inference have been developed, i.e

mean-field variational inference23,53 andMCDropout58. Deep ensembles100 often have compara-

ble performance131 but result in scalability issues at inference time. Predictive uncertainty methods

that require only a single model have also been introduced110,149,152,11,159,28,109,142,154,96,166,104,161; in

particular, we implement the SNGPmethod104 given its widespread use in industry settings.

Underspecification and Reproducibility Reproducibility is an anchor of the scientific

process26,62,156,95,118,136,115,167,145, and has garnered discussion inML from the lens of robust-

ness36,51. Recently, research has explored how both reproducibility and generalization relate to

“underspecification” 51 which is related to overparametrization as well10,117,127. Our examination

of near-optimal models resonates with these studies that explore how theML pipeline can produce

deviating outcomes.

4.3 Framework

Our goal is to evaluate the (in)stability of model outputs under future data updates by studying how

pointwise predictions change in response to model perturbations at training time. We begin with a

classification task with a dataset of n instances,D = {(xxxi, yi)}ni=1, where xi = [1, xi1, . . . , xid] ∈

X ⊆ Rd+1 is the feature vector and yi ∈ {0, 1} is an outcome of interest. We fit a classifier h :

Rd+1 → {0, 1} from a hypothesis classH parametrized by θ ∈ Θ ⊆ Rd, and write L( · ;D) for the

loss function, for example cross entropy, evaluated on datasetD. Throughout, we letM(h; S) ∈ R+

denote the performance of h ∈ H over a sample S in regards to a performance metric M(h), where

we assume lower values ofM(h) are better. For instance, when working with accuracy, we measure

the Accuracy error: M(h) = 1− Accuracy(h).
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4.3.1 Predictive Churn

Definition 16 (Predictive churn38 ). The predictive churn between two models, hA and hB, trained

successively on modified training data, is the proportion of examples in a sample i ∈ S whose prediction

differs between the two models:

C(hA, hB; S)=
1
|S|
∑
i∈S

1[hA(xxxi) 6= hB(xxxi)]. (4.1)

For simplicity, we use shorthand notation C(hA, hB) in place of C(hA, hB; S).

Consider the following illustrative example. Classifier hA has accuracy 90% and classifier hB

has accuracy 91%. In the best case, hB correctly classifies the same 90% as hA while correcting ad-

ditional points, resulting in C(hA, hB) = 1%, and hB strictly improves hA. In the worst case, hA

correctly classifies the 9% of hB errors and hB correctly classifies the 10% of hA errors, resulting in

C(hA, hB) = 19%. In practice, SB differs from SA with added or dropped features or training exam-

ples.

4.3.2 PredictiveMultiplicity

Predictive multiplicity is the prevalence of conflicting predictions over near-optimal models112,176,76

commonly referred to as the ε-Rashomon set.

Predictive multiplicity with respect to a baseline: The ε-Rashomon set is defined

with respect to a baseline model that is obtained in seeking a solution to the empirical risk minimiza-

tion problem, i.e.,
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h0 ∈ argmin
h∈H

L(h;D). (4.2)

Let h0 denote this baseline classier.

Definition 17 (ε-Rashomon Set w.r.t. h0). Given a performance metric M, a baseline model h0, and

error tolerance ε > 0, the ε-Rashomon set is the set of competing classifiers h ∈ H with performance,

Hε(h0) :={h ∈ H : M(h;D) ≤M(h0;D) + ε}. (4.3)

M(h;D) ∈ R+ denotes the performance of h ∈ H over a datasetD in regards to performance

metric,M(h). M(h) is typically chosen as the loss function,M = L(h;D), but can also be defined

in terms of a direct measure of accuracy176.

PredictiveMultiplicity without a baseline: Long et al. 105 suggest an alternative defini-

tion of predictive multiplicity in the context of a randomized training procedure, Trand(D), that is

not defined with respect to a baseline model. For shorthand notation, we leave implicit in the sequel

the dependence of Trand on the datasetD.

Definition 18 (Empirical ε-Rashomon set). Given a performance metric M, an error tolerance ε >

0, and mmodels sampled from Trand, the Empirical ε-Rashomon set is the set of classifiers h ∈ H with

performance metric better than ε:

R̂m
ε (Trand) :={h1, h2, · · · hm : hk

iid∼ Trand,M(hk;D) ≤ ε, ∀k ∈ [m]}. (4.4)

We can also define a concept of ambiguity for this empirical ε-Rashomon set.
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Definition 19 (Empirical ε-Ambiguity). Given the empirical ε-Rashomon set, R̂m
ε (Trand), and a

dataset sample, S, the empirical ε-ambiguity of a prediction problem is the proportion of examples i ∈ S

assigned conflicting predictions by a classifier in the ε-Rashomon set:

αε(R̂m
ε ) :=

1
|S|
∑
i∈S

max
h,h′∈R̂m

ε

1[h(xi) 6= h′(xi)]. (4.5)

For simplicity, we use the following shorthand notation αε(R̂m
ε ) in place of αε(R̂m

ε , S).

4.4 Unstable Sets

Our main contribution is to bring the two notions of predictive inconsistency together, which we

begin in this section. In addition to considering instability over a sample, we can consider predictive

consistency at the individual level.

If there exists a model within the ε-Rashomon set that changes the prediction of an individual

instance, we say that example is ε-Rashomon unstable according to Def. (18). Similarly, if the predic-

tion of an individual example is expected to change as a result of the successive training of a model,

then we say the example is churn unstable. We define the set of unstable points as follows.

Definition 20 (ε-Rashomon Unstable Set). The ε-Rashomon unstable set is the set of points in Stest

for which their prediction changes over a pair of models within the ε-Rashomon set

SRunstable(Rε, Stest)={i ∈ Stest : h(xi) 6= h′(xi)∀h, h′ ∈ Rε}

Definition 21 (Churn Unstable Set). The churn unstable set is the set of points in Stest that change
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over a model update from hA to hB, i.e.,

SCunstable(hA, hB, Stest)={i ∈ Stest : hA(xi) 6= hB(xi)}

Given a fixed Stest, we can compare SRunstable and S
C
unstable to characterize the relationship between

predictive multiplicity and predictive churn: what is the intersection between the ε-Rashomon un-

stable set and the churn unstable set?

Remark. Prior work tends to compute ambiguity over the training set112,176,174. If Stest is the

train dataset, then ε-Rashomon unstable examples are simply those that are ambiguous according

to definitions in the previous section. Here, we evaluate unseen test points and whether they are

ε-Rashomon unstable.

4.5 Anticipating Unstable Points

In this section, we consider how to predict whether a new test example will be prone to being ε-

Rashomon or churn unstable. We want to understand whether uncertainty quantification can help

in identifying such an example. Bayesian methods, as well as ensemble techniques, are the most

widely used uncertainty quantification techniques. The Bayesian framework, in particular, aims to

provide a posterior distribution on predictions, from which one can sample to calculate predictive

variance.

4.5.1 Spectral-Normalized Neural Gaussian Process

Given that Bayesian approaches can be computationally prohibitive when training neural networks,

methods have been proposed for uncertainty estimation that require training only a single deep

neural network (DNN). Previous work has identified an important condition for DNN uncertainty

estimation is that the classifier is aware of the distance between test examples and training examples.
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Specifically, Liu et al. 104 propose Spectral-normalized Neural Gaussian Process (SNGP) for lever-

aging Gaussian processes in support of distance awareness. The Gaussian process is approximated

using a Laplace approximation, resulting in a closed-form posterior for computing predictive uncer-

tainty. SNGP improves distance awareness by ensuring that (1) the output layer is distance aware

by replacing the dense output layer with a Gaussian process, and (2) the hidden layers are distance

preserving by applying spectral normalization on weight matrices.

4.5.2 Predicting ChurnDirectly

Given a sample and the accompanying unstable set SCunstable, we can train a classifier, to predict

whether an example is likely to be in the unstable set. We construct a simple classification task with a

dataset of n instances,D = {(xxxi, yi)}ni=1, where xi = [1, xi1, . . . , xid] ∈ X ⊆ Rd+1 is the feature

vector and yci ∈ {0, 1} is now the label indicating whether the example churned (i.e. 1[xi ∈ SCunstable]).

For analysis, we adjust the feature vector in the following ways:

1. Train on only the feature vector xi = [1, xi1, . . . , xid] ∈ X ⊆ Rd+1

2. Add predicted probabilities from original classification task (yi ∈ [0, 1] in § 4.3) to the fea-

ture vector for training

3. Add ambiguity indicator, yri ∈ {0, 1}, i.e. 1[xi ∈ SRunstable] to the feature vector with predic-

tive probabilities and features for training

We make each of these feature adjustments and train a corresponding logistic regression classifier

to predict churn. In principle, adding in the predicted probability can add useful information to

predict churn because the DNNmodel is more complex than the churn prediction model. We can

compare accuracy and gauge any improvements to determine if the ambiguity improves the predic-

tion of churn. We can also measure the linear relationship or correlation between variables by ana-
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lyzing the Pearson Correlation for each configuration. We are particularly interested in correlation

between the different feature configurations and churn.

4.5.3 Arbitrariness Reduction via Ensembling

We adopt and implement an ensemble algorithm to examine whether reducing arbitrariness in gen-

eral will also reduce churn. Long et al. 105 present a simple ensemble algorithm for arbitrariness

reduction and detail theoretical guarantees to show that ambiguity is reduced. The ensembling pro-

cess involves training each model via Trand, then combining those individual predictions to produce

a combined prediction. The set of models that is averaged over is exactly an empirical ε-Rashomon

set of models.

Definition 22 (Ensemble Classifier105). Given the set of models, R̂m
ε (Trand), and a vector λ ∈ Δm,

the ensemble classifier is the convex combination hλ :=
∑

j∈[m] λjhj

where hj is the jth model from R̂m
ε (Trand).

For our analysis, we assume the weights λ ∈ Δm to be the vector 1
m . See Long et al.

105 for a

details on parameter optimization.

To calculate ambiguity, we train multiple ensembled classifiers, then determine whether there is

predictive disagreement across these ensembled classifiers. Of course, in the large ensemble limit, the

disagreement between ensembles becomes zero. In practice, we use a finite ensemble due to limited

computational cost.

4.6 Theoretical Results

In this section, we provide theoretical insights into churn using the ε-Rashomon set perspective.

Accompanied proofs are included.
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We assume that a practitioner only has access to the initial Model A. In § 4.6.1, we derive an an-

alytical bound on the expected churn betweenModel A and a prospective Model B using only the

properties of their respective Rashomon sets. Practically, this implies that if future models are con-

fined to be with the ε-Rashomon set (with respect to a baseline), then the expected churn will be

nicely bounded.

Again, operating under the premise that we only have access to Model A, we analyze whether one

model within the ε-Rashomon set might result in less churn compared to another model within the

ε-Rashomon set. Specifically, we aim to quantify the expected churn difference between any two

models within the ε-Rashomon set. In § 4.6.2, we assume that the ε-Rashomon set is defined with

respect to a baseline model and derive an expected churn difference that resembles prior bounds on

discrepancy (see definition in previous chapters) a metric from predictive multiplicity112,176. In

§ 4.6.3, we operate without a baseline and show that the expected churn difference between two

models within the ε-Rashomon set can be negligible. These results underscore that the feasibility of

mitigating churn by substituting Model Awith an alternative from the ε-Rashomon set depends the

methodology used to construct the ε-Rashomon set, particularly the presence of a baseline model.

4.6.1 Expected Churn Between Rashomon SetsHε(h0)

Consider an ε-Rashomon set with respect to a baseline model,Hε(h0). Say we have two training

datasetsDA andDB whereDB is an updated version ofDA, and considerHε(hA0 ) andHε(hB0) re-

spectively (where the baseline is defined according to Eq. (4.2) and Eq. (4.3))

We ask what the maximum difference in churn will be between two models from each ε-

Rashomon set; i.e., we want to find the worst case scenario in terms of churn betweenHε(hA0 ) and

Hε(hB0). We begin by restating a bound on churn between two models, making use of smoothed

churn alongside β-stability24 of algorithms defined here.
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Definition 23 (β-stability38). Let fT(x) 7→ R be a classifier discriminant function (which can be

thresholded to form a classifier) trained on a set T. Let Ti be the same as T except with the ith training

sample (xi, yi) replaced by another sample. Then, as in24, training algorithm f(.) is β-stable if:

∀x,T,Ti : |fT(x)− fTi(x)| ≤ β (4.6)

We begin by following Cormier et al. 38 to define smooth churn and additional assumptions.

These assumptions allow us to rewrite churn in terms of zero-one loss:

C(hA, hB) =

E(X,Y)∼D [ℓ0,1(hA(X),Y)− ℓ0,1(hB(X),Y)] ,

This requires that the data perturbation (update fromDA toDB) does not remove any features,

that the training procedure is independent of the ordering of data examples, and that training

datasets are sampled i.i.d., which ignores dependency between successive training runs.

Cormier et al. 38 also introduce a relaxation of churn called smooth churn, which is parametrerized

by γ > 0, and defined as

Cγ(hA, hB) =

E(X,Y)∼D
[
ℓγ(fA(X),Y)− ℓγ(fB(X),Y)

]
,

where f·(X) ∈ [0, 1] is a score that is thresholded to produce the classification h·(X), and ℓγ
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is defined as

ℓγ(f(X),Y) =
1, if f(X)Y < 0,

1− f(X)Y
γ , if 0 ≤ f(X)Y ≤ γ,

0, otherwise.

where Y ∈ {0, 1} here.

Here, γ acts like a confidence threshold. We can use smoothed churn alongside the β-stability24

(see Definition 23) of algorithms following38 to derive the bound on expected churn between mod-

els within an ε-Rashomon set.

Theorem 1 (Expected Churn between Rashomon Sets). Assume a training algorithm that is β-

stable. Given two ε-Rashomon sets defined with respect to the baseline models,Hε(hA0 ) andHε(hB0),

the smooth churn between any pair of models within the two ε-Rashomon sets: h′A ∈ Hε(hA0 ) and

h′B ∈ Hε(hB0) is bounded as follows:

EDA,DB∼Dm [Cγ(h′A, h′B)] ≤
β
√
πn
γ

+ 2ε. (4.7)

This holds assuming all models h are trained with randomized algorithms which are also β-stable

(Def. 23).

Below, we provide the proof.

Proof of Theorem 1. We first state the results from Cormier et al. 38 .

Theorem 2 (Bound on Expected Churn38). Assuming a training algorithm that is β-stable, given

training datasetsDA andDB, sampled i.i.d. fromDn where two classifiers hA and hB are trained on
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DA andDB respectively, the expected smooth churn obeys:

EDA,DB∼Dn
[
Cγ(hA, hB)

]
≤ β
√
πn
γ

. (4.8)

From Theorem 2, the smooth churn between the two baseline models is bounded by:

EDA,DB∼Dm [Cγ(hA0 , hB0)] ≤
β
√
πn
γ

.

The churn between any two models within the ε-Rashomon sets,Hε(hA0 ) andHε(hB0), is

bounded by this constant plus a new 2ε term. To show this, we apply the triangle inequality and

Lemma 2, working with any pair of models, h′A ∈ Hε(hA0 ) and h′B ∈ Hε(hB0):

EDA,DB∼Dm [Cγ(h′A, h′B)]

= E(X,Y)∼D
[
ℓγ(h′A(X),Y)− ℓγ(h′B,Y)

]
= E(X,Y)∼D[ℓγ(h′A(X),Y) + ℓγ(hA0 (X),Y)

− ℓγ(hA0 (X),Y) + ℓγ(hB0(X),Y)− ℓγ(hB0(X),Y)

− ℓγ(h′B,Y)]

= E(X,Y)∼D
[
ℓγ(h′A(X),Y)− ℓγ(hA0 (X),Y)

]
+E(X,Y)∼D

[
ℓγ(hA0 (X),Y)− ℓγ(hB0(X),Y)

]
+E(X,Y)∼D

[
ℓγ(hB0(X),Y)− ℓγ(h′B,Y)

]
≤ ε+

β
√
πn
γ

+ ε =
β
√
πn
γ

+ 2ε,

where the second and third equalities are algebra. For the inequality, the first and third expectations
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follow from the Definition of smooth churn and the middle expectation from Theorem 2. For the

final equality, we appeal to Definition 17, with ℓγ as the performance metric and ε being the parame-

ter of the Rashomon set.

4.6.2 Churn forModels withinRε

We bound the churn between an optimal baseline model and a model within the ε-Rashomon set.

Let R̂ denote empirical risk (error) where R̂ := 1
n
∑

i 1[h(xxxi 6= yi)].

Lemma 1 (Bound on Churn). The churn between two models h1 and h2 is bounded by the sum of the

empirical risks of the models:

C(h1, h2)≤ R̂(h1) + R̂(h2). (4.9)

Corollary 3 (Bound on Churn withinRε). Given a baseline model, h0, and an ε-Rashomon set,

Hε(h0), the churn between h0 and any classifier in the ε-Rashomon set, h′ ∈ Hε(h0), is upper bounded

by:

C(h0, h′)≤ 2R̂(h0) + ε. (4.10)

We have recovered a bound on churn that resembles the bound on discrepancy derived in112

where they show that the discrepancy between the optimal model and a model within the ε-

Rashomon set will obeyDh0,≤(2; R̂)(h0) + ε. Below are the accompanying proofs.

Proof of Lemma 1. This follows from the triangle inequality. For a set S = {xxx1, . . . , xxxn}, we denote

the predictions as vectors:

Y1 = (h1(xxx1), ..., h1(xxxn)) ∈ {0, 1}n

Y2 = (h2(xxx1), ..., h2(xxxn)) ∈ {0, 1}n
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Let Y denote the ground-truth label,

Y = (y1, ..., yn) ∈ {0, 1}n.

The empirical risk R̂ of a classifier can be expressed in terms of the L1 norm between the predic-

tions and the ground truth:

R̂(h1) =
||Y1 − Y||1

n
, R̂(h2) =

||Y2 − Y||1
n

Similarly, we write churn as the L1 norm between the predictions of the two models.

C(h1, h2) =
||Y1 − Y2||1

n

The triangle inequality results in:

||Y1 − Y2||1 ≤ ||Y1 − Y||1 + ||Y− Y2||1

Substitution and dividing by n gives

C(h1, h2) ≤ R̂(h1) + R̂(h2).

Proof of Corollary 3. By definition, R̂(h′) ≤ R̂(h0) + ε. Following Lemma 1, we have:

C(h0, h′)≤ R̂(h0) + R̂(h′) ≤ 2R̂(h0) + ε. (4.11)
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4.6.3 Expected Churnwithin R̂m
ε (Trand)

Consider a randomized training procedure Trand(D) over a hypothesis classH and a fixed finite

datasetD. Say we derive the empirical ε-Rashomon set, R̂m
ε (Trand), according to Def. 18. We ask

whether there is a model within this empirical ε-Rashomon set that might decrease churn if used

as an alternative starting point for the successive training of two models. Said another way, we are

interested in whether switching one model out for another within the ε-Rashomon set will impact

churn.

Given Trand(D) is a randomized training procedure, we show there is no difference in expected

churn when adopting any two models in R̂m
ε (Trand) as hA and h′A, and considering churn with re-

spect to some other model hB.

Lemma 2 (Same Expected Churn within R̂m
ε (Trand)). Assume a randomized training procedure

Trand(D). Fix a training datasetDA and an arbitrary model hB. Let hA and h′A be two models in-

duced by Trand(DA). The expected difference in churn between any models hA and h′A induced by

Trand(DA) is zero

E
hA,h′A

iid∼Trand(DA)

[
C(hA, hB)− C(h′A, hB)

]
= 0

This means that one model sampled from Trand will have the same expected churn as another

model sampled from Trand. In essence, we will not reduce churn by replacing the current model

with one from the ε-Rashomon set when using the randomized approximation approach. The

proof is below.

Proof of Lemma 2. We use linearity of expectation and the assumption that models in TDA are sam-
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pled i.i.d. to show that the difference in expectation is 0.

E
hA,h′A

iid∼Trand(DA)

[
C(hA, hB)− C(h′A, hB)

]
= E

hA
iid∼Trand(DA)

[C(hA, hB)]

− E
h′A

iid∼Trand(DA)
[C(h′A, hB))]

= E
hA

iid∼Trand(DA)
[E(X,Y)∼D[ℓ0,1(hA(X),Y)− ℓ0,1(hB)(X),Y)]]

− E
h′A

iid∼Trand(DA)
[E(X,Y)∼D[ℓ0,1(h′A(X),Y)− ℓ0,1(hB)(X),Y)]]

= E
hA,h′A

iid∼Trand(DA)
[E(X,Y)∼D[ℓ0,1(hA(X),Y)− ℓ0,1(h′A(X),Y)]]

= E
hA

iid∼Trand(DA)
[E(X,Y)∼D[ℓ0,1(hA(X),Y)]]− E

h′A
iid∼Trand(DA)

[E(X,Y)∼D[ℓ0,1(h′A(X),Y)]]

= 0.

4.7 Experiments

In this section, we present experiments on real-world datasets in domains where predictive instabil-

ity is particularly high-stakes (i.e. lending and housing).

4.7.1 Setup

Datasets. We consider datasets with varying sample size, number of features, and class imbalance;

summary statistics for each dataset are in table 4.1. * As we show below, models trained and tested

on these datasets exhibit notable variation in predictive inconsistency.

*Notice that theHMDA dataset is an order of magnitude larger than the others (n = 244, 107).
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Figure 4.1: Predicted probability distributions for the Adult Dataset. We plot a histogram of predicted probability dis‐
tribution in grey with the left y‐axis (0 − 4000 are counts) and a scatter plot of the proportion of flip counts for each
bin aligned with the right y‐axis (0 − 1 is a proportion). The x‐axis is the predicted probability. By overlapping the plots,
we gain a comprehensive view of the model’s confidence in its predictions (via the histogram) and the areas where the
model predictions are most prone to change (scatter plot of flips). Notice that the scale is different between the his‐
togram and the flip counts. The top row corresponds to the DNN experiments and the bottom row are the UA‐DNN
experiments. Each column represents an experiment. From the left, we show results for predictive multiplicity, large
dataset update, and small dataset update.

Metrics. Wemeasure predictive inconsistency by computing the measures detailed

in § 4.3. In terms of predictive multiplicity, we compute the empirical ε-Rashomon

set and report ε-ambiguity over a test sample according to either Eq (4.5). When train-

ing sets of models, we use multiple arrays of random seeds {0.0, 1.0, 109, 10, 1234},

{3666, 2299, 2724, 1262, 4220}, {3971, 9444, 1375, 7351, 2083}, {1429, 2281, 2189, 9376, 2261}

and {1881, 2273, 9509, 6707, 4412}. For varying random initialisations, we repeat experiments

across these arrays. As in § E.2 in Long et al. 105 , we can set ε in the definition of the empirical ε-

Rashomon set to the worst value of the performance metric over the generated trained models. As

a result, the experiments on predictive multiplicity reported in this chapter do not need to be ex-

plicitly parametrized by ε. In terms of predictive churn, we report over a test sample according to
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Eq. (4.1).

Churn Regimes. We compute predictive churn Eq. (4.1) for different types of successive training

updates according to literature on predictive churn38. First, we imitate a large dataset update by

comparingModel B (hB) trained on the full dataset to Model A (hA) trained on a random sample

of half the dataset. Second, we imitate a small dataset update by comparingModel B (hB) trained

on the full dataset to Model A (hA) trained on a random sample of 95% the dataset – i.e. 5% of

examples have been dropped or added between the two models. These two updates are similar but

represent two different regimes (see Giordano et al. 64). †

Model Classes. We consider two classes of deep neural networks (DNNs). We train a standard

neural network made up of 1 or more layers and refer to this as DNN.We also train a DNN that

incorporates an uncertainty awareness technique and refer to this as UA-DNN. For this demonstra-

tion, we implement the SNGP technique described in § 4.5.1 to train the uncertainty aware model,

UA-DNN. To ensure the models are well calibrated, we tune the parameters within the SNGP tech-

nique and apply Platt scaling for the standard DNN.

Experiment Details.

Models All models use a shallow neural network with 1 or more fully connected layers. There

is 1 hidden layer with 279 units, learning rate of 0.0000579, dropout rate of 0.0923 and batch nor-

malization is enabled. All training is conducted in TensorFlow with a batch size of 128. For churn

experiments, we use the first random seed in the array as the default seed and repeat experiments

across these values. We run on a single CPU with 50GB RAM.

The SNGP training process follows the standard DNN learning pipeline, with the updated

Gaussian process and spectral normalization outputting predictive logits and posterior covari-

ance. The steps for SNGP prediction are as follows. For a test example, the model posterior
†For instance, leave-one-out jackknife is a small data perturbation, whereas bootstrap is a large data pertur-

bation; see papers on infinitesimal jackknife i.e. Giordano et al. 64 .
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Dataset Name Outcome Variable n d Class Imbalance

Adult92 person income over
$50,000

16,256 28 0.31

HMDA36 loan granted 244,107 18 3.3

Credit182 customer default
on loan

30,000 23 3.50

Mammo52 mammogram
shows breast cancer

961 12 0.86

Table 4.1: Datasets used in the experiments. For each dataset, we report n, d and the class imbalance ratio of a model
on test data.

Dataset Model Predictive Multiplicity
(Empirical ε-Ambiguity) AUC Predictive Churn

(Large Data Update) AUC Predictive Churn
(Small Data Update) AUC

Adult DNN 0.047± 0.003 0.89± 0.010 0.058± 0.004 0.89± 0.009 0.028± 0.004 0.89± 0.01
Credit DNN 0.053± 0.004 0.76± 0.01 0.050± 0.004 0.76± 0.009 0.029± 0.004 0.76± 0.01
HMDA DNN 0.021± 0.004 0.89± 0.011 0.042± 0.004 0.89± 0.009 0.007± 0.004 0.89± 0.01
mammo DNN 0.007± 0.0018 0.83± 0.001 0.027± 0.024 0.85± 0.007 0.014± 0.017 0.83± 0.004

Adult UA-DNN 0.12± 0.010 0.87± 0.015 0.074± 0.011 0.84± 0.012 0.041± 0.008 0.87± 0.016
Credit UA-DNN 0.10± 0.010 0.76± 0.015 0.067± 0.012 0.76± 0.012 0.05± 0.008 0.76± 0.016
HMDA UA-DNN 0.14± 0.010 0.87± 0.015 0.12± 0.011 0.84± 0.013 0.06± 0.008 0.87± 0.016
mammo UA-DNN 0.047± 0.013 0.82± 0.001 0.041± 0.019 0.83± 0.005 0.025± 0.020 0.83± 0.004

Table 4.2: This table shows that predictions are more sensitive to model perturbations (multiplicity) and an uncertainty‐
aware (UA) model can exhibit higher ambiguity compared to a standard DNN. We compare predictive multiplicity and
predictive churn across datasets and model specifications. Over a held out sample, we compute empirical ε‐ambiguity,
as well as churn induced by a large or small data update. We also show the range of AUC over runs for each.

mean and covariance are used to compute the predictive distribution. Specifically, we approx-

imate the posterior predictive probability, E(p(x)), using the mean-field method E(p(x)) ∼

softmax
(
logit(x)/

√
1+ λ ∗ σ2(x)

)
, where σ2(x) is the SNGP variance and λ is a hyperparameter,

tuned for optimal model calibration (in deep learning, this is known as temperature scaling67).
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Dataset Model Predictive Multiplicity
(Empirical ε-Ambiguity) AUC Predictive Churn

(Large Data Update) AUC Predictive Churn
(Small Data Update) AUC

Adult DNN 0.004± 0.001 0.89± 0.001 0.002± 0.006 0.89± 0.001 0.003± 0.001 0.89± 0.001
Credit DNN 0.005± 0.0004 0.76± 0.002 0.003± 0.0001 0.76± 0.004 0.0028± 0.0004 0.76± 0.002
HMDA DNN 0.005± 0.001 0.90± 0.0003 0.004± 0.001 0.90± 0.0004 0.003± 0.001 0.90± 0.0003
mammo DNN 0.004± 0.003 0.86± 0.003 0.004± 0.003 0.85± 0.009 0.002± 0.002 0.85± 0.01

Adult UA-DNN 0.0± 0.0 0.89± 0.002 0.028± 0.0001 0.87± 0.002 0.019± 0.002 0.88± 0.003
Credit UA-DNN 0.0± 0.0 0.75± 0.004 0.035± 0.003 0.75± 0.006 0.020± 0.002 0.75± 0.003
HMDA UA-DNN 0.0± 0.0 0.90± 0.001 0.046± 0.002 0.90± 0.0001 0.041± 0.002 0.90± 0.0002
mammo UA-DNN 0.0± 0.0 0.84± 0.003 0.02± 0.009 0.83± 0.010 0.005± 0.006 0.84± 0.008

Table 4.3: Ensemble Results. We compare predictive multiplicity and predictive churn across datasets and model spec‐
ifications. Over a held out sample, we compute empirical ambiguity, as well as churn induced by a large or small data
update. We also show the range of AUC over runs for each.

4.7.2 Results

PredictiveMultiplicity vs Predictive Churn. We investigate whether the severity of pre-

dictive churn betweenModel A andModel B is captured by predictive multiplicity analysis on only

Model A. Findings for the Standard DNN and UA-DNN are shown in Table 4.2. Notably, we see

that model performance, as measured by AUC, is largely uniform across the table: random seed/data

perturbations (columns) do not seem to affect overall predictive performance whereas AUC of the

UA-DNN is less than or equal to that of DNN. Thus, under standard criteria for evaluating ML

models, differences in prediction across these models could be considered to be “arbitrary”, with the

corresponding implications for fairness discussed above.

We highlight several notable patterns. First, although they are measured on similar scales, predic-

tive multiplicity as measured via ambiguity tends to be larger than predictive churn. Thus, in the

settings that we study, predictions appear to be broadly more sensitive to model perturbations than

to data updates. But only by a small amount. In terms of gauging the severity of potential predictive

arbitrariness, analyzing ambiguity may help to anticipate predictive churn.

Second, within model specifications (DNN or UA-DNN), predictive multiplicity and predic-

tive churn measurements generally align. Specifically, when a model exhibits high predictive mul-

tiplicity on one dataset relative to others, it also exhibits high predictive churn (across both churn
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regimes) relative to other datasets. Thus, for a given model, it is possible that the same properties of

the dataset drive predictive multiplicity and predictive churn.

However, interestingly, between the DNN and UA-DNN specifications, we see that different

datasets exhibit high prediction instability. For example, while DNN exhibits high(er) predictive

multiplicity on Credit, the UA-DNN exhibits higher predictive multiplicity onHMDA but rela-

tively lower on Credit. This highlights that arbitrariness in predictions is driven by an interaction

between the dataset and the model specification, not by the data itself; echoing predictive arbitrari-

ness studies from algorithmic fairness36. Importantly, this also highlights that a particular model

specification may not be a general solution for mitigating arbitrariness across all settings.

Comparison of Unstable Sets. We examine whether examples that are unstable over the

update betweenModel A andModel B are included in those flagged as unstable when only using

the ε-Rashomon set of Model A. We study the broad patterns highlighted above in more detail by

comparing the ε-Rashomon unstable set to the churn unstable set for a given test sample Stest. For a

given dataset, we take a heldout test sample and compute SRunstable(Stest) and S
C
unstable(Stest) described

in § 4.4. Given that#{SRunstable(Stest)} tends to be greater than#{SCunstable(Stest)}, we calculate what

proportion of test examples in#{SCunstable(Stest)} are contained in#{SRunstable(Stest)} and report this

common arbitrariness.

For instance, if all the examples in Stest that churn are contained in the ε-Rashomon unstable

set, then the common arbitrariness would be 100%. If none of the examples in Stest that churn are

contained in the ε-Rashomon unstable set then the common arbitrariness would be 0%. Results are

show in Table 4.4. As expected, for the small data updates, the common arbitrariness is much higher

than compared to the large data update. Comparing model classes, the UA-DNN for small dataset

updates seems to recover the largest overlap ranging between 81% to 91% across datasets.
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Predicted Probabilities and Unstable Examples. Finally, we examine how predicted

probabilities relate to which points are identified as unstable. With the ε-Rashomon unstable set

and the churn unstable sets over a given test sample, we visualize the number of unstable examples

alongside the full predicted probability distribution in Figure 4.1. First, we plot a histogram of the

predicted probabilities for the test sample. Then, for each bin of the histogram, we compute the

counts of the unstable (flipped) examples within that bin. Namely, the number of unstable (flipped)

examples in a bin divided by the total number of predictions in that bin. This highlights where the

model’s predictions are most unstable or uncertain as indicated by a higher proportion of unstable

points. For additional datasets, we plot a histograms of predicted probability distributions in Fig-

ure 4.3 and Figure 4.4.

We see that predicted probabilities of flipped examples (red points) are similarly concentrated in

the middle of the unit interval comparing DNN to UA-DNN, which is somewhat surprising given

the explicit consideration of uncertainty in UA-DNN. But one side effect of this consideration

is that small perturbations may send UA-DNN predictions across the default decision boundary,

which could explain the generally higher rates of arbitrariness in Table 4.2, especially under the pre-

dictive multiplicity perspective.

The findings suggests that UA-DNNmodels can provide useful indications of which examples

are more at risk of being unstable under perturbations of the UA-DNNmodel, as a result of both

predictive multiplicity or churn. Hence, the results show that model specification may not be the

driving factor here. The predicted probabilities around the threshold (0.5) are more likely to be

unstable. Therefore, the important difference in model type seems to be calibration.

Predicting Churn. As described in § 4.5.2, we can train a classifier to predict churn to exam-

ine correlation between ambiguity and predictive churn. First, we examine the correlation between

variables by analyzing the Pearson Correlation between the features, predicted probabilities, ambi-
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Dataset Model Predictive Churn
(Large Data Update)

Predictive Churn
(Small Data Update)

Adult DNN 0.58 0.73
Credit DNN 0.47 0.85
HDMA DNN 0.68 0.78
mammo DNN 0.20 0.50

Adult UA-DNN 0.64 0.91
Credit UA-DNN 0.67 0.81
HDMA UA-DNN 0.44 0.81
mammo UA-DNN 0.73 1.0

Table 4.4: This table shows the ε‐Rashomon unstable set tends to contain many of the examples within the churn unsta‐
ble set. We report common flipped examples across different experiments i.e. the proportion of churned examples that
are included in the ε‐Rashomon unstable set.

guity indicator and churn indicator. We are most interested in correlation between ambiguity and

churn. In Figure 4.2, there is not much correlation between ambiguity and churn for the mammo

and adult datasets (top left and right). But there does seem to be a negative correlation for the hmda

and credit datasets (bottom left and right). Second, in regard to the classifier to predict churn for

different feature configurations, the results are inconclusive, with little effect of different feature

configurations on predictive accuracy.

Ambiguity and Churn for Ensemble Classifiers. Given that ensembling is a technique

used to decrease ambiguity21,105, we compute ambiguity and churn for ensemble classifiers showing

results in Table 4.3. Notably, the ambiguity for the uncertainty aware model is zero across datasets.

And churn has decreased significantly as well. These results support the intuition that arbitrariness

reduction is related to churn reduction.
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Figure 4.2: Pearson correlation between features, predicted probabilities (p), ambiguity indiciator and churn indicator.
Top left is adult, top right is mammo, bottom left is hmda, bottom right is credit. Results shown for DNN model.

4.8 Implications

Our findings reveal that analyzing predictive multiplicity is a useful way to anticipate predictive

churn over time. We can consider the set of prospective models around the selected deployed model
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Figure 4.3: Predicted probability distributions for Credit Dataset. We plot a histogram of predicted probability distribu‐
tion in grey with the left y‐axis (0 − 4000 are counts) and a scatter plot of the proportion of flip counts for each bin
aligned with the right y‐axis (0− 1 is a proportion). The x‐axis is the predicted probability.
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Figure 4.4: Predicted probability distributions for HDMA Dataset. We plot a histogram of predicted probability distribu‐
tion in grey with the left y‐axis (0 − 4000 are counts) and a scatter plot of the proportion of flip counts for each bin
aligned with the right y‐axis (0− 1 is a proportion). The x‐axis is the predicted probability.
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and draw conclusions about anticipated predictive churn. Given that research in predictive multi-

plicity has largely focused on how to measure its severity and methods to train the ε-Rashomon set,

the present study demonstrates how predictive multiplicity can help assess an important notion of

predictive instability (churn).

To combine predictive multiplicity and churn, a practitioner could conduct one analysis after

the other. For choosing a better starting point while anticipating model updates, we can begin with

a predictive multiplicity analysis following by a predictive churn analysis. Say for instance, we have

a model A that we are considering for deployment. We can ask if there might exist a model within

the ε-Rashomon set for which the anticipated churn is likely less than that of model A. To do this,

we can train the ε-Rashomon set with model A as a baseline then evaluate changes in the churn un-

stable set for each model within the Rashomon set. We can also train the ε-Rashomon set without

assuming a baseline and choose the model that might minimize expected churn from that.

Previous studies have examined various churn reduction methods38,79. It will be interesting in

future work to examine whether known churn reduction methods (e.g., distillation and constrained

weight optimization) might improve predictive multiplicity. To do this, we would analyze predictive

multiplicity over a standard training procedure then, make improvements to said training proce-

dure that for churn reduction and analyze predictive multiplicity over this improved training pro-

cedure. Similar to our empirical demonstrations, you can then take a fixed test set and compare the

ε-Rashomon unstable set against the churn unstable set. Ultimately, this would provide insight into

whether training procedures that are more robust to churn are also more robust to predictive multi-

plicity. And, in line with bridging between uncertainty quantification and fairness as arbitrariness,

future work can also explore additional methods from reliable deep learning i.e 161.
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4.9 Concluding Remarks

Reducing arbitrariness in machine learning is critical for machine learning credibility and repro-

ducibility. This goal aligns with efforts to address arbitrariness as as a form of unfairness. In partic-

ular, fairness researchers underline the challenge in justifying the use of predictions to inform deci-

sion making when there exists equally good models that might change individual outcomes22. We

advocate for connecting the fairness/safety perspective to research on reliable and robust learning.

This study is an initial step in that direction.
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5
Conclusion

In this dissertation, I have presented research on predictive multiplicity in machine learning. Meth-

ods to measure predictive multiplicity in probabilistic classification are detailed in Chapter 2. Com-

pared to previous work112, our methods allow for flexibility in choosing near-optimal metric and

deviation threshold. Our results show that ambiguity and discrepancy vary considerably based on

the defining near-optimal in terms of AUC or loss. The analysis of viable prediction ranges shows

that models in the Rashomon set can assign risk estimates that vary substantially. Empirical results
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on real-world datasets echo the synthetic dataset analysis on dataset characteristics the lead to more

or less ambiguity. Namely, empirical results reveal a relationship between ambiguity and individual

uniqueness (number of duplicates), class imbalance, and baseline risk estimate. Numerical experi-

ments show that ambiguity increases with dataset separability, examples that are outliers yet far from

the discriminant boundary are less prone to ambiguity, and the ambiguity for a minority group is

much larger than that for the majority group (given a majority-minority structure).

The notion of “multi-target multiplicity” is introduced and outlined in Chapter 3 along with

an extension of standard measures of predictive multiplicity to the resource constrained setting.

The framework shows that when considering multiple target variable options, practitioners can

develop index models that address fairness concerns (selection rate disparities) by re-weighting and

combining predictions for each target. Experiment results show that the framework is effective for

narrowing racial disparities in selection rates in an example healthcare allocation task (by Obermeyer

et al. 129) where the goal is to choose patients for a high-risk coordinated care management program.

In Chapter 4, predictive multiplicity is leveraged in support of examining predictive churn. To ex-

plore the relationship between these two concepts, I have considered whether individual predictions

that are unstable under model perturbations (multiplicity) are also those that are unstable under

dataset perturbations (churn). First, results show that although they are measured on similar scales,

predictive multiplicity as measured via ambiguity tends to be larger than predictive churn. Thus,

in the settings that we study, predictions appear to be broadly more sensitive to model perturba-

tions than to data updates by a small amount on average. In terms of overlap between points that

are churn unstable versus Rashomon unstable, the UA-DNN for small dataset updates seems to re-

cover the largest overlap ranging between 81% to 91% across datasets. As for predicted probabilities,

the unstable points are concentrated near the middle (50% probability) across experiments. Finally,

results show that ensemble classifiers decrease both ambiguity and churn.

For future directions, communicating predictive multiplicity effectively is an important area of
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study. This could involve perspectives from data visualization research as well as human-computer

interaction research86,170. At present, the Rashomon set and the problem of predictive multiplic-

ity tend to receive attention from researchers motivated by algorithmic fairness, transparency and

safety. There is a growing need to ensure that these questions of predictive arbitrariness are being

connected to ongoing research in applied machine learning that may not share the same motivations.

For instance, there are discussions about arbitrariness in recommender systems130 and other areas

of research that are mostly separate from the model multiplicity discourse. It will be important and

interesting to draw these connections more directly. Particularly, with respect to mitigation and re-

sponse strategies, there is more work to be done to investigate the relationship between concepts on

predictive arbitrariness like predictive multiplicity and uncertainty quantification research. Along

these lines, exploring more state of the art reliable deep learning methods for predictive arbitrariness

would be a clear next step. Finally, it will be critical to continue to develop measures that promote

transparency on the part of technical researchers. This is especially true with the recent rise of large

language models. It will also be interesting to refine or adapt multiplicity concepts to the generative

setting.

111



References

[1] Ali, J., Lahoti, P., & Gummadi, K. P. (2021). Accounting forModel Uncertainty in Algorith-
mic Discrimination. Number 1. Association for ComputingMachinery.

[2] Ananny, M. & Crawford, K. (2018). Seeing without knowing: Limitations of the trans-
parency ideal and its application to algorithmic accountability. NewMedia & Society, 20(3),
973–989.

[3] Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine Bias — ProPublica.

[4] Anil, R., Pereyra, G., Passos, A. T., Ormandi, R., Dahl, G., &Hinton, G. (2018). Large scale
distributed neural network training through online distillation. In ICLR.

[5] Attigeri, G. V., Pai, M. M., & Pai, R. M. (2017). Credit risk assessment using machine learn-
ing algorithms. Advanced Science Letters, 23(4), 3649–3653.

[6] Austin, J., Ocker, R., & Bhati, A. (2010). Kentucky Pretrial Risk Assessment Instrument
Validation. The JFA Institute, 5.

[7] Bahri, D. & Jiang, H. (2021). Locally adaptive label smoothing for predictive churn.

[8] Barocas, S. & Selbst, A. D. (2016). Big data’s disparate impact. California Law Review, 104,
671.

[9] Bekhet, H. A. & Eletter, S. F. K. (2014). Credit risk assessment model for Jordanian commer-
cial banks: Neural scoring approach. Review of Development Finance, 4(1), 20–28.

[10] Belkin, M., Hsu, D., Ma, S., &Mandal, S. (2019). Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of
Sciences, 116(32), 15849–15854.

[11] Bendale, A. & Boult, T. E. (2016). Towards open set deep networks. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (pp. 1563–1572). Los Alamitos,
CA, USA: IEEE Computer Society.

[12] Bertsimas, D. & King, A. (2017). Logistic regression: From art to science. Statistical Science,
(pp. 367–384).

112



[13] Bertsimas, D., King, A., Mazumder, R., et al. (2016). Best subset selection via a modern
optimization lens. Annals of statistics, 44(2), 813–852.

[14] Biesialska, M., Biesialska, K., & Costa-jussà, M. R. (2020). Continual lifelong learning in
natural language processing: A survey. In Proceedings of the 28th International Conference
on Computational Linguistics (pp. 6523–6541). Barcelona, Spain (Online): International
Committee on Computational Linguistics.

[15] Binns, R. (2018). Algorithmic accountability and public reason. Philosophy & Technology,
31(4), 543–556.

[16] Binns, R. (2020). On the apparent conflict between individual and group fairness. In Pro-
ceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20 (pp.
514–524). New York, NY, USA: Association for ComputingMachinery.

[17] Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., & Shadbolt, N. (2018). “it’s re-
ducing a human being to a percentage”: Perceptions of justice in algorithmic decisions. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18:
ACM.

[18] Black, E., Elzayn, H., Chouldechova, A., Goldin, J., & Ho, D. (2022a). Algorithmic fairness
and vertical equity: Income fairness with irs tax audit models. In 2022 ACMConference on
Fairness, Accountability, and Transparency (pp. 1479–1503).

[19] Black, E. & Fredrikson, M. (2021). Leave-one-out unfairness. In Proceedings of the 2021
ACMConference on Fairness, Accountability, and Transparency, FAccT ’21 (pp. 285–295).
New York, NY, USA: Association for ComputingMachinery.

[20] Black, E., Koepke, J. L., Kim, P., Barocas, S., & Hsu, M. (2024). Less discriminatory algo-
rithms. Georgetown Law Journal, 113(1). Washington University in St. Louis Legal Studies
Research Paper Forthcoming. Available at SSRN: https://ssrn.com/abstract=4590481 or
http://dx.doi.org/10.2139/ssrn.4590481.

[21] Black, E., Leino, K., & Fredrikson, M. (2021). Selective Ensembles for Consistent Predic-
tions. (NeurIPS), 1–24.

[22] Black, E., Raghavan, M., & Barocas, S. (2022b). Model multiplicity: Opportunities, con-
cerns, and solutions. In 2022 ACMConference on Fairness, Accountability, and Transparency
(pp. 850–863).

[23] Blundell, C., Cornebise, J., Kavukcuoglu, K., &Wierstra, D. (2015). Weight uncertainty
in neural networks. In Proceedings of the 32nd International Conference on International
Conference onMachine Learning - Volume 37, ICML’15 (pp. 1613–1622).: JMLR.org.

113



[24] Bousquet, O. & Elisseeff, A. (2000). Algorithmic stability and generalization performance.
In T. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in Neural Information Processing Sys-
tems, volume 13: MIT Press.

[25] Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–
215.

[26] Buckheit, J. B. & Donoho, D. L. (1995). Wavelab and reproducible research. InWavelets
and Statistics.

[27] Cai, D., Mansimov, E., Lai, Y.-A., Su, Y., Shu, L., & Zhang, Y. (2022). Measuring and reduc-
ing model update regression in structured prediction for NLP. In A. H. Oh, A. Agarwal, D.
Belgrave, & K. Cho (Eds.), Advances in Neural Information Processing Systems.

[28] Calandra, R., Peters, J., Rasmussen, C. E., & Deisenroth, M. P. (2016). Manifold gaussian
processes for regression.

[29] Calders, T., Kamiran, F., & Pechenizkiy, M. (2009). Building classifiers with independency
constraints. In 2009 IEEE International Conference on DataMiningWorkshops (pp. 13–
18).

[30] Chatfield, C. (1995). Model Uncertainty, Data Mining and Statistical Inference. Journal of
the Royal Statistical Society. Series A (Statistics in Society), 158(3), 419.

[31] Chen, I. Y., Joshi, S., Ghassemi, M., & Ranganath, R. (2021). Probabilistic machine learning
for healthcare. Annual Review of Biomedical Data Science, 4, 393–415.

[32] Chen, Z., Liu, B., Brachman, R., Stone, P., & Rossi, F. (2018). LifelongMachine Learning.
Morgan & Claypool Publishers, 2nd edition.

[33] Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J., & Dahl, G. E. (2019). On empiri-
cal comparisons of optimizers for deep learning. CoRR, abs/1910.05446.

[34] Chouldechova, A. (2017). Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big Data, 5(2), 153–163. PMID: 28632438.

[35] Christin, A., Rosenblat, A., & Boyd, D. (2015). Courts and predictive algorithms. Data &
civil rights: A new era of policing and justice, 13.

[36] Cooper, A. F., Lee, K., Choksi, M. Z., Barocas, S., Sa, C. D., Grimmelmann, J., Kleinberg, J.,
Sen, S., & Zhang, B. (2024). Arbitrariness and social prediction: The confounding role of
variance in fair classification.

[37] Cooper, A. F., Lu, Y., Forde, J., & De Sa, C. M. (2021). Hyperparameter Optimization Is
Deceiving Us, and How to Stop It. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,

114



& J. W. Vaughan (Eds.), Advances in Neural Information Processing Systems, volume 34 (pp.
3081–3095).: Curran Associates, Inc.

[38] Cormier, Q., Milani Fard, M., Canini, K., & Gupta, M. R. (2016). Launch and iterate: Re-
ducing prediction churn. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett
(Eds.), Advances in Neural Information Processing Systems, volume 29: Curran Associates,
Inc.

[39] Coston, A., Kawakami, A., Zhu, H., Holstein, K., &Heidari, H. (2022). A validity perspec-
tive on evaluating the justified use of data-driven decision-making algorithms. arXiv preprint
arXiv:2206.14983.

[40] Coston, A., Rambachan, A., & Chouldechova, A. (2021). Characterizing Fairness Over the
Set of GoodModels Under Selective Labels.

[41] Cotter, A., Jiang, H., Wang, S., Narayan, T., You, S., Sridharan, K., & Gupta, M. R. (2019).
Optimization with non-differentiable constraints with applications to fairness, recall, churn,
and other goals. Journal ofMachine Learning Research.

[42] Creel, K. &Hellman, D. (2022). The algorithmic leviathan: Arbitrariness, fairness, and
opportunity in algorithmic decision-making systems. Canadian Journal of Philosophy, 52(1),
26–43.

[43] De-Arteaga, M., Feuerriegel, S., & Saar-Tsechansky, M. (2022). Algorithmic fairness in busi-
ness analytics: Directions for research and practice. Production and OperationsManagement,
31(10), 3749–3770.

[44] Diakopoulos, N. (2015). Algorithmic accountability. Digital Journalism, 3(3), 398–415.

[45] Diakopoulos, N. & Koliska, M. (2017). Algorithmic transparency in the news media. Digital
Journalism, 5(7), 809–828.

[46] Diamond, S. & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for con-
vex optimization. Journal ofMachine Learning Research, 17, 1–5.

[47] Dong, J. & Rudin, C. (2020). Exploring the cloud of variable importance for the set of all
good models. NatureMachine Intelligence, 2(12), 810–824.

[48] Donnelly, J., Katta, S., Rudin, C., & Browne, E. P. (2023). The rashomon importance distri-
bution: Getting rid of unstable, single model-based variable importance. In Thirty-seventh
Conference on Neural Information Processing Systems.

[49] Dusenberry, M.W., Tran, D., Choi, E., Kemp, J., Nixon, J., Jerfel, G., Heller, K., & Dai,
A. M. (2020). Analyzing the role of model uncertainty for electronic health records. ACM
CHIL 2020 - Proceedings of the 2020 ACMConference on Health, Inference, and Learning,
(pp. 204–213).

115



[50] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through aware-
ness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (pp.
214–226). New York, NY, USA: Association for ComputingMachinery.

[51] D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C.,
Deaton, J., Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel,
G., Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., Mitani, A., Montanari,
A., Nado, Z., Natarajan, V., Nielson, C., Osborne, T. F., Raman, R., Ramasamy, K., Sayres,
R., Schrouff, J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V., Vladymyrov, M., Wang,
X., Webster, K., Yadlowsky, S., Yun, T., Zhai, X., & Sculley, D. (2020). Underspecification
presents challenges for credibility in modern machine learning. arXiv.

[52] Elter, M., Schulz-Wendtland, R., &Wittenberg, T. (2007). The prediction of breast cancer
biopsy outcomes using two CAD approaches that both emphasize an intelligible decision
process. Medical Physics, 34(11), 4164–4172.

[53] Farquhar, S., Osborne, M. A., & Gal, Y. (2020). Radial bayesian neural networks: Beyond
discrete support in large-scale bayesian deep learning. In S. Chiappa & R. Calandra (Eds.),
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings ofMachine Learning Research (pp. 1352–1362).: PMLR.

[54] Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8),
861–874.

[55] Fazelpour, S. & Danks, D. (2021). Algorithmic bias: Senses, sources, solutions. Philosophy
Compass, 16(8), e12760.

[56] Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models simultane-
ously. Journal ofMachine Learning Research, 20(Vi).

[57] Franc, V. & Sonnenburg, S. (2008). Optimized cutting plane algorithm for support vector
machines. In Proceedings of the 25th International Conference onMachine Learning (pp.
320–327).: ACM.

[58] Gal, Y. & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning.

[59] Gandy, O. H. (2010). Engaging rational discrimination: exploring reasons for placing regula-
tory constraints on decision support systems. Ethics and Information Technology, 12, 29–42.

[60] Ganesh, P., Chang, H., Strobel, M., & Shokri, R. (2023). On the impact of machine learn-
ing randomness on group fairness. In Proceedings of the 2023 ACMConference on Fairness,
Accountability, and Transparency, FAccT ’23 (pp. 1789–1800). New York, NY, USA: Associ-
ation for ComputingMachinery.

116



[61] Gass, S. & Saaty, T. (1955). The computational algorithm for the parametric objective func-
tion. Naval research logistics quarterly, 2(1-2), 39–45.

[62] Gentleman, R. & Lang, D. T. (2007). Statistical analyses and reproducible research. Journal
of Computational and Graphical Statistics, 16(1), 1–23.

[63] Gepperth, A. &Hammer, B. (2016). Incremental learning algorithms and applications. In
European Symposium on Artificial Neural Networks (ESANN) Bruges, Belgium.

[64] Giordano, R., Stephenson, W., Liu, R., Jordan, M., & Broderick, T. (2019). A swiss army
infinitesimal jackknife. In K. Chaudhuri &M. Sugiyama (Eds.), Proceedings of the Twenty-
Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceed-
ings ofMachine Learning Research (pp. 1139–1147).: PMLR.

[65] Gladwell, M. (2011). The order of things. The New Yorker.

[66] Goh, G., Cotter, A., Gupta, M., & Friedlander, M. P. (2016). Satisfying real-world goals with
dataset constraints. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems, volume 29: Curran Associates, Inc.

[67] Guo, C., Pleiss, G., Sun, Y., &Weinberger, K. Q. (2017). On calibration of modern neural
networks. In D. Precup & Y.W. Teh (Eds.), Proceedings of the 34th International Conference
onMachine Learning, volume 70 of Proceedings ofMachine Learning Research (pp. 1321–
1330).: PMLR.

[68] Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.

[69] Hamid, K., Asif, A., Abbasi, W., Sabih, D., et al. (2017). Machine learning with abstention
for automated liver disease diagnosis. In 2017 International Conference on Frontiers of Infor-
mation Technology (FIT) (pp. 356–361).: IEEE.

[70] Hand, D. J. (1994). Deconstructing statistical questions. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 157(3), 317–338.

[71] Hand, D. J. (2006). Classifier Technology and the Illusion of Progress. Statistical Science,
21(1), 1 – 14.

[72] Hardt, M., Price, E., & Srebro, N. (2016). Equality of opportunity in supervised learning. In
Advances in Neural Information Processing Systems: NeurIPS.

[73] Hassein, N. (2017). Against black inclusion in facial recognition.

[74] Hofman, J. M., Goldstein, D. G., &Hullman, J. (2020). How Visualizing Inferential Un-
certainty CanMislead Readers about Treatment Effects in Scientific Results. Conference on
Human Factors in Computing Systems - Proceedings.

117



[75] Hooker, S., Moorosi, N., Clark, G., Bengio, S., & Denton, E. (2020). Characterising bias in
compressed models.

[76] Hsu, H. & Calmon, F. d. P. (2022). Rashomon capacity: A metric for predictive multiplicity
in classification.

[77] Jacobs, A. Z. &Wallach, H. (2021). Measurement and fairness. In Proceedings of the 2021
ACMConference on Fairness, Accountability, and Transparency, FAccT ’21 (pp. 375–385).
New York, NY, USA: Association for ComputingMachinery.

[78] Jiang, H. &Nachum, O. (2020). Identifying and correcting label bias in machine learning.
In International Conference on Artificial Intelligence and Statistics (pp. 702–712).: PMLR.

[79] Jiang, H., Narasimhan, H., Bahri, D., Cotter, A., & Rostamizadeh, A. (2022). Churn reduc-
tion via distillation. In International Conference on Learning Representations.

[80] Joachims, T., Finley, T., & Yu, C.-N. J. (2009). Cutting-plane training of structural SVMs.
Machine Learning, 77(1), 27–59.

[81] Joseph, M., Kearns, M., Morgenstern, J. H., & Roth, A. (2016). Fairness in learning: Classic
and contextual bandits. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.),
Advances in Neural Information Processing Systems, volume 29: Curran Associates, Inc.

[82] Joslyn, S. & LeClerc, J. (2013). Decisions With Uncertainty: The Glass Half Full. Current
Directions in Psychological Science, 22(4), 308–315.

[83] Kale, A., Kay, M., &Hullman, J. (2020). Visual Reasoning Strategies for Effect Size Judg-
ments and Decisions. IEEE Transactions on Visualization and Computer Graphics, (pp. 1–1).

[84] Keyes, O., Hutson, J., & Durbin, M. (2019). A mulching proposal: Analysing and improv-
ing an algorithmic system for turning the elderly into high-nutrient slurry. In Extended
abstracts of the 2019 CHI conference on human factors in computing systems (pp. 1–11).

[85] Khand, A., Frost, F., Grainger, R., Fisher, M., Chew, P., Mullen, L., Patel, B., Obeidat, M.,
Albouaini, K., Dodd, J., Goldstein, S. A., Newby, L. K., Cyr, D. D., Neely, M., Lüscher, T. F.,
Brown, E. B., White, H. D., Ohman, E. M., Roe, M. T., Hamm, C. W., Six, A. J., Backus,
B. E., & Kelder, J. C. (2017). Heart Score Value. Netherlands Heart Journal, 10(6), 1–10.

[86] Kim, N. W., Bylinskii, Z., Borkin, M. A., Oliva, A., Gajos, K. Z., & Pfister, H. (2015). A
crowdsourced alternative to eye-tracking for visualization understanding. In Proceedings
of the 33rd Annual ACMConference Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’15 (pp. 1349–1354). New York, NY, USA: Association for Computing
Machinery.

[87] Kim, P. T. (2022). Race-aware algorithms: Fairness, nondiscrimination and affirmative
action. California law review, 110, 1539.

118



[88] Kithulgoda, C. I., Vaithianathan, R., & Culhane, D. P. (2022). Predictive risk modeling to
identify homeless clients at risk for prioritizing services using routinely collected data. Journal
of Technology in Human Services, 40(2), 134–156.

[89] Kleinberg, J., Ludwig, J., Mullainathan, S., & Obermeyer, Z. (2015). Prediction policy prob-
lems. American Economic Review, 105(5), 491–495.

[90] Kleinberg, J., Mullainathan, S., & Raghavan, M. (2022). The challenge of understanding
what users want: Inconsistent preferences and engagement optimization. arXiv preprint
arXiv:2202.11776.

[91] Kleinberg, J. M., Mullainathan, S., & Raghavan, M. (2016). Inherent trade-offs in the fair
determination of risk scores. In Information Technology Convergence and Services.

[92] Kohavi, R. (1996a). Census Income. UCIMachine Learning Repository. DOI:
https://doi.org/10.24432/C5GP7S.

[93] Kohavi, R. (1996b). Scaling up the accuracy of NB classifier : a DT hybrid. Kdd, (Utgoff
1988), 202–207.

[94] Kompa, B., Snoek, J., & Beam, A. L. (2021). Second opinion needed: communicating uncer-
tainty in medical machine learning. NPJ DigitalMedicine, 4(1), 1–6.

[95] Kovačević, J. (2007). How to encourage and publish reproducible research. In 2007 IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP ’07, ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
(pp. IV1273–IV1276). Copyright: Copyright 2011 Elsevier B.V., All rights reserved.; 2007
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’07 ;
Conference date: 15-04-2007 Through 20-04-2007.

[96] Kristiadi, A., Hein, M., &Hennig, P. (2020). Being bayesian, even just a bit, fixes overcon-
fidence in relu networks. In Proceedings of the 37th International Conference onMachine
Learning, ICML’20: JMLR.org.

[97] Kulynych, B., Hsu, H., Troncoso, C., & Calmon, F. P. (2023). Arbitrary decisions are a
hidden cost of differentially private training. In Proceedings of the 2023 ACMConference
on Fairness, Accountability, and Transparency, FAccT ’23 (pp. 1609–1623). New York, NY,
USA: Association for ComputingMachinery.

[98] Kurosawa, A. (1950). Rashomon. Motion Picture. Directed by Akira Kurosawa. Toho Co.,
Ltd.

[99] Lahoti, P., Gummadi, K. P., &Weikum, G. (2019). ifair: Learning individually fair data rep-
resentations for algorithmic decision making. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE) (pp. 1334–1345).

119



[100] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive
uncertainty estimation using deep ensembles. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS’17 (pp. 6405–6416). Red Hook, NY,
USA: Curran Associates Inc.

[101] Lan, X., Zhu, X., & Gong, S. (2018). Knowledge distillation by on-the-fly native ensem-
ble. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18 (pp. 7528–7538). Red Hook, NY, USA: Curran Associates Inc.

[102] Latessa, E. J., Lemke, R., Makarios, M., Smith, P., & Lowenkamp, C. T. (2010). The creation
and validation of the ohio risk assessment system (ORAS). Federal Probation, 74(1), 16–22.

[103] Liu, J., Zhong, C., Li, B., Seltzer, M., & Rudin, C. (2022). Fasterrisk: Fast and accurate
interpretable risk scores. InNeural Information Processing Systems (NeurIPS).

[104] Liu, J. Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., & Lakshminarayanan, B. (2020).
Simple and principled uncertainty estimation with deterministic deep learning via distance
awareness. In Proceedings of the 34th International Conference on Neural Information Process-
ing Systems, NIPS’20 Red Hook, NY, USA: Curran Associates Inc.

[105] Long, C. X., Hsu, H., Alghamdi, W., & Calmon, F. (2023). Individual arbitrariness and
group fairness. In Thirty-seventh Conference on Neural Information Processing Systems.

[106] Lum, K., Dunson, D. B., & Johndrow, J. (2021). Closer than they appear: A Bayesian per-
spective on individual-level heterogeneity in risk assessment.

[107] Lum, K. & Isaac, W. (2016). To predict and serve? Significance, 13(5), 14–19.

[108] Mackay, D. J. C. (1992). BayesianMethods for AdaptiveModels. PhD thesis, California
Institute of Technology, USA. UMI Order No. GAX92-32200.

[109] Macêdo, D. & Ludermir, T. (2022). Enhanced isotropy maximization loss: Seamless and
high-performance out-of-distribution detection simply replacing the softmax loss.

[110] Malinin, A. & Gales, M. (2018). Predictive uncertainty estimation via prior networks. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18 (pp. 7047–7058). Red Hook, NY, USA: Curran Associates Inc.

[111] Martin Jr, D., Prabhakaran, V., Kuhlberg, J., Smart, A., & Isaac, W. S. (2020). Participatory
problem formulation for fairer machine learning through community based system dynam-
ics. arXiv preprint arXiv:2005.07572.

[112] Marx, C., Calmon, F. P., & Ustun, B. (2019). Predictive multiplicity in classification.

120



[113] Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A. D., & van deWeijer, J.
(2023). Class-incremental learning: Survey and performance evaluation on image classifi-
cation. IEEE Transactions on Pattern Analysis andMachine Intelligence, 45(05), 5513–5533.

[114] McGrath, S., Mehta, P., Zytek, A., Lage, I., & Lakkaraju, H. (2020). When Does Uncertainty
Matter?: Understanding the Impact of Predictive Uncertainty in ML Assisted DecisionMak-
ing.

[115] McNutt, M. (2014). Reproducibility. Science, 343(6168), 229–229.

[116] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2018). A survey on bias
and fairness in machine learning. arXiv preprint arXiv:1808.00023.

[117] Mei, S. &Montanari, A. (2022). The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75(4), 667–766.

[118] Mesirov, J. P. (2010). Accessible reproducible research. Science, 327(5964), 415–416.

[119] Meyer, A. P., Albarghouthi, A., & D’Antoni, L. (2023). The dataset multiplicity problem:
How unreliable data impacts predictions. In Proceedings of the 2023 ACMConference on
Fairness, Accountability, and Transparency, FAccT ’23 (pp. 193–204). New York, NY, USA:
Association for ComputingMachinery.

[120] Milli, S., Belli, L., & Hardt, M. (2021). From optimizing engagement to measuring value. In
Proceedings of the 2021 ACMConference on Fairness, Accountability, and Transparency (pp.
714–722).

[121] Mitchell, S., Potash, E., Barocas, S., D’Amour, A., & Lum, K. (2021). Algorithmic fairness:
Choices, assumptions, and definitions. Annual Review of Statistics and Its Application, 8(1),
141–163.

[122] Moreno, R. P., Metnitz, P. G., Almeida, E., Jordan, B., Bauer, P., Campos, R. A., Iapichino,
G., Edbrooke, D., Capuzzo, M., & Le Gall, J. R. (2005). SAPS 3 - From evaluation of the
patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model
for hospital mortality at ICU admission. Intensive CareMedicine, 31(10), 1345–1355.

[123] Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62, 22–31.

[124] Mozannar, H. & Sontag, D. (2020). Consistent estimators for learning to defer to an expert.
In International Conference onMachine Learning (pp. 7076–7087).: PMLR.

[125] Mullainathan, S. & Obermeyer, Z. (2021). On the inequity of predicting a while hoping for
b. In AEA Papers and Proceedings, volume 111 (pp. 37–42).

121



[126] Naeini, M. P., Cooper, G. F., & Hauskrecht, M. (2015). Binary classifier calibration using a
Bayesian non-parametric approach. SIAM International Conference on DataMining 2015,
SDM 2015, (pp. 208–216).

[127] Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I. (2019). Deep double
descent: Where bigger models and more data hurt.

[128] Neal, R. M. (1996). Bayesian Learning for Neural Networks. Berlin, Heidelberg: Springer-
Verlag.

[129] Obermeyer, Z., Powers, B., Vogeli, C., &Mullainathan, S. (2019). Dissecting racial bias in an
algorithm used to manage the health of populations. Science, 366(6464), 447–453.

[130] Oh, S. & Kumar, S. (2022). Robustness of deep recommendation systems to untargeted
interaction perturbations. CoRR, abs/2201.12686.

[131] Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J. V., Lakshmi-
narayanan, B., & Snoek, J. (2019). Can You Trust YourModel’s Uncertainty? Evaluating
Predictive Uncertainty under Dataset Shift. Red Hook, NY, USA: Curran Associates Inc.

[132] Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., &Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113, 54–71.

[133] Passi, S. & Barocas, S. (2019). Problem formulation and fairness. FAT* 2019 - Proceedings of
the 2019 Conference on Fairness, Accountability, and Transparency, (pp. 39–48).

[134] Pawelczyk, M., Broelemann, K., & Kasneci, G. (2020). On counterfactual explanations
under predictive multiplicity. Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence, UAI 2020, 124, 839–848.

[135] Pedreshi, D., Ruggieri, S., & Turini, F. (2008). Discrimination-aware data mining. In Pro-
ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
DataMining, KDD ’08 (pp. 560–568). New York, NY, USA: Association for Computing
Machinery.

[136] Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060),
1226–1227.

[137] Pfohl, S., Xu, Y., Foryciarz, A., Ignatiadis, N., Genkins, J., & Shah, N. (2022). Net benefit,
calibration, threshold selection, and training objectives for algorithmic fairness in healthcare.
In 2022 ACMConference on Fairness, Accountability, and Transparency (pp. 1039–1052).

[138] Polikar, R., Upda, L., Upda, S. S., & Honavar, V. (2001). Learn++: An incremental learning
algorithm for supervised neural networks. Trans. Sys. Man Cyber Part C, 31(4), 497–508.

122



[139] Provost, F. & Fawcett, T. (2013). Data Science for Business: What you need to know about
data mining and data-analytic thinking. O’Reilly Media, Inc.

[140] Qian, S., Pham, V. H., Lutellier, T., Hu, Z., Kim, J., Tan, L., Yu, Y., Chen, J., & Shah, S.
(2021). Are my deep learning systems fair? an empirical study of fixed-seed training. In M.
Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in Neural
Information Processing Systems, volume 34 (pp. 30211–30227).: Curran Associates, Inc.

[141] Rader, E., Cotter, K., & Cho, J. (2018). Explanations as mechanisms for supporting al-
gorithmic transparency. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18 (pp. 1–13). New York, NY, USA: Association for Computing
Machinery.

[142] Riquelme, C., Tucker, G., & Snoek, J. (2018). Deep bayesian bandits showdown: An em-
pirical comparison of bayesian deep networks for thompson sampling. In International
Conference on Learning Representations.

[143] Romano, Y., Barber, R. F., Sabatti, C., & Candès, E. (2020). WithMalice Toward None:
Assessing Uncertainty via Equalized Coverage. Harvard Data Science Review, (pp. 1–14).

[144] Roth, A., Tolbert, A., &Weinstein, S. (2022). Reconciling individual probability forecasts.

[145] Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S.-C., Knight, R., Moshiri, N.,
Nguyen, M. H., Rosenthal, S. B., Pérez, F., & Rose, P. W. (2018). Ten simple rules for repro-
ducible research in jupyter notebooks.

[146] Semenova, L., Chen, H., Parr, R., & Rudin, C. (2023). A path to simpler models starts with
noise. In Proceedings of Neural Information Processing Systems (NeurIPS).

[147] Semenova, L., Rudin, C., & Parr, R. (2019). A study in Rashomon curves and volumes: A
new perspective on generalization and model simplicity in machine learning. (pp. 1–64).

[148] Semenova, L., Rudin, C., & Parr, R. (2022). On the existence of simpler machine learning
models. In ACMConference on Fairness, Accountability, and Transparency (ACM FAccT).

[149] Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classifi-
cation uncertainty. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, NIPS’18 (pp. 3183–3193). Red Hook, NY, USA: Curran Associates
Inc.

[150] Shafer, G. & Vovk, V. (2008). A tutorial on conformal prediction. Journal ofMachine
Learning Research, 9, 371–421.

[151] Shen, Y., Xiong, Y., Xia, W., & Soatto, S. (2020). Towards backward-compatible representa-
tion learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 6367–6376). Los Alamitos, CA, USA: IEEE Computer Society.

123



[152] Shu, L., Xu, H., & Liu, B. (2017). DOC: Deep open classification of text documents. In
Proceedings of the 2017 Conference on EmpiricalMethods in Natural Language Processing
(pp. 2911–2916). Copenhagen, Denmark: Association for Computational Linguistics.

[153] Simonite, T. (2019). Algorithms allegedly penalized black renters. The US government is
watching. Wired. Accessed: 2024-04-02.

[154] Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M. M. A.,
Prabhat, P., & Adams, R. P. (2015). Scalable bayesian optimization using deep neural net-
works. In Proceedings of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ICML’15 (pp. 2171–2180).: JMLR.org.

[155] Song, G. & Chai, W. (2018). Collaborative learning for deep neural networks. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, NIPS’18 (pp.
1837–1846). Red Hook, NY, USA: Curran Associates Inc.

[156] Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., LeCun, Y.,
Müller, K.-R., Pereira, F., Rasmussen, C. E., Rätsch, G., Schölkopf, B., Smola, A., Vincent,
P., Weston, J., &Williamson, R. (2007). The need for open source software in machine
learning. J. Mach. Learn. Res., 8, 2443–2466.

[157] Soyer, E. &Hogarth, R. M. (2012). The illusion of predictability: How regression statistics
mislead experts. International Journal of Forecasting, 28(3), 695–711.

[158] Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair,
C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., et al. (2020). A deep learning ap-
proach to antibiotic discovery. Cell, 180(4), 688–702.

[159] Tagasovska, N. & Lopez-Paz, D. (2019). Single-Model Uncertainties for Deep Learning. Red
Hook, NY, USA: Curran Associates Inc.

[160] Than, M., Flaws, D., Sanders, S., Doust, J., Glasziou, P., Kline, J., Aldous, S., Troughton,
R., Reid, C., Parsonage, W. A., Frampton, C., Greenslade, J. H., Deely, J. M., Hess, E.,
Sadiq, A. B., Singleton, R., Shopland, R., Vercoe, L., Woolhouse-Williams, M., Ardagh,
M., Bossuyt, P., Bannister, L., & Cullen, L. (2014). Development and validation of the
emergency department assessment of chest pain score and 2h accelerated diagnostic protocol.
EMA - EmergencyMedicine Australasia, 26(1), 34–44.

[161] Tran, D., Liu, J., Dusenberry, M.W., Phan, D., Collier, M. P., Ren, J. J., Han, K., Wang, Z.,
Mariet, Z., Hu, C. H., Band, N., Rudner, T. G. J., Singhal, K., Nado, Z., van Amersfoort, J.,
Kirsch, A. C., Jenatton, R., Thain, N., Yuan, H., Buchanan, K., Murphy, K. P., Sculley, D.,
Gal, Y., Ghahramani, Z., Snoek, J. R., & Lakshminarayanan, B. (2022). Plex: Towards relia-
bility using pretrained large model extensions. In ICMLWorkshop: Principles of Distribution
Shift (PODS).

124



[162] Träuble, F., Kügelgen, J. V., Kleindessner, M., Locatello, F., Schölkopf, B., & Gehler, P. V.
(2021). Backward-compatible prediction updates: A probabilistic approach. In A. Beygelz-
imer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances in Neural Information Process-
ing Systems.

[163] Ustun, B. & Rudin, C. (2017). Optimized Risk Scores. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and DataMining: ACM.

[164] Ustun, B., Spangher, A., & Liu, Y. (2019). Actionable recourse in linear classification. FAT*
2019 - Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency, (pp.
10–19).

[165] Ustun, B., Westover, M. B., Rudin, C., & Bianchi, M. T. (2016). Clinical prediction models
for sleep apnea: The importance of medical history over symptoms. Journal of Clinical Sleep
Medicine, 12(2), 161–168.

[166] van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020). Uncertainty estimation using a
single deep deterministic neural network.

[167] Vanschoren, J., Braun, M. L., & Ong, C. S. (2014). Open science in machine learning.

[168] Veitch, V., D’Amour, A., Yadlowsky, S., & Eisenstein, J. (2021). Counterfactual invariance to
spurious correlations: Why and how to pass stress tests. arXiv preprint arXiv:2106.00545.

[169] Ventures, A. (2022). What is the psa?

[170] Viégas, Fernanda, B. &Wattenberg, M. (2006). Communication-minded visualization:
A call to action. IBM Systems Journal, 45(4), 801–812. Copyright - Copyright Interna-
tional Business Machines Corporation Oct-Dec 2006; Document feature - Illustrations; ;
Last updated - 2023-11-24; CODEN - IBMSA7; SubjectsTermNotLitGenreText - United
States–US.

[171] Wang, Y., Wang, X., Beutel, A., Prost, F., Chen, J., & Chi, E. H. (2021a). Understanding and
improving fairness-accuracy trade-offs in multi-task learning. CoRR, abs/2106.02705.

[172] Wang, Z. J., Kale, A., Nori, H., Stella, P., Nunnally, M., Chau, D. H., Vorvoreanu, M.,
Vaughan, J. W., & Caruana, R. (2021b). Gam changer: Editing generalized additive mod-
els with interactive visualization. In Advances in Neural Information Processing Systems,
Bridging the Gap: FromMachine Learning Research to Clinical Practice (Research2Clinics)
Workshop.

[173] Wang, Z. J., Zhong, C., Xin, R., Takagi, T., Chen, Z., Chau, D. H., Rudin, C., & Seltzer, M.
(2022). Timbertrek: Exploring and curating sparse decision trees with interactive visualiza-
tion. In 2022 IEEE Visualization and Visual Analytics (VIS) (pp. 60–64).: IEEE.

125



[174] Watson-Daniels, J., Barocas, S., Hofman, J. M., & Chouldechova, A. (2023a). Multi-target
multiplicity: Flexibility and fairness in target specification under resource constraints. In Pro-
ceedings of the 2023 ACMConference on Fairness, Accountability, and Transparency, FAccT
’23 (pp. 297–311). New York, NY, USA: Association for ComputingMachinery.

[175] Watson-Daniels, J., du Pin Calmon, F., D’Amour, A., Long, C., Parkes, D. C., & Ustun, B.
(2024). Predictive churn with the set of good models. arXiv:2402.07745.

[176] Watson-Daniels, J., Parkes, D. C., & Ustun, B. (2023b). Predictive multiplicity in prob-
abilistic classification. In Proceedings of the Thirty-Seventh AAAI Conference on Artifi-
cial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial In-
telligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23: AAAI Press.

[177] Wei, D., Nair, R., Dhurandhar, A., Varshney, K. R., Daly, E. M., & Singh, M. (2022). On the
safety of interpretable machine learning: A maximum deviation approach.

[178] Wieringa, M. (2020). What to account for when accounting for algorithms: a systematic liter-
ature review on algorithmic accountability. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, FAT* ’20 (pp. 1–18). New York, NY, USA: Association
for ComputingMachinery.

[179] Xie, Y., an Lai, Y., Xiong, Y., Zhang, Y., & Soatto, S. (2021). Regression bugs are in your
model! measuring, reducing and analyzing regressions in nlp model updates.

[180] Xin, R., Zhong, C., Chen, Z., Takagi, T., Seltzer, M., & Rudin, C. (2022). Exploring the
whole rashomon set of sparse decision trees. In Advances in Neural Information Processing
Systems, volume 35 (pp. 14071–14084).

[181] Yan, S., Xiong, Y., Kundu, K., Yang, S., Deng, S., Wang, M., Xia, W., & Soatto, S. (2021).
Positive-congruent training: Towards regression-free model updates. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 14294–14303). Los
Alamitos, CA, USA: IEEE Computer Society.

[182] Yeh, I. C. & Lien, C. h. (2009). The comparisons of data mining techniques for the predic-
tive accuracy of probability of default of credit card clients. Expert Systems with Applications,
36(2 PART 1), 2473–2480.

[183] Zeng, J., Ustun, B., & Rudin, C. (2017). Interpretable classification models for recidivism
prediction. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(3), 689–
722.

[184] Zhang, Y., Xiang, T., Hospedales, T. M., & Lu, H. (2017). Deep mutual learning.

126



[185] Zhong, C., Chen, Z., Liu, J., Seltzer, M., & Rudin, C. (2023). Exploring and interacting
with the set of good sparse generalized additive models. In Thirty-seventh Conference on
Neural Information Processing Systems.

127


	title page
	copyright
	abstract
	contents
	dedication
	acknowledgments
	self citation
	Introduction
	Predictive Multiplicity  in Probabilistic Classification
	Introduction
	Related Work
	Framework
	Methodology
	Numerical Experiments
	Concluding Remarks

	Multi-Target Multiplicity: Flexibility and Fairness in Target Specification under Resource Constraints
	Introduction
	Related Work
	Predictive multiplicity with resource constraints
	Multi-target Multiplicity and Fairness
	Stable points
	Evaluation
	Concluding Remarks

	Predictive Churn with  the Set of Good Models
	Introduction
	Related Work
	Framework
	Unstable Sets
	Anticipating Unstable Points
	Theoretical Results
	Experiments
	Implications
	Concluding Remarks

	Conclusion
	References

