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On the Time Scale Structure of Climate Variability and
Response

ABSTRACT

This thesis analyzes several aspects pertaining to the time scale structure of climate
variability and the temperature response to external radiative forcing. The analysis
begins with an examination of the structure of temperature variability on synoptic time
scales. Non-normal characteristics of temperature distributions have important implica-
tions for extreme climatic events. Mechanisms giving rise to the observed non-normality
have been posited across a range of time scales. The structure of non-normality is ex-
amined in radiosonde time series of winter temperature using linear filters. These linear
filters are shown to suppress non-normal variability. Observed non-normality on longer
time is shown to likely be introduced at the highest resolved frequency and propagated
through autocorrelation. Conversely, observations of normal distributions on synoptic
time scales are shown to be an artifact of filtering. In the process, a Monte-Carlo based
test for non-normality is developed for use in time series presenting autocorrelation.

On longer time scales the single most important climate quantity is, arguably, a
measure of the long-term warming that results from increased greenhouse gas concen-
trations, termed Equilibrium Climate Sensitivity or ECS. Estimates of ECS are drawn
from numerical simulations, historical data, and paleoclimate proxies. The historical
estimates have a range of 1.5-3°C compared to the 2-4.5°C range drawn from simu-
lations and proxies. These historical estimates, however, are suspected to be biased

low, as they rely on an assumption of a single radiative response to warming across
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all timescales. This bias is quantified using a Bayesian methodology to parse fast and
slow modes in the evolution of Earth’s temperature and radiation within an ensemble
of 24 climate GCMs. Centennial-scale modes with stronger amplifying feedbacks ulti-
mately contribute 44% of the long-term warming, but account for only 3% of current
warming. Thus, although the GCM ensemble has a median equilibrium sensitivity of
3.4°C, historical forcing would yield a biased estimate of only 2.5°C, consistent with the
observational range.

The equilibrium response is unlikely to be realized in upcoming centuries, as the
radiative forcing is expected to vary on the same time scales. The temporal structure
of atmospheric CO2 following present and future carbon emissions is simulated using
a response function consisting of three eigenmodes fitted to 16 models of the carbon
cycle. Convolving these response functions with those of the CMIP5 models provides a
comprehensive probabilistic distribution for the evolution of temperature in response to
any given emission scenario. The framework allows for calculation of emission budget
associated with a given peak temperature threshold and a given probability of exceeding
that threshold. As expected, the uncertainty range is sensitive to the fast decadal
modes of the physical system and the carbon cycle response for narrow emission profiles.
However, for more realistic broad emission profiles the uncertainty range is most sensitive
to the slow centennial modes of the physical system.

Due to the low degree of representation in modern observations, constraining the
evolution of slow climatic modes will likely require use of paleoclimate proxies. The
dominant modes of variability over the Pleistocene is associated with periodic changes
in the earth’s orbital configuration termed Milankovitch cycles. Such cycles have been
described in pre-Pleistocene sediment records spanning warmer climates that may pro-

vide better analogues for future warming. Most of these studies, however, employ cli-
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matic records set on orbitally tuned chronologies. The bias introduced in spectral power
estimates from the background continuum in the presence of tuning is quantified using
Monte-Carlo methods, and appropriate hypothesis test for orbital forcing is developed.
The test is applied to two marine sediment §'80O records spanning the Oligo-Miocene,
from ODP cores 1090 and 1218. Orbital tuning is found to increase the statistical signif-
icance of a precession peak, whereas the obliquity and eccentricity peaks are no longer

significant when compared to a null hypothesis of tuned background noise.
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1

Identification and interpretation of

non-normality in atmospheric time series



ABSTRACT

Non-normal characteristics of geophysical time series are important determinants of
extreme events and may provide insight into the underlying dynamics of a system. The
structure of non-normality in winter temperature is examined through the use of linear
filtering of radiosonde temperature time series. Filtering either low or high frequencies
generally suppresses what is otherwise statistically significant non-normal variability
in temperature. The structure of non-normality is partly attributable to geometric
relations between filtering and the appearance of skewness, kurtosis, and higher order
moments in time series data, and partly attributable to the presence of non-normal
temperature variations at the highest resolved frequencies in the presence of atmospheric
memory. A non-normal autoregressive model and a multiplicative noise model are both
consistent with the observed frequency structure of non-normality. These results suggest
that the generating mechanism for non-normal variations does not necessarily act at the

frequencies at which greatest non-normality is observed.

1.1 INTRODUCTION

Departures from normality in temperature have important implications for the frequency
of extreme events (Ruff & Neelin, 2012), and discerning the statistical characteristics of
non-normality can give insight into relevant physical processes (Sura & Perron, 2010). A
wide variety of mechanisms have been proposed to explain the observed non-normality
(Sura & Hannachi, 2015). One class of mechanisms posits that non-normality arises on
synoptic time-scales, either from the effects of state-dependent or multiplicative noise

(e.g. Sura et al., 2005; Sardeshmukh & Sura, 2009; Sura & Perron, 2010), or from



additive noise with non-normal perturbations (e.g. Luxford & Woollings, 2012). The
second class of mechanisms ascribes non-normality to low frequency variability, such as
non-normal distributions arising as mixtures of gaussian processes, introduced through
nonlinear regime shifts or non-stationarity (e.g. Hannachi, 2010).

Sardeshmukh & Sura (2009) note that the relationship of skewness and kurtosis in
observations of midlatitude variability is consistent with multiplicative noise acting on
synoptic time scales. Schneider et al. (2015), however, have shown that midlatitude
temperature records filtered to the canonical synoptic time scales appears normal within
3 standard deviations, whereas deviations from normality are apparent when including
variability at time scales longer than 15 days. Similarly, Rennert & Wallace (2009) use
geopotential height data filtered to three different frequency bands to show that skewness
in atmospheric variability is related to cross-frequency coupling between intermediate
and low-frequency time scales.

In seeking to distinguish between these seemingly conflicting interpretations it is use-
ful to distinguish structure indicative of physical processes from structure related to the
generic effects of filtering time series. Rosenblatt (1961) noted that “[i]t appears to be
part of the engineering folklore that a narrow band-pass filter applied to a stationary
random input yields an output that is approximately normally distributed.” The ten-
dency of filtering to alter the perceived normality of the data has been noted for other
signals (e.g., Rozanov, 1961; Mallows, 1967; Papoulis, 1972). Donohoe & Battisti (2009)
describe how the asymmetry in the distribution of synoptic cyclones and anticyclones
depends on the choice of temporal or spatial filtering techniques, and a similar tendency
towards normality has been noted for spatial filtering in the form of gridding (Director
& Bornn, 2015; Cavanaugh & Shen, 2015).

An overall tendency for filtering to make time series data appear more normal can be



explained from a Fourier perspective, whereby filtering nullifies interactions between fre-
quencies that are necessary for representing non-normal structure (Kotulski & Sobczyk,
1981; Garth & Bresler, 1997). There remains the possibility, however, that distinct
structure in the non-normality of filtered records can provide physical insight. In the
following we examine radiosonde time series, first demonstrating statistically significant
non-normality, then analytically describing how this non-normal structure can be ex-
pected to decay upon filtering, and finally describing more nuanced structures associated
with autocorrelation using two simple numerical models. We describe non-normality
using the the third and forth moments of the distribution, skewness and kurtosis. Intu-
itively, skewness reflects the symmetry of the distribution with positive values indicating
greater weight in the upper tail, while kurtosis reflects overall weight placed in the tails

relative to the center of the distribution.

1.2 RADIOSONDE TEMPERATURE DATA

As an initial example, Fig. 1.1 shows the distribution of wintertime radiosonde temper-
ature from the Barrow, Alaska station. Data are obtained from the Integrated Global
Radiosonde Archive (Durre et al., 2006) and are subset to only 12:00 GMT soundings at
850 millibars. The 1958-2009 interval is selected for analysis because only 2% of samples
are missing, and these are infilled by linear interpolation. We remove the annual cycle
and its first two harmonics by subtracting least squares-fit sine waves, though results
are similar when the annual cycle is retained. The sample distribution of the Barrow
data involves a positive skew and is significantly non-normal (p < 0.01). Significance
is assessed using a Kolmogorov-Smirnov (KS) test (Smirnov, 1939), where the largest

deviation between the sample cumulative distribution and that of a normal distribu-
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Figure 1.1: Filtering of radiosonde temperature time series and normality. Top: Power spectrum
of a radiosonde time series of temperature at 850 mbar from Barrow, AK. The annual cycle is re-
moved by notch-filtering the annual frequency and its first two harmonics. The time series is then
progressively filtered using a top-hat band-pass filter. The admitted frequency band for each fil-
ter is depicted by color bars indicating frequencies of 1/3-1/7 days ~! (blue), 1/3-1/40 days~!
(orange), and 1/3-1/400 days~! (yellow). Bottom: The probability density function (PDF) and
cumulative density function (CDF) are depicted for winter (DJF) temperatures for the full data
(solid black line), the filtered time series (solid colored lines),and a standardized normal distribu-
tion (dashed line).

tion is evaluated. In order to account for autocorrelation in the time series, the null
distribution is built from normally distributed surrogate data generated by phase ran-
domizing the original time series (See Supplemental Material). Rejection of normality
can appear either from features of sub-seasonal variability or interannual variability. For
instance, normal variability that is subject to an interannual trend in the mean would

give the appearance of non-normality (Huybers et al., 2014). Interseasonal variability,



such as increased variance in winter can also lead to increased values of kurtosis (Frisch
& Sornette, 1997). Interannual contributions and interseasonal variability is suppressed
in our analysis through only considering December through February winter months
(DJF) and normalizing each seasonal realization to zero mean and unit variance.

One indication of the relevance of understanding the origins of deviations from nor-
mality are that they reach 0.8 and 0.3 °C for the 5th and 95th percentiles respectively
and 2.3 and -0.5 °C for the 1st and 99th percentiles (See also Table 1.1 in the Sup-
plemental Material). Such deviations can lead to considerable changes in the rates of
exceedance of temperature thresholds, particularly in association with changes in mean
climate (Ruff & Neelin, 2012). Non-normality in the Barrow data is also consistent with
a more comprehensive study (Perron & Sura, 2013) that found statistically significant
deviations from non-normality in daily reanalyses data for nine atmospheric variables,
including temperature. Surface temperature from the U.S. Global Historical Climatol-
ogy Network (GHCN) has also been shown to exhibit significant non-normality, as well
as trends in higher order moments and quantiles (Huybers et al., 2014; Cavanaugh &
Shen, 2014).

The Barrow radiosonde data becomes more consistent with a normal distribution
upon filtering. For example, filtering to only retain synoptic scale anomalies at 1/3-
1/15 day~! frequencies alters the Barrow results to be substantially more consistent
with a normal distribution (p = 0.035, p = 0.15 using a standard KS test). Filter-
ing is performed using a simple top hat filter whereby Fourier components outside the
pass-band are set to zero. This approach is not optimal from the perspective of sup-
pressing Gibbs phenomena but is amenable to later analytic calculations. Furthermore,
no appreciable differences are obtained when using more sophisticated filters, such as a

forward-backward pass with a Butterworth filter.
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Figure 1.2: Effects of filtering on skewness (Top) and excess kurtosis (Middle) of 850 mbar DJF
temperature from radiosonde stations for the full range of pass-bands. Axes denote pass band lim-
its. Each season is treated as an independent ensemble member, standardized to zero mean and
unit variance. Values of sample S and K averaged are over all seasons. Lines parallel to the diag-
onal have equal bandwidth for the pass-band, with the width of the pass-band increasing further
away from the diagonal. Points below the solid black lines cannot be distinguished from samples
drawn from a normal distribution under a Kolmogorov Smirnov (KS) test, at 95% confidence level.
Markers denote choices of filter pass-band discussed in the text. Bottom: spectral estimates of
each individual season (black) and the mean spectrum (red). Note the logarithmic frequency axis

for spectral estimates.



Table 1.1: Difference in 5th, 95th, 1st, and 99th percentiles of anomalies from the mean in win-
tertime data from those of a normal distribution with identical mean and variance

Medford Barrow Sapporo Tateno

N 7.9 118 -6.5 -6.4
ATy, 04 0.8 0.6 0.8
TN 7.9 11.8 6.5 6.4
ATy; 0.3 0.3 0.6 0.8
TV 111 -168  -92 9.1
AT, 11 2.3 1.0 1.9
TN 111 16.8 9.2 9.1
ATy — -0.5 -0.5 0.7 1.5

The example in Fig. 1.1 can be generalized (Fig. 1.2) to show how non-normal compo-
nents vary according to filtering. In addition to Barrow (USA, 1958-2009), we examine
how skewness and excess kurtosis of three other long and nearly complete records from
Medford (USA, 1958-2009), Novgorod (Russia, 1966-2009), and Sapporo (Japan, 1965-
2009) change as a function of high and low cut-off frequencies specified for filtering.
Data are obtained and processed in a manner analogous to the Barrow example. A
general pattern holds wherein skewness and kurtosis diminish with increasingly narrow
filter bandwidths, but more nuanced structure is also present. Positive skewness appears

1

when the lowest frequencies of 1/90 days™ are admitted but which diminishes to near

L or higher are specified. Relative to the

zero once low-frequency cut offs of 1/7 days™
low-frequency cut off, changing the high-frequency cut off has only a weak influence on

skewness, except for the presence of skewness extending out toward a frequency band



near 1/3-1/4 days~!. In contrast to skewness, excess kurtosis is negative when admit-
ting the lowest frequencies and is maximized when passing frequencies between 1/5 to
1/2 days™!, roughly encompassing synoptic timescales. Excess kurtosis also becomes
strongly negative when the pass band becomes extremely narrow.

Significance of non-normality in the radiosonde time series is evaluated for each filter
combination using the previously described KS test. All records show statistically sig-
nificant non-normality in those regions having the greatest magnitudes of skewness and
excess kurtosis. Higher order moments are also present but decay more quickly under

filtering and make only minor contributions to overall non-normality.

1.3 WHY FILTERING TENDS TO GENERATE NORMALITY

The tendency of a time series to become more normally distributed after filtering can be
understood through the use of higher order spectra (Brillinger, 1965; Garth & Bresler,
1997). The power spectrum, bispectrum and trispectrum of a process x(t) can be defined

in terms of the Fourier Transform Z(f) as,

P(f1) = z(f1) - 2" (f), (1.1a)
B(f1, fo) = 2(f1) - 2(f2) - 2°(f1 + f2), (1.1b)
T(f1, fa, f3) = 2(f1) - 2(f2) - 2(f3) - 2°(fr + f2 + f3). (1.1c)

Higher order spectra follow a relation similar to Parseval’s theorem relating the power
spectrum and variance, wherein the surface integral over the bispectrum is related to

skewness, .S, and the volume integral over the trispectrum is related to excess kurtosis,



g JBUL f2) - dfy - dfs
(/ P(f) 'df1)3/2
_ JT(f, fo, f5) - dfy - dfz - dfs
(J P(A)-dp)*?

(1.2a)

K

(1.2b)

Deviations from a normal distribution are encoded in interactions between different
frequency bands in the Fourier representation of time series and are modified by filtering.
The specific effects of filtering x(¢) upon skewness and kurtosis can be obtained by
replacing #(f) with a filtered version, §(f) = h(f) - Z(f), in Egs. 1.1-1.2. Excluding
a frequency f; eliminates all interacting frequencies pairs, such that the unfiltered area
of the bispectrum generally diminishes more rapidly than that of the power spectrum.
For example, a low-pass filter that retains only a fraction S of unfiltered frequencies
will lead to a bispectrum with only 3/32/4 of its area being unfiltered for 3 < 2/3. A
geometric depiction of the effects of band-pass filtering upon the bispectrum is given
in Fig. 1.3, and a similar depiction for the trispectrum is given in Fig. 1.4. Although
the patterns are visually simple, their analytical computation involves integrals over
higher order spectral volumes, which can become rather involved (Biieler et al., 2000).
Analytical solution for bispectrum filtering are given in the supplemental material.

Fig. 1.5 shows the fraction of skewness and excess kurtosis admitted as a function
of filtered cut-off frequencies. There is excellent agreement between these analytically
computed values and that obtained from filtering a random time series containing 107
realizations from a Pearson distribution. The Pearson distribution is chosen because it

is specifically derived as a class of models used to fit a non-normal distribution based on

10
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Figure 1.3: Effects of filtering on the bispectrum. Frequency axes are normalized relative to the
Nyquist frequency (N), and the solid color depicts the part of the bispectrum respectively that is
allowed to pass under a band-pass filter. Rows from top to bottom indicate greater filtering of
high frequencies, and columns from left to right are greater filtering of low frequencies. Note that
both negative and positive frequencies contribute to the bispectrum.
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Figure 1.4: Same as Fig. 1.3, but depicting the effects of a top-hat band-pass filter on the
trispectrum.
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skewness and kurtosis, and because it provides a good fit to the radiosonde record. The
results remain unchanged, however, if the simple models are forced with beta, gamma or
chi-squared distributions. Similarly, the results hold for the case of Correlated Additive
and Multiplicative noise, where no distribution is explicitly prescribed. When the time
series is reduced to 10° points, the match becomes more noisy, with the implication that
the finite radiosonde time series we analyze can be expected to have variable skewness
and kurtosis structure even if the underlying statistical distributions are identical.

The analytical results describe the main features of the skewness observed in the
filtered radiosonde data (Fig. 1.5a). Filtering low frequencies more rapidly decreases
skewness than filtering high frequencies because, as depicted in Fig. 1.3, the sum of low-
frequency pairs excludes more area of the bispectrum not already excluded by filtering
a single member of the pair. The analytical results also explain a lobe of high skewness
that extend out towards frequencies in the vicinity of half the Nyquist frequency, or in
the case of the daily sampled radiosonde time series, 1/4 days~!. This lobe is again a
consequence of asymmetries in how filtering certain frequencies also excludes energy at
interaction frequencies (see Eq. 1.1).

In contrast with skewness, correspondence between the kurtosis obtained from our
analytical results and the radiosonde observations is poor. The Fourier representa-
tion shows contours of kurtosis that align with contours of constant filter bandwidth
(Fig 1.5), whereas the data show maximum kurtosis when filtering everything but fre-
quencies corresponding to synoptic timescales. Negative values of excess kurtosis ob-
served when filtering all but a small number of frequencies (the diagonals in Fig. 1.2)
reflects the fact that the excess kurtosis of a sine wave is -1.5. For the case of a normal
process, wherein the Fourier coefficients are independently distributed, it can be shown

that the expected sample kurtosis converges to the process excess Kurtosis of zero as

13
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Figure 1.5: Skewness and excess kurtosis under band-pass filtering, relative to unfiltered values.
Axes denote pass band limits, relative to the Nyquist frequency. Gray shaded area denotes values
of skewness of exactly zero. Left: Numerical computation of a filtered isotropic bispectrum, and
synthetic estimations based on independent non-normal noise. Right: Same as middle, but for
excess kurtosis. Details of the numerical estimations are given in the appendix.

K « —3/2n, where n is the number of consecutive frequencies retained in the Fourier
spectrum (see Appendix). Analytical results do not display this sinusoidal limit on
account of continuous frequency resolution. The remainder of the mismatch between
the analytical and observed kurtosis, however, points to substantive differences between
filtering independent realizations from a Pearson distribution and actual temperature

variability.

1.4 NUMERICAL MODELS

An obvious deficiency in the foregoing analytical results is the presumption of indepen-
dent realizations, whereas spectral estimates of radiosonde temperature have increasing
energy toward lower frequencies (Figs. 1.1,1.2), indicative of memory between subse-

quent values. We represent correlations in atmospheric data using an autoregressive

14



process of order one, meant to represent the generally more energetic variability found
at lower frequencies, either because of preferential damping of high frequency variations
or the presence of memory in the record, e.g. due to the long timescales associated with

ocean thermal inertia (Hasselmann, 1976),

x(t+1) = pz(t) + n(t), (1.3)

where 7 represents independent realizations from a Pearson distribution. Specifying
p = 0 gives the same skewness and kurtosis structure discussed previously (Fig. 1.5),
at least up to variations associated with finite samples. Setting p = 0.9, however, gives
results in agreement with observations (Fig. 1.6), especially with respect to maximum
kurtosis at synoptic periods.

We also consider a a discretized version of the model presented by Sardeshmukh &
Sura (2009) that involves correlated additive and multiplicative (CAM) noise. This is
equivalent to an AR(1) process forced with non-normal noise, wherein the non-normality
arises from state-dependency of perturbations. Such state-dependency has been mod-
eled as arising from stochastic damping of Rossby waves (Sura et al., 2005) or stochastic
advection of potential vorticity anomalies (Sura & Perron, 2010). The discretized model

can be written as:

P{t4+1) = pr(t) + bin(t) + (Ba(t) + hma(t) — 5 o, (1.4)

with 77 and 72 representing independent realizations of a standard normal distribution.
The first term represents the autocorrelated nature of the process, the second and third
term respectively represent the normal and non-normal innovations, and the last term

ensures the process is stationary. Non-normality is introduced by a state-dependent and

15
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Figure 1.6: Same as Fig. 1.2, but for synthetic data. From left to right, columns present results
models that are i.i.d., autoregressive order one with parameters of p = 0.5 and p = 0.9 (Eq. 1.3),
and correlated additive and cumulative noise (Eq. 1.4). The i.i.d. and autoregressive models are
driving by non-normal realization from a Pearson distribution. For each model, 50 independent
ensemble members of length 90 are generated, with each member representing a season. Plotted
results are the average after analyzing each season, except for the bottom panels which also shows
individual realizations in black.



asymmetric amplification of the normal forcing, 7s. Specifying p = 0.9, = 0.1, E = 0.2,
and g = 0.1 gives output with a similar structure of skewness and kurtosis to the
radiosonde data (Fig. 1.6).

Both numerical models reproduce the lobe of increased kurtosis present in radiosonde
data. Heuristically, this lobe seems to be a consequence of the fact that high-pass fil-
tering autocorrelated data to time scales shorter than the decorrelation time introduces

a strong variance heteroskedasticity.

1.5 FURTHER DISCUSSION AND CONCLUSIONS

Both the additive and multiplicative noise models fit the observations through inher-
iting non-normality from synoptic scale processes. This result can be reconciled with
Schneider et al. (2015) finding normal variability at synoptic time scales but non-normal
variability at longer time scales through considering the effects of band-pass filtering.
Filtering to 1/3—1/15 days~! synoptic frequencies generally leads to insignificant devia-
tions from normality in the radiosonde data (Fig. 1.2), in agreement with analytical and
numerical predictions (Figs. 4,5). The findings of non-normal variability for a 1/25-1/35
day~! pass-band results from the discrete frequency basis only retaining a small num-
ber of non-zero frequency terms, and, thus, tending towards a distribution determined
by the sinusoidal Fourier basis. For completeness, we have also verified that apply-
ing the aforementioned filters to the five ERA-Interim 850hPa grid boxes examined by
Schneider et al. (2015) gives equivalent results.

Rennert & Wallace (2009) also examine the presence of non-normality as a function of
retained frequency. Using data filtered to retain frequencies below (30 day)~!, between

(6-30 day) !, and above (6 day)~! they attribute skewness to the coupling between the
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low and intermediate frequency bands. Non-normality is then postulated to arise from
processes with corresponding time scales, e.g., global teleconnections and Rossby-waves.
Our findings, however, indicate that non-normality introduced at the highest resolved
time-scales in the presence of memory leads to the appearance of greatest skewness
when low frequencies are retained (Fig. 1.6). These results suggest that the generating
mechanism for non-normal variations does not necessarily act at the frequencies at which
greatest non-normality is observed.

Instead, our findings are consistent with processes introducing non-normality on time
scales faster than the local decorrelation time scale. Schneider et al. (2015) suggest that
mid-latitude temperature distributions are controlled by anomalies advected along a
uniform gradient. Such a model may also account for non-normality introduced at
synoptic time scales as additive noise, for example, through asymmetries in advection
length scale or deviations from a constant gradient introduced by the finite size of the
planet or the presence of jets (Luxford & Woollings, 2012). It remains unclear, however,

whether the highest resolved frequency of 1/2 day !

is near that of the process giving rise
to the non-normal distribution. Non-normality could also be introduced by atmospheric
turbulence at much higher frequencies (Chu et al., 1996), and it will be useful to examine
higher resolution temperature records in future work.

The frequency structure associated with skewness and kurtosis are, of course, not
the only metrics by which to characterize non-normality associated with a time series.
The relation between skewness and kurtosis in samples of both atmospheric and oceanic
variability (Sura & Sardeshmukh, 2008; Sardeshmukh & Sura, 2009) has been shown to
have a tighter clustering along a parabola than would be expected from purely math-

ematical considerations (Pearson, 1916; Rohatgi & Székely, 1989). Correlated additive

and multiplicative noise can reproduce this parabolic clustering, although a number of
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other processes may also give rise to similar relations (Sattin et al., 2009).

Tests for better distinguishing between different classes of non-normal generating pro-
cesses have seen little progress (Sura & Hannachi, 2015). Autocorrelation in the data
seems to be a primary obstacle. One promising technique in this regard is appropriately
pre-whitening. Further possibilities include directly testing for multiplicative relation-
ships, examining the extent to which spectral or higher order spectral features suggest
the presence of aliasing, and developing approaches for handling non-stationarity asso-

ciated with diurnal, seasonal, or longer timescale changes in distributional properties.

APPENDIX 2.1: INFLUENCE OF DISCRETE FREQUENCY SPACE

Filters can cause the resulting signal to tend toward that of a sinusoid when the pass-
band only admits a small number of frequencies. We derive a scaling relationship to
quantify what is meant by a small number. First, consider the distribution of a sinusoid

with amplitude a,

1
way /1 — (%)2

The odd moments vanish on account of symmetry but excess Kurtosis is —3/2. The

(1.5)

characteristic function of Eq. 1.5 equals Jy (as), i.e. the zero-th Bessel function of the
first kind scaled by amplitude a, and the characteristic function of the distribution of

a sum of n such components is the product of their individual characteristic functions,

H?:l Jo (ajs).

Assuming all a; equal unity and uniformly distributed phases, the k-th moment
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becomes,

k n
pe= BV = () ([T )| (1.6)
J=1 s=0

The fourth moment is solved for by setting k = 4, expanding using the chain rule
while making use of identities relating derivatives of Bessel functions of the first kind
of different orders, and evaluating at s = 0. Variance is similarly computed by setting

k = 2. Excess kurtosis is then,

K=M_3__°2 1.
ot 3 2n’ (L1.7)

which is within 5% of a normal distribution once ten frequencies are included. There

will be phase dependence between different frequencies for non-normal distributions,

and synthetic tests confirm that convergence is slower under these conditions.

APPENDIX 2.2: ANALYTICAL AND NUMERICAL FILTERING RE-

SULTS

The bispectrum, Bp, and trispectrum, T, of the filtered time series are

Br(f1, f2) = Ha(f1, f2) - B(f1, f2), (1.8a)
TF(fhf?af?)):H3(f17f27f3)'T(f17f2)7 (]‘Sb)

where Hy and Hj are defined in terms of the filter h(f) as,
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Hy(f1, f2) = h (1) - h(fo) - B* (fi + fa) (1.92)
H3(f1, fo, f3) = b (f1) - h (f2) - B (f3) - h* (fr + fo + f3) - (1.9b)

Since Z(f) is periodic with period 2fx, the top-hat filter ﬁ( f) is defined accordingly:

. I L fo <(f+ fyvmod2fy) - fn < fu
h(f)= (1.10)

0 ,otherwise,

with fr, fig the low- and high-frequency cutoffs.

Figure 1.5 shows estimates of skewness and kurtosis obtained by numerical integra-
tion. For each [fr, fi] pair spanning a set of 50 x 50 possible combinations, theoretical
estimates of skewness and kurtosis of the filtered data are computed by integrating ac-
cording to equation 1.2. Bp and Tr are computed via (1.8-1.10) on a discrete grid of
1000 x 1000 and 100 x 100 x 100 frequency bins respectively, and assuming B(f1, f2) =1
and T'(f1, f2, f3) = 1. These values are compared with estimates obtained by filtering
synthetic data to the same set of [fr, fi] pairs.

For the bispectrum, we can write down analytical values for the relative skewness
of the filtered data. Equation 1.10 defines seven different regions in the [fr, fu] €
{[0, fn] x [0, fN]|fr < fu} space of possible pass-bands, each with a different expression
for the total area of the admitted bispectrum. The regions are depicted in Fig.1.7 as

are analytical estimates of the filtered skewness. The lines a-e delimiting the different
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Figure 1.7: Skewness under band-pass filtering, relative to unfiltered values. Axes denote pass
band limits, relative to the Nyquist frequency. Gray shaded area denotes values of skewness of
exactly zero. Lines a-e delimiting different regions are given in Eqns. 1.11. The value of skewness
in regions 1-6 are given in Eqns. 1.12

regions are

a:fo = 2fL

b:fu = 2/3,fL<2/3
cfoo= 2/3,fn =22/3
d:fop = 2-JL

e:fH = 1_fL/27 (111)

o
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while relative skewness in the six non-zero regions is

1: _(2=3fn)*
. 4(fu—fr)3?
o . Z243fu—3f}/4+3fr—3fnfL—3f}/4
) (fa—fr)3/?
5. 1=3fu+3f—3fufL+3f7
) (fa—fr)3/?
4 - M
) A(fu—fr)3/?
5. _(2=3f1)%
’ A(fa—fr)3/?
—2+fu (3—6fL)+3fL+9f2 /4

APPENDIX 2.3: TEST FOR NON-NORMALITY

The KS test for non-normality employed here accounts for autocorrelation of the data,
as well as the reduced number of degrees of freedom relative to the sample size in fil-
tered data. The test is similar to the Lilliefors variation on the KS test (Lilliefors,
1967). The test statistic is computed as the maximum deviation between the sample
cumulative distribution function (CDF) and the CDF of a normal with identical mean
and variance. A Monte-Carlo method is employed to compute the null distribution,
by computing the maximum deviation between the sample CDF of phase randomized
versions of the original data and the CDF of a normal distribution. The phase ran-
domization ensures that the null model is normally distributed, while maintaining the
same sample autocorrelation function and the same number of degrees of freedom as
the original data. The test is consistent (5% type I errors at the nominal p=0.05 level)
for the cases of autocorrelated data, subsampling for DJF, as well samples that have
been normalized to unit variance and zero mean, thus avoiding the biases the standard

KS test suffers from. A detailed analysis of the performance of this test is presented in
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Figure 1.8: Probability of type-| errors (false positives) for the standard KS test and the KS test
using phase randomization (KSpg). At the nominal 95% critical value, a consistent test should
obtain 0.05 false positives. Left: Normally distributed AR(1) process of length N=3500; Middle:
Normally distributed AR(1) process of length 90*360=14,400, simulating 40 years of data. The
data is then sub-sampled to 40 blocks of length 90 simulating an analysis of DJF temperature
only. Right: I.1.D. Normally distributed data, filtered and normalized to unit variance. Probability
of type-l error has been assessed using 500 iterations.

Figs. 1.8 and 1.9.
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Figure 1.9: Estimates of the Statistical power of the test, defined as one minus the probability of
false negatives, for a standard KS test (left) and the KS test using phase randomization (KSpg)
(right). The data consists of 500 i.i.d. samples drawn from a Pearson'’ distribution with zero
mean, unit variance and varying skewness and kurtosis. The different regions depict the partic-
ular type of distributions. Curve A depicts the fundamental inquality of skewness and kurtosis.
The region between A and B consists of Beta distributions; Curve B denotes the family of gamma
distributions with unit variance (including chi-squared); Region between B C contains Fisher’s
F-distribution; Curve C contains inverse Chi-squared; The Region left of Curve C contains the
Cauchy and Student’s t-distribution.
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Reconciling Historical and Model-Based

Estimates of Climate Sensitivity
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ABSTRACT

The latest IPCC Assessment Report widened the Equilibrium Climate Sensitivity (ECS)
range from 2-4.5 °C to 1.5-4.5°C in order to account for the lack of consensus between
estimates based on models and historical observations. The historical ECS estimates
range from 1.5-3°C and are derived assuming a linear radiative response to warming. A
Bayesian methodology applied to 24 models, however, documents curvature arising from
an evolving contribution of inter-annual through centennial modes of radiative response.
Centennial modes display stronger amplifying feedbacks and ultimately contribute 28-
68% (90% c.i.) of equilibrium warming, yet they comprise only 1-7% of current warming.
Accounting for these unresolved centennial contributions brings historical records into

agreement with model-derived ECS estimates.

2.1 MAIN TEXT

Estimates of Equilibrium Climate Sensitivity (ECS) from GCMs (Flato et al., 2013)
and paleoclimate records (Rohling et al., 2012) are generally consistent with a range
of 2-4.5°C, but a number of studies based on historical instrumental records (Gregory
et al., 2002; Roe & Armour, 2011; Otto et al., 2013; Masters, 2014; Lewis & Curry, 2014)
yield a lower range of 1.5-3°C (Forster, 2016). These systematically lower observational
estimates have been interpreted as demonstrating that GCMs are overly sensitive to CO»
forcing, and that the ultimate amount of warming that the Earth would experience at
a given concentration of greenhouse gases is less than previously thought (Otto et al.,
2013; Lewis & Curry, 2014).

A major challenge in inferring ECS from instrumental records is that the current
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climate system is not in energetic equilibrium. On average, Earth’s surface currently
takes up between 0.1-0.9 W/m? more heat than it loses (Von Schuckmann et al., 2016),
where this rate of heating is denoted as H. In order to extrapolate to the temperature at
which radiative equilibrium would be re-established, a proportionality between changes
in outgoing radiation and temperature is generally assumed (Gregory et al., 2002; Roe
& Armour, 2011; Otto et al., 2013; Masters, 2014; Lewis & Curry, 2014; Forster, 2016),
A= (F—H)/T. F represents anomalies in downward radiative forcing and the difference
gives the upward radiative response, R = F' — H. If A is assumed constant over time,
ECS can be inferred by zeroing out H and assigning F' equal to the forcing associated
with a doubling of atmospheric CO», giving an estimated ECS of Fp, A~L.

The validity of such an extrapolation is questionable, however, because of well-
documented time dependence of A in climate simulations (Murphy, 1995; Senior &
Mitchell, 2000; Winton et al., 2010; Held et al., 2010; Bitz et al., 2012; Armour et al.,
2013; Andrews et al., 2015; Gregory & Andrews, 2016). This time dependence is a prime
suspect for the systematic differences between GCMs and historical estimates of ECS
(Armour, 2016). Efforts at resolving the discrepancy, however, have been stymied by
the lack of a methodology to quantitatively account for changes in A (Forster, 2016).
We derive a generalized fit of the change in A\ in 24 GCM simulations from phase 5 of
the Climate Model Intercomparison Project (Taylor et al., 2012), and use the results to
estimate the bias inherent in historical energy budget constraints on climate sensitivity.

A number of simple linear models have been postulated to describe variability in
A. One set includes a fast-responding upper ocean that is coupled to a more slowly-
responding deep ocean (Geoffroy et al., 2013), sometimes including an efficacy term
that modifies how much surface warming is associated with oceanic heat fluxes (Winton

et al., 2010; Rose et al., 2014). Another set of simple models represents the presence
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of distinct regions having their own response time scale and feedbacks (Armour et al.,
2013; Andrews et al., 2015). Both of these classes of models represent changing patterns
of warming over decades and centuries, where delayed warming of the Southern Ocean
(Armour et al., 2013; Andrews et al., 2015) and Eastern Equatorial Pacific (Held et al.,
2010) are especially important because of the upwelling of deeper waters in these regions.
Interannual time-dependence in the radiative feedbacks in response to warming has also
been highlighted as leading to changes in A, particularly in response to changes in cloud
feedbacks in the Tropical Pacific (Andrews et al., 2015).

What model formulations are most useful for representing the heterogenous evolution
of the forced response of GCMs remains a subject of ongoing research, but it is possible
to generically represent how global mean temperature evolves in existing simple models
(Winton et al., 2010; Rose et al., 2014; Geoffroy et al., 2013; Armour et al., 2013;
Andrews et al., 2015), or any other linear system, using an eigenmode decomposition

(Caldeira & Myhrvold, 2013),

anTox

T,(t) = exp(—t/m,) * F(t), (2.1)

TnFox

where the x represents the convolution operator. Each eigenmode of the temperature
response, 1, characterizes a rate and magnitude at which global warming is excited
by radiative forcing. The rate of response is governed by the timescale, 7,, and the
ultimate magnitude by a fractional contribution, a,, of the equilibrium climate sensi-
tivity, Tox /Fax. The amount of warming realized at time ¢ is also a function of the
structure of the forcing, F', where eigenmodes with small 7 are more strongly excited
by high-frequency variations than eigenmodes with larger 7.

The radiative response, R, is represented following the standard approach (Gregory
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et al., 2002) of assuming proportionality with 7", but where we assign a distinct radiative
feedback for each eigenmode of the temperature response, R, = A\,Th,.

We decompose simulations of the temperature and radiative response to increased
CO2 concentrations across 24 GCMs using a full Bayesian inference methodology. Our
Bayesian approach allows for fitting simulated global average temperature, 7(¢), and
top-of-atmosphere energy flux, H(t), in a manner that accounts for autocorrelated noise
in T and H, uncertainties in extrapolating T" and H to full equilibrium, and uncer-
tainties in forcing, Fo«. Further, the approach accounts for the fact that coefficients
governing the distribution of allowable autocorrelations and uncertainties—the so-called
hyperparameters—themselves need to be inferred from the observations. Three eigen-
modes are used on the basis of fewer leading to systematic discrepancies between our fit
and simulations during initial model adjustment (Fig. 2.8), and use of more eigenmodes
failing to improve the fit as judged by a Bayesian Information Criterion. Bayesian fits
generally parse the 140-300 year long simulations into distinct annual, decadal, and
multi-centennial modes, though results differ slightly across GCMs (Table 2.2 ).

Fig. 2.1 illustrates the evolution of Earth’s energy imbalance with global warming in
a representative GCM. As H approaches zero there is typically an inflection such that
A(t)—or, minus the slope of H with respect to T—decreases in magnitude, and greater
warming is required to achieve radiative equilibrium. The ECS across the ensemble
has a median value of 3.5°C, with a 5-95% credible interval of 2.2-6.1°C. That the
distribution of ECS is skewed (Roe & Baker, 2007) can be seen in Fig. 1 as the geometric
result of uncertainties in A(¢) having an asymmetric influence on the temperature at
which top-of-atmosphere energy flux goes to zero. Individual GCM ECS estimates have
maximum likelihood values similar to those reported by Assessment Report 5 of the

Intergovernmental Panel on Climate Change (IPCC) (Flato et al., 2013) (Table 2.2).
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Figure 2.1: Evolution of top-of-atmosphere energy flux as a function of global tem-
perature. Annual average (brown dots) and ten-year running average values (black line)
of top-of-atmosphere energy flux (TOA Flux or H) and global-average temperature (7')
are shown for a representative CMIP5 GCM (NorESM1-M) along with draws from the
Bayesian fits (pinks lines) and their median (red line). The distributions of radiative forc-
ing (green line along y-axis) and equilibrium climate sensitivity (purple line along the
x-axis) are estimated as part of the Bayesian fit. Curvature in the fit can be compared
against a constant equilibrium feedback parameter connecting median radiative forcing to
median warming (gray dashed line), where convexity indicates a decrease in the magnitude
of A(t) with time. Note that both 7" and H are halved in order to facilitate comparison of
these results using quadrupled CO, forcing with the standard definition of equilibrium cli-
mate sensitivity using doubled CO,. Simulation year is indicated by ticks at top of graph.
NorESM1-M was chosen based on having the minimum total deviation from the ensemble
median in ECS, ICS and Fyx. (See Figs. 2.4-2.7 for the other 23 GCMs.)
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The 95th percentile on ECS using is increased significantly, however, from 4.5 to 6.1 °C
due to the inflection in A(¢) not having been fully accounted for in previous estimates
(Andrews et al., 2012; Forster et al., 2013).

As simulations warm, the net feedback operating at any instant represents a weighted

average across each mode in the Bayesian fit,

—Zg:l AnTn(t) . (2.2)

A(t) =
V=58 o

Estimates of sensitivity based on the historical record are typically obtained by dividing
Fy by A(t). We term this estimate the instantaneous climate sensitivity, ICS(t) =
Fyy /A(t). ICS is sometimes referred to as effective ECS (Forster, 2016) when discussing
instrumental estimates, but is distinct from other definitions of effective ECS used for
GCMs (Bitz et al., 2012). Moreover, our point is that ICS may be an ineffective estimate
of ECS.

Eq. 2.2 represents how different modes of warming cause variations in ICS over time.
The slowest mode has a characteristic time scale of 350 years (c.i., 180-960 years) and
contributes a median of 44% (c.i., 28-66%) of the total equilibrium warming across the
Bayesian fits. Historical forcing, however, only weakly excites this slow mode, such
that it only contributes 3% (c.i., 1-7%) of the historical warming (Fig. 2, Table 1).
This contribution is computed by applying a best estimate of effective historical forcing
from 1750 to 2011 provided in IPCC Assessment Report 5 (AR5) (Myhre et al., 2013)
to the Bayesian fit associated with each GCM. This small response reflects that the
slowest mode still remembers volcanic cooling episodes prevalent between 1750-1900,
and that it is slow to realize warming from more recent increases in radiative forcing.

By comparison, had the 2011 forcing of 2.2 W/m? been continuously applied since
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Figure 2.2: Evolution of fast and slow modes under historical forcing. Response of
the CMIP5 GCMs to ARb historical forcing from 1750-2011 (red) and to an abrupt in-
crease in 1750 to the 2011 forcing value of 2.2 W/m? (blue). Responses are derived from
the median Bayesian fit, which permits for parsing fast (modes 1 and 2) and slow (mode
3) contributions and estimating equilibrium conditions (green lines at right). Equilibrium
responses are to the 2011 forcing of 2.2 W/m?2, also known as committed warming (Meehl
et al., 2005; Wigley, 2005). Mode 3 accounts for 44% of equilibrium warming but only
3% of present warming. See Table 2.1 for the median and 5-95% range for relevant pa-
rameters.
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eigenmode parameters median 5%  95%

71 [years] 0.8 02 26

A1 [W/m?/°C] 1.6 04 4.0
Contribution to equilibrium warming 24% 10% 40%
Contribution to historical warming 47%  26%  75%
T [years] 9 4 37

Ao [W/m?/°C] 14 08 28
Contribution to equilibrium warming | 32% 15% 48%
Contribution to historical warming 49%  24% 72%
T3 [years] 350 180 960

s [W/m2/°C] 0.8 03 16
Contribution to equilibrium warming | 44%  28% 66%
Contribution to historical warming 3% 1% ™%

(c.i., 4-37 years).
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Table 2.1: Fast and slow modes contributions to equilibrium and historical warming. Pos-
terior median and 5-95% credible interval values for the time scale and feedback factors of individ-
ual eigenmodes, and the fraction they contribute to equilibrium and historical warming.

1750, the slow mode would instead contribute 29% (c.i., 18-43%) of the warming. The
structure of historical forcing is thus strongly biased toward sampling the faster modes

of response with characteristic time scales of 0.8 years (c.i., 0.2-2.6 years) and 9 years

The faster modes of response have larger magnitudes of A\, with best estimates of
1.6 (c.i. 0.4-4.0) W/m?/°C for the ultrafast and 1.4 (c.i. 0.8-2.8) W/m?/°C for the fast
mode, as compared to 0.8 (c.i. 0.3-1.6) W/m?/°C for the slow mode. Larger magnitudes
of A\ indicate that less warming is required to achieve radiative equilibrium. Thus

sampling essentially only the fast modes in historical estimates biases ICS values low



compared to ECS. In particular, sampling ICS in a manner consistent with observational
estimates (Methods) leads to an ICS of 2.5°C (c.i. 1.6-5.6°C), or 1°C cooler than ECS
(Fig. 3). These findings are also consistent with results from simulations using prescribed
historical sea surface temperatures. Prescribed historical sea surface temperatures only
weakly excite the slow mode of radiative response, analogous to runs wherein historical
forcing is prescribed, and similarly lead to the inference of smaller equilibrium warming
than is associated with CO2 quadrupling experiments (Gregory & Andrews, 2016).

A recent review of observationally-based estimates of ICS shows a median value of
2°C and an 80% range of 1.6-3°C, where the range is obtained by trimming the highest
and lowest estimates from across the ten available studies (Forster, 2016). This range of
observationally-inferred ICS values is contained within and centered on the maximum
likelihood value of the distribution of ICS values that we estimate from GCM simulations
(Fig. 2.3b). Accounting for further issues involving forcing efficacy (Kummer & Dessler,
2014; Marvel et al., 2016) and temperature sampling methodology (Richardson et al.,
2016) might narrow the distributions and bring them into even closer agreement.

Slow feedback contributions to warming are only weakly manifest in the current
climate system because the rise in greenhouse gas concentrations that occurred primarily
in the last 50 years has been active for a short period relative to the multi-centennial
time scale of the dominant slow mode. This small manifestation makes it difficult, if
not impossible, to accurately estimate ECS from historical observations, and highlights
the importance of paleoclimate records for purposes of observationally constraining slow
feedback processes (Rohling et al., 2012). Looking forward, these results also highlight
that the warming current greenhouse gas concentrations have committed us to (Meehl
et al., 2005; Wigley, 2005) will evolve according to a slow mode of response that is

distinct from the present warming pattern.
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Figure 2.3: Equilibrium and instantaneous climate sensitivity distributions. a, Distri-
bution of equilibrium climate sensitivity, ECS, from 5000 posterior draws of our Bayesian
fit to each of 24 GCMs (indicated by colors). Aggregating across the posterior draws for
all GCMs yields a median value of 3.4°C and a 5-95% credible interval of 2.2-6.1°C. b,
Similar to (a) but for instantaneous climate sensitivity. ICS is obtained by applying AR5
historical forcing to our Bayesian fits, and has a median value of 2.5 and a 5-95% credi-
ble interval of 1.6-5.6°C. The range of ICS values estimated in historical studies (Forster,
2016) (vertical black lines) bracket the most likely GCM values, demonstrating consistency
between observational and GCM results whepgthey are appropriately compared (methods)



2.2 METHODS

2.2.1 EIGENMODE DECOMPOSITION

Eigenmode Decomposition is performed upon global and annual average temperature,
T, and top-of atmosphere energy flux, H, using a full Bayesian statistical inference
methodology. Simulations involving an instantaneous quadrupling of COy are consid-
ered across 24 GCMs (Table 2.2). These simulations have the highest signal to noise
ratio of the available CMIP5 simulations; do not suffer from issues of collinearity be-
tween forcing and response as in simulations with linear increase in forcing; are not
subject to uncertainties in the structure of the applied forcing as in the historical GCM
simulations; and the sustained forcing will most strongly excite the slowest modes of
response. Additionally, values of ECS stated by the IPCC are based on these abrupt
quadrupling simulations.

The constant forcing, denoted as 2Fb,, permits for simplification of Eq. 1(23)

3
T (t) = 2T Zan (1 — €Xp (_t/Tn)) ) (23)

n=1

where the evolution toward an equilibrium warming of 275« involves three eigenmodes
having contributions of relative magnitudes, «a,,, and characteristic time scales, 7,,.
The radiative response to increased global average surface temperature is represented

as evolving along the same eigenmodes,

3
R(t) = 2F5 > Bn(l — exp(—t/7y)), (2.4)

n=1

toward a radiative equilibrium wherein R equals the radiative forcing, 2F>.. Fractional
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contributions of eigenmode n are given by (,. It follows that the radiative feedback

associated with mode n is,
Rn — 5nF2><

Ay = n
" T, oy ’

(2.5)

where Fyy /Toyx is the net equilibrium feedback. Previously described simple linear
models for changes in A(¢)(13,15,16,20,22) all assume three or fewer modes such that
their temporal evolution can be fully described using Eqs. 2.3-2.5 (see Supplementary
Text).

The radiative response, R, is not directly available from GCM simulations. However,
the top-of-atmosphere energy flux, H, can be related to the radiative response as H =

F — R, yielding,

3
H(t> =2F5y |1 - Z/Bn (1 — eXp (_t/Tn)) ’ (2'6)

n=1

for the abrupt CO5 quadrupling experiment. Note that responses are corrected for GCM
drift using the standard methodology wherein drift values for 7" and H are computed

in pre-industrial control runs and subtracted from the quadrupling simulation.

2.2.2 BAYESIAN INFERENCE

Bayesian Inference is performed by conditioning the parameters in Eqs. 2.3 and 2.6 on
simulated time-series of T" and H. Variability that is not linearly related to the forced
response in 1" and H—which arises, for example, from internal modes of variability such
as El Nino—is represented as a normally distributed order-one autoregressive processes
with auto-correlation parameters, pr and pg, and variances, 02/(1 — p%) and 0% /(1 —

p%;). This formulation is supported by the posterior residuals (Figs. 2.9 and 2.10)
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having a structure consistent with an autoregressive process and exhibiting only minor
deviations from a normal distribution when subjected to a Kolmogorov-Smirnov test
that accounts for autocorrelation (Proistosescu et al., 2016).

Uniform priors are prescribed for parameters defined on bounded intervals. Autocor-
relations pr and py are defined on the interval 0 to 1, and «, and (3, are defined on the
surfaces defined by the sum of points, 22:1 an, =1 and 22:1 Brn = 1. Unbounded pa-
rameters are given weakly informative exponential priors that help the sampling scheme
converge more quickly by focussing sampling away from implausible regions. T5x and
Fyx have exponential priors with means of 10°C and 10 W/m?, respectively; timescales
T1,To, and 73 have exponential priors with means of 10, 100, and 1000 years; and stan-
dard deviations o7 and oy have exponential priors with means of 10°C and 10 W/m?.
The posterior maximum likelihood value for each parameters is consistent within 1%
even if the means of all exponential priors are either increased or decreased by a factor
of 10, whereas the upper 95% value associated with each parameter is consistent within
10%. This low sensitivity to drastic changes in priors demonstrates that the simulation
results from GCMs determine the posterior estimates.

Full Bayesian statistical inference is performed using the statistical modeling platform
STAN (Carpenter et al., 2016) In particular, a joint posterior distribution is obtained
for Fox, Tox, Tn, n, Bn, o1, 0H, pT, and pg using a Hamiltonian version of Markov
Chain Monte Carlo with a No-U-Turn Sampler (Hoffman & Gelman, 2014). Posterior
distributions for radiative feedbacks, A, are computed from the joint posterior using
Eq. 2.5. Results shown in the main text are from 5000 draws across five chains of 1000
realizations. Each chain is sampled after an initial burn-in period of 500 draws. In order
to provide a complete representation of our results, these draws from the joint posterior

are provided in supplemental material.
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2.2.3 INSTANTANEOUS CLIMATE SENSITIVITY

ICS is inferred for the historical period by applying historical forcing to the estimated
eigenmode response for each GCM. In particular, we apply the best estimate AR5
historical forcing as used in previous studies, to draws from the posterior distribution
of the eigenmode decomposition for each GCM to obtain time series of T' and H.

In the main text, A(t) is computed as (F' — H)/T where anomalies in forcing, heat
uptake, and global temperature are computed as the departures in 2011 from preindus-
trial conditions, and ICS is obtained as Fyx /A(t). Note that values of Fy, associated
with each posterior draw can vary from the 3.7 W/m? assumed in the AR5 estimate of
historical forcing. In order to propagate this uncertainty, F' is multiplied by F5y /3.7 for
each draw before obtaining values of H and T. We obtain a median ICS value across
all draws and GCMs of 2.5°C (c.i. 1.5-5.4 °C).

Inferences of ‘effective ECS’ from the observational record, which we refer to as ICS,
have been obtained using different intervals, but these alternate choices do not much
influence our estimates. For example, if A(t) = (AF — AH)/AT is computed between
the intervals 1859-1883 and 1995-2011, as per Lewis & Curry (2014) we again obtain
an ICS of 2.5°C (c.i. 1.4-5.8°C). Similarly, using intervals of 1860-1879 and 20002009,
as per Otto et al. (2013), gives 2.6°C (c.i. 1.5-5.2°C), and using the difference between

values in 1955 and 2011, as per Masters (2014), gives 2.6°C (c.i. 1.4-5.5°C).

2.3 SUPPLEMENTARY TEXT

We provide solutions based on linear response theory for two simple models used in the
literature and cited in the main text to describe time dependency of the net radiative

feedback.
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2.3.1 LINEAR MODEL RESPONSE

Let y be the state vector the climate system. If we assume that y describes small
anomalies around a state of equilibrium, the evolution of the climate system in response
to an external forcing F is described by

d
Sy =Jy+F(t 2.7
Y =Jy (t), (2.7)

where J is the Jacobian of the system. We apply classic linear system methods and
diagonalize the Jacobian as

J =P 'DP, (2.8)

where P is the modal matrix containing the eigenvectors of the Jacobian, and D is the
diagonal spectral matrix containing the eigenvalues. The exponential decay time scales
of the eigenmodes are the negative inverses of the eigenvalues, such that 7,, = —1/D,,,.

The system has the well known solution (Greenberg, 1988):
t
y =y (0) +/ P 'ePTPF (t — 1) dr. (2.9)
0

Global mean temperature is a weighted sum of members of the state vector corre-

sponding to surface temperature,
T =why. (2.10)

Further, we assume that the system starts from a state of equilibrium, y(0) = 0, and

that there is a single forcing time series, F'(t), imposed on the system that is projected
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onto the different dimensions of the system according to
F =wgpF(t).
We can now write the global temperature response, 7', as:

t
T= / wrP 1eP"PwpF (t — 1) dr.
0

T= Z Z Z WTZP_llnPnkWsz exp (—t/Tn) * F(t)
n k1
If we divide and multiply by 7%, and by the equilibrium sensitivity parameter,

Teq

€q

— —WTJ_le = —WTP_lD_lPWF

we recover Eqn. 1 in the main manuscript

Teqan

T="1" "exp (—t/m) * F(t),

F.,,
eqin

where

_ Zm Zk WTmP_lmnTnPnkWFk

an wrP-1D-Pwg

with > o, = 1.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

The net global radiative response, R, will likewise be a linear function of the state

vector,

Rg = WRY,
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which has to satisfy the condition that in equilibrium R., = Feq, and thus

wrP 1D 'Pwgp = 1. (2.18)
We can now write
R=Y "> wWryP lnPukWrg exp (—t/7,) * F(t), (2.19)
m k n
—t
R:Z@LM*F@), (2.20)
n Tn
with
ﬁn = Z Z WRmP_lmnTnPnkWFk (221)
m k

The radiative feedbacks associated with each eigenmode can be computed (as per Eqn.

5 in the main text) as A, = Bn/anFeq/Teq

_ Zm Zkz WRmP_lmnTnPnkWFk
Zm Zk WTmP_lmnTnPnkWFk

An (2.22)

2.3.2 REGIONAL FEEDBACKS MODEL:

In order to explain the time dependency of the net feedback, a three box model has
been proposed (Armour et al., 2013). The model has three independent regions, each

evolving with their own characteristic time scale and radiative feedback,

dT;
de—tf = —\NTj+F, (2.23)
T = %ZT] (2.24)
7j=1
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The matrices associated with this model are

1/3 1/Cy A1/3
Wr=|1/3 |, Wor=|1/Cy |, WR=| X\/3 |, (2.25)
1/3 1/Cs A3/3
-4 0 0
J = 0 _%22 0 . (2.26)
0 0 -

Since the Jacobian matrix is already diagonal, each region represents an eigenmode,

such that the solution is trivial:

Tj = Cj/)\ja (227)
1A
32j=1%

and the radiative feedbacks associated with each eigenmode are equal to the regional
feedbacks. Energy fluxes between regions can be modeled by adding symmetrical off-
diagonal terms in the Jacobian matrix, however in that case the radiative feedbacks

associated with each eigenmode would no longer be equal to the regional feedbacks.
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2.3.3 TWO-LAYER OCEAN MODEL:

Another standard conceptualization of the evolution of the system is one where a fast-

responding upper ocean is coupled to a slow-responding deep ocean,

dTs

CSE = —AegTs — ey(Ts — Tq) + F, (2.29)
dT,
Caat = 2(Tu—Ta). (2.30)

Cs,q are the heat capacities of the surface and deep ocean, and T 4 are the temperatures.
Thermal coupling between the surface and deep is represented by ~, the equilibrium
feedback parameter is Ao, and radiative forcing is F'. Also included is a a term for
the efficacy of ocean heat uptake, €. This term can be understood in the context of
an effective forcing whereby the same global radiative forcing can illicit different global
temperature responses (Hansen et al., 2005), but where it is the transfer of heat between
surface and deeper layers that forces surface temperature (Winton et al., 2010; Held

et al., 2010). The radiative response of this two-layer ocean model can be written as

R=XegT — (1 —&)(T - Ty), (2.31)

and the matrices associated with this model are

1/C 1 Aeg +(e6—1
WE = /Cs wWT = WR = e T ( ) , (2.32)
0 0 1—c¢
—/\eq—i-av &y
J= @ G (2.33)
e -
Cq Cy



They can be used to solve for:

2C;Cy
= 2.34
712 (ey+ Aeq) Ca+~Cs £ A ( )
A £ (67 — Aeg) Cg +~Cs

arp = G QAq) s (2.35)

1+4+¢ Cs+envCy+ A
A2 = Aeg—g— + (€= 1) 1 QJCdd (2.36)

where

A= \/ ((7 + Aeq)Ca + 7C5) 2 — 4yAeqCaCs (2.37)

As expected, for the case of unit efficacy the feedbacks along the two eigenmodes are the
same. Another formalism proposed to account for time-variability in feedback strengths
is that of a virtual forcing (Rugenstein et al., 2016), but because this representation is
mathematically equivalent to the two-layer ocean model described here, the same form

of eigenmode solution holds.
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Figure 2.4: Fig. 2.1 - continued
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Figure 2.5: Fig. 2.1 - continued
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Figure 2.8: Residual temperature and top-of-atmosphere energy flux between GCM sim-
ulations and Bayesian fits. Residuals are shown for two-eigenmode (a,c) and three-
eigenmode (b,d) fits for each GCM (colored lines). The median residual across mod-

els (thick black line) shows systematic residuals for the two-eigenmode fits during initial
decades after abrupt quadrupling of CO2 concentrations of model adjustment that are not
present in the three-eigenmode fit. All eigenmode fits use posterior maximum likelihood

values.
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Figure 2.9: Structure of temperature residuals. Auto-covariance of the residuals be-
tween the GCM simulations and the Bayesian fit for each model (red), and that inferred
for residual noise by the Bayesian fit (blue, from values of o and pr). Maximum like-
lihood parameters associated with each Bayesian fit are used in these calculations. The
p-value of a Kolmogorov-Smirnov normality test for the residuals that accounts for au-
tocorrelation (Proistosescu et al., 2016) is also displayed for each GCMI. Only MIROC 5
shows significant deviations from normality (p < 0.05) in the temperature residuals.
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Figure 2.10: Structure of energy flux residuals. Same as Fig. 2.9, but for the top-of-
atmosphere energy flux, H. Statistically significant deviations from a normal distribution
are found for MIROC 5, CCSM4 and IPSL-CM5B-LR. Notwithstanding the significance of
the p-value for MIROC 5, four rejections out of 48 trials across the results for temperature
and energy flux is consistent with that expected when the null hypothesis holds and a test
is performed at the 5% significance level.



1 T2 T3 5] e a3 A1 A2 A3 or oH PT PH Fox ECS ICS

model years °C/(W/m?) °c W /m? W /m? °c °c
inmcm4 0.4 5 535 0.19 0.53 0.28 1.7 1.5 1.9 0.06 0.19 0.55 0.06 3.1 1.9 2.3
GISS-E2-R 0.4 3 229 0.30 0.25 0.44 2.1 3.0 1.4 0.06 0.17 0.63 0.05 4.4 2.2 2.5
GISS-E2-H 0.7 8 191 0.33 0.31 0.37 2.2 1.8 1.4 0.05 0.17 0.23 0.03 4.3 2.4 2.5
GFDL-ESM2G 1.0 6 407 0.31 0.23 0.46 0.5 2.5 0.8 0.08 0.29 0.68 0.01 2.9 2.7 2.4
GFDL-ESM2M 0.7 6 348 0.20 0.31 0.49 1.2 1.9 0.9 0.08 0.29 0.46 0.01 3.4 2.7 2.4
MRI-CGCM3 0.7 11 209 0.28 0.35 0.36 2.1 1.3 1.0 0.08 0.24 0.62 0.01 4.0 2.7 3.2
IPSL-CM5B-LR 1.1 15 278 0.31 0.27 0.42 1.6 1.1 0.7 0.12 0.40 0.10 0.01 3.1 2.8 2.4
MIROCS5 1.5 9 442 0.40 0.20 0.38 1.2 2.0 1.2 0.15 0.36 0.35 0.14 4.0 2.9 2.3
BCC-CSM1-1 0.8 8 157 0.26 0.35 0.39 1.7 1.4 1.0 0.06 0.19 0.50 0.04 3.9 2.9 2.6
CNRM-CM5 0.6 9 271 0.25 0.46 0.29 1.7 1.0 1.3 0.07 0.19 0.38 0.03 4.0 3.1 2.6
CCSM4 0.3 5 212 0.19 0.34 0.47 1.1 1.8 0.9 0.09 0.26 0.54 0.06 4.0 3.2 2.6
NorESM1-M 0.5 7 342 0.18 0.28 0.54 2.1 1.6 0.7 0.07 0.27 0.53 0.06 3.9 3.2 2.5
CNRM-CM5-2 0.5 7 380 0.21 0.39 0.40 0.6 1.2 0.9 0.07 0.20 0.53 0.03 3.4 3.5 2.7
MPI-ESM-MR 0.5 7 234 0.23 0.34 0.43 2.0 1.6 0.9 0.11 0.34 0.40 0.06 5.0 3.6 2.5
MPI-ESM-P 0.8 9 255 0.30 0.26 0.44 1.5 1.8 0.8 0.13 0.36 0.26 0.05 4.8 3.7 2.3
MPI-ESM-LR 1.2 9 267 0.28 0.25 0.46 1.1 1.7 0.8 0.12 0.35 0.26 0.05 4.3 3.9 2.6
IPSL-CM5A-LR 1.0 20 528 0.26 0.35 0.39 0.8 0.8 0.8 0.11 0.22 0.40 0.03 3.2 4.0 2.4
GFDL-CM3 2.7 54 1010 0.35 0.30 0.36 1.2 0.7 0.6 0.10 0.30 0.31 0.02 3.5 4.1 2.4
CanESM2 2.5 30 597 0.38 0.19 0.43 1.1 1.2 0.5 0.10 0.26 0.33 0.03 3.9 4.4 2.6
IPSL-CM5A-MR 0.4 11 434 0.15 0.37 0.49 1.8 0.9 0.6 0.08 0.22 0.60 0.03 4.0 4.5 2.6
FGOALS-s2 0.2 5 403 0.10 0.37 0.53 3.2 1.0 0.7 0.13 0.39 0.47 0.04 5.0 4.7 2.6
MIROC-ESM 0.7 10 453 0.19 0.35 0.46 2.7 0.9 0.8 0.08 0.23 0.51 0.03 5.8 5.0 2.5
CSIRO-Mk3-6-0 0.9 11 417 0.14 0.15 0.70 2.0 1.2 0.3 0.12 0.38 0.39 0.04 4.0 5.7 2.4
HadGEM2-ES 0.3 9 688 0.10 0.28 0.62 2.8 0.9 0.3 0.09 0.29 0.46 0.08 4.6 6.4 2.7
Ensemble Median 0.7 9 354 0.24 0.32 0.44 1.6 1.4 0.8 0.09 0.27 0.45 0.03 3.9 3.4 2.5
Ensemble 5th percentile 0.2 4 179 0.10 0.15 0.28 0.4 0.8 0.3 0.05 0.17 0.15 0.00 2.9 2.2 1.6
Ensemble 95th percentile 2.6 37 956 0.40 0.48 0.66 4.0 2.8 1.6 0.14 0.40 0.68 0.16 5.9 6.1 5.6

Table 2.2: Median values for parameters in the Bayesian fit to each GCM. Ensemble val-
ues at bottom are computed assuming each GCM is equally likely.
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On the uncertainty of peak warming

toward higher cumulative emissions
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ABSTRACT

The temperature response to future emissions scenarios is examined with a focus on
the uncertainties associated with the more slowly evolving components of the climate
system. A Bayesian formalism is used to linearly decompose various response timescales
of 24 CMIP5 simulations to CO4 forcing. Using a similar decomposition of the response
of 16 models of the carbon cycle to carbon emissions, permits for examining the proba-
bility of various values of peak warming as a function of emissions pathways. Whereas
the median peak warming increases by about one degree Celsius per 1000 GtC, the 95th
percentile of warming increases at twice the rate. This increasing uncertainty reflects
the fact that the transient climate response and carbon cycle control the spread of pos-
sible temperatures for cumulative emissions below 1500 GtC, but that uncertainties in

the slow physical modes of response are dominant for larger cumulative emissions.

3.1 INTRODUCTION

Thermal inertia associated with the large heat capacity of the oceans causes the earth’s
surface to be out of balance with incoming radiation. Thus, even if atmospheric concen-
trations of greenhouse gases were kept constant, the earth will still experience significant
temperature increases, slowly equilibrating over centennial time scales (Hansen et al.,
1985; Baker & Roe, 2009). The long term equilibrium warming assuming fixed at-
mospheric composition is sometimes termed unrealized or committed warming (Meehl
et al., 2005; Wigley, 2005).

Reducing emissions of greenhouse gases to zero will not, however, lead to constant

concentrations, as the ocean and land carbon reservoires will slowly uptake a significant
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proportion of the emitted greenhouse gasses. This interaction between the time evolu-
tion of the forcing agents and the physical response leads to scenarios wherein zeroing
out emissions leads to a peak warming that is realized in the transient regime, on the or-
der of decades after cessation of emissions (Matthews & Caldeira, 2008). Indeed, future
global warming scenarios are often framed in terms of specific peak warming targets
(Stocker, 2013).

Since CO9 and heat are mixed into the ocean at similar rates, the thermal inertia of
the oceans is counteracted to a large degree by the inertia of the carbon cycle (Solomon
et al., 2009; Matthews & Weaver, 2010; Matthews & Solomon, 2013). This approximate
balancing of the physical and thermal inertias leads to decreased sensitivity of the peak
response to the trajectory of the forcing, such that the peak transient response is often
discussed in terms of the response to cumulative emissions (Matthews et al., 2012).
The relationship between cumulative emissions and peak warming, however, entails
substantial uncertainties (Allen et al., 2009)

Past studies of the uncertainty associated with peak warming have used conceptual
models (Armour & Roe, 2011; Stocker, 2013; Good et al., 2011; Castruccio et al., 2014)
or a limited number of either earth models of intermediate complexity (EMICs), (Allen
et al., 2009; Solomon et al., 2009) or full general circulation models (GCMs) (Matthews
& Zickfeld, 2012; Arnell et al., 2013). Conceptual models and EMICs have been useful
for exploring the qualitative behavior of the system, but may not adequately represent
the possible range of response.

GCMs are a more comprehensive representation of our understanding of the climate
system, though computational requirements constrain the number and length of sce-
narios that can be simulated. In Chapter 2, we employed a Bayesian framework to

decompose the response of the CMIP5 ensemble to COg forcing, and which we employ
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here in order to further examine the uncertainty of the temperature response to a range

of emissions scenarios.

3.2 EMISSION PROFILES AND RESPONSE FUNCTIONS

We use a basis set of idealized profiles to simulate the wide range of possible emission
scenarios. In order to keep the problem tractable, we follow Allen et al. (2009) and
parameterize these profiles as a function of two parameters: the year in which decar-
bonization of the energy system begins in earnest, and the time scale of the transition to
zero emissions. Historical concentrations of radiative agents are prescribed following an
estimate of historical forcing up until 2011 IPCC (2013, Annex II), after which emissions
are assumed to increase at a rate of 1.7% per year (Allen et al., 2009). To represent the
transition to zero emissions, the trend toward increasing emissions is multiplied by a
half-gaussian applied at the year at which the transition is defined and with a timescale
that is set as the standard deviation of the gaussian. The sigmoidal structure of the
half-gaussian provides for a smooth transition. Three representative emission profiles
are depicted in Fig. 3.1a. These simple emissions scenarios do not provide an exhaustive
description of the possible evolution of the concentration of forcing agents, though the
linear response function framework that we will derive could be utilized to ascertain the
distribution of the response to any given forcing scenario.

In order to reduce the complexity of the basis set we treat all future anthropogenic
emissions in terms of their carbon equivalent. Non-COs forcing agents are fixed at their
2011 concentrations, and a value of 3.7 W/m? per doubling of COs is assumed. Both
aerosols and non COg9 greenhouse gasses are major contributors to forcing, though they

largley cancel one another out. Out of a total best estimate of 2011 forcing of 2.2 W /m?,
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Figure 3.1: lllustrations of forcing profiles used. a: Benchmark emission profiles with decarboniza-
tion start dates of 2020(blue), 2050(red) and 2080(yellow), and decarbonization time scales of 25,
55, and 85 years respectively. b: CO5 concentrations for each of the three benchmark emission
profiles. Each line represeRnts a distinct emission profile convolved with the linear response func-
tion of a distinct carbon cycle model. c: Radiative forcing associated with concentrations from b.
Quialitatively, the three emission profiles are similar to RCP 2.6, RCP 4.5, and RCP 6.

1.8 W/m? is attributable to COg forcing IPCC (2013). The short life time of aerosols,
however, would be expected to lead to increased rates of warming if emissions are ceased
abruptly (Armour & Roe, 2011; Matthews & Zickfeld, 2012).

The uptake of CO2 by the oceans and biopshere is a complex but first-order control on
atmospheric concentrations. We follow Joos et al. (2013) and Ricke & Caldeira (2014)
in using a simple linear response function to describe the evolution of atmospheric CO»
concentrations for a given emission pulse. In particular, Joos et al. (2013) provides
exponential decay curves for COsy concentrations following carbon emissions into an
atmosphere with present day concentrations. The exponential curves are fit to 16 earth
system models of intermediate and full complexity, and are described by three decay
times, representing multi-annual, multi-decadal, and multi-millennial time scales. The

resulting CO9 concentrations and radiative forcing associated with particular emission
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Figure 3.2: Distribution of temperature responses to the three representative emission profiles
illustrated in Fig. 3.1. Median(solid lines), 30th and 60th percentiles (dashed lines), and 5th and
95th percentiles (dashed-dot lines) are depicted.

profiles are illustrated in Fig. 3.1b,c.

The global mean temperature response of the climate system to a given forcing time
series is modeled using the three time scale linear response function derived in Chapter
2. For each combination of a decarbonization start time and duration, the resulting
emission profile is convolved with each of the 16 different carbon cycle response functions
to obtain forcing profiles, which are in turn convolved with 240 draws from the posterior
distribution of the Bayesian fit to the CMIP5 models consisting of 10 draws for each
model. Thus, the resulting distribution of temperature responses for a given emissions
profile contains 3840 samples.

A major limitation of using a linear response function is that it assumes the response
is independent of the size of the emission pulse, whereas the equilibrium airborne frac-
tion of CO4 increases with cumulative emissions, leading to superlinear responses for
large emissions (Zickfeld & Herrington, 2015). Another major limitation particular to

our analysis, along with earlier such analyses Solomon et al. (2009); Ricke & Caldeira
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(2014), is that the carbon uptake is assumed independent of the climate response. Our
expectation is that greater warming would lead to less ocean carbon uptake, thus cre-
ating the potential for even larger peak warming large cumulative emissions scenarios.
In this respect, the present analysis can be considered a lower bound on the uncertainty

in peak warming.

3.3 TEMPERATURE RESPONSE PROBABILITY

The distribution of possible temperature responses to three representative emission pro-
files is illustrated in Fig. 3.2. On average each of the three carbon cycle time scales is
smaller than the associated physical response time scale. The relatively slower response
of the carbon cycle leads to peakedness in the temperature response. For a given CO»
emission pulse, temperature will increase on the time scale of the physical system up
until it is in quasi-equilibrium with the radiative forcing. Afterwards, temperature de-
creases along with radiative forcing on the time scales of the carbon cycle. Note that in
about ~ 5% of joint response functions have the carbon cycle responding more rapidily
than temperature, in which case the temperature peaks before emissions reach zeros.
The time at which peak temperature is achieved relative to peak emissions depends
on which time scales are excited. For an RCP2.6-like scenario (Fig. 3.2a) peak temper-
ature is achieved on the order of one decade after peak emissions, in agreement with
earlier results (Ricke & Caldeira, 2014). This decadal response reflect a combination
of timescale associated with fast temperatures responses coming into equilibrium be-
fore decaying along with COs2 concentrations. For a larger cumulative emissions (Fig.
3.2¢), however, temperatures do not start falling until ~ 200 years after peak emissions

because the slow mode of temperature response plays a more important role.
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Figure 3.3: Probability of peak temperature reached by 2800 staying bellow 2°C (a), 3°C (b)
and 4°C (c) as a function of the emission reduction start year and duration. Diamond markers
denote the three representative emission profiles illustrated in Figs. 3.1 and 3.2. Dashed black
lines represent lines of constant cumulative emissions, with valued denoted in red in units of 1012
tonnes C.

For each emission profile we compute the probability of staying below a given tem-
perature threshold as the fraction of ensemble samples that do not cross the threshold
by the end of the integration in 2800 (Fig. 3.3). As expected, peak warming is highly
insensitive to emission pathways for a given value of the cumulative emissions, at least

across the basis set considered here.

3.4 (CONTRIBUTIONS TO UNCERTAINTIES IN PEAK WARMING

Fig. 3.4 shows how the contribution to the 95% of peak temperatures changes as a
function of cumulative emissions.

Based on expert judgement, the IPCC quotes 1000 and 1210 GtC of cumulative
emissions as leading, respectively, to a 66% or 50% probability of peak temperatures

remaining below 2 degrees Celsius of warming (Stocker et al., 2013). Our quantita-
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Figure 3.4: Cumulative emissions and peak temperatures at 50% and 95% levels for probability
of non-exceedance. Each point represents a different emission profiles. The median response is
depicted in black. Colored lines indicate the temperature threshold with a 95% non-exceedance
probability if the spread associated with individual components is collapsed unto the respective
median value.
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tive assessment is similar with these probabilities according with 1100 or 1180 GtC of
cumulative emissions, but where uncertainties increase more quickly with cumulative
emissions than judged by the IPCC.

We assess the relative contributions of uncertainties in producing peak warming by
isolating three different sources associated with the carbon cycle, fast warming responses
(eigenmodes 1 and 2), and the slow warming response (eigenmode 3). Through dividing
the distribution of temperature responses along these three dimensions and successively
collapsing each dimension to its median value, we evaluate the various contributions to
uncertainty. Fig. 3.5 shows the evolution of the 5-95% uncertainty range for the three
benchmark emission profiles. The relative contribution of uncertainties exhibits strong
dependence on the cumulative emissions for the profiles considered. Similarly to the
timing of peak temperature, this will be controlled by the processes excited, with slow
response modes and the carbon cycle dominating the uncertainty on longer time scales.

The relative contribution of uncertainties exhibits strong dependence on the cumu-
lative emissions for the profiles considered. For cumulative emissions of ~1500 GtC or
less, the uncertainty in the response of the carbon cycle is dominant, whereas for greater
cumulative emissions, the slow temperature response modes contribute the larger share

of uncertainty.

3.5 (CONCLUSIONS

By jointly considering uncertainties in both the carbon cycle response to carbon emis-
sions and the physical response to a given radiative forcing, we have derived a proba-
bilistic distribution of the temperature response to a variety of future scenarios. The

framework presented provides the most comprehensive assessment to date of the emis-
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Figure 3.5: Evolution of the 5-95% uncertainty range in temperature projections for the three
benchmark scenarios considered in Figs. reffig:profiles. The blue lines indicates the full uncertainty
range associated with the temperature projections (Fig. 3.2). Colored lines indicate how the un-
certainty ranges change if the distribution of individual components is collapsed unto their median
values.

sion budget associated with a given peak temperature threshold and a given probability
of exceedance.

It has been suggested that waiting prior to taking measures to abate climate change
is reasonable because we will then know more about how the system operates. Indeed,
efforts at reducing the uncertainty in the response to cumulative emissions should be
directed towards reducing uncertainty in the transient climate response for low temper-
ature thresholds such as 2°C. However, as we necessarily also contemplate the implica-
tions of higher thresholds, additional uncertainties associated with more-slowly evolving
components of the climate system come to the fore. Insomuch as waiting to abate car-
bon emission entails the likelihood of greater cumulative emissions, our learning about
the transient response will be negated by greater ignorance of peak warming associated
with more slowly-evolving responses.

There are a number of shortcoming and potential improvements to the present anal-
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ysis. Fundamentally, the model ensemble does not represent the full range of possible
uncertainty due to covarying biases (Tebaldi & Knutti, 2007) and missing processes.
Lacking knowledge about the error and bias covariance structure, or the relationship
between diagnostic and prognostic skill, Knutti et al. (2010) recommends refraining
from attempts to further restrain the uncertainty, such as through model weighting ap-
proaches. Another significant limitation is the assumption of no covariance between the
physical response and the carbon cycle response. The Bayesian posterior distribution
of the climate response used here addresses the covariance between the magnitude of
the temperature response and its time scale structure (Ricke & Caldeira, 2014). The
formalism is not extended to the carbon cycle, however, as the models used to derive
the carbon response function (Joos et al., 2013) are different from the CMIP5 models
used to derive the physical response. Future work should focus on applying the Bayesian

formalism derived in Chapter 2 to ensembles of comprehensive earth system models.
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Detecting Orbital Variability in

Oligo-Miocene Climate Records
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ABSTRACT

We address the problem of detecting quasi-periodic variability at orbital frequencies
within pre-Pleistocene climate records using depth-derived and orbitally tuned chronolo-
gies. Many studies describing orbital variability in pre-Pleistocene sediment hosted
isotope records employ climatic records that are set on orbitally tuned chronologies,
without accounting for the bias in spectral power estimates introduced by orbital tun-
ing. In this study we develop a method to quantify the effects of tuning upon spectral
estimates and, in particular, to more properly determine the statistical significance of
spectral peaks associated with orbital frequencies. We apply this method to two ma-
rine sediment 6'®0 records spanning the Oligo-Miocene, from ODP cores 1090 and
1218. We find that using linear age-depth relationships reveals statistically significant
spectral peaks matching eccentricity in core 1090, and obliquity and precession in core
1218, where the last appears most significant. Tuning the chronologies to the orbital
solutions of Laskar et al. (2004) increases the statistical significance of the precession
peak, whereas the obliquity and eccentricity peaks become indistinguishable from those
expected from tuning noise. This result can be understood in that tuning records with
high signal to noise ratios tends to lead to more significant spectral peaks, whereas a
linear age-depth relationship is better suited for detecting peaks when signal to noise

ratios are low. We also demonstrate this concept using synthetic records.

4.1 INTRODUCTION

The presence of a response to orbital variations, in so much as it can be objectively and

confidently identified in paleoclimate records, provides valuable insight into the climate
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system. As a response to a known forcing, orbital variability in paleoclimate records
is useful in understanding the sensitivity of the climate system to changes in radiative
forcing. Additionally, since we are able to compute astronomical configurations and
insolation curves over the entire Paleogene, correlation of sediment-hosted signals and
orbital curves provides for the possibility of constructing accurate orbital chronologies
(Hinnov, 2004; Palike et al., 2006a; Westerhold et al., 2008), insomuch as the orbital
solutions are themselves well constrained (Laskar et al., 2004).

Variability at orbital frequencies, also called Milankovitch frequencies, was first demon-
strated in late-Pleistocene marine sediment cores in the obliquity and precession bands
(Hays et al., 1976), and, later, in the obliquity band for the early Pleistocene (Ruddi-
man et al., 1986). The quality and quantity of Pleistocene Proxy records has permitted
for cycle by cycle identification of the orbital imprint in climate records, and orbitally
tuned chronologies have been developed by matching these signals against astronomical
solutions calculated back in time (Lisiecki & Raymo, 2005). These astrochronologies
have been shown to be in close agreement with ages obtained from depth-derived age
models based on stacked records (Lisiecki & Raymo, 2007; Huybers, 2007), as well as
radiometric measurements (Shackleton et al., 1990).

Pre-Pleistocene records also have been shown to contain significant orbital band vari-
ability, absent any orbital tuning. Records obtained during Ocean Drilling Program
(ODP) Leg 154, on the Ceara Rise (Curry et al., 1995) have been shown to have sig-
nificant obliquity and eccentricity band variability (Weedon et al., 1997; Zachos et al.,
1997). Furthermore Sexton et al. (2011) demonstrated significant variability at preces-
sion, obliquity and eccentricity frequencies in an Eocene aged magnetic susceptibility
record from ODP site 1258.

However, many records have been evaluated for orbital behavior only after some
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amount of tuning is performed. Subsequent work on the Ceara Rise records, for example,
used the age model of Shackleton et al. (1999), who calibrated magnetic susceptibility
first to an orbital curve consisting mostly of obliquity with a small precession component,
and then to the 405 kyr eccentricity. Based on this age model, the spectra for various
oxygen and carbon isotope records from sites 926 and 929 were recomputed, (Paul et al.,
2000; Zachos et al., 2001; Palike et al., 2006a), and peaks at orbital frequencies were
found to be significant when compared against a red noise background (Mann & Lees,
1996). Although the possibility of excess spectral power resulting from tuning was noted
(Paul et al., 2000), the influence of orbital tuning upon such spectral estimates has not
been formally quantified.

More recent studies have focused on records from ODP site 1090 on the Agulhas ridge
in the south Atlantic (Billups et al., 2002, 2004), and from ODP site 1218 in the equato-
rial Pacific (Wade & Pilike, 2004; Pélike et al., 2006b). Both site 1090 (Channell et al.,
2003) and site 1218 (Lanci et al., 2005) have a complete magnetostratigraphic record,
containing all major magnetic reversals within the interval spanned by the record. Age
models were obtained by assigning the magnetic reversals ages based on the polarity time
scale and then refined by successive tuning of physical properties and stable isotopes,
to an orbital curve consisting of eccentricity, obliquity and precession. Significance lev-
els in the form of confidence intervals were computed for the spectral power estimates
of tuned records (Pélike et al., 2006b), but again not accounting for the fact that the
records have been tuned.

It is useful to distinguish between the problem of constraining the chronology of a
record using orbital information and the problem of objectively identifying orbitally
driven components in the variability. Here we focus only on the latter, using two ap-

proaches to this problem, that we expect to be broadly applicable to other orbital
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detection problems in geological records. The first approach is in the spirit of Hays
et al. (1976): a purely depth-derived age model is used and the spectrum is evaluated
for significant concentrations of energy in the orbital bands. The problem one quickly
runs up against is that age uncertainty can easily disperse concentrations of spectral en-
ergy present at orbital frequency (Perron & Huybers, 2009). There is an open question
whether, for such uncertain records, variability may be more readily detected using lim-
ited orbital assumptions when constructing an age model. In our second approach, we
explore the use of orbital tuning in detecting orbital variability, through using a Monte

Carlo method to account for the bias that tuning introduces in spectral estimates.

4.2 AGE MODELS

We analyze two marine sediment §'80 records from ODP site 1090 (Billups et al., 2002)
and ODP site 1218 (Wade & Pilike, 2004) as case studies for testing for Milankovitch
signals in pre-Pleistocene climate records. We selected these records for several reasons.
First, we required §'80 records with high enough sampling resolution such that variabil-
ity at orbital frequencies can be spectrally resolved, if present. For the ~40 kyr obliquity
and ~20 kyr precession periods sampling intervals smaller than ~20 kyr and ~10 kyr,
respectively, are required by the Nyquist theorem. Given distortions of high frequency
terms down to about half the Nyquist frequency due to interpolation (Rhines & Huy-
bers, 2011), even higher sampling resolutions are preferred. Site 1090 spans the late
Oligocene to early Miocene (25-16.5 Ma) and is sampled on average every 5.8 kyr. The
high resolution subset of site 1218, described in Wade & Pilike (2004), spans 30.0 to 26.5
Ma and has an average sampling rate of 4.3 kyr. Thus, both records have sufficiently

high resolutions and are long enough to encompass several cycles of even the longer
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Figure 4.1: Geomagnetic Polarity Time Scale (GPTS). The horizontal line displays the synthetic
flow line in the South Atlantic. The average distances between reversals was calculated using a
combination of finite rotation poles and stacked magnetic profiles, under the assumption that sea-
floor spreading rates varied slowly in time and were normally distributed in space (Cande & Kent,
1992). The large triangles are the radiometric age control points. For comparison, the original
GPTS of Cande & Kent (1992) is compared with the orbitally tuned version of Wade & Pilike
(2004).
Milankovitch cycles, such as the 405 kyr eccentricity. Second we require cores from
which magnetostratigraphic records are available, such that a purely depth-derived age
model independent of orbital assumptions can be built based on correlation of magnetic
polarity reversals to the geomagnetic polarity time scale. Both sites yielded complete
magnetostratigraphic polarity records (Channell et al., 2003; Lanci et al., 2005), and
the starting point for our age models is the Cenozoic geomagnetic polarity time scale.
Within the last two decades, the geomagnetic polarity time scale has seen several
adjustments and revisions. However, in all its present incarnations it is based on the

work of Cande & Kent (1992, 1995) who obtained a composite geomagnetic polarity

sequence of normal and reversed magnetic polarity intervals across the South Atlantic
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ocean floor and computed the mean relative distances between reversals along an av-
erage direction of seafloor motion. A time scale was then obtained using nine absolute
age calibration points, assuming quasi-uniform spreading rates in between each pair of
calibration points, and performing a cubic spline interpolation against distance on the
flow line to obtain a distance-to-age relationship for the magnetic reversals (Fig. 4.1).

In the original study, the calibration points were radiometric ages correlated with
the magnetic anomaly sequence through the magnetostratigraphy of marine sediments
overlying ocean crust (Cande & Kent, 1992). However, more recent studies (Billups
et al., 2004; Wade & Pilike, 2004; Pilike et al., 2006a) use a calibration point at the
Oligo-Miocene boundary that was astronomically derived (Shackleton et al., 1999). This
age was chosen to maximize the similarity between the Oligo-Miocene climate signal and
orbital parameters, making any studies using the astronomically calibrated geomagnetic
polarity timescales somewhat biased towards showing an orbital relationship.

Starting from the ages of magnetic reversals in the untuned polarity time scale, we
build purely depth-derived age models for the §'80 records. Age calibration points are
assigned to the magnetic reversals, with ages linearly interpolated with mean composite
depth between these calibration points to obtain a depth-to-age curve for the entire
length of the core. We asses the depth-to-age relationship for two versions of the age
model, each based on a slightly different geomagnetic polarity time scale (Cande & Kent,
1992; Huestis & Acton, 1997). Both versions are independent of orbital assumptions
and differ only in their estimation of the average position of magnetic reversals on the
ocean floor.

Quantifying the uncertainties in the age model poses several difficulties. The calibra-
tion point at the Oligo-Miocene boundary has a chronogram estimated age of 23.8Ma

+1 Myr (Harland, 1990). Uncertainties in the lengths of the intervals between reversals
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on the sea floor profile are also significant (Cande & Kent, 1992). The larger intervals
are estimated from fairly small sample sizes, ranging from 5 to 9 profiles, and with
relative errors ranging between 4% to 17% at two standard deviations, assuming nor-
mality. The smaller sub-intervals often come from one or two measurements, with no
estimated uncertainties. Thus, the errors in the timing of each magnetic reversal are a
compound of errors in both the age calibration and the interval lengths, and they will
accumulate for intervals in between two radiometric age calibration points. These mag-
netic reversals are in turn used as age calibration points for depth-derived age models,
so the errors propagate through several layers of interpolation. Estimating all these
compounded errors is beyond the scope of this paper, but we will explore the sensitivity

of the results to the selection of age models.

4.3 A STATISTICAL TEST FOR ORBITAL SIGNALS

4.3.1 PURELY DEPTH-DERIVED AGE MODELS

Using the age models based on untuned polarity time scales, we perform a statistical
test for the presence of quasi-periodic variability at orbital frequencies within Oligo-
Miocene §'80 records. We start by using the Cande & Kent (1992) version, since it
is the standard used in the literature. Our test is based on searching for statistically
significant concentrations of spectral energy at the orbital frequencies. The records
are re-interpolated on equally sampled grids, at the average time step, and normalized
to zero mean and unit variance. Spectral power is computed using a periodogram
estimator.

The statistical significance of spectral peaks is judged against the null hypothesis

that the data simply represent random stochastic variability. This approach is similar
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to that of Hays et al. (1976), who tested the null hypothesis that the data represent a
random signal having a general distribution of variance similar to the one observed in
their low-resolution spectrum. We term the entire background variability represented
by the broad-band continuum of spectral power as noise in order to distinguish it from
potentially orbital signals. In other contexts of course this other variability may be
considered as a signal as it includes unforced random climate variability due to inter-
nal processes, and possible nonlinear responses to orbital variability. The background
variability is modeled here as an autoregressive process of order 1, or AR(1), which
results in a spectrum that starts out as red noise at high frequency and tapers to white
noise at low frequency, in a manner similar to the spectrum of the proxies. This type
of spectrum is typical for a system with finite memory, where random disturbances are
dissipated from the system over a finite time scale (Roe, 2009). In discrete time, an

AR(1) process is described by,

Xt = o Xy At + €, (4.1)

where ¢ is the autocorrelation coefficient and € represents a normally distributed random
disturbance with mean zero. We fit the AR(1) process to the observed spectrum using
the algorithm detailed in Schneider & Neumaier (2001) and Neumaier & Schneider
(2001). For ODP 1090 the estimated autocorrelation coefficient is ¢ = 0.73 and the
variance of the e disturbances is 0.47 at a time step of 5.8 kyr. For ODP 1218 the
estimated autocorrelation coefficient is ¢ = 0.87 and the variance of the e disturbances
is 0.41 at a time step of 4.3 kyr.

A Monte Carlo approach is then employed to numerically estimate confidence inter-

vals for our hypothesis test. We generate 10,000 realizations of the AR(1) process used
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to model the background noise, and from these realizations we estimate the distribution
of spectral energy at each frequency in the spectrum of the noise. The 95% confidence
interval is set so that, at each frequency, 95% of the realizations of the AR(1) process
have energy bellow this level. Thus, if a peak in the spectrum of the 680 record rises
above the confidence interval, then the null hypothesis that the peak is attributable to
background noise can be rejected with 95% confidence. We choose this Monte Carlo
approach because we are interested in having individual realizations of the null hypoth-
esis that will later allow us to directly quantify the bias that tuning introduces into the
background.

Narrowband concentrations of spectral energy are observed at 1/445 kyr—! in the
ODP 1090 data (Fig. 4.2) and at 1/23 kyr~! and 1/41 kyr~! in the ODP 1218 data
(Fig. 4.3). The 1/445 peak is near, but not exactly at, the Oligo-Miocene eccentricity
frequency of 1/405 kyr~! (Laskar et al., 2004), and the slight frequency offset could be a
consequence of the age-uncertainties. By the frequency shift theorem (Bracewell, 2000),
errors in the estimated duration of the record are inversely proportional to shifts in the
frequency, festimated = ftrue - Ttrue/Testimated- The uncertainty in the total length of the
record is at least as large as the 1 Myr (1o) uncertainty in the age of the radiometric
calibration point at the Oligo-Miocene transition that is used in the calibration of both
age models (Fig. 4.1). Given a =1 Myr error in the total length of the record, we would
expect a 1/405 kyr~! eccentricity peak to surface anywhere in a frequency band between
1/456 kyr—! and 1/363 kyr—!. The multitude of precession peaks near ~1/20 kyr—!
make it difficult to ascertain whether a frequency offset is present, and the obliquity
peak is consistent with no stretching or squeezing in ODP 1218.

The 445 kyr peak (ODP 1090, Fig. 4.2a) and both the 41 kyr and 23 kyr peaks (ODP

1218, Fig. 4.3a) are above the 95% confidence interval, but a few issues immediately arise
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Figure 4.2: Periodogram estimator of spectral power for the 680 record at ODP site 1090, for
both untuned and tuned data. The red lines represents the 95% confidence interval, computed
using a Monte Carlo method and assuming an AR(1) background noise. (a) Depth Derived age
model based on the Cande & Kent (1992) polarity time scale. Significant concentration of spec-
tral energy is found near the 1/405 kyr~! eccentricity frequency, denoted by the dotted line. (b)
Orbital age model, with confidence intervals adjusted for the bias introduced through tuning the
background noise to eccentricity.
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Figure 4.3: Similar to Fig. 4.2, but for ODP 1218. (a) Depth Derived age model based on the
Cande & Kent (1992) polarity time scale. Significant concentrations of spectral energy is found
near the 1/23 kyr—! precession and 1/41 kyr—! obliquity frequency, denoted by the dotted lines.
(b) Orbital age model, with confidence intervals adjusted for the bias introduced through tuning
the background noise to precession. Shows that the precession peak is still significant even after
tuning.
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in interpreting the implications of their significance. The first issue is that not all the
peaks are exactly at the orbital frequency, which introduces a subtlety in the formulation
of the null hypothesis. Confidence intervals are used to estimate the probability that
a peak at a particular frequency is attributable to background noise. However, since
we know that the peak might be shifted due to errors in the total interval length,
we have searched for peaks in a rather broad frequency band, and there is a larger
probability that background noise will produce at least one peak which is spuriously
significant within this frequency interval as opposed to at a single frequency. For the
1/405 kyr~! eccentricity peak, for example, we estimated that timing uncertainties could
shift the peak to anywhere in the 1/456 kyr—! and 1/363 kyr—! interval. Thus, in our
discrete spectra we have effectively extended our search to six different frequency bands.
Reformulating the null hypothesis to account for the fact that we are searching for a

peak amongst multiple frequencies, the significance levels of the 1/405 kyr—!

eccentricity
peak and the 1/41 kyr—! decrease to just under the 95% critical value, but the 1/23
kyr~! precession remains significant at 95% confidence. Furthermore, the significance
of the 445 kyr peak is sensitive to the choice of the age model. When we use an age
model based on the slightly different polarity time scale of Huestis & Acton (1997), the
eccentricity band has no significant concentration of power, at any candidate frequency.
The fact that the results of the statistical test are sensitive to the specific formulation of

the null hypothesis and the choice of age models warrants the exploration of a different

approach.

4.3.2 TUNED AGE MODELS

We now asses the efficacy of using orbital tuning to test for orbital variability, which

is interesting to explore two reasons. First, it may be that tuning allows for better
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identification of orbital behavior. Second, many other studies have tuned their records
and then attempted to identify statistically significant peaks in the resulting spectral

estimates, and we would like to better understand the effects of the tuning process.

T T T

1218 Precession — Tuned

— — — 1218 Precession — Untuned
| ——— 1090 Eccentricity - Tuned
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Figure 4.4: P-values for the spectral peaks at the 1/405 kyr—! eccentricity frequency in ODP
1090 and 1/22 kyr~! precession frequency in ODP 1218. The P-value of a spectral peak is equal
to one minus its significance, and indicates the probability that a peak drawn from a sample of the
null hypothesis distribution has spectral power equal or greater than the observed peak. The slope-
weight of the tuning algorithm is a measure of the allowable age model adjustment. The higher
the slope-weight, the smaller the adjustments that the tuning algorithm is allowed to make. As the
slope-weight increases, the P-values will asymptote to the untuned case.

Similar to previous studies, we start by assigning the records a linear age to depth
relationship based on the polarity time scale, and then use an objective tuning algo-
rithm to match the 6'¥0 record to each orbital curve in Laskar et al. (2004). Tuning
is accomplished using a dynamical time warping algorithm Lisiecki & Lisiecki (2002)

that chooses a depth to age relation for the proxy records that minimizes the sum of
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squared differences between the proxy and the orbital curve. The amount of age model
adjustment the tuning algorithm is allowed to make can be controlled by introducing
a paramater called the slope-weight, which penalizes deviations from the original age
model (Pilike, 2002). The higher the slope-weight, the less tuning can deviate from the
accumulation rate implied by the linear age-depth relationship. Not surprisingly, after
tuning, the periodograms of the 680 records show sharp peaks at the orbital frequen-
cies (Fig. 4.2b, Fig. 4.3b). However, this result does not necessarily mean the peak is
statistically significant. A record comprised solely of stochastic variability will exhibit
sharp peaks in the spectral domain if subjected to the same tuning algorithm. Most
realizations of the AR(1) process used to model the background noise spectrum of the
0'80 record, when tuned, exhibit sharp peaks that appear significant when contrasted
to the spectral estimate of the untuned noise. Thus, revised critical values and 95%
confidence intervals need to be estimated that account for the effects of tuning.

The revised null hypothesis is that peaks in a spectral estimate are due to broadband
stochastic variability that has been tuned erroneously. Revised confidence intervals are
then estimated via a Monte Carlo approach by taking realizations of the AR(1) process
used to model background noise and subjecting them to the same tuning algorithm as
the 60 record (Fig. 4.2b, Fig. 4.3b).

The behavior and results of this statistical test depends on the amount of adjustment
the tuning algorithm is allowed to impose. With more adjustment (i.e., a lower slope-
weight parameter) the orbital peak in the record becomes stronger, but so too becomes
the probability of overtuning, or spuriously injecting a large amount of spectral power
from the background variability (Muller & MacDonald, 2002). An optimal configuration
of the tuning algorithm would ideally minimize the amount of spectral power that can

be injected into a narrow band from the stochastic background continuum and, at the
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Figure 4.5: Hypothesis test for the presence of orbital variability: Spectral power distribution of
Hy (solid), H; (dashed) and 6180 (red) . The parameters for the alternate hypothesis are a 0.5
signal-to-noise ratio and a 0.25 jitter. (a) ODP 1090, eccentricity, untuned Hy, Hy, 6*20; (b)

ODP 1090, eccentricity, tuned Hy, Hi, §'%0; (c) ODP 1218, precession, untuned Hy, Hy, 6*80;
(d) ODP 1218, precession, tuned Hy, Hy, §'%0;

same time, maximize the amount of spectral power recovered from a distorted periodic
signal.

For each orbital curve we tune to, we sweep across the full range of possible slope-
weights and examine the p-value of the orbital peaks. Large values for the slope weight
result in minimal tuning, while smaller values of the slope weight result in greater tuning.
The p-value of a spectral peak is a measure of how high the tuned orbital peaks rise
above the adjusted confidence intervals. By definition, it will represent the probability
that a realization of the null hypothesis, tuned to the same orbital curve, will have
equal or more spectral power than the tuned peak in the %0 record. As the amount of

age model adjustment is minimized, the p-value of the peaks asymptote to the untuned
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values (Fig. 4.4). We perform the tuning exercise for each of the three main orbital
parameters, for both the ODP 1090 and ODP 1218 records. For the orbital frequencies
where there was no significant concentration of spectral power using the untuned age
model, no significant spectral peaks appear after tuning. The 1/405 kyr~! and the 1/41
kyr~! peaks have a similar behavior, in that for large to moderate amounts of tuning
the spectral peaks are not significant. Apparently, the tuning algorithm injects more
spurious power from the background noise than is recovered from the distorted orbital
signal, assuming an orbital signal is present.

A different behavior is observed for the 1/23 kyr—! peak where, for a moderate
amount of tuning, the significance of the peak increases dramatically. The robustness
of the results for precession across testing configuration lead us to confidently conclude
that significant precession band variability is present in the ODP 1218 §'¥O record.
This result is, to our knowledge, the first unbiased statistical test for orbital variability

using orbitally tuned records.

4.3.3 STATISTICAL POWER OF THE TEST

The foregoing method permits for a test of whether orbital variability is present using
orbital tuning. However, the results of tuning are uneven, with the strongest results
becoming more significant and others less so. This pattern may reflect the nature of the
true signal or the characteristics of the test. To explore these possibilities, we turn to
analyzing synthetic records to determine under what circumstances a tuned or untuned
approach to testing for orbital variability is most powerful. The power of the test is a
statistical measure of the separation of the null and alternate hypotheses. Specifically,
it is the probability of rejecting the null hypothesis, Hy, when the alternate hypothesis,

Hi, is true, and should not be confused with p, which is the probability that Hy is
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wrong. As we will show, statistical power is also a useful metric for assessing if the

significance of a spectral peak increases or decreases with tuning.
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Figure 4.6: The power of the test, i.e one minus the probability of erroneously failing to reject the
null.(a) for a test based on a purely depth-derived age model. (b) for a test based on an orbitally
tuned age model. (¢) The difference in statistical power between the two tests (untuned minus
tuned). As expected, statistical power increases as the signal-to-noise ratio increases and as the
amount of jitter decreases. The test based on a purely depth-derived age model performs better
for signal-to-noise ratios bellow about one, while the test based on an orbitally tuned age model
performs better for signal-to-noise ratios above one.

The same null hypothesis, Hy, and associated AR(1) process described in section 3.1

84



are used here. For the alternate hypothesis, Hy, the record is modeled as a sum of
AR(1) noise and an eccentricity curve (Laskar et al., 2004), placed on a corrupted age
model. The parameters of H; are the signal-to-noise ratio, defined as the ratio of the
variance of the orbital curve to the total variance of the AR(1) noise, and the jitter,
defined as the variance growth rate of the age model uncertainty (Huybers & Wunsch,
2004). From Monte Carlo ensembles, we can estimate the probability density functions
of spectral power in the orbital bands for Hy and H;. The power of the test is then
directly computed as one minus the percentage of ensemble members of the H; that
fall under the 95% confidence intervals derived from Hy (Fig. 4.5a). When tuning is
performed on realizations of Hy and Hi, additional power is injected into the orbital
bands, so both the tuned ensembles of Hy and H; will have more spectral power. If
the relative gain for Hy is larger, then the power of the test decreases, and vice-versa
(Fig. 4.5Db).

The relative gain in spectral power of H; will depend on the signal-to-noise ratio and
the amount of age model corruption. We perform a parameter space exploration over
a reasonable range of jitter for the sediment accumulation rate (Huybers & Wunsch,
2004), and the signal to noise ratios. Thus, for each of the two tests, statistical power is
computed as a function of the signal-to-noise ratio and the amount of jitter (Fig. 4.6).
We only examine what happens to an orbital signal with the 405 kyr eccentricity period,
with an interval duration equal to the duration of the ODP 1090 record. For higher
frequency signals, the power of the test will decrease more rapidly with jitter, as higher
frequencies are more easily corrupted by age model uncertainties (Huybers & Wunsch,
2004; Perron & Huybers, 2009). As expected, there is a trade off between the signal-
to-noise ratio and jitter: the power of the test increases as the signal-to-noise ratio

increases or as the degree of jitter decreases.

85



The test for orbital forcing that uses a purely depth-derived age model has a higher
statistical power if the signal to noise ratio is lower than about one, while the test based
on an orbitally tuned age model has a higher statistical power for signal-to-noise ratios
higher than about one, at least assuming a moderate degree of jitter. The suggestion
is that orbital tuning can be used to sharpen periodic signals that are strong relative
to the background variability, but tests based on orbitally tuned chronologies perform
poorly in detecting signals in a predominantly noisy record, as evidenced by the increase
in overlap between the distributions of the null and alternate hypothesis (Fig. 4.5).
The behavior of the synthetic records is consistent with the results obtained for ODP
1090 and ODP 1218 where the only peak that increased in significance with adjusted
confidence intervals, from a p-value of 0.02 to a p-value of 0.003, was the precession

peak, which already had the lowest p-value of all three orbital peaks.

4.4 (CONCLUSIONS

We have examined two different spectral domain tests for the presence of quasi-periodic
orbital forcing in paleoclimate records inherently dominated by a broad-band distribu-
tion of variance, using two 680 records from the Oligocene and Miocene as case studies.
The first test is based on a purely depth-derived age model, devoid of orbital forcing as-
sumptions and employing a linear age-to-depth relation between magnetostratigraphic
calibration points, while the second test is based on records that are orbitally tuned
to orbital curves. Without accounting for the spectral energy introduced in the orbital
bands from tuning the background, the null hypothesis would be erroneously rejected
at the 95% significance level. The need to reformulate the null hypothesis and adjust

confidence intervals when using astrochronologies is a major caveat that no previous
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study appears to have quantitatively accounted for. We have developed a Monte Carlo
type methodology for estimating the statistical significance of spectral peaks in tuned
records, and used it to perform an unbiased test for orbital variability in pre-Pleistocene
climate records set on orbitally tuned chronologies. This methodology should be gener-
ally applicable to other orbitally tuned records.

Using untuned age models, significant spectral peaks were detected at eccentricity
(ODP 1090) obliquity (ODP 1218) and precession (ODP 1218) frequencies. The use of
orbitally tuned age models decreased the significance levels of the weaker eccentricity
and obliquity peaks but increased the significance level of the stronger precession peak.
Experiments on synthetic records are consistent with these results and suggest that tests
using untuned age models are better at detecting periodic variability in noisier records,
with a signal-to-noise ratio lower then about one, while orbital tuning may improve the
test for distorted records that nonetheless have strong orbital components. Because the
signal-to-noise ratio is difficult to estimate apriori, the use of both types of tests appears

warranted.
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Discussion and Future Challenges
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We have analyzed and solved several problems pertaining to the temporal structure
of climate variability and response. In Chapter 1 we analyzed the time scale structure of
non-normality in atmospheric temperature time series. Using the relationship between
higher order spectra and higher order moments of a distribution, we have shown how
the later decay under filtering. This demonstration provides a quantification of a well
known empirical result in signal processing, extending previous abstract proofs to finite
observational time series. More importantly, we have reconciled observations of non-
normality at low frequencies with mechanisms acting at the highest observed frequencies.
Additionally, we have developed a non-normality test that accounts for auto correlation
in the data.

In Chapter 2 we analyzed the time scale structure of the mean temperature response.
We have showed that within the CMIP5 ensemble, the value of the net radiative feed-
backs is larger along slower modes of the response function. These modes, however,
are relatively weakly excited by the structure of historical forcing, and therefore esti-
mates of climate sensitivity are biased towards the faster modes of response possessing
weaker feedbacks. Accounting for this bias reconciles estimates of sensitivity drawn
from historical records with those obtained from climate models.

In Chapter 3 we used the probabilistic distribution of the response function of tem-
perature to radiative forcing derived in Chapter 2, and convolved it with a similar
response function for atmospheric COs concentrations in response to carbon emissions.
This allowed us to compute the evolution of the global temperature response to any
given future emission scenario. Using a representative basis set of emission profiles we
computed the cumulative carbon emission budget required in order to achieve a given
probability of staying below a set temperature threshold. Finally, we estimated the

sensitivity of the uncertainty in the temperature response to reducing uncertainty in
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the response of different components.

In Chapter 4 we developed a rigorous hypothesis test for the presence of orbital
variability in records that have undergone orbital tuning. We generally find that orbital
tuning increases the significance of periodic component that already have relatively
large signal to noise ratio relative to the background continuum, whereas it can actually
decreases the significance of weak orbital components by injecting large amounts of
spurious spectral power from the background continuum.

A pressing problem highlighted by the uncertainty analysis presented in Chapter 3
is the need to better constrain the slow modes of temperature response to radiative
forcing. As shown in Chapter 2, however, these modes are only very weakly expressed
in global mean temperature responses. A more detailed analysis of the joint spatio-
temporal patterns of response will be required as part of future efforts. Several problems
arise, however, in analyzing local response patterns. Estimation of the equilibrium
global response is predicated upon the condition that linear response in the top of the
atmosphere imbalance reaches asymptotes to zero. This definition of equilibrium does
not hold for the local response in the presence of changing atmospheric and oceanic
heat transports. One possible solution is computing a full joint distribution of the local
temperature and radiative responses under the constraint that the global mean radiative
imbalance goes to zero. Preliminary attempts have proven computationally prohibitive.

An approximation for the local responses can be obtained under the assumption that
local temperatures evolve along the same eigenmodes derived from the global response.
For each abrupt quadrupling experiment in the CMIP5 a multiple linear regression is
performed between local temperature and radiative imbalance, and decaying exponen-
tial functions with time scales set to the posterior mode of the bayesian inference for

the global response function, thus obtaining the local response along each mode. This
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Historical Warming

Figure 5.1: Ensemble mean spatial warming patterns obtained by locally projecting the three
eigenmode decomposition of the CMIP5 global response through a multiple linear regression. a:
Historical pattern of warming under AR5 historical forcing. b: Equilibrium warming pattern. c:
Fraction of local equilibrium temperature realized under historical forcing.
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approach allows for an estimation of an approximate ensemble mean response function,
although it does not permit for a straightforward estimation of the associated uncer-
tainty. As a check on the approximation, a global mean of local responses in top of
the atmosphere radiative imbalance is computed, and is found to asymptote to values
within ~0.2 W/m? for each GCM. The local response functions are then convolved
with the AR5 estimate of historical forcing up to 2011, to obtain an approximation
for patterns of local temperature anomalies relative to pre-industrial times (Fig. 5.1a).
This is contrasted with the equilibrium patterns of warming associated with a 2011
value of effective global radiative forcing of 2.2 W/m?, to obtain the local relative frac-
tion of equilibrium warming (Fig. 5.1b,c). Some of the observed features are to be
expected. The interior of northern continents exhibit a large degree of relative equili-
bration with the forcing, whereas regions associated with strong oceanic upwelling, such
as the souther ocean, the east tropical Pacific and the north Atlantic exhibit the lowest
degree of equilibration.

The relatively weak historical temperature changes and large internal variability ex-
pected in radiatively important regions such as the southern ocean and the east Pa-
cific will complicate any attempt to infer the local response from observational records.
Palaeoclimate proxies may provide better constraints on the longer response time scales.
In particular, the background continuum of variability may prove useful in constraining
intermediate time scales situated between those resolved by observational records and
the orbital bands associated with higher signal to noise ratio. Fig. 5.2 illustrates pre-
liminary estimates of the background radiative forcing relative to previous estimates of
the background temperature spectra for low latitude sea surface temperatures (Huybers
& Curry, 2006).

Time domain linear response functions such as those used in Chapters 2 have an
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Figure 5.2: Patchwork estimates of the variance spectra for the heat flux forcing of the low-
latitude surface ocean and the temperature response. Records used include HadCRU instrumental
estimates, reanalysis data and paleoclimate proxies consisting of Mg/Ca, Sr/Ca, Alkenones,'’Be
and ice core bubble greenhouse gas measurements.
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analogy in the spectral domain in the form of transfer functions. The square root of
the spectra illustrated in Fig. 5.2 can be used to constrain such a transfer function
(MacMynowski et al., 2011). A preliminary estimate of the resulting gain function is
consistent with the likely range of the IPCC estimate of equilibrium sensitivity on multi-
centennial time scales, but continues to increase before tapering off on the time scales
associated with glacial cycles. The gain functions derived from these records, however,
represent local response functions. Complex relationships can exist between local and
global spectra, particularly at sub-centennial time scales (Laepple & Huybers, 2014;
Rypdal et al.; 2015). Thus significant challenges still persist in drawing inferences on
the global response.

The work presented in the body of the thesis draws inferences about the structure
of climate variability and response primarily by analyzing individual time series. The
spatial patterns, however, are expected to also change as a function of time scale. Better
models for the joint spatio-temporal structure in both historical records and paleocli-
mate proxies are needed before the temperature response to anthropogenic emissions
can be better constrained empirically. Past observations in both long term histori-
cal records and paleoclimate records are sparse. The primary challenge going forward
appropriate framework will be required to obtain the probable distributions of global
responses conditional on the sparse local observations. Additionally, a sufficiently good
model for the temporal and spatial autocorrelation structure of local internal variability

is required in order to separate the forced response.
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