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Abstract 

A math course sequence consisting of a course in algebra and a course in geometry, 

followed by another course in algebra, has been an enduring feature of U.S. high school 

curriculum since the later 19th century. In recent decades, there has been interest in 

alternative math content, and curricular arrangements of math content, but a traditional 

sequence of courses, commonly titled Algebra I, Geometry, and Algebra II, has endured 

in most locales. Interestingly, with many reforms of the high school math curriculum 

having been proposed over the past century, almost nothing has been written on the 

possibility of changing the order of the traditional sequence while maintaining the three-

course structure. In Chapter One of this dissertation, I recount the history of the three-

course sequence, of alternatives that have been proposed, and of an ongoing trend 

towards encouraging more students to complete more of the sequence. In Chapters Two 

and Three I undertake an empirical analysis of the experience of a large urban district that 

mandated that all students follow a non-traditional sequence of consecutive Algebra I and 

II, followed by Geometry. I find no evidence of positive effects from this mandate, and 

substantial evidence of harmful effects, both direct and indirect. In Chapter Two I study 

Algebra II outcomes, finding that, conditional on Algebra I performance, students earned 

lower grades in Algebra II when they enrolled in the two courses consecutively. In 

Chapter Three I study Geometry outcomes. I find that students were less likely to enroll 

in Geometry when they delayed enrollment by an additional year, and that when the 

difficulty of the Algebra II course increased, it had a negative impact on student test 

scores in Geometry in the next year.  
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Chapter One 

Introduction 

What is the origin of the Algebra I – Geometry – Algebra II course sequence that 

is an enduring feature of the American high school curriculum and of the expectation, in 

the early twenty-first century, that every student will complete some or all of this 

sequence? The 1893 report of the Committee of Ten offers a temptingly easy answer: this 

committee, chaired by Harvard President Charles W. Eliot, proposed such a sequence as 

part of its attempt to codify a uniform curriculum for the nation’s high schools. The 

report further stated that this sequence (or at least the first part of it) would be appropriate 

for all students, regardless of their future goals. The current situation, therefore, could be 

seen as the inevitable fulfillment of the vision of an august group of educators. Upon 

further examination, however, the history is more complicated: Rates of high school math 

enrollment dropped sharply in the decades after the Report, and rival curricular visions 

emerged regularly throughout the next hundred years. Nonetheless, 125 years after 

Charles Eliot’s Committee released its report, its vision is closer than ever to realization. 

 

In this chapter I argue that three things largely explain the current success of the 

traditional sequence. The first relates to the circumstances of the sequence’s birth: The 

Committee of Ten justified its prescriptions based on the theory of mental discipline 

which, although eventually set aside by professional psychologists, seems to inform 

popular views of math education’s purpose through the present day. This established the 

standard curriculum as a gold-standard of intellectual rigor, and offered a measure of 

protection from demands that the curriculum perpetually justify and reform itself in 



2 

 

relation to a developing body of knowledge and practice, as did fields such as history or 

biology.1 The second relates to its content, specifically its prescribing a secondary 

curriculum dominated by algebra: Whatever the original rationale for this, heavy 

emphasis on algebra would become indispensable in the second half of the twentieth 

century when calculus emerged as a principal goal of secondary math education. These 

things established the conditions that any serious candidate to replace the standard 

sequence would have to meet: it would have to prove itself at least as “rigorous” as the 

standard sequence, and provide at least as strong a preparation for calculus, or else offer 

something that people considered more important. No proposed alternative has succeeded 

at meeting these conditions, and although one can imagine alternatives that would, I will 

consider possible reasons why they have not emerged. 

 

The third factor in the sequence’s ultimate (or at least current) success is different 

in type, in that it is largely indifferent to the particularities of the sequence itself: In the 

mid-1980s there was a confluence of political, social, and economic forces that mitigated 

strongly in favor of curricular uniformity, not only across classrooms and schools, but 

also across districts and states. Largely due to the two factors mentioned above, the 

traditional sequence was the strongest candidate at that moment in history to be the 

consensus choice. 

 

                                                 
1 Of course, the idea that the objects of mathematical knowledge differ in type from the objects of other 

types of knowledge did not originate with the Committee of Ten. What the Committee did was enshrine the 

idea that working with these objects developed mental faculties that were transferable to other fields of 

endeavor. 
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I begin this chapter with a prologue describing the background to, and work of, 

the Committee of Ten, which largely articulated the standard sequence, and framed its 

place in the broader curriculum. I then briefly describe the decades from 1893 to 1958, to 

illustrate some of the pressures that worked against math education as an integral part of 

secondary curriculum. I follow this with three sections on the reasons for the traditional 

sequence’s survival and success, and a conclusion in which I consider future prospects 

for reform of the traditional sequence, particularly the ordering of the courses. 

 

In the first of these sections, I consider why curricula that have aimed to 

emphasize abstract ideas and the drawing of conceptual linkages, and to subordinate 

computational practice and drills, have not had more success. I principally discuss the 

New Math of the 1960s and, in less detail, the Math Wars of the 1990s, to illustrate how 

such attempts to bring school math in line with the academic discipline of mathematics 

often fail: An archetypal criticism of such reform curricula is that they lack rigor.2 

Although I render a mixed judgment on the fairness of this criticism, it reflects the 

longstanding cultural status of the traditional sequence, and does have some basis in fact.3 

 

                                                 
2 The theory of mental discipline seems to have gone from being self-evident to being discredited without 

ever providing a truly rigorous definition of “rigor”. The popular conception of a rigorous math curriculum 

probably means primarily a curriculum in which there are clear and present standards of “success” and 

“failure”, “right” and “wrong”, and probably also a curriculum that students find at least moderately 

challenging. 
3
They also reflect a tension within the modern university between research mathematics (or at least a 

subpart thereof), and other disciplines that depend on math departments to train their students. It is 

somewhat difficult, and beyond the scope of this chapter, to address the ways in which this does or does not 

matter for the fate of curricula in districts and states, although it has multiple points of tangency to the 

section on Calculus. 
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In the second section, I consider why the traditional sequence’s emphasis on 

algebra has made it, if not indispensable, at least advantaged relative to alternative 

curricula that have been proposed in recent decades. This discussion centers on the 

dominant place of calculus in math education, which reinforces demand for a high school 

curriculum emphasizing algebra. Training in calculus requires strong intuition for the 

behavior of a wide variety of functions (principally continuous ones), and the ability to 

fluently and accurately manipulate their algebraic representations. A principal avenue to 

supplanting the traditional curriculum with something less focused on algebra would be 

to replace calculus as the end-goal of the curriculum with material that makes less 

intensive use of algebra.4 I describe the two principal alternatives that have been 

proposed, discrete math and statistics, and consider why they have not (at least so far) 

enjoyed more success. 

 

In the third section, I describe the emergence of socio-political forces since the 

early 1980s that have created demand for a national consensus around what math students 

should study, and for curricula that would be amenable to standardized testing - demand 

that I argue the traditional sequence was uniquely positioned to meet. In this section, I 

describe the period from the 1983 publication of A Nation at Risk to the present, in which 

the standard sequence not only maintained its place as the predominant college-

preparatory curriculum, but also came to be followed by the overwhelming majority of 

the nation’s high school students. 

 

                                                 
4 I use “algebra” here in its common, rather than its contemporary technical, sense, to mean generalized 

arithmetic: lines of expressions and equations that must be manipulated and re-expressed.. 
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I conclude by posing an additional question: Of all of the reforms proposed to the 

standard sequence, why does the literature contain barely a passing reference to the 

possibility of changing the course ordering? I offer some thoughts on this and, in the 

second and third chapters of this dissertation, offer the first (to my knowledge) empirical 

study of such a reform. 

Historical Background 

The Committee of Ten 

 In late nineteenth century America, there existed a “wide gap” between 

elementary and college education, as characterized by Theodore Sizer (Sizer, 1961). 

Although the large majority of students completed their formal education by fourteen 

years of age (eighth grade, for those in graded schools) there was broad variation in the 

character of the institutions attended by those who continued on, generally with a view to 

attending college, or entering a profession. Some attended “grammar schools” (Sizer, 

1961), which provided a core curriculum of Latin, Greek, and mathematics, intended to 

train and discipline students’ minds in preparation for college study and, ultimately, 

religious and secular leadership roles. Others attended “academies”, which took a more 

utilitarian perspective on subject matter, offering training in modern languages such as 

French and German, and contemporary science and technology (Sizer, 1961). Still other 

students attended “common schools”, which were publicly funded and administered by 

local authorities, and offered curriculum of highly variable content and rigor, determined 

by local needs and capacities (Sizer, 1961). 
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 In the decades after the Civil War, the fragmented nature of secondary education 

grew increasingly unsatisfactory as colleges began to evolve from being finishing schools 

for largely parochial elites, to being training institutes for an increasingly national, and 

ultimately global, technocracy. Previously, most students planning to attend college 

would have planned to attend a specific college, and would have attended a nearby 

secondary school5 with a curriculum specifically tailored to that college’s entrance 

requirements: Famous examples include the Boston, Cambridge, and Roxborough Latin 

Schools, which specialized in preparing students to study at Harvard College. In the latter 

third of the nineteenth century, several forces were rapidly transforming American 

society, and educational demands: First, rapid urbanization, and immigration flows from 

southern and central Europe, expanded school enrollments and raised demands that 

schools serve as a force for civic cohesion. Second, science and technology took on new 

salience due not only to rapid industrialization and mechanization of the economy, but 

also the prestige attaching to the work of figures such as Charles Darwin and Herbert 

Spencer (Sizer, 1961). This created demands on colleges to provide relatively specialized 

technical training in new and diverse areas.  

 

 The Committee of Ten was created by the National Education Association in the 

early 1890s in response to the need for a common understanding across cities and regions 

of what the nation’s colleges could expect of students who had completed a course of 

secondary schooling. The committee was chaired by Harvard University President 

Charles W. Eliot, and the majorities of both the main committee and its sub-committees 

                                                 
5 This could have been an institution of one of the types mentioned above, or a pre-college institution 

operated by a college (Sizer, 1961). 
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were comprised of university presidents and faculty, with school principals and teachers 

in the minorities. Although my principal interest is the Committee’s legacy for math 

education, it is necessary to understand the place of mathematics in the broader context of 

the committee’s work. 

 

 The Committee appointed a number of subject area “conferences”, which issued 

individual reports in addition to the Committee’s overall report. The final report indicates 

that the work of the Latin, Greek, and Mathematics conferences had primacy: It states 

that the members of other conferences (Physics, Astronomy, and Chemistry; Natural 

History; History, Civil Government, and Political Economy; Geography; English; and 

Other Modern Languages) “ardently desired to have their respective subjects made equal 

to Latin, Greek, and Mathematics, but they knew that educational tradition was averse to 

this desire, and that many teachers and directors of education felt no confidence in these 

subjects as disciplinary materials.”6 The principal justification for teaching Latin, Greek, 

and mathematics, then, was their ability to “discipline” the mind; the transmission of 

content was (at least ostensibly) a distinctly secondary goal.7 

 

                                                 
6 To underline what a different world from our own this report comes from, note that Latin and Greek were 

each assigned to their own sub-committee, while “History, Civil Government, and Political Economy” 

which in a modern university might occupy three or four departments and two professional schools, were 

considered a single area of concern. 
7 Although not stated in the report, it is difficult for an early twenty-first century reader not to perceive, as 

well, a desire to transmit a cultural patrimony. The study of Latin and Greek would have the (less than) 

incidental effect of grounding students in what we now call the Western canon. It seems likely that, for 

educated men of Charles Eliot’s generation, the idea of an educated person not familiar with the major texts 

of the ancient world would have been oxymoronic – one might therefore be tempted to read the invocation 

of mental discipline as providing these children of the Enlightenment with cover for fundamentally 

atavistic urges. 
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The math sub-committee recommended that that the study of “systematic algebra” 

(NEA, 1894, p.23) begin in ninth grade with five hours of weekly study, and that in tenth 

and eleventh grade math courses be equally divided between geometry and algebra.8 In 

twelfth grade, “trigonometry and higher algebra”9 was to be offered to “candidates for 

scientific schools” (NEA, 1894, p.35). This curriculum was justified by reference to the 

habits and dispositions of mind it would inculcate in the learner, rather than the 

applicability of the knowledge gained to any particular area of endeavor: 

 

Training in geometry, which had its basis in the work of Euclid, was historically 

largely of a piece with training in Latin and Greek. From this perspective, it might make 

more sense to ask why math education includes anything other than geometry, than to 

demand a rationale for geometry itself. Nonetheless, the Committee justified it by saying 

that “whatever [this] training may accomplish for [a student] geometrically, there is no 

student whom it will not brighten and strengthen intellectually as few other exercises 

can.” (NEA, 1894, p.116).  

 

The more interesting case is algebra which, as a distinct type of mathematics, was 

of more recent provenance.10 The report again offered no specific field of endeavor for 

                                                 
8 One anomaly is that while the Committee proposed that sophomore and junior year both be divided 

equally between algebra and geometry, this seems to have been implemented as (or evolved into) 

sophomore year being taken up entirely with geometry, and junior year with a more advanced course in 

algebra. 
9 This is a forerunner of the course now commonly known as “Precalculus”. Determining the origin of this 

course title is beyond the scope of the current project, but anecdotal evidence suggests that as late as the 

1980s it was not yet in widespread use. 
10 The establishment of algebraic knowledge as (more or less) fully distinct from geometric knowledge can 

be dated to Euler’s 1765 Elements of Algebra. 
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which the study of algebra was to serve as preparation but, as with geometry, explained 

how it develops distinct virtues of the mind: 

Oral exercises in algebra, similar to those in what is called “mental arithmetic,” 

are recommended. Such exercises are particularly helpful in conducting brief and 

rapid reviews. Quickness and accuracy in both oral and written work should be 

rigidly enforced. (NEA, 1894, p.112, italics added) 

 

The invocation of “quickness and accuracy” as its own justification might be understood 

against the background of rapid industrialization, and particularly the spread of assembly-

line processes, in the post-Civil War era.11 Speculation about the conscious or 

unconscious motives of the Committee of Ten aside, however, the fact is that the study of 

geometry and algebra was intended to build minds that were “disciplined”, “quick”, 

“accurate”, “bright”, and “strong” in activity and expression. 

 

 These animating values of mental discipline would continue to hold cultural sway 

long after they were discarded by the field of psychology: The idea that the brain 

possessed such faculties in way that would transfer freely across different activities was 

discredited by psychologists by the early twentieth century (Garrett & Davis, 2003). 

Nonetheless, as late as the 1990s, math instruction that did not reward students for being 

quick, and accurate (i.e. disciplined) in executing computations would fall under popular 

suspicion of making students mentally dull, and weak. 

  

                                                 
11 Historically, there is a pattern of the brain being understood in terms of the most current technology of 

the day. Gary Marcus discusses this in, among other places: 

https://www.nytimes.com/2015/06/28/opinion/sunday/face-it-your-brain-is-a-computer.html Retrieved 

11/30/2017. 

https://www.nytimes.com/2015/06/28/opinion/sunday/face-it-your-brain-is-a-computer.html
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Math Education in the Unites States from 1893 to 1958 

 Although the available evidence suggests that the Committee’s prescriptions were 

not implemented on any large scale in the period following the report (e.g. Dexter, 1906), 

it is evident that they survived the subsequent decades, presumably as the standard 

preparatory course for the relatively small subset of students who went on to 

postsecondary education. The first serious attempt to replace the standard sequence did 

not arise until the 1950s, when a post-World War II wave of émigré European 

mathematicians had settled in American universities, and postwar technological 

competition with the Soviet Union had taken hold. 

 

While the intervening six decades defy easy characterization, a key development 

that separates the postwar period from the late nineteenth century is an enormous increase 

in the rate of high school enrollment: Even with the rapid expansion after the Civil War it 

was barely above 10% in 1893; by 1960, high school enrollment was well on its way to 

being universal (Snyder, 1993). High schools’ mission had expanded from preparing 

students to join a middle-class, white-collar milieu, to serving the full spectrum of needs 

of the entire American adolescent population. As the high school population grew, many 

students simply opted not to study math (Progressive Education Association, 1940, p.10), 

and those that did often enrolled in locally designed courses focused on the application of 

specific computational techniques to specific technical problems (Kliebard & Franklin, 

2003).  
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Reform and Rigor 

The New Math 

Largely led by university research mathematicians, the New Math aimed to grow 

the nation’s pipeline of mathematical talent by creating continuity from K-12 study to 

undergraduate and graduate-level study, a major goal of the broader education reform 

movement of that period (e.g. Beberman, 1958; Bruner, 1960; Dow, 1991).12  The 

emergence of the New Math in the 1950s (and not earlier) was due to two factors. First, 

the influx of research mathematicians holding Ph.D.’s to American universities following 

the Second World War (Tucker, 2013): the division of mathematical knowledge into 

algebraic and geometric species was an artifact of the late Enlightenment that was on its 

way to obsolescence by the time of the Committee of Ten Report, but newer 

developments were confined to England and the European Continent until the late 

1940s.13 Second, although the first New Math-type project was launched in 1951 (by the 

University of Illinois Committee on School Mathematics (UICSM) under the leadership 

of Max Beberman), the 1958 launch of Sputnik sparked a broader set of (federally 

funded) initiatives aimed at increasing the flow of high school graduates into scientific 

and technical college majors. 

 

                                                 
12 A more complete account of the New Math movement would also note the influence of the latest work of 

child development theorists, particularly Harvard psychologist Jerome Bruner. Bruner is perhaps most 

famous for his hypothesis that “any subject can be taught effectively in some intellectually honest form to 

any child at any stage of development” (Bruner, 1960, p.33), and he took leave from Harvard during this 

period to lead development of an innovative middle grades social studies curriculum. Titled Man, a Course 

of Study (MACOS), it attempted to inculcate the habits of mind of professional anthropologists and 

archaeologists in adolescent learners (see Dow, 1991 for a complete account of this project).  
13 Important figures in this vanguard were David Hilbert in Germany, Russell and Whitehead in England, 

and “N. Bourbaki” (actually the pseudonymous name used by a group of mathematicians) in France. I offer 

a brief account of the historical bifurcation and reunification of mathematical knowledge in the appendix. 
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The hallmark of most, if not all, New Math curricula, was integrating content 

around a small number of unifying concepts with an emphasis on making connections 

and seeing unity, rather than the serial presentation of algebraic and geometric topics with 

an emphasis on a defined set of proofs and algorithms.14 Much development in 

mathematics consists of abstracting common properties of familiar objects, and then 

describing those objects as instantiations of a more general class. The degree of 

intellectual ambition embodied in such curricula makes them likely to be very difficult 

for teachers to implement faithfully, especially those who lack deep mathematical 

training. 

 

 Although initially welcomed with enthusiasm by both the general public (Mueller, 

1966) and the academy (Duren, 1967), the New Math came under criticism beginning in 

the mid-1960s due to a widespread perception that students studying from these curricula 

were being denied foundational technical skills. This criticism arose not only in the 

popular media (Mueller, 1966), but also from respected scientists and mathematicians 

(e.g. Feynman, 1965; Kline, 1973). Concerns were compounded by a decline in SAT 

Math scores that began in the late 1960s (Usiskin, 1985).15  

                                                 
14 This reflects that fact that in the post-war period in math departments in leading American universities 

were dominated by the Bourbaki movement (founded in Paris in 1934 and publishing under the pseudonym 

Nicolas Bourbaki). Bourbaki’s goal was to provide a new foundation for mathematics, based on unifying 

structures that could bring together apparently diverse sub-disciplines (Atiyah, 2007). One of the most 

common structures that New Math textbooks used to unify mathematical concepts was the “set” (Usiskin, 

2003): An important example is offered by introductory texts of the School Mathematics Study Group 

(SMSG) (a major National Science Foundation (NSF) funded reform effort undertaken in the late 1950s), 

Introduction to Algebra and First Course in Algebra, which both begin with chapters on sets: Set theory 

was invented by German mathematician Georg Cantor between 1874 and 1884 (Johnson, 1972), placing it 

in the era of mathematical development that the proponents of the New Math wanted to draw into the 

school curriculum. 
15 Powell and Steelman (1984) consider this trend, which continued through the early 1980s, and argued 

that the decline in scores was at least partially attributable to changes in the demographic composition of 

the test-taking population. 
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It is a low bar for the historiographer to demonstrate that New Math curricula 

were widely perceived as lacking rigor, in the sense of not training computational 

proficiency. One might observe that the most famous and influential critique was a book 

titled “Why Johnny Can’t Add”16 (Kline, 1973). One might look to Tom Lehrer’s 

satirical song “New Math”, which notes that taking away seven from thirteen leaves five, 

“well, six actually; but the idea is the important thing!”17 One might also note that the 

New Math was supplanted by something called the “Back to Basics” movement. The 

harder work is looking beyond this simplification, and finding some room for nuance: It 

is implausible that professional mathematicians would have thought it unnecessary for 

students to be able to perform arithmetic accurately and fluently. The evidence suggests, 

rather, that they underestimated the difficulty of imparting this to students, let alone of 

doing so while grappling with strange and unfamiliar teaching materials. 

 

Max Beberman criticized as a “national scandal” the “undue haste” with which 

the New Math was introduced in schools,18 and Kline (1973) criticized its fundamental 

diagnosis that curriculum was the key problem to be addressed (e.g. p.12) suggesting, on 

the contrary, that the problem was a lack of qualified teachers (p.17). While it is beyond 

the scope of this chapter to evaluate this claim in any depth, two pieces of evidence lend 

                                                 
16 Morris Kline’s 1973 book, not to be confused with Ruth Dunbar’s 1956 Saturday Review article of the 

same name. 
17 See, for example, https://www.youtube.com/watch?v=DfCJgC2zezw, Retrieved 11/30/2017 
18 http://www.nytimes.com/1971/01/26/archives/dr-max-bebermanls-dead-at-45-a-creator-of-new-

mathematics.html, Retrieved 11/24/2017 

https://www.youtube.com/watch?v=DfCJgC2zezw
http://www.nytimes.com/1971/01/26/archives/dr-max-bebermanls-dead-at-45-a-creator-of-new-mathematics.html
http://www.nytimes.com/1971/01/26/archives/dr-max-bebermanls-dead-at-45-a-creator-of-new-mathematics.html
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support: First, the New Math classroom vignettes with which Kline begins his book. For 

example: 

[The teacher asks] "Is 7 a number?" The students, taken aback by the simplicity of 

the question, hardly deem it necessary to answer; but the sheer habit of obedience 

causes them to reply affirmatively. The teacher is aghast. "If I asked you who you 

are, what would you say?" 

The students are now wary of replying, but one more courageous youngster does 

do so: "I am Robert Smith." 

The teacher looks incredulous and says chidingly, "You mean that you are the 

name Robert Smith? Of course not. You are a person and your name is Robert 

Smith. Now let us get back to my original question: Is 7 a number? Of course not! 

It is the name of a number. 5 + 2, 6 + 1, and 8 - 1 are names for the same number. 

The symbol 7 is a numeral for the number. 

The teacher sees that the students do not appreciate the distinction and so she tries 

another tack. "Is the number 3 half of the number 8?" she asks. Then she answers 

her own question: "Of course not! But the numeral 3 is half of the numeral 8, the 

right half.” (Kline, 1973, p.2) 

While Kline’s example tends toward caricature, it suggests that many lessons were 

derailed because teachers lacked a sufficiently broad grasp of mathematics to understand 

(for example) when and why it was useful to distinguish between a quantity and its 

representation. Furthermore, in reading the architects of New Math curricula it is clear 

that they were perfectly cognizant of the issues that Kline raises. Again, to offer one 

example, in his remarks on SMSG’s First Course in Algebra, Henry O. Pollak (1965) 

wrote: 

We maintain the distinction between numbers and numerals for some time and in 

fact find it very useful in connection with consideration of simplification. … 

[eventually] we drop the fine distinction and admit that the student will be able to 

tell the difference. There is no point tangling yourself up in this language for very 

long after the student has seen what you are driving at. (p.16) 
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It seems plausible, therefore, that the architects of the New Math put too much emphasis 

on curriculum design and too little on implementation.19 It does not appear that they were 

self-indulgently oblivious to the potential for the difficulties observed by their critics and 

caricaturists. 

 

 It would be unfair to say that the New Math curricula were inherently lacking in 

rigor, but the public had little patience for, or confidence in, math instruction that did not 

prioritize disciplined computational fluency and accuracy. Teachers apparently struggled 

to find the necessary balance between training students to be computationally fluent, and 

imparting a deeper and more abstract understanding of mathematical structures and, fairly 

or unfairly, the novel aspects of the New Math were named as the culprit.20 

 

                                                 
19 This criticism would also be raised about later rounds of reform that drew from the same well of 

inspiration as the New Math, for example Ralston (2003), and Wu (1997), writing about the Math Wars 

(see below), concur that an important factor in the failure of math education reform is often the inability of 

teachers to faithfully implement reform curricula. 
20 More technical criticisms of the New Math were also raised, although it seems unlikely that these were 

decisive. Kline (1973), for example, was highly critical of the New Math curricula’s tendency to emphasize 

the abstract and formal at the expense of the concrete and intuitive. He argued that doing so deprived 

students of opportunities to gain familiarity with concrete instances, which were necessary to developing 

their own grasp of abstract ideas. He also criticized a tendency to emphasize formal proof and deductive 

logic at the expense of intuition, quoting Henri Lebesgue, a late nineteenth century French mathematician 

as follows: 

No discovery has been made in mathematics, or anywhere else for that matter, by an effort of 

deductive logic; it results from the work of creative imagination which builds what seems to be 

truth, guided sometimes by analogies, sometimes by an esthetic ideal, but which does not hold at 

all on solid logical bases. Once a discovery is made, logic intervenes to act as a control; it is logic 

that ultimately decides whether the discovery is really true or is illusory; its role therefore, though 

considerable, is only secondary. (Lebesgue, H., quoted in Kline, M., 1973, p.59) 

The New Math also came under criticism from scientists such as Richard Feynman, who argued that 

“mathematics which is used in engineering and science … is all really old mathematics, developed to a 

large extent before 1920” (Feynman, 1965, p.10). In his view, the New Mathematics reflected the 

increasing self-referentiality of the discipline of pure mathematics, while neglecting not only the needs of 

educated laymen, but also those of other academic disciplines that use mathematics. 
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The Math Wars 

Although the New Math, as such, did not survive the 1970s, it has found 

continuance by other means, with the most large-scale example being the “Math Wars”, 

that followed from the implementation of the National Council of Teachers of 

Mathematics’ (NCTM) 1989 Curriculum and Evaluation Standards in California. 

 

In 1992, California introduced a new math curriculum framework, which reflected 

pro-reform, or “progressive” views (Ralston, 2003). This framework was heavily 

influenced by a set of model standards published by the National Council of Teachers of 

Mathematics (NCTM) in 1989, the creation of which involved many of the same people 

who contributed to the 1989 NCTM Standards (Kilpatrick, 2004). In 1993, shortly after 

the framework was published, a “traditionalist” reaction against the document broke out: 

The ensuing controversy has been widely termed “the Math Wars”.21  

 

 In their overarching vision for school math, the NCTM Standards were in many 

ways the heir to the New Math’s vision of a modern math curriculum that would 

supersede more traditional approaches: 

The Standards [embody] a vision of school mathematics in which [the historical] 

purposes [of secondary school mathematics] are embedded in a context that is 

broader and more consistent with accelerating changes in today’s society. High 

school graduates during the remainder of this century can expect to have four or 

more career changes. To develop the requisite adaptability, high school 

mathematics instruction … must provide experiences that encourage and enable 

students to value mathematics, gain confidence in their own mathematical ability, 

                                                 
21 Suzanne Wilson’s California Dreaming: Reforming Mathematics Education (2003) offers a thorough 

and remarkably even-handed account of this complicated and protracted phenomenon. 



17 

 

become mathematical problem solvers, communicate mathematically, and reason 

mathematically. (NCTM, 1989, p.123). 

 

This contains more than an echo of the rationale for the New Math offered thirty years 

earlier by Edward G. Begle, when he argued that “[no one can] foretell which 

mathematical skills will be required in the future by a given profession” and that school 

math must therefore impart a deep understanding of the “basic concepts and structure of 

mathematics that would enable the student to learn new (perhaps yet undiscovered) 

mathematics in the future” (Begle, 1968, p.239).  

 

 While it is beyond the scope of this chapter to describe the many ways in which 

the reforms around the Math Wars differed from the New Math period, there is a strong 

commonality in the concerns that were raised about the alleged dulling effect of the 

proposed reforms. The emphasis on student use of technology, which Ralston (2003) 

argues was an innovation in the Math Wars period, gave rise to concerns that the new 

curriculum was, in the words of one dissenter, “creating a new learning disability: 

Computer-Assisted Mathematical Incompetence” (Escobales, 1997, p.542). Indeed, while 

some saw the use of technology as offering the possibility of “focus[ing] on networks of 

mathematical ideas rather than solely on the nodes of the network in isolation” (NCTM, 

1989, p.149), others voiced concern about neglecting students’ computational acumen. 

Klein and Milgram, for example, were sharply critical of “the view that the four standard 

arithmetic algorithms are obsolete [and] superfluous” (Klein & Milgram, 2000, p.2).  
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Beyond the Math Wars 

The 2010 Common Core State Standard for Mathematics, the successor to the 

NCTM Standards documents, offers a framework for making “the mathematics 

curriculum in the United States … more focused and coherent”, echoing the rhetoric of 

the earlier reform movements described above. The authors show remarkable reticence, 

however, about what students’ exposure to the material should actually look like: 

These Standards do not dictate curriculum or teaching methods. For example, just 

because topic A appears before topic B in the standards for a given grade, it does 

not necessarily mean that topic A must be taught before topic B. A teacher might 

prefer to teach topic B before topic A, or might choose to highlight connections 

by teaching topic A and topic B at the same time. Or, a teacher might prefer to 

teach a topic of his or her own choosing that leads, as a byproduct, to students 

reaching the standards for topics A and B. (National Governors’ Association, 

2010, p.5) 

 

In light of the foregoing, this sounds less like a call to let a hundred flowers bloom, than 

like a resigned acceptance that if any deep reform is to occur, it will have to be 

incremental, on a classroom-by-classroom basis. 

 

Nonetheless, the influence of the New Math persists at the high school level, even 

if it is manifested within a more traditional sequential structure based around a separation 

of algebraic and geometric content. One recent example of this is the Center for 

Mathematics Education (CME) series. Although this consists of Algebra 1, Geometry, 

and Algebra 2 texts, the CME curriculum: 

makes a conscious choice not to think of each course as a list of topics to cover, 

but rather as an opportunity to develop mathematical themes in different areas of 

mathematics. These themes provide students with insight about what it means to 

‘think like a mathematician’ and can be applied to many different (even non-

mathematical) situations. 
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Considering the legacy of the New Math more broadly, researchers of math 

education still argue that drawing connections between ideas will help students develop 

stronger understanding of those ideas (e.g. Hiebert & Carpenter, 1992), and the search for 

“a theme that transcends content and grade level” (Usiskin, 2003, p.17) has continued. 

Clement and Sowder (2003) go further, proposing that unifying concepts can be provided 

not only by content, but also by processes: Examples of such organizing principles in 

recent decades have included problem solving (Krulik, 1980), algorithmic thinking 

(Pollak, 1983), sense-making (Kaput, 1993), measurement (Clement & Sowder, 2003), 

and algebraic thinking (National Governors Association, 2010). 

Summary 

One important reason why the traditional sequence has persisted, therefore, is that 

it embodies a recognizable (i.e. traditional) body of knowledge and skills with 

unambiguous (i.e. rigorous) standards of success and failure, and does so more 

effectively than at least one major family of alternatives that has been offered. The 

alternative curricula discussed in this section regarded traditional knowledge and skills as 

subservient to abstract ideas. These ideas, and the entire mode of thought associated with 

them, were unfamiliar not only to parents, but also to many teachers. The proponents of 

such curricula may have hoped that using basic knowledge and skills to provide entry 

into abstract mathematics would provide motivation to students. In practice, however, it 

appears to have led teachers to neglect the more basic content, or to present it in ways 

that students and parents found confusing. In turn, parents were alarmed to see that their 

children were failing to develop the expected skills in their math classes, and that nothing 

of (to them, at least) clear value was being taught in its place. 
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The traditional sequence was therefore not to be transcended by a push to teach 

the more abstract foundations of its content. Other alternatives, which I now turn to 

discussing, accept the idea that a math curriculum essentially consists of a body of 

knowledge of skills, but aim to supplant the traditional sequence’s particular body of 

knowledge and skills.  

The Dominance of Calculus 

 A second reason for the persistence of the traditional sequence is that it ensures 

students receive a heavy dose of algebra. The “college preparatory” sequence of Algebra 

I, Geometry, and Algebra II could, with fairness, also be called a “calculus preparatory” 

sequence: Algebraic topics not only make up two-thirds of the content, but also are 

generally selected and presented so as to provide a seamless transition into differential 

calculus,22,23 a course which stands as the gatekeeper to many professions. Although the 

original rationale for granting algebra a central place in the high school curriculum had to 

do with the mental habits it was assumed to engender, after the launch of Sputnik and the 

NDEA it became important because it provided the requisite skills to study calculus, and 

thereby engineering. This presents an additional criterion for any proposed replacement 

for the standard sequence: it must either provide superior preparation for calculus, or 

prepare students for something generally recognized as more valuable. 

                                                 
22 Balomenos, Ferrini-Mundy & Dick (1987) argue that although many teachers view Geometry as an 

isolated course it is, in fact, also crucially important for grasping calculus. 
23 A more complete discussion of the extent to which computational and manipulative skill is truly a 

requirement for the competent use of calculus would have to deal with the calculus reform movement, and 

with the spread of affordable and portable computer algebra systems (e.g. TI-Nspire™ CAS Handheld, 

Wolfram Alpha) that can calculate complex derivatives and integrals at the push of a button. Here, I simply 

assume that, for the foreseeable future, studying calculus will mean learning to apply a wide variety of 

differentiation and integration techniques manually. 
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 Reforms have generally failed to meet these criteria: Although the UICSM 

Project, the original New Math curriculum, was initially developed to improve freshman 

readiness for calculus,24 and may have had some success with the most able students (e.g. 

Duren, 1967; Rossman & Hayden, 2016), more recent reform efforts have been criticized 

for providing inadequate preparation for calculus (e.g. Klein, et al., 1999; Wu, 1997).  

 

The other approach, taken by reformers in recent decades has been to argue that 

the large majority of students would be better served by a course of study culminating in 

computer science or statistics, than one culminating in calculus. This, in turn, would 

provide leeway for replacing algebra with other content in earlier courses. In this section, 

I consider the two major alternatives that have been proposed to either supplant, or stand 

co-equal with calculus: discrete (or “finite”) math, and statistics. I consider the arguments 

offered for and against these alternatives, and the reasons for the durability of calculus, 

one of the pillars of demand for the traditional sequence.  

 

The Place of Calculus 

 Bressoud (1992) argues that mathematics’ taking shape as an academic discipline 

was inextricably linked with the birth of calculus. He points out that Oxford and 

Cambridge only established their first chairs of mathematics in the mid-17th century, 

around the time that Newton’s Philosophiae Naturalis Principia Mathematics (1687) was 

published. Newton’s work revolutionized people’s view of the natural world, and of the 

                                                 
24 At the behest of the University of Illinois engineering department 
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possibility of understanding it through mathematics (Douglas, 1986). This means that, in 

addition to being central to how mathematicians see their discipline, calculus is 

foundational to the modern form of other disciplines, including physics, astronomy, and 

(more recently) economics – one can plausibly argue that math would have a much less 

central place (or at least a much different place) in education in a world without 

calculus.25  

 

In the final decade of the twentieth century the place of calculus in the school 

curriculum began to be seriously challenged. An important example of such a challenge 

is the 1990 report Reshaping School Mathematics by the Mathematical Sciences 

Education Board of the National Research Council (NRC), which offered a remarkably 

bold and comprehensive broadside against the centrality of calculus. The 1990 report set 

out to deal with “changing perspectives on the need for mathematics, the nature of 

mathematics, and the learning of mathematics” (NRC, 1990, p.xi). These issues were 

selected from others raised by the 1989 report Everybody Counts and the 1989 NCTM 

Standards for “their compelling and inevitable impact on the organization of the 

mathematics curriculum” (NRC, 1990, p.xi). 

 

 Reshaping School Mathematics could not have been clearer about its antipathy 

toward tradition, and especially calculus. From the outset, it declared that the prevailing 

curriculum was “controlled” by an “outdated” assumption that “mathematics is a fixed 

and unchanging body of facts and procedures” (NRC, 1990, p.4). While echoing the 

                                                 
25 It also means that there is a humanist argument for the place of calculus in a liberal education, 

independent of the subject’s widespread utility (e.g. Mayor & Brown, 1964).  
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rhetoric of the New Math era, the report went on to note that the ancient root of the word 

“curriculum” is the word for a “deeply rutted” path for chariots (NRC, 1990, p.4), and 

(not to put too fine a point on it) out that “even calculus … is three centuries old” (NRC, 

1990, p.4). 26 Among its concluding principles was a demand for a “zero-based” 

curriculum process (NRC, 1990, p.38).27 The report went on to recommend (re)building 

the secondary math curriculum around five overarching topics: algebra, geometry, 

discrete math, data analysis, and optimization (NRC, 1990, p.46). The inclusion of 

algebra, and of trigonometry under the rubric of geometry, indicated that the goal was not 

to eradicate calculus from the curriculum (nor would that have been possible), but two 

other topics, data analysis and discrete math, were emphatically not related to calculus, 

and optimization was defined (perhaps pointedly) so that it neither required nor implied 

the study of calculus: “Optimization include[s] mathematical modeling, `what if` 

analysis, systems thinking, and network flows” (NRC, 1990, p.46). At present, these sub-

topics would typically be divided between courses in discrete math and statistics. In the 

next two sub-sections I discuss the history of proposals to include discrete math in the 

school curriculum, and then of proposals to include statistics and data analysis.28 

                                                 
26This hostility has antecedents in earlier periods – even during the New Math period one of its proponents, 

G. Baley Price, wrote under the heading The Revolution in Mathematics, “the general public … seem[s] to 

feel that mathematics was completed by Newton, and that … there is no opportunity, need, or occasion for 

[math courses] to change” (Price, 1961, p.1).  
27 “Zero-based” is an accounting term, denoting a budgeting process in which each item’s place and status 

in the budget is decided without reference to its place and status in previous years’ budgets. 
28 I have been using the terms “data analysis” and “statistics” somewhat interchangeably up to this point. A 

third term “probability” arises less in the literature. Unless quoting directly, I will use the term “statistics” 

to refer to all three of these, but here I provide a brief discussion of the distinction: Joe Blitztein (Statistics 

110: Probability, Harvard University, retrieved 4/11/2017 from http://itunes.apple.com) describes 

probability as the science of making predictions about the data that will be generated by a known process, 

and statistics as the science of making inferences about data-generating processes from known data. 

Through early high school, “statistics” is likely to refer to visualizing data through charts, interpreting data 

displays, calculating simple descriptive statistics such as means, medians, and quartiles, and calculating 

probabilities arising from simple games. Many of the questions dealt with by professional statisticians arise 

naturally from extending these simple settings, and some of them provide content for high-school level 

http://itunes.apple.com/
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Discrete mathematics 

 “Discrete math” (also called “finite math”) is shorthand for “math other than 

calculus”: Calculus is concerned with evaluating the behavior and properties of 

continuous functions over infinitesimally small intervals of their domain. Therefore, 

defining mathematical topics as “discrete” or “finite” signifies that they deal with objects 

that cannot be treated using calculus. Because computers deal with processes and objects 

that are countable, discrete, digital, and recursive, interest in these grew in the post-war 

period with the spread of computing technology (Hart, 1985). Although discrete math 

includes (but is not limited to) topics applicable to computer science, such as graph 

theory, combinatorics, Boolean algebra, and logic, Meyer (2007) points out that discrete 

math also includes sub-fields of mathematics with strong roots in the social sciences of 

the 1940s and 1950s, such as social choice theory and game theory.29 

 

 In the mid-1980s calls to supplant calculus, and calculus preparatory topics, with 

discrete math grew stronger (e.g. Ralston, 1984). Such calls met with skepticism about 

both their wisdom (Douglas, 1986; MacLane, 1984), and their feasibility (Hart, 1985). 

MacLane (1984) admitted that “some discrete mathematics has real substance” 

(MacLane, 1984, p.373), but derided other parts as “creatures of fleeting fashion” and the 

                                                 
courses in statistics (e.g. http://www.collegeboard.com/html/apcourseaudit/courses/statistics.html). Two 

additional points on terminology: First, authors frequently (and incorrectly) use “data” and “statistics” 

interchangeably. Second, statistics and mathematics are generally considered distinct, if closely related, 

disciplines, and “data analysis” may be used partly to avoid the term “statistics” in discussing math 

curriculum. 
29 Examples of foundational results in these fields from this period are, for social choice theory, Kenneth 

Arrow’s impossibility theorem: (Arrow, K. J. (1950). A difficulty in the concept of social welfare. Journal 

of political economy, 58(4), 328-346.), and, for game theory, John Nash’s Nash equilibrium: (Nash, J. 

(1951). Non-cooperative games. Annals of mathematics, 286-295.) 

http://www.collegeboard.com/html/apcourseaudit/courses/statistics.html
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overall concept as constituting a “grab bag of all sorts of things” whose introduction into 

schools would promote a “new captivity by computers” (MacLane, 1984, p.373). 

 

While it is possible that MacLane (1984) evinced the prejudices of a research 

mathematician,30 Ronald Douglas (1986) met the arguments of computer scientists such 

as Ralston on their own terms. Douglas (1986) acknowledged that computers, by their 

very nature, deal with discrete processes and finite differences, and that areas of discrete 

math such as graph theory and Boolean algebra are applicable to computer programming. 

Nonetheless, he argued, calculus is foundational to modern practice of the natural 

sciences, and the solution to problems from “differential calculus … using finite 

differences [which is required if they are to be handled by computers] is next to 

meaningless without an understanding of calculus” (Douglas, 1986, p.251). 

 

Hart (1985) expressed further skepticism, asking whether Discrete Mathematics 

[is] the New Math of the Eighties? He noted the large difference in point of view between 

the movements - the New Math was a structuralist enterprise more concerned with 

general principles, while discrete math consists of very particular content, dictated by 

specific circumstances – but he also noted that the implementation of New Math involved 

substantial investment in teaching materials and in teacher training, and that it failed in 

spite of these. Given that such supports for the teaching of discrete math were much 

scarcer in the eighties, it seemed even less likely to precipitate revolutionary change. 

                                                 
30 And also those of the founder of Category Theory, a mathematical sub-discipline that is called “abstract 

nonsense” even by its practitioners. See, for example, Marquis, J. P. (2010). Category theory. In What is 

category theory? (pp. 221-255). 
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Although some discrete math topics, such as truth tables and matrices, have 

appeared in high school math curricula, they generally appear as isolated curiosities, a 

small minority of the material covered. According to the College Board, almost ten times 

as many students sat the AP® Calculus AB or BC exams in 2015 as sat the AP® 

Computer Science exam (420,000 vs. 49,000). There is no official AP® course in Linear 

Algebra, the other college-level class that would follow logically from a primer in 

discrete math. Taken together, this evidence suggests that a high school curriculum that 

emphasizes the algebra of continuous functions is unlikely to be superseded by one that 

substantially replaces that algebraic content with discrete math topics. 

 

Statistics 

In the late twentieth century, there was also a surge of enthusiasm for giving 

statistics greater prominence in the undergraduate curriculum (Moore, 1988), which 

spilled over into the high school curriculum with the 1997 introduction of the AP® 

Statistics exam (Gould & Peck, 2004).31 Although fewer than half as many students sat 

the AP® Statistics exam in 2015 as sat the AP® Calculus AB or BC exams, there are 

stronger reasons than for discrete math to expect that statistics may gradually erode 

calculus’s place at the pinnacle of the curriculum, and gradually transform what students 

are required to study in earlier grades. 

 

                                                 
31 It had been nearly eighty years since the Kilpatrick report of 1920 had first called for including data 

analysis in the curriculum, and some of the statistical topics that the 1959 CEEB report recommended for 

advanced seniors, such as arithmetic mean, median, and frequency histograms were standard fare in ninth 

grade, if not earlier. 
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Calls for expanding statistics education, beginning in the late 1980s, were 

primarily driven by increased demand both from industry and from diverse academic 

disciplines, including economics, sociology, psychology, and public health (Moore, 1988; 

Moore, 1992), although more civic-minded arguments were also raised, especially in the 

early twenty-first century. Industrial and academic demand for statistical training 

continued into the late 2000s and 2010s, when “big data” seemed to be revolutionizing 

every field of human endeavor (e.g. Economist, 2010); and the U.S. Bureau of Labor 

Statistics projected extraordinary labor market demand for statisticians.32 More civic-

minded arguments for expanding students’ exposure to statistics also emerged from 

various quarters: Rothstein (2001) argued that it is often difficult for juries to deliberate 

competently without statistical literacy, and that media literacy increasingly requires 

statistical literacy, noting at least a twenty-fold increase in the number of data displays 

appearing in the New York times since the 1970s. Arthur Benjamin of Harvey Mudd 

College, in an early 2009 TED talk that has been viewed over two million times, averred 

that “if all the American citizens knew about probability and statistics, we wouldn’t be in 

the economic mess that we’re in today.”33 Another notable phenomenon in this regard has 

been the rise of statistician and pollster Nate Silver to quasi-celebrity status, and the 

increasing insinuation of not only his polling results, but also his profession, into the very 

narrative of U.S. elections. Some commentators (e.g. Goyal, 2012) have suggested that 

this phenomenon could serve as an engine for revitalizing math education. 

 

                                                 
32 https://www.bls.gov/ooh/math/statisticians.htm, retrieved May 12, 2017 
33 Benjamin makes this remark at 1:46 in the video, retrieved on 4/11/2017 from 

https://www.youtube.com/watch?v=BhMKmovNjvc 

https://www.bls.gov/ooh/math/statisticians.htm
https://www.youtube.com/watch?v=BhMKmovNjvc
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The increasing prevalence of statistics education may have better long-term 

prospects of fomenting change in the school math curriculum than other innovations and 

reforms discussed in this chapter. One reason for this is that a primary driver is real 

demand, not only from industry, but also a broad swath of academia. Another is that 

raising the mathematical acumen of the nation’s high school students is proving to be an 

ongoing challenge (which I describe in more detail in the subsequent sections and 

chapters). Data analysis-based statistics courses offer relevant and engaging learning 

activities while using only relatively basic mathematics (e.g. Moore, 1992), and offer a 

way to keep students engaged in meaningful quantitative work through their high school 

years. 

 

Nonetheless, statistics faces some of the same challenges as other reforms in 

gaining greater curricular prominence. Although it can engage students, and a wide 

variety of instructional materials are available, many teachers are likely not to have 

appropriate training to teach the statistical skills, knowledge, and intuition that fill the gap 

between the most elementary topics and the highly theoretical (and calculus based) 

content that characterizes the courses taken by many math majors (e.g. Froelich, 

Kliemann, & Thompson, 2008; Hayden & Kianifard, 1992). A further challenge is that, 

while labor market demand for statisticians might be expected to draw more students to 

statistics classes, it is also likely to draw individuals with statistical training away from 

teaching positions (e.g. Moore & Cobb, 2000). Finally, because of the role that 

uncertainty plays in statistical reasoning, it may struggle with a public that expects math 

classes to traffic in right and wrong, rather than better and worse, answers. 
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Other Obstacles to Supplanting Calculus 

 An additional hurdle faced by any attempt to supplant calculus is the cultural 

prestige that attaches to an algebra-based curriculum and its culmination in a calculus 

course. This is reflected in both the upper and lower echelons of academia, both in the 

calculus requirement that most medical schools set for admission, and in the algebra (but 

not geometry) proficiency requirement that most postsecondary institutions set for even a 

two-year degree (Blum, 2007).34 Although these requirements have been called into 

question (e.g. Hacker, 2016; Muller & Kase, 2010), there has not yet been any 

widespread movement to lift them. 

 

The historical situation has led to a self-reinforcing dynamic in which relatively 

stronger demand for calculus courses leads to a relatively stronger supply of teachers 

qualified to teach them. As noted above, far more students sit the AP® Calculus AB or 

BC exams than sit the AP® Statistics and AP® Computer Science exams combined. It is 

beyond the scope of this study to determine the extent to which this disparity is demand-

driven, and to what extent it is supply-driven. That is, to what extent parents and students 

see calculus as sending a stronger signal of ability on college applications (or genuinely 

find the courses more interesting), and to what extent the past dominance of calculus has 

                                                 
34

Another remarkable example of the prestige that attaches to the traditional algebra-based curriculum was 

offered by Robert Moses. Moses and Cobb (2001), argued that there is, in fact, no necessity to algebra 

driving science and technology education. Nonetheless, they claimed that because prevailing conditions in 

the United States make algebra proficiency a necessary condition for academic and professional 

advancement, algebra education is a civil right. The moral authority with which Moses speaks among many 

progressive educators adds to the burden that one must carry in arguing to de-emphasize calculus and 

calculus-preparatory material. 
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led to a relatively stronger supply of teachers willing and able to teach it. In any case, 

there is a strong constituency (or set of constituencies) that will resist attempts to 

introduce curricula that do not give centrality to the algebra of continuous functions. 

Summary 

 A second important reason why the traditional sequence has persisted, therefore, 

is that its emphasis on algebra aligns it with a widespread demand for training in calculus. 

Although not all extant proposed alternatives to the traditional sequence de-emphasize 

algebra, many (as described above) do. Critics often dismiss the demand for calculus as 

reflecting outdated assumptions or even a kind of intellectual chauvinism (in the case of 

medical school requirements). Although these criticisms are not baseless, they often fail 

to recognize the epoch-making nature of the development of calculus in terms of how 

both the natural and social worlds are understood. A diverse and powerful set of 

constituents will oppose any attempt to introduce curricula that provide weaker 

preparation for calculus. To the extent that this opposition is answerable, the 

indispensability of calculus, and concerns about equitable access to calculus, will have to 

be taken seriously, and addressed directly. 

The Push for Uniformity: 1983 and Beyond 

 The current state of affairs, in which virtually all students are expected to 

complete a substantial portion of the traditional college-preparatory curriculum, came 

about in response to three types of concerns, with a substantial assist from federal 

policymakers. First, national security concerns, articulated in A Nation at Risk, along with 

other reports released in 1983, provided an impetus for increasing high school math credit 

requirements. Later in the decade, a complementary set of social justice and economic 
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concerns were raised, which sharpened curricular prescriptions to include not only raising 

math credit requirements, but also eventually prescribing the same curriculum and 

assessment standards for all students. The enactment of this prescription was incentivized 

and promoted by federal legislation, especially the reauthorizations of the Elementary and 

Secondary Education Act (ESEA) that took place in 1994 (IASA) and 2000 (NCLB). 

 

National Security Concerns: A Nation at Risk 

 Prompted by a sense of crisis that had been building throughout the previous 

decade, several reports on education were issued in 1983, the most famous of which was 

A Nation at Risk, published by Ronald Reagan’s National Commission on Excellence in 

Education: In the late 1960s a decline in SAT Math scores had begun, which continued 

through the 1970s (Usiskin, 1985).35 At the same time Japan and West Germany had 

emerged as industrial competitors to the United States even as the Soviet Union 

continued to stand as a military and ideological competitor.36 Against this backdrop, A 

Nation at Risk famously likened America’s “mediocre educational performance” to 

something that might have been imposed by an “unfriendly foreign power [as an] … act 

of war” (Bell, 1983, p.5).  

 

                                                 
35 Powell and Steelman (1984) consider this trend, which continued through the early 1980s, and argued 

that the decline in scores was at least partially attributable to changes in the demographic composition of 

the test-taking population. 
36 In addition to the best known of the reports, A Nation at Risk, which repeatedly compares the U.S. with 

Japan and West Germany, other reports issued in 1983 include: Educating Americans for the 21st Century 

released by the National Science Board (NSB); High School: A Report on Secondary Education in America 

released by the Carnegie Foundation for the Advancement of Teaching; The Mathematical Sciences 

Curriculum K-12: What is Still Fundamental and What is Not”, NSB; Academic Preparation for College: 

What Students Need to Know and Be Able to Do, College Board. The first NSB report and the Carnegie 

Foundation report both reference Japan and Germany in their introductions. 
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A Nation at Risk recommended expanding the amount of secondary math 

coursework required of students to three yearlong courses, although it did not specify the 

content of those courses. In 1982, most states required zero or one math courses for high 

school graduation (Goodman, 2017). By 1990, high school students in 40 of the 50 states 

faced increased math credit requirements: In 31 states the requirement had increased to 

two credits, and in 9 states to three credits (Goodman, 2017). The exact nature of the 

math courses to be taken for those credits, however, was largely left to local discretion. 

 

Although A Nation at Risk had antecedents - it marked the third time since 1940 

that anxieties had been raised about the nation’s schools as a liability on the international 

stage37 – this time would be different, due to additional concerns that would be raised 

later in the 1980s, and an unprecedented federal push for reform beginning in the 1990s. 

 

Social Justice Concerns 

 In the mid-1980s, researchers grew concerned that allowing high school students 

substantial latitude in the particulars of their coursework, historically a key practice in 

accommodating the diversity of the American high school population, was not a benign 

                                                 
37 This type of concern points to a second development that separated the Committee of Ten’s time period 

from the mid-20th century: the emergence of the United States as a pre-eminent global power after the 

Second World War, along with an ongoing set of practical concerns (and neuroses) about maintaining that 

status. It is notable that education reforms have repeatedly been argued for based on their necessity for 

supporting the nation’s military, technological, and economic strength. Other notable examples of this 

theme include: figures such as Admiral Nimitz (Nimitz, 1942) and General Somervell (Somervell, 1942) 

raising concerns during World War II about the lack of mathematical and technological aptitude among 

young military recruits, which influenced math education during the war, and contributed to the 1950 

establishment of the National Science Foundation. Another was the 1958 launch of Sputnik, the fallout 

from which is described in detail, above. A later example was 2012’s U.S. Education Reform and National 

Security (Council on Foreign Relations Press). 
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practice, Rather, they argued, it was perpetuating, and even exacerbating, historical 

inequalities and injustices. 

 

Federal education policy in the decades after Sputnik gradually evolved from a 

focus on identifying and developing top talent in math and science to identifying and 

closing achievement gaps based on race and income (Lappan & Wanko, 2003). This 

manifested in the Supreme Court’s 1954 Brown v. Board of Education of Topeka 

ruling,38 followed by the ESEA of 1965, the education component of Lyndon Johnson’s 

Great Society anti-poverty initiative.39 Although de jure equalization of access to 

educational opportunity spread in subsequent years, by the late 1970s it was becoming 

apparent that ESEA’s effect on income-based inequality had been minimal (Lappan & 

Wanko, 2003).  

 

 As states and districts began to demand more math credits for high school 

graduation, the reigning ethos in the comprehensive American high school was to 

continue allowing students as much choice as possible in the level of rigor and often the 

general outline of their program. This practice became a target of criticism, with 

commentators using consumerist metaphors to describe and criticize it: Powell, Farrar, 

and Cohen did so in their 1985 work titled The Shopping Mall High School: Winners and 

Losers in the Educational Marketplace,40 while A Nation at Risk decried a “cafeteria-

                                                 
38which found that “separate educational facilities [for white and black students] [were] inherently unequal” 

(Brown v. Board of Educ., 1954, p.483). 
39 Although this history coincides with that of the New Math period described above, the two phenomena 

targeted two largely distinct groups of students: those most likely to become members of the scientific elite, 

and the poorest and most historically disadvantaged students in the highest poverty schools. 
40 Powell, Farrar, and Cohen characterized the classrooms in the schools they studied as functioning under 

“treaties” (Powell, Farrar & Cohen, 1985, Chapter 2), whereby teachers and students more or less tacitly 
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style curriculum in which the appetizers and desserts can easily be mistaken for the main 

courses” (Bell, 1983, p.61).  

 

 In the mid-1980s, researchers also raised the possibility that students following 

diverse curricular tracks, even if nominally voluntary, had a negative impact on student 

outcomes. Criticizing the view that tracking simply met demand for different courses of 

study from students with different goals, and different levels of ability, these researchers 

wanted to demonstrate that tracking reinforced and even created disparities in outcomes 

by offering some students less rigorous material and lower quality instruction, and thus 

restricted their opportunities to learn (e.g. Gamoran, 1987; Oakes, 1985; Oakes 1990).41   

 

 The indictments of Oakes, Gamoran, and others, were augmented by other 

research findings about variation in student course-taking patterns, indicating that they 

were mirroring other historical inequalities. First, a 1985 analysis of 1981-82 student 

transcript data from the National Center for Education Statistics’ (NCES) High School 

and Beyond study indicated that higher socio-economic status (SES) students, white 

students, and male students exhibited more intensive participation in math and science 

courses than their lower SES, black, Hispanic, and female peers (West, Miller & Diodato, 

1985). These concerns were compounded by concurrent findings in labor economics, to 

which I now turn. 

                                                 
negotiated within individual classrooms over the level of rigor that teachers would demand in exchange for 

orderly student conduct. 
41 McDonnell (1995) provides an interesting history of the phrase “opportunity to learn”, from its origins as 

a technical concept in international comparisons conducted in the 1960s, to its adoption in the 1990s as 

what she calls a “hortatory policy instrument” (McDonnell, 1995, p.313). 
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Labor Market Concerns 

In the 1990s and early 2000s, concern was also growing that a high school 

diploma did not, on its own, signal readiness either for college study or the modern 

workplace (e.g. Quality Counts 1997; Reality Check 2002). Because population 

projections suggested that historically underperforming groups were going to form an 

increasingly important segment of the workforce through the twenty-first century, this 

dovetailed with ongoing concerns about demographic inequalities in education outcomes.  

 

The Department of Labor’s 1987 Employment and Training Administration 

report, Workforce 2000: Work and Workers for the 21st Century, found that while white 

males made up 47 percent of the current labor force, they would make up only 15 percent 

of new labor market entrants over the next 13 years. Further, the report found that “very 

few new jobs will be created for those who cannot … use mathematics” (Johnston & 

Packer, 1987, p.xiii). In 1989, the Congressional Task Force on Women, Minorities, and 

the Handicapped in Science and Technology issued its final report, noting that white men 

also made up a majority of those pursuing college majors in science and engineering, and 

lamenting that, “our pool of talent for new scientists and engineers is predominantly 

female or minority or disabled – the very segments of our population we have not 

attracted to science and engineering careers in the past” (Oaxaca & Reynolds, 1989, 

p.21). These findings meant that expanding access to math courses was an issue not only 

of justice, but also of economic survival. This alignment of interests between progressive 
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social activists and business concerns would lead to a broad policy consensus in support 

of a substantially larger and more activist federal role in education policy. 

 

Policy Response 

 Although A Nation at Risk declared that the “Federal Government has the primary 

responsibility to identify the national interest in education” (Bell, 1983, p.79, italics in 

original), the Reagan White House resisted proposals for federal intervention in education 

(McLeod, 2003), and it was only under Reagan’s successors that such a responsibility 

was taken up. The federal policy response to these concerns can be understood as having 

two parts, which are collectively known as the Standards and Accountability Movement 

(e.g. Foote, 2007).  

 

The initial policy response to A Nation at Risk resembled that undertaken in the 

post-Sputnik era: the government used grant funding to support the development of new 

curricular materials, and in some cases to incentivize their adoption. This launched the 

era of national standards. In 1994, however, the federal government began to promote its 

policy preferences using not only the incentive of grants, but also the threat to withhold 

Title I funds – anti-poverty grants established in connection with the 1965 ESEA - from 

states that did not comply with their requirements. This launched the accountability 

portion of the movement under which schools were required to provide evidence of 

whether students were, in fact, meeting the standards that states had established. 
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The standards movement 

In the same year that A Nation at Risk was published, a National Science Board 

commission chaired by prominent Republican William T. Coleman proposed that 

professional organizations, rather than the federal government, take the lead in directing 

change in their fields (Coleman & Selby, 1983). An important result of this 

recommendation was the process that led to NCTM’s Curriculum and Evaluation 

Standards for School Mathematics, which were commissioned in 1986, and published in 

1989 (McLeod, 2003).  

 

Published during the administration of George H.W. Bush, which was less hostile 

to federal involvement in education, the NCTM Standards received regulatory and 

material support from the National Science Foundation (NSF). In terms of regulatory 

support, the NSF required that education research grant proposals make reference to 

“generally accepted standards” (McLeod, 2003), with math education proposals having 

few clear options aside from the NCTM Standards. In terms of material support, the NSF 

funded the development of thirteen “standards based” math curriculum projects, 

including five at the high school level – interestingly, all of which offered alternatives to 

the traditional sequential curriculum. Paradoxically, as I will argue in the next section, the 

success of the accountability portion of the Standards and Accountability movement 

probably helped to undermine adoption of these curricula, by putting pressure on states 

and districts to have all students study the same material in approximately the same 

arrangement. 
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The 1989 Standards have influenced the design of many state standards 

frameworks (Howe, 1998) (California’s, for example, as discussed above in connection 

with the Math Wars), and a revised and updated version was published in 2000 under the 

title Principles and Standards for School Mathematics. The writers of the Common Core 

State Standards for Mathematics, in turn, adopted elements of the Principles and 

Standards in their work (e.g. National Governors Association, p.6).  

 

The accountability movement and the resulting push for uniformity 

The more activist portion of the federal policy response to these concerns was 

embodied in the 1994 reauthorization of the ESEA, titled the Improving America’s 

Schools Act (IASA), and its 2001 successor, No Child Left Behind (NCLB). The IASA 

attempted to address the apparent failure of the nation’s schools to meet the nation’s 

workforce needs by mandating that states create not only academic content standards, but 

also aligned testing programs, to monitor whether those standards were being met 

(Lappan & Wanko, 2003). NCLB went even further, imposing accountability for raising 

students to the standards that states established: The law required detailed reporting of 

test scores to the federal government, and sanctions for schools that failed to meet 

benchmarks in a timely fashion.42  

 

 Although the NSF-funded curricula of the 1990s offered alternatives to the 

standard sequential curriculum it seems likely that, whatever other resistance they faced, 

                                                 
42A notable feature of NCLB was that each state was allowed to determine its own definition of 

“proficient”, and it gradually became apparent that the definition of proficiency varied widely from state to 

state (Hamilton, Stecher & Yuan, 2008). Concern about this was an important source of pressure for the 

project that led to the Common Core State Standards.  
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they posed a challenge to those trying to design standardized assessments for all of the 

students in a given state. In some cases, the reasons for this are clear: It will always be 

more difficult to reliably assess how deeply students grasp abstract ideas and their 

relationships than to assess their accuracy in selecting and executing well-defined 

algorithms and chains of reasoning. This makes New Math-style curricula, and curricula 

built around open-ended applied problems, less-than-ideal candidates for preparing 

students for standardized tests.43  

 

A less ambitious type of non-sequential curriculum, curriculum integrated “by 

strands” (Usiskin, 2003, p.20), allows for a serial presentation of discrete skills while still 

offering certain advantages over the traditional sequence.44 In this model, the traditional 

distinctions between algebra and geometry (and any other areas of math included, such as 

combinatorics or logic) are maintained, but students are exposed to all areas in each 

year.45 At the high school level, however, it is much less common than a sequential 

curriculum, although the reasons require more explanation. 

 

                                                 
43 See the appendix for a description and discussion of the COMAP curriculum, an NSF-funded Standards-

based curriculum based on applications of mathematics to rich real-world problems. 
44 There are sound arguments in favor of even this relatively modest reform. First, students do not 

experience year-long gaps in their exposure to algebra and geometry which may lead to learning loss 

(House, 2003). Second, these curricula may be more equitable because they level the playing field among 

learners whose learning style may be favored by one area of mathematics or another (House, 2003). Third, 

such curricula allow “informal development of intuition along the multiple roots of mathematics” (Moore 

& Steen, 1990, p.4). Finally, when courses are not constrained by their titles to include (and exclude) 

certain topics, it is much easier to add and delete topics, especially from discrete math and statistics. This 

final argument is relevant to my discussion in the third section of this chapter concerning the ongoing 

dominance of calculus in influencing the curriculum. 
45 In this sense, virtually all elementary and middle school math courses in the United States are integrated. 
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A case study in adoption (and eventual rejection) of an integrated-by-strands math 

curriculum is provided by New York State, and suggests one reason why such curricula 

may not be more prevalent. From 1988 until 2002 New York offered ninth through 

eleventh grade courses simply titled Course I, Course II, and Course III (Paul & Richbart, 

1985). In 2002 these were replaced with a two-exam sequence titled Math A and Math B, 

which both contained a mixture of algebra and geometry (with a smattering of logic, 

combinatorics, and data analysis),46 and which allowed for flexible pacing. In 2004 the 

Mathematics Standards Committee of the New York State Board of Regents 

recommended changing to a three-course (and three-exam) sequence with the titles 

“Algebra”, “Geometry”, and “Algebra II and Trigonometry” – in June of 2008 the 

phasing in of these new exams began.47 In making this recommendation the committee 

cited an undesirable amount of variation in course “titles and content” (Blais, et al., 2005, 

p.1) from district to district, and the fact that the new course titles were “commonly 

understood in the field of mathematics” (Blais, et al., 2005, p.2). In short, the flexibility 

offered by the highly general course titles was seen as a liability. 

 

This case points to a second issue: in addition to New York, the other three largest 

states (California, Texas, and Florida) also follow the traditional sequence in their 

assessment regimes.48 These four states comprise a full third of the U.S. population, and 

                                                 
46 http://www.nysedregents.org/archive-regents.html 
47 Although the second and third of these exams retained their titles, the first was ultimately called 

“Integrated Algebra”, presumably to reflect the presence of a small number of basic geometry concepts 

(such as the Pythagorean Theorem and basic area formulas) and data analysis topics (such as measures of 

central tendency and histograms). 
48 The 2015 reauthorization of the ESEA, the “Every Student Succeeds Act” (ESSA) allows states to use 

college-entry exams, such as the SAT and ACT as their official state assessments. Although this could 

mitigate the effect of the testing regimes on curricula, the content of those tests is very traditional, and very 

highly standardized, so this may be a limited spur to innovation. 
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three of them (California, Texas, and New York) effectively mandate which textbooks 

schools may purchase with public money (Schoenfeld, 2004). This creates strong 

disincentives for textbook publishers to invest in developing materials that do not align 

with these states’ curricular programs. 

 

California does offer an alternative set of assessments titled Math I, Math II, and 

Math III, to support classrooms using integrated curricula. These tests, however, use the 

same items as the sequential tests, simply in a different arrangement, which means that 

preparation for these tests does not require a greater degree of conceptual linkage across 

strands than does preparation for the sequential tests, nor can these courses stray far from 

standard algebra and geometry content. Under such a regime, all versions of the 

curriculum will to some degree be hostage to the most conservative version in common 

use. 

 

The Consequences of Expanded Enrollment in the Traditional Sequence 

 The combined effect of IASA and NCLB, and of the various documents that 

formed their background, has been that states and districts have increasingly chosen to 

foreclose any option other than working to develop proficiency in a traditional algebra-

heavy curriculum. In the next chapter, I review research on specific policies aimed at 

improving achievement and attainment in this curriculum. Overall, however, evidence 

suggests that the effect of this has been to water down traditional courses, with little or no 

evidence of increased rigor in the math instruction that students receive. 
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 According to the 2012 NCES report The Nation’s Report Card: Trends in 

Academic Progress 2012 (U.S. Department of Education, Institute of Education Sciences, 

National Center for Education Statistics, 2012, cited as “NAEP 2012”, hereafter), there 

has been a large increase in attainment rates in the college preparatory course sequence 

since the mid-1980s: In 1978, only 37% of seventeen-year-olds reported “second-year 

algebra or trigonometry” as their highest-level math course, with an additional 6% 

reporting “pre-calculus or calculus” (a total of 43%). In 2012, 54% of students reported 

second-year algebra or trigonometry as their highest course, and 23% reported pre-

calculus or calculus (a total of 77%). In spite of these enrollment increases, the average 

level of tested achievement has remained flat over this 34-year period, at a scale score of 

305 – this was also the average score in 2012 for students who had completed second-

year algebra or trigonometry. The NAEP report explains a score of 300 (very close to 305 

on the score scale) as follows: 

Students at this level are developing an understanding of number systems. They 

can compute with decimals, simple fractions, and commonly encountered 

percents. They can identify geometric figures, measure lengths and angles, and 

calculate areas of rectangles. These students are also able to interpret simple 

inequalities, evaluate formulas, and solve simple linear equations. They can find 

averages, make decisions based on information drawn from graphs, and use 

logical reasoning to solve problems. They are developing the skills to operate 

with signed numbers, exponents, and square roots. (NAEP, 2012, p.36) 

 

Given that (ostensibly) at most one year of further study stands between these 

students and a course in differential calculus, one is inclined to question whether their 

Algebra II classes matched the Committee of Ten’s vision of a second algebra course 

targeted specifically at “candidates for scientific schools” (NEA, 1894, p.35). Further, the 

traditional syllabus for an Algebra II course - training facility in the algebraic 

manipulation of polynomial, exponential, rational, and trigonometric functions, and 
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building intuition for their behavior and properties – seems to have been aimed 

principally at preparing students for the study of calculus. As taught in the early twenty-

first century, the course appears to be falling far short of that goal. 

Summary 

 The third reason why the traditional sequence has persisted to the present day 

(and come to be the default option for a large majority of the nation’s students), therefore, 

is the emergence of demand for a (relatively) uniform national curriculum for all students 

that would allow large-scale standardized evaluation. Given the absence of viable (or at 

least popular) alternatives, as described in the previous two sections, the traditional 

sequence was a strong candidate for consensus. Being composed of a well-worn body of 

knowledge and skills that could be evaluated against clear and unambiguous standards of 

correctness (i.e. “rigorously”), it was a strong candidate to support standardized testing 

regimes. Furthermore, the fact that the traditional sequence had generally been the default 

option for college-bound students made its expansion an obvious way to address equity 

concerns. Nonetheless, if the increased prevalence of the traditional sequence leads to its 

being watered down, this may yet lead to renewed demand for alternatives that will have 

more enduring success than has been seen in the past. 

Conclusion: On the Ordering of the Sequence 

 

If the foregoing has not proven that the current circumstances regarding the 

traditional sequence were precisely inevitable, it has at least shown that the particular 

(and probably most obvious) alternatives that have emerged probably never had strong 

chances of success. Although the standard sequence seems to hold the advantage in the 

competition between sequential and integrated curricula, one might ask if the sequencing 



44 

 

itself might be subject to revision and, specifically, if it might be preferable for students 

to complete two consecutive years of algebra before geometry. Especially in light of 

evidence that contemporary Algebra II courses may cover similar content to Algebra I 

courses of thirty years ago, placing the two classes back-to-back could allow the second 

year to include less review, and therefore cover more new material. Such a reform could 

be cheap and easy to implement, and it is not unheard of - Usiskin (2003), and former 

NCTM president Michael Shaughnessy (quoted in Postal, 2013) both indicate awareness 

of districts having used this non-traditional course ordering49 – but I am not aware of any 

theoretical literature arguing for or against it, or empirical literature studying its 

implementation. 

 

 The structure of the traditional sequence was based on (among other things) an 

assumption that most students would not complete more than two years of high school 

math, and that as many students as possible should gain some exposure to both Algebra 

and Geometry. With increasing expectations that most students will complete the entire 

sequence, this rationale holds less sway. 

 

 Given the absence of discussion, scholarly or otherwise, on the issue of course 

ordering, one is left to speculate, and I offer the following thoughts: First, there may be a 

blind spot in the research community around tinkering with the traditional arrangement of 

courses. Those who wish to retain the status quo are, by nature, conservative. Those who 

                                                 
49 The reference to Shaughnessy is actually more ambiguous. Writing about a district that was considering 

reversing the course ordering, a journalist wrote: “Nationally, [the district] won't be alone, though the more 

common course progression is geometry between the two algebra courses, said Michael Shaughnessy, the 

immediate past president of National Council of Teachers of Mathematics.” (citation available on request) 
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are inclined to question the status quo tend to raise more fundamental questions about 

what is taught and why. Second, the infrastructure around education research is geared 

more to elementary than to secondary instruction: Colleges of education face much more 

demand to train teachers of elementary math simply because there are more such 

positions, thus creating a bias toward a focus on elementary education in these research 

communities.50 Further, the field of secondary math research is more contested between a 

relatively small number of education researchers, and research mathematicians who have 

a stake in what high schools turn out. It is plausible that this creates bias in favor of more 

revolutionary (or simply more mathematically interesting) interventions at the high 

school level than the one that I study in Chapters 2 and 3. 

 

 A third possibility is that teachers and administrators still harbor a traditional 

sense of Algebra II as a more elite course than Algebra I or Geometry. Although recent 

research suggests that the typical student who has completed Algebra II knows no more 

math than the typical student who had completed Algebra I in 1978, there may be 

resistance among teachers and administrators to fully acknowledging this fact. So long as 

Algebra II is regarded as the gateway course to high math and STEM fields, it is likely to 

remain at the end of sequence. 

  

                                                 
50 I am indebted to Jon Star for this insight. 
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Chapter Two 

Introduction 

Since the early 1980’s, states and school districts have been trying to increase 

both the math attainment (number of years of math enrollment) and achievement 

(measured performance in math courses) of their students. In general, this has meant 

trying to promote successful completion of some or all of the standard college 

preparatory sequence of Algebra I, followed by Geometry, followed by Algebra II, laying 

the groundwork for college level coursework, especially Calculus. 

 

Policies to promote participation in the college preparatory sequence have largely 

focused on inducing more students to take Algebra I, and inducing students to take it 

earlier, in seventh or eighth, rather than ninth grade. Results from such policies have 

generally been disappointing. Low achieving students tend to experience a higher risk of 

poor grades and course failure under such policies, and to be no more likely to advance 

through the pre-college sequence. High achieving students tend to have lower test scores 

under such policies due to reduced peer ability level in their math classes. Nonetheless, 

policy makers face continued pressure to see more students succeed not only in Algebra 

I, but in the entire pre-college sequence: The question confronting states and districts, 

therefore, is not whether to promote the standard pre-college math sequence to the vast 

majority of students, but how to do so.  

 

In this dissertation, I study an unusual policy, which mandated that students enroll 

in Algebra I and II consecutively, and in Geometry in the following year. This is the first 
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piece of research I am aware of to study such an arrangement. In this, the second chapter 

of my dissertation, I investigate whether and how Algebra II course grades differed for 

students who enrolled in Algebra I and II consecutively, rather than taking Geometry in 

between. Briefly, I find that the probability of earning an A or a B in Algebra II was 

slightly lower for students who enrolled in Algebra I and II consecutively, and the 

probability of earning a D or an F slightly higher. Negative effects were stronger for 

students with weaker prior achievement. Although I find only negative effects of the 

policy, I cannot rule out that they were due to the abruptness with which the policy was 

implemented, and that future study of a more carefully implemented version of the policy 

could be worthwhile. 

 

This chapter has five sections: In the first I review the empirical literature on 

high-school math policies targeting student outcomes in high-school math, and describe 

the specific context for my study. In the second I describe the data that I use and the 

measures that I construct. In the third section I describe my methods, in the fourth I 

describe my results, and in the fifth I discuss their policy significance and implications. 

Background and Policy Context 

Prior Literature 

Observational research has generally found that students who proceed further 

through the pre-college math sequence have better educational outcomes (e.g. Adelman, 

2006; Gamoran & Hannigan, 2000; Long, Conger & Iatarola, 2012), but causal evidence 

on the effect of math coursework is much less consistent in documenting positive effects 

of policies that aimed to increase math course-taking beyond the middle school level. On 
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one hand, studies of policies that raised math credit requirements without mandating 

specific courses have found that such policies were beneficial for students who were 

induced to take more courses (Goodman, 2017). On the other hand, causal evidence on 

policies aimed specifically at promoting attainment in the standard pre-college sequence, 

which were motivated by earlier observational findings, has indicated negative effects of 

such policies (Stein, Kaufman, Sherman & Hillen, 2011). These studies found that such 

policies caused harm throughout the distribution of prior achievement, both to low 

performing students who were induced to take more challenging coursework 

(Allensworth, Nomi, Montgomery & Lee, 2009; Clotfelter, Ladd & Vigdor, 2015), and to 

high performing students who had lower performers introduced into their classes (Nomi, 

2012; Penner, Domina, Penner & Conley, 2015).  

 

Policies aimed at promoting participation in the standard pre-college sequence 

have generally focused on accelerating enrollment in Algebra I, expanding enrollment in 

Algebra I, or both. Acceleration policies have aimed for large-scale or universal shifts of 

Algebra I enrollment from its traditional place in high school to the middle school grades. 

Such policies have been motivated by two types of findings. First, observational research 

found that students who completed Algebra I before starting high school completed more 

advanced coursework before graduating from high school, had stronger outcomes in high 

school math courses, and were more likely to graduate and to attend college (Schneider, 

Swanson & Riegle-Crumb, 1998; Smith, 1996). Taken together, these findings suggested 

that Algebra I serves as a gateway to later success. Second, studies have found that, 

conditional on prior achievement, low income, black, and Hispanic students have been 
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less likely to enroll in Algebra I in middle school than their white and higher income 

counterparts (Bozick & Ingels, 2008; Dougherty, Goodman, Hill, Litke & Page, 2015; 

Stein et al., 2011). These inequalities led to policies mandating that all students, or all 

students meeting a certain test score threshold, enroll in Algebra I in middle school. 

Causal evidence on the effects of such policies has shown few positive effects. Clotfelter, 

Ladd, and Vigdor (2015) found that students induced to take Algebra I in middle school 

generally experienced more course failures than they would have otherwise, and were not 

more likely to persist or succeed in the standard pre-college sequence. Dougherty, 

Goodman, Hill, Litke, and Page (2017) found that targeted acceleration into Algebra I in 

seventh grade did increase students’ college readiness, but that only a small minority of 

students remained in an accelerated math track through junior year, and most accelerated 

students earned Cs and Ds in their more rigorous math classes, passing, but not excelling. 

 

A second type of policy is a universal mandate requiring students to take Algebra 

I, but leaving the course in its standard place in ninth grade, or allowing flexibility as to 

its timing. The best evidence on these policies suggests that while they lead some 

students to complete higher level math courses than they would have otherwise, they also 

lead to larger numbers and higher proportions of course failures (Allensworth et al., 

2009; Stein et al., 2011). Furthermore, Nomi (2012) found harm to higher ability students 

from a universal mandate in Chicago, for whom the policy’s primary consequence was to 

lower the peer ability level in their math classes.  
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The extant research presents policy-makers with inadequate guidance: On one 

hand, most policies that drastically increase, or universalize, enrollment in specific 

courses and/or that accelerate their timing have been shown to have harmful effects. On 

the other hand, many students who would likely benefit from taking more, and more 

rigorous, math courses do not do so when left to their own devices, and mandates are 

arguably the most equitable tool for expanding opportunity. Furthermore, policies that 

mandate participation in all or part of the pre-college math sequence seem likely to 

remain popular, for at least two reasons. First, research has shown that in the absence of 

such mandates the social distribution of access to college preparatory math courses is 

highly uneven, and mandates are seen as a tool for making such access fair and equal. 

Second, federal education policy is increasingly aimed at broadening postsecondary 

enrollment, and several states are planning to take advantage of the flexibility provided 

by the 2015 Elementary and Secondary Education Act reauthorization (Every Student 

Succeeds Act of 2015) to use college-entrance exams for high school accountability 

purposes (Gewertz, 2016). Given this situation, there is a need for new kinds of policies 

and practices to promote student success in the standard pre-college math sequence: the 

policy that I consider below is not only novel, but holds out the possibility of being 

relatively simple and inexpensive to implement. 

 

Policy Context 

 In spring of 2013, a large urban district in Florida mandated that every student 

who enrolled in Algebra I in the 2012-13 school year or later take Algebra II in the next 

school year, with a mandatory Geometry course to follow (Algebra II was optional under 
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state rules). This policy reversed the standard ordering of Geometry followed by Algebra 

II, which is almost universal in the U.S.51 According to the district, this policy was 

terminated after two years, and students who enrolled in Algebra I in 2014-15 (whom I 

do not observe) reverted to taking Geometry and Algebra II in the traditional order. 

 

 Three rationales for the policy were offered in conversations with district leaders. 

First, it was suggested that students might be more successful in Algebra II if they 

enrolled immediately after Algebra I. Second, there was hope that because Geometry was 

required, enrolling students in Algebra II prior to Geometry would increase the total 

number of college preparatory math courses that students completed. A third rationale, 

which the available data did not allow me to evaluate, was that enrolling students in 

Geometry closer to the time that they sat the SAT would improve their performance on 

the Geometry sub-section of that test, which the district had identified as an area of 

weakness. 

 

 In the district, which had approximately 190,000 students in the 2014-15 school 

year,52 students enrolled in Algebra I in seventh, eighth, or ninth grade, with higher 

achieving students generally enrolling earlier. One complication for this study is that in 

the same year that the course reordering took effect, the district also began enrolling more 

students in Algebra I in seventh or eighth grade meaning that some students who enrolled 

                                                 
51 It also technically mandated Algebra II for all affected students (the state of Florida mandates that 

students take Algebra I and Geometry, but not Algebra II, for high school graduation), but this was of 

relatively little consequence: The district’s rate of Algebra II enrollment had been high, and increasing 

steadily, in the years leading up to the policy, meaning that Algebra II enrollment was already extremely 

common, if not quite universal. 
52 National Center for Education Statistics, Common Core of Data (CCD), 2014-15 
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in Algebra I and II consecutively also enrolled in Algebra I earlier than they would have 

otherwise. I address this in my analysis below. 

 

 I also exclude seventh grade Algebra I enrollees from my analysis, because the 

policy context for those students differs substantially than for other students: In addition 

to reversing the order in which they enrolled in courses, it made Algebra II a middle 

school class, composed entirely of relatively high-performing peers.53 It is therefore 

impossible to disentangle the effect of the course reordering on these students from the 

effect of a large shift in peer characteristics. Results for seventh grade Algebra I enrollees 

are presented in the appendix. 

 

My principal research question in this chapter is how Algebra II course grades 

changed when students enrolled in Algebra I and II consecutively. I also investigate how 

rates of Algebra II enrollment changed, not only because this is an interesting question in 

its own right, but also because it is important to understand whether and how the sample 

of Algebra II enrollees differed between the pre- and post-policy period.  

Data and Measures 

Data 

I use data on students in a large urban school district in Florida. Seventh and 

eighth-grade students in the district attended 35 middle schools (grades six to eight) and 

three K-8 schools, while ninth-grade students attended 19 high schools. There were also a 

                                                 
53 Results (available on request) indicate that there was little overlap between the prior-achievement 

distributions in these students’ Algebra II classes before and after the policy was implemented. 
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number of charter schools serving the district, as well as schools serving special 

populations, such as schools for the hospitalized or homebound, schools located in 

juvenile detention or addiction treatment facilities, and schools for students who were 

over-age. The principal restriction that I impose on my analytic sample is to exclude 

students who, at any point, were enrolled in a school other than one of the 57 district-

operated comprehensive K-8, middle, or high schools, and may therefore have been 

exempted from some or all district policies.54 

 

My final analytic dataset for this chapter contains 49,834 students who enrolled in 

Algebra I between 2009-10 and 2012-13. 12% of those students (5,855) first took 

Algebra I in seventh grade (results for whom are presented separately, in the appendix), 

25% (12,353) in eighth grade, and 63% (31,626) in ninth grade. 40,870 of those students 

enrolled in Algebra II within two years of completing Algebra I and have grades reported 

in both Algebra I and Algebra II. I exclude 12,555 students in the second policy-exposed 

cohort who enrolled in Algebra I in 2013-14 from this analysis because their Algebra II 

course grades are not comparable to those from earlier cohorts. This is due to the 

introduction of a new set of Algebra II standards, and an Algebra II EOC test, the first in 

the state’s history – both of these substantially increased the difficulty of the Algebra II 

course. I deal with this issue in more detail in the next chapter. More detail on the data 

preparation process is provided in the appendix. 

 

                                                 
54 I exclude 4,963 students because they were enrolled in a charter school in one or more years, and an 

additional 4,625 students who spent some or all of their time in a school serving a special population. I do 

account for these students in constructing measures of classroom characteristics. 
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The district provided a second dataset containing information about classroom 

and teacher assignments. Because I was only able to associate 75.6% of Algebra II 

enrollees with a section of that course, I use the information provided by this data only in 

ancillary analyses that I use to strengthen my interpretation my main results. I describe 

these data, and the results based on them, in the appendix.55 

 

Measures 

Treatment variable 

The question predictor in this analysis, Post-policy, is an indicator variable equal to 1 for 

students who enrolled in Algebra I in the 2012-13 school year, and 0 for those who 

enrolled prior. 

 

Achievement measures 

Grades: Student course grades were reported as A, B, C, D, or F with no plus/minus 

grades. If a student enrolled in a course in multiple years, I use the grade from the first 

year that they enrolled. In general, fewer than 1% of students are missing grades for a 

year in which they enrolled in Algebra I or II or Geometry. When students enrolled in 

multiple sections of the same class in a given year I assign the average grade across those 

sections, using a standard five-point scale (with A=4 and F=0), and round the result down 

if it falls exactly between two grades (e.g. 3.5 to a B, not an A).  

 

                                                 
55 See appendix Tables A10 and A11 
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Test scores: In the interest of maximizing the size, diversity, and timespan coverage of 

my sample I do not use standardized test results in my main analysis. I provide a 

description of the available test results, and the limitations associated with them, in the 

appendix. Results from models controlling for available test scores are presented in the 

appendix, and do not differ substantively from those presented below. 

 

Demographic variables: I use binary indicators to control for a standard set of student 

demographic characteristics: Race/ethnicity (Hispanic, black, Asian, white, and “other”, 

which includes Native American, multi-racial, and unspecified), eligibility for free-or-

reduced price lunch (FRL), classification for special education (SPED), and classification 

as limited-English proficient (LEP).  

Methods 

 My central question in this chapter is how consecutive enrollment in Algebra I 

and II affected students’ course grades in Algebra II, as compared with enrollment in 

Algebra I and Geometry prior to Algebra II. Answering this question requires not only 

describing the difference in Algebra II course grades between students who followed the 

two course orderings, but also ruling out alternative explanations for any differences 

observed. My strategy for doing this has three parts: First, I establish that there is an 

exogenous source of variation in the order in which students enrolled in their courses. 

Second, I describe how outcomes differed between students who followed the two 

different orderings (conditional on student characteristics and school fixed effects). Third, 

having eliminated selection, observable differences between students, and fixed 
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characteristics of schools, as explanations for observed differences in outcomes, I 

conduct a series of supplemental analyses to rule out other explanations.  

 

I describe most of these supplemental analyses at the end of the results section, 

with detailed results in the appendix, but present the three most important in detail: First, 

I conduct a difference-in-differences analysis to isolate the effect of the reordering from 

the effect of the Algebra I enrollment acceleration. Second, I conduct another difference-

in-differences analysis to isolate the effect of the reordering from the effect of increased 

Algebra II enrollment under the policy – enrollment by students who presumably would 

not have enrolled under the standard ordering. Third, I compare not Algebra II grades 

across the two groups, but grades in students’ first post-Algebra I class. I do this to rule 

out the possibility that outcomes were affected by students simply being younger when 

they enrolled in Algebra II immediately after Algebra I rather than waiting an additional 

year. 

 

Establishing Exogenous Variation 

 The first step in my analysis is to establish the extent to which the policy actually 

effected a change in enrollment patterns. Prior to the 2012-13 school year the district’s 

policy was for students to follow the standard course ordering, while in 2012-13 the 

policy was for students to enroll in Algebra I and II consecutively, with Geometry to 

follow. The policy was announced near the end of the 2011-12 school year, meaning that 

students had limited opportunity to select in or out of the reordered course sequence.56 In 

                                                 
56 It does appear, as I describe in more detail in Chapter 3, that a relatively small number of 2012-13 eighth 

grade Algebra I enrollees did defy the policy by enrolling in Geometry immediately after Algebra I. 
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order to formally describe the effect of the policy on actual course enrollment behavior, I 

fit the following model: 

 

(1) 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝐴𝑙𝑔 𝐼 𝑎𝑛𝑑 𝐼𝐼𝑖𝑠 = 𝜑𝑠 + 𝛽1 ∗ 𝑃𝑜𝑠𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝑖𝑠 + 𝛽2 ∗  𝐺𝑟𝑑 8 𝐴𝑙𝑔 𝐼 𝑖𝑠 

+𝛽3 ∗  𝑃𝑜𝑠𝑡 − 𝑝𝑜𝑙𝑖𝑐𝑦 𝑥 𝐺𝑟𝑑 8 𝐴𝑙𝑔 𝐼𝑖𝑠 + 𝐴𝑙𝑔𝐼 𝐶𝑜𝑢𝑟𝑠𝑒 𝐺𝑟𝑎𝑑𝑒𝑖𝑠 ∗ 𝛩 

+𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖𝑠 ∗ 𝛹 + 𝜀𝑖𝑠 

 

With Consecutive Alg I and II a 0/1 indicator for student i enrolling in Algebra II in high 

school s immediately after Algebra I, and 𝜑𝑠 a vector of school fixed effects. 𝛽1 gives the 

change in the percentage of ninth-grade Algebra I enrollees enrolling in Algebra I and II 

consecutively after the policy came into effect, and the sum of 𝛽1 and 𝛽3 gives the change 

in the percentage of eighth-grade enrollees. Ideally, these estimates would both be close 

(or equal) to 100%. 

 

Quantifying Policy Effects 

 Having established the relationship between my treatment variable, Post-policy, 

and actual changes in course enrollment patterns, I turn to studying the relationship 

between the treatment variable and Algebra II outcomes, specifically course grades. The 

basic model that I use is the linear probability model:57 

 

                                                 
57 The ease of interpreting results from a linear probability model outweigh its shortcomings, principally 

that the OLS assumption of normally distributed errors is necessarily violated when using a dichotomous 

outcome, and that it is theoretically possible to predict nonsensical probabilities, outside of the [0,1] range. 

I corroborate point estimates and statistical significance levels from this linear probability model using a set 

of logistic regression analyses that do not suffer from these shortcomings – results from these are available 

from the author on request. 
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(2) 𝐴  𝑖𝑛 𝐴𝑙𝑔𝑒𝑏𝑟𝑎 𝐼𝐼𝑖𝑠 = 𝜑𝑠 + 𝛽 ∗ 𝑃𝑜𝑠𝑡𝑃𝑜𝑙𝑖𝑐𝑦𝑖𝑠 + 𝐴𝑙𝑔𝐼 𝐶𝑜𝑢𝑟𝑠𝑒 𝐺𝑟𝑎𝑑𝑒𝑖𝑠 ∗ 𝛩 +  𝜋

∗ 𝐺𝑟𝑎𝑑𝑒 8 𝐴𝑙𝑔 𝐼 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡𝑖𝑠 + 𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖𝑠 ∗ 𝛹 + 𝜀𝑖𝑠 

 

With β the primary coefficient of interest, providing an estimate of the difference in 

probability of earning a given grade (an “A” in the example above) in Algebra II before 

and after the policy was enacted, net of a vector of school fixed effects (𝜑𝑠), and other 

control variables, as described above. 

 

I also fit a version of this model adding a vector of interactions between the 

treatment variable, Post-policy, and the Algebra I course grade indicators, in order to 

examine how the probability of receiving a given grade in Algebra II changed for 

students at each level of Algebra I achievement.58  

 

Supplemental Analyses 

 The analyses above rule out the possibility that any difference in Algebra II 

outcomes is due to selection, to observable differences between students, or to fixed 

characteristics of schools. Nonetheless, there remain other possible explanations for 

observed differences in outcomes that need to be addressed. I describe my approach to 

three of these issues below. At the conclusion of my presentation of results I discuss my 

approach to other possible explanations that I consider and rule out. 

 

                                                 
58In the appendix I also present results from a version controlling for Algebra I EOC test scores (Table A8), 

middle school test scores (Table A9), and classroom fixed effects (Table A11). 
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Difference-in-difference analyses 

 As mentioned earlier, there was a sharp acceleration in middle school Algebra I 

enrollment that changed the composition of the groups enrolling in Algebra I in a given 

grade just as the course re-ordering was being implemented, and this complicates my 

effort to make comparisons between pre- and post-policy cohorts.  

 

 The middle-school Algebra I acceleration induced a substantial deterioration in 

the mean prior achievement of eighth-grade enrollees, by approximately 0.2 standard 

deviations.59 Because the impact of the enrollment acceleration varied substantially 

across the district’s 38 middle and K-8 schools, however, it is possible to conduct a 

difference-in-difference analysis for eighth-grade Algebra I enrollees to isolate the impact 

of the course reordering from that of the acceleration.  

 

In some middle schools, the number of Algebra I enrollees increased by less than 

10% in the 2012-13 school year, while in others it increased by over 250%. It stands to 

reason that post-acceleration students from middle schools with small increases in 

Algebra I enrollments would be relatively similar to pre-acceleration students, in not only 

observable, but also unobservable ways. In contrast, post-acceleration students from 

middle schools that had a large increase in Algebra I enrollments are likely to be quite 

different, on average, from pre-acceleration students. Therefore, any shift in outcomes 

                                                 
59 Based on sixth-grade FCAT scores. 
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that is equally strong for eighth-grade enrollees from middle schools with small, and with 

large, increases in enrollments, is more likely to be attributable to the course reordering.60  

 

 To investigate whether the difference in conditional Algebra II outcomes before 

and after the reordering (the first difference) differed between students who graduated 

from middle schools that accelerated smaller and larger percentages of their eighth-grade 

students into Algebra I (the second difference) in 2012-13, I use the following OLS 

model: 

 

(3) 𝐴𝑙𝑔𝑒𝑏𝑟𝑎 𝐼𝐼 𝐺𝑟𝑎𝑑𝑒𝑖𝑠 = 𝛽0 + 𝛽1 ∗ 𝑃𝑜𝑠𝑡𝑃𝑜𝑙𝑖𝑐𝑦 

+𝛽2 ∗ log(𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝐺8 𝐴𝑙𝑔𝐼 𝐸𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡𝑠) 

+𝛽3 ∗ log (𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 )𝑥 𝑃𝑜𝑠𝑡 − 𝑃𝑜𝑙𝑖𝑐𝑦 + 𝐴𝑙𝑔𝐼 𝐶𝑜𝑢𝑟𝑠𝑒 𝐺𝑟𝑎𝑑𝑒𝑖𝑠 ∗ 𝛩

+ 𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖𝑠 ∗ 𝛹 + 𝜀𝑖𝑠 

  

With β3 the primary quantity of interest, providing an estimate of how any post-policy 

change in Algebra II grade-point average varies with the magnitude of the Algebra I 

enrollment acceleration that occurred in a student’s middle school. I use the natural 

logarithm of the enrollment increase because the untransformed distribution of 

enrollment increases has a very long right tail. I also fit expanded versions of Model (2) 

                                                 
60 I note that any effect observed at higher levels in schools with large post-acceleration increases cannot be 

interpreted as a pure effect of the acceleration, but rather as the effect of an acceleration combined with 

consecutive Algebra I and Algebra II – something that is likely to be of fairly narrow interest. 
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allowing the post-policy coefficient to vary in the same way, and provide results from 

this model in the appendix.61 

 

 I use a very similar strategy to investigate whether changes in Algebra II course 

grades were due to an increase in Algebra II enrollment rates that occurred after the 

policy was implemented. The enrollment increase (which I document below) was largely 

restricted to ninth-grade Algebra I enrollees, and I approach this question by fitting a 

version of Model (3) only for ninth-grade Algebra I enrollees, and substituting post-

policy change in high-school Algebra II enrollment rates for the logarithm of the change 

in middle school Algebra I enrollment rates. 

 

Alternative outcome 

 Another plausible explanation for differences between pre- and post-policy 

students’ Algebra II grades is that policy-exposed students were simply younger when 

they enrolled in Algebra II. Were this the case, one would expect the effect of the policy 

to be weaker when the outcome is student grades in their grade in their first post-Algebra 

I course, rather than specifically in Algebra II.  

 

 To test this hypothesis, I re-fit Model (2), substituting students’ grades in their 

first post-Algebra I math course (irrespective of content) for grades in Algebra II 

(irrespective of timing). Were differences in outcome due to the maturity that students 

                                                 
61 I provide results from this model because they are directly comparable with those from Model (2), but do 

not provide them as main results because the very small size of some cells combined with the difference-in-

differences design creates a lack of statistical power that makes some estimates unstable. 
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were bringing to their math classes I would expect to observe no effect, or at least a 

weaker effect, of the policy on this outcome. 

Results 

 Means of key variables are provided in Table 1: The analytic sample is 

approximately one-quarter black, and one-third each white and Hispanic. Approximately 

60% of students were eligible for Free-or-Reduced-Price Lunch (FRL), just under 10% 

were classified for special education services, and around 15% as limited English 

proficient. Approximately 60% earned a B or a C in Algebra I. These percentages are 

generally within one percentage point of the corresponding figures for the unrestricted 

sample, and are generally very similar for the pre- and post-policy groups.62 

 

Policy Implementation 

 In the three years prior to the 2012-13 school year, the overwhelming majority of 

students enrolled in Geometry immediately after Algebra I, while in the 2012-13 school 

year the overwhelming majority enrolled in Algebra II immediately after Algebra I. This 

is starkly illustrated by Figure 1, and regression results indicate that, even net of controls, 

fewer than 5% of students enrolled in Algebra I and II consecutively before the policy 

was implemented, while over 90% did afterwards (Table 2).63 This result is robust to the 

inclusion (or exclusion) of student controls and school fixed effects. 

 

                                                 
62 Correlations between variables are generally moderate to weak – a correlation matrix is provided in the 

appendix. 
63 Table 1 indicates that the effect of the policy was somewhat weaker for eighth-grade Algebra I enrollees, 

with 87% enrolling in Algebra I and II consecutively after the policy (0.048-0.027+0.901-0.057), and 95% 

of ninth-grade Algebra I enrollees (0.048+0.901). 
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 This indicates that, at least to the extent that enrollment in Algebra I in 2012-13 

(and not earlier) was assigned by birth timing (i.e. randomly), there should be little or no 

selection bias in evaluating the effect of the policy. More formally, it indicates that the 

treatment predictor, Post-policy, is a very strong instrument for enrolling in Algebra I and 

II consecutively. Consequently, although I do not conduct a formal two-stage least-

squares analysis, the treatment effects estimated below are likely to be somewhat 

conservative – roughly 10% smaller than would be estimated by an IV analysis. 

 

Treatment Effects 

 The percentage of students enrolling in Algebra II within two years of Algebra I 

increased after the policy came into effect, and the increases were larger for students with 

lower Algebra I grades. Overall, the rate of Algebra II enrollment increased by 7.4 

percentage points (p<0.001) (Table 3). There was no statistically significant increase for 

students who earned A’s in Algebra I, and only a 4.4 percentage point increase for those 

who earned B’s (p<0.001), but increases of over 16 percentage points for students who 

earned D’s or F’s (p<0.001 in both cases). These increases were almost entirely among 

the subset of students who enrolled in Algebra I in ninth grade. Later in this section I 

consider whether changes in the distribution of Algebra II grades (as described 

immediately below) were likely due to these enrollment increases. 

 

 Students who were exposed to the policy were less likely to earn A’s and B’s in 

Algebra II, and more likely to earn D’s and F’s, than were those who faced a policy 

mandating the standard course ordering. This is true both for students who earned A’s 
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and B’s in Algebra I, and those who earned C’s, D’s, or F’s (Figure 2, left and right 

panels, respectively). Regression results indicate that there is statistically significant 

pattern of post-policy students having lower conditional performance in Algebra II, and 

that this pattern is robust to the inclusion of controls for prior achievement, student 

demographics, and school fixed effects.  

 

 After controlling for prior achievement and student demographics, the probability 

of earning an A or a B in Algebra II declined by, respectively, 2.7 percentage points 

(p<0.001) and 1.5 percentage points (p<0.05), and the probability of earning a C or a D 

increased by 2.3 and 1.5 percentage points (p<0.001 in both cases) (Table 4). A more 

fine-grained analysis, by Algebra I course grade, offers two additional findings: First, 

there were no statistically significant differences in Algebra II grades for students who 

earned A’s in Algebra I, and effects were generally larger for students who earned lower 

grades in Algebra I. Second, the decline in performance largely reflects post-policy 

students being less likely to earn the same grade (or a higher grade) in Algebra II as in 

Algebra I, and being more likely to earn the next lower grade (Table 4, lower panel): For 

example, policy-exposed students who earned C’s in Algebra I were 3.5 percentage 

points less likely to B’s in Algebra II (p<0.01) and 4.2 percentage points more likely to 

earn D’s (p<0.01).  
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Difference-in-difference Results 

Eighth-grade Algebra I enrollees 

 After controlling for student demographics and prior achievement, difference-in-

difference results indicate that the decline in post-policy Algebra II grades was not 

associated with the magnitude of the increase in eighth-grade Algebra I enrollments in 

students’ middle schools. After controlling for student background and school fixed 

effects, the difference-in-difference coefficient, Increase x Post-policy, is substantively 

small and at best marginally significant (-0.0628, p=0.108), as compared with the 

magnitude of the main effect of the treatment coefficient (-0.187, p<0.001) (Table 5, 

Column 2).64  

 

The fact that the observed differences in Algebra II outcomes did not vary with 

the size of the eighth-grade enrollment increase in students’ schools suggests that they are 

not due to unobserved compositional differences induced by the enrollment acceleration. 

 

Ninth-grade Algebra I enrollees 

 Across the nineteen high schools in the district, the post-policy increase in 

Algebra II enrollment rates among ninth-grade Algebra I enrollees ranges from 4.2 to 

17.1 percentages points, with a median of 10.8 percentage points. I find no evidence that 

the post-policy decline in Algebra II course grades is associated with the size of this 

increase. The difference-in-difference estimate from this analysis is substantively and 

                                                 
64 In Appendix Table A7 I present the set of difference-in-difference estimators associated with the 

estimates presented in Table 4. These corroborate the main results presented here, although some of the 

cell-sizes are too small to allow robust estimation. 
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statistically zero (Table 6, Column 2), indicating that my results are not due to 

unobserved differences between the types of ninth-grade Algebra I enrollees enrolling in 

Algebra II before and after the policy. 

 

Alternative Outcome: Post-Algebra I Grades 

 Another plausible explanation for the decline in Algebra II grades is that post-

policy students were simply younger when they enrolled in Algebra II, and that their 

lower grades were attributable to this. Were this the case, one would expect the effect of 

the policy to be weaker when the outcome is student grades in their grade in their first 

post-Algebra I course, rather than specifically in Algebra II. In fact, the exact opposite is 

the case. 

 

 The probability of earning an A or a B in one’s first post-Algebra I class was 

much lower when the prescribed course was Algebra II than when it was Geometry, by 

3.5 and 7.4 percentage points, respectively (p<0.001 in both cases) (Table 7). The 

probability of earning a D increased by 5.9 percentage points (p<0.001). These results 

reflect a tendency for students (at least those earning A’s, B’s, or C’s) to have a 

substantially greater probability of scoring two full grade points lower in their first post-

Algebra I math course than in Algebra I (as opposed to one grade point lower in the 

results presented above) (Table 7, lower panel). This contradicts the hypothesis that the 

decline in Algebra II grades observed above was due to pre-policy students simply 

having an extra year of maturity, irrespective of course content. 
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Additional Robustness and Validity Checks 

 I conduct four additional analyses to increase confidence in my interpretation of 

my results as providing evidence for a negative effect on Algebra II performance of 

taking the course immediately after Algebra I. I describe these results briefly below, and 

present more detailed results in the appendix. 

 

 First, I seek to validate my use of course grades as a measure of achievement by 

testing for the presence of grade inflation after the policy was enacted.65 A major threat to 

the validity of this analysis would be for the meaning of course grades to change after the 

policy was implemented: Specifically, I am addressing the concern that students earning 

a given grade in Algebra I in the 2011-12 school year had lower grades in Algebra II than 

students who earned the same grade in 2012-13 because Algebra I grading standards 

were lower in 2012-13, and the decline in conditional Algebra II performance were 

simply an artefact of this. The first step in addressing this concern is to document the 

degree (if any) to which Algebra I grading standards differed between 2011-12 and 2012-

13. I check for this possibility in two ways: First, I regress pre- and post-policy Algebra I 

course grades on Algebra I EOC test scores to check for differences in the level of 

achievement associated with each grade point, as measured by the test, before and after 

the policy. This offers no evidence of grade inflation.66 Second, I fit a version of Model 

(2) using only the 2011-12 and 2012-13 Algebra I cohorts (for which I have EOC test 

                                                 
65 That is, inflation in Algebra I grades. Another concern is deflation of Algebra II grades – that is, higher 

grading standards in Algebra II after the policy. Because there was no Algebra II EOC test in the sampled 

period, it is impossible to test for this. 
66 See Appendix Table A13 
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scores), including those scores. Results from this model do not differ substantively from 

those presented above and, in fact, find moderately larger effects.67 

 

 Second, I investigate the extent to which negative effects of the policy might have 

been due to disruption caused by the new policy, including the double cohort of Algebra 

II enrollees that it created. Although it is not possible to examine this in depth, one 

channel by which such a disruption would likely have operated would have been through 

less experienced teachers being pushed into teaching Algebra II sections. To assess this, I 

create an indicator variable for teachers who were observed teaching Algebra II for the 

first time in 2013-14, and an interaction of this indicator with the treatment variable, and 

include these in an expanded version of Model (2). This is effectively a difference-in-

differences model that allows the effect of the policy to vary by whether a student is 

being taught by an experienced or inexperienced Algebra II teacher. The interaction 

coefficient from this model (the difference-in-differences estimator) is statistically and 

substantively zero, indicating that at least one potentially important mechanism of 

disruption in the first year of the policy did not have an effect on student grades.68 

  

 Third, I fit a version of Model (2) using only the 2011-12 and 2012-13 Algebra I 

cohorts and including classroom fixed effects. These cohorts enrolled in Algebra II in the 

same year, and were mostly programmed into the same classrooms. This controls for all 

                                                 
67 See Appendix Table A8 
68 See Appendix Table A10 
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classroom characteristics that were invariant across all students in a given classroom. 

Results from this model did not differ substantively from those reported above.69 

 

 Fourth, I conduct a placebo test in which I re-fit two versions of Model (2) 

defining (falsely) 2011-12 and 2010-11, in turn, as the “post-policy” year, and excluding 

any subsequent cohorts. Based on the data visualization in Figure 2, I select this, rather 

than controlling for a time trend in Model (2), as a more appropriate strategy for testing 

whether the first post-policy year is actually exceptional in the broader context of this 

time period under consideration. I do not find a statistically significant difference in 

Algebra II grade conditional on Algebra I grades between any other pair of consecutive 

cohorts.70 

Discussion 

Students who enrolled in Algebra I and II consecutively had lower grades in 

Algebra II, conditional on their prior math achievement, than students who enrolled in 

Geometry before Algebra II. The evidence presented here strongly suggests that enrolling 

in Algebra II immediately after Algebra I was harmful to all but the strongest Algebra I 

students, at least in terms of its impact on their Algebra II course grades. For the strongest 

students in the sample, those who earned A’s in Algebra I, it appears that the policy had 

no effect.71 It also appears that the probability of a negative effect increased as students’ 

                                                 
69 See Appendix Table A11 
70 See Appendix Table A14 
71For students who enrolled in Algebra I in seventh grade (see the appendix) the evidence is more 

ambiguous, but is less consistent with the reordering being beneficial than with it being neutral. Further, to 

the extent that the reordering had a salutary effect on these students it is at least as plausible that it was due 

to the incidental fact that it pushed the course into middle school, thus enhancing the overall level of the 

class for these students. 
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Algebra I performance declined. I see no persuasive evidence for any other explanation 

of the decline in Algebra II grades after the course reordering other than the order of the 

courses. 

 

A further consideration is how student performance in the year following Algebra 

I changed after the reordering. As described above, these results give even greater cause 

for pessimism about reordering Algebra II and Geometry: when Geometry grades from 

the immediate post-Algebra I grade are compared with Algebra II grades from the same 

grade there was an increased tendency for comparable students to score not one, but two 

grade points lower, and the patterns of statistical significance are even stronger than in 

the analyses described above. This is particularly concerning if poor performance in one 

year’s math course leads to lower performance in future years’ math courses through, for 

example, a discouragement effect; I consider this possibility in the next chapter, and do 

find evidence for such a phenomenon. 

 

Does this mean that it is simply inadvisable to enroll students in Algebra I and 

Algebra II consecutively? I would caution against drawing such a strong conclusion on 

the basis of these findings. One must take into account the particular circumstances of 

this intervention: By all accounts it was hastily implemented, being announced late in 

preceding school year and without any systematic plan for providing additional support to 

the students who were most likely to struggle. There is relatively little basis for 

speculating about specific mechanisms. One possibility is suggested by the fact that some 
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teachers complained that the trigonometry portion of the Algebra II curriculum relied on 

content from the Geometry curriculum.72 Although this does not seem like an 

insurmountable obstacle - the geometry and algebra of similar triangles that form the 

basis of trigonometry are often covered in middle school or in Algebra I courses – it does 

indicate that Geometry and Algebra II cannot necessarily be treated as entirely 

independent courses. Another possibility, noted above, is that teachers raised grading 

standards in Algebra II in anticipation of the new standards and EOC test that were to be 

released the following year. I am skeptical that this occurred, principally because teachers 

were already very busy in this period accommodating present changes in policy and 

standards, without trying to anticipate future changes. 

 

Given a sunnier picture of student outcomes after the reordering, this could be a 

particularly attractive reform: It would be easy and inexpensive (if not free) to implement 

on a large scale, and boosting success in Algebra II could increase student readiness for 

Calculus and other college-level math courses. These results suggest that any district 

wanting to experiment with consecutive Algebra I and II enrollment would be well 

advised to plan carefully, and be prepared to provide substantial support to students who 

did not excel in Algebra I. 

  

                                                 
72 E.g. Martin & Postal, 2016, “Orange students struggle with algebra 2 exam”, retrieved from 

http://www.orlandosentinel.com/features/education/os-orange-algebra-two-20160630-story.html on 

9/11/2017. 

http://www.orlandosentinel.com/features/education/os-orange-algebra-two-20160630-story.html
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Chapter Two Tables and Figures 

Table 1   
Means of student characteristics by pre- and 

post-policy 

   

 Pre Post 

Black 26.3% 25.3% 

Hispanic 34.5% 36.3% 

White 31.9% 31.6% 

Asian 4.5% 4.1% 

Other 2.8% 2.7% 

Special Ed. 9.9% 8.1% 

FRL-eligible 57.9% 63.3% 

Limited English 

Proficient 16.9% 13.1% 

Grade 8 Alg. I 23.6% 39.2% 

Enrolled in Alg. II 78.0% 86.8% 

A in Alg. I 11.4% 15.8% 

B in Alg. I 28.1% 31.9% 

C in Alg. I 30.6% 28.5% 

D in Alg. I 20.2% 15.9% 

F in Alg. I 9.7% 8.0% 

N 31,391 12,588 
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Table 2    

Regression results predicting change in consecutive Algebra I and II enrollment rates before 

and after the introduction of a course-reordering policy 

 (1) (2) (3) 

Post-policy 0.874*** 0.901*** 0.901*** 

 (0.000) (0.000) (0.000) 

    
Grade 8 Alg. I enrollment  -0.0271*** -0.0502*** 

  (0.000) (0.000) 

    
Post-policy x Grd. 8 Alg. I  -0.0570*** -0.0412*** 

  (0.000) (0.000) 

    
A in Algebra I   0.151*** 

   (0.000) 

    
B in Algebra I   0.139*** 

   (0.000) 

    
C in Algebra I   0.118*** 

   (0.000) 

    
D in Algebra I   0.0853*** 

   (0.000) 

    
Constant 0.0408*** 0.0482*** - 

 (0.000) (0.000) - 

        

High School Fixed Effects N N Y 

Demographic controls N N Y 
    

N 35,400 35,400 35,193 

R-sq 0.762 0.765 0.778 

p-values in parentheses    
* p<0.05    ** p<0.01    *** p<0.001    
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Table 3 

Change in probability of enrolling in 

Algebra II within two years of 

Algebra I after policy implementation 

  Probability of Alg. 

II enrollment   

 All 

students 

0.074*** 

 (0.006) 

   

A
lg

eb
ra

 I
 g

ra
d
e  

A 
0.019 

(0.015) 

  

B 
0.044*** 

(0.007) 

  

C 
0.078*** 

(0.007) 

  

D 
0.164*** 

(0.012) 

  

F 
0.169*** 

(0.016) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Table 4 

Change in probability of earning a given Algebra II grade after introduction of policy, 

overall and by Algebra I course grade, net of student background and high school 

fixed effects 

  Algebra II grade 

  

A B C D F 

 All 

students 

-0.027*** -0.015* 0.004 0.023** 0.015*** 

 (0.005) (0.007) (0.007) (0.007) (0.004) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
-0.016 0.021 0.001 0 -0.005 

(0.017) (0.019) (0.017) (0.010) (0.003) 

      

B 
-0.024* -0.026* 0.026 0.023 0.001 

(0.009) (0.012) (0.016) (0.012) (0.003) 

      

C 
-0.008 -0.035** -0.008 0.042** 0.009 

(0.004) (0.011) (0.012) (0.015) (0.005) 

      

D 
0 -0.024* -0.039*** 0.023 0.039** 

(0.005) (0.012) (0.011) (0.015) (0.014) 

      

F 
-0.005 -0.009 -0.032 -0.065*** 0.111*** 

(0.010) (0.019) (0.023) (0.018) (0.032) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Table 5   
 

Difference-in-differences results predicting Algebra II grade (0-4 scale) for 

eighth-grade Algebra I enrollees as a function of policy-exposure, size of middle 

school Algebra I acceleration, and their interaction 

 
  

 

 (1) (2) (3) 

Post-policy -0.160*** -0.193*** -0.187*** 

 (0.000) (0.000) (0.000) 
  

  

Algebra I grade (0-4 scale) 0.509*** 0.513*** 0.508*** 

 (0.000) (0.000) (0.000) 
  

  

Log increase in 8th grade Alg. I 

enr.  
0.219*** 0.126** 

  (0.000) (0.005) 
  

  

Post-policy by log increase  -0.0647 -0.0628 

  (0.099) (0.108) 

        

High school fixed effects Y Y Y 

Demographic controls Y N Y 
  

  

N 9,756 9,756 9,756 

R-sq 0.256 0.256 0.258 

 
  

 

p-values in parentheses   
 

* p<0.05    ** p<0.01    *** p<0.001  
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Table 6   

Difference-in-differences results predicting Algebra II grade (0-4 

scale) for ninth-grade Algebra I enrollees as a function of policy-

exposure, size of post-policy high school Algebra II enrollment 

increase, and their interaction 

 
  

 (1) (2) 

Post-policy -0.0881* -0.135 

 (0.01) (0.060) 

 
 

 

Algebra I grade (0-4 scale) 0.392*** 0.388*** 

 (0.000) (0.000) 

 
 

 

Increase in Alg. II enrollment  0.792 

 
 (0.219) 

 
 

 

Post-policy by increase  0.510 

    (0.478) 

 
  

High school fixed effects Y Y 

Demographic controls Y Y 

 
  

N 24,230 24,230 

R-sq 0.173 0.174 

 
  

p-values in parentheses   

* p<0.05    ** p<0.01    *** p<0.001   
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Table 7 

Change in probability of earning a given grade in one's first post-Algebra I math 

class after introduction of policy, overall and by Algebra I course grade, net of 

student background and high school fixed effects 

       

  Grade in first post-Algebra I math class 

  A B C D F 

 All students 
-0.035*** -0.074*** 0.006 0.059*** 0.044*** 

 (0.010) (0.012) (0.011) (0.010) (0.009) 

  
     

A
lg

eb
ra

 I
 g

ra
d
e  

A 
-0.105*** 0.016 0.065*** 0.018** 0.007* 

(0.022) (0.017) (0.016) (0.006) (0.003) 

      

B 
-0.039** -0.131*** 0.063*** 0.080*** 0.027*** 

(0.012) (0.022) (0.019) (0.015) (0.006) 

      

C 
-0.016 -0.096*** -0.046** 0.095*** 0.062*** 

(0.009) (0.019) (0.017) (0.019) (0.016) 

      

D 
-0.006 -0.024 -0.052** 0.01 0.072*** 

(0.007) (0.014) (0.016) (0.013) (0.017) 

      

F 
-0.001 -0.017 -0.044 0 0.062 

(0.008) (0.016) (0.025) (0.021) (0.038) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Figure 1: Course enrollments in first, second, and third year of enrollment in the 

standard sequence, by year of initial Algebra I enrollment. 
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Figure 2: Percentage of students earning A’s or B’s (top panel) and D’s or F’s (bottom 

panel) in Algebra II by year of Algebra I enrollment and Algebra I course grade. 
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Chapter Three 

Introduction 

 In this, the third chapter of my dissertation, I investigate how students’ Geometry 

outcomes changed in a large urban district in Florida when they were mandated to enroll 

in Algebra I and II consecutively, prior to Geometry, rather than following the traditional 

ordering of Algebra I, Geometry, and then Algebra II.  

 

 I study two outcomes related to Geometry: First, I investigate whether rates of 

Geometry enrollment changed when students were mandated to enroll in Algebra II 

before having the opportunity to enroll in Geometry – a mandate with which they 

generally complied. Second, I investigate how a sharp increase in Algebra II standards 

during the period in which the reordering was in effect, which led to a deterioration in 

Algebra II results, impacted Geometry performance. I find that students who enrolled in 

Algebra I and II consecutively were less likely to enroll in Geometry, and that persistence 

into a third year of math course-taking declined – this result was not simply due to 

Geometry being postponed. I also find that student achievement in post-Algebra II 

Geometry courses declined when the difficulty of the Algebra II course increased, and 

that a discouragement effect was the most likely cause. 

 

 This chapter has five sections. In the first section, I provide the background and 

context and state my research questions. In the second section I describe additional 

features of my data and measures that were not relevant to the analysis in chapter two. In 
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the third section I describe my methods, and in the fourth my results. I conclude with a 

discussion of those results. 

Background and Policy Context 

 The general background and context to this chapter is the same as that of the 

previous chapter: A large urban school district in Florida mandated that all students who 

enrolled in Algebra I in the 2012-13 or 2013-14 school years enroll in Algebra II in the 

next year, and Geometry in the following year. Students in the district enroll in Algebra I 

in seventh, eighth, or ninth grade, based roughly on their level of math achievement in 

primary and middle school. In this section I describe additional features of the policy 

context, not mentioned in the second chapter, that are relevant to the questions that I ask 

in this portion of the study. 

  

 My first question, how rates of Geometry enrollment changed under the policy, is 

important because, unlike Algebra II, Geometry is a required course in Florida, and 

failure to complete it creates a serious obstacle to graduation and, for dropouts, to 

returning to school.  

 

Although a convincing comparison of Geometry test scores, or of course grades, 

before and after the course reordering is not possible73, it is possible, and useful, to study 

                                                 
73

The available data do not permit a before and after comparison of Geometry grades or test scores: there is 

no set of Geometry outcome measures other than enrollment, and possibly credit attainment, that supports 

comparisons between the pre- and post-policy periods. For students who enrolled in Algebra I in the 2009-

10 and 2010-11 school years (and Geometry in the 2010-11 and 2011-12 school years) there was no 

Geometry EOC test. Students who enrolled in Algebra I in the 2011-12 school year, and Geometry in the 

2012-13 school year (the final pre-policy cohort), sat a Geometry EOC test indexed to Florida’s Next 

Generation Sunshine State Standards (NGSSS) (this exam was also administered in the 2013-14 school 

year, although very few students in the district enrolled in Geometry that year, due to the course 
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the consequences of a change that occurred in the second year that the reordering was in 

effect: In the 2014-15 school year Florida introduced a new set of Algebra II standards, 

along with its first-ever Algebra II EOC test. As I will document below, this test was 

substantially harder than any standardized math test students had previously taken, with 

most students who had posted strong results on earlier assessments earning mediocre 

scores, and students who had posted mediocre results on earlier assessments generally 

earning abysmal scores. To be clear, a change in Geometry performance due to a change 

in Algebra II standards would not be a direct consequence of the course re-ordering 

policy. Rather, it would be a consequence of an unrelated policy – an increase in the 

difficulty of Algebra II – but one that would not have occurred in the absence of the 

course re-ordering.  

 

 Without entertaining discussion of whether the difficulty of the Algebra II EOC 

was excessive or appropriate, it appears that, prior to 2014-15, the district’s Algebra II 

course was not very rigorous: As I argue in chapter one, a student who has mastered the 

material in a traditional Algebra II course should be on track to enroll in an introductory 

course in differential calculus with, at most, an additional year of study, generally a 

subsequent course explicitly titled “Pre-Calculus”. It seems significant, therefore, that 

virtually no student in the district enrolled in Calculus immediately after Algebra II and, 

                                                 
reordering). Students who enrolled in Algebra I in the 2012-13 and 2013-14 school year, most of whom 

enrolled in Geometry in the 2014-15 and 2015-16 school years, sat a Geometry EOC test indexed to the 

Florida Standards Assessment (FSA) system. Although it is not clear that FSA standards differed greatly 

from the NGSSS standards, the tests did not produce comparable scores, and because students in a given 

graduation cohort do not all take a given course in the same year, standardizing scores will not address the 

problem. Although it is not clear that course grades were impacted by the changes in the tests being used, 

Florida’s education statute 1008.22 mandates that EOC test scores comprise 30% of course grades, making 

it difficult to be confident that course grades are comparable across years. 
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moreover, that only a minority enrolled in Calculus even after taking Pre-Calculus74. 

Most students either did not persist in math, or enrolled in courses to prepare them to test 

out of remedial math courses at state colleges and universities or, in a few cases, enrolled 

in courses in discrete math or statistics. 

Data and Measures 

 The data and measures used in the analyses for this chapter are generally the same 

as those used in chapter two. The principal difference is that the analyses in this chapter 

make use of an additional 12,555 students who enrolled in Algebra I in the 2013-14 

school year. These students do not differ substantively from those who enrolled in 

previous years in terms of their demographic and background characteristics. As in the 

previous chapter, I restrict my main analysis to students who enrolled in Algebra I in 

eighth or ninth grade, and provide results for seventh-grade enrollees in the appendix. 

Here I describe additional features of the data and measures that are unique to these 

analyses. 

 

 The only additional restriction I impose is that, in answering my second question 

as to how Geometry outcomes changed after the introduction of the Algebra II EOC, I 

only include students who complied with the policy. I do this out of necessity, because 

the change of Geometry tests means that usable measures of Geometry outcomes are only 

available for compliers: students who enrolled in Geometry in the 2013-14 school year 

immediately after completing Algebra I (the vast majority of non-compliers) sat the 

NGSSS Geometry EOC. In the results section below, I examine the differences between 

                                                 
74 See Appendix Figures A1 and A2 for course-taking beyond the second year after Algebra I. 
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compliers and non-compliers below to assess the possibility of bias resulting from this 

restriction75. As well, I introduce one additional measure that does not appear in the 

second chapter: 

 

Enrollment in Geometry within two years of Algebra I: This is a 0/1 indicator for being 

observed to enroll in Geometry for the first time in either the first or second year after 

initial enrollment in Algebra I - both before and after the course reordering, most students 

who are observed to enroll in Algebra I do so within two years after Algebra I. Although 

a small number of students enroll in the third or fourth year, I am unable to observe 

students in the 2012-13 Algebra I cohort in their fourth post-Algebra I year, and 2013-14 

Algebra in their third or fourth post-Algebra I years. This censoring makes it infeasible to 

extend the window beyond two years. Exploratory results suggest that, after the 

reordering, slightly more students delayed Geometry enrollment beyond their second 

post-Algebra I year, but that taking account of this would not appreciably change my 

results. 

Methods 

Research Question 1: Geometry Enrollment  

I approach my first research question, of how the probability of enrolling in Geometry 

within two years of Algebra I changed under the policy, using the following linear 

probability model: 

Model (1): 

                                                 
75 To preview this result, I find that any bias is almost certain to be in the opposite direction from the 

observed effect. 
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𝐺𝑒𝑜𝑚𝑊𝑖𝑡ℎ𝑖𝑛2𝑌𝑒𝑎𝑟𝑠𝑖𝑠

= 𝜑𝑠 + 𝛽 ∗ 𝑃𝑜𝑠𝑡 − 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑠  + 𝐴𝑙𝑔𝐼 𝑆𝑐𝑜𝑟𝑒 𝐿𝑒𝑣𝑒𝑙𝑖𝑠 ∗ 𝛩

+  𝐴𝑙𝑔𝐼 𝑆𝑐𝑜𝑟𝑒 𝐿𝑒𝑣𝑒𝑙𝑖𝑠𝑥 𝑃𝑜𝑠𝑡 − 𝑝𝑜𝑙𝑖𝑐𝑦𝑖𝑠 ∗  𝛱

+ 𝜏 ∗ 𝐺𝑟𝑎𝑑𝑒 8 𝐴𝑙𝑔𝐼𝑖𝑠 + 𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖𝑠 ∗ 𝛹 + 𝜀𝑖𝑠 

 

With 𝜑𝑠 a vector of fixed effects for the first high school that student i attended76 and 

standard errors clustered at the school level. The inclusion of indicators for Algebra I 

EOC score levels and their interactions with the Post-policy indicator allows me to 

estimate how changes in rates of Geometry completion varied by student prior 

achievement. 

 

 I also fit a version of Model (1) with the outcome being enrollment in both 

Geometry and Algebra II within two years of Algebra I. Comparing results from this 

model with those from the main version of Model (1) indicates the extent to which any 

decline in Geometry enrollment is due simply to patterns of non-persistence in math 

courses that exist irrespective of the ordering of courses77, and to what extent there was 

an additional decline in persistence after the policy came into effect. 

 

Research Question 2: Geometry EOC Performance 

 I approach my second question, of how Geometry performance was affected by 

the increase in the difficulty of Algebra II, in three steps. In the first step, I establish 

                                                 
76 Last middle school for seventh grade Algebra I enrollees. 
77 This is likely due to movement out of district schools, but the available data offer no way to be sure. 
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whether and how Geometry performance, conditional on Algebra I performance, changed 

in the second year of the course reordering. In the second step I investigate whether 

discouragement from a poor Algebra II EOC test result could have negatively influenced 

Geometry EOC test performance. I do this using a regression discontinuity, comparing 

Geometry scores for students who scored just above and below the cut scores for 

different Algebra II performance levels. In the third step, I consider possible explanations 

for discontinuous changes (to the extent that I observe them) in Geometry outcomes for 

students just above and below Algebra II cut scores to understand whether 

discouragement is the most plausible explanation. I now explain each step in more detail. 

 

 In the first step, I fit an OLS regression of Geometry EOC scores on Algebra I 

EOC scores, including 2012-13 and 2013-14 Algebra I enrollees who sat the FSA 

Geometry EOC test. I include an indicator for 2013-14 enrollees, and test an interaction 

of this indicator with Algebra I EOC scores in order to allow both the average level and 

the slope of the relationship to vary from year to year. The model is: 

Model (2): 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝐸𝑂𝐶 𝑆𝑐𝑜𝑟𝑒𝑖𝑠

= 𝜑𝑠 + 𝛽1𝐴𝑙𝑔𝐼 𝐸𝑂𝐶 𝑆𝑐𝑜𝑟𝑒𝑖𝑠 + 𝛽22013 𝐴𝑙𝑔𝐼 𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑒𝑖𝑠

+ 𝛽32013𝐸𝑛𝑟𝑜𝑙𝑙𝑒𝑒𝑖𝑠 𝑥 𝐴𝑙𝑔𝐼 𝐸𝑂𝐶 𝑆𝑐𝑜𝑟𝑒𝑖𝑠 +  𝜏 ∗ 𝐺𝑟𝑎𝑑𝑒 8 𝐴𝑙𝑔𝐼𝑖𝑠

+ 𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖𝑠 ∗ 𝛹 + 𝜀𝑖𝑠 

 

with 𝛽2 the primary coefficient of interest, and standard errors clustered at the school 

level. 𝛽2 provides an estimate of the average difference in Geometry EOC score between 
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2012-13 and 2013-14 enrollees conditional on Algebra I EOC score, and net of student 

demographic controls and fixed effects for school of Geometry enrollment.  

 

 A statistically significant value of 𝛽2 on its own, however, would not establish a 

causal link between the difficulty of the Algebra II course and Geometry outcomes. It 

would (and does) strongly suggest that something occurred (or failed to occur) in the 

second year that negatively impacted Geometry performance, and the most notable 

difference across the two years observed was the introduction of an extremely difficult 

Algebra II EOC test. Based on the results of this model, I hypothesize that students’ poor 

performance on the Algebra II EOC test was an important factor in weakening 

performance on the Geometry EOC test, and conduct a second analysis to investigate this 

hypothesis.  

 

For this second analysis, I employ a regression discontinuity, in which I compare 

students who scored just above and just below the cut score to qualify as Level 3 on the 

Algebra II EOC test. This is an important cut, because Level 3 carries the label 

“Satisfactory” while Level 2 carries the label “Below Satisfactory” (Level 1 is 

“Inadequate”, while levels 4 and 5 are “Proficient” and “Mastery”). The distinction 

between Levels 2 and 3 is therefore the distinction between receiving a positive and a 

negative evaluation. Further, as a practical matter, so few students scored above Level 3 

on the Algebra II EOC as to make the analysis infeasible for higher cut scores. The basic 

model is: 

Model (3): 
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𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦 𝐸𝑂𝐶 𝑆𝑐𝑜𝑟𝑒𝑖𝑠

= 𝜑𝑠 + 𝛽1𝐴𝑙𝑔𝐼𝐼 𝐸𝑂𝐶 𝑆𝑐𝑜𝑟𝑒𝑖𝑠 + 𝛽2𝐴𝑏𝑜𝑣𝑒𝐶𝑢𝑡𝑖𝑠

+ 𝛽3𝐴𝑙𝑔𝐼𝐼 𝐸𝑂𝐶 𝑆𝑐𝑜𝑟𝑒𝑖𝑠𝑥𝐴𝑏𝑜𝑣𝑒𝐶𝑢𝑡𝑖𝑠 +  𝜏 ∗ 𝐺𝑟𝑎𝑑𝑒 8 𝐴𝑙𝑔𝐼𝑖𝑠

+ 𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑠𝑖𝑠 ∗ 𝛹 + 𝜀𝑖𝑠 

 

with 𝛽2 the primary coefficient of interest, providing an estimate of any incremental 

benefit (above that predicted by the local trend, 𝛽1), to scoring just above the cut. A 

positive, statistically significant estimate of 𝛽2 would strongly suggest that Geometry 

performance for 2013-14 Algebra I enrollees was weakened by a mechanism operating 

through the pathway of Algebra II scores. This strategy assumes that students who just 

failed to score at Level 3 and students who just succeeded in scoring at Level 3 are 

effectively equivalent in expectation, net of any linear relationship between Geometry 

and Algebra II scores in the vicinity of the cut score78. While this helps to establish 

whether Algebra II scores were a mechanism affecting Geometry scores, it is not 

informative about the nature of this mechanism, and additional steps are required. 

 

 I further hypothesize that Algebra II EOC scores acted on Geometry EOC scores 

through a discouragement effect, resulting from students receiving especially 

disappointing feedback about their aptitude in math. I use variants on Model 3, above, to 

consider possible mechanisms by which the difference between scoring at Level 2 or 3 

could, in itself, have influenced outcomes: First, I consider the possibility that the 

                                                 
78 Another assumption required for the validity of the regression discontinuity design is that individuals 

cannot manipulate which side of the cut score they fall on. Because the EOC tests were scored off-site by 

non-district personnel, and largely by machines, I see no reason to doubt that this assumption is satisfied. 
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probability of having a valid Geometry score varied around the cut, and specifically that 

higher ability students who scored just below the cut score were more likely to select out 

of enrolling in Geometry in a district school. I investigate this hypothesis by using the 

right-hand-side of Model 3 to predict the probability of having a valid Geometry EOC 

score. Second, I want to rule out the possibility that schools programmed students into 

different Geometry sections based on which side of the cut score they fell on. I 

investigate this by fitting Model 3 with the mean Algebra II test score in students’ 

Geometry classes as the outcome. If neither of these outcomes differs between students 

who score just below and just above the cut score between Levels 2 and 3, it would rule 

out two important institutional channels through which Algebra II scores could have 

acted on Geometry scores, suggesting that they acted through a psychological channel. 

Results 

Research Question 1: Geometry Enrollment  

 In general, students were less likely to enroll in Geometry within two years of 

completing Algebra I after the policy was implemented79 (Figure 1). Regression results 

indicate that the observed decline of roughly ten percentage points in Figure 1 is highly 

significant, and robust to the inclusion of controls for student demographics and prior 

achievement (-0.098, p<0.001) (Table 1, Column 1). More fine-grained results indicate 

that there was a decline in Geometry enrollment rates at all levels of prior achievement, 

although it was approximately twice as large for students who scored at levels 1 or 2 on 

                                                 
79 The available data suggest that there was not a substantial offsetting increase in the number of students 

enrolling in Geometry in their third post-Algebra I year. 



91 

 

their Algebra I EOC tests (-0.139, p<0.001) compared with students who scored at levels 

3, 4 or 5 (Table 1, Column 1, lower panel). 

 

 It appears that the decline in Geometry enrollment was primarily a function of the 

course being postponed, rather than to an effect specifically of having enrolled in Algebra 

I and II consecutively: The probability of students enrolling in both Geometry and 

Algebra II within two years of Algebra I exhibited much smaller, but still highly 

significant declines after the policy came into effect. Overall, the probability of enrolling 

in both courses declined by 3.2 percentage points (p<0.001) (Table 1, Column 2), and 

this did not vary systematically with students’ prior achievement.  

 

Research Question 2: Geometry EOC Performance  

 I now turn to comparing the Geometry EOC test performance of the two cohorts 

of students who enrolled in Algebra I and II consecutively, and investigating the effect of 

the newly introduced Algebra II EOC test on the second group. The second group (those 

who enrolled in Algebra I in the 2013-14 school year) differs from the first group (those 

who enrolled in Algebra I in the 2012-13 school year) primarily in that their Algebra II 

course was indexed to a new set of standards (the FSA standards) and, for the first time in 

Florida’s history, concluded with a mandatory EOC test. Especially for eighth and ninth 

grade Algebra I enrollees, this test was likely to have been extremely frustrating and 

disappointing: The majority of these students scored at Levels 1 and 2, and (for those 

who scored at Level 3 or above on their Algebra I EOC test), the majority scored at least 
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two levels lower than they had on their Algebra I EOC test80. Even for seventh grade 

enrollees, who fared somewhat better, only a minority scored at the same level (or a 

higher level) on their Algebra II EOC test as on the Algebra I EOC test. 

 

 Because it is only possible to include students who complied with the policy in 

this analysis, I begin by comparing compliers and non-compliers for each cohort and, 

where compliance was substantially below 100%, evaluating the possibility of bias 

resulting from selective non-compliance. I then compare Geometry scores (conditional on 

Algebra I scores) between the 2012-13 and 2013-14 cohorts and, in cases where I observe 

a substantial decline from the first cohort to the next (I never observe an increase), 

evaluate the hypothesis that the Algebra II EOC test had a role in causing that decline. 

 

Compliance: checking for bias 

In the first year that students were mandated to take Algebra I and II 

consecutively, approximately ten percent of eighth grade enrollees did not comply with 

the policy, enrolling in Geometry in ninth grade, and Algebra II in tenth grade (virtually 

all ninth grade Algebra I enrollees did comply, as did virtually all students in the policy’s 

second year). This non-compliance is observed in all high schools in the sample, and it 

appears that, district-wide, students were offered the option of following the standard 

ordering in the first year of the policy. The group that availed itself of the option was, on 

average of higher ability than the group that complied (even within the subset of eighth 

grade enrollees). Although this creates a near certainty of selection bias in my observed 

                                                 
80 A matrix comparing Algebra I and Algebra II EOC test levels is provided in Appendix Table A15. 
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results, it is in the opposite direction from the observed effect: I find that the 2012-13 

cohort would have stronger Geometry outcomes than the 2013-14 cohort, which is less 

likely to be observed if higher ability students select out of the 2012-13 sample, but not 

the 2013-14 sample. 

 

Geometry EOC test results 

 Conditional on Algebra I performance, Algebra I enrollees from the 2013-14 

cohort who sat the FSA Geometry test earned scores that, conditional on Algebra I EOC 

performance, were consistently lower than those earned by the 2012-13 cohort (Figure 2). 

This is corroborated by regression results81, which indicate that, after controlling for 

Algebra I EOC scores and demographic controls, Geometry EOC scores were 0.18 

standard deviations lower (p<0.001) for the 2013-14 cohort than for the 2012-13 cohort 

(Table 2, Column 2). 

 

Regression discontinuity: Geometry vs. Algebra II EOC test results 

 Turning to my regression discontinuity analysis, Figure 3 shows a noticeable 

discontinuous increase in conditional Geometry scores for students just above the cut 

score between Levels 2 and 3. Regression estimates using bandwidths of between +/-8 

and +/-16 points around the cut score find an increase of between 0.117 and 0.163 

standard deviations (with an average of 0.139) associated with scoring just above the cut 

                                                 
81 I restrict the sample for the regression results to the 87.4% of the sample with Algebra I EOC scores 

between 375 and 450. Outside of this range there is some evident non-linearity (Figure 2), and it also 

appears that there are too few test-takers to permit confident estimation of any relationship that does exist. 
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score, net of the local trend of Geometry on Algebra II scores82 (p<0.01 for all 

bandwidths) (Table 3, Column 1). At bandwidths smaller than +/-8 the estimated 

difference is in fact much larger, but the trend line cannot be estimated. At bandwidths 

above +/- 16 points the estimate begins to shrink and lose statistical significance, 

although the estimated trend is including students who are increasingly different from 

those near the cut score83. 

 

 My hypothesis, however, is not only that the difficulty of the Algebra II test was 

the mechanism by which Geometry performance fell in 2013-14, but also that it acted 

through a discouragement effect. A subsidiary set of regression discontinuity results 

indicate that, if there was a discouragement effect, it did not operate through students 

below the level 3 cut score being less likely to enroll in Geometry after Algebra II. This is 

illustrated in Table 3, Column 2, where the cut-score coefficient from a version of the 

regression discontinuity model predicting probability of Geometry enrollment is 

statistically and substantively zero for all bandwidths. 

 

I also want to rule out another possible explanation for the discontinuous increase 

in Geometry scores for students scoring just above the level 3 cut on the Algebra II test: 

that students enrolled in different sections of Geometry based on their Algebra II score 

level. Fitting the regression discontinuity model with the mean Algebra II test score in 

students’ Geometry classes as the outcome, indicates that in neither case is there a 

                                                 
82 The version of the model presented allows the trend to differ on either side of the cut score. A restricted 

version not allowing this provides a substantively identical estimate of the discontinuity. 
83 An illustration of this is provided in Appendix Figure A3. 
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substantively or statistically significant difference across the cut score at any 

bandwidth84. 

 

Another limitation of the regression discontinuity results is that they only provide 

an estimate of the local effect of Algebra II score levels on students near the cut between 

Levels 2 and 3, and do not necessarily support claims about students further from that 

score point. This limitation is not entirely remediable, although the function of the 

regression discontinuity analysis in this argument is not simply to provide a local 

estimate that is interesting in itself. Rather, it provides an existence proof for the 

proposition that discouragement and frustration in Algebra II can impact performance in 

a later Geometry class. Given the results presented above, this seems very likely (if not 

strictly proven). Furthermore, combined with the fact that the vast majority of students, 

even those scoring at level three, scored at a level much lower than that to which they had 

been accustomed, these results are consistent with the Geometry performance of students 

in the 2013-14 cohort having been negatively impacted by poor results on the Algebra II 

EOC test.  

Discussion 

 I find evidence consistent with students having been harmed (both directly and 

indirectly) by the course reordering policy, and no evidence of any benefits, the same 

general conclusion that I drew in the previous chapter. The harm took two forms in the 

case of Geometry: First, when Geometry enrollment was postponed, fewer students were 

observed to enroll in this required course. This could be largely, but not entirely, 

                                                 
84 Results are available on request 
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explained entirely by the postponement. Second, when the difficulty of the Algebra II 

course increased, it caused students to have lower achievement in their subsequent 

Geometry course. While this is technically not a consequence of the re-ordering itself, it 

would not have occurred in the absence of the reordering, and it has consequences for any 

future proposals to enroll students in Algebra II earlier in their schooling. I discuss each 

of these findings in turn. 

 

 The clearest reason to consider reduced probability of Geometry enrollment to be 

harmful is that the course is required for graduation. Because the reduced probability of 

Geometry enrollment was equally prevalent at high and low levels of prior achievement, 

it seems plausible that at least some students simply left the district and enrolled in 

Geometry elsewhere. Particularly among ninth-grade enrollees who earned lower scores 

in Algebra I, however, failure to appear in Geometry classes in eleventh grade probably 

reflect a substantial number of students who failed to clear a hurdle to high school 

graduation.  

 

 The second result, the negative impact on Geometry achievement of the Algebra 

II EOC test should also be of interest to districts that are considering a switch to a 

consecutive Algebra I and II curriculum, or that have implemented such a curriculum and 

are facing (or considering) an increase in the rigor of their Algebra II course. It is beyond 

the scope of this paper to quantify levels of rigor, but I would propose that Algebra II 

courses are set between two poles: courses that cover little more than would have been 

covered by a typical Algebra I class of the late 1970s, and courses that aim to prepare as 
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many students as possible to enroll in a Calculus course. These results suggest that the 

closer a district’s Algebra II course is to the latter pole, the stronger the argument for 

postponing that course until students have satisfied their graduation requirements in math 

and face less risk of harm from being confronted with negative information about the 

objective level of their math aptitude. 

 

 In summary, the results presented in chapters two and three provide no 

endorsement for a policy of consecutive Algebra I and II. Given, however, that the 

negative effects observed were generally small, and in at least some cases probably 

related to specific features of the policy context, schools or districts may still wish to 

experiment with this intervention, and this study may provide helpful guidance. 
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Chapter Three Tables and Figures 

Table 1   
Change in enrollment probability within two years of 

Algebra I for post-policy Algebra I enrollees, overall 

and by Algebra I EOC level, compared with average 

for prior three years. Regression adjusted including 

controls for student prior achievement and 

demographics, and school fixed effects. 

  
(1) (2)   

Geometry 

enrollment 

Geom. & Alg. II 

enrollment 

 All students -0.098*** -0.032*** 

  (0.005) (0.005) 

A
lg

eb
ra

 I
 E

O
C

 l
ev

el
 

   

5 
-0.061*** -0.043* 

(0.017) (0.018) 

   

4 
-0.072*** -0.052*** 

(0.013) (0.014) 

   

3 
-0.076*** -0.025*** 

(0.007) (0.007) 

   

2 
-0.139*** -0.047*** 

(0.009) (0.01) 

   

1 
-0.139*** -0.004 

(0.013) (0.013) 

    

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Table 2   
Regression results predicting Geometry EOC test score as a 

function of Algebra I EOC test score, year of Algebra I 

enrollment, student demographics, and school fixed effects 

 (1) (2) 

Alg. I EOC test score 0.877*** 0.758*** 

 (0.000) (0.000) 
   

2013-14 Alg. I enrollee -0.151*** -0.175*** 

 (0.000) (0.000) 
   

Black  -0.153*** 

  (0.000) 
   

White  0.118*** 

  (0.000) 
   

Asian  0.0928*** 

  (0.000) 
   

Other  0.0471 

  (0.128) 
   

SPED  -0.134*** 

  (0.000) 
   

FRL-eligible  -0.0688*** 

  (0.000) 
   

LEP  -0.148*** 

  (0.000) 
   

Constant -0.0672** 0.0986*** 

  (0.003) (0.000) 
   

N 14108 14108 

R-sq 0.486 0.531 
   

p-values in parentheses 

* p<0.05    ** p<0.01    *** p<0.001  
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Table 3   
Regression discontinuity results predicting Geometry EOC score 

and probability of Geometry enrollment as a function of Algebra II 

EOC score, and being above the Level 2/3 cut score on the Algebra 

II test 

 (1) (2) 

Bandwidth 

Discontinuity 

in Geometry 

EOC test scores 

Discontinuity 

in probability 

of Geometry 

enrollment 

+/-8 0.163** 0.022 

 '(0.056) '(0.022) 

+/-9 0.152** 0.028 

 '(0.052) '(0.021) 

+/-10 0.148** 0.021 

 '(0.049) '(0.019) 

+/-11 0.149** 0.022 

 '(0.046) '(0.019) 

+/-12 0.136** 0.017 

 '(0.045) '(0.018) 

+/-13 0.132** 0.016 

 '(0.043) '(0.018) 

+/-14 0.131** 0.008 

 '(0.042) '(0.018) 

+/-15 0.117** 0.006 

 '(0.041) '(0.017) 

+/-16 0.123** 0.009 

  '(0.040) '(0.017) 

   

standard errors in parentheses  
* p<0.05    ** p<0.01    *** p<0.001  
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Figure 1: Probability of completing Geometry within two years of Algebra I by year of 

Algebra I enrollment. 
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Figure 2: Geometry EOC test score as a function of Algebra I EOC score for first and 

second post-policy cohorts (2012-13 and 2013-14 Algebra I enrollees). 
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Figure 3: Geometry EOC test score as a function of Algebra II EOC test score (centered 

on zero at cut score between level 2 - below satisfactory - and 3 - satisfactory). Full 

sample (left panel) and +/-16 points (right panel). 
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Appendix One: Appendix to Chapter One 

A Brief History of Mathematics85 

 Until the middle of the second millennium A.D., geometry constituted the whole 

of Western mathematics (Usiskin, 2003). Euclid’s Elements was the foundational text 

(Heath, 1956), and while it contained material that is now handled algebraically, such as 

a proof of the infinitude of primes (IX, 20) or a method for finding square roots (X, 9), 

these were treated geometrically, with magnitudes being inextricably linked to physical 

representations, such as lengths or areas.86 

 

 Although algebra (in some form) dates at least to the late first millennium A.D. – 

the word itself is from the title of a ninth-century Persian text – it was introduced into 

European mathematics by Fermat (1601-1665) and Descartes (1595-1650), the latter 

stating in his 1637 essay Géometrie that “it is possible to construct all the problems of 

ordinary geometry by doing no more than [solving equations]” (1954 translation, quoted 

from Usiskin, 2003). At that point in history, however, algebra was not a separate 

discipline (or sub-discipline), but merely a tool for handling problems that were 

conceived of physically – even Newton’s development of calculus in the late seventeenth 

century relied on geometric arguments (Usiskin, 2003). 

 

 Euler’s 1770 Elements of Algebra marked the emergence of algebra as a topic of 

study in its own right (Usiskin, 2003), and algebra proceeded to develop along a separate 

path from geometry through most of the nineteenth century, until two events in the late 

nineteenth and early twentieth century opened the possibility of reunifying the two areas. 

First, in 1899 (five years after the Committee of Ten Report), “the German 

mathematician David Hilbert showed that geometry was logically consistent if we 

assumed that arithmetic was logically consistent.” Second, “within ten years Bertrand 

Russell and Alfred North Whitehead supplied details showing that arithmetic, algebra, 

geometry, and analysis could be viewed as emanating deductively from a common origin 

in logic.” (Usiskin, 2003, p.16). 

 

 Although there have been efforts to rebuild the curriculum around a unifying 

structure, most notably in the New Math movement of the 1960s, a radical separation of 

algebra and geometry prevails in most current American curricula. As Usiskin shows, this 

separation is an artefact of the late Enlightenment, and reflects neither the ancient 

                                                 
85 This history draws largely on a history offered by Usiskin (2003). I have attempted to locate and review 

the sources that he cites, and cite them myself when they were both physically and intellectually accessible. 

There are also a few points at which I reference sources not mentioned in Usiskin (2003), or add my own 

interpretive gloss. Any and all errors are my own. 
86 An online edition of Euclid’s Elements is available at: http://aleph0.clarku.edu/~djoyce/elements/ 
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structure of mathematical thought, nor its contemporary divisions.87 Over the course of 

the twentieth and early twenty-first centuries there have been attempts to think beyond 

the traditional algebra/geometry division, and to find other bases for organizing the high 

school math curriculum, which I now turn to describing. 

 

Models of Integration: Integration through applications 

 Another species of integrated curriculum attempts to develop mathematical 

content through the study of non-routine applied problems that provide opportunities to 

develop mathematics and defend one’s reasoning. The history of math offers many 

examples of new mathematics coming about this way: two of the most famous are the 

origin of graph theory in Euler’s Bridges of Königsberg problem (Shields, 2012), and the 

development of calculus to describe motion (Boyer, 1959). 

 

 A curriculum that exemplifies this approach was developed by the Consortium on 

Mathematics and its Applications (COMAP), one of five NSF-funded high school 

curricula developed to embody the 1989 NCTM Standards. COMAP’s high school series 

titled Mathematics: Modeling Our World (MMOW), consists of courses 1, 2, and 3, and a 

pre-calculus textbook (COMAP also created a college-level text titled For All Practical 

Purposes). In the MMOW overview the authors explain: 

Mathematical modeling is the process of looking at a situation, formulating a 

problem, finding a mathematical core, working within that core, and coming back 

to see what mathematics tells us about the original problem. We do not know in 

advance what mathematics to apply. The mathematics we settle on may be a mix 

of geometry, algebra, trigonometry, data analysis, and probability. … Because 

Mathematics: Modeling Our World brings to bear so many different mathematical 

ideas ... this approach is truly integrated. (Garfunkel, Godbold & Pollak, 1998, 

p.6, my italics) 

 

The MMOW units are based around real-world settings and the chapters combine 

radically divergent areas of mathematics: Unit 1 in Course 2 titled Decision Making in a 

Democracy includes chapters on percentages, graph theory, “paradox”, and matrices. 

Unit 2, on Secret Codes includes chapters on representing functions, matrix operations, 

modular arithmetic (also known as “clock arithmetic”), and frequency distributions. 

 

Such curricula encounter several objections: First, there are concerns that the lack 

of focus on specific areas of math makes it easy for students to miss crucial concepts and 

skills and become distracted by content that, while interesting and worthy, is peripheral 

                                                 
87 The Mathematics Subject Classification, a 47-page document containing an exhaustive list of 

mathematical subdisciplines for publication and cataloguing purposes, is available at: 

http://www.ams.org/msc/pdfs/classifications2010.pdf 
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(e.g. MacLane, 1984). Second, there are concerns that giving credit to students for 

explaining their reasoning can come at the expense of incentives for precision (e.g. Wu, 

1996). Third, in spite of many areas of mathematics being rooted in real world problems, 

many pure mathematicians look askance at such curricula, seeing an inadequate substitute 

for a curriculum animated by the “motivation, attitude, [and] technique” (Halmos, 1981, 

p.14) that often drive pure mathematics (e.g. Halmos, 1981, Applied Mathematics is Bad 

Mathematics). Finally, such texts may be poorly suited to preparing students for the 

typical state math assessment, which restricts itself to the routine application of 

traditional content; although technical proficiency is a likely by-product of setting up and 

solving COMAP problems, the time required for their investigation may limit coverage 

of mandated content.  

 

In fairness, MMOW offers considerable structure to guide students. Although the 

MMOW texts use open-ended problems more extensively than do traditional textbooks, 

they are accompanied by a solutions manual featuring “answers to all of the activities, 

individual works, assessment problems, and supplementary materials” (Garfunkel, 

Godbold & Pollak, 1998, p.3). Nonetheless, although numbers are not available, the 

COMAP texts seem unlikely to have seen widespread adoption as primary classroom 

texts, for the reasons mentioned above. They seem more likely to be attractive for 

enrichment purposes. 

 

Appendix Two: Appendix to Chapters Two and Three 

Seventh Grade Algebra I Enrollees: Description of Results 

 The subset of seventh grade Algebra I enrollees has a higher percentage of white 

and Asian students, and a lower percentage of black and Hispanic students, than the 

subset of eighth and ninth grade enrollees (Appendix Table A1). It also has fewer FRL-

eligible students, although they still make up a substantial minority of the group. Almost 

half of seventh grade enrollees earned A’s in Algebra I, and almost 90% earned A’s or 

B’s. 

 

 For this group the post-policy indicator is an almost perfect instrument for 

enrolling in Algebra I and II consecutively, with fewer than 1% enrolling consecutively 

in the pre-policy period, and around 98% enrolling consecutively in the post-policy 

period (Appendix Table A2). The effect of the post-policy indicator, however, was 

different for this subset of students: 

 

 Regression results controlling for student background and middle school fixed 

effects indicate that there was little or no significant change in the overall distribution of 

Algebra II course grades after the policy came into effect (Appendix Table A2, top row). 

A more fine-grained analysis indicates, however, that students who took Algebra I and II 
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consecutively were more likely to earn the same grade in Algebra II as in Algebra I, and 

less likely to earn a lower grade (Appendix Table A2, bottom panel). 

 

 Turning to the questions addressed in Chapter 3, it appears that while the 

percentage of seventh-grade Algebra I enrollees completing Geometry (or observed 

completing Geometry) fell after the policy came into effect, this was entirely due to the 

course being postponed. Overall, the percentage of students completing Geometry within 

two years of Algebra I fell by 6.1 percentage points, but the percentage completing both 

Geometry and Algebra II within two years of Algebra I was unchanged (Appendix Table 

A4). This indicates that the decline in Geometry completion for these students was not 

due to prior exposure to Algebra II, but simply to patterns of attrition that were equally 

present before and after the policy took effect. 

 

 Geometry EOC test performance conditional on Algebra I EOC test performance 

underwent a slight decline in the second year of the policy, after the Algebra II EOC test 

was introduced. This decline was statistically significant, but much smaller than for 

eighth and ninth grade enrollees (-0.06sd, p<0.001 vs. -0.18sd, p<0.001). This may be 

due to seventh-grade enrollees being stronger students, and therefore more resilient, or to 

the transition to high school after Algebra II providing a psychological “reset”. In any 

case, the decline of one-twentieth of a standard deviation is of barely substantive 

significance, and I do not undertake further analysis. 

 

 Although the evidence suggests that the policy had a mildly beneficial effect for 

seventh-grade Algebra I enrollees, this is less interesting than the result for eighth and 

ninth-grade enrollees for two reasons. First, for these students the policy moved Algebra 

II into middle school, and greatly strengthened the peer-ability composition of their 

classes: there is almost no overlap between the prior-achievement distributions of their 

Algebra II classes between the pre- and post-policy periods. This is at least as plausible 

an explanation of their improved performance as is the ordering of Algebra I and II. 

Second, this is a very high achieving group of students, generally having high levels of 

success under existing arrangements. Finding ways to effect marginal improvements in 

their already strong performance is therefore not a central policy objective, especially if it 

comes at the expense of lower-performing students. 
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Appendix Table A.1   
Means of student characteristics by pre- and 

post-policy (seventh grade Alg. I enrollees) 

   

 Pre Post 

Black 13.6% 14.4% 

Hispanic 22.4% 24.9% 

White 48.1% 45.1% 

Asian 12.2% 11.4% 

Other 3.7% 4.2% 

Special Ed. 0.9% 1.2% 

FRL-eligible 36.5% 44.1% 

Limited English 

Proficient 4.7% 3.1% 

Grade 8 Alg. I 0.0% 0.0% 

Enrolled in Alg. II 91.7% 96.5% 

A in Alg. I 45.0% 45.3% 

B in Alg. I 37.9% 38.2% 

C in Alg. I 12.9% 14.2% 

D in Alg. I 3.9% 2.0% 

F in Alg. I 0.3% 0.3% 

N 3,812 2,043 
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Appendix Table A2    

Regression results predicting change in consecutive Algebra I and II enrollment rates before 

and after the introduction of a course-reordering policy (seventh grade Alg. I enrollees) 

 (1) (2) (3) 

Post-policy 0.976*** 0.976*** 0.975*** 

 (0.000) (0.000) (0.000) 

    
A in Algebra I   0.143*** 

   (0.000) 

    
C in Algebra I   0.123*** 

   (0.000) 

    
D in Algebra I   0.0989*** 

   (0.000) 

    
Black   0.00680 

   (0.173) 

    
White   0.000864 

   (0.815) 

    
Asian   0.00924 

   (0.052) 

    
Other   0.00218 

   (0.762) 

    
SPED   -0.00556 

   (0.676) 

    
FRL-eligible   -0.00123 

   (0.707) 

    
Limited English Proficient   -0.0144* 

   (0.030) 

    
Constant 0.00285 0.00285 - 

 (0.078) (0.078) - 

        

High School Fixed Effects N N Y 

    
N 5487 5487 5486 

R-sq 0.960 0.960 0.961 

p-values in parentheses    
* p<0.05    ** p<0.01    *** p<0.001    
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Appendix Table A3 

Change in probability of earning a given Algebra II grade after introduction of policy, 

overall and by Algebra I course grade, net of student background and middle school 

fixed effects (seventh grade Alg. I enrollees) 

       

  Algebra II grade 

  A B C D F 

 All 

students 

0.04 -0.009 -0.024 0.002 -0.009** 

 (0.029) (0.021) (0.015) (0.011) (0.003) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
0.117** -0.062* -0.042** -0.010*** -0.003* 

(0.040) (0.029) (0.015) (0.003) (0.001) 

      

B 
-0.007 0.078** -0.053* -0.007 -0.010* 

(0.032) (0.030) (0.021) (0.018) (0.004) 

      

C 
-0.065** -0.062 0.110*** 0.045 -0.027* 

(0.025) (0.046) (0.033) (0.036) (0.011) 

      

D 
-0.130* -0.083 0.092 0.117 0.005 

(0.059) (0.060) (0.108) (0.097) (0.035) 

      

F 
-0.031 0.146 -0.482*** 0.463 -0.096** 

(0.080) (0.285) (0.112) (0.296) (0.029) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Appendix Table A4 

Change in enrollment probability within two years of 

Algebra I for post-policy Algebra I enrollees, overall 

and by Algebra I EOC level, compared with average 

for prior three years. Regression adjusted including 

controls for student prior achievement and 

demographics, and school fixed effects (seventh grades 

Alg. I enrollees). 

    (1) (2) 

    Geometry 

enrollment 

Geom. & Alg. II 

enrollment 

 All students -0.061*** -0.007 

  (0.009) (0.01) 

A
lg

eb
ra

 I
 E

O
C

 l
ev

el
 

   

5 
-0.053*** 0.002 

(0.015) (0.016) 

   

4 
-0.029 0.016 

(0.017) (0.019) 

   

3 
-0.089*** -0.033* 

(0.015) (0.017) 

   

2 
-0.100** -0.012 

(0.046) (0.05) 

   

1 
-0.236 0.12 

(0.176) (0.192) 

    

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Appendix Table A5

(1) (2)

Alg. I EOC test score 0.616*** 0.586***

(0.000) (0.000)

2013-14 Alg. I enrollee -0.0551*** -0.0587***

(0.000) (0.000)

Black -0.0553

(0.053)

White 0.101***

(0.000)

Asian 0.145***

(0.000)

Other 0.0732

(0.074)

SPED -0.0426

(0.589)

FRL-eligible -0.0580**

(0.002)

LEP -0.183***

(0.000)

Constant 0.444*** 0.417***

(0.000) (0.000)

N 3491 3491

R-sq 0.524 0.538

* p<0.05    ** p<0.01    *** p<0.001

Regression results predicting Geometry EOC test score as a 

function of Algebra I EOC test score, student demographics, 

and school fixed effects (seventh grade Alg. I enrollees)

p-values in parentheses
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Appendix on Data Preparation 

The initial student dataset contained 293,511 non-duplicate rows, each 

representing a math course enrollment for one of 72,053 students. Students enter the 

dataset in seventh, eighth, or ninth grade, with their first Algebra I enrollment - only a 

negligible number of the district’s students first enrolled in Algebra I before seventh 

grade or after ninth grade88. The principal restriction that I impose is to exclude students 

who, at any point, were enrolled in a school other than one of the 57 district-operated 

comprehensive K-8, middle, or high schools89. I also add rows for students who were not 

enrolled in math in every year through twelfth grade (or the highest grade that my data 

would permit me to observe), so that each student would have a record for each grade 

from their first year of Algebra I enrollment through twelfth grade. I code the course for 

these rows as “no enrollment” – there is no way to know how many of these null rows 

represent students who dropped out of school or left the district, and how many simply 

stopped taking math90.  

 

In a small but non-trivial minority of cases (around nine percent), students were 

recorded as having multiple enrollments in the same course in a single year. Although in 

some instances students appear to have enrolled in multiple sections of the same course in 

a given year, or in two half-credit sections, it is not possible to determine which semester 

a given half-credit course belonged to and, in some cases, it is implausible that the data 

are accurate (e.g. students taking six full credits of Algebra in ninth grade). For cases 

with multiple sections of the same class in a given year, therefore, I assign each section 

the average grade (on a four-point scale) for all sections in that year, and weight the 

binary course-taking indicator variables (see below) so that no student can contribute 

more than one full instance of enrollment in a given course in a given year.  

 

Constructing classroom sections 

 The district provided a dataset containing 278,142 non-duplicate rows, with each 

row containing a student identifier (corresponding to the identifiers in the course-

                                                 
88 As a check on this proposition, the size of the graduating cohorts for which complete data is available 

(i.e. students who should have started ninth grade together in 2011, 2012, 2013) was compared with official 

NCES counts. Before imposing restrictions on my sample, my counts are within 1% of the NCES counts, 

suggesting that a negligible number of students enrolled in Algebra I outside of the seventh-to-ninth grade 

window. 
89 I exclude 4,963 students because they were enrolled in a charter school in one or more years, and may 

therefore have been exempted from some district policies. I exclude an additional 4,625 students because 

they spent some or all of their time in a school serving a special population. I do account for these students 

in constructing measures of classroom characteristics. 
90

 I also make only limited use of the 12,555 students who enrolled in Algebra I in 2013-

14 and Algebra II in 2014-15, as these students were the first to sit the newly introduced 

Algebra II EOC exam which, by all appearances, led to a sharp decline in measured 

course outcomes. 
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enrollments dataset), a teacher identifier, a course code, a school year, a school code, and 

a code for the period during which the class met. There was nothing to specify whether a 

course was a full- or half-credit course and, therefore, in which semester half-credit 

courses convened. In general, I assume that a unique combination of teacher, period, 

school year, and course code represent a section or classroom. Grouping students into 

sections depends on being able to match a unique instance of enrollment from the course-

enrollments dataset to a unique section in the dataset containing teacher and class period 

data.  

 

 The groupings so formed contain between 1 and 63 students, 16.7%, or 2,899 of 

these groupings, contain three or fewer students. Excluding these, the modal group size is 

21. 73.5% of the sections, containing 92.5% of the non-duplicate rows, contained 

between 10 and 32 students (inclusive). Given that 10 and 32 seem like bounds outside of 

which course sections are likely to represent either special cases or errors, I assign 

“missing” section ids to such sections. Through this process, I am able to associate 

81.25% of the students in my analytic sample with a section of Algebra I, including 

90.1% of seventh grade enrollees, 87.9% of eighth grade enrollees, and 76.4% of ninth 

grade enrollees. I am able to associate 75.6% of students who enrolled in Algebra II with 

a section of that course. 

 

Classroom characteristics 

 I use classroom level data to construct measures of classroom characteristics that I 

then control for in my analyses, and also fit an alternate model using classroom fixed 

effects. In creating these measures, I include students who are excluded as individual 

cases in my final analysis due to spending time in charter schools or schools for special 

populations.  

 

Class size: The number of students enrolled in a section of Algebra II. I allow this 

variable to range from 10 to 32, and treat the small number of cases in which sections 

appear to contain larger or smaller numbers of students as missing classroom data. 

 

Mean fifth grade FCAT score: Fifth grade is the most recent score that is available for 

every year and grade-level of Algebra I enrollee, with the exception of seventh grade 

enrollees in 2013-14. The Algebra II sections of the final cohort of seventh grade 

enrollees are of the least interest of all the Algebra II sections that I study, and I can 

tolerate the penalty of lacking a measure of mean prior achievement for those sections. 

 

Algebra II teacher teaching Algebra II for the first time in 2013-14: In the 2013-14 

school year, there was a double cohort of students enrolled in Algebra II – those who had 

enrolled in Algebra I in the 2011-12 school year and followed the standard ordering, and 
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those who had enrolled in Algebra I in the 2012-13 school year and taken Algebra II 

consecutively. This meant that many teachers were assigned to teach Algebra II who had 

not previously taught the course. The district has generally high teacher turnover, and a 

large number of inexperienced teachers teaching in any given year, giving reason to 

expect that the impact of this increase in Algebra II assignments would make little 

difference. Nonetheless, I include this variable to account for the possibility that student 

performance in Algebra II may have been harmed by teacher inexperience in the year of 

the reordering. 
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Appendix to Main Results 

Appendix Table A6 

Correlations of student demographic characteristics, grades, and sixth-grade 

FCAT performance levels 

  

Algebra 

1 grade 

Algebra 

2 grade 

G6 

FCAT 

Score 

FRL 

eligible 

SPED 

classified 

LEP 

classified 

Algebra 1 

grade 
1           

            

              

Algebra 2 

grade 
0.5121* 1         

(0.000)           

              

G6 FCAT 

Score 
0.5014* 0.3801* 1       

(0.000) (0.000)         

              

FRL 

eligible 
-0.2262* -0.1923* -0.3162* 1     

(0.000) (0.000) (0.000)       

              

SPED 

classified 
-0.1626* -0.1133* -0.2870* 0.0602* 1   

(0.000) (0.000) (0.000) (0.000)     

              

LEP 

classified 
-0.1111* -0.0649* -0.3218* 0.1989* 0.0343* 1 

(0.000) (0.000) (0.000) (0.000) (0.000)   

              

Hispanic -0.0960* -0.0957* -0.1314* 0.2553* 0.0291* 0.2939* 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

              

Black -0.1289* -0.0959* -0.2308* 0.2205* -0.0024 -0.0583* 

(0.000) (0.000) (0.000) (0.000) (1.000) (0.000) 

              

White 0.1473* 0.1271* 0.2654* -0.4295* -0.0062 -0.2361* 

(0.000) (0.000) (0.000) (0.000) (1.000) (0.000) 

              

Asian 0.1359* 0.1144* 0.1370* -0.0595* -0.0414* 0.0274* 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

              

Other 0.0173 0.0067 0.0307* -0.0188* -0.0048 -0.0608* 

(0.069) (1.000) (0.000) (0.023) (1.000) (0.000) 

Notes: 

1: p-values, in parentheses are Bonferroni corrected to account for the large 

number of comparisons being made. 

2: Algebra 1 and 2 grades are on a 0-4 scale (0=F, 4=A) 
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Appendix Table A7 

Difference-in-difference estimates for association between increase in middle-

school Algebra I enrollments and the change in Algebra II grades for eighth-

grade Algebra I enrollees from those schools 

       

  Algebra II grade 

  A B C D F 

 All students 
-0.013 -0.019 0.02 0.014 -0.002 

 (0.017) (0.017) (0.011) (0.011) (0.003) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
0.004 -0.046 0.044 -0.002 0.001 

(0.050) (0.046) (0.030) (0.016) (0.006) 

      

B 
-0.037 -0.043 0.113 -0.016 -0.017 

(0.065) (0.098) (0.076) (0.064) (0.052) 

      

C 
-0.062 -0.069 0.064 0.074 -0.007 

(0.073) (0.107) (0.110) (0.147) (0.044) 

      

D 
-0.063 0.082 0.284* -0.135 -0.168 

(0.075) (0.099) (0.142) (0.139) (0.134) 

      

F 
0.004 -0.046 0.044 -0.002 0.001 

(0.050) (0.046) (0.030) (0.016) (0.006) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Versions of main model with additional controls 

Appendix Table A8 

Change in probability of earning a given Algebra II grade after introduction of 

policy, overall and by Algebra I course grade, net of student background, high 

school fixed effects, and Algebra I EOC scores (2011-12 and 2012-13 cohorts 

only) 

       

  Algebra II grade 

  A B C D F 

 All students 
-0.020*** -0.011 -0.003 0.022** 0.012*** 

 '(0.005) '(0.007) '(0.009) '(0.008) '(0.004) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
-0.027* 0.024 0.001 0.008 -0.006* 

'(0.011) '(0.014) '(0.011) '(0.007) '(0.003) 

      

B 
-0.039*** -0.008 0.030* 0.016 0.001 

'(0.009) '(0.011) '(0.012) '(0.011) '(0.003) 

      

C 
-0.013* -0.034* -0.016 0.056*** 0.007 

'(0.007) '(0.016) '(0.014) '(0.015) '(0.007) 

      

D 
0.002 -0.019 -0.047** 0.018 0.047*** 

'(0.007) '(0.015) '(0.018) '(0.020) '(0.013) 

      

F 
0.008 0.018 -0.019 -0.077* 0.071 

'(0.012) '(0.019) '(0.026) '(0.034) '(0.037) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Appendix Table A9 

Change in probability of earning a fiven Algebra II grade after introduction of 

policy, overall and by Algebra I course grade, net of student background, high 

school fixed effects, and sixth grade FCAT scores 

       

  Algebra II grade 

  A B C D F 

 All students 
-0.029*** -0.015* 0.005 0.025*** 0.013*** 

 '(0.006) '(0.007) '(0.008) '(0.007) '(0.003) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
-0.051* 0.041* 0.016 -0.001 -0.006** 

'(0.021) '(0.019) '(0.017) '(0.009) '(0.002) 

      

B 
-0.038*** -0.026* 0.035* 0.029** -0.001 

'(0.009) '(0.012) '(0.014) '(0.009) '(0.002) 

      

C 
-0.020*** -0.030* -0.005 0.045** 0.010* 

'(0.004) '(0.013) '(0.011) '(0.015) '(0.005) 

      

D 
-0.01 -0.017 -0.039** 0.028 0.038** 

'(0.006) '(0.014) '(0.014) '(0.015) '(0.012) 

      

F 
-0.009 -0.001 -0.031 -0.070** 0.110* 

'(0.011) '(0.019) '(0.028) '(0.025) '(0.043) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Appendix Table A10 

Change in probability of earning a given Algebra II grade after introduction of 

policy, overall and by Algebra I course grade, net of student background, high 

school fixed effects, and an indicator for having a teacher teaching Algebra II for 

the first time 

       

  Algebra II grade 

  A B C D F 

 All students 
-0.031*** -0.016* -0.001 0.030*** 0.017*** 

 '(0.006) '(0.008) '(0.009) '(0.009) '(0.004) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
-0.032** 0.021 0.003 0.012 -0.005 

'(0.012) '(0.013) '(0.011) '(0.007) '(0.003) 

      

B 
-0.048*** -0.012 0.031* 0.023 0.006* 

'(0.010) '(0.012) '(0.012) '(0.012) '(0.003) 

      

C 
-0.024*** -0.039* -0.015 0.067*** 0.012 

'(0.006) '(0.016) '(0.014) '(0.015) '(0.007) 

      

D 
-0.011 -0.027 -0.042* 0.028 0.052*** 

'(0.007) '(0.015) '(0.017) '(0.019) '(0.013) 

      

F 
-0.008 0.014 -0.009 -0.070* 0.073 

'(0.012) '(0.018) '(0.025) '(0.032) '(0.038) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Appendix Table A11 

Change in probability of earning a given Algebra II grade after introduction of 

policy, overall and by Algebra I course grade, net of student background, high 

school fixed effects, and an indicator for having a teacher teaching Algebra II for 

the first time 

       

  Algebra II grade 

  A B C D F 

 All students 
-0.031*** -0.016* -0.001 0.030*** 0.017*** 

 '(0.006) '(0.008) '(0.009) '(0.009) '(0.004) 

       

A
lg

eb
ra

 I
 g

ra
d
e  

A 
-0.032** 0.021 0.003 0.012 -0.005 

'(0.012) '(0.013) '(0.011) '(0.007) '(0.003) 

      

B 
-0.048*** -0.012 0.031* 0.023 0.006* 

'(0.010) '(0.012) '(0.012) '(0.012) '(0.003) 

      

C 
-0.024*** -0.039* -0.015 0.067*** 0.012 

'(0.006) '(0.016) '(0.014) '(0.015) '(0.007) 

      

D 
-0.011 -0.027 -0.042* 0.028 0.052*** 

'(0.007) '(0.015) '(0.017) '(0.019) '(0.013) 

      

F 
-0.008 0.014 -0.009 -0.070* 0.073 

'(0.012) '(0.018) '(0.025) '(0.032) '(0.038) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Additional results for robustness and validity checks 

Appendix Table A12  

Difference-in-differences results predicting Algebra II 

grade (0-4 scale) for ninth-grade Algebra I enrollees as 

a function of policy-exposure, size of post-policy high 

school Algebra II enrollment increase, and their 

interaction 

 
 

 (1) 

Post-policy -0.135 

 (0.060) 

  

Increase in Alg. II enrollment 0.792 

 (0.219) 

  

Post-policy by increase 0.510 

 (0.478) 

  

Algebra I grade (0-4 scale) 0.388*** 

  (0.000) 

 
 

High school fixed effects Y 

Demographic controls Y 

 
 

N 24,230 

R-sq 0.174 

 
 

p-values in parentheses  

* p<0.05    ** p<0.01    *** p<0.001  
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8 9

A 0.126*** 0.069

B 0.077 -0.03

C 0 -0.093

D 0.005 -0.091

F 0.508*** 0.007

A
lg

eb
ra

 I
 g

ra
d

e

Algebra I enrollment grade

Difference (in standard deviations) 

between mean Algebra I EOC score of 

students earning a given grade in 

Algebra I in 2011-12 and 2012-13, by 

grade of Algebra I enrollment, net of 

school fixed effects and demographic 

controls

Appendix Table A13

Notes: The general lack of statistical 

significance indicates that the underlying 

level of achievement that grades signified 

remained largely unchanged before and 

after the policy came into effect.
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Appendix Table A14 

Change in probability of earning a given Algebra II grade after introduction 

of policy, overall and by Algebra I course grade, net of student background 

and high school fixed effects in a given non-policy year, as compared with 

prior years (placebo test). 

       

  Algebra II grade 

  A B C D F 

P
la

ce
b
o
 

"p
o
li

cy
" 

ye
a
r 

2011-12 
0.002 -0.012 -0.013 0.01 0.013** 

(0.009) (0.012) (0.008) (0.014) (0.006) 
      

2010-11 
0.006 0.002 0.006 -0.012 -0.002 

(0.009) (0.008) (0.008) (0.008) (0.004) 

standard errors in parentheses 

* p<0.05    ** p<0.01    *** p<0.001 
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Appendix Table A15 

Geometry and Algebra II EOC test score levels by Algebra I 

EOC test score levels, for each grade of Algebra I enrollment 
        

 Grade 8 enrollees 

   Algebra II level 

  1 2 3 4 5 Total 

A
lg

eb
ra

 I
 l

ev
el

 

       

1 55 2 0 0 0 57 

 96.5% 3.5% 0.0% 0.0% 0.0% 100.0% 
       

2 496 54 11 0 0 561 

 88.4% 9.6% 2.0% 0.0% 0.0% 100.0% 
       

3 1,345 727 284 12 2 2,370 

 56.8% 30.7% 12.0% 0.5% 0.1% 100.0% 
       

4 161 329 380 37 11 918 

 17.5% 35.8% 41.4% 4.0% 1.2% 100.0% 
       

5 21 85 404 135 105 750 

 2.8% 11.3% 53.9% 18.0% 14.0% 100.0% 
       

 Total 2,078 1,197 1,079 184 118 4,656 

   44.6% 25.7% 23.2% 4.0% 2.5% 100.0% 
        

 Grade 9 enrollees 

   Algebra II level 

  1 2 3 4 5 Total 

A
lg

eb
ra

 I
 l

ev
el

 

       

1 723 8 0 0 0 731 

 98.9% 1.1% 0.0% 0.0% 0.0% 100.0% 
       

2 1,632 60 13 0 0 1,705 

 95.7% 3.5% 0.8% 0.0% 0.0% 100.0% 
       

3 1,657 341 72 5 1 2,076 

 79.8% 16.4% 3.5% 0.2% 0.1% 100.0% 
       

4 95 83 91 7 1 277 

 34.3% 30.0% 32.9% 2.5% 0.4% 100.0% 
       

5 13 23 68 21 13 138 

 9.4% 16.7% 49.3% 15.2% 9.4% 100.0% 
       

 Total 4,120 515 244 33 15 4,927 

   83.6% 10.5% 5.0% 0.7% 0.3% 100.0% 
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Appendix Figure A1: Course enrollments for eighth-grade Algebra I enrollees in their 

first, second, and third post-Algebra I year, by year of first Algebra I enrollment. 
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Appendix Figure A2: Course enrollments for ninth-grade Algebra I enrollees in their 

first, second, and third post-Algebra I year, by year of first Algebra I enrollment. 
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Appendix Figure A3: Illustrated regression discontinuity results (coefficients are 

adjusted for school fixed effects and student controls) for all bandwidths from +/-2 to +/-

25. 
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