
Unraveling the History of the Milky Way

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:37944982

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:37944982
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Unraveling%20the%20History%20of%20the%20Milky%20Way&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=c4d8f190db48fdcb57807d19efebc2de&departmentAstronomy
https://dash.harvard.edu/pages/accessibility


Unraveling the History of the Milky Way

a dissertation presented
by

Yuan-Sen Ting
to

The Department of Astronomy

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Astronomy & Astrophysics

Harvard University
Cambridge, Massachusetts

December 2016



©2016 – Yuan-Sen Ting
all rights reserved.



Thesis advisor: Professor Charlie Conroy Yuan-Sen Ting

Unraveling the History of the Milky Way

Abstract

Understanding physical processes responsible for the formation and evolution of galaxies like the

Milky Way is a fundamental problem in astrophysics. However, a key challenge is that the properties

and orbits of the stars can only be observed at present. In order to understand what happened in the

Milky Way at earlier epochs, one must explore “archaeological” techniques. One idea, “chemical tag-

ging,” aims to probe the history of the Milky Way via the unique imprint in elemental abundances

of long-disrupted star clusters even the stars are now on widely dispersed orbits and spatially mixed.

In my thesis, I developed the first extensive model of the Milky Way in the context of chemical

tagging and explored the opportunities and challenges associated with chemical tagging. My work

put the first constraint on the disrupted cluster mass function in the Milky Way and revealed that

the Milky Way did not form very massive star clusters in the first five billion years. As part of this

effort, I also developed a new technique for measuring stellar properties from large spectroscopic sur-

veys, adopting ideas in machine learning. My technique provides new opportunities for estimating

stellar properties more precisely and exploiting the information embedded in low-resolution spectra.

This technique has many promises and might hold the key to realizing the full potential of chemical

tagging in the future.
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Introduction and a guide to this thesis
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1.1 Chemical tagging – scientific background & motivation

Understanding the physical processes responsible for the formation and evolution of galaxies is a

fundamental yet unsolved problem in astrophysics. Our own galaxy, the Milky Way, offers a unique

chance to study the formation and evolution of the structural components of a galactic system (disk,

bulge, and halo) because it is the only galaxy for which we can study individual stars in great detail.

Despite being the closest galaxy, we still do not have a detailed picture of when, where or how stars

in each component of the Milky Way formed, nor of the key processes responsible for the full dy-

namical and chemical evolution of the Milky Way. One fundamental challenge is that the properties

and orbits of stars can only be observed at the present, therefore, in order to understand past proper-

ties of the Milky Way, we must rely on “Galactic Archeology” techniques to harness the stellar fossil

record.

One of these techniques, “chemical tagging”, aims to probe the history of the Milky Way via the

unique imprint in elemental abundance space of long-disrupted star clusters which, if successful,

will provide completely new ways to study the assembly history of the Milky Way. Stars form in clus-

ters, but these clusters quickly disperse due to dynamical interactions* – only the most massive star

clusters can survive more than 100 Myrs while smaller star clusters dissipate soon after they form 124.

Reconstructing star clusters is a key to understanding the Milky Way because each star cluster reveals

a distinct star formation event in the Milky Way. Fortunately, some of these disrupted clusters might

still remain kinematically intact in phase space for a few dynamical times, and for a short period ap-

*For example, due to n-body interaction and tidal stripping.

2



pear as “moving groups” (e.g., 37,49,52). So the kinematics information in some cases can reveal star

formation events in the Milky Way. But these kinematic associations will dissolve in less than 2–3

Gyrs. Therefore, the number of stellar siblings that we can reconstruct through kinematic phase

space information alone is limited, especially for stars that were born during the early violent phase

when the Galactic bulge and globular clusters formed.

To overcome this limitation, chemical tagging, first proposed by Freeman & Bland-Hawthorn 69 ,

provides a complementary way to reconstruct stellar siblings. Chemical tagging presumes that stars

born in the same star cluster have near-identical (photospheric) elemental abundances. The elemen-

tal abundances of stars reflect the metal enrichment of the molecular clouds from which the stars

formed. Depending on the chemical evolution of the Milky Way, the metal enrichment of a molec-

ular cloud can be unique and can be differentiated from other molecular clouds. Moreover, since

most photospheric elemental abundances, at least for elements more massive than Na, are not ex-

pected to change drastically from stellar evolution (e.g., see43), stars should carry these unique stellar

“birth markers” throughout their lifetime even they are now on widely dispersed orbits and spatially

mixed. The goal of chemical tagging is thus to recognize stellar siblings by looking for stars that have

an uncanny similarity in their “chemical fingerprint”.

Chemical tagging postulates that stellar siblings should show up as clumps in the elemental abun-

dance space. The right panel of Fig. 1.1 illustrates what we expect the Milky Way would look like

in the elemental abundance space if we could fully exploit all of the information in the data. Each

clump in the right panel shows an individual star formation event. Identifying these clumps and

subsequently reconstructing the birth history of star clusters will enable qualitatively new under-
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Figure 1.1: Simulated distribu on of stars in elemental abundance space. Chemical tagging looks for chemically ho-
mogeneous “clumps”, with these clumps revealing dis nct star forma on events in the Milky Way. At present, most
substructures are smeared out (le panel) due to the lack of precise elemental abundances and the small sample size.
My research aims to realize the full poten al of chemical tagging (right panel).
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standing of the origin of each star. In particular, it will shed light on the extent to which stars form

in small or massive clusters of stars (the cluster mass function, or CMF), and the dynamical history

of star clusters, including their formation, disruption, dispersal and orbital migration. Furthermore,

the CMF is an indicator of star formation rate and gas mass 1,96 as these qualities set the maximum

fragmentation mass in galactic system 115,† chemical tagging could also provide an unparalleled win-

dow onto past properties of the Milky Way that are not directly observable.

†Using a Toomre stability argument, one can derive that a higher gas-to-dynamical mass should entail the
formation of more massive star clusters.
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1.2 A changing observational landscape and opportunities

An essential requirement of chemical tagging is that star clusters be internally chemically homoge-

neous. Observationally, open clusters are indeed chemically homogeneous at the level of σ[X/H] <

0.02 dex 29,131. Theoretical arguments also suggest that star clusters should be chemically homoge-

neous, even for loosely bound clusters with 105−7 M⊙, as a result of turbulent mixing63. In addition

to cluster homogeneity, molecular cloud-to-molecular cloud variation is equally important: if all

star clusters share the same elemental abundances, it will not be possible to chemically separate the

disrupted stars clusters. In Ting et al. 195 , I demonstrated that there is a substantial variation in ele-

mental abundances between star clusters using principal component analysis – there are about seven

independent nucleosynthetic pathways through which stars in the Milky Way acquire their abun-

dance patterns. I estimated that the number of distinguishable cloud-to-cloud variations is at least

103–104 for the ongoing large-scale spectroscopic surveys.

In recent years, chemical tagging has garnered more attention because many studies have demon-

strated that population-level chemical tagging holds much promise towards identifying distinct

stellar populations from various components of the Milky Way. Unlike the original proposal of

strong chemical tagging which aims to find stars that were born at the same place and time (both co-

eval and conatal), population-level chemical tagging only search for stars that formed at roughly the

same time (e.g., thick disk stars) or form from the same mechanism (e.g., globular clusters) but not

necessarily formed at the same place. For example, stars accreted from different satellite galaxies into

the Milky Way show distinct chemistry from the Milky Way’s stars (e.g., 127,196). It has been thought
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that these variations could be used to find the remnants of disrupted satellite galaxies. Moreover,

α-enhancement‡ of stars is known to be an excellent probe to separate the younger Milky Way thin

disk from the older thick disk population 86. Apart from the Milky Way disk, Schiavon et al. 177 and

Martell et al. 139 studied bulge/halo stars that have similar abundance patterns to globular clusters

and estimated the fraction of bulge/halo stars that might come from accreted globular clusters. On

top of these, recently Martig et al. 141 found a number of young but surprisingly α-enhanced stars

that challenge our current understanding of the chemical evolution of the Milky Way.

While these studies showed that chemical tagging works in a weaker form, they only focus on

searching for distinct populations of stars through their abundance patterns. The original proposal

of chemical tagging69, which we will call “strong” chemical tagging, aims to look for stars that were

born from the same molecular cloud and in the same star cluster. In this thesis, I will only focus on

strong chemical tagging. Therefore, unless stated otherwise, the term chemical tagging only refers

to strong chemical tagging throughout this thesis. Despite its intriguing prospects, strong chemical

tagging has never been demonstrated before.

Strong chemical tagging has never been realized partly because studies of high-resolution stel-

lar spectroscopy prior to the year 2015 have been limited to about 1,000 stars 13,36. With these small

samples, one is unlikely to sample enough stars from the same cluster. As a result, chemically ho-

mogeneous clumps are hardly visible. Thankfully, the observational landscape is rapidly changing:

ongoing surveys, such as as GALAH 53, Gaia-ESO 187 and APOGEE 136. are collecting high-resolution

‡The relative abundances of α-capture elements (e.g., Mg, Si, Ca) compared to iron peak elements (e.g., Fe,
Mn, Ni).
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spectra, R=λ/∆λ=25,000 and S/N≃ 100, for 106 stars in the Milky Way and are measuring 20–

35 elemental abundances. The next generation of surveys, including After Sloan 4 (AS4), 4MOST,

and Weave, will further increase the sample size to about 107 stars starting in the year 2020. Besides

the advent of large-scale multiplexed spectroscopic surveys, the spectroscopic data is further comple-

mented by other revolutionary astrometric and photometric surveys such as Gaia, TESS, LSST, and

WFIRST, which could provide crucial kinematic information and stellar ages to unravel the history

of the Milky Way.§ With this avalanche of data, we may finally be on the cusp of realizing chemical

tagging.

In the pursuit of strong chemical tagging, the research that I will present in this thesis combines

cutting-edge ideas in machine learning with classical chemodynamical modeling and spectral fitting.

My work identifies challenges of strong chemical tagging, argues why the current status of surveys

is not good enough for strong chemical tagging, proposes an intermediate form of chemical tagging

that will work with the current status, as well as pushes the boundaries on various fronts to realize

strong chemical tagging eventually. In the following, I will summarize the key ideas and results in

this thesis.

§Either through isochrones/color-magnitude diagrams or asteroseismology.
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1.3 Key ideas and results

In this section, I will summarize some key ideas that I will present in this thesis. Chapter 2 focuses on

the chemodynamical modeling of the Milky Way tailored to predict chemical tagging signals from

the ongoing spectroscopic surveys. The model predicts that with the current sample and elemental

abundance precision, it is very challenging to perform strong chemical tagging. Due to this limita-

tion, in Chapter 3, I will describe a new way to constrain the CMF of the Milky Way in the past via

an intermediate form of chemical tagging, which we will call statistical-level chemical tagging. In

Chapter 4–6, I will present a new spectral fitting technique that optimizes the maximal extraction

of spectral information from spectra which is the key to going beyond the intermediate form and

realizing strong chemical tagging in the future. And finally, in Chapter 7, I will discuss some of my

ongoing work and other future directions.

1.3.1 First extensive Milky Way model for chemical tagging

Recall that star clusters are quickly dispersed after their formation. Assuming a rotational velocity

of 200 km/s, it only takes a star about 0.5 Gyr to orbit the Galaxy. When combined with a mod-

est amount of dynamical heating, the implication is that stars from the same star cluster are mostly

mixed and distributed throughout the Solar annulus. Since many star clusters are now mixed in the

Galaxy, and spectroscopic surveys only collect subsamples of stars within their observed volumes, it

is unclear whether we could gather enough stars from the same cluster in the Solar neighborhood

and how massive a star cluster has to be in order to be detected through chemical tagging. In ad-
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dition, we also have limited resolution in separating clumps in elemental abundance space due to

measurement uncertainties of elemental abundances. Due to these many caveats, without chemo-

dynamics models of the Milky Way that directly match the ongoing surveys, it will be difficult to

interpret the results of these surveys.

To this end, in Chapter 2 (Ting et al., 2015, ApJ, 807, 104), I will present the first extensive model

that directly incorporates many of the key processes relevant for evaluating the chemical tagging

surveys. Previous chemodynamical modeling either only focused on the global chemical evolution

trends 147,178 or focused on certain stellar groups 23,24 and are not specifically tailored to explore chem-

ical tagging in the Milky Way disk under different evolutionary histories. In the model presented

in Chapter 2, I explore various observationally inspired prescriptions for the star formation history,

the gas mass distribution, the stellar mass distribution and the radial size growth of the Milky Way

through cosmic time and populate the elemental abundance space with simulated star clusters.

My simulations indicate that with the current measurement precision of elemental abundances

(σ[X/H] = 0.05 dex), we might not be able to resolve individual star clusters through chemical tagging.

I found that detectable clumps might not come from single disrupted clusters, even though they

could have significantly more stars than the average background. These clumps could form from

a stack of many moderately massive clusters at the resolution of the current elemental abundance

precision.

Besides the lack of precision measurement of elemental abundances, the interesting “birth simi-

larity” features of chemical tagging are currently smeared out (cf. the left panel of Fig. 1.1) because of

other two other major challenges. First, the Milky Way has many more stars that are now spatially
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mixed than the sample with high-resolution spectra. Even with current high-resolution spectro-

scopic surveys of 106 stars, my simulations found that we sample only< 0.01% of stars per star

cluster. Since we only sample a few stars from each star cluster, interesting clumps are hardly visible.

The second additional challenge is that many star clusters are low mass, meaning that the few stars

they contribute are part of a “background” sea of stars. My simulations found that the chemical tag-

ging signals diluted by a sea of “background” stars. I will tackle some of these challenges in Chapter

4–7.

1.3.2 Revealing the stellar cluster mass function in the early Milky Way

While my simulations show that we might not attain strong chemical tagging just yet, I found that

the Milky Way’s propoerties can still be constrained using an intermediate form of chemical tagging.

Even under the current observational constraints where star clusters might not be resolved through

chemical tagging, my simulation predicts that different stellar cluster mass functions entail strikingly

different stellar distributions in elemental abundance space. In other words, although individual

cluster signals might be currently too weak to recover, the global fluctuations in the elemental abun-

dance space from ongoing large-scale spectroscopic surveys can still be used to reconstruct the Milky

Way CMF in the past. In between the “population-level” chemical tagging and the “strong” chemi-

cal tagging, I propose the “statistical-level” chemical tagging.

In particular, in Chapter 3 (Ting et al., 2016a, ApJ, 816, 10), I will present a work where I applied

a new clump search method to the APOGEE DR12 dataset and put into practice the first large-scale

chemical tagging analysis of the Milky Way disk. By quantifying the clumpiness of the APOGEE el-
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Figure 1.2: Cluster mass func on constraints from chemical tagging. Le panel: By measuring the clumpiness of ele-
mental abundance space, my work put the first chemical-tagging based constraint on cluster mass in the Milky Way
thick disk. The thick disk did not form any chemically homogeneous star cluster more massive than 107 M⊙. Right
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years from various large spectroscopic surveys, chemical tagging will be able to determine whether or not 106 M⊙
chemically homogeneous star clusters ever existed in the Milky Way.

12



emental abundance space with ten elements, as shown in the left panel of Fig. 1.2, I will demonstrate

that the Milky Way old disk population did not form any chemically homogeneous clusters more

massive than 107 M⊙. In this work, I forward modeled the APOGEE elemental abundance space

and showed that any star cluster more massive than this limit should be detectable by APOGEE via

chemical tagging and yet no such signal has been found. This study put the first-ever constraint on

how massive a star cluster in the Milky Way could be in the first five billion years after the Big Bang.

Despite this promising result, we note that the CMF constraints presented in Chapter 3 are lim-

ited to large cluster masses. This is due to the small available sample size from which the analyses

were performed. But the GALAH, Gaia-ESO, and APOGEE 2 surveys will measure more elements

(and thus define a larger search space) and a total of ten times more stars than APOGEE DR12 in

the next two years. The future prospects of this approach are good. As shown in the right panel of

Fig. 1.2, I project through simulations that these surveys will derive a CMF limit that is at least an or-

der of magnitude more constraining. Chemical tagging will reveal whether or not 106 M⊙ chemically

homogeneous star clusters ever existed in the Milky Way.

1.3.3 Maximal information extraction with new spectral fitting technique

Although I demonstrate that chemical tagging now works in a somewhat limited “statistical” form,

the ultimate goal is to perform “strong” chemical tagging and resolve individual disrupted star clus-

ters in elemental abundance space. The current elemental abundance precision from state-of-the-art

techniques is not sufficient to achieve strong chemical tagging. Although a cluster is intrinsically

homogeneous to a level of better than 0.02 dex 29,131, the cluster will appear smeared out. Better ele-
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mental abundance precision, however, will significantly improve the situation. Since chemical tag-

ging deals with a search space with seven-to-nine independent dimensions 195, a small improvement

will have an enormous effect. In fact, a factor of two improvement in each elemental abundance will

improve the chemical resolving power by a factor of 1,000 (cf. Chapter 2). As a result, chemically

homogeneous substructures in the elemental abundance space should be significantly more distinct

as a result (cf. the right panel of Fig. 1.1 and Chapter 2).

Rigorous spectral modeling calls for all stellar labels characterizing a star to be fit simultaneously

to the full spectrum. For the large datasets at hand, this appears computationally infeasible using

the established rectilinear technique71. The rectilinear technique requires exponentially more mod-

els as the number of parameters increases. Therefore, no analysis of stellar spectra has attempted a

self-consistent, simultaneous fitting of all of the relevant parameters to the full spectral range. How-

ever, only fitting a portion of the spectral range can limit the precision that is achievable. For exam-

ple, restricting to unblended strong lines, a simplification that most current techniques adopt, only

exploits about 10% of the spectral information, and so the precision obtained is about three times

worse than the formal limit (cf. Chapter 4).

To overcome this limitation, in Chapter 4 (Ting et al., 2016b, ApJ, 826, 83) and Chapter 5 (Rix,

Ting et al., 2016, ApJ, 826, L25), I will present a new spectral fitting technique that enables the fitting

of> 20 parameters simultaneously with minimal loss of information. The defining ideas of this

new method are two-fold:

• Only a tiny fraction of the high-dimensional label space is actually occupied by real stars. We
consider a convex hull, i.e., the minimal polygon that encompasses all real stars in the label
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space, and an adaptive grid approximation for this subspace which has a dramatically smaller
volume than a rectilinear grid.

• I directly fit the variation of a spectrum on stellar labels with an explicit functional form. I
show that the underlying model spectrum for giants varies mostly quadratically with stel-
lar labels. Only d2 synthetic models are needed to constrain the quadratic, where d is the
number of dimensions. Compare this to the standard interpolation approach, in which the
number of models grows as exp(d), in a 20-dimensional space, my new method reduces the
computational cost by a factor of a million.

To demonstrate how well this new spectral fitting technique works, in Chapter 4 and 5, I con-

sider mock synthetic stellar spectra with all 18 labels (effective temperature, surface gravity, micro-

turbulence, and 15 elements) in APOGEE. I show that this method recovers most elemental abun-

dances with a typical systematic error less than 0.03 dex in this 18-dimensional space spanned by the

APOGEE giants. This result shows a promising prospect that, with this new technique, we could

significantly improve the chemical resolving power by improving the elemental abundance preci-

sion by about a factor of two. In Chapter 7, I will discuss some ongoing works, demonstrating this is

indeed the case by fitting real APOGEE spectra.

1.3.4 Increasing the sample size through low-resolution spectral fitting

In Chapter 6 (Ting et al., 2016c, submitted to ApJ), I will show that fitting all elements simultane-

ously with the technique presented in Chapter 4 and 5 also opens a new path for dealing with low-

resolution spectra. Due to read noise and low throughput, current high-resolution surveys will be

limited to a million bright stars until the next generation of large-scale spectroscopic surveys in the

year 2020. However, enabling chemical tagging requires that we go beyond 106 stars (cf. Chapter 2).
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One way to proceed is by reanalyzing abundantly available low-resolution (but high S/N) spectra.

For example, LAMOST and Gaia’s Radial Velocity Spectrograph are observing a few million stars

with a low-resolution spectrograph (R ≃ 2,000 and 11,000, respectively).

Chemical tagging requires the measurement of multiple elemental abundances. High-resolution

spectra with R>20,000 are thought to be indispensable to measure>20 individual elemental abun-

dances, below which spectral lines are blended. But my new technique presented in Chapter 4 and 5

allows for the extraction of information from blended features and hence it hosts the exciting possi-

bility of measuring> 20 elemental abundances with low-resolution spectra. With this idea in mind,

in Chapter 6, I will show the result of simulations which degrade model spectra to lower resolutions.

Assuming the same exposure time and number of CCD pixels, my study demonstrated that high

S/N, low-resolution spectra with R=6,000 can yield elemental abundances as precise as R=100,000

spectra, provided that we fit all stellar labels self-consistently with the new approach. I also verified

that the same result holds regardless of stellar type, metallicity, and wavelength coverage. This re-

sult might seems surprising at first because the high-resolution spectra should have deeper spectral

features. Although the low-resolution spectra have shallower absorption features, I found that the

low-resolution spectra could perform equally well because they simply afford a higher S/N and a

larger wavelength coverage to compensate for the shallower features.

Comparing the pros and the cons of high-resolution and low-resolution spectroscopy, in Chap-

ter 6, I will argue that for the next generation of large-scale spectroscopic surveys, it may be more

advantageous to observe most stars in a low-resolution configuration and only collect a subset of

high-resolution spectra for calibration purposes. This work is timely because the next generation
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of surveys such as the 4MOST survey will consist of both high-resolution and a low-resolution set-

tings. My study in Chapter 6 lays out a comprehensive theoretical basis to evaluate the advantages of

employing each of these two configurations.

In summary, chemical tagging is an incredibly powerful approach that could open new windows

to study the Milky Way’s properties at earlier epochs. The promise of this technique motivated the

collection of a large amount of data. My contribution has been to recognize challenges that cur-

rently prohibit chemical tagging (Chapter 2) and overcome these challenges. I have developed inno-

vative ways of extracting statistical indicators from the elemental abundance space (Chapter 3) and

more sophisticated methods of obtaining the maximal information from stellar spectra (Chapter

4–6). I am also working on other future directions (Chapter 7) that involve both improving stellar

age estimates for millions of stars and exploiting kinematic information from Gaia. Each of these

efforts is enormously valuable on its own, but my ultimate goal is too coordinate all of these efforts

and eventually bring the full life cycle of the Milky Way into greater focus via chemical tagging.
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2.0 Abstract

It is now well-established that the elemental abundance patterns of stars holds key clues not only to

their formation but also to the assembly histories of galaxies. One of the most exciting possibilities is

the use of stellar abundance patterns as “chemical tags” to identify stars that were born in the same

molecular cloud. In this paper we assess the prospects of chemical tagging as a function of several

key underlying parameters. We show that in the fiducial case of 104 distinct cells in elemental abun-

dance space and 105 − 106 stars in the survey, one can expect to detect∼ 102 − 103 groups that are

≥ 5σ overdensities in the elemental abundance space. However, we find that even very large over-

densities in elemental abundance space do not guarantee that the overdensity is due to a single set of

stars from a common birth cloud. In fact, for our fiducial model parameters, the typical 5σ overden-

sity is comprised of stars from a wide range of clusters with the most dominant cluster contributing

only 25% of the stars. The most important factors limiting the identification of disrupted clusters via

chemical tagging are the number of chemical cells in the elemental abundance space and the survey

sampling rate of the underlying stellar population. Both of these factors can be improved through

strategic observational plans. While recovering individual clusters through chemical tagging may

prove challenging, we show, in agreement with previous work, that different cluster mass functions

(CMF) imprint different degrees of clumpiness in elemental abundance space. These differences

provide the opportunity to statistically reconstruct the slope and high mass cutoff of CMF and its

evolution through cosmic time.
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2.1 Background

Despite decades of effort, we still lack a thorough understanding of how galaxies assemble and

evolve over cosmic time. This is true not only for distant galaxies but also for our own Milky Way.

In the current paradigm, galaxies such as the Milky Way form from smaller pieces (e.g., 182), driven

by the hierarchical growth of dark matter structures (e.g., 158,161). Much of the most exciting phases

of star formation and galaxy assembly appear to have taken place at early times, perhaps before

z ∼ 2. If true, this puts much of the most interesting phases of galaxy formation beyond direct

detailed study. For this reason much effort has focused on reconstructing the past based on present-

day observations of stars, in particular in the Galaxy. For example, studies of the Galactic stellar

halo provides clues to the assembly history of dwarf galaxies (e.g. 57,182). The properties of stars in

the thin and thick disks provide clues to the formation history of these Galactic components. The

abundance patterns of the most metal poor stars probe star formation and supernovae conditions

during the first generation of stars. And the evolutionary histories of star clusters, both intact, dis-

solving, and long destroyed, offer clues not only into the star formation process (by reconstructing

the CMF), but also the dynamical history of the Galaxy (e.g., 5,110,204).

However, reconstructing disrupted star clusters is difficult because most star clusters dissolve

quickly upon their formation due to dynamical interactions, such as intracluster n-body interaction

and tidal stripping. In fact, most clusters are not expected to survive for more than 100 Myrs 124. For

this reason, the study of young embedded clusters (e.g., 16,27,111,160) is typically restricted to the study

of star formation conditions at the present time. Although most star clusters are quickly disrupted,
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they retain their identity in kinematic phase space for a longer period of time. Several examples of

clusters identified in phase space are known, such as HR1614, the Argus association and the Wolf

360 group (e.g., 37,49,52), with an age of 2-3 Gyrs. This implies that at least some clusters can maintain

their phase space identity for a few disk dynamical times. Within a few dynamical times these groups

will phase mix with the background stars, which implies that the timescale over which groups can be

identified in phase space is still a small fraction of the age of the Galaxy.

While dynamical information is mostly short-lived, elemental abundances are expected to leave

a more permanent fossil record of star clusters. The idea of “chemical tagging”, first proposed by

Freeman & Bland-Hawthorn 69 (also see 21), is to use elemental abundances to identify stars that are

now widely separated in phase space to a common birth site. If such an association could be made,

even for a small fraction of stars, it would provide an extraordinary new view into both the early star

formation process and the subsequent dynamical history of the Galaxy.

Observations have shown that satellite galaxies exhibit different chemical evolution histories com-

pared to stars either in the disk, bulge, or halo of the Galaxy (e.g., 127,159,196,201,202). As a consequence,

stars accreted into the Galaxy from different satellite systems should show distinct chemistry from

e.g., disk stars. It has been proposed that these variations could be used in chemical tagging to find

the remnants of disrupted satellite galaxies69. The possibility of reconstructing disrupted satellite

galaxies via chemical tagging could for example provide important clues to the missing satellite prob-

lem 152.

Previous studies of high-resolution stellar spectroscopy were limited to a few hundred stars

(e.g., 10,13,168). The small samples restricted the possibility of chemical tagging for reasons that will
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become clear in later sections. But this situation is rapidly changing. Recent and on-going large-scale

surveys, such as GALAH 53, Gaia-ESO 164 and APOGEE 212 aim to observe 105 − 106 stars with res-

olution R > 20, 000 in order to measure∼ 15 − 30 elements for each star. These surveys were

motivated, at least in part, by the idea of chemical tagging and the prospects for uncovering the

distribution of stars in their n-dimensional elemental abundance space, spanned by the elemental

abundances.

There are several conditions that must be met for chemical tagging to work (see 22,23,24,53,69 for

details). First, clusters must be internally chemically homogeneous. Open clusters have been found

to be chemically homogeneous at the level of σ[X/Fe] < 0.05 dex (e.g., 50,51,70,157,194). Theoretical

arguments from Bland-Hawthorn et al. 24 showed that the chemical signature within a protocloud

should have sufficient time to homogenize before the first supernova goes off, for clusters with mass

105 − 107 M⊙. Simulations by Feng & Krumholz 63 showed that turbulent mixing, even for a loosely

bound cluster, could homogenize the elemental abundances of a protocloud. Their simulations

showed that turbulent mixing creates an intracluster chemical dispersion at least five times more

homogenized than the protocloud. Both observations and theory agree that clusters less massive

than∼ 107 M⊙ should be chemical homogeneous, except perhaps for the confounding internal

abundance trends observed in the light elements of all known globular clusters (e.g., 38,137), though

many globular clusters show a high degree of chemical uniformity (e.g., 174) in all heavy elements.

In addition to cluster homogeneity, the existence of substantial cloud-to-cloud variation in ele-

mental abundances is another requirement. For example, if all star clusters shared the same elemen-

tal abundances, it would not be possible to separate them in elemental abundance space. We know
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that this condition is broadly satisfied given the sizable spread in abundance ratios in existing spec-

troscopic samples (e.g., 13,56). Quantitatively, an important parameter is the volume of abundance

space that is available for a particular survey. This volume depends both on Galactic chemical evo-

lution and on the particular survey design. The latter is important both in determining the target

sample and in the number of elements that can be spectroscopically measured. Combining the avail-

able chemical volume with the measurement uncertainty on individual abundances allows us to

define the concept of the total number of distinct cells in elemental abundance space. As we will see

below, this is a key concept in chemical tagging (see also69).

Ting et al. 195 presented an empirical estimate of cloud-to-cloud variation in elemental abun-

dances. They performed principal component analysis and estimated that there are 7 − 9 inde-

pendent dimensions among the∼ 25 elements that will be measured by surveys such as GALAH

and Gaia-ESO, and 4 − 5 independent dimensions for an APOGEE-like survey. From this one can

estimate the number of distinguishable cloud-to-cloud variations in the elemental abundance space,

denotedNcells. As discussed in detail in §2.3.5 below, the result is that modern surveys should be able

to reachNcells ∼ 103−4, at least, implying that there is a decent cloud-to-cloud variation.

The goal of this paper is to explore the prospects for identifying long disrupted star clusters based

on their clustering in elemental abundance space. We follow Freeman & Bland-Hawthorn 69 , Bland-

Hawthorn et al. 23 , and De Silva et al. 53 in identifying the global survey parameters and the shape of

the CMF as key parameters. Our emphasis on the information contained in the distribution (i.e.,

clumpiness) of stars in elemental abundance space echoes the results found in Bland-Hawthorn

et al. 23 . In the present work we consider a wide array of parameters in order to identify optimal

23



regions of parameter space for chemical tagging. In addition, for the first time we analyze the local

properties of cells in elemental abundance space that appear as high sigma fluctuations and find that

in many cases these high overdensities in elemental abundance space are not the result of a single star

cluster but instead are comprised of stars from many distinct birth sites.

The rest of this paper is organized as follows. In §2.2 we review several basic arguments relevant

for chemical tagging and in §2.3 we describe the model used in the present work. In §2.4 we present

the results and discuss how these assumptions and survey strategies affect the chemical tagging de-

tections. In §2.5 we discuss various caveats, limitations and future directions. We conclude in §2.6.

It is difficult to present the full set of results from a multidimensional parameter space and so we

urge readers to explore the online interactive applet * created in the course of this project (see Ap-

pendix 2.8 for details).

*www.cfa.harvard.edu/∼yuan-sen.ting/chemical_tagging.html
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2.2 Basic arguments

As we will show quantitatively below, the prospects for chemical tagging largely depends on the

number of stars sampled per cluster. This number in turn primarily depends on the number of stars

in the survey divided by the integrated star formation rate (SFR), over cosmic history, in the volume

sampled by the survey. We will denote the former number asN⋆, the latter number asMannulus. On-

going and upcoming surveys are targeting primarily FGK stars, which have on average ⟨M⟩ ≈ 1M⊙.

This implies thatN⋆ stars in a survey corresponds toN⋆ in solar masses and therefore numerically

Mannulus ≈ Nannulus. The ratio ofN⋆ andNannulus defines the sampling rate. In this section, we

motivate why the sampling rate largely defines the number of stars sampled per cluster (see also 53).

First, let’s consider a simple case where there is no radial migration and stellar excursion, i.e., stars

stay in the annulus in which they were born. The integrated SFR in the Solar annulus, with a survey

width∆Rsurvey = ±3 kpc, is∼ 2 × 1010 M⊙ (see model detail in §2.3).† For a survey of 106 stars with

⟨M⟩ = 1M⊙, the sampling rate can thus be calculated to be (106 M⊙)/(2 × 1010 M⊙) = 1/(2 ×

104). In other words, assuming all stellar mass (including stellar mass loss) is now fully mixed in the

annulus, we would have only sampled, on average, 1/(2 × 104) of the original zero age mass from

each cluster. Thus, we would expect to observe, on average, only one star from a 2 × 104 M⊙ cluster.

If we define the “detection” of a cluster to include the identification of at least 10 stars, then for a

survey of 106 random stars in the solar annulus we would be able to probe clusters more massive

than 2 × 105 M⊙.

†The survey width∆Rsurvey defines the Solar annulus by |R − R0| < |∆Rsurvey|. The survey width should
not be confused with the line-of-sight depth from the Sun, which is |R−R0| < 3 kpc.
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In practice, the sample is affected by the process of radial migration (e.g., 24). Some stars are mi-

grated away from their birth annulus while others that were born outside the Solar annulus will now

reside within the Solar annulus. In other words, the number of stars that could end up in the Solar

annulus increases with radial migration (another way of thinking of this effect is that the effective

volume of the Solar annulus increases as the strength of radial migration increases). Given that the

number of stars in the survey stays the same, the sampling rate decreases with radial migration. For

a fixed survey strategy, the minimum cluster mass that one can probe increases in the presence of

radial migration.

We must also consider the fact that we have limited resolution in separating groups in terms of

their elemental abundance variations due to measurement uncertainties on the abundances. Mul-

tiple clusters might share the same cell in elemental abundance space (e.g., 23). If we assume a CMF

over the range 50M⊙ to 106 M⊙ and a CMF slope of−2 (see details in §2.3), for a sample of 106 stars,

in simulations of the latter section, we found that there are about 105 clusters contributing to the

elemental abundance space. Fully resolving clusters in elemental abundance space would require

roughly as many distinct chemical cells69, but it was argued in the §2.1 that the actual number of

chemical cells spanned by the data may be 1 − 2 orders of magnitude lower. This suggests that most

cells in elemental abundance space will be occupied by many clusters, each with a small number of

stars sampled per cluster. One of the key goals of this paper is to understand the distribution of clus-

ters in elemental abundance space under different scenarios.

The simple calculations in this section already demonstrate that key parameters include the num-

ber of stars in a survey,N⋆, the geometry of the survey (viaMannulus), the strength of radial migra-
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tion, the shape of the CMF (which sets the typical cluster size), and the number of cells in elemental

abundance space (Ncells).
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2.3 Model description

In this section we describe the ingredients of our model for the Milky Way in some detail. The

model is spatially two dimensional (though we assume that stars are uniformly distributed in the

azimuthal angle), time-dependent, and statistical in nature. For the present study we are only inter-

ested in the disk; the bulge and halo are not included in the model below. We do not follow dynam-

ics nor do we include a treatment of chemical evolution (these will be subjects of future work). The

present aim is to build a model that is computationally very fast to allow the exploration of a large

multi-dimensional parameter space.

The model specifies the star formation history (SFH) and evolution in time of the size of the

Milky Way disk and the gas mass distribution. We define the SFH to be the total SFR in the Milky

Way as a function of cosmic time. These quantities are used to model the effects of radial migration

and an evolution in the cutoff of the CMF. The model is illustrated in a flow chart in Fig. 2.1. Table

2.1 lists observational constraints that we employ to constrain the model. Free parameters in the

model and their adopted fiducial values are listed in Table 2.2. The meaning of other important

symbols in this paper are listed in Table 2.3. We now proceed to explain the details of the model.

2.3.1 Star formation history and radial size growth of the disk

The SFH in the Solar neighborhood,ΣSFR(R0, t), has been estimated by analyzing the color-magnitude

diagram from the Hipparcos catalog, where R0 is the Galactocentric radius of the Sun. Results from,

for e.g., Hernandez et al. 90 and Bertelli & Nasi 15 showed a rather flat SFH near R0, ranging from
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Chemical Evolution Model

Ncells

Star Formation Model

    Star 
Formation
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Survey Strategy

N Rsurvey
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   Space Chemical

evolution
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3 − 6M⊙Gyr−1pc−2 through 0 − 8 Gyr in lookback time. The current total SFR in the Milky Way

has been estimated to be 0.5 − 2M⊙yr−1 from the study of young stellar objects (e.g.,44,173,200).

In comparison to the Solar neighborhood, the Galactic global SFH is less well understood. We

therefore adopt cosmological semi-empirical modeling from Behroozi et al. 12 , assuming a Milky Way

halo virial mass ofMhalo ≡ M200 = 1012 M⊙ (e.g.,98,107,206,209). Behroozi et al. 12 investigated the

best-fitting global SFH as a function halo mass that is consistent with the observed galaxy stellar

mass function, specific SFR, and cosmic SFR. We fit their result for Milky Way-like halos with a

Schechter function,

SFR[M⊙yr−1] = A (t[Gyr]/C)B exp(−t[Gyr]/C). (2.1)

Given a global SFH, the stellar mass evolution is calculated assuming the stellar population syn-

thesis code from Conroy et al. 45 , with a Kroupa IMF 114 from 0.08 − 125M⊙. The synthesis code

is used to take into account secular stellar mass loss, etc. The normalization of the global SFH is fur-

ther adjusted such that the present-day stellar mass (long-lived stars + remnant stars) agrees with

observations,M⋆(z = 0) = 4.5 × 1010 M⊙ (e.g., 18,30). In this study, we only trace long-lived stars

with 0.5 − 1.5M⊙ because almost all FGK stars in chemical tagging surveys are within this mass

range.

We consider two SFH models in this study, with parameters from equation (1) as follows: (1)A =

1.4, B = 4.4, C = 1.3, which is the best fitting SFH model from Behroozi et al.; (2)A = 15.5,

B = 2, C = 2.7, which produces better agreement with the observedΣSFR(R0, t). Both models are
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within the uncertainty quoted by Behroozi et al. We adopt the latter as the fiducial model and the

former to be the optimistic model (see Fig. 2.2 and Table 2.4). The former coins the term “optimistic

model” as its more highly peaked SFR entails a higher total gas mass (see §2.3.2). The higher total

gas mass in turn predicts a larger cluster high mass cutoff (see §2.3.4) than the “fiducial model.” We

emphasize that while the optimistic and fiducial models assume different SFHs, the integrated SFRs

of these models over cosmic time are the same. Since the total integrated SFRs are the same, they

both produce the sameM⋆(z = 0) andΣ⋆(R0, z = 0). Therefore, the sampling rate is the same for

both cases. The global SFR andΣSFR(R0, t) in these two models are compared in the upper panels

in Fig. 2.2. The main differences of these models are summarized in Table 2.4 (the “quiescent model”

will be defined in §2.3.4).

With the stellar mass evolution in hand, we then derive the radial size growth of the Milky Way

using the empirical relation from van Dokkum et al. 198 . By studying the evolution of galaxies at a

fixed comoving number density at different redshifts, van Dokkum et al. 198 found that the effective

radius R⋆ of Milky Way-like galaxies grow with the total stellar mass according to the relation R⋆ ∝

M0.27
⋆ .

Finally, to fully specify the star formation at different radii, we also require the star formation

scale length, RSFR, and its evolution. Unfortunately, determining RSFR for the Milky Way is obser-

vationally challenging. Therefore, we resort to RSFR from extragalactic studies where the external

vantage point provides an easier measurement of scale lengths. NGC 6946 has long been thought

to be a Milky Way counterpart (e.g., 103). We find the SFR and the (atomic and molecular) gas mass

of NGC 6946 from Schruba et al. 180 can be fitted with an exponential model. We find scale lengths
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RSFR(z = 0) = 2.6 kpc and Rgas(z = 0) = 4.2 kpc, which we adopt in our model of the Milky Way.

To compute the evolution RSFR(z) and Rgas(z) through cosmic time, we assume all scale lengths

trace the stellar effective radius. We find that this adopted RSFR(z) leads to a stellar disk scale length

of R⋆(z = 0) = 2.2 kpc andΣ⋆(R0, z = 0) = 38M⊙pc−2. These values agree with existing obser-

vations 30,65,213. Furthermore, the model implies Rgas(z = 0) ≃ 2R⋆(z = 0), agreeing with Bovy &

Rix 30 .

2.3.2 Gas mass distribution and evolution

The mass of gas in the disk comes into play in two aspects of the model, namely the radial migration

prescription and the CMF evolution. We assumeΣgas(R0, z = 0) = 13M⊙pc−2 65, which, when

combined with Rgas(z = 0) = 4.2 kpc, yields a total gas mass ofMgas(z = 0) = 9.7 × 109 M⊙. We

then estimate the redshift evolution of the gas massMgas(z) by inverting the Kennicutt-Schmidt re-

lation with αKS = 1.5 and the SFR evolution described in the previous section. The distribution of

gas is fully specified byMgas(z) and Rgas(z). The total stellar mass and the total gas mass evolution

are shown in the bottom left panel in Fig. 2.2. For this work we do not need to specify the disk scale

height because all quantities of interest are related to surface mass densities.

2.3.3 Radial migration

Radial migration describes the phenomenon of stars in the disk moving, either inward or outward,

in radius from their birth radius. Studies of processes giving rise to radial migration have a long his-

tory. In the past decade, radial migration has gained increasing attention as playing a key role in
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driving the chemodynamical evolution of the Milky Way (e.g., 24,55,87,149,178,183). Due to its role in

changing stellar orbiting radii, radial migration provides tentative explanations to some observa-

tional puzzles. For example, the upturn in the stellar population age at the outer part of some galax-

ies (e.g.,9,214), the wide range of stellar metallicity in the Solar neighborhood (e.g., 87,178); and perhaps

even the formation of the thick disk (e.g., 133) can be explained by appealing to the process of radial

migration.

An important physical process giving rise to radial migration is known as “churning” 183. In the

process of churning, stars that co-rotate with transient non-axisymmetric features can increase their

angular momentum while maintaining the ellipticity of the orbit, effectively bumping stars from an

orbiting radius to the other. Schönrich & Binney 178 proposed a simple analytic formula for churn-

ing that we will adopt in this study. In this prescription, the probability of moving from the i-th to

the j-th annulus, Pij, where j = i± 1, is given by

Pij = kch
Mj

Mmax
, (2.2)

whereMj denotes the total (stellar + gas) mass of the j-th annulus and kch is a free parameter govern-

ing the strength of the churning.

In the present work we discretize the model galaxy into annuli with width of 0.2 kpc and apply

the churning exchange every 0.5 Gyr. We define in-situ fraction, fin−situ, as the fraction of stars that

were born in-situ in a Solar annulus with∆Rsurvey = ±1 kpc. Clearly, fin−situ depends on the choice

of∆Rsurvey. We choose∆Rsurvey = ±1 kpc to calculate the in-situ fraction, instead of our fiducial
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value±3 kpc in the model for ease of comparing to hydrodynamics simulations (e.g., 175). We note

that the free parameter kch maps directly into the variable fin−situ, and we choose to express the ef-

fect of radial migration in terms of the latter value. We consider a range of kch corresponding to

fin−situ = 15% − 100% and we choose fin−situ = 50% to be the fiducial value, as suggested by sim-

ulations (e.g., 81,175). To illustrate the radial migration prescription adopted in this study, solid lines

in Fig. 2.3 show the PDF of the final position of a star after 13 Gyr of evolution starting from various

initial positions.

In addition to churning, scattering, e.g., from interactions with molecular clouds, can also dif-

fuse stars from their birth radii. This scattering is known as “blurring” 183. For simplicity, we do not

include blurring in the model. However, we note for our purposes only the fraction fin−situ is im-

portant; the details of migration, either through churning or blurring are largely irrelevant in this

study.

2.3.4 Cluster mass function evolution

We have discussed in §2.2 that the number of stars sampled per cluster is governed primarily by the

sampling rate and the in-situ fraction. However, knowing the detections per cluster is insufficient.

To determine the number of detectable groups, we also need to understand the relative number of

massive clusters compared to their smaller counterparts. Therefore, the CMF is another key factor

(see also 23). In this study, we assume a CMF that is characterized by a power law slope α, high mass
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cutoffMmax
cluster and low mass cutoffMmin

cluster, where

dN
dM ∝ M−α. (2.3)

Note that cluster masses refer to zero age masses; clusters will lose at least a factor of two mass after a

Hubble time due to stellar evolution effects and the evaporation of stars.

Lada & Lada 124 analyzed young embedded clusters within 2.5 kpc from the Sun and found a

CMF slope α ≈ −2.0. We take this as the fiducial value in the model. The fact that α ≈ −2 is

important in chemical tagging. In this case, the total mass in a survey sample coming from clusters

within a mass bin δM, can be calculated to be

M dN/dM δM = M2 dN/dM δ logM ∝ δ logM. (2.4)

Quantitatively, this means that the chance of sampling a star from the logarithmic bin [10M⊙, 100M⊙]

is the same as the probability of sampling from the logarithmic bin [100M⊙, 1000M⊙], and so

forth. Since we adopt a maximum cluster massMmax
cluster = 105 − 107 M⊙ in this model, we have

4− 6 orders of dynamical range in the cluster mass. This large range of cluster mass implies that clus-

ters with [10M⊙, 100M⊙] contribute only∼ 10% − 25% of the total stellar mass. Lada & Lada 124

determined that the CMF low mass cutoff occurs aroundMcluster = 50M⊙, which we will adopt as

the fiducial value.

Although not shown in this paper, we find that changing the low mass cutoff to 10M⊙ or 100M⊙
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has a negligible effect on the results. First, as we have discussed, the small clusters only contribute

∼ 10% − 25% of the population. Furthermore, changing the low mass cutoff will alter the number

of small clusters and hence the background in each cell, however since the signal is concentrated in

∼ 0.1% − 1% of the chemical cells, as we will show in §2.4.2, only< 1% of this background change

is affecting the signal.

The high mass cutoffMmax
cluster has a dramatic effect on the results because massive clusters dom-

inate the signal, as shown in later sections. We therefore consider several different scenarios for the

high mass cutoff and its evolution with redshift (see the lower right panel of Fig. 2.2). The largest

open clusters observed in the Milky Way appear to be Westerlund 1 (e.g., 35), Berkeley 39 (e.g., 34) and

Arches (e.g.,60), with a mass few times of 104 M⊙. Noting the fact that the cluster could have gone

through a period of rapid mass loss in its formation phase (e.g., 124), we adoptMmax
cluster ≃ 105 M⊙ at

z = 0 as the nominal mass cutoff at z = 0 in the Milky Way disk.

A number of arguments suggest that the CMF high mass cutoff could have been higher in the

past. For instance, the existence of massive globular clusters with surviving mass of 104.5 − 106.5 M⊙

(e.g., 83) suggests that early conditions in the Galaxy favored the formation of more massive clusters.

Observations of high-redshift disk galaxies also suggests a high frequency, relative to z = 0, of very

massive gas clumps of 107 − 109M⊙ (e.g.,66,72,97,132).

Escala & Larson 59 provided a simple model for the maximum cluster mass by studying gravita-

tional instability in disks, similar to Toomre’s classic analysis 197. They calculate the maximum unsta-

ble mass to beMmax
cluster = Σgas(λrot/2)2, where λrot = π2GΣgas/Ω

2. From this formula, they further

found that the maximum cluster mass can be determined by the gas fraction η (i.e., gas mass to the
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total gravitational mass) and the total gas massMgas alone, where

Mmax
cluster ∝ Mgasη

2. (2.5)

The normalization of this formula depends on a variety of unknown parameters and so we choose

instead to fix the normalization by hand at z = 0. The dynamics of the Milky Way disk can be

explained without appealing to dark matter, at least within the Solar radius. We therefore ignore the

influences of dark matter when computing the upper mass cutoff, i.e., we define η = Mgas/(Mgas +

M⋆). The evolution ofMgas andM⋆ follow the discussion in §2.3.1 and 2.3.2.

We consider three scenarios for the evolution of the upper mass cutoff, which we will denote as

the quiescent, fiducial and optimistic models (see Fig. 2.2). In the quiescent model, we consider the

fiducial SFH and fixMmax
cluster(z) = 105 M⊙ through cosmic time. In the fiducial and optimistic cases,

we consider the SFHs labeled as fiducial and optimistic in Fig. 2.2 and allowMmax
cluster(z) to evolve.

We setMmax
cluster(z = 0) = 105 M⊙ for the fiducial case, andMmax

cluster(z = 0) = 3 × 105 M⊙ for

the optimistic case. We use the term “optimistic” because this model allows the formation of very

massive clusters, which is favorable for chemical tagging. Finally, we impose a maximum upper limit

of 107 M⊙. Clusters with mass larger than this cutoff are unlikely to be homogeneous 24 in their

elemental abundances due to self-enrichment. The evolution ofMmax
cluster(z) in these three cases are

plotted in the bottom right panel in Fig. 2.2. The main differences of these three CMF models are

summarized in Table 2.4. The range of CMFs we consider is similar to the range explored by Bland-

Hawthorn et al. 23 , although the authors do not consider a time-dependent CMF as we do here (for
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the optimistic and fiducial models).

2.3.5 Elemental abundance space

The last model ingredient is multi-dimensional space of elemental abundances, often referred to

as the “elemental abundance space.” The elemental abundance space is spanned by the elemental

abundances [Fe/H], [X1/Fe], . . ., [Xn/Fe], whereX1 toXn are n different elements measured. Since

stars that were born together are expected to share the same abundances, they should reside at the

same location in elemental abundance space.

As we will show below, the number of chemical cells in elemental abundance spaceNcells is a key

variable in chemical tagging. To understand its importance, let’s consider the case where we have an

infinite number of chemical cells, in other words we have infinite resolution in the elemental abun-

dance space. In this case, all clusters from various birth sites can be easily identified. However, as the

number of cells decreases, the probability that two clusters occupy the same chemical cell increases.

In this case, the smaller clusters (in terms of the number of stars sampled per cluster) become con-

taminants in the detection. They dilute the number of genuine members of the massive clusters.

Ncells depends on two ingredients: (a) The elemental abundance space spanned by the sample.

This volume is governed by Galactic chemical evolution and survey design, including the number

of elements of each star the survey can extract. Note that the volume does not scale in a simple way

with the number of elements measured because of the strong correlation between various subgroups

of elements. (b) The abundance measurement uncertainty σ[X/Fe], which sets the volume of each

cell. Regarding (b), in this study, we assume that the width of chemical cell is 1.5σ, i.e., two different
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distinct groups in elemental abundance space can be recovered if their separation is larger than 1.5σ,

where σ represents the uncertainties along the principal components/independent dimensions.‡

Note that, given an elemental abundance space ofNdim (independent) dimensions, the volume of

each cell is proportional to σNdim . As a consequence, the number of cells is extremely sensitive to

the abundance measurement uncertainties. We therefore stress that not only are small uncertain-

ties favorable, but also accurate measurement of the uncertainties and their covariances are equally

important.

The elemental abundance space spanned by the sample, in principal, can be modeled through

chemodynamical simulations. However, we note that chemical evolution models are still rather un-

certain for many elements and are often limited to a relatively small number of elements (e.g., 109,147).

Kobayashi et al. 108 include more elements, but they do not include neutron capture elements. There-

fore, we are not aware of an existing chemical evolution model that encompasses all∼ 25 elements

measured by the GALAH and Gaia-ESO surveys. For these reasons, and for simplicity, we choose

here to adopt empirical results in estimating the volume and defer a chemical modeling approach to

future work.

We make use of the estimated elemental abundance space volume of Milky Way disk stars from

Ting et al. 195 (also see6 for a similar study on bulge stars). Using principal components analysis,

Ting et al. 195 searched for directions in the elemental abundance space that are orthogonal to each

other and contain most variances of the data. These principal components define a n-dimensional

‡As these component vectors are comprised of various elements, the uncertainties along these directions
require the full covariance matrix of σ[X/Fe].
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cube spanned by the data. By definition, the number of cells is the volume of the cube divided by

the volume spanned by each cell. As for the latter, given the assumption that the width of chemical

cell is 1.5σ, the volume of the chemical cell is (1.5σ)Ndim . The volume of the n-dimensional cube can

be estimated from the width of edges in each dimension, which can be calculated from the principal

components axial ratios. Here we use the axial ratios of the principal components to estimate the

volume that will be spanned by the GALAH data, as an example. The axial ratios of the first 6 di-

mensions are 1, 0.4, 0.25, 0.25, 0.1, 0.1. Apart from the obvious additional dimension from [Fe/H],

Ting et al. 195 speculated that there should be another dimension associated with neutron capture el-

ements. This last dimension was not available in the data analyzed by Ting et al. but will be probed

by both GALAH and Gaia-ESO.

We can safely assume that the first principal component spans at least 1.5 dex as it is the diagonal

direction of the 17 dimension in study. Let’s further assume that [Fe/H] and both of the additional

dimensions span 1 dex, and the uncertainties along the independent dimensions are σ = 0.1 dex. A

simple calculation using the axial ratios yields: Ncells = (1.5 dex)6 × (1 · 0.4 · 0.25 · 0.25 · 0.1 · 0.1)×

(1 dex)2/(1.5σ)8 = 104 for GALAH. The Gaia-ESO survey spans a comparable list of elements and

should therefore contain a similar number ofNcells. An APOGEE-like survey should have 2 − 3

fewer independent dimensions than GALAH 195. All other parameters being the same, APOGEE

should haveNcells ∼ 103.

The above calculations are simple estimates for the number of chemical cells that could easily be

off by an order of magnitude. Hence, in the analysis below we consider a wide range in this impor-

tant parameter, ranging from 103 − 105.

46



2.4 Results

With the model for the Milky Way disk stars now in hand, we turn to using that model to explore

what ongoing and future massive spectroscopic surveys of stars may expect to reveal in the context

of chemical tagging. In §2.4.1 we investigate how many stars we expect to sample from the same

cluster for different number of stars surveyed and both with and without the effect of radial migra-

tion. The main results are presented in §2.4.2, where we simulate the number of detectable groups

in different scenarios. We study how observations of the distribution of stars in elemental abun-

dance space may encode information on the shape of the CMF. We also investigate whether each

detectable group in elemental abundance space is dominated by a single cluster or is comprised of a

wide range of clusters.

2.4.1 Number of stars sampled per cluster

In this section we study the number of stars sampled per cluster for several idealized surveys. In par-

ticular, we are interested in how many stars will be sampled per cluster after the cluster is dispersed

and mixed with the background sea of other clusters, and how the process of radial migration in-

fluences the sampling. Note that since we consider quantities as a function of cluster mass in this

section, for a fixedΣ⋆(R0, z = 0) the results will be independent of the CMF. However, the re-

sults do depend on∆Rsurvey and fin−situ as these parameters change the sampling rate and the radial

migration prescription. Here we assume∆Rsurvey = ±3 kpc and fin−situ = 50%.

In Fig. 2.4, we plot the number of stars sampled per cluster as a function of cluster mass. The

47



solid lines show the median of the results in each cluster mass bin and the shaded color regions show

the 1σ range. In the top panels, we consider the case without radial migration, i.e., stars stay in the

orbiting radii that they formed, while the bottom panels show the case with radial migration. The

left and right panels show results forN⋆ = 105 andN⋆ = 106. A horizontal line atN = 10 stars is

meant to serve as a reference point.

While the results in Fig. 2.4 clearly show that the typical sampling rate (within±1σ range) per

cluster is quite low, except in the case of largeN⋆ and high cluster mass, we emphasize that the dis-

tribution of the number of stars sampled per cluster has a long tail toward high values. We return to

this point below.

In the limit where there is no radial migration, the average number of stars (with ⟨M⟩ = 1M⊙)

sampled per cluster can be analytically derived (see also 53). The number of stars sampled per cluster

is simply

Ncluster = Mcluster
N⋆

Mannulus
. (2.6)

Recall thatMannulus is the total integrated SFR in the Solar annulus andN⋆/Mannulus is propor-

tional to the sampling rate. This analytic model is shown in the top panels of Fig. 2.4 and clearly

predicts very well the results of the simulations. The grey shaded region demarks the 1σ from this

analytic model.

Although illustrative, this analytic formula is unfortunately not applicable when radial migration

is included. First, radial migration increases the number of stars that could end up in the Solar annu-

lus, which has the effect of increasing the effective volume of the survey. We can define an effective
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panels assumeN⋆ = 105, whereas the right panels assumeN⋆ = 106. The top panels show the cases where there is
no radial migra on (fin−situ = 100%), while the bo om panels illustrate the cases with radial migra on and an in-situ
frac on fin−situ = 50%. The solid lines show the median and the shaded regions in color show the 1σ range of the
results from simula ons. In the limit of no radial migra on, the number of stars sampled per cluster can be predicted
analy cally from equa on (6). The predic ons from the analy c formula are shown in dashed lines and gray shaded
regions. The 1σ range from simula ons follows very well the Poisson expecta ons. However, the analy c formula
does not work in the case with radial migra on because ex-situ clusters tend to have fewer stars sampled and bring
down the number (see text and Fig. 2.5 for details).
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radius of the observed annulus to be the mean distance,

Reffective =
1
n

n∑
i=1

|Ri,birth − R0|, (2.7)

where we sum over all the stars in the Solar annulus at the present-day. This equation takes into

account the fact that, with radial migration, the actual sampled volume is larger than the observed

volume because |Ri,birth − R0| ≥ |∆Rsurvey|. The effective integrated SFRM ′
annulus within this

effective volume is strictly larger than the one without radial migration due to the migration of ex-

situ population, and therefore the number of stars per cluster will generally be lower than in the case

without radial migration.

Moreover, clusters that were born ex-situ are unlikely to have a significant number of stars mi-

grated into the Solar annulus. As shown in Fig. 2.3, while stars born 5 kpc from the Galactic center

can move into the Solar annulus at R0 = 8 kpc, only a small fraction of this population is in the

Solar annulus. Fig. 2.3 suggests that most of the ex-situ stars, even from massive clusters, will tend to

enter as “contaminants” in the sense that they will have onlyO(1) stars sampled per cluster. In ad-

dition, some stars that were born in-situ will migrate outside the Solar annulus, further diluting the

number of members of in-situ clusters. All of these effects work in the same direction of reducing

the number of stars per cluster compared to a model without radial migration.

In Fig. 2.5 we show the distribution of the number of stars sampled per cluster for two choices of

N⋆. This figure shows the distribution for a vertical slice in Fig. 2.4 at a cluster mass of∼ 106 M⊙.

By separating the in-situ and ex-situ populations, Fig. 2.5 shows that the ex-situ population has on
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Figure 2.5: Distribu on of the number of stars sampled per cluster forMcluster = (0.7 − 1.3) × 106 M⊙. The top
panel shows the result forN⋆ = 105 and the bo om panel showsN⋆ = 106. We assume∆Rsurvey = ±3 kpc
and fin−situ = 50%. We separate the cluster popula on into two - the in-situ and ex-situ popula ons. The ex-
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that ex-situ stars are mostly contaminants in chemical tagging. The red ver cal line shows the 75 percen le of the
combined results from in-situ and ex-situ clusters.
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average a much smaller number of stars sampled per cluster, in agreement with the arguments de-

scribed above. Although not shown, we checked that the in-situ population is only marginally influ-

enced by radial migration — only a small fraction of in-situ stars leave the Solar annulus. The mild

effect on in-situ clusters is likely due to the fact that we consider a fairly large Solar annulus width

of∆Rsurvey = ±3 kpc. In the radial migration prescription in this study, a typical radial migration

length is∼ 2 kpc, which is smaller than |∆Rsurvey|. Although the typical radial migration length is

still largely unconstrained from observations, some studies have suggested that since R0 is beyond

the outer Limblad resonance of the Galactic bar 54, a typical radial migration length is< 2 kpc 81.

Another feature evident in Fig. 2.5 is the tail of clusters with a large number of stars sampled per

cluster. This highlights that median statistics are not sufficient to capture the full variety of expected

behavior. These rare clusters may end up being the most valuable from the standpoint of chemical

tagging as they should stand out as strong concentrations of stars in elemental abundance space.

The following section explores this effect in detail.

2.4.2 Finding and counting groups in elemental abundance space

Observational uncertainties on elemental abundances impose a finite resolution in elemental abun-

dance space that can have important consequences for chemical tagging 23. In this section, we sim-

ulate observational results by studying detections on a chemical cell-by-cell basis. In the follow-

ing, for each generated sample, we distribute sampled clusters uniformly (on average) intoNcells

cells. We perform Monte Carlo simulations and plot the result of the mean from 100 realizations.

By jack-knife estimation, we find that the uncertainties from these 100 realizations are≪ 10% for
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N⋆ = 105 − 106.

We define several terms that will be important in this section. A cell that contains a high density

of stars compared to the average number of stars per chemical cell defines a “group.” We distinguish

between “group” and “cluster” because the former can be comprised of multiple clusters. The clus-

ter with the most stars sampled in each cell is referred to as the dominant cluster. Stars from the

dominant cluster define the “local signal.” The rest of the stars in the cell are referred to as “local

noise.”

Identifying groups in elemental abundance space

If we were to randomly distributeN⋆ stars intoNcells chemical cells, the number of stars per cell

should follow a Poisson distribution with a meanNmean = N⋆/Ncells and a 1σ range of
√
Nmean.

Since stars are born in clusters, there will be clumping in elemental abundance space that is larger

than Poisson expectations. The degree of clumpiness depends on several factors, chief among them

is the form of the CMF 23.

Operationally we define a cell as containing a “detected” group of stars if that cell deviates from

Poisson expectations by at least 5σ and the total number of stars in that cell> 1. Fig. 2.6 shows the

deviations from Poisson statistics for different CMFs and numbers of stars in the survey. In the right

panel, we assumeN⋆ = 106. In this case, both the fiducial and optimistic CMFs show substantial

numbers of cells exceeding 5σ from the average. By contrast, whenN⋆ = 105 (left panel), only the

optimistic CMF shows substantial deviation from Poisson expectations.

Fig. 2.6 demonstrates that the deviation from Poisson is minimal for a quiescent CMF. This lack

53



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

10 5 0 5 10 15 20

Standardized # Stars, (Ni-Nmean)/
√

Nmean

10-4

10-3

10-2

10-1

100

P
D

F

Optimistic

Fiducial

Quiescent

Poisson
Distribution

Detection
>5

N = 105

Ncells = 104

10 5 0 5 10 15 20

Standardized # Stars, (Ni-Nmean)/
√

Nmean

Optimistic

Fiducial

Quiescent

Poisson
Distribution

Detection
>5

N = 106

Ncells = 104

Figure 2.6: Standardized number of stars in each cell compared to a Poisson distribu on, where the mean of Poisson
distribu on isNmean = N⋆/Ncells and the standard devia on follows σ =

√
Nmean. Cells in which the number
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the elemental abundance space may therefore be a useful tool to probe the underlying CMF.
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of deviation is not unexpected because clusters withMcluster < 105 M⊙ haveO(1) stars detected per

cluster even forN⋆ = 106 (see Fig. 2.4). Hence, randomly distributing clusters inNcells cells for a

quiescent CMF is close to randomly distributingN⋆ inNcells cells.

Fig. 2.6 also shows that the distribution of deviations can be a sensitive probe of the CMF. CMFs

with a higher mass cutoff produce more clumpiness in elemental abundance space. Although not

shown, a flatter CMF also entails a larger number of massive clusters and hence a clumpier elemen-

tal abundance space, echoing the results of Bland-Hawthorn & Freeman 21 and Bland-Hawthorn

et al. 23 . The effect of the CMF on the distribution of deviations could potentially be exploited to

reconstruct the CMF (and the physical processes that the CMF depends on, such as the SFH) from

observational samples. This will be the subject of future work.

What are groups in elemental abundance space comprised of?

In this section we investigate the properties of the “detected” groups in elemental abundance space

(consisting of> 5σ fluctuations). Fig. 2.7 shows the distribution of the local “S/N” for those cells

exceeding 5σ from Poisson statistics. Recall that the local S/N is defined as the ratio of stars coming

from the most massive cluster in the cell to the remaining stars in that cell. A cell dominated by a

single massive cluster will have high local S/N. In the left panel, we assumeNcells = 104 and consider

three different CMFs. Clearly most of the detectable groups have local S/N< 1, especially for the

quiescent and fiducial CMFs.

This result is not surprising in light of the mean number of stars per cell (100 forN⋆ = 106 and

Ncells = 104). In this regime, in order for the S/N to be≫ 1, we would require that a single domi-
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boosts the local S/N, and hence increases the chance of recovering individual clusters through chemical tagging.
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nant cluster contribute≫ 100 stars in a particular cell. However, as shown in Fig. 2.4, the average

number of stars sampled per cluster for the most massive clusters is∼ 100 forN⋆ = 106. The rela-

tively low sampling rate, combined with the high average number of stars per cell, essentially guaran-

tees that the local S/N will never be much larger than one. As we discuss in §2.5.1, the prospects for

finding higher local S/N cells can be improved by searching in regions of elemental abundance space

in which the mean number of stars per cell is low.

The result in the left panel of Fig. 2.7 is fairly insensitive toN⋆. IncreasingN⋆ increases both the

number of stars sampled per cluster and the “background” comprised of stars from small clusters

and hence the local S/N is left largely unchanged. In fact, the local S/N slightly decreases as we in-

creaseN⋆. This is not unexpected. AsN⋆ decreases, it becomes more difficult to exceed the Poisson

threshold. Therefore for smallerN⋆, the clumping of detectable groups are mostly comprised of

more massive clusters (e.g.,∼ 107 M⊙), which implies a better local S/N. By contrast, for a larger

N⋆, the clumping could either be due to a massive cluster or a few moderately massive clusters (e.g.,

∼ 104 − 106M⊙). While the S/N is somewhat negatively impacted by increasingN⋆, the total num-

ber of detectable groups greatly increases with increasingN⋆, as shown in §2.4.2.

The right panel of Fig. 2.7 shows the median local S/N as a function of the number of chemi-

cal cells. IncreasingNcells results in a dramatic (almost linear) improvement in the local S/N. An

increase inNcells results in a decrease in the local background while keeping the signal unchanged.

This panel also shows the effect of changing the definition of a “detected” group from 2σ to 10σ.

Increasing the threshold has a modest effect on the local S/N but of course has a dramatic effect on

the total number of resulting detected clusters. Although not shown, we have explored the effect of
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varying the slope of the CMF from α = −2.0 to−1.5. This has only a modest effect on the trends

shown in Fig. 2.7.

Note that the (5σ) deviation with respect to Poisson statistics is measurable in reality as it only

requires the expected average number of stars in each cell. On the other hand, the local S/N is not

measurable.§ In this paper we only define “detectable groups” according to a measurable parameter,

and we emphasize again that we use the term “group” rather than “cluster” when describing clumps

in elemental abundance space because of the effect discussed in this section. The ambiguity that can

arise, even when a cell deviates by more than 5σ argues strongly that interpretation of the data from

ongoing and upcoming surveys will require models such as the one presented in this work.

Number of detectable groups as a function of model parameters

In this section we present the total number of detectable groups in elemental abundance space as

a function of a variety of model parameters, including the in-situ fraction fin−situ, CMF slope α,

survey width∆Rsurvey, number of chemical cellsNcells, and number of stars in the surveyN⋆. We

vary one of these model parameters at a time while adopting the fiducial values for the other model

parameters (see Table 2.2); modifying more than one parameters at once is allowed in the online

applet. The results are presented in Fig. 2.8 and Fig. 2.9.

§For readers who want to understand the number of groups that consist mainly a dominant cluster (e.g.,
having local S/N greater than 1), we urge readers to explore the interactive online applet (see Appendix 2.8 for
details). In the applet, we allow users to impose a local S/N criteria.

58



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

103 104 105

Number of Chemical Cells, Ncells

100

101

102

103

104

N
u
m

b
e
r 

o
f 

D
e
te

ct
a
b
le

 G
ro

u
p
s

Optimistic
Assumed

Value Fiducial

Assumed
Value

Quiescent

N = 106

1 2 3 4 5
Survey Width, Rsurvey [kpc]

100

101

102

103

104

N
u
m

b
e
r 

o
f 

D
e
te

ct
a
b
le

 G
ro

u
p
s

Optimistic
Assumed
Value

FiducialAssumed
Value

Quiescent

N = 106

20 40 60 80 100
In-Situ Fraction, fin-situ [%]

100

101

102

103

104

N
u
m

b
e
r 

o
f 

D
e
te

ct
a
b
le

 G
ro

u
p
s

Optimistic
Assumed
Value

Fiducial

Assumed
Value

Quiescent

N = 106

2.6 2.4 2.2 2.0 1.8 1.6 1.4
Cluster Mass Function Slope, 

100

101

102

103

104

N
u
m

b
e
r 

o
f 

D
e
te

ct
a
b
le

 G
ro

u
p
s

OptimisticAssumed
Value

Fiducial

Assumed
Value

Quiescent

N = 106
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Number of chemical cells As the number of chemical cells increases, more moderately mas-

sive (e.g.,∼ 104 − 106M⊙) clusters start to occupy different cells instead of sharing the same cell.

The total number of detectable groups thus increases, approximately linearly for the fiducial and

optimistic CMFs. However, the gain is more drastic for CMFs with a smaller high mass cutoff. This

trend is due to the fact that, given the sameN⋆, moderately massive clusters are more abundant for

CMFs with a smaller high mass cutoff. These clusters might not be detected with a smallerNcells.

Including more cells benefits these moderate clusters the most.

Since both the number of detectable groups and the local S/N (see §2.4.2) are sensitive toNcells, it

is clear thatNcells is one of the most important parameters in the context of chemical tagging. Recall

that the number of cells scales as σ−Ndim , whereNdim ∼ 8 is the number of independent dimen-

sions in the elemental abundance space we can expect for upcoming optical surveys (GALAH and

Gaia-ESO). Therefore, if we improve the abundance measurement uncertainties by a factor two, the

number of chemical cells is improved by a factor of 28 ∼ 250. On the other hand, this also means

that the number of chemical cells decreases by a factor∼ 2 for every 10% increase in the measure-

ment uncertainties. Substantial effort should therefore go into decreasing (and characterizing!) the

uncertainties in abundance measurements in upcoming spectroscopic surveys.

Survey width As∆Rsurvey increases the number of detectable groups decreases. To understand

this trend, it suffices to note that as we increase∆Rsurvey there are more stars in the annulus. As a

result, the chance that we sample from the same cluster decreases (i.e., the sampling rate decreases).

Since each cluster is sampled with fewer stars, the chance to observe signal spikes in elemental abun-
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dance space also decreases. Therefore, the total number of detectable groups decreases as the survey

width widens. In fact, since the volume of the Solar annulus is proportional to∆Rsurvey, the number

of stars in the annulus is also roughly proportional to∆Rsurvey. Therefore, the sampling rate is, to

first order, inversely proportional to∆Rsurvey.

Interestingly, the survey width has less effect on CMFs with a larger higher mass cutoff. This

trend is due to the fact that as we increase the survey width, we also increase the number of clusters,

roughly in proportion to∆Rsurvey. The most massive clusters are the least susceptible to change in

sampling rate because a large number of stars from such clusters are already sampled in the fiducial

case. For CMFs with a larger high mass cutoff, the decrease in sampling rate caused by an increase in

∆Rsurvey is partly compensated by the increase in the number of massive clusters, resulting in a weak

dependence of the number of detectable groups on∆Rsurvey.

In-situ fraction As the in-situ fraction decreases, the number of cells exceeding 5σ decreases

because there are more contaminants from ex-situ clusters (see Fig. 2.5). However, the effect of in-

situ fraction is rather marginal for CMFs with a larger high mass cutoff. This effect is best under-

stood from Fig. 2.6. Most of the detectable groups for a quiescent CMF or a fiducial CMF are at the

edge of the detection level of 5σ. Hence adding in additional background noise in the form of ex-

situ stars can have a much larger effect for model with a quiescent CMF compared to an optimistic

CMF, in which many of the cells far exceed the 5σ detection threshold.
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CMF slope As we vary the CMF slope, we are essentially redistributing mass between smaller

clusters and massive clusters. This has two effects that act in tandem: a shallower CMF results in

more massive clusters, which will have more stars sampled per cluster. In addition, a shallower CMF

results in fewer low mass clusters that contribute primarily to the “noise” in a cell. The elemental

abundance space becomes much clumpier as α increases (also see 23), and as a result there are many

more detectable groups.

Number of stars in the survey Since the number of stars sampled for massive clusters is

roughly proportional toN⋆ while the Poisson threshold only grows as
√
Nmean ∝

√
N⋆, increasing

N⋆ improves the number of detectable groups, as shown in Fig. 2.9. In the left panel, the gain is

approximately linear inN⋆ for the optimistic and fiducial CMFs. The right panel shows the gain in

the number of detectable groups as a function ofN⋆ andNcells. The stochasticity atN⋆ ∼ 104 is

likely due to the uncertainties in our Monte Carlo procedures.

Selecting subpopulations

As we argued in §2.2, the sampling rate, which is proportional to the number of stars in the survey

divided by the number of stars in the survey volume, is a key parameter determining the number of

stars sampled per cluster. In the limit where the sampling rate is 100%, the main limiting factor for

chemical tagging is the resolution in elemental abundance space. One way to increase the sampling

rate is to increaseN⋆; this was discussed in the previous section. A second way is to decrease the

number of stars in the survey volume. The latter will be effective only if one is able to identify a
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subpopulation of stars that corresponds to a subpopulation of clusters. For example, selecting on

stellar age satisfies this criterion, while selecting a random subsample does not.

Fig. 2.10 considers the case where only stars above certain stellar ages are targeted in a survey.

Since the number of older stars is smaller, there are not as many survey candidates compared to the

case where we sample all disk stars uniformly. As a consequence, given the sameN⋆, the chance that

we sample from the same cluster improves. In addition to improving the total number of detectable

groups, as we consider a more selective stellar subpopulation the number of clusters is reduced. The

dominant cluster therefore contributes a greater fraction of the total stars in each detectable group

because there are not as many clusters sharing the same cell. As shown in the right panel of Fig. 2.10,

if the survey sample is collected randomly from all populations (the red solid line), most of the de-

tectable groups have a local S/N of 0.3. This local S/N value implies that only 0.3/(0.3 + 1) ≃ 25%

of the members of detectable groups are from the dominant cluster. However, if we only target old

stars with stellar age> 12 Gyr, the local S/N is∼ 2, indicating that 2/(2 + 1) ≃ 70%members of

each of the detectable groups are from the dominant cluster.

As a caveat, we caution that the interpretation of Fig. 2.10 is complicated by the fact that the se-

lection of older clusters also preferentially selects a population of stars forming from a CMF with a

higher mass cutoff (at least for the fiducial model used in the figure). So not only is the sampling rate

increasing but so also is the characteristic cluster mass. Future work is required to disentangle these

effects.
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2.5 Discussion

2.5.1 Summary of the key parameters affecting chemical tagging

The key parameters governing both the ability to detect groups in elemental abundance space and

the “purity” of those recovered groups (i.e., the local S/N) are the number of stars in the surveyN⋆,

the number of chemical cellsNcells, the CMF, and the sampling rate. Table 2.5 presents a summary

of the key variables and their effect on various quantities of interest.

Several of these parameters are either outside of the control of the observer, including the form

and evolution of the CMF, or are trivially in control of the observer, such asN⋆. Others require

further consideration. For example, the number of chemical cells depends on both the volume of ele-

mental abundance space and the size of each cell. The former depends on chemical evolution of the

stellar population(s) under consideration, and can be influenced by the survey strategy. The latter is

proportional to σ−Ndim where σ is the observational uncertainty on abundance measurements and

Ndim is the number of effective dimensions in the chemical volume.

Perhaps the most conceptually complex parameter is the sampling rate. For a fixedN⋆ the sam-

pling rate is inversely proportional to the total number of stars available within the survey design.

The phrase “survey design” was chosen to highlight not only the survey volume but also the subpop-

ulation under consideration. Moreover, with regards to the survey volume, this must be considered

in an orbit-averaged sense. For example, a survey targeting stars within 1 kpc of the Sun has a survey

volume in this definition that encompasses the entire annulus of the Galactic disk with a width of
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Table 2.5: The effects of various survey strategies on chemical tagging detec ons.

Improve the Improve chance Improve
number of of recovering reconstruction

detectable groups single cluster of CMF

IncreaseN⋆ ✓ ✓
Decrease σ[X/Fe] ✓ ✓ ✓
Reduce∆Rsurvey ✓ ✓
Subpopulations ✓ ✓ ✓
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±1 kpc. Likewise, a pencil beam survey of bulge stars has a survey volume of the entire bulge. As we

showed in §2.4.2, selecting subpopulations of stars can be very effective provided that the selection

picks out a subset of clusters. Selecting on stellar age can achieve this, and so will effectively boost the

average number of stars sampled per cluster. On top of that, selecting subsample reduces the num-

ber of clusters in each cell, and thus improves the local S/N in each detectable group. In contrast, a

random subsample of stars will simply result in a smaller number of stars per cluster.

These parameters affect different aspects of chemical tagging. As shown in Table 2.5, increasing

the number of stars or reducing the survey volume increases the number of detectable groups and

improves the reconstruction of the CMF because it increases the sampling rate, but it has little effect

on the local S/N ratio. Even though the sampling rate increases in these cases, both the local signal

and noise increase in similar proportions. In contrast, decreasing σ[X/Fe] and/or selecting subpopu-

lation reduces the average number of stars per cell, while maintaining the same signal. Therefore the

local S/N improves as well.

In this work we focused on idealized surveys of stars in the Milky Way disk. In such situations the

ratio of the number of stars in the annulus,Nannulus toNcells is≫ 1. However, there are regimes in

which this ratio can be closer to or less than unity. Bland-Hawthorn et al. 23 considered the regime

of metal poor stars in dwarf galaxies. Such subpopulations could easily have a total number less than

Ncells. In this case the mean number of stars per cell will be≪ 1 and so significant overdensities in

elemental abundance space will much more likely reflect a single cluster, rather than a superposition

of multiple clusters (see example in 101). As argued by Bland-Hawthorn et al. 23 , in this regime one

can in principle find clusters in elemental abundance space with a relatively modest number of stars
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surveyed, provided that the CMF is not too steep. Similarly, for a survey targeting disk stars, one

might imagine the first chemical-tagging detections coming from the less populated regime in ele-

mental abundance space with a smaller contaminated backgroundNmean (i.e., outliers), as discussed

in Bland-Hawthorn et al. 25 .

2.5.2 Strategies for optimizing the potential for chemical tagging

The influence of key parameters on various observables allows us to consider ways in which one

could optimize a spectroscopic survey of stars for the purposes of chemical tagging.

A survey that could reachN⋆ ∼ 106 andNcells ≳ 4 × 104 could potentially achieve three major

goals: (a) producing a sizable number (∼ 103) of detectable groups; (b) the detectable groups would

consist primarily of a single dominant cluster; and (c) reconstructing the CMF. These goals could

be realized if the CMF is somewhere in the range between our “fiducial” and “optimistic” scenarios.

The GALAH survey 53 aims to observeN⋆ = 106; a key question will be whether or not the number

of chemical cells is closer to 104 or 105 (see Section 2.5.1 for the key dependencies).

Even if not all three goals are realized in the context of a massive spectroscopic survey, one could

imagine a tiered approach. A survey of 106 could be used to identify overdensities in the elemental

abundance space. One could then follow up those overdensities with higher quality spectroscopy

to obtain more precise abundance constraints, or one could appeal to differential techniques to in-

crease the relative abundance precision. One could also use other information to separate multiple

clusters within a single cell, e.g., kinematics or color-magnitude diagrams.

Given that bothN⋆ andNcells affect the number of detectable groups in elemental abundance
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space in similar ways, is there an advantage to spending more time collecting greater numbers of

stars, or more time obtaining higher quality spectra could lead to smaller σ[X/Fe], more elements,

and hence largerNcells? In the simplest scenario (assuming for example that one has not already ex-

hausted the input catalog at a particular apparent magnitude),N⋆ is roughly proportional to the

integration time. On the other hand, sinceNcells ∝ σ−Ndim , there is an enormous gain inNcells

for even a modest improvement in the abundance uncertainties. ForNdim ∼ 8 independent di-

mensions (likely appropriate for e.g., GALAH), one could improveNcells by a factor of two for a

10% reduction in the abundance uncertainties (§2.4.2). Therefore, if the goal is to find as many local

peaks in elemental abundance space (i.e., detectable groups) as possible and/or to increase the odds

of those peaks being dominated by a single massive cluster, it might be more advantageous to seek

strategies that reduce the abundance uncertainties rather than simply acquiring more stars.

An effective way to improve chemical tagging detections is by targeting a stellar subpopulation

exclusively. As we have shown in §2.4.2 and discussed in §2.5.1, targeting a subpopulation not only

improves the sampling rate but also reduces the number of clusters per chemical cell. It improves

chances of the reconstructing the CMF because there are more stars sampled per cluster and more

significant deviations from Poisson statistics. It also improves the local S/N and hence the chance of

recovering individual clusters within detectable groups in elemental abundance space.

A variety of properties could be used to select special subpopulations from a larger parent sample,

including age, metallicity, and kinematics. One could envision pilot surveys at modest spectral reso-

lution designed to select stars in a narrow range in [Fe/H]. Kinematics from Gaia could be used to

separate hot and cold components, for example thin and thick disk stars (e.g., 168). Stars could also
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be selected according to their age once age measurements are available for large samples of stars, e.g.,

from isochrone fitting and/or asteroseismic constraints. Finally, in an optically selected survey such

as GALAH, which is biased to higher Galactic latitudes, it preferentially observes thick disk stars 53.

Since the total number of thick disk stars is smaller than thin disk stars, this preference argues that

the sampling rate in these surveys could be larger than the one we assume in this study as we adopt

an uniform sampling strategy (see also 25).

2.5.3 Caveats, limitations and future directions

A variety of assumptions and simplifications were made in this study. Here we highlight the most

important limitations and comment on future directions.

When populating the elemental abundance space we assumed that clusters are (statistically) ho-

mogeneously distributed in allNcells chemical cells available. From both observations and chemi-

cal evolution models we know that this assumption is not true in detail. Of course, there are many

more high metallicity stars than low metallicity stars, but also we expect the size of the elemental

abundance space to vary systematically with metallicity (for example, due to certain nucleosynthetic

pathways, e.g., in AGB stars, that only become important some time after the initial burst of star for-

mation). Because of these complexities, the space cannot be completely described by the parameter

Ncells. A more accurate approach would be to include a model for chemical evolution and then to

define overdensities in elemental abundance space with respect to a local background, either using

neighboring cells or a more sophisticated group finding algorithm (e.g., 150,185).

This study focused on idealized surveys targeting Milky Way disk stars. We did not consider the
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bulge, stellar halo, disrupted satellite galaxies, nor nearby dwarf galaxies. Each of these populations

offers a unique set of challenges and opportunities. These components will be included in future

versions of the model.

We did not follow the actual orbits of stars in a live Galactic potential, and the treatment of radial

migration is quite simplistic. One could imagine an extension to the current model that follows the

dynamical disruption of star clusters and the sequent orbital histories of the individual stars. This

would be very valuable for exploring the potential gains of folding in kinematic information, such

as will soon be available from Gaia and/or from the spectroscopic surveys themselves. Mitschang

et al. 151 found that kinematics information does not improve the detectability, but it is likely due

to the limitation of their small sample with< 103 stars. As we have demonstrated in this study,

detectable groups in small sample are not likely to be co-natal, agreeing with their assessment.

The adopted model for the gas mass is fairly simplistic. However, we emphasize that the gas mass

distribution only influences the radial migration prescription and the evolution of the CMF. The

former is parameterized via the in-situ fraction, fin−situ. In both cases we consider a range of possible

scenarios, which in some sense is equivalent to exploring the effects of varying the underlying gas

mass model directly.

We assume that the spatial frequency of star formation follows an exponential disk characterized

by the scale length RSFR. We are aware that this assumption might not be true in detail. At a given

time, stars might form in some large scale molecular rings (e.g., 26,76) or spiral arms (e.g., 17,171). How-

ever, we are only interested in the integrated star formation rate over the cosmic history. Since these

transient complexes, at least for the molecular rings, are expected to be short lived and rapidly dissi-
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pate (< 100 Myr; e.g., 11,76), the smooth star forming assumption is likely to do fine.
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2.6 Summary and conclusion

In this study we explored the prospects for chemically tagging stars in idealized spectroscopic surveys

of the Solar vicinity. We constructed a simple two dimensional time-dependent model of the Milky

Way disk including the effects of radial migration and evolution in the CMF. We explored a num-

ber of important parameters affecting the detectability of groups of stars in elemental abundance

space and we studied the composition of the detectable groups. We now summarize our principle

conclusions.

• The key parameters affecting the number of detectable groups in elemental abundance space,
and whether or not those groups are dominated by a single massive cluster, are: the shape
and evolution of the CMF; the number of chemical cells; and the survey sampling rate. The
sampling rate is proportional to the number of stars in the survey divided by the total num-
ber of stars belonging to a particular (sub)population. The latter two parameters are strongly
influenced by observational survey design choices.

• The clumpiness in elemental abundance space is strongly influenced by the CMF and by the
survey sampling rate. This implies that one can probe the CMF of long disrupted clusters by
statistically analyzing the clumpiness in elemental abundance space.

• Confidently identifying individual clusters through chemical tagging will be challenging
even forN⋆ = 106, if disk stars are uniformly sampled. Fundamentally this is because the
sampling rate is inherently small in such cases (∼ 10−4) implying that one expects to collect
on average 10 stars per cluster even for clusters withMcluster ≃ 106 M⊙. This is born out
by our modeling, where we find that even very large overdensities in elemental abundance
space are typically not comprised of stars from a single dominant cluster. In the fiducial case
withNcells = 104, the dominant cluster contributes only 25% of the stars in the detectable
group. Additional follow-up of the stars within large overdensities in elemental abundance
space may provide additional discriminating power, either by decreasing the measurement
uncertainties on the abundances, or by folding in color magnitude diagram or kinematic
information.
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2.7 Appendix: Sampling algorithm and computational cost

The sampling algorithm used to create a mock sample is illustrated in Fig. 2.11. To summarize, given

an SFH, we obtain the stellar mass evolution through the stellar population synthesis code and the

gas mass evolution through the inverted Kennicutt-Schmidt relation. The radial size growth is calcu-

lated using an observationally estimated mass-radius relation, which we use to predict the evolution

of the SFR scale length. After we obtain the SFR scale length, we calculate the SFR at different radii

and different cosmic times from the SFH. We spawn stars through cosmic time according to the ra-

dial SFR in discrete time bins of 0.1 Gyr. We only trace stars with 0.5 − 1.5M⊙, and we assume a

Kroupa IMF.

The gas and stellar masses yield the total mass distribution at different radii and cosmic time.

The mass distribution controls the radial migration prescription. The mass distribution is also em-

ployed to evaluate the high mass end of the CMF. The CMF is then used to assign a cluster tag to

each spawned star, and the radial migration prescription is adopted to mix stars from their birth

radii. Note that, we only assign cluster tags after spawning stars in each time bin. We do not generate

stars recursively from the CMF although they are both equivalent. In the former case, we avoid a re-

cursive loop in the algorithm and therefore create the mock sample more efficiently. Finally, a mock

sample that is within the Solar annulus, given a fixed survey width, is saved for analysis.

Even though the sampling algorithm is straightforward, the effect of radial migration requires

us to spawn stars at all radii in the Milky Way disk. In addition, we need to follow each individ-

ual star. Therefore, for each set of parameters, we spawn∼ 1011 stars, which is computationally
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Figure 2.11: Sampling algorithm to create a mock Milky Way dataset in this study.
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expensive even for a semi-analytic model. Each parameter set takes a full CPU day and 50 GB of

memory per CPU to evaluate. We evaluate a grid of∼ 600 different model parameters. It there-

fore took∼ 2 CPU years to generate the mock samples. After the mock samples were created, we

performed Monte Carlo simulations, distributing them into chemical cells. The Monte Carlo sim-

ulations required about the same amount of CPU time. Hence, it took∼ 4 CPU years in total to

generate the results in this study. Including a significant amount of exploratory work, this project

consumed∼ 40 CPU years of compute time. Obviously, parallelization reduced the total time from

O(graduate student lifetime) toO(graduate student year).
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2.8 Appendix: Interactive applet

Since we study a large multidimensional grid of simulations, it is challenging to include all results in

this paper. We created an online applet to demonstrate results in the multidimensional grid. In the

online applet (www.cfa.harvard.edu/∼yuan-sen.ting/chemical_tagging.html) as shown in Fig. 2.12,

we plot the cumulative number of detectable groups (exceeding 5σ) as a function of the zero age

mass of the dominant cluster. In each detectable group, star cluster with the most stars sampled is

considered as the dominant cluster.

The applet allows users to change: the in-situ fraction fin−situ, (i.e., the radial migration prescrip-

tion); the number of chemical cellsNcells; the CMF cutoffMmax
cluster, and slope α; the survey depth

∆Rsurvey; and the number of stars in the surveyN⋆. As demonstrated in Section 2.4.2, these de-

tectable groups do not necessarily comprise of co-natal stars. The online applet also allows users

to impose a local S/N selection criteria as defined in Section 2.4.2. For instance, by imposing the cri-

teria local S/N > 1, we select detectable groups that have more stars contributed by the dominant

cluster over the combined background from smaller clusters. In the case where no local S/N criteria

is imposed, the end point of the cumulative distribution in the applet corresponds to the results in

Fig. 2.8 and Fig. 2.9. Finally, there is a “save as reference” button in the applet which allows users to

save the current cumulative distribution as a reference and compare with the other choices of param-

eters
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Figure 2.12: A demonstra on of the online-applet created in the course of this project.
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3.0 Abstract

Stars born from the same molecular cloud should be nearly homogeneous in their elemental abun-

dances. The concept of chemical tagging is to identify members of disrupted clusters by their clus-

tering in elemental abundance space. Chemical tagging requires large samples of stars with precise

abundances for many individual elements. With uncertainties of σ[X/Fe] and σ[Fe/H] ≃ 0.05 for 10

elements measured for> 104 stars, the APOGEE DR12 spectra may be the first well-suited dataset to

put this idea into practice. We find that even APOGEE data offer only∼ 500 independent volume

elements in the 10-dimensional abundance space, when we focus on the α-enhanced Galactic disk.

We develop and apply a new algorithm to search for chemically homogeneous sets of stars against a

dominant background. By injecting star clusters into the APOGEE dataset we show that chemically

homogeneous clusters with masses≳ 3 × 107 M⊙ would be easily detectable and yet no such signal

is seen in the data. By generalizing this approach, we put a first abundance-based constraint on the

cluster mass function for the old disk stars in the Milky Way.
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3.1 Background

The Milky Way offers a unique opportunity to understand how disk galaxies form, in particular

when and where, and in which types of aggregates, or clusters, they formed their stars. As star cluster

masses depend on gravitational instabilities (e.g., 59), the cluster mass function (CMF) indirectly

probes the dynamical state of the Milky Way disk over cosmic time.

At least during the intensely star-forming, early phases of the Milky Way, the majority of stars

are believed to form in clusters 1,115. Most of these are rapidly disrupted and dispersed throughout

the Galaxy (e.g.,48,112,156), for a brief while appearing as moving groups (e.g., 37,49,52). Once the phase

space information as a common birth marker is lost, chemical tagging, first proposed by Freeman

& Bland-Hawthorn 69 , may still betray the common birth origin of stars through their exceptional

similarity in elemental abundances. Stars originating from the same star cluster are believed to be ho-

mogeneous in their chemistry (e.g., 50,51,63,70,111,194). Since the photospheric elemental abundances, at

least for elements heavier than sodium, are invariant throughout their lifetime, they are permanent

tags of the stellar birth origins.

A broad goal of chemical tagging is to reconstruct the stellar CMF, i.e., the relative distribution

of (chemically homogeneous) stellar cluster masses when they formed. Although we can investigate

the present-day CMF through young star clusters and massive surviving clusters (e.g., 16,27,34,35,124,160),

the Milky Way’s CMF in the past is unknown. The key idea in chemical tagging is that massive chem-

ically homogeneous clusters show up as discernible clumps in the multi-dimensional abundance

space (e.g., 23,191).
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Besides understanding the CMF, chemical tagging is deemed an essential tool to understand the

effect of radial migration in Galactic evolution (e.g.,77,178). Sellwood & Binney 183 first proposed

that stars could migrate significantly from their radial position when resonate with spiral/bar struc-

tures (see observational evidence from 87,113,133). Although simulations concur to the analytic calcu-

lations 24,55,81,149,175,176, direct observational evidence of radial migration remains controversial. The

ability to recover dispersed star clusters would be fundamental in quantitatively constraining radial

migration models.

In recent years, the idea of chemical tagging has garnered more attention. Large spectroscopic

surveys, including RAVE 188, APOGEE 212, GALAH 53 and Gaia-ESO 164, are being carried out. Re-

sults from these surveys have demonstrated the power of using elemental abundance patterns to

identify distinct stellar populations in the Milky Way. Martig et al. 141 found young α-enhanced stars

that are difficult to explain within current models of the evolution of the Milky Way. Masseron &

Gilmore 143 and Hayden et al. 86 showed that the C/N ratio and the α-elements are good indicators

to separate the thin and thick components of the Galactic disk. Schiavon et al. 177 found bulge stars

that show abundance patterns similar to globular clusters. These studies focus on finding popula-

tions of stars via their abundance patterns, which is a “weak” form of chemical tagging. The goal

of the “strong” form of chemical tagging is to identify stars that were born from the same molecu-

lar cloud. When we refer to chemical tagging in this paper, we only refer to this “strong” form. In

this context, due to these exciting new opportunities, many preparatory works started to explore

the capabilities of these surveys and the idea of chemical tagging. For example, Blanco-Cuaresma

et al. 20 , MacFarlane et al. 135 , Mitschang et al. 150,151 , Tabernero et al. 189,190 proposed various schemes
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and performed numerical experiments on separating open clusters/moving groups in abundance

space.

Ting et al. 191 explored the feasibility of chemical tagging by exploring a grid of Galactic evolu-

tion parameters. They found that identifying individual clusters through chemical tagging is gen-

erally challenging with the on-going surveys. Clumps that show overdensities in abundance space

are usually made up of many smaller clusters, i.e., the background contaminants are non-negligible

in clump search. One might be able to associate a detected clump as a single disrupted cluster only

when the background density in abundance space is low. They showed that a low background can

be achieved by either studying a subpopulation that occupies a large volume in abundance space,

small abundance uncertainties or a large number of independent elements. Despite all these com-

plications to reconstruct individual clusters, they argued that we can still statistically reconstruct the

CMF through the clumpiness in abundance space. The main goal of this paper is to apply that idea

to the APOGEE data92.

In §3.2, we characterize the APOGEE sample that we explore in this study. In §3.3, we introduce

our clump search method. The key is to define a robust search sphere that has the highest signal-to-

background ratio possible. In §3.4, we apply this method to the APOGEE DR12 data. We discuss

how this result can be applied to obtain a tentative constraint on CMF. We conclude in §3.5. By

comparing the signal-to-background contrast observed in the data to the simulated contrast from

injected clusters, we will argue that no chemically homogeneous clusters more massive than 3 ×

107 M⊙ have formed in the α-enhanced disk.
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3.2 APOGEE sample properties

We adopt the APOGEE DR12 publicly available sample92. Similar to Hayden et al. 86 , we consider

stars with all elements measured and with reliable abundances, i.e., 4,000 K< Teff < 5,500 K,

1 < log g < 3.8 and signal to noise ratio> 80. Stars from APOGEE that satisfy these criteria

are plotted in Fig. 3.1. In this study, we only focus on the α-enhanced disk as defined via the cut

shown in Fig. 3.1. We focus on this subsample as their chemical/spatial modeling is likely to be more

straightforward (see §3.4.2 and also see 25,191). Furthermore, the Milky Way was likely kinematically

hotter and more turbulent in the first few billion years (e.g., 19,28,116). High redshift (z ∼ 2) extra-

galactic studies have revealed the existence of massive star-forming clumps in star-forming galaxies

(e.g.,73,132). As a result, star clusters within the α-enhanced disk could be more massive and if so

would provide a strong signal in abundance space. The α-enhanced disk also occupies a larger vol-

ume in abundance space, i.e., lower background density of stars, which guarantees clumps a better

contrast to the background in abundance space.

We checked that our main result presented in this study, namely there is no cluster more mas-

sive than 3 × 107 M⊙ formed in the Milky Way, still holds at least to the 1σ level (see §3.4.3), if we

choose a selection cut within the shaded region as shown in Fig. 3.1. The result only changes more

dramatically if we choose a much steeper cut such as the blue dashed line. In this case, we discard

too many low density regions where most chemical tagging signals reside (see §3.3.1 and §3.4.3), and

we can only rule out clusters≳ 108 M⊙. Using the fiducial selection cut, in total, the α-enhanced

sample has 14,002 stars, as shown in the red and black symbols in Fig. 3.1. For reasons and selection
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Figure 3.1: Black symbols show 13,000 APOGEE stars selected for this study. We only consider α-enhanced stars,
as the volume they occupy in 10-dimensional abundance space is larger than the low-α sequence, so the back-
ground will be lower, and therefore detec on is more likely. The red symbols show the∼ 7% of outliers in the
10-dimensional abundance space that we do not include in the sample. A er we discard these outliers, the 10-
dimensional empirical distribu on in abundance space is be er modeled by an ellipsoid and is easier to deconvolve
(see §3.3.2). The solid black line shows the fiducial selec on cut. We also examine that the results in this paper are
not sensi ve to our data selec on. If we choose a selec on cut within the shaded region, the results in this paper s ll
hold. The results only change more drama cally if we choose a much steeper cut such as the blue dashed line (see
text for details).
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criteria that will become clear in §3.3.2, we further discard the 7% of most outlying stars, shown as

red symbols in Fig. 3.1, and end up with a final sample of 13,000 stars.

Without further kinematic modeling, it is hard to disentangle the halo stars from the disk stars.

But the elimination of outliers as shown in Fig. 3.1 culls most of the metal-poor stars with [Fe/H]<

−1 and therefore, the bulk population in this study should not be contaminated much by the halo

stars. We also performed the same analysis only considering stars with [Fe/H]> −1 and found

that the results remain qualitatively the same. For the potential bulge contamination, we find that

among the 13, 000 stars, only 3% of them satisfy the bulge stars criteria with l < 22, |b| < 15 and

Rgc < 3 kpc, where Rgc is the isochrone Galactic radius derived in Hayden et al. 86 . Therefore, we

will assume throughout this study that the sample only consists of disk stars.

To perform the chemical tagging experiment, we want to consider as many elements as possible

in order to maximize the volume in abundance space. In this case the background becomes more

diluted, and the signals will therefore have a better chance of standing out from the background. In

total, APOGEE measures 15 elements. However, as discussed in Holtzman et al. 92 , Na, Ti, V abun-

dances might not be reliable yet in the current release. Furthermore, C and N are expected and seen

to evolve through stellar evolution due to the post main sequence dredge up (e.g. 100,143,203). There-

fore, it is complicated to relate C and N to their primitive abundances when the stars formed. Dis-

carding these 5 elements, we consider 10 elements in this study, namely Al, K, O, S, Mg, Si, Ca, Mn,

Ni, Fe. Next, we want to define an abundance space out of these 10 elements. As discussed in Ting

et al. 195 , chemical tagging is better performed in [X/Fe] instead of [X/H]. [X/H] strongly correlate

with each other. It is harder to observe the subtle variants among clusters in an abundance space
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spanned by [X/H]. Therefore, in this study, we consider an abundance space spanned by [Fe/H]

and 9 [X/Fe] from elements beside iron. We denote a vector in this 10-dimensional space to be X in

this study.

As we will discuss in more detail in §3.3, to find a chemically homogeneous cluster in abundance

space we first need to understand the typical volume that such a cluster occupies, after accounting

for the measurement uncertainties that will dominate over the intrinsic scatter. Therefore, to esti-

mate the typical volume, we will evaluate differential uncertainties, or measurement precision (not

accuracy), σX and their correlations, i.e., the empirical point spread function of a chemically homo-

geneous cluster in abundance space. We estimate this co-variance matrix from known clusters in the

APOGEE data and refer to the resulting matrix as the “cluster kernel” below.

We consider the DR10 cluster classification 146 since the DR12 classification is yet to be released.

We cross-match the DR10 cluster member identities with DR12 and adopt the elemental abundances

from the DR12 release. We only consider clusters with more than 10 cluster members. Three open

clusters (NGC6819, NGC2158, M67) satisfy this criterion. Noting that all these clusters are metal-

rich with [Fe/H]≳ −0.1 and the possibility that abundance determination could be worse at lower

metallicity, we also adopt one of the more metal-rich globular clusters, M107 ([Fe/H] ≃ −1). We

fit M107 members with two Gaussians distributions in the 10-dimensional abundance space to elim-

inate any possible secondary population from this globular cluster. Including M107, we have a total

of 77 cluster members. The primary population of M107 shows measurement uncertainties consis-

tent with other open clusters. Restricting ourselves to the three metal-rich open clusters results in a

slightly smaller σX. Therefore, including M107 only makes our results more conservative (see §3.4.3).
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We subtract the elemental abundances of each cluster by their means to center clusters at the zero ori-

gin. The co-variance matrix of these 77 stars is estimated. This matrix defines an ellipsoid that a typi-

cal chemically homogeneous cluster occupies. For each element, we find that σX ∼ 0.05− 0.06 dex;

this multivariate Gaussian sets the effective volume that homogeneous clusters occupy in the ob-

served abundance space. This estimate is consistent with Holtzman et al. 92 (see table 6 in the paper,

but note that they show measurement uncertainties in [X/H], but here we evaluate uncertainties

in [X/Fe] + [Fe/H]). Due to the small sample size of cluster members, we bootstrap the cluster

sample and find that the uncertainty on this σX estimate is about 20%. A larger sample of cluster

calibrators would be very helpful as a precise estimate of the cluster kernel is a key ingredient in any

chemical tagging analysis.

89



3.3 Method

In this section, we will describe the challenges in abundance clump searches and our clump search

method. Although various schemes have been proposed to separate open clusters/moving groups

(e.g., 20,135,185) in abundance space, a question often not discussed is the estimation and inclusion of

background contaminants. Simulations from Ting et al. 191 showed that the background contami-

nants can be a critical limiting factor in chemical tagging experiments. After extensive experimen-

tation we found that most proposed techniques, such as K-means, Gaussian mixture models, and

minimal spanning tree, are only effective in separating clumps in the limit of a small background or

when the background can be easily estimated.

Due to this limitation, we have developed a simple new method* geared toward regimes where

the background is dominant and has a complex topology in abundance space (read also62). The key

to our method consists of two parts that we will explain in §3.3.1 and §3.3.3. First, we need to esti-

mate the local density. As we will discuss in more detail in §3.3.3, we define the local density to be the

number of stars within a search sphere. The search sphere that we use to distinguish signals from the

background should be sufficiently large. It should include a large fraction of a chemically homoge-

neous cluster but avoid being too wide and should not include too many background contaminants.

Secondly, the abundance space distribution is not uniformly distributed. To estimate the detection

significance, we have to estimate the expected background at each location.

*Our method can be regarded as a variation of density-based nonparametric clustering techniques.
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3.3.1 Abundance space search sphere

In §3.2, we derived the empirical multivariate Gaussian distribution that a typical cluster occupies in

abundance space. This distribution defines an ellipsoidal distribution in the 10-dimensional abun-

dance space. Since an optimal search sphere should include a high ratio of cluster objects compared

to the background contaminants, the optimal search volume, or search sphere, should follow the

same uncertainty ellipsoid. However, it is not convenient to operate with a tilted ellipsoid because

a simple Euclidean distance from the center alone is not sufficient to determine whether a star is in-

cluded in the ellipsoid. Therefore, we linearly transform the abundance space such that the cluster

kernel becomes a unit Gaussian distribution. We emphasize that the transformation is only to make

calculations more straightforward, leaving all astrophysical implications invariant.

We can now determine an appropriate radius for the search sphere in these coordinates. A unit

radius is not a good choice for the search sphere even though clusters follow a unit Gaussian distri-

bution in the transformed coordinates: a box with 2 dex in width in each dimension only captures

(68%)10 = 2% of the clump. Since a unit n-sphere is strictly included in this box, one can show

that a unit n-sphere encapsulates an even smaller fraction, 0.02%, of the data. This curse of dimen-

sionality† implies that to capture, for example, 68% or 1σ of the cluster members, we require a search

sphere with a radius larger than 1 dex in the transformed abundance space. In fact, mathematically,

the inclusion fraction of a unit Gaussian within an n-sphere follows the χ2-distribution. The ana-

lytic formula of a χ2-distribution shows that an n-sphere of 3.4 dex in radius is needed.

†Techniques to compactify dimensions, such as PCA (e.g., 195), do not mitigate this problem because the
density of background contaminants also increases accordingly in the compactified space.
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One important parameter that will determine the difficulty of chemical tagging detections is

the number of separate “chemical cells” in abundance space69,191. The number of chemical cells is

the ratio between the abundance space volume spanned by the data and the typical volume of a

search sphere. We will evaluate this number later. But for now, one way to visualize the number of

chemical cells is to compare the effective diameter of the search sphere to the spread in each elemen-

tal abundance. We illustrate this comparison in Fig. 3.2. We find that an n-sphere with a radius of

3.4 dex in the transformed abundance space corresponds to an ellipsoid with an effective radius of

0.05 dex in the original abundance space. The effective radius is defined such that an n-sphere with

this radius contains the same volume as the ellipsoid. Due to the large dimensionality, we find that

if we do not take into account the covariances of the cluster kernel, i.e., if we were to use an n-sphere

in the original abundance space, instead of a tilted ellipsoid defined from the cluster members, we

estimate that the search volume would be 10,000 times larger and the search sphere would include

too many background contaminants.

Even with this optimized search ellipsoid in the original abundance space, as shown in Fig. 3.2,

the distribution of each element is typically only 1-3 times the effective search sphere diameter. As a

result, it is not possible to search for clusters in the core region of the chemical distribution. In this

region, the search sphere would include too many background contaminants. The chemical tag-

ging signals are most likely to come from the peripheral regions of the chemical distribution where

the background contaminants are not dominant (also see 23,25,101). Nonetheless, in a 10-dimensional

space, the “surface-to-core” ratio is very large. Therefore, there is a reasonable chance of finding

clumps in the peripheral regions. As we will show in §4, all chemical tagging signals indeed come
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from the peripheral regions.

3.3.2 The intrinsic abundance distribution of the α-enhanced sample

We now proceed to deconvolve the observed abundance distribution. The intrinsic abundance dis-

tribution is required in order to inject mock clusters into the observed APOGEE dataset.

In the previous section, we transformed abundance space such that clusters follow a 10-dimensional

unit Gaussian distribution. However, in such coordinates, the overall chemical distribution of the α-

enhanced disk will still presumably show co-variances among different coordinate directions because

the transformation is only to normalize the cluster point spread function and makes no assumption

on the global distribution. Deconvolving such a co-variant distribution directly in 10-dimensions

is computationally prohibitive. Therefore, we further rotate the transformed abundance coordi-

nate system to eliminate the co-variances such that the joint 10-dimensional abundance distribution

of the α-enhanced disk can be approximated by a product of 10 marginal distributions. Since the

cluster kernel, reflecting the measurement uncertainties, is already isotropic in the transformed abun-

dance space, it remains unaffected by further rotation. Upon this rotation, the deconvolution task

simplifies to ten independent, one-dimensional deconvolutions on the marginal distributions.

However, this approach only works if the actual ensemble abundance distribution can be well

approximated by its marginal distributions after rotation, i.e., if it does not show significant cur-

vature in abundance space. If we consider all 14,002 α-enhanced stars in the sample, we find that

this is not a good approximation: the 10-dimensional abundance space has a less regular topology,

dominated by a small fraction of outliers in abundance space, as shown in red symbols in Fig. 3.1. To
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look for these outliers, we perform a 10-dimensional kernel density estimation, using a unit Gaus-

sian distribution as the smoothing kernel. We rank the data points according to their local density in

the kernel density estimation and discard the most outlying 1,002 stars. We check that upon discard-

ing these outliers (7%), injecting clusters according to the joint distribution gives similar statistics

to injecting clusters according to product of marginal distributions. We emphasize that discarding

outliers shrinks the peripheral regions and makes detection more unlikely. The main purpose of

this study is to put an upper limit on the maximum cluster mass (see §3.4.3), discarding outliers only

makes our estimate more conservative. We also check that these outliers are not particularly clumped

in abundance space and hence are unlikely to be chemical tagging detections.

After breaking down the joint distribution to its marginal distributions, Pconvolved,i, we model

each marginal distribution with the sum of two Gaussians (see also62,144),

Pconvolved,i(xi|µ1, µ2, σ
2
1 , σ

2
2, f )

∼ (1− f )N (xi|µ1, σ
2
1 ) + fN (xi|µ2, σ

2
2). (3.1)

where µ and σ are the means and standard deviations of the Gaussian distributions, f shows the

relative contribution from each distribution. We require a two-component Gaussian because the

marginal distributions often show a core region and a broad wing region. Fitting a single Gaussian

will underestimate the total area of low-density wings. As discussed in §3.3.1, the wing regions are

the most valuable parts of a chemical distribution as they have the highest chance to detect clumps.

In the model, we allow centers of the two Gaussian distributions, µ1 and µ2, to be different to ac-
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count for an asymmetric distribution. We found that this model provides an excellent fit to each

1D marginalized distribution (although the joint distribution fits are slightly less satisfactory as we

will explain below) and the deconvolution can be done analytically. We model the intrinsic chemical

distribution Pintrinsic to be

Pintrinsic(X) =

10∏
dim=1

Pintrinsic,i(xi), (3.2)

where

Pintrinsic,i(xi) = Pconvolved,i(xi|µ1, µ2, σ
2
1 − 12, σ2

2 − 12, f ). (3.3)

Fig. 3.3 shows the intrinsic chemical distribution derived according to the method above. We will

use this model to draw mock data of hypothetical clusters, whose abundance probability is drawn

from the ensemble distribution. We caution that the 10-dimensional ellipsoidal model does not give

a perfect fit to the data, despite the fact that we have eliminated 7% of the outliers. For instance the

[Ca/Fe] vs. [Fe/H] distribution, as illustrated in Fig. 3.3, shows a more complex morphology than

an ellipsoidal model. In the ideal case, we would draw hypothetical clusters from a deconvolved

distribution that displays similar intricate morphology. However, deconvolving such intricate dis-

tribution is computationally intractable in 10-dimensional. Nonetheless, we checked that injecting

clusters according to the convolved ellipsoidal model shows similar statistics to the empirical con-

volved distribution. Therefore, in this study, we make the assumption that injecting clusters accord-

ing to the deconvolved ellipsoidal model gives similar statistics if we were to inject according to the

real deconvolved distribution.
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3.3.3 Detection significance

So far, we have defined an operative search sphere with radius r = 3.4 dex to look for overdensi-

ties in the transformed abundance space. We know that the overall abundance distribution, i.e., the

background, is not uniform (e.g., 10,13,56,168). The absolute number of stars within the search sphere

is therefore not particularly informative. We want to find regions where the local density within a

search volume is significantly higher than its vicinity regions. Therefore, to define the detection sig-

nificance, we need two ingredients: a local density estimation at each location and the corresponding

local background estimation at this location.

Fig. 3.4 shows a schematic illustration of our clump search method. For each star s, we define the

local density of this star, ns, to be the total number of stars located within r distance from this star.

Throughout this study, we only consider stars with ns > 10 to avoid the large Poisson fluctuation

at small ns. We estimate the vicinity background, ⟨ns⟩ to be the average of ns′ where s′ are all stars

located within a distance of r− 2r from star s. We define the detection significance to be σdetect(s) =

(ns − ⟨ns⟩)/
√

⟨ns⟩, which measures the deviation of the local density from the vicinity background,

in units of the Poisson uncertainty of the background.

Although this is a sensible definition of detection significance, there is a complication. If we have

a uniform background, provided there is no signal, σdetect should center around zero. Unfortunately,

this is not the case for an uneven background, especially for high dimensions. At a fixed point in an

uneven background, there are always more vicinity regions that have lower densities (toward the val-

ley) than regions that have higher densities (toward the core). As a result, we have ns > ⟨ns⟩ in gen-
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Figure 3.4: Schema c illustra on of our clump search method. At each star s (white symbol), we evaluate the number
of stars (orange symbols) within the search sphere (red shaded region) that we denote as ns. The vicinity background,
⟨ns′⟩ is calculated by averaging other ns′ , as shown in the blue shaded regions, where s′ are all stars (yellow symbols)
that are in the vicinity region (green shaded region). The vicinity region is defined to be the region outside the search
sphere but inside two mes the search sphere. The detec on significance is then defined as σdetect(s) = (ns −
⟨ns′⟩)/

√
⟨ns′⟩.
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eral. This disproportion gets more severe toward the core as the background gradient gets steeper.

This disproportion causes σdense(ns) to be an increasing function of ns. To overcome this shortcom-

ing and to have σdetect centered around zero, we calibrate σdetect by the median of σdetect(ns) at each

ns. We denote the calibrated detection significance to be σdetect and use it to be our operative mea-

sure of detection significance in the following and apply this method to the APOGEE data.
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3.4 Results

We now explore what we can learn about the number of chemical cells in the APOGEE survey, and

about the presence of any clumps in abundance space, that may reflect chemically tagged remnants

of disrupted clusters.

3.4.1 The number of chemical cells in the APOGEE observations of the α-

enhanced Galactic disk

The number of chemical cells is best estimated in the transformed (and rotated) coordinates where

the global chemical distribution has no co-variances between different coordinates and a chemically

homogeneous cluster can be represented by a unit Gaussian distribution. To calculate the num-

ber of chemical cells, let us estimate the global distribution to be a multivariate Gaussian with no

co-variances and with standard deviations σ1, σ2, . . . , σ10 in the 10 transformed coordinates. The

number of chemical cells, by definition, is the volume ratio between the global distribution over the

cluster kernel. Since the cluster kernel has a unit width in all directions, the number of chemical cells

in APOGEE can be estimated to be (σ1 · σ2 · · ·σ10)/(1 dex)10 ≃ 500.

This estimate agrees with the prediction in Ting et al. 195 using principle components analysis.

The lack of chemical cells despite having 10-dimensions is due the strong correlations among abun-

dances, especially for the α-capture elements and Fe peak elements. The small number of chemical

cells emphasizes the challenges in performing chemical tagging with strongly correlated elemental

abundances. Nonetheless, as we have discussed in §3.3.2, the APOGEE abundance space has broad
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wings that are not captured in a single multivariate Gaussian. Therefore, in the analysis presented

below, the signals drawn from a compositemultivariate Gaussian, as described in equation (3.1), are

stronger than a simple multivariate Gaussian with 500 chemical cells.

3.4.2 Relation betweenNinject andMcluster

To understand whether a cluster will be detected or not, we first need to investigate the number

of stars that we would sample in APOGEE from a cluster, given its zero age cluster massMcluster.

We denote the number of stars sampled to beNinject and will use the one-to-one relation between

Ninject andMcluster in the following discussion. But this conversion is based on some critical assump-

tions that we will now explain. The relation betweenNinject andMcluster is one-to-one up to a Pois-

son uncertainty – more massive clusters have more stars to begin with, and therefore will have more

stars sampled in the survey.

In the limit where there is no radial migration, the relation betweenNinject andMcluster is simple

and can be derived analytically. Assuming stars are azimuthally mixed in the annulus, the number of

stars sampled from a cluster,Ninject, can be approximated (see 25,53,191) to be

Ninject =
Mcluster

Mannulus
NAPOGEE, (3.4)

whereMannulus is the total stellar mass (including stellar mass loss) in the annulus andNAPOGEE =

13,000 is the APOGEE sample size in this study. This formula can be easily understood as the follow-

ing. Assuming stars in the sample have an average stellar mass ⟨M⟩ ≃ 1M⊙, the ratioNAPOGEE/Mannulus
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gives the stellar mass fraction within the annulus that we would sample in the survey. We denote

this ratio to be the sampling rate. When multiplying the sampling rate by a cluster mass, the product

gives the stellar mass, and thus the number of stars with ⟨M⟩ = 1M⊙, that we would sample from

this cluster.

However, radial migration modifiesMannulus in a complex way (see details in 191). Stars born out-

side the annulus could migrate into the annulus, and stars from the annulus could now appear to be

outside the annulus. Due to this complication, to estimateMannulus, the APOGEE’s selection func-

tion, as well as a robust Galactic chemical evolution model (e.g., 108,109,147), is needed. This is clearly

beyond the scope of this paper.

To simplify the problem and to only derive a conservative limit on the CMF in §3.4.3, we assume

that the α-enhanced disk is completely radially mixed. In other words, the current spatial location of

a star is completely random and is independent of their birth radii. In this limit, a star in the sample

can be any star from the α-enhanced disk. Therefore, we haveMannulus = Mtotal, whereMtotal is

the total stellar mass of the α-enhanced disk. Although complete mixing is a crude assumption, it is

likely to be reasonable for the α-enhanced disk. For example, Hayden et al. 86 showed that there is a

universal α-trend irrespective of the Galactocentric radii. A natural explanation of this result is the

stars in the α-enhanced disk are well-mixed. Moreover, the APOGEE sample covers a wide range of

Galactocentric radius, with Rgc ≃ 3 kpc − 15 kpc 33,86,154. It should have sampled the α-enhanced disk

from a large fraction of the Milky Way.

We emphasize that the complete mixing assumption gives a conservative limit on the CMF. In

the case where the mixing is not complete, we would have sampled more stars from the same clus-
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ter, and hence, it would be easier to exceed the APOGEE baseline. On top of the complete mixing

assumption, we also assume that the CMF is independent of elemental abundances, and hence the

equation (3.4) applies universally to the whole abundance space.

With these assumptions, we only need to properly estimateMtotal and apply equation (3.4) to

obtain a one-to-one relation betweenNinject andMcluster. We assume that the α-enhanced disk has

an exponential scale length of 3 kpc (e.g., 31) and consists of 10% stellar mass observed in the solar

neighborhood (e.g.,42). We adopt the stellar density in the solar neighborhood to be 38M⊙pc−2

(e.g., 30,65,213), and the solar Galactocentric radius R0 = 8 kpc (e.g.,74,75,169). These assumptions yield

a present-day α-enhanced disk stellar mass of∼ 3 × 109 M⊙. Since the α-enhanced disk is old,

massive stars have long since evolved and died. To account for this, we consider a total stellar mass

loss of 40% (45 , assuming a Kroupa IMF). Putting all these together, we haveMtotal ≃ 6 × 109 M⊙.

We also derive the sampling rate of the current APOGEE sample to beNAPOGEE/Mtotal =
1

5×105 .

On average, we would collect one star from a 5 × 105 M⊙ cluster. We will defer the discussion on

what this low sampling rate implies in §3.4.3.

3.4.3 Chemical tagging in APOGEE

We apply the clump search method described in §3.3 to the APOGEE sample. The left panel of

Fig. 3.5 shows σdetect as a function of ns of all 13,000 stars. At face value, it is tantalizing to observe

deviations> 5σ. But we emphasize that the detection significance depends on the various assump-

tions made, such as the choice of search sphere radius, the minimum number of neighbors require-

ment, the detection significance calibration and the definition of vicinity region at each data point.
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Without further information such as stellar ages, it is difficult to confirm the origin of these clumps.

Furthermore, as shown in Ting et al. 191 , most clumps are comprised of many clusters sharing similar

elemental abundances.

Due to these uncertainties, instead of interpreting these clumps as detections, we proceed by as-

suming the APOGEE dataset (left panel of Fig. 3.5) to be the detection baseline. We inject mock clus-

ters of different sizes into the data and estimate the detection significance of these injected objects.

By forward modeling, we rule out cases that are not consistent with the observation baseline. The mid-

dle and right panels show σdetect of the injected objects. In the right panel, we combine results of 100

trials, where in each case we inject a 108M⊙ (Ninject ≃ 250 stars) clump into the data. In the middle

panel, we show the results of 1000 trials with 107M⊙ clusters (Ninject ≃ 25 stars) injected. These two

panels show that if 107 − 108M⊙ clusters have formed in the past, there is a reasonable chance that

we would have detected larger deviations than the value observed. A cluster with 107M⊙ lies above

the detection boundary about∼ 7% of the time, and a cluster with 108M⊙ is detected about∼ 30%

of the time.

Not all high mass clusters will exceed the detection baseline. As shown in the middle and right

panels, most clusters, especially at high ns, blend into the background. To make robust statements,

we now proceed to quantify the probability of a cluster exceeding the observation baseline.

Detection probability of individual clusters

In this section, we will quantify the probability of an injected clump exceeding the observation base-

line. There are two key parameters that determine this probability: (a) the number of stars injected
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as a clump,Ninject, and (b) the cluster location in abundance space. As for the latter, the clump cen-

ters are drawn from the intrinsic distribution model described in §3.3.2. As for the former, we con-

sider a grid ofNinject, ranging from 3 − 1000 stars with a step-size of 0.2 in log scale. When injecting

a mock cluster withNinject stars, we allow a Poisson fluctuation of
√

Ninject. TheNinject range in

this study roughly corresponds to cluster masses of 106M⊙ − 5 × 108M⊙. We run 104 trials for each

Ninject and find that the Monte Carlo uncertainty is negligible with this many trials.

We model the cluster location by ranking all 104 trials by their Pintrinsic(Xcenter) value. Xcenter is

the clump center location in abundance space. We put the ranking into a linear scale, which we will

denote as ρ(Xcenter) ∈ [0, 100], where

ρ(Xcenter) ≡
#(trials < Pintrinsic(Xcenter))

#(trials)
. (3.5)

If the cluster is located near the background dominated core, it has a higher value in Pintrinsic because

the background density is very large, and we assign a high ρ(Xcenter). Whereas, if the cluster is lo-

cated at the peripheral regions, it has a lower Pintrinsic value since the background density is low, and

we assign a low ρ(Xcenter).

For each trial, we inject a clump and estimate the local density and vicinity background for all

objects from the injected clump the same way in §3.3.3. We define a clump to have exceeded the ob-

servational baseline if the maximum detection significance of this clump exceeds the baseline as

demarcated by the dashed lines in Fig. 3.5. We take the maximum significance of the whole clump

because not all injected objects will have high deviations, as shown in the solid gray lines in Fig. 3.5.
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Objects located near the surface of a clump will blend into the background. Only the objects near

the clump center will have high deviations because the search sphere includes a large fraction of the

clump.

The top panel of Fig. 3.6 shows the probability of exceeding the APOGEE baseline. Among all

trials that have a similar cluster location and a similar number of stars, we evaluate the fraction of

them exceeding the baseline. The x-axis showsNinject and the y-axis shows the cluster location quan-

tified by ρ(Xcenter). This panel illustrates that as the number of injected objects increases or the

cluster location is increasingly toward the peripheral regions, the chance of exceeding the baseline

improves, consistent with our intuition from Fig. 3.5.

The solid line in the bottom panel of Fig. 3.6 shows the probability marginalized over the cluster

location, i.e., the probability of a cluster exceeding the APOGEE baseline as a function of its clus-

ter mass if the cluster location is randomly drawn from the intrinsic abundance distribution. The

marginalized probability shows that clusters less massive than 107 M⊙ have negligible chances of

exceeding the baseline, but clusters more massive than∼ 107 M⊙ begin to show tension with the

deviations observed in APOGEE. The bottom panel also illustrates that even for a cluster as massive

as∼ 5 × 108 M⊙ (Ninject ≃ 1000), only about half of the time will a cluster exceed the baseline.

The lack of significant detection from the other half is not unexpected. As illustrated in the right

panel of Fig. 3.5, if a cluster is located in the core region (i.e., high ns), the background becomes dom-

inant. In this regime, most objects within the search sphere come from background contaminants.

Therefore, in the core region, the signal tends to be overwhelmed by the background, regardless of

the cluster size.

108



1.0 1.5 2.0 2.5 3.0
Number of Injected Stars, Log Ninject

0

20

40

60

80

100

C
lu

st
e
r 

Lo
ca

ti
o
n
, 

([
X

/F
e
] c

e
n
te

r)

Core

Periphery

107 108
Zero Age Cluster Mass, Mcluster [M ]

100

101

102

D
e
te

ct
io

n
 F

ra
ct

io
n
, 
P

d
e
te

ct
 [

%
]

101 102 103

Number of Injected Stars, Ninject

0

10

20

30

40

50

60

D
e
te

ct
io

n
 P

ro
b
a
b
ili

ty
, 
P

d
e
te

ct
 [

%
]

[X/Fe], [Fe/H]
decreases

by 20%

Best
[X/Fe], [Fe/H]
estimate

[X/Fe], [Fe/H]
increases
by 20%

107 108
Zero Age Cluster Mass, Mcluster [M ]
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space. The top panel shows the probability as a func on of these two parameters. As the number of injected stars
increases or the cluster is injected in a more peripheral region of abundance space, the chance to exceed the obser-
va on baseline increases. The bo om panel shows the probability marginalized over the cluster loca on, i.e., the
probability of detec ng a cluster of a certain cluster mass if the cluster loca on is randomly drawn from the intrinsic
abundance distribu on. The solid line shows result assuming the best cluster kernel es ma on, σX, as also applied
to the top panel. The dashed and do ed lines show the marginal probability assuming±20% sta s cal uncertain es
of the σX es mate due to the small sample of cluster members (see §3.2 for details).
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Recall that our estimate of the cluster kernel σX has an uncertainty of 20% due to the small num-

ber of cluster stars. Therefore, the concentration of our injected clusters could be off by the same

amount. We also explore how this uncertainty might change our results. The dashed and dotted

lines show results in cases where our cluster concentration estimate is off by 20%. The dashed line

shows the result assuming chemically homogeneous clusters are intrinsically tighter in abundance

space by 20%. With a more concentrated signal, the signal will have a better contrast over the back-

ground. Therefore, clumps are easier to detect and the probability in Fig. 3.6 increases. However, if

clusters are more widely spread, they are more likely to blend into the background. Therefore, the

chance of detection decreases, as shown in the dotted line. We defer more detail discussions on how

this uncertainty changes our conclusion to §3.4.3.

Limits on the CMF

So far we have only studied the detection probability of an individual cluster injected into the APOGEE

data. For example, in the bottom panel of Fig. 3.6, we derived the probability of detecting a cluster

as a function of its cluster mass, which we will denote as Pdetect(Mcluster). In this section, we will

propagate this individual cluster statistic to constrain the CMF. We derive the total number of clus-

ters of different masses fromMtotal and the parameters of the CMF. Using this information, we can

then evaluate the probability of all these predicted clusters being consistent with the APOGEE ob-

servation, which will then place a limit on the CMF. We assume a power-law CMF with a low-end

cutoff of 30M⊙ and then constrain the power-law slope, α, and the high-end cutoff,Mcutoff from

the comparison with APOGEE data.
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Let’s formulate this idea more rigorously. Given a CMF, we know that, on average, there are a

total of n = Mtotal/M clusters spawned whereM is the mean cluster mass from the CMF. By

definition, the cluster masses of n clusters follow the CMF, which we will denote asMcluster,i=1,

Mcluster,i=2, . . .,Mcluster,i=n. The probabilityL(CMF) that all these clusters are consistent with

the data is

L(CMF(α,Mcutoff)) =

n∏
i=1

(1 − Pdetect(Mcluster,i)), (3.6)

i.e., none of these clusters exceeds the observation baseline. In practice, to save computational time

and to ensure a well-converged solution, we evaluate theL(CMF) analytically.

The left panel of Fig. 3.7 shows the resultingL(CMF). The figure demonstrates that if the CMF

slope is shallower than α = −2, the APOGEE sample is mostly consistent with a high-end cutoff

≲ 3 × 107 M⊙ (logMcutoff = 7.5). Qualitatively, this result should be expected. As shown in

the bottom panel of Fig. 3.6, there is a∼ 10% chance that a cluster with∼ 107 M⊙ will exceed the

observation baseline. Recall that if the CMF slope α = −2, we have equal contributions from all

logarithmic mass bins. This implies that the number of clusters with mass∼ 107 M⊙ is of the order

∼ Mtotal/107 M⊙ ∼ 100. Let say there are 50 such clusters, and each cluster only exceeds the base-

line∼ 10% of the time. The probability that all of them would be consistent with the APOGEE

observation is still extremely unlikely because (90%)50 < 1%.

This simple illustration also demonstrates two important features. First, the detection probability

is very low for individual clusters with masses< 107 M⊙. If the CMF slope is steeper than−2, most

clusters are not massive. In this case, the APOGEE observation provides a very weak constraint on
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Figure 3.7: Constraint on the α-enhanced disk CMF. The le panel shows the probability of a CMF being consistent
with the APOGEE DR12 data as a func on of the two CMF parameters, the power-law slope and the upper mass
cutoff. The do ed, dashed, and solid lines show the 1 − 3 sigma limits, respec vely. Unless the CMF power-law slope
is steeper than−2, a cluster mass cutoff≳ 3 × 107 M⊙ is largely ruled out. The right panel shows the maximum
cluster mass,Mmax, for different CMFs, such that the expected number of clustersNcluster(> Mmax) > 1 (see
§3.4.3 for details). We overplot the 1 − 3 sigma limits calculated from the le panel. The right panel shows that, in
most cases, there is on average less than one cluster with≳ 3 × 107 formed in the Milky Way.
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the high mass cutoff. As shown in the left panel of Fig. 3.7, if α ≲ −2, we cannot constrain the CMF

cutoff. Even though a cluster with mass∼ 108 M⊙ would easily exceed the baseline, these clusters are

extremely rare if the CMF slope is steeper than−2.

Secondly, since the CMF constraint is derived from the product of each detection probability, it

is sensitive to Pdetect. As shown in the bottom panel of Fig. 3.6, if our estimate of σX is off by 20%,

it will affect Pdetect, which in turn could dramatically modify our CMF constraint. If clusters are

more concentrated in abundance space than we have assumed here, then that will provide a stronger

constraint on each detection (dashed line in Fig. 3.6). Therefore, our constraint on the CMF would

be conservative. On the other hand, if we have underestimated σX by 20%, then the clusters would

be more widely spread out in abundance space than we have assumed. In this case, most clusters

would be harder to detect (dotted line in Fig. 3.6). Although not shown, we have checked that, in

this case, we can only rule out CMF withMcutoff ≳ 108 M⊙ and α ≳ −1.9.

Nonetheless, independent evidence seems to support our σX estimate. Mathematically, the rota-

tion that we performed in §3.3.2 is exactly the same as principal components analysis (see appendix

in 195). After the rotation, each coordinate becomes a principal component of the APOGEE abun-

dance space. The APOGEE abundance space has fewer independent dimensions than the observed

dimensions6,195. Some of these 10 principal components should have very little intrinsic scatter.

Therefore, some minor axes of the 10-dimensional ellipsoid are only due to the measurement scat-

ter. Thus, their spreads should be a robust estimate of the measurement uncertainty σX. We find

that the widths of these minor axes are consistent with our σX estimate, showing our estimation of

σX is robust. Therefore, our conservative CMF constraint is likely to hold.
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Although not allMcutoff ≳ 3 × 107 M⊙ is ruled out, Fig. 3.7 shows that a very highMcutoff is only

consistent with the data when the CMF slope is steeper than α = −2. When the CMF is steep, the

number of massive clusters also decreases precipitously. Therefore, the cutoff could be very massive,

yet on average there might be less than one such massive cluster in the Milky Way. A high cutoff

does not naturally imply the existence of these clusters. Instead ofMcutoff, perhaps a more useful

constraint is the maximum cluster mass such that we expect to have at least one cluster larger than

this mass. We denote this maximum mass to beMmax. AssumingMtotal = 6 × 109 M⊙, we show

Mmax as a function of the CMF parameters in the right panel of Fig. 3.7. As expected, this panels

shows that when the slope is steep, we haveMmax ≪ Mcutoff, i.e., the cluster mass cutoff is never

achieved. When overplotted with the constraints obtained in the left panel, the right panel shows

that in most cases, only clusters with masses≲ 3 × 107 could have formed. As the α-enhanced disk

is believed to form in the first 5 billion years (e.g., 88), our constraints refer to the portion of the disk

that formed at z > 1.

We have made numerous assumptions in this study, but we emphasize that we have always made

the conservative choices. Therefore, our CMF limit should be robust as long as we did not underesti-

mate σX by 20% and the ellipsoidal intrinsic distribution is a fair representation of the deconvolved

distribution. A question remains to be answered: could we obtain a significantly stronger constraint

on the CMF using the current APOGEE data? We would argue that the answer is likely no. The

bottleneck is intrinsically due to the relatively small number of volume elements in abundance space

and the low sampling rate. The former is set by the precision of the abundance measurements and

the number of independent dimensions in abundance space sampled by the APOGEE spectra. The
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APOGEE sampling rate is of the orderNAPOGEE/Mtotal = O(10−5), which implies that we would

only sample one star from a∼ 105 M⊙ cluster. The threshold ns > 10 implies that the minimum

cluster mass needed is∼ 106 M⊙. Therefore, in the most optimistic case, we might be able to put a

stronger limit by at most an order of magnitude.

How does our stellar CMF limit compare to high redshift observations of star forming galaxies?

Recent observations have reported the existence of giant star forming clumps within the disks of star

forming galaxies at z ∼ 266,72,73,97,132. Gas clumps as high as∼ 109 M⊙ have been observed. There

has been much speculation regarding the properties and fate of these giant clumps. Some have ar-

gued that they are progenitors of globular clusters 184. They may migrate by dynamical friction to

the centers of galaxies 208. It is also unclear if the stars forming within these giant clumps contain

stars that are coeval or share a common metallicity. What is clear from the results presented in this

work is that these giant star forming clumps cannot both be mono-abundance and remain in the

α-enhanced disk, at least in the portion of the Milky Way observed by APOGEE (i.e., with a Galac-

tocentric radius of 3 kpc− 15 kpc). Even assuming a total star formation efficiency of 1% (simulations

and observations usually show higher values, e.g. 58,61,104,115,117), these gas clumps would have formed

clusters that are at least 107 M⊙ and would have stood out in the chemical tagging experiment pre-

sented here if they are chemically homogeneous and that they remain in the Milky Way disk, which

APOGEE is probing.
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3.4.4 Comparison with previous studies

The first chemical tagging experiment on dispersed disk stars was performed by Mitschang et al. 151 ,

and the tagged groups were subsequently studied in Quillen et al. 163 . They studied 714 stars in the

solar neighborhood from Bensby et al. 13 . Our results agree with their assessments that the identified

groups in these studies are probably not co-natal stars. Each group is unlikely coming from a single

disrupted cluster, even though the clump members might be coeval stars as they share similar abun-

dances. In these studies, the sample includes both α-enhanced stars and low-α stars, but the sample

size is about ten times smaller than the APOGEE α-enhanced sample. The sampling rate in Bensby

et al. 13 is therefore much smaller than the APOGEE α-enhanced sample. Recall that the sampling

rate in this study is∼ O(10−5), and thus, we deduce that the sampling rate in these early studies is

≪ O(10−5)/10 = O(10−6). If groups detected in these studies were to come from individually

disrupted clusters, the parent cluster would have a mass≫ 106M⊙, consistent with the estimates in

Quillen et al. 163 .

Simulations from Ting et al. 191 also disfavor a co-natal interpretation of the groups identified in

these earlier studies. Ting et al. 191 found that even if such large clusters exist, a detected clump in

abundance space will still have a sizable background component. More importantly, in the case with

a dominant background, the applicability of previous clump search techniques that separate the

abundance space into a few distinct regions, such as the one proposed in Mitschang et al. 151 , or other

tree-based methods (e.g. 135) is questionable. For those techniques to perform well, the background

in abundance space has to be negligible or first be subtracted. As we have explored in this study, the
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background estimation can be challenging given its complex topology in high-dimensional space

and the fact that the signal is usually overwhelmed by the background contaminants.
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3.5 Summary and conclusion

In this study we have exploited the superb APOGEE DR12 data, with typical uncertainties of σ[X/Fe]

and σ[Fe/H] ≃ 0.05 for 10 elements measured for> 104 stars, to put in practice a first large-scale

chemical tagging analysis of the α-enhanced disk. Because the number of stars per 10-dimensional

abundance volume is lower in the α-enhanced disk, we focused on that portion of abundance space.

This analysis required the development of a new, simple algorithm for identifying clumps in

abundance space, and it brought some of the “real life” difficulties of chemical tagging to the fore.

Nonetheless, we succeeded in providing the first abundance-based constraints on the masses and

mass functions of chemically homogeneous star clusters in the old Galactic disk.

The methodological steps and results can be summarized as follows:

• We determined and applied a coordinate transformation that makes the cluster kernel in
abundance space spherical (in 10-dimensions) and have unit variance in each dimension. This
kernel enables fast error deconvolutions in this transformed abundance space.

• We generated a model for the intrinsic abundance distribution of the α-enhanced disk, pre-
suming it to be a highly anisotropic and co-variant ellipsoidal distribution in the above 10-
dimensional transformed abundance space. After rotating this coordinate system to elimi-
nate the co-variances in this distribution, we modeled each dimension independently as the
sum of two Gaussians. Fitting this to the APOGEE data provides a first estimate of the shape
and volume of the error-deconvolved abundance space of the α-enhanced Galactic disk.

• We found that despite the unprecedented quality of the APOGEE data, the volume occupied
by the stars of the α-enhanced Galactic disk is only∼ 500 times the volume of the cluster
kernel. Even with abundance uncertainties of σ[X/Fe] and σ[Fe/H] ≃ 0.05 dex, the cluster
kernel spans> 30% of the abundance width in each elemental abundance dimension. In
addition, many of the 10 elemental abundances measured by APOGEE and used herein are
highly co-variant.
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• We developed an algorithm to detect groups of chemically homogeneous stars, geared toward
the background-dominated regime. We found that searching for chemically homogeneous
clumps is challenging with high backgrounds. The chemical tagging signals will most likely
come from the peripheral regions in abundance space where the background density is rela-
tively low.

• Using APOGEE data as a detection baseline, we were able to constrain the CMF in the Galac-
tic α-enhanced disk. We show that this population is unlikely to have formed clusters more
massive than 3 × 107 M⊙ at any point in its history.

Although the current constraints presented in this work are limited to very large cluster masses,

the results in this paper vividly demonstrate the potential of chemical tagging in understanding the

Milky Way properties in the past. With more data currently being collected by on-going surveys, we

should be able to provide much stronger constraints on the CMF in the near future.
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4.0 Abstract

Stellar spectra are often modeled and fit by interpolating within a rectilinear grid of synthetic spectra

to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of

synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions,

precluding the simultaneous and self-consistent fitting of more than a few elemental abundances.

Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not

produce correct error covariances in the derived labels. In this paper we present a new approach –

chat (Convex Hull Adaptive Tessellation) – which includes several new ideas for inexpensively

generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive,

data-driven grid. A convex hull approximates the region where the data lie in the label space. A vari-

ety of tests with mock datasets demonstrate that chat can reduce the number of required synthetic

model calculations by three orders of magnitude in an 8D label space. The reduction will be even

larger for higher-dimensional label spaces. In chat the computational effort increases only linearly

with the number of labels that are fit simultaneously. Around each of these grid points in label space

an approximate synthetic spectrum can be generated through linear expansion using a set of “gradi-

ent spectra” that represent flux derivatives at every wavelength point with respect to all labels. These

techniques provide new opportunities to fit the full stellar spectra from large surveys with 15 − 30

labels simultaneously.
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4.1 Background

Despite many decades of research, many aspects of Milky Way evolution (see review from 170) and

the Local Group galaxies (e.g., 105,205) remain unsettled. To unravel the formation history of the

Milky Way, spectroscopic surveys are currently being carried out to gather elemental abundances

and kinematic information of stars across the Galaxy. High-resolution spectra of 105 − 106 stars are

being collected through surveys such as APOGEE 136, GALAH 53 and Gaia-ESO 187 and with the res-

olution power of R ≃ 20,000 and S/N≃ 100. With the exquisite spectra of these stars, the goal is

to measure 15 − 30 elemental abundances of each star as precise as possible. Since most stars are long

lived and the elemental abundances of galaxies built up gradually over time, these abundances are

tell-tale signs of the Milky Way’s evolution. Furthermore, stars that formed together are believed to

share exceptionally similar elemental abundances (e.g., 29,50,70,194). By looking for stars that share sim-

ilar abundances, one goal in these surveys is to reconstruct star clusters that are now disrupted and

dispersed in the Milky Way (e.g.,48,112,124), an idea commonly known as chemical tagging 23,24,69,191.

Identifying members of disrupted star cluster is an important missing piece to understanding

the Milky Way. Stars are believed to have migrated from their birth orbit since they formed either

through “radial migration” (see observational evidence from 113,133) or “blurring” of orbits (e.g.,

through n-body scattering). For example, it has been proposed that stars could radially migrate

when corotating with transient structures such as the Galactic bar and spiral arms 55,81,149,176. But

quantitative, direct observational evidence for radial migration remains scarce, and chemical tagging

can provide it.
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Chemically tagging disrupted star clusters also informs us about the past star cluster mass func-

tion (e.g., 192). This information is crucial as studies (e.g., 59,115) have shown that the maximum ag-

gregate size that star formed might depend on the star formation rate and the gas mass in the past.

Since most of the clusters are soon disrupted 124 constraining the past cluster mass function through

chemical tagging may be the best option 25,192 .

But all this requires efficient and precise abundance determinations from vast sets of observed

spectra. This is challenging for two reasons. First, synthetic spectra for large surveys have systematic

uncertainties, as 1D models in local thermodynamic equilibrium (LTE) are typically used for generat-

ing a synthetic spectral library (e.g.,71,187). Studies have shown that, at least for metal-poor stars, 3D

non-LTE calculations are essential for accurate recovery of labels (e.g., 14). Second, generating syn-

thetic spectra is computationally expensive. Even for 1D-LTE models, each synthetic spectrum can

take hours to generate, which renders the generation of a synthetic library with 15 − 30 elemental

abundances impossible with the rectilinear grid approach.*

In this paper, we will tackle the second challenge by presenting chat (Convex Hull Adaptive

Tessellation), a set of techniques for fitting stellar spectra by generating a synthetic library using

the idea of an adaptive grid and a convex hull. Our method reduces the complicated interpolation-

minimization process into a simple series of linear regressions. In §4.2 we will discuss the limitations

of the rectilinear grid approach. In §4.3 we describe the idea and the implementation of our method.

We present a comparison of our method with the rectilinear grid approach in §4.4 and show that

our proposed method here can reduce the number of models by three orders of magnitude in an

*A rectilinear grid is a model grid that has uniform spacing with a fixed interval for each label.
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8D label space, and the reduction will be more significant at a higher dimensional label space. This

method opens up new possibilities to perform an ab-initio fitting of observed spectra with more

labels. We explore some of these possibilities in §4.4, and we conclude in §4.5. We emphasize that

these techniques can be used for fitting any set of synthetic spectra to observations. In this paper we

focus on 1D LTE models but note that as 3D non-LTE models become computationally affordable,

chat can be applied to those models as well.

In this paper we focus on techniques directly applicable to automated pipelines for large surveys

in which the full spectrum (or portions thereof) are fit to models. However, many of the techniques

discussed here are also applicable to the classical technique of fitting equivalent widths of selected

spectral features.
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4.2 The rectilinear grid and its limitations

For a rectilinear grid, the number of models grows exponentially with the number of dimensions.

For example, in the case of the APOGEE survey92, the rectilinear grid is comprised of 6 main labels

including Teff, log g, the overall metallicity [Z/H], the α-enhancement [α/Z], [C/Z] and [N/Z]. A

mere five grid points per dimension would require 56 ≃ 15,000 models. Therefore, any additional

dimension such as microturbulence vturb, stellar rotation v sin i or additional abundances [X/H], are

very computationally expensive to include. Consequently, the full observed spectra are in practice

only fit with these few main labels. Other elements are individually determined in a second step by

fitting narrow spectroscopic windows and assuming a fixed underlying atmosphere. But this two-

step approach entails several potential problems:

1. As we show in Appendix 4.6, a wide array of elements impact the atmospheric structure.
By only considering a subset of important elements when computing grids of atmospheres,
one introduces biases in the final spectra. This issue is more apparent for the low-Teff stars
(e.g., below∼ 4000 K). Therefore, the two-step approach could introduce non-negligible
systematic biases when determining the photosphere structure by only fitting the main labels.

2. Fitting the full spectra with only a few basic labels (e.g., Teff, log g, [Z/H] and [α/Z]) re-
quires assumptions on how the other (not fit) elements trace those labels. A common as-
sumption is that all α-elements trace each other, and all other elements trace [Fe/H]. Al-
though this is a good working assumption, without which the fitting would be much worse,
this assumption is not true in detail. Therefore, this simplification incurs systematic offsets in
the determinations of the main labels such as Teff, log g and vturb.

3. By fitting elemental abundances one at a time, with fixed atmosphere structure, one cannot
evaluate their covariances with other labels. For example, elemental abundance determina-
tions depend on Teff, and therefore, abundances must be correlated to some level. The covari-
ance matrix is crucial for any chemical tagging studies. Although stars that formed together
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are believed to be homogeneous to the level of 0.05 dex (e.g., 50,70,194) or better 29,131, the spread
of a cluster in elemental abundances space is dominated by the measurement uncertainties.
Therefore, to look for overdensities, we would need to evaluate this spread of a chemical ho-
mogeneous cluster in the elemental abundances space 130. Ting et al. 192 showed that ignoring
the covariance matrix and using only the marginal uncertainty of each element will increase
the background contamination in a search for overdensities by a factor of 104 in a 10D space.
But any estimate of the covariance matrix requires that all labels are fit simultaneously, again
incurring prohibitive computational expense with rectilinear grid fitting.

4. Restricting the fits of individual elemental abundances to “clean” narrow spectral windows
excludes other spectral information such as blended lines. From information theory, one can
calculate the theoretically achievable precision with the Cramer-Rao bound46,165. If we have
accurate synthetic spectra and an effective way to fit all elemental abundances simultaneously
using the full spectrum, as illustrated in Appendix 4.7, we could in principle achieve a preci-
sion of∼ 0.01 dex for APOGEE data if the systematic errors in the models are smaller than
this limit. For comparison, the windows currently defined by the APOGEE pipeline only ex-
ploit∼ 10% of the spectral information, implying that abundance precision will be

√
10 ∼ 3

times worse than the formal limit (see Appendix 4.7 for details). We note that these ideal the-
oretical precisions might not be achievable due to systematic uncertainties in the models, but
we should still expect a decent improvement in the precision as we are using more informa-
tion in the spectra.

5. To improve the interpolation within a rectilinear grid, sophisticated algorithms can be em-
ployed. For example, in the case of the APOGEE survey, the interpolation is done with a
cubic Bézier function. For this algorithm, many spectra from the rectilinear grid are required
for each iteration. This implementation is memory intensive, to the extent that not all wave-
length points from each spectrum are saved71. Certain compressions are needed, and some in-
formation within the spectra is unavoidably discarded in the compression process. As we will
discuss in more details in §4.3, the method proposed in this paper reduces the complicated
interpolation-minimization process into a simple series of linear regressions. This method is
extremely memory effective, and no compression of spectra is needed.
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4.3 A new approach

To overcome the challenges discussed in §4.2, we propose a new approach to fitting stellar spectra

with ab-initio models, which we call chat (Convex Hull Adaptive Tessellation) that has two cen-

tral elements: (a) around any point in label space for which we have calculated a synthetic spectrum,

there exists a (high-dimensional) hypersphere in label space within which the spectrum (i.e., the

flux at every wavelength point of a normalized spectrum) varies linearly with changes in any of

the labels; as this region is defined through its series expansion, we refer to this region as a “Taylor-

sphere.”† The number of synthetic spectral models needed to describe any spectrum that lies within

the Taylor-sphere of a model grid point grows linearly with the dimensionality of label space, instead

of exponentially. (b) Rectilinear grids in high-dimensional spaces are highly inefficient in covering

high-dimensional distributions, especially ones that are as correlated and irregular as the distribution

of stars in abundance space. Here we develop a data-driven approach to finding a near-minimal set

of grid points whose surrounding Taylor-spheres cover all of the relevant label space. Obviously, this

requires at least some a priori knowledge of the distribution of stars in the label space. In addition,

chat simplifies the interpolation-minimization spectral fitting process to a series of linear regres-

sion problems around a manageable set of grid points. In §4.3.1, we will expand the basic ideas of

the method. In §4.3.2, we discuss some of the attractive properties of this method compared to the

rectilinear grid approach, and we move on to the implementation details in §4.3.3.

†Strictly speaking, since we are looking for the best linear interpolations given fixed end points, a more
appropriate nomenclature should be “Legendre-sphere”, because (a) we are searching for the best multivariate
Legendre polynomial approximations to the first order and (b) we are not calculating the gradient spectra
with infinitesimal changes in label space.
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4.3.1 Basic concepts

Gradient spectra and Taylor-spheres

The predicted continuum-normalized flux of a spectrum, fmodel(λ|ℓ) of a model that is specified by

a set of labels, ℓ, changes from point to point in that space, but does so “smoothly”, or differentiably.

The spectrum corresponding to any ℓ sufficiently close to a model grid point ℓ∗ can therefore be

described with sufficient accuracy by

f linmodel(λ|ℓ∗ +∆ℓ) ≃ fmodel(λ|ℓ∗) +
−→∇ℓfmodel(λ|ℓ∗) ·∆ℓ. (4.1)

InNℓ-dimensional label space, the calculation of−→∇ℓ requires the calculation of (only)Nℓ addi-

tional model spectra, used to define the vector of “gradient spectra”,−→∇ℓfmodel(λ|ℓ∗). In this study,

we evaluate gradient spectra in finite differences. For each dimension, we derive the 1D gradient spec-

trum via dfmodel/dℓ = (f(ℓ1) − f(ℓ2))/(ℓ1 − ℓ2). The assumption of linearity implies that gradient

spectra are decoupled from one another, and the variation of a spectrum from a label point to an-

other can be approximated by the sum of variation in each dimension. This (only) linear scaling of

model numbers withNℓ is one of the key advantages to chat. The region in label space for which

this 1st-order Taylor expansion is a sufficiently good approximation, we call a “Taylor-sphere.” For

labels ℓ that lie within the Taylor-sphere of ℓ∗ spectral fitting then becomes a simple regression.

Ness et al. 153 show that even for the important labels such as [Fe/H] and Teff that plausibly have

small Taylor-radii, the spectral variation at all wavelength points across the entire label space for all
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giants as a function of the labels can be approximated by a quadratic polynomial function. There-

fore, we expect the Taylor-radii to cover finite, and not terribly small regions of the relevant label

range. In principle, the high-dimensional linear expansion of the space of model spectra could be

extended to a general polynomial expansion. Considering 2nd-order expansion, this would require

∼ Nℓ times more ab-initio model calculations, but may dramatically increase the size of the corre-

sponding “2nd-order Taylor-sphere”, as suggested by the empirical success of the Cannon 153, but we

will explore in the coming paper.

A data-driven model grid

The next step in chat is to find a (near−)minimal set of grid points, ℓ∗, so that the ensemble of

their surrounding Taylor-spheres covers all the relevant label space. If we had such a set of ℓ∗, and if

that set was manageable small, then the entire fitting procedure would be reduced to a set of linear

regressions.

To start this, we illustrate concretely how important it is to abandon rectilinear grids in high di-

mensions. The key point is that the volumes of hyperspheres of unit radius differ drastically from

the volumes of hypercubes with unit length in high-dimensional space. Fig. 4.1 illustrates this vol-

ume ratio: for a 10-dimensional space, the volume ratio of the hypercube over the hypersphere is

∼ 5 × 102; and in a 30-dimensional space, the ratio increases to∼ 5 × 1013! Therefore, if we place

our synthetic models (at ℓ∗), only in the (hyper)spherical region where they are needed (rather than

in an encompassing hypercube), the density of models grows exponentially with the number of

dimensions, for a given total number of models. Furthermore, Ting et al. 195 showed that, in a∼ 25-
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Figure 4.1: The volume ra o of an N-dimensional unit hypercube to a unit hypersphere. This figure shows that using
a convex hull significantly improves the density of models in the label space. For example, if the stellar proper es
only lie in a unit hypersphere in a 10D label space, a rec linear grid will need 500 mes more models than a convex
hull approach that only generates models within the hypersphere. If we consider a label space of 30D, the ra o in-
creases to 5 × 1013. In prac ce, since stellar elemental abundances only live in a 7 − 9 dimensional subspace in a 30D
space, which is more compact than a hypersphere, the improvement is more significant than the ra o shown in this
figure.
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dimensional elemental abundances space, stellar elemental abundances are contained in a 7 − 9 di-

mensional subspace, the volume of which is necessarily smaller than the 25-dimensional hypersphere.

Therefore, the gain will be much more significant in practice.

Clearly, we only need to calculate spectral models and their gradient spectra in regions of label

space containing data. To define such a region, we use the concept of a convex hull. A convex hull

is the minimal convex polygon that encompasses all the data points. Of course, for any given survey

we do not know which part of label space the data cover. But there is sufficient information from

existing surveys that one can define an approximate convex hull (e.g., 13,92). In detail, one would want

to carefully consider the construction of the convex hull for the specific problem of interest.

After this region is defined, we need to find the set ofNmod grid points at ℓ∗ whose surrounding

Taylor-spheres cover this minimal polygon. Our approach is illustrated in Fig. 4.2. The Figure illus-

trates how we define the convex hull, find Taylor-spheres that cover the convex hull and reduce the

spectral fitting problem to a series of linear regressions. The details are described in §4.3.3, but the

remarkable result is that the number of necessary grid pointsNmod remains manageable even for a

high-dimensional label space.

4.3.2 chat’s advantages

chat has a number of very attractive properties compared to the rectilinear grid model that we

summarize in Table 4.1. First, within the Taylor-sphere of a model grid point, ℓ∗, the computational

expense of fitting only grows linearly with the number of labels to be fit. IfNmod model grid points

are needed to cover the convex hull with their Taylor-spheres, then we only need to calculateNmod×
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Adopt stellar properties
from previous surveys

[X 1/H] 

[X 2/H] 

To define a larger space:
randomly scatter the data

To define a smaller space:
exclude outliers

Define a convex hull
encompassing the prior data

Create dense mock points
to represent the convex hull

Create synthetic spectra 
of dense 1D grids

For each 1D grid point, calculate 
the 1D Taylor-radius

Taylor-radius

Taylor-radius

Form multidimensional Taylor-spheres
from the 1D Taylor-radii

Taylor-sphere

Select one of the mock points in 
the convex hull, read off the 
corresponding 1D Taylor-radii

select a
mock point

corresponding
1D Taylor-radius

Exclude mock points within
the Taylor-sphere

exclude mock points
within the Taylor-sphere

Select another mock point
and iterate the process until
all mock points are excluded

Generate synthetic spectra for 
reference points and end points
of all Taylor-spheres

end point

end point
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point

dense 
1D grid

dense 
1D grid

outliers

convex hull

dense
mock points

cover the convex hull
with Taylor-spheres

For each observed spectrum,
we perform linear regressions with
respect to all reference points and
find the best-fitting model

The linear regressions can be done over all 
observed spectra simultaneously, the gradient 
spectra fitting method is very efficient 

gradient
spectra

observed spectra
reference points

observed spectra
reference points

or

Figure 4.2: A schema c illustra on of chat and its implementa on. In this illustra on, we demonstrate a 2D sce-
nario. In prac ce, we generalize this approach to 10 − 30-dimensional label space using the same idea.
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(Nℓ + 1) synthetic models, i.e., for each model grid point, we need to calculate the spectrum at

this grid point and additionalNℓ models to calculate the array of gradient spectra. AsNℓ increases

by one, the size of the array of gradient spectra only increases by one, even though we might need

slightly more modelsNmod. This slow growth is different from the rectilinear grid approach, where

the number of models always grows as dNℓ , where d is the number of grid points in each dimension

regardless whether or not the spectrum varies linearly with a label.

Second, decomposing the label space into a series of Taylor-spheres reduces the complicated

interpolation-minimization spectral fitting process to a series of linear regressions. This calcula-

tion can be easily done on any personal computer after the synthetic library is generated and can

be easily parallelized. At the same time, we also circumvent the computational memory problem as

discussed in §4.2. As we only need to perform linear regression from each grid point separately, only

the gradient spectra of a particular grid point are loaded into the memory each time. The memory

requirements for chat are very modest.

Aside from the computational speedup, the use of Taylor-spheres to determine where to create

models has the important conceptual advantage that the step size in each dimension is determined in

a statistically-rigorous manner (such that the error induced by assuming linear interpolation is below

a predetermined tolerance).

Fitting models with linear regressions through gradient spectra also provides a natural connec-

tion to fully data-driven technniques. In this paper, we calculate the gradient spectra according to

synthetic models. But one could replace the theoretical gradient spectra with empirical gradient spec-

tra if we have enough training set to span the label space. As discussed in Ness et al. 153 , performing
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spectral fitting in a fully data-driven way is advantageous in some cases because such an approach

produces elemental abundances on the same overall scale set by the training set.

4.3.3 Implementation

With the qualitative picture of Fig. 4.2 in mind, we now describe some of the specifics of finding

suitably sized Taylor-spheres and filling the data convex hull with these Taylor-spheres.

Defining the Taylor-spheres

So far we have defined the Taylor-spheres qualitatively as the regions around a spectral model at ℓ∗

within which the vector of gradient spectra describes all model spectral “sufficiently” well. We now

describe the quantitative procedure, which starts by determining the 1D Taylor-radii in all the label

directions. We generate a fine 1D grid for each of these dimensions with a step size of∆[X/H]=

0.03 dex,∆Teff = 25 K,∆ log g = 0.05,∆vturb = 0.05 km/s. When evaluating the Taylor-radius

in any one label-space coordinate, we adopt fiducial labels for the other coordinates. Focusing here

on APOGEE red clump stars, we choose Teff = 4,750K, log g = 2.5, vturb = 2 km/s and Solar

metallicity. We checked that the Taylor-radii are relatively insensitive to the choice of the fiducial

values for the other coordinates.

To evaluate the Taylor-radius for any one dimension of label space, for each grid point ℓ∗, we

use the finely-spaced 1D grid to find the maximum distance from the grid point in label space such

that all points,∆ℓ in between the grid point and the end point∆ℓmax can be well approximated by

linearly interpolating between these two points; the quality of the approximation is judged by the
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χ2 difference between the interpolated spectrum and the directly calculated spectrum at that label

point. We define this χ2 to be

χ2(ℓ∗,∆ℓ,∆ℓmax)

≡
∑
λ

(
finterp(λ | ℓ∗,∆ℓ,∆ℓmax)− fmodel(λ | ℓ∗,∆ℓ)

)
σ2
λ

, (4.2)

where we sum over all the wavelength points, each of which has a typical error of σλ in the actual

data set. We deem a spectrum to be well enough interpolated if χ2 < ϵ, where ϵ is the tolerance

that we set. If we were to set ϵ to be the number of fitted labels, the uncertainties of the estimated

labels due to interpolation errors would be comparable to uncertainties due to observation noise.

Since we typically fitO(10) labels, we choose ϵ ≃ 50 (assuming S/N=100) ‡ in our study. We also

verified that the systematic uncertainties in elemental abundances from interpolation errors (of the

order 0.01 dex, see plots in § 4.4.1) are indeed comparable to the one due to observation noise (see

Appendix 4.7), justifying this choice. Finally, we define the Taylor-radius of any grid point ℓ∗ as the

maximum∆ℓmax for which χ2(ℓ∗,∆ℓ,∆ℓmax) ≤ ϵ, for every grid point∆ℓ where 0 ≤ ∆ℓ ≤

∆ℓmax. We found that Teff has a Taylor-radius of 175 K for Teff = 4,000K and a Taylor-radius

350K for Teff = 5,000K; log g has a∼ constant Taylor-radius of 0.9 dex for log g = 1 − 5; [Fe/H]

(an element that has a lot of absorption lines) has a Taylor-radius of 0.5 dex in the low metallicity

regime [Fe/H]= −1, and the Taylor-radius decreases to 0.3 dex for solar metallicity; [K/H] (a trace

‡We could have chosen ϵ = 10, but this requires more models in our test cases. Since the purpose of this
paper is to compare chat with the rectilinear grid approach, we decided to reduce the computational time by
adopting a slightly higher ϵ. As long as we adopt the same number of models for both cases, the comparison is
fair.
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element) has a Taylor-radius of 2 dex for [K/H]= −1, and 1 dex for solar metallicity.

We have thus far defined the 1D Taylor-radii, which results in a Taylor-sphere encompassing all

points ℓwith
Nℓ∑
n=1

(ℓn − ℓ∗,n
∆ℓmax,n

)2
≤ 1, (4.3)

There is no guarantee that all points within this Taylor-sphere satisfy the linearity conditions

only tested along the coordinate axes. We have tested this issue in several ways. In 2D we verified this

assumption by studying grids of random element pairs. For each element pair, we first found the

1D Taylor-radii set by a fixed χ2 criterion. We found that 2D grid points within an ellipse defined by

the 1D Taylor-radii fulfill the same criterion, and grid points outside the ellipse violate the criterion.

The ellipse-approximation holds very well for all element pairs that are not strongly correlated in

the spectra space. For strongly coupled elements, we performed a few tests with CNO and found

that the χ2 contours appear to be more irregular and do not form a perfect ellipse, even though the

simple ellipse approximation still performs reasonably well. We will leave this issue to be explored in

more detail in future work.

In Figure 4.3, we demonstrate how well the gradient spectra method works by comparing the

gradient spectra reconstructions within a Taylor-sphere and the ab-initio model calculations. We

calculate the Taylor-sphere centered at a fiducial reference point of Teff = 4,750K, log g = 2.5,

vturb = 2.0 km/s and Solar metallicity. We draw random labels within the Taylor-sphere and calcu-

late their ab-initio model spectra. The gradient spectra constructions are done by taking the refer-

ence spectrum at the reference point and linearly adding the gradient spectra multiplied by the step
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Figure 4.3: Demonstra on of the fidelity of synthe c spectrum reconstruc on through gradient spectra. We vary all
15 elements in APOGEE and the three stellar parameters, Teff, log g and vturb. We consider a χ2 tolerance ϵ = 50,
the tolerance we assume in this study, and evaluate the Taylor-radii and their corresponding Taylor-sphere. The
Taylor-radii are evaluated at the fiducial reference point of Teff = 4,750 K, log g = 2.5, vturb = 2.0 km/s and
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which we denote as 0.2× Taylor-sphere and 3× Taylor-sphere, respec vely. We generate 100 mock spectra for la-
bels that are within each of these Taylor-spheres and compare the gradient spectra reconstruc ons to the ab-ini o
calcula ons. The top le panel shows the comparison of a segment averaging all 100 trials. The comparison is excel-
lent, jus fying our choice of χ2 tolerance. The bo om le panel shows the mean absolute differences between the
exact and gradient-interpolated models assuming three different Taylor-spheres. In the right panel we plot the cumu-
la ve histogram of the wavelength-by-wavelength devia ons. The solid lines demonstrates the absolute devia ons
averaged over all 100 trials, and the dashed lines show the worst-case scenarios of the 100 trials. For the fiducial
Taylor-sphere, the wavelength-by-wavelength devia on is well below the typical APOGEE S/N of 100.
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size in each label dimension. We vary all 15 elements in APOGEE and the three main stellar param-

eters, Teff, log g and vturb. We show that for a tolerance of ϵ = 50, the wavelength-by-wavelength

deviation is comfortably below the typical APOGEE S/N of 100. As we will demonstrate in §4.4, we

only need a few of these Taylor-spheres to span the relevant label space, which implies that through

chat, we can reconstruct synthetic spectra with a near-minimal number of synthetic spectra calcula-

tions.

Filling the convex hull of label space

We now discuss how to find the set of model grid points, ℓ∗, so that their surrounding Taylor-

spheres fill the convex hull of the pertinent portion of label space. For a high dimensional space, data

points that use to determine the convex hull (the minimum polygon) might only cover a small frac-

tion of the volume. In order to make sure that we are covering the convex hull sufficiently well with

Taylor-spheres, we start by representing the convex hull by 106 uniform mock data points. As we

will end up with< 1,000 model grid points (see §4.4), 106 mock points will sample the convex hull

sufficiently well for our purposes. We construct the convex hull using convexhull routine in the

scipy.spatial package. To determine whether a point is within the convex hull, we use delaunay

routine and check whether the point is within a simplex of the Delaunay tessellation.

Following Fig. 4.2 we then successively identify model grid points, ℓ∗. We start by picking a

random point from the mock data within the convex hull. We read off their 1D Taylor-radii corre-

sponding to the closest grid points in the finely-spaced 1D grids. Then we ask which of our mock

points fall within the Taylor-sphere determined by these 1D Taylor-radii, and eliminate those. Then
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we draw another random point from the remaining mock points. We take it to be the next model

grid point, consider its surrounding Taylor-sphere, and remove the mock points that lie within that

sphere. We emphasize that the Taylor-radii read off from the 1D grids for each random point are dif-

ference – we assume ℓ∗ that is closest to the random point when evaluating the Taylor-radii. This

“adaptive” approach takes into account that the radii could vary, for example, in a low Teff regime

compared to a high Teff regime. We repeat this procedure until no mock points remain. The result-

ing set of ℓ∗ is the near-minimal set of model grid points, whose Taylor-spheres fill the convex hull.

We refer to this set of grid points as a near-minimal set since there are overlaps between Taylor-

spheres, so it might not be the absolute minimal set. However, the overlaps of hyperspheres are

quite small in a higher dimensional space. For an 8D label space that we will explore in § 4.4.1, through

Monte Carlo integration we found that the total volume of all the ellipsoids within the convex hull

is only∼ 5 times the volume of the convex hull. So at most, we can only reduce the number of grid

points by another factor of five.

This procedure requires no calculation of any model spectra apart from the precalculated spec-

tra of the fine 1D grids in determining the Taylor-radii. After we have the set of ℓ∗, we calculate the

model spectra at each of them, along with theNℓ gradient spectra at each ℓ∗. These are all the mod-

els needed for chat.

There are also a number of practical choices to be made to define the convex hull in the first place.

If the prior information used to determine the convex hull is very noisy or has outliers, the volume

of the convex hull will be larger than the intrinsic volume within which the labels of the sample at

hand reside (e.g., 192). With many dimensions, the volume of the noisy convex hull could be much
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larger than the intrinsic volume, “wasting” many model grid points at the periphery of the volume.

To address this problem, one could run a kernel density estimation to map out the density of the

label space, similar to Ting et al. 192 and cull outliers according to the density map. If, however, a

goal of the spectral fitting is to look for rare outliers in label space, one might consider randomly

scattering the prior data so that they define a larger volume in label space (see Fig. 4.2). A point to

keep in mind is that the particular implementation of chat will depend on the problem of interest.

4.3.4 Creating stellar models

The model atmospheres and spectra for this work are computed with the atlas12 and synthe pro-

grams written and maintained by R. Kurucz 118,119,123. We adopt the latest line lists provided by R.

Kurucz,§ including line lists for TiO and H2O, amongst many other molecules. Model atmospheres

are computed at 80 zones down to a Rosseland optical depth of 103, and each model is automatically

inspected for numerical convergence. We adopt the Asplund et al. 7 solar abundance scale. Convec-

tion is modeled according to the standard mixing length theory with a mixing length of 1.25 and no

overshooting. Spectra are computed with the synthe program and are sampled at a resolution of

R = 300,000 and then convolved to lower resolutions.

4.3.5 Spectral fitting

After calculating allNmod spectra at the model grid points ℓ∗, along with models needed to evaluate

their gradient spectra, we have reduced the spectral fitting of one object to a set ofNmod linear regres-

§http://kurucz.harvard.edu
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sions. In practice it may be more advantageous to go to one model grid point, ℓ∗ and execute a trial

linear regression fit on all spectra of the sample. In the end the best fitting labels for each object will

be the fit (among theNmod) that has the lowest χ2.

Let us now denote the entire (observed) spectrum of the nth (n ∈ [1,Nsample]) object as the vector

fffobs,n of lengthNpix, with the vector of its uncertainties denoted as eeen, whereNpix is the number of

wavelength points in the spectrum. The entire model spectrum at a grid point ℓ∗ can be denoted

as the equally long vector fffmod(ℓ∗). The set ofNℓ∗ gradient spectra associated with fffmod(ℓ∗) can

be denoted as aNpix × Nℓ∗ matrixGGGLLL(ℓ∗). For linear regression, this defines a covariance matrix

Ωn(ℓ∗):

Ωn(ℓ∗) = GGGLLLT(ℓ∗) ·
(
GGGLLLT(ℓ∗)× eee−2

n

)T
. (4.4)

Then the best fitting labels ℓnnn, based on the model grid point ℓ∗ are given by

ℓnnn(ℓ∗ | {data}n)

= Ω−1
n (ℓ∗) ·

(
GGGLLLT(ℓ∗) ·

(
(fffobs,n − fffmod(ℓ∗))× eee−2

n

))
, (4.5)

where datan ≡ [fffobs,n, eeen].

This linear regression fitting process is extremely efficient even though it is performedNmod times

because the regression can be done analytically and consumes little memory even for multiple vari-

ables. Also the main computational cost in spectral fitting lies in generating a model grid instead of
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the fitting process, and for the former, the number of models in chat grows much more benignly

with more dimensions than an exponential growth. Furthermore, linear regressions around differ-

ent ℓ∗ can also be parallelized to speed up the process. Finally, in this regime we have the covariance

matrixΩn analytically. This covariance matrix, reflecting the label space error ellipsoid, is a critical

component in chemical tagging studies (see 192).
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4.4 Results and implications

We are now in a position to explore what chat can deliver in practice. We will cover three related

aspects: in §4.4.1 we explore how well chat (withNmod grid points, and hence a total ofNmod ×

(Nℓ + 1)models) does in determining large numbers of labels from data, compared to a sensibly

chosen, but rectilinear high-dimensional grid that has a total of∼ Nmod × (Nℓ + 1) grid points.

We also explore what systematic errors can occur when fitting a higher dimensional spectra with

a lower dimensional effective label space (§4.4.2). In §4.4.3 we explore how to reduce the effective

dimensionality of label space, exploiting astrophysical correlations among elemental abundances

through a principal component analysis (PCA). Finally, we discuss some limitations of chat in

§4.4.4.

Throughout these tests we use mock spectral data drawn from synthetic spectral models that are

based on up to 18 labels: three stellar parameters Teff, log g, vturb and up to 15 APOGEE elemental

abundances; the remaining elements, which we will call “trace elements”, are assumed to scale with

[Fe/H] at solar abundance ratios. In other words, we assume labels (from the APOGEE DR12 red

clump stars), create atlas12 models with these labels and use these models as our mock data to be

fit. That means that there always exists a set of labels that leaves no systematic differences between

the data and the model. We defer the application of chat to real data to another paper.
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4.4.1 Rectilinear grid fitting vs. chat

In this section we compare how well we recover the input labels from mock spectra using two fitting

approaches, a rectilinear grid approach and chat using the same number of models. For this test

case, we consider an 8D label space: three main stellar parameters – Teff, log g, vturb and five main

elements, which we will call “primary elements.” We chose these elements as they either have a signif-

icant influence on the overall atmospheric structure ([Fe/H], [Mg/H], [Si/H],¶ see Appendix 4.6)

for red clump stars (i.e., Teff = 4,500 − 5,000K), or because they have important molecular features

in the H-band APOGEE spectra ([C/H], [N/H]). We define 10 additional elements that are derived

in APOGEE DR12 to be “secondary elements” and assume solar metallicity for all other “trace ele-

ments.” Our adopted element classification nomenclature is summarized in Table 4.2. We sample

the 8D label space for the mock spectra by simply adopting as input the labels from the APOGEE

red clump sample 33 and vturb = 2.478 − 0.325 log g92. We make the same selection cut as Hayden

et al. 86 , Ting et al. 192 to cull APOGEE values that are not reliably determined. When generating

testing data, we add photon noise corresponding to the median wavelength-dependent S/N of the

APOGEE red clump spectra.

We assume that the rectilinear grid approach spans the full range of label values in the APOGEE

red clump sample, and we take three grid points in each of the eight dimensions, leading to∼ 6,500

model grid points. To interpolate this rectilinear grid we consider both a linear interpolation and

¶Another important element is O, but creating a 9D grid is too computationally expensive for the rec-
tilinear grid approach. However, we checked that replacing Si with O does not alter the conclusions in this
paper.
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a quadratic Bézier interpolation 145. The interpolation codes – ferre‖ 3,4 are adopted from the

APOGEE pipeline and provide a direct comparison to the state-of-the-art rectilinear grid approach.

ferre performs a wavelength-by-wavelength interpolation of the flux and finds the best fitting spec-

trum through χ2-minimization. For chat, we only generate models that are within the convex hull

of the APOGEE red clump sample. As the stellar parameters Teff, log g and vturb reflects the evolu-

tionary state of the star, while elemental abundances reflect the chemical evolution of the Galaxy

when the star formed, they should be uncorrelated to first approximation (but see 139,143). We con-

sider the convex hull of these two groups separately and cross-product their model grid points and

gradient spectra. We checked that if we were to consider the 8D convex hull directly, we would fur-

ther reduce the number of models needed as there are non-trivial correlations between these two

groups. We choose to consider these two groups separately to have a more direct comparison with

the PCA method in §4.4.3. We adjust the size of the Taylor-spheres, by tweaking the ϵ ≃ 50 toler-

ance in the χ2 criterion in Eq. 4.2, such that the convex hull is filled by Taylor-spheres formed from

∼ 6,500 models (including the model grid points and their associated gradient spectra).

We then determine the best fitting 8D label set for all mock spectra with both methods. Fig. 4.4

shows the comparison of the results. Even in this relatively low-dimensional, 8D label space, chat

provides better — higher accuracy and precision — label recovery than the rectilinear grid with

equally many spectral models. The results also imply that, to achieve the same nominal precision,

chat will require far fewer models than the rectilinear grid approach.

Part of the explanation for this gain is simple: using Monte Carlo integration, we find that the

‖http://www.as.utexas.edu/∼hebe/ferre/
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Figure 4.4: Recovery of labels for 1,000 synthe c test models with APOGEE red clump proper es. We consider 8D
test models, assuming solar abundances for the other elements, and fit the test models with 8D synthe c libraries.
The blue lines show the results of a linearly interpolated rec linear grid with∼ 6,500 grid points. The solid black
lines show the results from the same rec linear grid but the grid is now quadra c Bézier interpolated. To enable a
fair comparison with chat, the rec linear grid only spans the range of label values used in this test. The red lines
show the results of the standard approach of chat with the same number of models as in the rec linear grid. Labels
are recovered very well, in all cases more precisely than when using the rec linear grid. But chat can be further
improved by excluding outlying points before defining the convex hull. If we exclude the 20% most outlying points,
as shown in the do ed black lines, we can further reduce the number of models needed by a factor of∼ 35 and
achieve the same precision. In this case, only 180 models are needed in an APOGEE red clump synthe c library.
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volume of the APOGEE red clump 8D convex hull is∼ 100 times smaller than the hypercube

spanned by the rectilinear grid. Therefore, we are sampling the label space∼ 100 times denser in

chat. The rectilinear grid approach would require∼ 650,000 models in order to produce the

same recoveries with linear interpolation. For example, if we were to adopt the standard APOGEE

spacing in a rectilinear grid, we would need at least 58 = 4 × 105 models. This is consistent with

the conventional wisdom that for rectilinear grids it is difficult to go beyond 6D-7D label space.

Quadratic/cubic interpolation slightly reduces the number of models needed to achieve the same

precision, but the computational efficiency is compromised. In this study, we did not consider a

cubic interpolation because a cubic interpolation in the rectilinear grid approach requires at least

four grid points per dimension; it requires a minimum of 48 = 65,000 models, which is again sig-

nificantly more models than chat. In our test case, using a single CPU and the same number of

models, we found that it takes aboutO(10)minutes for chat to find the best fitting labels for 1,000

spectra, but it takes∼ O(1,000)minutes for a quadratic Bézier interpolation, showing the enor-

mous gain of reducing a complicated interpolation-minimization process to a series of simple linear

regressions.

Beyond the label space volume difference, the systematic filling of this (smaller) convex hull with

adaptive tessellation results in additional gains, i.e., we put more models in regions where linear in-

terpolations fail. Although not shown, to evaluate the contributions from each of these two aspects,

we performed tests by only considering convex hull without adaptive tessellation and an adaptive

tessellation in a regular label space without the convex hull. We find that the convex hull plays a

more important role because it improves the models density in the label space globally. The adaptive
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tessellation plays a smaller role, but it is important for Teff because Teff shows the most nonlinear-

ity in model variation. Low Teff regimes need more models than the high Teff regimes because the

synthetic spectra vary more drastically when molecules start to form at low Teff.

Remarkably, chat can be even more efficient. As discussed in §4.3.3, the periphery of any 8D

space comprises most of the volume. And, as illustrated in the right panel at the second last row

of Fig. 4.2, covering the convex hull with Taylor-spheres centered at the periphery points covers

a region larger than the convex hull itself. Through Monte Carlo integration, we found that only

∼ 10% of the total volume of the Taylor-spheres is within the convex hull, the rest of∼ 90%

surrounds the convex hull. The outermost points could have already been covered by the Taylor-

spheres around points in the interior. Therefore, we eliminate the 20%most outlying points using

kernel density estimation before constructing the convex hull around the other 80%. We choose an

80% convex hull because we found that the Taylor-spheres centered at points in this smaller convex

hull already cover the full convex hull.

The black dotted lines in Fig. 4.4 demonstrate chat’s label recovery in this case: we need only 20

model grid points ℓ∗ and their associated gradient spectra, i.e., a total of 180 spectra (20 model grid

points, and 20 × 8 models to determine the gradient spectra), to fulfill the same ϵ − χ2 criterion as

before. The resulting label recovery illustrated in the black dotted lines shows that we can achieve

the same precision as the standard implementation of chat but with 35 times fewer models. The

upshot is that by culling 20% of the outlying points when defining the convex hull, we are able to

reduce the number of the required synthetic spectrum calculations to fit red clump stars in 8D label

space from 6 × 105 in a rectilinear grid approach to only 180 model spectra.

150



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T ef
f 
(1

00
K)

lo
g 

g 
(d

ex
)

v tu
rb
 (k

m
/s
)

[C
/H

]

[N
/H

]

[M
g/

H]

[S
i/H

]

[F
e/

H]

Parameter

10-2

10-1

100

M
e
a
n
 |

Fi
t 

- 
In

p
u
t|

Rectilinear grid (linear)
Rectilinear grid (quadratic)
CHAT

Rectilin
ear Grid

CHAT (100% CH)

CHAT (80% CH)

Spectral Fitting Method

102

103

104

105

106

N
u
m

b
e
r 

o
f 

M
o
d
e
ls

 N
e
e
d
e
d Assuming an 8D

parameter space and
a fixed 2tolerance
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We summarize the comparison between the rectilinear method and chat in Fig. 4.5 for the case

of 8D fitting. Note that, for a rectilinear grid, even if we consider two grid points per dimension, we

will require 28 = 256 models. The gradient fitting approach here surpasses the fundamental limit of

a rectilinear grid because in the limit where the spectra vary linearly with all labels and are decoupled

from one another, the number of models needed in chat grows linearly instead of exponentially.

For on-going large spectroscopic surveys, full spectral fitting is limited to a subset of “main” la-

bels. For example, in APOGEE DR1271,92, a 6D label space of Teff, log g, [Z/H], [α/Z], [C/Z],

[N/Z] was considered. Even a 6D space with five grid points requires 56 ∼ 15,000 models. To

make the computational consumption more affordable, some important fitting labels were not in-

cluded, such as vturb** and v sin i. But stellar rotation could play an important role for low-Teff dwarf

stars. Omitting them is believed to be the main reason that labels for cool dwarfs were not robust in

DR1292. We show that even for an 8D space, using chat reduces the number of models by a factor

of∼ 1,000. The reduction of models opens up the opportunity to expand many more dimensions

and allows v sin i and vturb to be included more easily.

4.4.2 Consequences of fitting a subset of the label space

To fully specify an observed spectrum within its (high-S/N) error bars, one may require the speci-

fication of several dozens of labels, encompassing the stellar parameters and all elements that could

contribute to the spectrum. However, the rectilinear grid fitting approach is limited to subspaces of

**In DR12, APOGEE found a tight log g–vturb relation. Thus, this relation was assumed to reduce the
number of models needed in the synthetic library.
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much lower dimension. In that case, assumptions have to be made for not-fitted labels. To explore

this effect, we create a set of synthetic test spectra that are specified by the 18 labels measured in the

APOGEE red clump sample: 15 elements, along with Teff, log g and vturb. We assume that all remain-

ing trace elements follow [Fe/H] at solar ratios.

To start, we try to match these mock spectra with chat, but fitting only the 8 of the 18 labels,

those shown in §4.4.1. Fig. 4.6 (blue lines) illustrates that the label recovery is unsatisfactory. This

may not be unexpected, as we only vary five elements in the 8D grid, we necessarily mismatch ab-

sorption lines from the other elements, held at Solar ratios. As a consequence, the fit of Teff is com-

promised, which in turn affects the fit of the other labels. One approach to reducing these sys-

tematics, while keeping the number of fitted labels low is to exploit the established astrophysical

covariances among elemental abundances: we can, for e.g., assume that all α-elements trace each

other, while all other elements scale with the global metallicity, [Z/H], an approach followed in the

APOGEE pipeline. If we then generate a 7D grid of model spectra, Teff, log g, vturb, [Z/H], [α/Z],

[C/Z] and [N/Z] using chat, and with the same number of models, and use them to fit the 18D

mock spectra. As shown in red lines in Figure 4.6 the systematic errors in the label recovery are

strongly reduced. This demonstrates that label recoveries can be good with low-dimensional (e.g.,

7D) fitting, if astrophysical label-correlations are properly exploited.

But even in this latter case systematic offsets in the label recovery remain: about 10 K for Teff,

0.1 dex for log g and 0.1 km/s for vturb. Even though the α elements broadly trace each other, this is

not true in detail. This suggests the need for a more systematic way to reduce the dimensionality of

the label space, an issue which we will address in the next section.
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Figure 4.6: Similar to Fig. 4.4, but here we consider 1,000 synthe c test models that vary all 15 elements, Teff,
log g and vturb, whose labels are drawn from 1,000 APOGEE red clump stars. We fit these test models with lower-
dimensional synthe c libraries. In the first case, shown in the blue lines, we consider the∼ 6,500 models 8D chat
library in Fig. 4.4, fixing the other elements to be solar metallicity. In this case, the fit is unsa sfactory, showing that
some assump ons have to be made to approximate high-dimensional spectra with lower-dimensional synthe c li-
braries. In the second case, shown in the red lines, we assume that the α-elements trace each other and the other
elements trace [Fe/H]. We generate the same number of models as the previous case. The fits improve significantly
as we take into account the other elements beside the fi ed labels. However, these assump ons on the other ele-
ments are not true in detail, and hence systema c offsets remain in some of the fits.
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4.4.3 Fitting PCA components of elemental abundances

Principle Component Analysis (PCA) provides a simple and systematic way to characterize the as-

trophysical correlations among elemental abundances. As such, it may be an effective way to set

element ratios that are not directly fitted labels. A detailed exposition of PCA in elemental abun-

dances space is beyond the scope of this paper, but details can be found in Andrews et al. 6 and Ting

et al. 195 .†† The main points of Ting et al. 195 can be summarized as follows. PCA measures the cor-

relation among elements. Each principal component is a unit vector in the elemental abundances

space. The principal components are ordered according to their contributions to the total variances

of the data sample. In practice, only the first few principal components are significant and relevant,

because additional PCA components are likely dominated by observational noise. Ting et al. 195

showed that for 15 − 30 measured elements, not all elements provide independent pieces of infor-

mation. Elements fall into groups that span a much smaller 7 − 9 dimensional subspace. In turn,

measuring the 7 − 9 dimensional principal components should be sufficient to predict the abun-

dances of all 15 − 30 elements.

With this idea in mind, a more effective way to fit high-dimensional spectra with a lower-dimensional

effective subspace is to consider the coefficient of each main principal component as a fitting label in-

stead of the usual [X/H]. In this case, we should be able to fully characterize an observed spectra

with< 13 labels (including the stellar parameters, Teff, log g, vturb and v sin i), but still account for

30 elements. A synthetic library covering 13-dimensional label space is feasible, but only with the

††Note that the APOGEE pipeline uses PCA to compactify the spectral space. In our case, we use PCA to
compactify the label space of elemental abundances.
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Figure 4.7: An effec ve way to reduce systema c offsets is to fit the coefficients of PCA components in elemental
abundances space instead of fi ng [X/H]. The red lines show the same results in Fig. 4.6. We assume that the α-
elements trace each other and the other elements trace [Fe/H]. Since this assump on is not true in detail, fi ng
the global metallicity [Z/H] and the α-enhancement leaves some systema c offsets. If we fit the coefficients of
principal components instead, as shown in the blue lines, we reduce the systema c offsets because we take into
account the correla ons of elements more properly.
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advantages provided by chat (see §4.4.1).

chat easily generalizes to the case of fitting PCA components, which are simply taken as the

labels in lieu of the direct abundances. In other words, the model grid points and Taylor-spheres

are simply determined in the space of stellar parameters and PCA-components. Specifically, We

consider an 8D label space comprising Teff, log g, vturb and the five most important principal compo-

nents. As shown in Figure 4.7, standard deviations of the PCA label recovery (transformed into the

space of abundances) are about the same as that of the element label recovery because the underlying

model density in the label space does not improve by transforming into the PCA space. However,

systematic offsets in the label recovery are dramatically lower when fitting principal components,

because we take into account the element correlations more properly.

4.4.4 Current limitations and future directions

Despite its attractive properties, chat also has limitations. chat fundamentally relies on a sensible

definition of a convex hull in label space. This should be straightforward for the bulk of Milky Way

stars, because we have a basic understanding regarding elemental abundance distributions from

previous surveys (e.g., 13,92). But the construction of a convex hull may be more problematic in other

circumstances, such as in the search for extremely metal-poor stars of the Milky Way, or for surveys

of other galaxies. In these cases the rectilinear approach or applying chat to a large rectangular

label space with a lenient tolerance might be applied as a first pass in order to aid in the definition

of the convex hull in detail. Because of the use of a convex hull in deciding where to create models,

chat may not work well as a tool in searching for interesting outliers. In its present form, chat
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is strictly linear within the Taylor-radius of each label, i.e., it treats the gradient spectrum in each

label as independent. We have tested in a few cases that this linear approximation is indeed good

within the entire Taylor-sphere, but we have not explored this exhaustively. One way to overcome

this limitation is to expand chat beyond the 1st-order Taylor-sphere. A 2nd-order Taylor-sphere

requiresNℓ times more models to define both the gradient matrix and the curvature matrix. The

fitting process will be slower as the fitting is no longer a simple linear regression, but it is reasonable

to assume that a 2nd-order model would cover a much larger label space per Taylor-sphere (see 153).

We are currently exploring this idea and will defer the details to a later paper.
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4.5 Summary and conclusion

Major ongoing and planned research initiatives to unravel the chemodynamical formation history of

our Milky Way are based on determining the properties of vast numbers of individual stars. This is

to be done by taking high-quality spectra of 105 − 106 stars in the Milky Way, and then deriving from

them extensive sets of labels, i.e., stellar parameters and 10 − 30 elemental abundances. Rigorous

spectral modeling would call for all pertinent labels (Nℓ = 10− 15) that characterize one star to be fit

simultaneously to its spectrum. For the large data sets at hand this appears, however, computation-

ally infeasible: using established techniques – based on rectilinear model grids in label space – the

number of required grid points is prohibitive.

The established response to this quandary is to only fit a few of the labels (typically 4 − 6) simul-

taneously, and determine the other labels separately on the basis of this initial fit. In this paper we

have shown that this short cut leads to important systematic errors, given the high data quality, and

we offer a solution: an approach with several new techniques which we call chat.

chat’s defining ideas and capabilities in determining labels, ℓ, from spectra can be summarized as

follows:

1. Within a sufficiently small patch around a model grid point ℓ∗ in label space (a “Taylor-
sphere”), any spectrum defined by its label vector ℓ ≡ ℓ∗ + ∆ℓ, can be described by a linear
expansion around that grid point, as:

fmodel(λ|ℓ∗) +
−→∇ℓfmodel(λ|ℓ∗) ·∆ℓ, (4.6)

using the “gradient spectra”,−→∇ℓfmodel. Within this region of label space, spectral model fit-
ting to data is then reduced to linear regression, which is computationally fast.
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2. Only a tiny fraction of the high-dimensional (Nℓ) label space of stellar parameters and el-
emental abundances is occupied by real stars. Given prior information, e.g., from existing
surveys, an approximate convex hull can be constructed for this subspace, of dramatically
smaller volume than a rectilinear grid in label space encompassing the relevant label subspace.
This much smaller label space volume can then be covered far more densely with synthetic
model spectra (for a given computational expense).

3. We have devised an adaptive tessellation of this convex hull with model grid points, ℓ∗, so
that the set of their surrounding Taylor-spheres completely covers label space within the
convex hull. Taken together, these elements of chat have reduced the daunting task of full
spectral fitting to a) the pre-calculation of the grid points, ℓ∗ and the extent of their “Taylor-
spheres”, b) the calculation of the model spectra and gradient spectra at this modest number
of ℓ∗, and c) linear regression when actually fitting the spectra. The linear regression also im-
plies that the computational expense for producing the needed synthetic spectra only grows
linearly with the dimensionality of label space,Nℓ, not exponentially.

4. We have tested how well (and how fast) chat works in practice by considering the case of an
Nℓ = 8 label fit to mock APOGEE red clump spectra: we show that the number of required
model grid points is reduced fromO(105) for rectilinear model grids, toO(102)models for
the adaptively tessellated grid within the convex hull, improving the computational cost
of generating a synthetic library by three orders of magnitude. We also found that chat
recovers the best fitting labels 100 times faster than a quadratic Bézier interpolation within a
rectilinear grid.

5. The dramatically fewer model points, and only linear growth of computation withNℓ makes
full spectral fitting with far largerNℓ feasible. Specifically, it now seems possible to simul-
taneously fit additional labels such as micro-turbulence and stellar rotation, along with 15
elemental abundances.

6. We showed explicitly that fitting spectra that were drawn from a high-dimensional label space
with a much smallerNℓ, can lead to important systematic errors, unless optimal assumptions
about the non-fitted labels are made. The usual way of fitting [Z/H] and [α/Z], assuming
other elements are traced by these two characteristics, works well, but some systematic resid-
ual offsets remain. If we assume the principal component coefficients to be the fitted labels,
the residual offsets are reduced. Fitting principal component coefficients also provides a natu-
ral way to perform chemical tagging in a compactified elemental abundances space.
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7. With these new techniques, the hope is that we can improve the precision of elemental
abundances in these large surveys. As the full elemental abundances space seems to be well-
described by 7 − 9 element groups, improving the abundance precision by a factor of two
will improve the resolving power of star clusters by a factor of 27−9 = 100 − 1,000 in ele-
mental abundances space. With such an enormous gain in “resolution”, we might be able to
chemically tag Milky Way stars to their birth origins and provide a completely new view of
the evolution of the Milky Way.
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4.6 Appendix: Can we ignore non-primary elements in atmosphere calcu-

lations?

Generating stellar synthetic spectra consists of two parts. The first part is the calculation of the

model atmosphere. Given stellar parameters and elemental abundances of a star, the temperature,

pressure and electron density as a function of the Rosseland opacity of the photosphere can be cal-

culated by solving a system of differential equations (atlas12). After this is done, we then proceed

with a radiative transfer code (synthe) and generate synthetic spectra by integrating over the pho-

tospheric atmosphere. With a restricted range in wavelength, the former step is much more time

consuming (for APOGEE, it isO(10) times slower) than the latter step. Since it is too computa-

tionally expensive to generate a rectilinear grid of 15 − 30 photospheric atmospheres, the standard

approach is to make the assumption that the model atmosphere only depends on a few main labels.

When determining the spectral variation for secondary elements, only the radiative transfer step is

needed.

We put this assumption to the test. We consider fully self-consistent calculations for [X/H]=

0.2 dex, varying one element at a time, and compare to the case where we assume a solar atmosphere,

ignoring the enhanced contribution from this element. We calculate the χ2 of these two spectra as-

suming R = 20,000, S/N= 100 and wavelength points for an APOGEE-like spectrum. In this

calculation, we do not include predicted lines (from the atomic line list), in order to be more conser-

vative in our estimate. The real difference could be larger. In Fig. 4.8, we show that, especially for

low-Teff stars, the contributions from secondary elements, as well as vturb, can be significant. The
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Figure 4.8: Error induced by not crea ng self-consistent model atmospheres when compu ng synthe c spectra.
We plot the χ2 between a synthe c spectrum generated with a self-consistent model atmosphere and a spectrum
that was computed from a fixed, solar metallicity atmosphere. The underlying reference labels are solar metallicity,
log g = 2.5, vturb = 2 km/s, R = 20,000, and S/N = 100 and the wavelength range and bins of the APOGEE
survey. We consider a varia on of [X/H] = 0.2 and∆vturb = 0.5 km/s. Results are shown as a func on of
Teff. We do not include predicted lines in this calcula on. If the χ2 values are larger than the number of fi ed labels
(typicallyO(10)), the varia on is important and dis nguishable in the APOGEE survey. The figure shows that many
elements, as well as vturb, affect the atmosphere substan ally, with the largest effects at low temperatures. We also
calculate the devia on for Eu as a reference. Eu is a trace element in stars and should have no effect on the atmo-
sphere. Nonetheless, the χ2 for Eu is not strictly zero (∼ 10−3), and we checked that this is due to numerical noise
in the atmosphere calcula on (the atmosphere is precise to the level 0.1 K for each Rosseland depth layer). Note that
χ2 depends on the S/N quadra cally. Hence, assuming χ = 10 to be the threshold, we conclude from the Eu result
that for spectra with S/N ≲ 100 ×

√
104 = 104, the numerical noise is negligible for full spectral fi ng.
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differences in these two cases have χ2 values larger than the number of fitted labels (typicallyO(10)).

Hence ignoring secondary elements in the atmospheric calculations can bias the abundance determi-

nations for these elements (also read 199). On the other hand, as shown in the right panel, truly trace

elements, such as Eu, indeed have negligible contributions to the atmospheric structure.
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4.7 Appendix: Theoretical abundance precisions that could be achieved

Elemental abundances are usually derived from carefully chosen wavelength windows that con-

tain absorption lines that are clean, unblended, and have reliable line parameters (usually calibrated

against standards such as Arcturus and the Sun). But more information can be extracted, in princi-

ple, if we also consider the blended lines. Furthermore, as illustrated in Appendix 4.6, most elements

affect the stellar opacity and atmosphere. Therefore, they will indirectly affect the line formation of

the other elements. But how well we can extract this indirect information is more questionable than

the blended lines. Nonetheless, it might be interesting to understand how much information there

is, in principle, in the high-resolution spectra that are currently being collected. We emphasize that

these theoretical precisions are not currently achievable (and may never be!) due to systematic un-

certainties in the models. Systematic uncertainties aside, the information content depends on three

aspects: (a) the number of uncorrelated and independent wavelength points in each spectrum, (b)

the extent to which the features, in our case the depths of the absorption lines, vary as a function

of the fitted labels, (c) the measurement uncertainty of the normalized flux at each wavelength bin.

The measurement uncertainty could be either due to photon noise or imperfect continuum normal-

ization. Here we only consider the ideal case where the uncertainty due to continuum normalization

is negligible.

To measure how much spectral features vary as a function of the fitted labels, we consider gradi-

ent spectra with∆[X/H]= 0.2,∆Teff = 200K,∆ log g = 0.5,∆vturb = 0.5 km/s, assuming a ref-

erence point at solar metallicity, Teff = 4,800K, log g = 2.5 and vturb = 2 km/s. We generate spectra
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Figure 4.9: Theore cal precision for all 15 elements, Teff, log g and vturb that we could achieve for APOGEE spectra
with R = 20,000 as a func on of the spectra S/N. We assume gradient spectra with∆[X/H] = 0.2,∆Teff =
200K,∆ log g = 0.5,∆vturb = 0.5 km/s and with respect to the reference point at solar metallicity, Teff =
4,800K, log g = 2.5, vturb = 2 km/s. We do not include predicted lines in this calcula on, and the limit of
theore cal precision could be be er than what is demonstrated here. If we have robust synthe c models and a way
to fit all stellar proper es simultaneously, we could, in principle, measure abundances to the precision of∆[X/H] ∼
0.01 dex for all 15 elements,∆ log g ∼ 0.01,∆vturb ∼ 0.01 km/s and∆Teff ∼ 10 K with S/N = 100 APOGEE
spectra.
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with R = 20,000 and in the APOGEE wavelength range. We discard wavelength points that have

median uncertainties> 2% in the real APOGEE spectra because these wavelength points are likely

affected by telluric or sky lines. We do not include predicted lines when generating the total gradient

information in this calculation to be more conservative in our estimates. We denote the variation

in spectrum (the gradient spectrum) to be−→∇ℓfmodel(λ)i. For each (i, λ),
−→∇ℓfmodel(λ)i measures

the partial derivative of the absorption line at wavelength λwith respect to label i. The Cramer-Rao

bound46,165 predicts that the covariances matrix of the fitted labels,Kij can be calculated from

K−1
ij =

−→∇ℓfmodel(λ1)i C−1
λ1,λ2

−→∇ℓfmodel(λ2)j, (4.7)

where C is the covariance matrix of the normalized flux. The dot product on the right-hand side

serves to sum over the contribution from all wavelength points. For example, if we assume S/N=

100 and only consider uncorrelated wavelength points, we have C ∼ diag(10−4, . . . , 10−4). The

diagonal entries ofKij are the marginalized uncertainties of each label. We plot these marginalized

uncertainties for each label as a function of S/N in Fig. 4.9. The figure shows that for an APOGEE

spectrum with S/N= 100, we could achieve a precision of∼ 0.01 dex for most elements.

Finally, Fig. 4.10 shows how much information is missed by focusing on narrow spectroscopic

windows. The plot shows the ratio of the information content contained in the narrow spectro-

scopic windows defined and used for abundance measurement by the APOGEE DR12 pipeline to

the full spectral range (masking regions dominated by telluric absorption and sky lines). Fig. 4.10

shows that, for most elements, the spectroscopic windows misses∼ 90% of the information. Much
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blended lines, which can be more difficult to interpret.
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of the extra information is contained in blended lines and features that do require accurate models

to reliably interpret. As illustrated in Eq. 4.7, the measurement precision improves in quadrature

with the gradient information. Therefore, we could in principle improve the precision by a factor of

three if we can minimize the systematic uncertainties in the models and perform full spectral fitting.

This is the task that lies ahead.
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5.0 Abstract

Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abun-

dances. Simultaneous fitting of theseN ∼ 10 − 40 model labels to observed spectra has been

deemed unfeasible, because the number of ab initio spectral model grid calculations scales exponen-

tially withN . We suggest instead the construction of a polynomial spectral model (PSM) of order

O for the model flux at each wavelength. Building this approximation requires a minimum of only(N+O
O
)
calculations: e.g., a quadratic spectral model (O = 2) to fitN = 20 labels simultaneously,

can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat

larger number (∼ 300 − 1000) of randomly chosen models lead to a better performing PSM. Such

a PSM can be a good approximation only over a portion of label space, which will vary case by case.

Yet, taking the APOGEE survey as an example, a single quadratic PSM provides a remarkably good

approximation to the exact ab initio spectral models across much of this survey: for random labels

within that survey the PSM approximates the flux to within 10−3, and recovers the abundances to

within∼ 0.02 dex rms of the exact models. This enormous speed-up enables the simultaneous

many-label fitting of spectra with computationally expensive ab initiomodels for stellar spectra,

such as non-LTE models. A PSM also enables the simultaneous fitting of observational parameters,

such as the spectrum’s continuum or line-spread function.
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5.1 Background

The spectra of stars encode an enormous amount of information, mainly about the stars’ current

physical state and the composition of the chemical elements in their photosphere. But the number

of stellar labels* that fully specify a spectrum is large: a handful of stellar parameters and much of

the periodic table. We know that stellar spectra with S/N ∼ 100 and R ∼ 20,000 − 40,000, cur-

rently emerging for 104−6 objects from various surveys, contain the information to, constrain 10−40

labels, at least for stars with favorable effective temperatures,∼ 4,000K–7,000K (e.g.,71,186,187). The

accuracy and precision of label estimates for vast stellar samples matters greatly for understanding

the formation of the Galaxy, stellar physics, and the origin of the chemical elements (e.g.,68,69,170).

A principled determination of these stellar labels requires to fit the data with physical model spec-

tra, in which the stellar labels constitute 10–40 model parameters. The calculation of such ab ini-

tio spectral models through radiative transfer calculations has a storied tradition (for an overview,

see71,187). Current ab initiomodels vary by the degree of physical simplification they apply: LTE vs.

non-LTE; plane-parallel vs. spherical geometry; 1D, averaged or full 3D; static vs. time dependent;

and by the extent and robustness of the atomic data that underlie them.

The computation of ab initiomodels is expensive, all the more so if the simplifying assumptions

are dropped. This is why “brute force” fitting of spectra with ab initiomodels (of, say, 10–40 la-

bels) is unfeasible for the foreseeable future: most approaches to fitting ab initiomodels to observed

spectra have relied on pre-computing grids of ab initio spectra in theN -dimensional label space,

*We use the term “labels” to mean the union of stellar parameters and photospheric elemental abun-
dances, because in the current context these two classes of stellar attributes are being treated equivalently.
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and then interpolating between them pixel-by-pixel, e.g., quadratically (i.e., 2nd-order) or cubic (i.e.,

3rd-order), as in Allende Prieto et al. 3,4 . But for any number of grid points,M ≈ 3 − 5, in each label-

dimension, the total number of ab initiomodel calculations required grows exponentially with the

dimensionN of label space: Ntot ∝ MN ∝ exp (N · lnM). Established approaches have coped

with this in practice by fitting models spectra first in a 3 − 6 dimensional sub-space ofN , and subse-

quently fitting one (or two) further label at a time, holding the initial labels fixed. This approach has

important limitations with with state of-the-art data: first, Ting et al. 193 (hereafter T16) has shown

that more than just 2 or 3 elemental abundances affect the atmosphere structure, and hence are phys-

ically covariant with the basic stellar parameters; second, physical correlations and data-driven covari-

ances are known to exist among (abundance) labels, but cannot be estimated when fitting one label

at a time; third, to mitigate against unaccounted covariances, established fitting approaches have of-

ten focused on unblended lines, thereby under-exploiting the information content of the data by a

large factor (T16).

T16 proposed a way to overcome this impasse by employing more linear algebra in the fitting,

to save on ab initiomodel calculations; here we take this idea a step further. T16 proposed to tes-

sellate the space of stellar labels into a finite set of regions (dubbed linear Taylor-spheres, or 1OTS).

Within each 1OTS the ab initiomodel flux at each wavelength can be described sufficiently well by

a linearized spectral model (LSM), linearized (in all labels) around the ab initiomodel spectrum at

a fiducial label value (see also 166). T16 showed that such LSM can sufficiently approximate the ex-

act model spectra within a 1OTS. Together with the finite number of Taylor-spheres, required to

cover any given spectral survey (e.g.,∼ 150 for the APOGEE red clumps), this leads to a dramatic
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reduction in the total number of ab initiomodel calculations: simultaneous fitting of 10 − 40 labels

should then be feasible.

Here we point out a rather obvious extension of this idea, which yields even greater computa-

tional savings: the construction of approximate model spectra, where the predicted flux at each pixel

by a polynomial in all labels away from a fiducial model spectrum. This idea had been put forth by

Prugniel et al. 162 for empirical spectra, who did, however, not pursue its potential of fitting many

labels simultaneously. We denote such approximate polynomials spectral models as PSM, to distin-

guish them from the ab initiomodels themselves. It is important not to think of these PSM as a

Oth-order interpolation between a pre-calculated grid of ab initiomodels (as e.g., Prugniel et al. 162

did for a quadratic PSM in three labels), as this would still requireMN
grid ∝ exp (N · lnMgrid)

ab initiomodel calculations. Instead, one should think of determining the (near)-smallest num-

ber of ab initiomodel spectra (specified byN labels) one needs to calculate in order to construct a

Oth-order approximation to the ab initiomodel spectra. The simplification and speed-up of such

spectral fitting compared to T16 arise from the fact that a single PSM can approximate the ab initio

model spectra over a much larger volume in label space. While this shares the idea of a polynomial

flux approximation with The Cannon 153, it is not data-driven model building.

In the subsequent Sections we first derive that the minimal number of ab initiomodels needed

to construct a PSM of orderO and then illustrate heuristically how well, and over what volumes in

label space, these PSMs approximate the ab initiomodels.
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5.2 A polynomial model approximation for spectra of stars

Following T16, we suppose that an ab initiomodeling “machinery” can predict the normalized flux

of a synthetic spectrum, fa.i.(λ|ℓ), given a set of stellar labels, ℓ. We assume that the ab initiomodel

spectra change from point to point in label-space, but do so smoothly or differentiably at every

wavelength. Then the ab initiomodel spectrum at any ℓ sufficiently close to an model grid point

ℓ∗ (within a 1st-order Taylor-sphere or 1OTS, in the nomenclature of T16) can therefore be described

with high accuracy by a linear spectral model (LSM, see T16):

flin(λ|ℓ∗ +∆ℓ) ≃ fa.i.(λ|ℓ∗) +∆ℓT · −→g (λ|ℓ∗), (5.1)

where−→g (λ|ℓ∗) ≡
−→∇ℓfa.i.(λ|ℓ∗).

In principle, specifying a LSM merely requires 1 + N model calculations, but T16 showed a a

factor of a few more is needed to explore the actual extent of the 1OTS. This LSM approximation,

flin, can obviously be generalized to a polynomial spectra model (PSM):

fPSM(λ|ℓ∗ +∆ℓ) ≃ fa.i.(λ|ℓ∗) +∆ℓT · −→g (λ|ℓ∗)

+ ∆ℓT ·H (λ|ℓ∗) ·∆ℓ + ... , (5.2)

where we will focus on 2nd-order, both for astrophysical reasons (it may work well enough) and to

avoid cumbersome notation. Such a PSM holds for every one of theKwavelengths λ. One may

think of it as a model withK 0th-order terms, fPSM(λk|ℓ∗), thenK × N 1st-order terms, and finally
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K×N (N + 1)/2 2nd-order terms. The numberN (N + 1)/2 arises because of the symmetry ofH.

In total that makes for

K×Ntot ≡ K× (1 +N + N · (N + 1)/2) (5.3)

unknown terms. For more general PSM of orderO, one hasK×Ntot = K×
(N+O

O
)
.

If we compute ab initiomodels fa.i.(λ|ℓ∗+∆ℓ) at
(N+O

O
)
different points in label space,∆ℓ, we

have created exactlyK×Ntot left-hand-side terms to solve exactly for the terms that specify the PSM.

Note that strictly speaking−→g (λ|ℓ∗) andH (λ|ℓ∗) are not exactly the “gradient” and the “Hessian”,

but merely the 1st and 2nd-order coefficients that solve the equation.

Compared to the 1OTS, we have to calculate 1 + N/2 times more ab initiomodels for any one

quadratic PSM. But if the region in label space around ℓ∗ over with this quadratic PSM works is

sufficiently larger, an important speed-up over the (set of) LSM should result. Calculating somewhat

more ab initiomodels than this minimum, and solving Eq.5.2 in a least squares sense, makes for a

much better conditioned solution for a PSM, as we show below.
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5.3 Verification of polynomial spectral model accuracy

Strictly verifying the validity of the PSM approximation, like any approximation to a high-dimensional

function, would be of enormous computational expense. Here, too, escaping the curse of dimen-

sionality comes at a price: relying on the physically plausible assumption that spectral flux changes

can be approximated by polynomials for modest label changes; and settling for heuristic and approx-

imate ways to explore the extent in label space over which a single PSM is useful.

As in T16, we can set out for a pragmatic test of the PSM approximation, using Kurucz model

spectra that resemble in resolution and wavelength coverage of the APOGEE spectra; the arguments

should hold qualitatively for other surveys, but need to be tested case-by-case. In total, the DR12

data release of the APOGEE 2,92 provides 17 labels for each star (Teff, log g and 15 elemental abun-

dances) while fixing vmacro = 6 km/s and adopting a log g− vturb relation for vturb. A quadratic PSM

for 19 labels requires a minimumNtot = 210 ab initiomodel calculations. We chose the reference

label, ℓ∗, to be the APOGEE DR12 sample median in each of the 19 labels, providing fa.i.(λ|ℓ∗) in

Eq.5.2. The vast majority of targets in APOGEE are disk stars with all [X/H]> −1, and we restrict

our PSM verification to this regime. We then drew 209∆ℓ at random from the APOGEE DR12 cat-

alog. For the labels vturb and vmacro we adopted the same log g − vturb relation from APOGEE with

a spread of 0.2 km/s, and a distribution in vmacro uniform across 3 km/s – 8 km/s. We convolved

spectra to the APOGEE resolution assuming the combined LSF from APOGEE and using codes

from the apogee Python package 29, and continuum normalized spectra the same way as The Can-

non 153. This provided the remaining 209 left-hand sides of Eq.5.2 to solve exactly for the−→g (λ|ℓ∗)
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andH (λ|ℓ∗), fully specifies fPSM(λ|ℓ∗ +∆ℓ) from Eq 5.2.

As expected by construction of the PSM, fPSM(λ|ℓ∗ +∆ℓ)matches the ab initiomodel at all the

210∆ℓ exactly. This minimally constructed PSM also provides good approximations to fa.i.(λ|ℓ∗ +

∆ℓ) for other∆ℓ. Empirical experimentation showed that slightly over constraining Eq 5.2 worked

better: we calculated fa.i.(λ|ℓ∗ +∆ℓ) for 250 and 1,000∆ℓ drawn from APOGEE, and solved for

the right hand side of Eq.5.2 in a least squares sense to determine the PSM coefficients.

There are two ways in which one can quantify how well the PSM, fPSM(λ|ℓ∗ + ∆ℓ), approxi-

mates fa.i.(λ|ℓ∗ + ∆ℓ) for any∆ℓ drawn from APOGEE: how well do the fluxes match, e.g., in a

mean absolute deviation? And, at what accuracy level does the PSM approximation affect the label

recovery?

Fig.5.1 illustrates how well an ab initiomodel spectrum of random star in APOGEE can be ap-

proximated by the PSM in a mean absolute deviation sense. On average the PSM-predicted flux at

any wavelength for a random star within APOGEE is within 10−3 or 10−3.5 of that for its ab initio

model spectrum, depending on whether we used 250 or 1,000 ab initiomodel calculations to con-

struct the PSM. Fig 5.2 shows how much (or, how little) the PSM approximation, calculated here on

the basis of 250 or 1,000 ab initiomodels, affects the label recovery across an APOGEE-like survey.

The labels were recovered by a least squares fit of the PSM to noiseless ab initiomodels, fitting all 19

labels simultaneously. These were then compared to the actual labels of the respective ab initiomod-

els. With a single PSM, most labels are recovered as accurate as claimed precisions of current spectral

surveys. More quantitatively the quality of the PSM label recovery is well-tracked by the informa-

tion content that the spectra contain about any one label: following T16, this is quantified by the
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Figure 5.1: Quality of the (quadra c) PSM approxima on: a single PSM was constructed using 250 or 1,000 ab initio
model spectra (cf. the absolute minimum number is 231), calculated at label points (“objects”) drawn randomly from
those in the APOGEE survey2,92. The panels illustrate different PSM – ab initio model comparisons, for 10,000 other
objects drawn from the labels of the APOGEE survey. The top le panel shows for a limited wavelength sec on the
average of the exact ab initio model spectra and of the PSM, which appear indis nguishable. The bo om le panel
shows the ensemble average (absolute) difference between the ab initio model and the PSM flux (the approxima on
error), as a func on of wavelength. For each one of the 10,000 objects there is a pixel-by-pixel distribu on of these
approxima on errors, which is shown in the top right panel for the pixel-by-pixel average approxima on error. The
bo om right panel finally shows the distribu on across all objects of their (pixel-by-pixel) median approxima on error.
Note that there are rare cases (objects of very high [Fe/H], where the approxima on is only good to a median of 10−3.
Taken together, however, this shows that a single PSM approximates the exact ab initio model spectra typically to
within 10−3 for objects with a label distribu on resembling that of the en re APOGEE survey (which merely serves as
an illustra on here), over the 10,000 labels of the median. Construc ng the PSM from 1,000 instead of 250 random
label points leads to a be er PSM approxima on.
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Figure 5.2: Quality of the label recovery using the same PSM approxima on as in Fig.5.1, based on 250 (open circles)
and 1,000 (full circles) ab initio model calcula ons, respec vely. Shown is the rms difference between the labels of
the PSM approxima on that best matches the exact ab initio model spectrum in a χ2-sense, and the actual labels
of the exact spectrum: PSM- induced errors in the label recovery by the PSM approxima on are typically 0.02 dex
(when considering the label range of the APOGEE survey). The dashed and solid lines show the theore cally achiev-
able label precision at S/N= 100 (the Cramer-Rao bound; see T16), when using the APOGEE wavelength windows,
or the full spectrum. A single PSM approxima on can be used for fi ng all labels simultaneously across much of the
APOGEE survey, without inducing serious systema c errors. The red line indicates typical APOGEE DR12 precisions.
The quality of the label recovery remains (to within∼ 10% of each label’s accuracy), even if a number of spectral
con nuum and line-spread parameters are also fit simultaneously.
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Cramer-Rao bound (for S/N∼ 100) using either only the APOGEE wavelength windows for certain

elements or the whole spectrum.

The PSM appears heuristically as a better approximation when calculated on the basis of more

ab initiomodel calculations, presumably for two reasons: the system of linear equations in Eq.5.2

becomes better conditioned; and a better sampling of label-space better mitigates any break-down of

the polynomial approximation. Both factors must play a role: when we restrict the label range over

which we first construct and then test the PSM, the PSM label recovery is even closer to the exact

solution. Yet, the PSM constructed on the basis of 1,000 (compared to 250) ab initiomodel calcula-

tions is still performing better. How many models to calculate for the PSM construction, and over

which portion of label space to apply it will therefore depend in practice on the computational ex-

pense of the ab initiomodels and the desired label accuracy. Nonetheless, Fig.5.1 and Fig.5.2 demon-

strate that with calculating only 250 (or 1,000) ab initiomodels one can construct a single (quadratic)

PSM that performs remarkably well in approximating results from exact model spectra at random

19-dimensional label location across much of APOGEE survey.
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5.4 Summary and conclusion

We have shown the advantages for spectral model fitting of generalizing the local linear expansion

of ab initiomodel spectra laid out in T16 to higher order, constructing polynomial spectral models

(PSM) that approximate the variations of the predicted spectral flux at each wavelength as a poly-

nomial function of the labels. This reduces the calculation of the model spectra needed in simulta-

neous fitting of many stellar labels to observed spectra to linear algebra. Compared to established

approaches that first calculate grids and then interpolate, the dramatic gain in constructing a PSM

comes from the much more benign scaling of the computational effort with increasing label dimen-

sion: ∝
(N+O

O
)
, or∝ N 2 for a quadratic model withO = 2, as opposed to∝ exp (N · lnM).

The way these PSM are constructed are mathematically very much analogous to data-driven The

Cannon 153, where a quadratic spectral model is derived form observed spectra. The arguments here

provide a systematic guidance for the size of the required training set in The Cannon: we should ex-

pect the training set size to scale as (a multiple)
(N+2

2
)
, or∝ N 2; this makes it plausible that The

Cannon could constrain 19 labels from a training set of 10,00040.

The heuristic verification of the PSM approximation, along with the framework laid out in T16,

means that there should be no longer serious technical obstacles to determining stellar labels in large

surveys to what amounts to fitting all labels with ab initiomodel spectra simultaneously. The ac-

commodation of label correlation facilitates the extraction of abundance information from blended

spectral features. We find from the gradient spectra, that 80% of the spectrum’s information on a

label is spread over typically 30% of all pixels, and is not just in narrow spectral windows (T16). For
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any given data set this should allow higher precision and accuracy. PSM also allows to treat parame-

ters of the experimental set-up, such as the continuum fit or the spectral line-spread function (LSF)

quasi as stellar labels, and fit them simultaneously.

Of course, constructing PSMs is not a panacea: while a single PSM appears to suffice for the

much of APOGEE survey, this is presumably because APOGEE has targeted stars in a rather re-

stricted portion of label space: giant stars in a narrow temperature range. Yet, even there, construct-

ing a separate PSM for the metal-poor regime may be advisable, as small model flux differences cause

larger label recovery errors. Second, it is probably worth exploring the PSM approach to higher or-

der in at least some of the labels. Perhaps most importantly, any fitting based on ab initio spectral

models can only work as well as the physics behind them. Insufficient atomic data or the restrictions

of the LTE approximation remain untouched by the ideas laid out here. Nonetheless, we feel that

T16 and this paper lay out a path that may help in doing justice to the enormous information con-

tent of present and future stellar spectroscopy surveys.
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6.0 Abstract

Understanding the evolution of the Milky Way requires precise abundances of many elements for

many stars. A common perception is that deriving more than a few elemental abundances ([Fe/H],

[α/Fe], perhaps [C/H], [N/H]) requires medium-to-high spectral resolution, R ≳ 10,000, mostly

to overcome the effects of line blending. In recent work 172,193 we have shown how one can efficiently

model the full stellar spectrum, fitting an arbitrarily large number of stellar labels simultaneously. In

this paper we quantify to what precision the abundances of many different elements can be recov-

ered as a function of spectroscopic resolution and wavelength range. In the limit of perfect spectral

models we show that the precision of elemental abundances is nearly independent of resolution for

a fixed exposure time and number of detector pixels; low-resolution spectra simply afford much

higher S/N per pixel and generally larger wavelength range in a single setting. We also show that es-

timates of most stellar labels are not strongly correlated with one another once R ≳ 1,000. Modest

errors in the line spread function do not affect these conclusions. These results, to be confirmed

with an analysis of observed low-resolution data, open up new possibilities for the design of large

spectroscopic stellar surveys and for the re-analysis of archival low-resolution datasets.
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6.1 Background

Massively multiplexed stellar spectroscopic surveys are a central part of the current astronomy land-

scape, aimed at understanding stellar physics, the genesis of elements in the cosmos and the chem-

ical/dynamical evolution of the Milky Way. This field is currently undergoing a revolution in the

quality and quantity of spectra (e.g., see review from 170): current surveys aim to collect high quality

spectra for millions of stars. But these extensive datasets bring new analysis and modeling challenges.

Novel approaches are emerging (e.g.,40,153,172,193) for turning these massive datasets into precise stellar

labels, encompassing stellar parameters and elemental abundances of stars.

Spectral resolution, R, is a key parameter characterizing spectroscopic surveys, and the goal of

this paper is to determine the resolution required to measure stellar labels to a desired precision. Tra-

ditionally, stellar spectroscopy has parsed itself into three resolution regimes: low-resolution with

R ≲ 10,000, medium-resolution with 10,000≲ R ≲ 50,000, and high-resolution with R ≳50,000.

Low-resolution R ≃ 2,000–10,000 spectroscopic surveys, such as SEGUE 211, RAVE 188, Gaia Radial

Velocity Spectrometer (RVS) 167, and LAMOST 134, have aimed at deriving fundamental stellar pa-

rameters such as Teff, log g and radial velocity. However, because essentially all stellar spectral lines

are blended at low-resolution, only measurements of [Fe/H] and a few elements such as [α/Fe],

[C/H], [N/H] have been attempted systematically (e.g.,67,106,125,126,210). But even with a limited

number of stellar labels, these surveys are crucial because they can amass the statistical samples nec-

essary to provide a global view of the Galaxy. For example, metallicity distribution functions can

be used to infer star formation histories (e.g., 39,86); metallicity gradients provide a window into
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the global dynamical history of stars (e.g.,78,102,178) and the inside-out formation of the Milky Way

(e.g., 148,179), and stellar age-metallicity-kinematic dispersion relations identify the extent to which

stars become kinematically dispersed over time due to dynamical heating (e.g., 8,79,140).

Medium-resolution spectroscopic surveys such as the on-going APOGEE 136, GALAH 53 and Gaia-

ESO 187 surveys and the forthcoming 4MOST survey 82 aim to collect stellar spectra with R ≃ 24,000.

These surveys are designed to overcome the perceived shortcomings of their low-resolution counter-

parts, and aim to measure detailed elemental abundances of 10−40 elements. Precise abundances for

many elements are a key to understanding the chemical evolution of the Milky Way, as well as stellar

nucleosynthesis. For example, core-collapse supernovae from massive stars produce relative over-

abundances of α-capture elements (e.g., 128,207), whereas type Ia supernovae produce overabundances

of iron-peak elements (e.g.,93 , and also review from Nomoto et al. 155). Mass loss from AGB stars

adds additional complexity to the chemical evolution of the Milky Way (e.g., 100,203). Ting et al. 195

used principal component analysis and demonstrated there are at least seven pathways for galaxies

to collect their metals. One goal of deriving multi-elemental abundances for many stars is to unravel

the contributions from these different channels at various evolutionary stages of the Milky Way.

High-resolution spectra, with R ≳ 50,000, are the gold standard for measuring precise and ac-

curate stellar parameters and detailed abundances. At this resolution many of the strong stellar ab-

sorption lines are unblended. However, such spectra make high demands on instrumentation and

exposure time. For this reason high-resolution surveys (e.g., 13,36,64,89,95,94) contain far fewer stars than

medium and low-resolution surveys.

An exciting application of precise abundance measurements for many elements is the concept of
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chemical tagging69: if stars born from the same molecular cloud share the same or very similar ele-

mental abundances (as suggested by recent observational works29,131), then elemental abundances

can serve as a birth-tag for each star. The goal of “strong” chemical tagging is to look for stellar sib-

lings by searching for similarities in chemical space69. “Strong” chemical tagging has proven to be

challenging and is yet to be realized in practice, in part because it requires a vast sample size and very

precise elemental abundances 130,191. But a weaker form of chemical tagging has been demonstrated to

be viable (e.g.,91,139,163). “Weak” chemical tagging uses precise measurement of elemental abundances

to separate various groups of stars. For example, dwarf galaxies in the Milky Way are separable both

from each other and from the Milky Way stellar halo in [α/Fe]-[Fe/H] space (e.g., 202); globular clus-

ter stars have unique abundance patterns that allow their identification in the Milky Way bulge and

stellar halo (e.g., 138,177); and the thick disk, thin disk and halo stars can be well separated with their

α-enhancement measurements (e.g., 85,86).

With strong scientific motivation for precisely measured elemental abundances of many (≳ 20)

elements in many (N > 106) stars, it is worth revisiting the optimal survey configuration to achieve

these goals. In this paper, we will demonstrate that – at a given exposure time or survey speed, and

for a fixed number of detector pixels, low-resolution spectra can constrain comparably many ele-

ments and at the same precision as medium-resolution spectra. Moreover, the estimates of elemen-

tal abundances show little correlation, once R ≳ 1,000, even though the spectral lines are severely

blended at low-resolution. These conclusions apply in the limit of very high quality spectral mod-

els, although the influence of bad pixels is smaller than often assumed. These results suggest new

strategies for designing future generations of spectroscopic surveys.
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This paper is structured as follows – in Section 6.2, we provide an overview of basic concepts and

intuition related to spectra as a function of resolution, and describe how to model spectra in high

dimensional space. We explore the information content of low-resolution spectra in Section 6.3, and

in Section 6.4 we perform spectral fitting on synthetic spectral data with characteristics similar to the

APOGEE survey. In Section 6.5, we discuss some implications of these results and highlight several

caveats. We conclude in Section 6.6.
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6.2 Basic ideas

In this section we present the basic arguments for why there need not be significant loss of abun-

dance information when choosing a spectroscopic survey with R ∼ 1,000, instead of R ∼ 100,000.

The arguments presented in this section turn out to be fairly insensitive to the detailed wavelength

range chosen for any spectroscopic survey. A key assumption throughout this work is the assump-

tion of sufficiently accurate spectral models. All commonly used ab initio stellar spectral models

(e.g., 80,84,120,121,122) have significant deficiencies, e.g., arising from incomplete and/or inaccurate

atomic and molecular line parameters and the assumptions of 1D LTE (see also 187). Therefore some

of the results we present speak at present to the information content, in principle, of low-resolution

spectra, but may require data-driven models40,153 and/or improved ab initio spectral models in order

to apply these results to real data. Moreover, in future work we will directly test many of our con-

clusions by fitting models to observations of stars with spectra obtained with a variety of spectral

resolutions and wavelength ranges.

6.2.1 The advantage of high-resolution spectra

Photospheric elemental abundances are encoded in the strengths of atomic and molecular absorp-

tion lines. The most common classical methods of measuring elemental abundances rely on the mea-

surement of the equivalent width of absorption lines with well-known atomic parameters. Equiv-

alent width measurements can then be placed on a curve-of-growth, given a stellar model, in order

to derive the abundance of the species giving rise to the observed feature. One must also know the
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effective temperature and surface gravity, as these parameters have large and complicated effects on

the strengths of lines. Frequently the effective temperature is determined by independent (and not

necessarily self-consistent) means, e.g., by color-temperature relations (e.g., 39).

Photospheric lines are broadened by various processes, including pressure broadening, rotation,

and macro-/micro-turbulence. These sources of line broadening, combined, are typically of the

order vbroad ≃ 1 − 10 km/s, which translates to an intrinsic spectral resolution of star of R =

λ/∆λ = c/vbroad ≃ 104 − 105. In order to resolve spectral lines one would therefore want to obtain

spectra at R ≳ 104. At lower resolution the lines blend together, at least in cool and metal rich stars

(the most common stars in most large stellar spectroscopy surveys). It is then no longer possible to

simply measure equivalent widths. The most straightforward way to make progress in such cases,

while preserving the full information content of the spectra, is to self-consistently fit entire spectral

regions, which is the approach taken here.

Another advantage of operating at high-resolution is that one can isolate and focus on the spec-

tral lines whose atomic parameters are well known from laboratory work, and discard spectral re-

gions that are not well-modeled, as a way to mitigate systematic uncertainties in the models. This is

a clear advantage of working at high-resolution (but see also47), although the extent to which this

issue can be mitigated or addressed at low-resolution has not been thoroughly addressed.

Finally, there are very subtle effects in the spectra of stars that would be entirely invisible at low-

resolution, such as isotope ratios. For example the measurement of the 24Mg/25Mg isotopic ratio,

which induces a shift of∼ 0.01 nm in the MgH spectral lines, or the 6Li/7Li isotopic ratio 129, which

requires 3D NLTE models to properly model the line shapes and derive reliable isotopic ratios.
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6.2.2 Quantifying information content with gradient spectra

In order to understand why low-resolution spectroscopy could possibly perform comparably well,

we need a metric for the theoretically achievable uncertainties for each stellar label. A compact but

mathematically rigorous way to do this is the Cramer-Rao bound46,165, which we introduced in this

particular context in Ting et al. 193 . How well we can estimate a stellar label depends on two things,

(a) how much a spectrum varies as we vary the stellar label, i.e., the response function of a spectrum,

and (b) the flux uncertainties at each wavelength pixel and their covariances. Let C be the covariance

matrix of the normalized flux. The Cramer-Rao bound predicts that the covariance matrix of the

stellar labelsKij can be calculated via

K−1
ij =

−→∇ℓfmodel(λ1)i C−1
λ1,λ2

−→∇ℓfmodel(λ2)j. (6.1)

For each (i, λ), the “gradient spectrum”−→∇ℓfmodel(λ)i measures the variation of the spectral flux at

wavelength pixel λwith label i. Eq. 6.1 then essentially takes the quadrature sum of the variations

across different wavelength pixels, weighted by the uncertainties of the observed flux. For example, if

the spectral response to label changes is steep, we have large values for−→∇ℓfmodel(λ)i and hence small

values forKij – more precise measurements. Similarly, if the observed spectra have a higher S/N, the

values for Cwill be smaller which will also result in smaller values forKij. The sum extends over the

available pixels in the spectrum. Throughout this paper we assume that the wavelength sampling

is always λ/3R (we adopt a factor of 3, following the sampling of the APOGEE survey spectra).*

*Note that for most high-resolution echelle spectrographs the wavelength sampling and spectral resolu-
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We simplify the calculation in Eq. 6.1 by assuming that there are no correlations between adjacent

wavelength points, i.e., C−1 is a diagonal matrix.

The covariance matrixKij of the stellar labels and the gradient spectra are the quantities on which

we base the majority of our results in this study. Not only it is a mathematically robust way to rep-

resent how much spectral information there is in the spectra, it also predicts which elements can be

detected above a given significance threshold and the covariance between different stellar label esti-

mates. Clearly, the calculation ofKij depends on the chosen resolution and wavelength range. As we

vary the resolution, we will be summing up from different wavelength pixels, and the gradient spec-

tra will also change with resolution. In short, in order to evaluate how low-resolution spectroscopy

performs compared to medium-resolution spectroscopy, we will study howKij varies as a function

of resolution, spectral type, and wavelength range.

6.2.3 Many stellar labels from low-resolution spectra

We will now examine, at first qualitatively, how the uncertainties in stellar label estimates vary as a

function of resolution in order to gain some basic intuition. It is qualitatively clear that at the same

wavelength range and the same S/N per resolution element, a high-resolution spectrum must con-

tain much more information than a low-resolution spectrum. But for spectroscopic surveys there

are two important boundary conditions that need to be taken into account for a sensible compari-

son of spectra taken at different resolutions: the first one is the exposure time per object, which sets

the survey speed; the second is the number of available detector pixels onto which each spectrum

tion are not necessarily directly connected in this way.
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can be mapped. As detector “real estate” is an important boundary condition in highly multiplex-

ing spectroscopic surveys, higher resolution generally forces the choice of a proportionally smaller

wavelength range (assuming a fixed number of pixels per resolution element). As a consequence, the

spectra at lower resolution will have higher S/N per resolution element and larger wavelength range

(with a greater chance to enclose key diagnostic lines of different elements). Both effects work in fa-

vor of the low-resolution spectra. We can now evaluate analytically howKij changes as we lower the

resolution:

1. The rms depths of narrow spectral lines decrease inversely proportional to the width of the
line spread function (LSF) kernel. As a result, the rms values of the gradient spectra scale as
R. Seen another way, the equivalent width (the total integral) of spectral lines is constant at
different resolutions, but the size of a resolution element is proportional to 1/R. Therefore,
the rms depth per wavelength pixel sampled at each resolution element must scale as R so that
the equivalent width (the sum of∆ resolution element width× gradient) is constant.

2. On the other hand, for fixed exposure time and object flux, the S/N per pixel will improve by
1/
√
R due to Poisson statistics.

3. Furthermore, for a given number of detector pixels, the wavelength range scales as 1/R. As-
suming the spectral lines are evenly distributed, we will collect 1/R times more spectral lines
at low-resolution. As information adds in quadrature, having R times more lines will im-
prove the information content by a factor of

√
R, thus the precision improves proportional

to 1/
√
R.

These simple arguments show that to first order low-resolution and medium-resolution spectra

should achieve the same uncertainty for stellar labels, given the sensible boundary condition of equal

survey speed. In fact, provided that we have robust models and the ability to fit all stellar labels si-

multaneously, the uncertainty should be entirely independent of resolution, at least so long as the

assumptions above hold. We will show with simulations in Section 6.3 that this insensitivity to reso-
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lution holds over a perhaps surprisingly large range in R. However in practice, the label uncertainty

is not entirely independent of resolution, especially at the highest and lowest resolutions:

• For elements that have only few spectral lines, expanding the wavelength range does not nec-
essarily generate more information. The newly included wavelength range might be devoid
of spectral lines for some elements. So, for low-resolution spectra, we might lose informa-
tion by a factor of

√
R. However, including a wider wavelength range also implies that low-

resolution spectra can detect more elements that might have no detectable lines in medium-
resolution spectra of necessarily narrower wavelength range.

• Once the LSF at very high-resolution becomes narrower than the intrinsic broadening of
most lines, further increasing the resolution does not improve the gradient spectra. There-
fore, for a fixed exposure time the information content of an observed spectrum will decrease
at higher resolution. However, such high-resolution will in some cases be critically important
for dealing with systematic issues, e.g., identifying and removing telluric features, which are
intrinsically narrower than most stellar lines.

• At very low-resolution (e.g., R ∼ 100 as for Gaia’s BP/RP spectra), estimates for stellar labels
become more correlated. Mathematically, the covariance matrixK−1

ij becomes less diagonal.
In other words, once the estimates of different stellar labels become highly degenerate, their
individual estimates become less precise.

• When modeling low-resolution spectra one is forced to fit the full spectrum and one must
therefore have knowledge of the line spread function (LSF) across a wide wavelength range.
This can introduce additional challenges that are not as severe when modeling equivalent
widths of individual features from high-resolution data.

6.2.4 Fitting multiple stellar labels simultaneously

We have argued that low-resolution spectra contain the same amount of information for a fixed

number of pixels and at fixed exposure time, but we can extract this information only if we are able
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to fit all stellar labels simultaneously. Generating state-of-the-art model spectra over a wide wave-

length range takes several CPU hours for a given set of stellar labels. In a parameter space of 20 − 60

labels, it is computationally prohibitive to search for the best-fitting stellar labels through minimiza-

tion – each step in the minimization process will take several CPU hours. The standard approach

to this problem is to create a synthetic library on an approximately rectilinear grid in the stellar label

space, creating models at each grid point and then interpolating between them (e.g.,71). However, in

this method, the number of models needed grows exponentially with the number of labels, imply-

ing insurmountable computational cost for fitting 20 − 60 labels. We tackled this problem in Rix

et al. 172 , Ting et al. 193 and devised a new algorithm – polynomial spectral models (PSM) – that can

fit 20 − 60 labels simultaneously. In essence, PSM constructs a model for the predicted flux at each

wavelength point in the label space that is a polynomial function of all labels. But it does so in a way

that requires onlyN2 ∼ 1,000 ab initiomodels, forN = 20 − 60 labels. The success of such model-

ing depends of course on whether the stellar spectra to be fit are well approximated by a PSM. In Rix

et al. 172 , we found that a single second order expansion captures almost all the label space spanned

by the APOGEE sample of giants with Teff > 4,000K. Rix et al. 172 found that the median devia-

tion of the normalized flux between ab initio calculated APOGEE models with 18 parameters and

the PSM models is only 0.001. Such an “interpolation error” is negligible as it is an order of magni-

tude smaller than the typical S/N of an observed spectrum (S/N≃ 100). Furthermore, finding the

best-fitting models with PSM is also extremely efficient because it regularizes the likelihood space in

a χ2-minimization. For instance, we found that PSM fitting 100,000 APOGEE spectra with 20 pa-

rameters requires less than 100 CPU hours. PSM therefore appears to provide a practical solution to
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the requirement in low-resolution spectra of fitting all labels simultaneously. We will demonstrate

how PSM can be used to fit low-resolution spectra in Section 6.4.
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6.3 The information content of low-resolution spectra

In Section 6.2.3 we discussed analytically, and qualitatively, why stellar parameter estimation should

not depend strongly on spectral resolution under certain conditions. In this section we explore this

issue in more detail by using synthetic model spectra and evaluating how uncertainties on stellar

labels, calculated with Eq. 6.1, vary as a function of spectral resolution. We use model spectra to

calculate the gradient spectra,−→∇ℓfmodel(λ)i, in Eq. 6.1 and the label covariance matrices that reflect

the label uncertainties, under the assumption that the models are a good description of the data.

6.3.1 Setup

We compute 1D LTE model atmospheres from the atlas12 code maintained by R. Kurucz 118,119,123.

We adopt the latest line list provided by R. Kurucz,† which include TiO, H2O, CH, CN, CO, OH,

MgH amongst other molecules. We evaluate the atmospheric structure with 80 zones of Rosseland

optical depth, τR, with the maximum depth of τR = 1,000. We automate the numerical convergence

inspection for each calculated atmosphere and adopt the solar abundances from Asplund et al. 7 .

We adopt the standard mixing length theory with a mixing length of 1.25 and no overshooting for

convection. Spectra are evaluated with the radiative transfer code synthe with a nominal resolution

R = 300,000 and are subsequently convolved to lower resolutions assuming a normal distribution

with a FWHM of λ/R.

To calculate approximate gradient spectra, we consider the differences of two spectra that differ

†http://kurucz.harvard.edu
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by∆Teff = 250K,∆ log g = 0.5,∆vturb = 0.5 km/s,∆[X/H] = 0.2 with respect to a chosen

reference point; Ting et al. 193 elaborated why that is a sensible approximation. For any stellar label i

and reference point, we calculate the gradient spectra as:

∇ℓfmodel(λ, ℓi) =
fmodel(λ, ℓi +∆ℓi)− fmodel(λ, ℓi)

∆ℓi
, (6.2)

where fmodel is the normalized flux of a model spectrum. In this study, we always perform full-

consistent calculations – we re-evaluate the atmospheric structure whenever we vary a stellar label,

even though in many cases, e.g., for Eu, this is unnecessary (see 193 for details). This is an important

point because many elements have a significant effect on the atmospheric structure, which in turn

can affect the emergent spectrum. So for example an enhancement in Na not only affects the atomic

Na i lines but also, at a lower amplitude, large regions of the spectrum owing to the change in the

atmospheric structure (Na is a major electron donor in cool stars).

To study how the results vary for different stellar types, we consider a few reference points in this

study, namely:

• M-giants: Teff = 3,800K, log g = 0.5

• K-giants: Teff = 4,800K, log g = 2.5

• G-dwarfs: Teff = 5,800K, log g = 4.5

• F-dwarfs: Teff = 6,800K, log g = 4.5
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We adopt the following relation between vturb and log g92:‡

vturb = 2.478 − 0.325 log g km/s, (6.3)

The top panels of Fig. 6.1 illustrate gradient spectra for three elements – C, Fe, and K – assuming

a K-giant, solar metallicity reference point. We consider three different resolutions – the nominal

model resolution at R = 300,000, a medium-resolution mode, R = 24,000, and a low-resolution

mode, R = 6,000. We also show the normalized spectra with and without enhancements in the

abundances of these three elements in the lower panels. At R = 300,000 and R = 24,000, some

of the spectral lines are resolved and unblended. These lines are typically selected to measure equiv-

alent widths and derive elemental abundances. Carbon has many more lines due to molecular con-

tributions. Elements such as potassium have far fewer lines. However, at R = 6,000, all lines are

blended. If we wish to derive the elemental abundance of potassium, for example, we will need to

model other elements contributing to the blends at the same time. Therefore, to extract spectral

information at R = 6,000, we need to model the blended lines by fitting all relevant stellar labels

simultaneously.

The top panels of Fig. 6.1 reveal a few interesting features. For e.g., at R = 300,000, the global

depths of spectral lines are not exactly 300,000 / 6,000= 50 times deeper than R = 6,000. There

are three effects in play: (a) at R = 300,000, the intrinsic broadening is larger than the LSF broad-

‡APOGEE calibrated this relation with giants, so this relation might not apply to the broad range of stel-
lar types in this study. But the goal here is to have a wide variety of log g and vturb as our reference points, so
the exact relation between these two parameters does not impact our results.
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Figure 6.1: Illustra on of the effects that changing abundances have on stellar spectra at different resolu ons. The
top panels show small wavelength segments of the gradient spectra of a solar metallicity, K-giant with respect to the
abundances of C, Fe and K. We consider three different resolu ons, R = 300,000, 24,000 and 6,000. In the top
panels, we calculate the gradient spectra by evalua ng the difference between the solar spectrum and the spectrum
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ening. As we have discussed in Section 6.2.3, over-resolving lines does not improve the gradients. (b)

When there are many overlapping lines, such as the carbon and iron lines, gradients do not degrade

as much at low-resolution. One way to think of this is that overlapping/blended features have larger

effective widths, so that convolution does not degrade the gradients in the same way as isolated lines.

(c) Since we are convolving a spectral profile instead of a delta function, although the rms depth is

proportional to R, the minimum point of the convolved profile alone does not necessarily scale ex-

actly with R. The last effect has no influence on our arguments in Section 6.2.3, but the first two

effects work in favor of low-resolution spectroscopy. They imply that the gradients only degrade

linearly with R at certain restricted conditions. For example, the potassium lines at R = 24,000 and

R = 6,000 are less affected by these two effects and show a close-to-linear gradient degradation. But

going from R = 300,000 to R = 24,000, especially for the carbon and iron lines, the gradients do

not degrade proportionally with R.

Beside studying how the results vary for different stellar types, we also consider different wave-

length ranges in this study. We will assume the wavelength ranges of the APOGEE, GALAH, Gaia-

ESO§, 4MOST, Gaia RVS, RAVE, SEGUE and LAMOST surveys. Their wavelength ranges and

spectral resolutions are listed in Table 6.1 (and are visualized in Appendix 6.7). Note that 4MOST

plans to work at two configurations. The low-resolution configuration will operate on a larger wave-

length range than the medium-resolution configuration. We will show in the following subsections

that, regardless of the wavelength range and stellar type, low-resolution spectroscopy can measure

§We assume the GIRAFFE HR10 and HR21 settings, with which most sample of Gaia-ESO will be ob-
served
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equally many elements with the same precision as medium-resolution spectroscopy.

6.3.2 Stellar label estimates as a function of spectral resolution

In this section we evaluate how uncertainties of stellar labels vary as a function of spectral resolution,

R, considering Teff, log g, vturb and all elements with atomic numbers from 3 to 99 as stellar labels.

We calculate the theoretical uncertainties of these stellar labels using Eq. 6.1. The output covariance

matrixKij has the size of 100 × 100, showing the covariances of all stellar labels. The diagonal entries

ofKij show variances that one can achieve for each stellar label, and the square roots of these values

give the theoretical uncertainties that we will explore in this section. Clearly, the gradient spectra

depends on stellar type, wavelength range and metallicity. Therefore, we calculateKij for different

wavelength ranges, different stellar types and two metallicities – [Z/H] = 0 and−2.

We also verifiedKij by numerical simulations. We modify a reference spectrum with linear combi-

nations of gradient spectra from all stellar labels and noise up the spectrum. We perform full spectral

fitting (using PSM) via χ2-minimization and find thatKij gives the exact estimate of the covariance

matrix of stellar labels. Finally, to study how theoretical uncertainties vary with R, we convolve gra-

dient spectra to various resolutions, and recalculateKij for each R. We define an element to be de-

tectable if its uncertainty is better than 0.1 dex at R = 24,000 and S/N= 100.

Fig. 6.2 show the uncertainties as a function of R of all detectable stellar labels (including Teff,

log g and vturb). The figure overplots results from all stellar types, wavelength ranges and metallicities.

We normalize the value of y-axis to be unity at R = 6,000. Since uncertainty scales linearly with S/N

(see Eq. 6.1), the ratio of uncertainties plotted in Fig. 6.2 is independent of S/N. The left panel shows
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that, assuming the same S/N per pixel and the same wavelength range, the uncertainty degrades

mostly linearly with 1/R, regardless of stellar label, stellar type, wavelength range and metallicity, as

explained in Section 6.2.3: since the absolute values of gradient spectra decrease proportionally to

1/R, the uncertainties should also degrade linearly with 1/R.

However, given the same exposure time, low-resolution spectra will have a S/N per pixel that is

1/
√
R higher than high-resolution spectra. In the middle panel, we take this into account and rescale

the uncertainties in the left panel by
√

R/6, 000.

In the right panel, we also account for the larger wavelength range afforded by low-resolution

spectra (given a fixed total number of pixels and a fixed number of pixels per resolution element)

and further scale the uncertainties by another factor of
√

R/6, 000, assuming spectral information

distributes uniformly over the entire wavelength range. As expected from the arguments in Sec-

tion 6.2.3, this factor compensates for the lower-resolution. Remarkably, regardless of stellar type,

wavelength range and metallicity, the achievable stellar label uncertainties are indeed nearly inde-

pendent of spectral resolution, if we have robust models and can fit all stellar labels simultaneously

(Fig. 6.2, right panel).

But Fig. 6.2 also quantifies how these simple trends are violated at both the very low-resolution

and high-resolution ends. At the low-resolution end (e.g., R ≲ 1,000), stellar label estimates become

nearly degenerate, resulting in reduced precision, as we have discussed in Section 6.2.3. As for the

high-resolution end, spectral lines are eventually resolved, so further increasing the resolution does

not improve the information content. By visual inspection, we found that for our model grid, most

spectral lines indeed have intrinsic broadening of the order of R ≃ 104.5. Over-resolving lines be-
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Figure 6.2: Uncertain es of stellar labels as a func on of spectral resolu on, rela ve to R = 6,000. We overplot
results for all detectable stellar labels (stellar parameters and elemental abundances) from different stellar types,
wavelength ranges and metallici es (see Sec on 6.3.2 for details) because the result is general and independent of
these choices. The rela ve label uncertain es depend very much on the boundary condi ons under which spectra of
different resolu ons are compared, as illustrated in the three panels. The le most one is a commonly used approach
to such a comparison; the right most panel shows the comparison that is most per nent to large spectroscopic sur-
veys. Specifically, the le panel assumes that all resolu on configura ons have the same S/N per wavelength pixel
(or resolu on element). In this case, high-resolu on spectra outperform low-resolu on spectra, following a 1/R linear
trend as depicted with the red dashed line, at the cost of significantly longer exposure mes for higher resolu on
data. The middle panel assumes the same exposure me (and thus higher S/N for low-resolu on spectra), and iden -
cal wavelength range (which would require R mes more detector real estate for high-resolu on spectra). The right
panel assumes the same exposure me and the same number of detector pixels (low-resolu on spectra thus have
wider wavelength range); as spectral diagnos c informa on is contained throughout the near-UV to near-IR spectra
of the most common stellar types, broad wavelength range is very important. The right panel shows that, given the
same exposure me and detector pixels, going to higher resolu on (beyond R ≳ 1,000) no longer improves the
measurement uncertain es of stellar labels: the higher S/N per pixel, and the more extensive wavelength range com-
pensate for lower spectral resolu on, and vice versa. At very low-resolu on with R ≲ 1,000, stellar label es mates
become degenerate and deviate from the linear trend.
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yond this resolution does not improve the gradients and causes the high-resolution to deviate from

the linear trend.

4MOST survey as a case study

One can adopt simple arguments to rescale the uncertainties in Fig. 6.2 for a particular survey de-

sign. For example, one can assume that spectral line information is uniformly distributed through-

out all wavelengths and derive an
√
R improvement in uncertainty when going from the middle to

the right panel of Fig. 6.2. This assumption might be a good approximation for elements that have

many spectral lines such as Fe, and α-capture elements. But for trace elements, such as Li, K, that

have only a few spectral lines, expanding wavelength range does not necessarily improve the informa-

tion content. To work out a concrete example, we compare the two proposed resolution configura-

tions of the 4MOST survey. Here we consider, for the same exposure time and a larger wavelength

range, the tradeoffs in the low- vs. medium-resolution setups for this particular survey.

4MOST proposes a medium-resolution configuration with a shorter wavelength range of 390 −

435 nm, 515 − 575 nm, 605 − 675 nm and a low-resolution configuration with a wider wavelength

range of 390 − 885 nm. These two configurations serve as a perfect case study to evaluate how un-

certainty of stellar label changes when comparing low S/N, shorter wavelength range and medium-

resolution spectra to high S/N, larger wavelength range but low-resolution spectra. In Fig. 6.3, we

assume R = 8,000 for the low-resolution configuration and R = 20,000 for the medium-resolution

configuration. These resolutions are chosen such that both configurations consume an equal num-

ber of detector pixels when compensated with the difference in wavelength range. Also, for the
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same exposure time, the low-resolution configuration will have a higher S/N – we assume the low-

resolution configuration has a better S/N per pixel by a factor of
√

20, 000/8, 000.

Fig. 6.3 shows the ratio of uncertainties for all detectable elements and stellar parameters of the

two configurations. Note that since we are plotting the ratio of uncertainties, the result is indepen-

dent of the absolute values of S/N per pixel. In the x-axis, we sort elements by their uncertainties

in the medium-resolution configuration. If the two scaling relations as assumed in Fig 6.2 are exact,

in particular, spectral line information is uniformly distributed throughout all wavelengths – for

e.g., information from stellar parameters: Teff, log g and vturb – the ratio should be close to unity.

However if the information is concentrated only in a small wavelength range, expanding wavelength

range does not collect more spectral information, and in this case, the low-resolution configuration

will have a worse uncertainty by a factor of
√

20, 000/8, 000. The upper dashed line shows this

value as the upper limit. Fig. 6.3 shows a clear trend – stellar parameters and elemental abundances

that have better uncertainties, such as Fe, Mg, generally have more lines, thus the uniform distribu-

tion of spectral information is a more valid approximation, resulting in ratios closer to unity. For

elements that are less precisely measured, they are mostly elements that only have a small number

of lines that reside in the wavelength region of the medium-resolution configuration. Thus expand-

ing the wavelength range at low-resolution does not help in this case. Some elements (e.g., Na, Ba,

K, Zn, S) are better measured (ratio< 1) at low-resolution. Expanding the wavelength range in-

cludes more lines from these elements that would otherwise be missed by the medium-resolution

configuration. The last four elements in Fig. 6.3 (Pt, Ge, Rb, In) highlight the scenario in which

the medium-resolution configuration does not cover any transitions of these elements, and so these
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(Pt, Ge, Rb, In); obviously, the low-resolu on configura on performs far be er in that case.
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elements are unmeasureable for this particular medium-resolution configuration.

Although some elements perform worse at low-resolution even with the same exposure time

and number of detector pixels, note that the ratio of uncertainties is bounded by an upper limit of√
20, 000/8, 000. We can compensate this loss if we spend 20,000 / 8,000= 2.5 times more expo-

sure time with the low-resolution configuration. Since low-resolution spectrographs are generally

more accessible and medium-resolution spectrographs have other downsides, such as lower instru-

mental throughput and more restrictive read noise limitations for faint targets, (see discussion in Sec-

tion 6.5), it would still seem that low-resolution stellar spectroscopy with R ≃ 6,000 and properly

chosen wavelength range is the optimal strategy to design large-scale stellar spectroscopic surveys.

6.3.3 Number of detectable elements for various surveys

In the previous section we discussed how the ratio of uncertainties vary as a function of spectral res-

olution. In this section, we will study the absolute uncertainties – i.e., the square root of diagonal

entries ofKij in Eq. 6.1 – given a fixed S/N per pixel, and determine how many elements we can, in

principle, detect for various surveys. We assume a S/N per pixel of 100 in this section. We do not

show the other values of S/N because the uncertainty scales linearly with S/N (cf. Eq. 6.1). We em-

phasize again that these uncertainties can only be attained if the model spectra are perfect, or nearly

so.

Fig. 6.4 shows the theoretically achievable uncertainties of detectable elements and stellar param-

eters for various surveys, assuming solar metallicity and K-giants. For each survey setup, we assume
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Figure 6.4: Theore cal (best-case scenario) uncertainty of stellar labels for various spectroscopic survey configura-
ons. Stellar abundances are sorted according to their uncertain es in low-resolu on spectra (R ≃ 2,000) that
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in Table 6.1, solar metallicity, K-giants and a S/N per pixel = 100. If the synthe c models are robust, the y-values
show the minimal uncertain es (Cramer-Rao bound) that we can achieve for stellar parameters and elemental abun-
dances when fi ng all stellar labels simultaneously. For elements where there are no useful spectral diagnos cs in
a survey’s wavelength range the (filled) symbols have been omi ed. Op cal surveys like 4MOST, GALAH, Gaia-ESO,
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y-axis accordingly.
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the adopted resolutions as stated in Table 6.1. Optical surveys like 4MOST, GALAH, Gaia-ESO,

SEGUE and LAMOST can measure up to 50 − 55 elements. Strikingly, even for low-resolution spec-

tra like SEGUE and LAMOST that has only R ≃ 2,000, in principle, we can still measure as many

elements as medium-resolution spectra, provided that we can fit all stellar labels simultaneously and

have robust stellar models.

Infrared surveys, such as APOGEE, contain less information (also see Appendix 6.7) and can

“only” detect up to 20 elements, consistent with the APOGEE pipeline92,181. Not surprisingly, given

the same resolution, surveys that have larger wavelength ranges such as 4MOST have smaller un-

certainties than surveys that have more limited wavelength ranges like GALAH and Gaia-ESO. But

interestingly, even for small wavelength ranges and low-resolution spectra from RAVE or Gaia, we

can, in principle, detect about 15 elements. Measuring multi-elemental abundances with RAVE and

Gaia RVS is an important application of PSM that we are currently exploring. Fig. 6.4 also suggests

that high S/N spectra, such as stacked spectra from LAMOST and SEGUE, could detect many more

elements than are currently being measured.

Instead of plotting uncertainties of individual elemental abundances, we can also compress this

information and plot the cumulative distribution of uncertainties for all elemental abundances, as

shown in Fig. 6.5. The y-axis of Fig. 6.5 shows the cumulative number of elements that we can detect

that have smaller theoretical uncertainties than the threshold shown in the x-axis. We consider two

resolution configurations – a medium-resolution configuration of R = 24,000 and a low-resolution

configuration of R = 6,000. Each row in Fig. 6.5 has three separate panels, showcasing three differ-

ent possible comparisons between the low-resolution and medium-resolution configurations, the
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Figure 6.5: The number of different elements (y-axis) for which abundances can be obtained with a certain (theo-
re cal) uncertainty (x-axis), as a func on of stellar type, wavelength range and metallicity. The solid lines assume a
medium-resolu on configura on of R = 24,000 and the dashed lines assume a low-resolu on configura on of
R = 6,000. Panels from le to right illustrate three different comparisons between the medium-resolu on configu-
ra on and the low-resolu on configura on. We assume a fixed S/N = 100 per pixel and a fixed wavelength range
for the medium-resolu on configura on, and vary the proper es of the low-resolu on configura on from le to
right. The le panels assume the same S/N per wavelength pixel and the same wavelength range; the middle panels
assume the same exposure me (higher S/N for the low-resolu on configura on). The right panels further assume
the same number of detector pixels (more extensive wavelength range for the low-resolu on configura on), which
we deem the most per nent comparison. In that la er case, low-resolu on spectra can detect as many elements as
the medium-resolu on spectra with similar precision. Panels from top-to-bo om assume three different comparisons
of survey targets and survey configura ons: the top panels compare different wavelength ranges from various sur-
veys; the middle panels compare different stellar types; the bo om panels compare stars with different metallici es.
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same way as Fig. 6.2. To recap, the panels on the left assume the same S/N per pixel and the same

wavelength range. The middle panels assume the same exposure time and the right panels further

assume the same number of detector pixels. For the middle panels and the right panels, we rescale

the uncertainties of low-resolution spectra in the left panels by a factor of
√

6, 000/24, 000 and

6,000 / 24,000, respective, following Fig. 6.2.

The top panels of Fig. 6.5 show the number of detectable elements at R = 24,000 and R = 6,000

for various wavelength ranges, assuming solar metallicity and K-giants. For surveys that have these

resolutions, such as 4MOST, GALAH and Gaia-ESO, these panels are just compact representations

of Fig. 6.4. But we caution that for surveys that operate at a much lower resolution, such as LAM-

OST and SEGUE (R ≃ 2,000), results in the top panels might not be directly applicable – these

panels only show the number of detectable elements if LAMOST and SEGUE were to operate in

R = 24,000 and R = 6,000. Not surprisingly, at a given resolution and assuming the same S/N,

the top panels show that a larger wavelength range, such as LAMOST and 4MOST, can detect more

elements. These panels also show that, generally speaking, optical wavelength ranges contain more

information and can measure more elements than the infrared. But more important, as shown in

the right panel, if we assume the same exposure time and the same number of detector pixels, the

dashed lines coincide with the solid lines, showing that R = 6,000 spectra can detect as many ele-

ments as the R = 24,000 spectra, echoing our earlier conclusions. This conclusion also holds true

for the other comparisons that will we discuss next.

Thus far, we have only discussed how the detectability of elements vary as a function of wave-

length range. But the detectability also depends on stellar type and metallicity. The middle panels
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of Fig. 6.5 show the number of detectable elements for different stellar types, assuming a wavelength

range of the 4MOST (medium-resolution) survey and solar metallicity. These panels show that

cooler stars (e.g., M-giants) can detect more elements than hotter stars (e.g., F-dwarfs). This result

is not surprising because cooler stars have more spectral lines, especially contributions from molecu-

lar lines. In fact. M-giants almost double the number of detectable elements compared to F-dwarfs.

Since part of these cooler features come from molecular contributions and noting the composite

nature of molecular features, this demonstrates the importance of full spectral fitting over many stel-

lar labels simultaneously, without which we will not be able to extract information from molecular

lines.

Finally, the bottom panels show the number of detectable elements in two different metallicity

regimes, [Z/H] = 0 and [Z/H] = −2, assuming the wavelength range of 4MOST (medium-

resolution) and K-giants. We calculate theKij matrix using gradient spectra with respect to reference

points at these two different metallicities. Metal-poor stars have smaller gradient spectra which in

turns predict a smaller number of detectable elements. Nonetheless, for optical surveys like 4MOST,

although the number of elements is more restricted at the metal-poor regime, the bottom panels

show that we can still detect up to 30 elements. Studies in Appendix 6.7 also indicate that there is

still sufficient spectral information at low metallicity in the optical wavelength. But spectral informa-

tion is more limited in the infrared, Although not shown, we found that we can only detect about 5

elements at [Z/H] = −2 with an APOGEE-like setup.
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6.3.4 Stellar parameter correlation as a function of spectroscopic resolution

Thus far we have only considered the diagonal entries ofKij in Eq. 6.1 – i.e., the theoretical uncer-

tainties of stellar labels. However, there is more information inKij. This matrix also infers the cor-

relations of stellar labels. More precisely, for each label pair (i, j), the submatrix K̃ij from the (i, j)

rows and columns ofKij shows the covariance of the i-th and j-th stellar labels, from which we calcu-

late their correlation via

Cij ≡ K̃ij/
√

K̃iiK̃jj. (6.4)

Uncorrelated estimations of stellar labels are crucial for Galactic studies because correlated estimates

could make astrophysical interpretations difficult when looking for trends among stellar labels or

searching for structures in chemical space 192. In this section we will study how the correlation Cij

varies as a function of spectral resolution.

The left panel of Fig. 6.6 shows the cumulative correlations from all detectable stellar labels. The

y-axis indicates the fraction of label pairs that have correlations smaller than the threshold value in

the x-axis. We only consider the global distribution of correlations from all (detectable) label pairs

in this section and refer interested readers to Appendix 6.9 for correlations of each label pair. The

left panel shows that many label pairs have large correlations at R = 100 – in fact, more than half of

the label pairs have correlations larger than 0.4. Strong degeneracies of stellar labels are expected at

R = 100. At this resolution, there are only 30 wavelength pixels in the APOGEE wavelength range,

so most stellar labels are contributing to most of the pixels.

216



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5
|Correlation|

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n
 o

f 
La

b
e
l 
P
a
ir

s

R=100

R=300

R=1,000

R=100,000

68%

K-giants; [Z/H] = 0;

APOGEE 1,500-1,700nm spectra

102 103 104 105

Resolution

0.0

0.2

0.4

0.6

0.8

1.0

|C
o
rr

e
la

ti
o
n
| 

6
8

%
 R

a
n
g
e

[Z/H] = 0

Wavelength range of:
RAVE/Gaia
Gaia-ESO
GALAH
APOGEE
LAMOST/SEGUE 
4MOST(low-res)

Figure 6.6: Sta s cs of the correla on between the label es mates, as a func on of spectral resolu on and wave-
length range. The le panel shows the cumula ve distribu on of correla ons among all (detectable) label pairs. We
assume a wavelength range of the APOGEE survey, solar metallicity and K-giants. The lines in different colors show
the correla ons assuming various spectral resolu ons. Going from R = 100 to R = 1,000 produces much more
uncorrelated stellar label es mates yet, going from R = 1,000 to R = 100,000 barely reduces the correla ons.
The right panel shows how the typical level of label correla on (68% of pairs; see dashed line in the le panel) de-
pends on the spectral resolu on for the adopted wavelength range of different surveys (line colors). The right panel
also illustrates the (weak) dependence of these correla ons on spectral type: the solid, dashed, dashed-do ed and
do ed lines assume stellar types of K-giants, M-giants, G-dwarfs, and F-dwarfs, respec vely. Regardless of stellar
type and wavelength range, the right panel shows that the label es mate correla ons are generally modest, or even
small, for R ≳ 1,000; however, log g and Teff are crucial labels that remain substan ally correlated, even at high-
resolu on. The black box shows the survey resolu ons of RAVE and Gaia; the green box indicates the resolu ons of
APOGEE, GALAH, Gaia-ESO and 4MOST (medium-resolu on); the shaded red box shows the resolu on of 4MOST
at low-resolu on, and the hollow red box shows the survey resolu ons of LAMOST and SEGUE. If one can fit all
stellar labels simultaneously for these surveys, then most abundance es mates will not be seriously correlated, even
though the spectral lines are blended.
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However, increasing resolution to R = 1,000 already removes or strongly diminishes the correla-

tions between labels. About 80% of the label pairs have correlations smaller than 0.15. In detail, as

shown in Appendix 6.9, only prominent stellar labels that contribute to most pixels, namely Teff,

log g, vturb, Fe, C, N, O are strongly correlated beyond R = 1,000. The green and red lines in the left

panel shows that going to a even higher resolution, such as R = 100,000, no longer decreases the cor-

relations by much. In practice, the correlations at low-resolution should be even smaller compared

to high-resolution. Fig. 6.6 assumes a fixed wavelength range, but as we have discussed earlier, given

the same number of detector pixels, low-resolution spectra will have a much more extensive wave-

length range, which allows further disentanglement of different contributions from various stellar

labels.

The right panel in Fig. 6.6 shows that this result is general and is independent of stellar type and

wavelength range. Instead of plotting the cumulative distributions as in the left panel, the right

panel plots the correlation values corresponding to the 68% percentile of the cumulative distribu-

tions as a function of spectral resolution. The solid, dashed, dashed-dotted and dotted lines assume

different stellar types – K-giants, M-giants, G-dwarfs, and F-dwarfs, respectively, and the lines in

different colors show results from various wavelength ranges. All these lines concur with the pre-

vious conclusion that stellar labels are not strongly correlated beyond R ≃ 1,000, with the excep-

tions of the RAVE and Gaia RVS wavelength ranges. RAVE’s and Gaia RVS’s labels are only not

strongly correlated beyond R ∼ 6,000 because RAVE and Gaia RVS have a limited wavelength

range (λ = 840− 880 nm). With this limited wavelength range, below R ∼ 6,000, there are too few

wavelength pixels to distinguish contributions from various stellar labels.
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The lines in the right panel show correlations at various resolutions, but for a spectroscopic

survey, there is a well-defined survey resolution. An important question then is, are stellar labels

correlated at the nominal survey resolutions? To answer this question, we label the survey resolu-

tions with boxes in the right panel of Fig. 6.6. The black box shows the resolutions of RAVE and

Gaia RVS. The green box shows the resolutions of APOGEE, GALAH, Gaia-ESO and 4MOST

(medium-resolution). The shaded red box shows the resolution of 4MOST in the low-resolution

configuration; and the hollow red box shows the resolutions of LAMOST and SEGUE. All boxes

are in the region where the correlation curves have already plateaued, indicating that stellar labels

will not be strongly correlated from these surveys.
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6.4 Fitting and deriving 18 stellar labels with R = 6,000 spectra

Thus far we have shown that, given the same exposure time and the same number of detector pixels,

spectral information remains largely independent of resolution. But there is still one crucial ques-

tion yet to be answered, since most spectral lines at low-resolution are blended, can we model these

blended features by fitting all stellar labels simultaneously? In other words, even though we know

the spectral information is there, can we extract it? In this section we will generate and fit mock spec-

tra at R = 6,000 and show that we can recover multi-elemental abundances at this resolution, even

in the presence of bad pixels, imperfections of LSF modeling, and flux uncertainties.

We choose to study the wavelength range of APOGEE (λ = 1,500–1,700 nm) as our test case. We

generate flux-normalized synthetic models at R = 300,000 and subsequently convolve them to R =

6,000 with a Gaussian kernel. We follow APOGEE DR12/DR13 and assume a wavelength sampling

of λ/3R. With this sampling there are∼ 1800 wavelength pixels at R = 6,000. Here we only study

flux-normalized models and will discuss the potential problem with continuum normalization at

low-resolution in Section 6.5.2.

We adopt the same PSM approach as in Rix et al. 172 and perform full spectral fitting. Here we

briefly summarize the idea of PSM. Instead of interpolating spectra, PSM constrains explicit quadratic

functions that define how flux varies as a function of stellar labels at each wavelength. One can re-

gard PSM as a second order Taylor expansion of a spectrum. How well PSM performs depends on

the “convergence radii” of the Taylor sphere. The key to the success of PSM (and related data-driven

models such as the Cannon, cf.40,153) is that the Taylor sphere encompasses most of the stellar label
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space that matters – i.e., the region of stellar label space where stars typically occupy. Previously in

Rix et al. 172 , we tested that we can fit all 18 stellar labels (Teff, log g, vturb and 15 elements) simulta-

neously and recover these stellar labels at R = 24,000. Our aim here is to extend that analysis to

R = 6,000.

In order to test how well we can recover realistic stellar labels, we consider labels from the APOGEE

DR12 catalog92, restricting to objects with 4,000K < Teff < 5,500K and 1 < log g < 4. We tested

that a single PSM region performs sufficiently well within this Teff − log g range. Going beyond this

range might require multiple PSM spheres to cover the full relevant label space (see 193), but will not

alter our conclusions. We also remove objects that have not measured abundances for all elements

in the APOGEE DR12 catalog. We randomly choose 1,000 stars and use their stellar labels to gener-

ate our training set and constrain the PSM functions. We randomly choose another 1,000 stars to

generate our testing set. The testing set is used to determined how well we can recover their input

parameters. Note that to fully define a PSM for 18 stellar labels, we only need a minimal training set

of (18 × 19)/2 = 171 spectra. But Rix et al. 172 found that overconstraining PSM with more train-

ing set, whenever it is still computational feasible, produces a better result. Therefore, we choose to

constrain the PSM with 1,000 training models.

Fig. 6.7 shows the recovery of input parameters for the testing spectra. Gaussian random errors

are included assuming a S/N per pixel of 200 and 500. We also assign random values to 10% of the

testing spectra pixels and assign large uncertainties to these “bad pixels.” These mimic pixels affected

by skylines, cosmic rays or other possible contaminants. They also mimic pixels that are not well-

modeled in real life applications and have to be subsequently clipped from spectral fitting. The gray

221



0.0 0.2 0.4 0.6 0.8 1.0

Best-Fitting Estimate (R = 6,000) [dex]

0.0

0.2

0.4

0.6

0.8

1.0
B

e
st

-F
it

ti
n
g
 E

st
im

a
te

 -
 I
n
p
u
t 

P
a
ra

m
e
te

r 
[d

e
x
]

4.0 4.5 5.0
0.02

0.01

0.00

0.01

0.02
Teff [1,000K]

1.0 2.0 3.0 4.0
0.04

0.02

0.00

0.02

0.04
log g

1 0 1 2 3 4
0.2

0.1

0.0

0.1

0.2
Vturb [km/s]

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
C

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
N

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
O

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Na

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Mg

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Al

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Si

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
S

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
K

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Ca

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Ti

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
V

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Mn

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Ni

0.5 0.0 0.5
0.2

0.1

0.0

0.1

0.2
Fe

(S/N)pix = 200
(S/N)pix = 500

0.5 0.0 0.5
Training Set [Fe/H]

0

20

40

60

80

100

H
is

to
g
ra

m

Figure 6.7: Stellar label precision resul ng from the simultaneous fi ng of all labels with a PSM model172 to spectra
of APOGEE’s wavelength range, but at a resolu on of only R = 6,000. We assume synthe c model spectra and
adopt stellar labels from the APOGEE DR12 catalog. We consider stellar labels that have 4,000K < Teff < 5,500K
and 1 < log g < 4, from which we generate 1,000 models to construct the PSM. The PSM is then used to fit another
1,000 tes ng models that have similar APOGEE stellar labels. Each panel shows the differences between the most
likely PSM label es mates and the input labels. To mimic actual complica ons in spectral analyses, we also assume
10% of the tes ng pixels to have large uncertain es, whose values are not used in spectral fi ng. The gray band
shows the 1σ range assuming S/N = 500 per wavelength pixel, and the dashed lines assume S/N = 200 per
wavelength pixel. Even with noised-up spectra and 10% of bad pixels, almost all elemental abundances are recovered
be er than 0.01 − 0.05 dex from APOGEE-like spectra at R = 6,000. However, we found that systema cs in the
PSM label es mates can become important at lower S/N; this is for elements that have limited number of lines or
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of the training spectra used in the construc on of the PSM. Note that the Teff and vturb subplots assume different
units than shown in the y-axis.

222



shaded region in each panel illustrates the 1σ range and demonstrates that, with robust models, we

can recover 18 stellar labels with a precision of 0.01−0.05 dex at R = 6,000. The recovery of vturb has

a non-monotonic systematic. This suggests that the PSM model is not a perfect representation of

the variation of flux as a function of vturb. A more complicated function might be needed to describe

the variation, but even with a simple quadratic function, the systematic is small (< 0.1 km/s).

Another potential source of systematic uncertainty is our imperfect knowledge of the line spread

function (LSF). To study how sensitive our results are with imperfect adopted broadening kernel,

we model mock spectra that are further convolved with an additional broadening of 0.5 − 50 km/s.

Fig. 6.8 shows the scatter between the best-fit and input stellar label as a function of additional

broadening. As before, we also assume 10% bad pixels and adopt S/N per pixel of 200 and 500. The

figure shows that, at R = 6,000, the estimates are not severely affected by an additional broadening

< 10 km/s. But if the LSF errors are larger than 10 km/s, the PSM estimates are biased. As spec-

tral features become shallower and broader with additional broadening, we will overestimate Teff

and log g, which in turn generally causes overestimations of [X/H] to compensate for the higher

temperature. In contrast, although not shown, we checked that bad pixels (with large uncertainties

assigned) and flux uncertainties, as studied in Fig. 6.7 and Fig. 6.9, do not bias the stellar label esti-

mates at high S/N. On the flip side, the weak dependence with additional broadening shows that we

cannot measure vmacro < 10 km/s at R = 6,000 because vmacro broadening is completely dominated

by the instrumental LSF broadening at low-resolution. On the other hand, log g and vturb can be re-

covered at low-resolution because their broadening effects are not simple convolutions with a kernel

and so can be distinguished from the broadening due to the LSF.
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Figure 6.8: Sensi vity of low-resolu on label es mates to mismatches in the assumed spectral line-spread func on
(LSF). The plot layout is the same as Fig. 6.7, but we study the devia on (averaging over the full range of the label)
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and S/N of 200 and 500 per wavelength pixel. The figure shows that the label es mates are insensi ve to even
substan ve differences between adopted and true LSF. An addi onal of broadening of< 10 km/s has negligible
effects on the es mates. In turn, this implies that low-resolu on spectroscopy cannot recover vmacro, modeled as
a Gaussian convolu on of the spectrum, for stars to the level of∼ 10 km/s. But with a more severe addi onal
broadening than 10 km/s, as the lines become shallower and broader we will overes mate Teff and log g, which in
turn generally causes overes ma ons of [X/H] to compensate for the higher Teff.
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Figure 6.9: Variance of different stellar label es mates obtained through PSM of APOGEE-like spectra, but presumed
to be at R = 6,000. The variances are calculated as a func on of S/N per pixel and frac on of “bad pixels.” At S/N
per pixel> 100, we can recover most stellar labels be er than 0.1 dex. For stellar labels that have many spectral
features across all wavelengths, such as Fe, Mg and Si, their recoveries depend less on the frac on of bad pixels.
For stellar labels that have only weak gradients, such as vturb, V, Na, K, their recoveries are more compromised at
R = 6,000.
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Fig. 6.9 shows the scatter in the stellar label recovery as a function of S/N and the fraction of as-

sumed bad pixels. With S/N per pixel> 100, PSM can recover most stellar labels better than 0.1 dex,

even with∼ 50% of bad pixels. The weak dependence with the fraction of bad pixels is not surpris-

ing – since information only adds in quadrature, having a single reliable line can carry a lot of weight.

Thus, for elements that have many spectral lines, such as Fe, Mg and Si, a high fraction of bad pixels

does not substantially change the results. On the other hand, the measurement of stellar labels that

only have weak gradients, such as vturb, V, Na, K, at low-resolution, can be seriously compromised

by a large fraction of bad pixels and/or large flux uncertainties.
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6.5 Discussion

In this paper we have demonstrated that it is possible to derive precise many elemental abundances

with low-resolution spectra if one is not limited by systematic shortcomings of spectral models. Per-

haps more remarkably we show that – at given exposure time and number of detector pixels – low-

resolution spectra can yield elemental abundances as precise as high-resolution spectra, and without

strong correlations among stellar labels. In this section we discuss several important caveats to these

conclusions and additional complications, both for high and low-resolution analyses.

6.5.1 Some drawbacks to high-resolution spectroscopy

Practicalities aside, if there is little or no gain in label precision at a given survey speed between res-

olutions R ∼ 1,000 and R ∼ 100,000, one might then wonder what, if any, downsides exist to

pursuing a survey at the upper end of this range? First, as discussed in previous sections, the general

independence of elemental abundance precision on resolution assumes that information is spread

uniformly throughout the spectrum. This is generally not the case, especially for important classes

of elements such as r- and s-process neutron-capture elements. Because of this fact, there is some

minimum wavelength range that is necessary to cover in order to probe a given set of elements. This

fact would tend to work against collecting high-resolution data as multiple instrument configura-

tions are required and hence the number of detector pixels required is not fixed but increases with

resolution.

Spectrographs with very high spectral resolution are not suited for even moderately faint objects:
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they tend to have lower throughput than low-resolution spectrographs, and the exposure time to

overcome the read-noise dominated regime for faint objects is often prohibitive.

6.5.2 Limitations of low-resolution stellar spectroscopy

The fundamental limitation in analyzing low-resolution spectra is the reliance on the models being

of high quality, e.g., without significant shortcomings in the line list. At high-resolution one can fo-

cus on lines with very accurate atomic data and that are known to form in relatively well-understood

layers of the atmosphere. At low-resolution every “feature” is in reality a blend of many lines and

so it is difficult to isolate the good from the bad regions of the model spectra. However, it is worth

emphasizing that a single (or several) bad pixels on their own will not necessarily compromise the

fits at low-resolution. In most cases there is a vast amount of redundant information in the spec-

trum, and so even if for example one or more iron lines are in error, the many other good iron lines

will dominate the determination of the final iron abundance. Also, data driven approaches such as

The Cannon 153 can construct spectral models for low-resolution spectra (based on accurate and pre-

cise training labels, e.g., from high-resolution spectra) that are – almost by construction – without

substantive systematic errors.

There are a variety of ways that one can mitigate the effects of model imperfections when fitting

low-resolution spectra. At a minimum, one can (and should) fit ultra high-resolution spectral at-

lases of standard stars such as the Sun and Arcturus. The residuals in the fits to the standards can

be convolved to low-resolution and used to down-weigh spectral regions that are poorly described

by the models. A more ambitious approach would be to collect a sample of ultra high-resolution
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spectra and tune the models to fit those data (e.g., by astrophysically calibrating the atomic line pa-

rameters, which are often not known to high precision). Ideally the sample for which ultra high-

resolution spectra are available should span the full range of parameter space that one is interested

in studying at low-resolution. These tuned models should then by design provide excellent fits to

low-resolution data.

There are other important aspects of fitting low-resolution spectra that are related to the data

quality and characteristics. In principle, with perfectly flux calibrated data, one could choose to

fit the fluxed spectrum directly. In practice spectra are often not flux calibrated to the precision re-

quired and so some methods for continuum normalization are adopted. At high-resolution one

can either measure equivalent widths or fit polynomials to regions of the spectrum that are free of

(strong) absorption lines. At low-resolution there are no wavelength ranges that probe only the

continuum, and so the method of normalization is more model-dependent. Another advantage of

high-resolution data is that it is much easier to subtract bright sky lines, which are intrinsically very

narrow. This is more of a concern in the NIR where there is a forest of bright sky lines. Yet another

advantage of working at high-resolution is that equivalent widths are independent of the LSF and so

the precise wavelength-dependent instrumental resolution need not be modeled. At low-resolution

the LSF must be accurately modeled in order to derive reliable parameters. In practice this means

that a parameterized LSF should become part of the model.

Subtle effects even at high-resolution, such as asymmetric line profiles, due for example to 3D

effects or spot modulation, and small shifts in line centers, due for example to isotopic ratio effects,

Zeeman splitting, gravitational redshifting, or convective motions, are just several examples of effects
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that are unlikely to be detectable, even with perfect models, at low-resolution (detection of these ef-

fects with perfect models would also require perfect knowledge of the wavelength solution and LSF).

Finally, although not directly related to deriving stellar parameters, another obvious advantage of

high-resolution is precision radial velocity measurements, which have been instrumental to studying

exoplanet populations.
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6.6 Summary and conclusions

Large spectroscopic surveys such as APOGEE, GALAH and Gaia-ESO are now collecting several

orders of magnitude more stellar spectra in the Milky Way than all previous surveys combined. But

the key to unravel the evolution of the Milky Way depends on how well we can turn stellar spec-

tra into stellar labels – stellar parameters such as Teff, log g, vturb and many elemental abundances.

At resolutions below R ≲ 20,000 most spectral lines are blended. Deriving reliable stellar parame-

ters therefore requires simultaneously fitting dozens of stellar labels in order to model the blended

features. Fitting dozens of stellar labels simultaneously has only recently been demonstrated to be

possible with the aid of polynomial spectral models (PSM). In light of this new technique, in this pa-

per we explored how the information content of stellar spectra varies as a function of resolution and

explored the possibility of deriving multi-elemental abundances from low-resolution spectra. Our

findings are summarized below:

• We explore the information content in spectra covering 300–2,400 nm, considering dif-
ferent wavelength ranges of past, on-going, and future spectroscopic surveys – APOGEE,
GALAH, Gaia-ESO, 4MOST, Gaia RVS, RAVE, SEGUE and LAMOST – and different
stellar types, from M-giants to F-dwarfs. Assuming that the underlying models (whether
ab initio or data-driven) are without systematic errors, we find that optical surveys can mea-
sure 50 − 55 elements, and infrared survey can measure about 20 elements, even with low-
resolution, R ≃ 6,000, high S/N spectra. Even smaller wavelength ranges associated with the
RAVE and Gaia RVS surveys can potentially measure up to 15 elements at high S/N.

• Assuming the same exposure time per star and same number of detector pixels (e.g., R ·
(λmax − λmin) = constant, and a constant number of pixels per resolution element), the
derived uncertainties on stellar labels are essentially independent of resolution for 1,000≲
R ≲ 100,000.
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• Even though spectral lines are blended at low-resolution, most stellar labels are not correlated
at R ≳ 1,000. This holds generically for elements that produce detectable features at more
than one location in the observed spectrum.

• We demonstrate that it is possible to recover 18 labels from low-resolution R = 6,000 APOGEE-
like model spectra, even in the presence of a significant fraction of bad pixels, imperfections
in modeling the LSF, and realistic observational uncertainties.

• Deriving precise many elemental abundances from low-resolution spectra could open up
new windows for Galactic archeology, and in particular, chemical tagging because the lat-
ter requires a vast sample size, which is generally more challenging to obtain at medium- or
high-resolution. We suggest that, in order to optimize scientific returns, a strategy for future
spectroscopic surveys would be to collect a small number of high-resolution (R ≃ 100,000)
spectra for model calibration purposes but to carry out the main survey at much lower resolu-
tion.
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6.7 Appendix: Information content of stellar spectra

In this section, we explore the total spectral information content as a function of wavelength by

adopting the idea of gradient spectra, i.e., how much a spectrum changes as we vary elemental abun-

dances. We calculate gradient spectra for elements with atomic numbers from 3 to 99 (Li to Es),

from λ = 300 − 2,400 nm, at R = 300,000, and∆[X/H] = 0.2. For the purpose of illustration,

the gradient spectra are subsequently boxcar-smoothed with a bin size of 10 nm. Despite exploring

an exhaustive list of elements, we find many elements to have zero gradient spectra because there are

no significant atomic lines for these elements. We compare the information content at two different

metallicities – [Z/H] = 0 and [Z/H] = −2, and four different stellar types – M-giants, K-giants,

G-dwarfs, F-dwarfs.

Fig. 6.10 shows the sum of gradient spectra from all elements, illustrating the total spectral infor-

mation. Since the resolution element is proportional to λ/R, a bluer wavelength has a smaller res-

olution element – in other words, we sample more wavelength pixels at bluer wavelengths. Taking

that into account, we further divide the sum of gradients by the wavelength in Fig. 6.10. Therefore,

the y-axis has an unit of dex−1nm−1. But it is the relative amount of information that matters, the

absolute scale of the y-axis is not important. We note that the total information does not directly

infer the number of detectable elements. For example, molecules such as TiO and CN can have an

enormous amount of spectral lines, but yet there are not many elements involved. To overcome

this shortcoming, Fig. 6.11 provides another view of the information content (also see 22 for a sim-

ilar analysis). We separate the wavelength range into portions of 10 nm, and evaluate how many
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Figure 6.10: Spectral informa on for all elemental abundances, as a func on of wavelength, spectral type (line color)
and metallicity (top vs. bo om panels): each line shows the sum of all gradient spectra from elements with atomic
numbers from 3 to 99 and take into account that bluer wavelengths have smaller resolu on elements. The colored
horizontal bars show the wavelength ranges of various large spectroscopic surveys. Lines in different colors illustrate
different stellar types – from M-giants to F-dwarfs. The top two panels show the informa on content of [Z/H] =
0, and the lower two panels assume [Z/H] = −2. Within each of two panels at [Z/H] = 0 and [Z/H] =
−2, the lower one excludes molecular lines in the model. This quan fies that the informa on content about many
elements increases towards shorter wavelengths and cooler spectral types. Also, molecular features, o en omi ed
from analyses because of their complexity, have large informa on content.

234



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

10

20

30

40

50

N
u
m

b
e
r 

o
f 

E
le

m
e
n
ts

 i
n
 1

0
n
m

4MOST
RAVE/Gaia

GALAH
Gaia-ESO
LAMOST/SEGUE

APOGEE
M-giants

K-giants

G-dwarfs
F-dwarfs

[Z/H]=0, with molecules

0

10

20

30

40

50

N
u
m

b
e
r 

o
f 

E
le

m
e
n
ts

 i
n
 1

0
n
m

4MOST
RAVE/Gaia

GALAH
Gaia-ESO
LAMOST/SEGUE

APOGEE
M-giants

K-giants

G-dwarfs

F-dwarfs

[Z/H]=0, atomic lines only

0

10

20

30

40

50

N
u
m

b
e
r 

o
f 

E
le

m
e
n
ts

 i
n
 1

0
n
m

4MOST
RAVE/Gaia

GALAH
Gaia-ESO
LAMOST/SEGUE

APOGEE

M-giants

K-giants

G-dwarfs
F-dwarfs

[Z/H]=-2, with molecules

0 500 1000 1500 2000 2500
Wavelength [nm]

0

10

20

30

40

50

N
u
m

b
e
r 

o
f 

E
le

m
e
n
ts

 i
n
 1

0
n
m

4MOST
RAVE/Gaia

GALAH
Gaia-ESO
LAMOST/SEGUE

APOGEE

M-giants

K-giants

G-dwarfs
F-dwarfs

[Z/H]=-2, atomic lines only

Figure 6.11: Number of elements with detectable spectral signatures within any 10 nm por on of the spectrum. The
panel layout is the same as Fig. 6.10. We define an element to have detectable spectral signatures if there is at least
a spectral line with gradient greater than 0.025 dex−1 at the resolu on of R = 6,000. Note that the total number of
detectable elements (cf. Fig. 6.5) is necessarily larger than the values shown in the y-axis because different elements
contribute at different wavelengths. Only a few important molecules contribute to most of the informa on in the in-
frared. Therefore, despite its high informa on content as shown in Fig. 6.10, the number of elements with detectable
spectral signatures in the infrared is much smaller than in the op cal.
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elements have detectable spectral signatures in each of these portions. We define an element has de-

tectable spectral signatures if there is at least a spectral line with a gradient greater than 0.025 dex−1

at R = 6,000. The elements that have detectable spectral signatures at each portion can be differ-

ent, therefore the total number of detectable elements is larger than the value in the y-axis. We refer

readers to Fig. 6.4 for the total number of detectable elements of each survey. The horizontal bars in

these figures illustrate the wavelength ranges of various spectroscopic surveys. For 4MOST, the long

bar shows the wavelength range of the low-resolution configuration, and the split short bars show

wavelength range of the medium-resolution configuration.

The top two panels show the information content of [Z/H] = 0, and the bottom two panels

show the information content of [Z/H] = −2. As expected, metal-rich stars contain more infor-

mation and can detect more elements than metal-poor stars because there are more spectral lines. In

each of these two panels, we include the molecular contributions in the top panel and leave them

out in the bottom panel. Each panel in Fig. 6.10 and Fig. 6.11 shows a similar monotonous increment

of information for cooler stars. The difference in total information content for an M-giant and an

F-dwarf can differ up to two orders of magnitude and 20 elements depending on the wavelength. It

is not surprising that cooler stars have much more information because many spectral lines form at

a lower temperature, especially from molecular contributions in the infrared. However, since most

information in the infrared comes from a few important molecules, the number of elements with de-

tectable spectral signatures is much lower for the infrared, despite its high information content. The

number of detectable elements per 10 nm range is 10− 30 in the optical but is fewer than 10 elements

in the infrared.
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Since much of the information in the infrared comes from molecules, and due to the composite

nature of molecules, this also vividly demonstrates the importance of methods like the PSM to fit all

stellar labels simultaneously. Although optical wavelength contains more information, extinction

is much more significant in the optical, therefore, optical surveys are typically limited to the solar

neighborhood. Infrared surveys, like APOGEE, are better able to cover a larger region of the Milky

Way. Clearly, depending on the science goal, the wavelength range of a spectroscopic survey should

be carefully chosen. Interestingly, at optical wavelengths, there are about 10–30 elements per 10 nm

range, showing that for surveys that are restricted to small wavelength ranges, such as GALAH, we

can still easily measure more than 30 elements. Even for surveys like RAVE or Gaia RVS that have

very limited wavelength ranges, the information content suggests that, with robust models, we

should be able to detect∼ 15 elements. Finally, below 400 nm, spectral lines in M-giants become

so dense that they form an absorption trough with zero stellar flux. We have virtually zero gradient

spectra for most elements in this trough, and as a result, both the information content and the num-

ber of elements with detectable spectral signatures drop precipitously for M-giants at wavelengths

bluer than 400 nm.
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6.8 Appendix: Stellar label uncertainty as a function of spectral resolution

We show in Section 6.3 and in Fig. 6.2 that, given the same exposure time and the same number

of detector pixels, beyond R ≳ 1,000, stellar label uncertainties are largely independent of spec-

tral resolution. The gain from a higher S/N and a larger wavelength range for low-resolution spec-

troscopy compensates the linear trend of uncertainty with resolution when assuming the same S/N

and wavelength range. In this appendix, we will study the absolute uncertainties of a few stellar la-

bels to demonstrate this result in more detail. Similar to Section 6.3, we assume an anchor point

at R = 6,000, i.e., at R = 6,000, we adopt the wavelength range as assumed and a S/N per wave-

length pixel of 100. For other resolutions, we assume a wavelength range inversely proportional to

the resolution and a
√

R/6, 000 time better/worse in photon noise so that they consume the same

number of detector pixels and exposure time. We also assume that spectral information is uniformly

distributed over the entire wavelength range, so the larger/smaller wavelength range changes the

uncertainty by a factor
√

R/6, 000.

Fig. 6.12 considers the wavelength ranges of the 4MOST survey (optical, λ = 390 − 885 nm)

and the APOGEE survey (infrared, λ = 1,500–1,700 nm), adopting spectra for solar metallicity K-

giants. We only choose a few stellar labels for the purpose of illustration. Although not shown, the

other stellar labels follow roughly the same trend. The green and red filled symbols show the survey

resolutions of 4MOST and APOGEE. Since LAMOST and SEGUE share a similar wavelength

range as 4MOST, we overplotted their survey resolutions as red hollow symbols.

Beside the weak dependence of uncertainty with spectral resolution, Fig. 6.12 also shows that
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Figure 6.12: Stellar label uncertain es as a func on of spectral resolu on, assuming the same exposure me and the
same number of detector pixels. We assume an anchor point at R = 6,000, i.e., we show at R = 6,000 the stellar
label uncertain es with S/N = 100 per wavelength pixel and the wavelength range of the spectroscopic surveys.
For other spectral resolu ons, we vary the S/N according to Poisson sta s cs assuming the same exposure me (low-
resolu on spectra have higher S/N) and further scale the label uncertain es by

√
R/6, 000, taking into account

that low-resolu on spectra have a more extensive wavelength range for the same detector real estate. Shown are
only a few stellar labels for the purpose of illustra on. We find the stellar uncertain es to have a weak dependence
on spectral resolu on. The solid green lines adopt the wavelength range of APOGEE and the solid red lines adopt
the wavelength range of 4MOST (in the low-resolu on configura on), SEGUE, and LAMOST. The green symbols,
red filled symbols, and red hollow symbols demonstrate the actual survey resolu ons of APOGEE, 4MOST (low-
resolu on), and LAMOST/SEGUE, respec vely. Since 4MOST has a larger wavelength range and a smaller resolu on
element than APOGEE, and red giants are brighter in the infrared than the op cal, the green dashed and do ed
lines account for these differences in order to have a fairer comparison for the op cal and the infrared. The green
dashed lines assume that APOGEE has the same number of wavelength pixels as the op cal surveys, and the green
do ed lines further assume the same exposure me (APOGEE achieves higher S/N because giants are brighter in the
infrared).
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4MOST has better uncertainties than APOGEE. However, 4MOST also has a larger wavelength

range than APOGEE and more wavelength pixels per wavelength range because the resolution el-

ement in the bluer wavelength is shorter. Furthermore, red giants are brighter in the infrared than

in the optical. For example, the mean flux of a K-giant in the APOGEE wavelength range is about

twice of the mean flux in the 4MOST wavelength range. Therefore given the same exposure time,

the S/N for the APOGEE survey is about
√

2 better. In order to have a fairer comparison, the green

dashed and dotted lines take into account these differences by scaling the APOGEE uncertainties ac-

cordingly. Since spectral information adds in quadrature, in the dashed lines, we scale the APOGEE

uncertainties in the green solid lines by the square root of the ratio of number of pixels between

4MOST and APOGEE. The dotted lines further scale the uncertainties by a factor of
√

2 due to the

brighter flux in the infrared. Fig. 6.12 shows that even compared to the scaled uncertainties, 4MOST

still achieves better precision, demonstrating that the optical wavelength indeed has more spectral

information than the infrared, consistent with our assessments in Appendix 6.7.

Fig. 6.13 shows similar results, but assuming wavelength ranges from other spectroscopic surveys.

Both figures show a weak dependence of uncertainty with resolution beyond R ≳ 1,000 demon-

strating that this trend is generic and is independent of wavelength range. Although not shown in

this appendix (cf. Fig. 6.2), we also tested that this trend remains the same for other stellar types and

metallicities. But on top of these, Fig. 6.13 also illustrates that surveys having shorter wavelength

ranges, e.g., RAVE, Gaia RVS, and GALAH, tend to deviate more from this trend. These surveys

have fewer wavelength pixels, as a result, stellar labels become more degenerate and produce devia-

tions from the flat trend seen at higher resolutions.
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Throughout this study, we often assume S/N= 100 per pixel. But we emphasize that S/N plays

no role in most of our discussions because theoretical uncertainty exactly scales linearly with S/N

(cf. Eq. 6.1). Since we focuses on the relative uncertainties in this study, the contributions from S/N

cancel out. Therefore, our general conclusions in this study are completely independent of S/N.
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6.9 Appendix: Correlation of stellar labels as a function of spectral reso-

lution

In Section 6.3.4 and Fig. 6.6, we studied the global distribution of correlations from all detectable

stellar labels. Here, we show more details in this Appendix. Fig. 6.14−Fig. 6.16 show each of the

pairwise correlations that comprise the global distribution. We assume the wavelength range of

APOGEE, solar metallicity, and K-giants. We define an element to be detectable if its uncertainty

at R = 24,000 is better than 0.01 dex. This definition makes a total 23 stellar labels (20 detectable

elements). Fig. 6.14–Fig. 6.16 show the pairwise correlations assuming R = 100, 1,000 and 24,000,

respectively – each panel shows the correlation of a label pair. We shade each panel with the correla-

tion value to guide the eye, and adopt a color scheme in log scale to increase the contrast since most

label pairs have moderate correlations between 0.2–0.4. We also tested the other wavelength ranges

from different surveys and found that the results remain qualitative the same.

Fig. 6.14 shows that almost all stellar labels are degenerate at R = 100. At this resolution, there

are only 30 wavelength pixels in the APOGEE wavelength range. Most stellar labels contribute to

the same set of pixels. However, when increasing the resolution to R = 1,000, as shown in Fig. 6.15,

most labels are already not strongly correlated. Only stellar labels that contribute to most pixels

– Teff, log g, vturb, Fe, C, N, O – have strong correlations. Going to an even higher resolution, e.g.,

R = 24,000 as shown in Fig. 6.16, no longer decreases the correlations of stellar labels significantly.

Stellar labels that have consistent contributions to all pixels continue to correlate in most cases even

at the highest resolution. Although not shown, we find that the correlations at R = 100,000 remain
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Figure 6.14: Correla ons in the es mates of all detectable stellar labels, assuming the wavelength range of APOGEE
but at an assumed R = 100. Each panel shows the correla on of a different label pair, with darker shade indica ng a
stronger correla on. At R = 100, most stellar labels are strongly correlated.
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Figure 6.15: Analogous to Fig. 6.14, but for an assumed resolu on of R = 1,000. At R = 1,000, most stellar label
es mates are largely uncorrelated. Only those stellar labels that contribute to most wavelength pixels, such as Teff,
log g, vturb, Fe, C, N, O, have strong – and well-known – correla ons.
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Figure 6.16: Analogous to Fig. 6.14, but here we assume R = 24,000. Increasing spectral resolu on from R =
1,000 to R = 24,000 has only minimal effect on the correla ons in stellar labels.
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practically the same as R = 24,000. Finally, we note that the correlations evident at high-resolution

are often missed by stellar characterization methods that do not solve for all parameters at once, e.g.,

classical equivalent width based techniques.
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7
Ongoing work and future directions
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With the advent of multiple current and planned large-scale multiplexed spectroscopic surveys of

the Milky Way, the fundamental question that must be answered is what will be learned by collect-

ing spectra from millions of stars in the Milky Way that is not possible with a smaller sample. Recent

results from the APOGEE survey have provided a partial answer to this question. The APOGEE

survey showed that collecting 105 stars from a large area of the Milky Way is crucial to having a com-

plete view of the Milky Way 86. For example, the APOGEE survey revealed that the α-enhanced se-

quence of the Milky Way shows the same trend everywhere in the disk, supporting a short timescale

formation of the thick disk. The APOGEE survey has undoubtedly launched the dawn of a revo-

lution in the field of Galactic archaeology with big data. However, it is important to show quan-

titatively that collecting an additional order of magnitude more stars, i.e., 106−7 stars, can indeed

provide a new understanding of a galactic system. More precisely, in what context the number of

stars in a survey matters the most. For example, the Disco proposal for AS4 aims to observe 5 million

stars; it is crucial to figure out what would be the optimal survey strategy for such a survey.

To tackle these questions, my thesis work has focused on the challenges and opportunities of the

powerful technique known as chemical tagging. Chemical tagging is an interesting test case because,

in principle, chemical tagging always benefits from having more stars as the chance of collecting two

stellar siblings simply grows quadratically with the number of stars. Demonstrating the feasibility of

chemical tagging (or thematically similar variations of this technique) and quantifying the gain with

the number of stars sampled in a survey will provide a strong case for future large-scale spectroscopic

surveys.

In this thesis work, I showed that the interesting “birth similarity” features of chemical tagging
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are currently smeared out because:

1. The Milky Way has many more stars than the current sample of 105 stars. We only sample
a few stars from each star cluster, and interesting clumps are hardly visible. This limitation
argues that 106 or more stars are necessary (though not sufficient) to realize strong chemical
tagging.

2. The current elemental abundance measurements have limited precision; most clusters are
unresolved in the elemental abundance space given the current [X/H] precision of about
0.05 dex.

3. Many star clusters are low mass, meaning that the few stars they contribute are part of a
“background” sea of stars. The dominating background implies that even an overdensity
in the elemental abundance space does not necessarily translate into a group of conatal stars.

The successful realization of chemical tagging thus requires that we push the boundaries on multi-

ple fronts. I have laid out groundwork to mitigate some of these difficulties (cf. Chapter 4–6). In

this final chapter, I will describe other ongoing work and future directions that will further tackle

these three challenges. It is important to emphasize that although these efforts are primarily aimed at

realizing strong chemical tagging, other forms of chemical tagging will also benefit.

Finally, we note that even in the pessimistic limit where clumps remain unresolved in the ele-

mental abundance space, the extent to which stars form in small or massive clusters still imprints

clear signatures on the statistical properties of the elemental abundance space (cf. Chapter 3). This

“statistical-level” chemical tagging will benefit tremendously from a larger sample in the future (see

Fig 1.2) because a larger sample will reduce the Poisson errors of the global statistical fluctuations

sought by this method. Collecting spectra from 3 − 10 million stars in the future planned spectro-

scopic surveys (e.g., Weave, 4MOST, Disco in AS4) will be highly valuable in this pursuit. In a way,

the idea of “statistical-level” chemical tagging resembles the study of baryon acoustic oscillation in
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cosmology – even though individual fluctuations can be small and are hard to interpret, the global

statistics of the datasets is nevertheless incredibly rich. Moreover, in the limit where we are not sys-

tematically limited by chemodynamics models of the Milky Way, the results of “statistical-level”

chemical tagging techniques will always improve with a larger sample.
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7.1 Pushing the boundaries on the spectral fitting technique

Realizing chemical tagging requires the maximal extraction of information from stellar spectra, i.e.,

we should attempt to attain the theoretically achievable precision (what is known as the Cramer-

Rao bound, cf. Chapter 4–6), using all information in the spectra. But this is not possible without

a self-consistent, simultaneous fitting of all relevant stellar parameters and elemental abundances

to the full spectral range (cf. Chapter 4). To this end, I introduced a new spectral fitting technique

(Chapter 4–6), but the method presented in these chapters relies on the assumption that a quadratic

function is a good approximation of the variation of flux with stellar labels. While this assumption

works sufficiently well when dealing only with the giants (also see 153), the approximation becomes

less precise if we try to fit the full range of stellar parameters with a single model. For example, some

lines only form at a low temperatures (e.g., Teff < 4,000K), and the opacity of the stellar atmo-

sphere changes more dramatically in this regime. As a result, a quadratic approximation must fail

and a more accurate approach requires stitching together multiple grids for different spectral types

of stars. The stitching approach is what I adopted in Chapter 4. This approach is adequate, but it

is not ideal since it requires making additional choices on how to pick the best models within the

stitching regions.

Furthermore, the quadratic assumption is more problematic for photometric data as well as spec-

tra with very low resolution (R ≲ 1,000). Exploring how to build a model with the technique we

presented for photometric data may be crucial in Galactic archaeology with the data from LSST,

Gaia BP/RP and WFIRST arriving in the next few years. But in these low-resolution limits, a com-
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bination of many blended features can contribute to a single pixel or a photometry band. The

quadratic assumption works because it represents well the curve of growth of a single absorption

line in certain limits, but this approximation is likely to be less true as we combine more lines. There-

fore, the simplistic quadratic assumption can limit the achievable precision as we try to generalize

the method to fit both giants and dwarfs self-consistently and extend to other applications (e.g.,

galactic spectra, SED fitting). Even considering the giants alone, we have already shown that some

stellar parameters, such as microturbulence, are not well approximated (Fig. 6.7) by a quadratic func-

tion.

In the ongoing work described in the following sections, I have improved the method by consid-

ering non-parametric options and replacing the quadratic models. I tested with model spectra and

showed that a single non-parametric model can predict the variation of flux for a much larger range

of spectral types, covering spectral types from M-giants to F-dwarfs (Teff = 3,000K − 6,000K).

The non-parametric regression method predicts the variation of flux by finding the best smooth

“function” that represents well the training data without restricting to an ad-hoc function as before.

The results that I will present next adopt support vector regression for the non-parametric extension

but it has some shortcoming. Similar to Gaussian processes, support vector regression is computa-

tionally slow because the method is still intrinsically an interpolation scheme that requires loading

a large amount of data for the predictions. I am currently exploring neural networks as a substitute

for support vector regression since neural networks are capable of overcoming the interpolation

limitation and are very computationally efficient once the neural networks are trained.
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7.2 Pushing the boundaries of elemental abundance precision

Strong chemical tagging requires measuring 7–9 elements from different elemental abundance

groups 195 with a relative (not absolute) precision of 0.03 dex for more than a million stars (cf. Chap-

ter 2–3). Chemically homogeneous substructures should be significantly more apparent in the ele-

mental abundance space if this criterion can be attained. The studies of open clusters suggest that

stars born in the same star cluster should be chemically homogeneous at a level better than 0.02

dex 29,131. However, they appear vastly smeared out because the current precision of elemental abun-

dances provided by most massive spectroscopic surveys is 0.05 dex 181, making the accurate identifica-

tion of stellar siblings much more challenging.

I demonstrated that restricting to strong unblended lines in the current pipeline only exploits

about 10% of the spectral information (cf. Chapter 4). Although some lines are excluded because

their atomic parameters are not very well understood, some other lines are excluded merely because

they are blended. These blended lines should provide more spectral information and should yield

better precision. I have tested how well the new spectral fitting technique, which we plan to rebrand

as “The Payne”,* works by fitting real APOGEE spectra with all 19 labels – effective temperature,

surface gravity, microturbulence, C12/C13 and 15 elemental abundances.

Fig. 7.1 shows the dispersion of the open cluster M67 from its members with Teff = 4,500K −

*The philosophy and idea behind my technique resemble another technique in the field – the Cannon
– which has recently garnered much attention. But unlike the Cannon 153, which is a data-driven model, my
method “trains” on ab-initio calculated synthetic models. Since this approach is complementary to the Can-
non and is a theoretical version of the Cannon, it might be appropriate to name this method “the Payne” in
honor of Cecilia Payne-Gaposchkin, another great astronomer.
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5,000K. The orange line shows the elemental abundance estimates calculated using the Payne, and

the blue line shows the estimates from APOGEE DR13 (the latest data release). Since open clusters

should be very chemically homogeneous, the internal dispersions of their elemental abundances

are a good probe of measurement uncertainties. The figure shows that the Payne method, at least

for this limited temperature range, yields a precision of 0.03 dex, which is better than 0.05 dex from

APOGEE DR13. Without resorting to a sophisticated differential analysis, the Payne demonstrates

that open clusters, in this case, M67, are indeed chemically homogeneous to a level better than 0.03

dex. However, due to the imperfectness of synthetic models, I found that to achieve a similar preci-

sion beyond this temperature range requires a robust model of the residual as a function of stellar

parameters, i.e., we need to adjust the imperfectness of the stellar models empirically from the fit.

This is a direction that I am currently pursuing.

Besides empirically correcting stellar models by studying the residuals of the fits, a more ambi-

tious future direction that I intend to pursue is the calibration of a line list beyond the Sun and Arc-

turus. Both of these stars are hot and hence many spectral lines are missing in the current calibration

of the stellar line list. We note that the Payne can be extended naturally to fit for both the stellar la-

bels as well as the line list parameters. This may be the ideal way to explore the massive spectroscopic

datasets in hand: generating a near perfect atomic line list for synthetic stellar spectra through em-

pirical data. In practice, one possible way to do this is by adopting the linear method presented in

Chapter 4. If the atomic parameters are only slightly biased, the line list can be corrected by studying

the linear response function of each atomic parameter. In this limit, the problem of improving the

line list becomes a simple linear algebra problem and can be solved via linear regression.
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Figure 7.1: Demonstra on of the power of my new spectral fi ng technique (the Payne). I fit the members of the
open cluster M67 within the temperature range of Teff = 4,500K − 5,000K. Since open clusters are thought to
be very homogeneous, the internal dispersion of the open cluster shows the measurement uncertain es of different
methods. With just 2,000 training models in the synthe c library, as shown with the orange line, the Payne recovers
most elemental abundances with a precision of∼ 0.03 dex which is be er than 0.05 dex from the APOGEE DR13
pipeline as shown with the blue line.
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Figure 7.2: The spectroscopic Teff from the Payne is more consistent with the “ground truth” photometry Teff. We
consider a subsample of APOGEE stars that have asteroseismic data from Kepler and show the differences between
the spectroscopic Teff and the photometric Teff. The la er is es mated using the asteroseismic masses and the MIST
isochrones. We also tested that using the IRFM (infrared flux method) Teff as the photometry Teff instead does not
alter the conclusion. The le panel assumes the best-fi ng spectroscopic Teff with the Payne and the right panel
adopts Teff from APOGEE DR13. The APOGEE Teff has a prominent systema c bias with metallicity. Conversely,
Teff es mates from the Payne do not show such a trend and agree be er with the photometry Teff.
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Finally, besides achieving a better precision of 0.03 dex, perhaps another major achievement of

the Payne is that it has also potentially resolved the photometry-spectroscopy temperature discrep-

ancy seen in the APOGEE survey. To show this, I fit the APOGEE data that have asteroseismic es-

timates from the Kepler satellite. The asteroseismic data from Kepler provides a unique probe of

the temperature that is completely independent from the spectroscopic estimates. Combining the

bolometric luminosities estimated using the asteroseismic masses, the APOGEE DR13 metallicities

and the MIST isochrones43, I estimate another stellar Teff which , for simplicity I will refer to as the

“photometry temperature”.† We also checked our results remain the same if we were to use the tem-

perature calculated using the infrared flux method (IRFM). Fig. 7.2 shows the differences between

the photometry temperature and the spectroscopic temperature estimates from the Payne versus the

APOGEE DR13. The APOGEE DR13 temperature shows a prominent systematic deviation from

the photometric temperature as a function of metallicity, but this puzzling trend disappears if we fit

everything self-consistently with the Payne.

Due to its many promises, future APOGEE data releases may implement the Payne method. As

I am a member of the GALAH, APOGEE, and 4MOST surveys and have strong connections with

the Gaia-ESO and LAMOST surveys, I plan to incorporate this technique into these surveys moving

forward. A combination of the Payne and the data-driven Cannon 153,40 could be a very powerful

combination to extract the most information out of every spectrum from these surveys, homogenize

†This calculation is done by Jieun Choi. We also note that this temperature should, strictly speaking, be
called the MIST temperature because it relies on the MIST isochrones instead of an SED fitting. But we
found that the MIST temperature agrees fairly well with the IRFM temperature. For simplicity and avoid
cluttering of nomenclatures, we simply refer to it as the photometry temperature.
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the elemental abundances across different surveys and improve the atomic line list.
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7.3 Pushing the boundaries on spectroscopic ages

Another way to improve strong chemical tagging is to expand the search space beyond elemental

abundances. For example, stellar age can serve as an additional dimension for the chemical tagging

searches because stars that were born together by definition should have the same age. Increasing

the dimensionality of the search space could better resolve different disrupted clusters that might

otherwise be unresolved in a crowded lower-dimensional projection. However, measuring precise

stellar ages for giants is non-trivial. The isochrones in the Teff-log g space and the color-magnitude

diagrams for giants only span narrow dynamical ranges. Small uncertainties in the observables can

translate into substantial changes in estimated stellar ages for giants due to the lack of discriminatory

power from these methods.

Thankfully, stars only spend a short time in the giant phase and a much longer period on the

main sequence. Therefore, we can obtain precise stellar age estimates if we know the main sequence

lifetime, which is determined by the stellar mass. Measuring precise stellar masses are possible for

the giants. A recent study from Martig et al. 142 demonstrated the C/N ratio is good mass indicator

for giants because in the giant phase, stars undergo dredge ups, bringing material from the core of

the stars to the surface. The enhancement of the nitrogen abundance (at the expense of the carbon

abundance) happened during this dredging process depends on: (a) the depth of the convective layer

and (b) the details of the CNO cycle in the stars. Both of these quantities are sensitive to stellar mass

which in turns makes the C/N ratio a good mass (and hence age) indicator for giants. Also note that

in my previous studies (e.g. Chapter 3), I did not include the abundances of CNO in the chemical
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tagging searches. Even if stars born from the same cluster are chemically homogeneous, unlike other

heavier elements, the CNO abundances of these stars may be inhomogeneous as they evolve, a result

of stellar evolution and dredge ups. Measuring stellar ages using CNO thus provides a way to use

these additional, currently unused elemental abundances in chemical tagging.

Different lines in Fig. 7.3 show the C/N ratio as a function of Teff from the MIST isochrones43.

An important point here is that there is a substantial separation in [C/N] for different isochrones

showing that the C/N ratio is indeed a good age indicator for giants, in agreement with the preced-

ing discussion. Plotted on top of these isochrones are the [C/N] values of the open cluster NGC6819’s

members. The left panel shows the values estimated with the Payne and the right panel shows the

values from APOGEE DR13. Kalirai et al. 99 estimated from photometry that NGC6819 has an age

of∼ 2.5 Gyr and our spectroscopic determination agrees very well with their age estimate. Con-

versely, the APOGEE values do not coincides with the photometry age estimate and have a larger

spread, showing that the Payne estimates are not only more precise, but they are also potentially

more accurate. The better performance of the Payne is not surprising. Specifically, the abundances

of C and N are degenerate with other main stellar parameters such as Teff and log g. As we have

shown in Fig. 7.2, the APOGEE Teff is likely to be systematically biased and this problem could

affect the fitting of the C and N abundances. This result also demonstrates that it is possible to at-

tain very precise stellar ages (with an uncertainty≲ 2 Gyr) from spectroscopic data alone because the

spread of the Payne estimates for this particular cluster is tighter than the differences between the 2.5

Gyr and the 4 Gyr isochrones.

Finally, besides measuring more accurate C/N ratios, a particularly exciting prospect of the Payne
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Figure 7.3: The Payne may provide be er stellar age es mates directly from spectroscopic data alone. The solid
lines show the MIST isochrones of different ages and the data points show [C/N] and Teff of individual stars in the
open cluster NGC6819. The le panel plots the es mates from the Payne, fi ng the APOGEE spectra, and the right
panel adopts values from APOGEE DR13. Photometric data suggests that NGC6819 is an∼ 2.5 Gyr cluster 99. The
spectroscopic es mates from the Payne agree be er with the 2.5 Gyr isochrone compared to the APOGEE DR13
values, sugges ng that Payne elemental abundance es mates are likely to be more accurate.
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– and another of my ongoing projects – is to measure the C12/C13 ratio using the blended CN and

CO lines for the APOGEE sample. Similar to the C/N ratio, the C12/C13 is also a prominent age indi-

cator because C13 also gets dredged up at the expense of C12 during the giant phase. Combining the

C12/C13 measurements with the C/N measurements may make the stellar age estimates even more

precise.
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7.4 Pushing the boundaries on spectral resolution needed for surveys

In Chapter 6, I demonstrated that low-resolution spectra contain the same amount of spectral in-

formation as high-resolution spectra, given the same exposure time and the same number of CCD

pixels. I showed that it is possible to measure>20 individual abundances even with low-resolution

R=2,000–6,000 spectra with the Payne. If this result holds, a reanalysis of the abundantly avail-

able low-resolution spectra will open an entirely new avenue for chemical tagging because they

will increase the sample size for chemical tagging significantly. That said, low-resolution spectra

are certainly more susceptible to the systematics of stellar model spectra, which are often far from

perfect. Furthermore, one also has to overcome the problem of determining the continuum accu-

rately for low-resolution spectra. In Chapter 6, I only showed that the Payne works for simulated

stellar spectra, but the further step of feasibly extracting multiple (>20) elements from real observed

low-resolution spectra is the key to settle these concerns.

Recent work from Casey et al. 41 showed, encouragingly, that it is possible to extract seven ele-

ments with RAVE spectra at R = 6,000 using data-driven models with the Cannon. While the

number of elements in their study is limited because the RAVE survey has a short wavelength cover-

age, their result vividly demonstrates that the idea presented in Chapter 6 can work, at least for the

data-driven models. At this point, it might be useful to remind the readers the differences between

the Cannon and the Payne (our approach). The Payne aims to fit observed spectra with ab-initio

calculated model spectra, whereas the Cannon selects a subset of “standard” stars and uses the ob-

served spectra of these standard stars to be the model spectra. Since the Cannon assumes observed
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spectra as model spectra, almost by definition, the major advantage of using the Cannon is that the

model spectra are nearly free of systematics – there is no ab-initio calculation of models from first

principles involved. Although the idea presented in Chapter 6 has shown to work in the limit of

data-driven models, the data-driven approach has serious shortcoming too. Since data-driven mod-

els only “transfer” labels, the Cannon will suffer from whatever biases that the training set has. For

example, unlike the Payne, it cannot solve the spectroscopic-photometry Teff bias that we have seen

in the right panel of Fig. 7.2 – if the training set shows this systematic trend, the inferred stellar la-

bels for the testing set will show the same trend. Therefore, showing that we can obtain> 20 using

ab-initio calculated models with the Payne is still an important next step.

In particular, I will continue to collaborate with Charlie Conroy and use the Payne to fit low-

resolution spectra of the Gaia benchmark stars currently being collected with the FAST spectro-

graph. Since these Gaia benchmark stars are well studied, I can then compare the resulting abun-

dance estimates with detailed abundances derived from high-resolution spectra for each of these

stars. In addition, I will collaborate with Dan Weisz at Berkeley to demonstrate the efficacy of this

idea with the rich and large set of low-resolution archival observations of stars taken with the Keck-

DEIMOS spectrograph over the past two decades.
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7.5 Refining chemical tagging with kinematic data from Gaia

Finally, even with more sample and more precise abundances, chemical tagging signals can still be

difficult to interpret if we do not clean up the background contaminating stars. Recall that an over-

density in the elemental abundance space can have many contributions from the background inter-

lopers. To clean up the background, first it is important to understand what stars contribute to the

background. In Chapter 2, I showed that the strongest chemical tagging signals come from “in-situ”

star clusters – star clusters that are born within the Solar annulus. As shown in Fig. 7.4, in contrast,

ex-situ star clusters (born outside the Solar annulus) generally have fewer than ten stars per cluster

in the sample. Stars from ex-situ clusters are noise in clump-finding and prohibit chemical-tagging.

In-situ clusters tend to have a higher sampling rate than ex-situ clusters because most of the cluster

members are still within the Solar annulus. The implication from my simulations is that if we can

exclude ex-situ stars by using the orbital information, for example, from Gaia, the resulting chem-

ical tagging signals will be stronger. This section is dedicated to argue that there should be enough

chemical-kinematics information to achieve just that.

It is also important to note that while it is critical to collect a large sample of stars such that we

will obtain a sizable sample per cluster, a larger sample size will not automatically resolve the “clump-

to-background” ratio problem discussed above. As we collect more stars, both the signals and the

background increase in about the same proportion (cf. Chapter 2). Exploring the connection be-

tween the chemistry and the kinematics of the stars may be the only way to solving the background

problem. Gaia is currently measuring positions and velocities of a billion Milky Way stars, and the
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Figure 7.4: Including kinema c informa on greatly reduces the background of contamina ng stars. Le panel: Sim-
ula ons (with radial migra on) of how many stars are sampled per disrupted star cluster in a 106 stars survey. We
define a cluster to be in-situ if it forms 5–11 kpc from the Galac c center, and ex-situ otherwise. We sample many
more stars per cluster from in-situ clusters because most cluster members are s ll within the Solar annulus. Ex-situ
clusters typically contribute fewer than ten stars and so only contribute to a sea of background contamina ng stars.
Right panel: With kinema c informa on from the Gaia data, we can significantly reduce ex-situ stars in the sample.
In this regime, we will collect more than ten stars for each cluster and chemical tagging signals will be much stronger.
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full catalog will become available in a year’s time (in late year 2017 or early year 2018). Despite its

importance, detailed modeling of how chemical tagging can benefit from kinematic data is mostly

absent. Although stars are now phase-mixed, not all information is lost. Some quantities such as

angular momentum and integrals of motion of the stars are conserved in a slowly varying galactic po-

tential and can still betray the origins of the stars. For example, stars that are born ex-situ may have

more eccentric orbits. The eccentricity of these orbits will manifest itself in the integrals of motion.

Furthermore, stars that were born in the inner galaxy and migrated out to the Solar annulus may

also have different chemical signatures due to the metallicity gradients of the Milky Way disk.

To test this idea, I have begun a collaboration with Phil Hopkins and Andrew Wetzel at Caltech

and the Carnegie Observatories to explore their extremely high-resolution latte simulation. Al-

though this simulation is not an exact perfect replica of the real Milky Way, the goal of this explo-

ration is to show that there is an enormous amount of information from the kinematics and the

chemistry of the stars that shows tell-tale signatures of the stellar birth radius. A simulation is a pow-

erful tool in this case because the birth radius from the Galactic center of each star particle is known

beforehand. It allows us to explore whether or not we can find an optimal mapping that relates the

current stellar chemical and kinematics properties to the birth radius properties.

One way to find such a function is through neural networks, a commonly used machine learning

technique well-suited to search for a non-parametric mapping from a set of properties to another.

I have trained a neural network to map the kinematics properties (6D phase space) and elemental

abundances (C, N, O, Ne, Mg, Ca, Si, S, Fe) at z = 0 in the latte simulation to a in-situ/ex-situ

indicator. For the latter, I assigned 1 to a star particle if it is born in-situ and 0 otherwise. I used half
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of the star particles within 3 kpc from the Sun as the training set and cross-validated the other half

as my testing set. For each testing star particle, we can then assign an “in-situ” probability inferred

from the neural network – i.e. how likely this testing star particle is born within the Solar annulus

given its current properties. The y-axis in Fig. 7.5 shows the remaining fractions of the in-situ or

ex-situ populations if we make an in-situ probability threshold cut shown in the x-axis. The plot

demonstrates that, for example, if we make a cut with an in-situ probability threshold of 20% (the

dashed line on the left), we will exclude 90% of the ex-situ stars while only scarifying 40% of the

in-situ stars. And if we set the in-situ probability threshold to be 40% (second dashed line), we will

clean up 97% of the ex-situ stars while discarding only 60% of the in-situ stars. I also checked that

the neural network is indeed picking up information about the integrals of motion and the metal-

licity gradients and use them to discriminate the ex-situ stars from the in-situ stars, confirming my

prior intuitions.

The exact numbers mentioned above are not important because they are likely model-dependent.

The bottom line is that there is indeed a substantial information about the stellar birth radius en-

coded in the chemical and kinematic properties. As a next step, I plan to explore the empirical data

from APOGEE and build a hierarchical Bayesian model for stellar birth radius. More precisely, us-

ing the APOGEE data, Bovy et al. 32 have constructed the stellar surface density of the Milky Way as

a function of Galactocentric radius,Σ∗(R) for populations with different [α/Fe]–[Fe/H] and are

constructing the same for populations with different age–[Fe/H] (J. Bovy, priv. comm.). I plan to

extend my models in Chapter 2. Given a star formation rate as a function of Galactocentric radius

and cosmic time, SFR(R, t), a hierarchical Bayesian model can be built to constrain the radial migra-
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Figure 7.5: Demonstra on that current phase space proper es and elemental abundances of stars contain infor-
ma on about the birth radius of the stars. A neural network is trained to map the 6D phase space proper es and
the nine elemental abundances from the z = 0 snapshot of the latte simula on to the probability which shows
whether or not a star is born “in-situ” (i.e., within the Solar annulus). I trained the neural network using half of the star
par cles within 3 kpc from the Sun and cross-validated with the other half. The y-axis shows the remaining frac on
of the in-situ or the ex-situ popula ons of the tes ng set if we assume an in-situ probability threshold cut shown in
the x-axis. In par cular, the two dashed lines illustrate that we can exclude 90% (97%) of the ex-situ stars by discard-
ing only 40% (60%) of the in-situ popula ons.
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tion at different radii and times such that the resultingΣ∗(R, t)matches the empirical profiles for

various populations. The best-fitting Milky Way model can then be used to provide a birth radius

probability distribution function for each star with its current kinematics and chemical properties.

Such a model can be very valuable in the Gaia era: not only it will exclude background contami-

nating stars in the chemical tagging searches, it can also make future chemical tagging surveys more

efficient by allowing for preselection of stars that were likely born in-situ.
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7.6 Final remarks

In this thesis work, I have discussed the opportunities of strong chemical tagging, the difficulties

that this technique faces and ways to mitigate these challenges. In the limit where strong chemical

tagging cannot be realized, I presented an alternative approach: using the statistical properties of

the elemental abundance space (cf. Chapter 3). I showed that even in the limit where clusters are

not entirely resolved in the elemental abundance space, its clumpiness nevertheless contains much

information about the Milky Way’s past. In this thesis, for the simplicity of arguments, I presented

these two regimes as if they are two entirely different forms of chemical tagging. But in practice,

there should be a continuous spectrum between these two versions of chemical tagging. In fact, to

complete the picture, one should also include the “population-level” chemical tagging.

In the limit where the sampling rate is low, and the measurement precision of elemental abun-

dances is not exquisite, the only form of chemical tagging that is viable is the “population-level”

chemical tagging. As we have discussed in the introduction, elemental abundances have shown to

be a powerful tool to separate stars from the thin disk, the thick disk, the halo and the dwarf galax-

ies. Population-level chemical tagging is largely insensitive to the sample size. Therefore, it is a well-

established method that has shown to work and has been the dominant form of chemical tagging in

the last decade.

But as we are now moving towards sample sizes of 105 − 106 stars, we should collect a sizable

number of stars from disrupted massive star clusters in the Milky Way. Hence, if these clusters ever

existed, their effect should be detectable, at least statistically, in the elemental abundance space (cf.
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Chapter 2–3). The statistical-level chemical tagging goes beyond exploiting only the global trend

of elemental abundances. Instead, it studies the local properties (e.g., clumpiness) of the elemental

abundance space. As more and more data will soon become available, more effort should be invested

to further develop statistical-level chemical tagging techniques. This is a largely unexplored area of

research in Galactic archaeology, and it may contain many surprises.

The ultimate goal of chemical tagging is to fully resolve disrupted clusters in the elemental abun-

dance space, i.e., strong chemical tagging. As I have discussed at length in this thesis, the realization

of strong chemical tagging will require more than just a large sample size. It also requires very pre-

cise elemental abundances and refining the signals by excluding the sea of background stars. An

important thing to keep in mind is that in practice, we are always somewhere between statistical-

level chemical tagging and strong chemical tagging. The Milky Way is a very complex system with

many chemodynamics processes in play. It is impossible to claim a reconstruction of disrupted clus-

ter without forward-modeling the Milk Way. Any overdensity in the elemental abundance space

has to be interpreted with a proper Milky Way model that includes an exact characterization of the

data selection function and the measurement precision. In a way, strong chemical tagging should be

regarded as an optimal version of statistical-level chemical tagging, instead of a separate concept.

To put all these together, looking for stellar siblings in the elemental abundance space is like look-

ing for twins in a big room.‡ The chance of finding two people having the same birthday in a big

room is non-negligible even though they might not be twins. These interloping pairs resemble the

‡This analogy is modified from a comment made by David W. Hogg in the conference summary of the
Galactic Archeology and Stellar Physics conference in Canberra on Nov 21–25th, 2016.
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background contaminating stars in chemical tagging. But even in this limit, one can still learn a lot

about the number of twins – if we can properly quantify the number of people in the room (se-

lection function) and the number of days in a year (chemical evolution of the Milky Way), we can

estimate the number of interloping “twins” that are mistaken by chance. This idea sets the basis

for statistical-level chemical tagging. One way to refine the signals is via measuring a more accurate

“birth time” instead of a “birthday”. As we improve (and can better characterize) the precision of the

birth time, we will be able to make stronger statements about the number of real twins, eventually

moving toward the regime of strong chemical tagging. The contribution of my thesis work has been

to point out that we can study a lot about twins even with the presence of interloping pairs through

properly modeling the Milky Way. But more work has to be done. The challenge that lies ahead is

to measure the birth time more precisely (more precise elemental abundances), build a better demo-

graphic model of the population (in-situ/ex-situ stars) and understand better how many days are

there in a year (a better chemodynamical Milky Way model). Achieving these three criteria will hope-

fully propel us to the strong chemical tagging limit in the near future where each pair that we find

has a reasonably good chance of being real twins.
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