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EXPLORATORY APPROACH OF DEVELOPING BIOMARKERS FOR LINKING 

SUB-LETHAL NEONICOTINOIDS EXPOSURE AND HEALTH RISKS 

 

ABSTRACT 

Since the development of neonicotinoids, their usage has been growing dramatically in pest 

control while limited studies focused on their impact on human exposure. With a concern of the 

systemic property of neonicotinoids and their cumulative high frequency of usage, this dissertation 

thesis aimed to focus on the following three aspects: (1) human exposure assessment, (2) a novel 

biomarker, and (3) the associated metabolic pathways of cumulative neonicotinoids exposure at 

sub-lethal levels. 

In Chapter 1, we estimated the average daily intake distributions of neonicotinoids residues 

in fruit and vegetable consumptions in the U.S. population using residues data from the US 

Congress Cafeteria study and USDA Pesticide Data Program, and consumption data from the 

NHANES surveys. We integrated residues of six neonicotinoids into imidacloprid-equivalent 

exposure (IMIRPF) based on their relative toxicity compared to imidacloprid. We found the average 

daily intake distributions were generally below the regulatory standard, chronic reference dose 

(cRfD) while we discussed on limitations regarding the comprehensive inclusion of dietary 

exposure categories, the precision of analytical methods used, and the potential revision of the 

stringency of current regulatory levels based on novel biomarkers. 

In Chapter 2, we identified increasing relative mitochondrial DNA copy number 

(RmtDNAcn) as a potential biomarker to reflect sub-lethal neonicotinoids exposure in a honeybee 
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model. Even without large enough samples to declare statistically significant associations, we 

found higher levels of RmtDNAcn in later-brood generations within a colony and in bees fed with 

neonicotinoids. Additionally, we found that neonicotinoids exposure and increasing RmtDNAcn 

were related to faster onset of bee disappearance and occurrence of hives’ mortality over the winter. 

In Chapter 3, we explored energy metabolism related pathways that could help explain the 

influence of cumulative sub-lethal neonicotinoids treatments and increasing RmtDNAcn levels in 

honeybees. Overall, we detected statistically significant abundance changes in metabolites due to 

biological aging that are aligned with findings of previous literature. We also found perturbation 

of metabolites in the TCA cycle and glutathione metabolisms associated with neonicotinoids 

treatments and change in RmtDNAcn levels. Future biological research on neonicotinoids should 

focus on these metabolites to validate our findings. 
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INTRODUCTION 

Neonicotinoid (neonic), as a group of systemic insecticides, have become the most 

commonly used insecticides globally since late 1990’s with growing usage expected. With their 

systemic property, neonics could be translocated to all parts of a plant once applied, regardless of 

the application methods.1,2, 3 In addition, the application of neonics in the seed treatment 

technology has also led to the large-scale and rapid increase uses in field crops.4 These resulted in 

neonics residues distributed within whole plants from insect damage while the easily applied 

application also brought abundant residues to the environment, and high frequency and cumulation 

of exposure to non-target insects and human, which triggered my interest in exploring exposure, 

novel biomarker, and intermediate outcomes of neonicotinoids exposure in both public and 

environmental health settings. 

In Chapter 1, we started by exploring the exposure and risk associated with neonics dietary 

intakes in human. Although neonics are generally considered less toxic in humans, increasing 

attention of neonics in human exposure and potential adverse health effects was brought after 

observation of acute and chronic toxicity cases in epidemiological studies. With this in mind, we 

demonstrated a model simulation methodology to estimate the integrated daily dietary intakes of 

six neonics in fruits and vegetables consumed by the U.S. population using residue data collected 

from US Congress Cafeteria study (USCC) and USDA, and food consumption data from 

NHANES 2011 – 2012. We utilized the relative potency factor approach to integrate six neonics 

into a single metric with respect to the relative toxicity of those neonics, and then compare the 

estimated total neonic dietary exposure distributions with the current chronic reference dose (cRfD) 

for the reference neonic imidacloprid.  
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Along with the demonstration of human exposure levels in Chapter 1, we also reviewed 

the mode of action of neonics, which is known as their agonism on the nicotinic acetylcholine 

receptors (nAChRs). Although nAChR of invertebrates generally had with higher affinity to 

neonicotinoids than mammalian nAChR,1, 2, 5 we were not satisfied with the argument that neonics 

are not toxic in humans without consideration of other plausible toxicological mechanisms. As 

neonics have also been shown to associate with the occurrence of colony collapse disorder (CCD), 

refers to the phenomenon of massive disappearance of honeybees during winter.6 Until now, the 

cause of CCD remains unclear while has been linked to factors including pesticide use, habitat 

loss, and parasites, etc. 1, 7, 8 Beyond all possible factors, one main hypothesis of neonics exposure’s 

association with CCD lied in the lack of sufficient ATP generation for bees’ high energy-

demanding activities and thermoregulation during the winter due to neonics exposure,9-11 in which 

study has shown that imidacloprid could inhibit respiration, influence electron transit chain (ETC) 

and reduce the generation of ATP dose-dependently in both thorax and head.9  We therefore 

suspected that mitochondrial dysfunction could be a potential mechanism to explain more 

unknown about neonics not only in honeybee, but also in human exposure. These triggered us to 

further investigate the mechanisms of mitochondrial dysfunction using new biomarker (in Chapter 

2) and in a more comprehensive metabolic pathway analyses (in Chapter 3). 

In Chapter 2, we proposed relative mitochondrial DNA copy number (RmtDNAcn) as a 

novel biomarker to detect mitochondrial dysfunction at an earlier stage with the knowledge of its 

association with mtDNA damage12. We evaluated whether chronic sub-lethal exposure to neonics 

could lead to increase in RmtDNAcn in an adult honeybee experiment. With longitudinal collected 

samples from hives with (imidacloprid and clothianidin) and without neonics administration, we 

were able to study the levels of RmtDNAcn across subsequently brood generations and whether 
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or not these levels were influenced by sub-lethal cumulative neonics treatments. We further 

analyzed the association of RmtDNAcn levels with onset risk of bee disappearance and mortality 

risk over the winter as downstream outcome measurements of mitochondrial dysfunction. These 

analyses enabled us to explore whether the RmtDNAcn increased in later brood generations due 

to queen’s aging and neonics treatments, and whether the onset of bee disappearance and mortality 

in neonics-treated hives occurred earlier.  

In Chapter 3, we conducted metabolomics analyses with a selection of pathways associated 

with energy metabolism as the major pathway neonicotinoids influence on with the hypothesis for 

CCD stated above. We evaluated the change of metabolite abundance across the subsequently 

brood generations from the same queens collected in Chapter 2. We linked the changes of 

metabolite abundance with the aging of queens, chronic sub-lethal neonicotinoids exposure, and 

the increase in RmtDNAcn associated with both aging and treatment effects. We specifically 

focused on pathways closely related to the energy metabolism and identified them using KEGG 

PATHWAY Database. At the end of this chapter, we’d give hypothetical metabolic mechanisms 

as explanation of our findings in changing metabolite abundance among later-brood generations 

and different treatment groups.
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CHAPTER 1   

Population-based Daily Dietary Intake of Neonicotinoid Insecticides through Fruit and 

Vegetable Consumption in the U.S. 

 

Chi-Hsuan Chang1,  

David MacIntosh1,  

Bernardo Lemos1,  

Quan Zhang 1,2,  

Chensheng Lu1, † 

 

1Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 

Massachusetts 

2College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, China 
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Abstract 

Neonicotinoids have become the most commonly used insecticides in agriculture globally 

in the past 20 years. However, very limited data related to human dietary intake of 

neonicotinoids is available. In this chapter, we aggregated the individual neonicotinoid 

intakes using the relative potency factor approach into a single metric (IMIRPF) representing 

the dietary intakes of total neonicotinoids in relate to imidacloprid for each food item. We 

then estimated population-based average daily intake (ADI) of neonicotinoids through fruit 

and vegetable consumption in the U.S. using residue data collected from US Congress 

Cafeteria study (USCC) and USDA, and food consumption data from NHANES 2011 – 

2012. Among USCC study analyzed samples, squash (427.2 ng/g), tomatoes (132.5 ng/g) 

and peppers (88.3 ng/g) had the highest average IMIRPF. Among the 15% of USDA/PDP 

samples that were detectable of at least one neonicotinoid, spinach had the highest average 

IMIRPF (569.2 ng/g), followed by baby food-peas (482.5 ng/g) and cherries (401.8 ng/g). 

Although the estimated ADIs using both residue datasets were below the current chronic 

reference dose (cRfD) for imidacloprid, we need to use more precise analytical methods to 

analyze more neonicotinoid residues in more diverse foods in order to facilitate the future 

dietary exposure and risk assessments of neonicotinoids.  
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Introduction 

Neonicotinoid (neonic) is a group of systemic insecticides that includes acetamiprid, 

clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam. The 

nature of their systemic property leads to universal translocation of neonics to tissues of 

the applied plants regardless of the application methods.1 As a result, neonics protect the 

whole plant from insect damage by distributing the active ingredients to all tissues of the 

plant, including the edible components.  

Neonics have gradually become the most commonly used insecticides around the 

world since their introduction in the late 1990’s. They accounted for approximately 24% 

and 27% of the global insecticide market in 2008 and 2010, respectively, with continuous 

growth in their use expected.2, 3 The invention and adoption of neonics in the 1990s were 

due to insects’ resistance to the dominant classes of pesticides of carbamates, 

organophosphates, and pyrethroids used at that time.1, 13 In addition, the application of 

neonics in the seed treatment technology has led to the large-scale and rapid increase uses 

in field crops (e.g., soybeans and maize).4 Two neonic compounds are in particularly wide 

use; imidacloprid and thiamethoxam, which are registered for use on 140 and 115 crops 

worldwide and accounted for about 41.5% and 23.8% of the neonic sales in 2009, 

respectively.3  

Previous and current research on neonics mainly focuses on their toxicological 

effects on invertebrates. The known mode of action of neonics, which is similar to nicotine, 

is to function as agonists on the nicotinic acetylcholine receptors (nAChRs).1, 2, 5 Although 

insect nAChR has a cationic subunit that can interact with the nitro- or cyano-end of 

neonics with higher affinity, mammalian nAChR does not.1, 2, 5 With this perspective in 
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mind, neonics are generally considered less toxic in humans and thus very few studies have 

focused on human exposure to neonics and the potential adverse health effects.14  

In this chapter, we demonstrated a model simulation methodology that allows for 

the estimation of daily dietary intakes of total neonic in fruits and vegetables that are 

consumed by the U.S. population as they are important crops of neonics residues for human 

dietary exposure.3 We utilized the relative potency factor approach15, 16 to integrate six 

neonics into a single metric with respect to the relative toxicity of those neonics, and then 

compare the estimated total neonic dietary exposure distributions with the current chronic 

reference dose (cRfD) for the reference neonic imidacloprid. Figure 1 details the approach 

taken for this chapter.  

Figure 1. Schematic Display of the Research Design. 
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Materials and Methods 

Neonics Residues in Foods. We obtained residue data for six neonics from two sources; 

the U.S. Congress Cafeteria (USCC) study17 and data published by the U.S. Department of 

Agriculture (USDA), Pesticide Data Program (PDP).18-21 We supplemented residue data 

from the USCC study to expand the types of fruit and vegetable items that are reported by 

the USDA/PDP in order to better reflect potential exposures to neonics in foods consumed 

by participants of NHANES.  

For the USCC residue data, a total of 64 samples including seven fruits (apple, 

cantaloupe, cranberry, grapes, honeydew, melon and strawberry) and seven vegetables 

(broccoli, cilantro, corn, cucumber, lettuce, pepper, spinach, and tomato) were analyzed 

for seven neonics (acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, 

thiacloprid and thiamethoxam) and flonicamid in 2014.17 Flonicamid and nitenpyram were 

excluded from the RPF calculation due to the uncertain classification as a neonic and the 

lack of residue/cRfD data, respectively. For the USDA/PDP dataset, we extracted six 

neonics (no nitenpyram) from a total of 39,159 samples including 22 fruits and 29 

vegetables (Table 1). USDA/PDP was initiated in early 1990s to measure pesticide 

residues in foods and to support U.S. Environmental Protection Agency (EPA)’s review of 

the maximum residue limits or tolerances for dietary exposure assessment. Fruit and 

vegetable samples were collected at volunteered terminal markets and large chain store 

distribution centers (approximately 2,400 sites granted access and provided information in 

2011 to 2014). PDP’s operation procedures were developed to ensure that the samples are 

randomly selected from the national food distribution system to reflect what is typically 

available to the consumers while also with an emphasis on foods consumed by infants and 
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children. The same commodities were cycled through PDP approximately every five 

years.18-21 

Residue analysis. The limits of detection (LODs) for individual neonic analyzed by the 

USCC study and USDA/PDP were listed in Table 1. All non-detectable (ND) residue 

concentrations were substituted with one half of the LOD for model simulation purpose.22 

We used the relative potency factor (RPF) approach15, 16 to integrate six neonics in a 

vegetable or fruit sample into a single measurement of imidaclopridRPF (IMIRPF)23 by using 

the respective chronic reference dose (cRfD), as shown in Table 1. As we adopted cRfD 

as the comparison metric of relative toxicity of neonics, this approach was also equivalent 

to the integration of comparing the margin of each neonic exposure to the corresponding 

cRfD. We chose imidacloprid as the reference neonic because it is the most widely used 

and studied neonic among all for risk communication purpose. Specifically, we used the 

following equation to calculate IMIRPF (the imidacloprid-equivalent total neonic) for each 

fruit or vegetable sample: 

   IMIRPF = ∑k RPFk x neonick (ng/g) 

(Equation 1) 

where k represents the specific neonics. 

Dietary Consumption Data. We used fruit and vegetable consumption data collected by 

the Centers for Disease Control and Prevention (CDC), National Health and Nutrition 

Examination Survey (NHANES) 2011-2012, which was the latest publicly available 

dataset online when we conducted this chapter in 2016. NHANES is designed to examine 

the health and nutritional status of the U.S. population excluding those residing in nursing 

homes, members of armed force, institutionalized persons, or U.S. nationals living abroad. 
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In total, NHANES 2011-2012 obtained dietary recall information from 8,519 individuals, 

7,605 of whom completed both days of the two 24-hr dietary recall surveys. We included 

those 7,605 participants in our usual intake (UI) analyses based on the NHANES sampling 

weights and the scope of data analyses. 

Long-term Usual Consumption of Fruits and Vegetables. In order to select nationally 

representative participants, NHANES uses a multistage probability sampling design in 

which each participant in the NHANES is weighted differently according to the sampling 

process as well as the questionnaires or biological examination provided. NHANES assigns 

a sample weight to each participant which represents the number of people in the 

population represented by such participant in NHANES, reflecting the unequal probability 

of selection, non-response adjustment, or adjustment to independent population controls. 

These weights were calculated from the base weight adjusting for non-response and post-

stratification adjusting to the 2000 U.S. Census population totals. We used WTDR2D for 

analyses on both Day 1 and Day 2 dietary data. This two-day weight was constructed for 

the 7,605 participants by taking the Day 1 weights (WTDRD1) and further adjusting for (a) 

the additional non-response for the second recall and (b) for the proportion of weekend-

weekday combinations of Day 1 and Day 2 recalls. 

We used SAS®  9.4 in the application of the validated National Cancer Institute 

(NCI) method24, 25 to estimate the long-term usual intake (UI), which is defined as the long-

term average daily consumption (g/day) in the NCI method. In addition, consumption data 

is usually right-skewed rather than symmetric since values can never be negative. 

Therefore, we log-transformed the two 24-hr recalls approximating a normal distribution 

in order to estimate long-term usual consumption of fruit and vegetables by using the NCI 
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method24, 25, including both the probability of consuming a specific food item and the 

amount (gram) of such consumption in a day. In brief, NCI method fits the following two-

part model with random mixed-effects for each vegetable/fruit item: 

 logit(pij) = β0 + ui  

(Equation 2) 

 log(amountij) = β0
* + ui

* + eij
*    eij

* ~ N(0, σe*
2) 

(Equation 3) 

 UIf (g/day) = pf x amountf    f for individual food item 

(Equation 4) 

β0 and β0
* are the global intercepts for probability and amount models, respectively. ui and 

ui
* are the person-specific random effects and eij

* is the within-person variations in the two 

24-hr recalls under the two-part model. Both models are fit using the NCI-established SAS 

macro, MIXTRAN, which outputs the parameter estimates for both the probability and the 

amount models. The DISTRIB macro used the results from the MIXTRAN macro to 

estimate the usual food intakes to calculate percentiles and cut points of the usual intake 

distribution. We used R statistical software (3.2.4) for all other analyses. 

Average Daily Intake (ADI) Estimation of Imidacloprid-equivalent Total Neonic 

(IMIRPF). To capture how the residue levels of each food item, as well as how the dietary 

consumption would contribute to the overall ADI distribution, we performed the following 

steps: 

1. Residue: We randomly sampled 1000 IMIRPF with replacement from both USCC and 

PDP residue datasets to estimate the corresponding 5th, mean, and 95th percentile of the 

residues for each food item.  
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2. Consumption: To improve the precision of the estimated UI distributions, we used the 

DISTRIB macro to simulate 100 pseudo-persons’ UI of each food item for the 7,605 

NHANES participants with different simulated person-specific effects.  

3. ADI estimation: We combined the residue and consumption datasets by each food item 

for every NHANES participants. We then calculated the cumulative distribution of 

IMIRPF estimated ADI, using the following equation, based upon the individual 

participant’s weights (WTDR2D) under different residue levels (5th, 95th percentile and 

mean). 

ADI (ng/kg/day) = ∑f IMIRPF_f (ng/g) x UIf (g/day) x Exposure Duration (year) / BW (kg) 

x Average Lifetime (year)         

(Equation 5) 

Specifically, f is an individual fruit or vegetable item, UIf is the long-term usual intake of 

the specific food item f, and BW is each participant’s body weight (if missing, we used the 

average body weight of the participants who have the same characteristics, household 

income levels, gender, age groups, race and ethnicity, and adult education attainment as 

the body weight of such participant). The exposure duration is approximately the same as 

the average lifetime since the interest of exposure is for daily dietary consumption.  

Sensitivity Analysis. We conducted sensitivity analyses on commonly sampled fruit and 

vegetable items in order to determine the magnitude of uncertainty of results originated 

from: 

1. The management of ND data: We have considered different methods to manage the 

ND data in which some were similar to method used by MacIntosh et al. (1996).22 

Rather than the original treatment (replacing ND with one-half of the LOD), we 
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also replaced all ND values with 0, or random variables sampled from a uniform 

distribution ranging from 0 to the given LOD of the respective analytical method.   

2. The inclusion of samples without repeated residue measurements. For instance, 

squash in the USCC study was not included in the data analysis due to the lack of 

repeated samples to capture its distribution. 
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Results and Discussion 

Table 1 shows the calculated RPFs for neonics using the relative toxicity of 

individual neonics to that of imidacloprid. For the 64 vegetable and fruit samples that the 

USCC study analyzed, the overall frequency of detection for at least one neonic (not 

including nitenpyram) was 91%. Thiamethoxam was the most frequently detected neonic 

(61%), followed by imidacloprid (58%), clothianidin (36%), acetamiprid (33%), 

dinotefuran (27%), and thiacloprid (6%). Among all analyzed food items, tomatoes 

contained the highest average level of clothianidin (9.1 ng/g), dinotefuran (18.9 ng/g), and 

imidacloprid (8.3 ng/g). Apples contained the highest average level of acetamiprid (19.1 

ng/g); squash contained the highest level of thiamethoxam (43.1 ng/g); and, peppers 

contained the highest level of thiacloprid (0.2 ng/g). Overall, squash (with only one sample) 

had the highest average of IMIRPF (427.2 ng/g), followed by tomatoes (132.5 ng/g), peppers 

(88.30 ng/g), and honeydews (54.9ng/g).  

For the 36,167 fruit and vegetable samples that we extracted from USDA/PDP 2011 

to 2014 datasets, the overall detection rate of at least one neonic was 15%, substantially 

lower than that of the USCC study. Cherries were most frequently detected with neonics 

(94%), followed by apples (59%), strawberries (47%), and peppers (47%). Imidacloprid 

was the most frequently detected neonic (7%) among those fruits and vegetables, followed 

by acetamiprid (5%), thiamethoxam (3%), dinotefuran (1%), and clothianidin (1%). 

Thiacloprid was the least frequently detected among the six neonics in both residue datasets. 

Hot peppers contained the highest average level of acetamiprid (40.3 ng/g) and dinotefuran 

(41.4 ng/g); onions contained the highest average level of clothianidin (23.3 ng/g) and 

thiamethoxam (20.4 ng/g); and cherries contained the highest average level of imidacloprid 
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(32.1 ng/g) and thiacloprid (12.2 ng/g). Overall, spinach had the highest average IMIRPF 

(569.2 ng/g), followed by baby food - peas (482.5 ng/g), cherries (401.8 ng/g), baby food 

- carrots (378.2 ng/g), and hot peppers (362.6 ng/g). 

Table 2 shows the summary estimates of long-term UI (g/day) using NHANES 

consumption 2011-2012 data. For the USCC dataset, we included seven out of 12 

vegetables and all 6 fruits in the final analysis but excluded squash because of the lack of 

multiple residue measurements and edamame due to no consumption as reported by the 

NHANES participants in the two 24-hr recalls. We also excluded cilantro, kale, and 

zucchini as the result of a SAS macro warning of unstable estimation because of rare 

consumption (less than 10 participants had two 24-hr recall consumption). For the 

USDA/PDP dataset, we included 22 out of 29 vegetable commodities and 17 out of 22 fruit 

commodities in the final analysis. We excluded cherry tomatoes, infant formula (soy-

based), and soybean grain from all analyses because no NHANES participants consumed 

those items in the two 24-hr recalls. Beets (canned), mushrooms, papaya, peaches (baby 

food) and raspberries (fresh and frozen) were also excluded by the NCI method due to less 

than 10 participants reported consumptions of those items. Because of the right skewness 

of the usual intake (UI) distribution, we reported both mean and median of UIs for 

comparisons. Tomatoes (11.9 & 7.1 g/day) and lettuce (10.8 & 7.9 g/day) had the highest 

mean and median UI of vegetables, respectively, whereas orange juice (35.3 & 9.7 g/day) 

and bananas (18.6 & 8.2 g/day) had the highest mean and median UI among all fruits, 

respectively. 
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Table 1. Relative potency factors (RPF) for neonicotinoids based on relative chronic reference doses (cRfD). 

Neonicotinoid 
NOAELa 

(mg/kg/d) 
Study and observation endpoints Species 

cRfDb  

(mg/kg/d) 
RPFc 

LODd (ng/g) 

 Refg 

PDP USCC 

Acetamiprid 

(U.S. EPA 2012) 
7.1 

Chronic/Oncogenicity: Decreased body weight and 

body weight gains in females and hepatocellular 

vacuolation in males. 

Rat 0.071 0.8 1 – 160 0.03 26 

Clothianidin 

(U.S. EPA 2005) 
9.8 

2-Generation reproduction: Reduction in mean 

body weight gain; delayed sexual maturation; 

decreased absolute thymus weights in the 

first filial generation (F1) pups. Increase in 

stillbirths in both generations 

Rat 0.0098e 5.8 1.5 – 90 0.03 – 0.15 27 

Dinotefuran 

(U.S. EPA 2005) 
20f Chronic: Decreased thymus weight in males Dog 0.02e 2.9 3 –100 0.03 – 0.15 28 

Imidacloprid 

(U.S. EPA 2005) 
5.7 

Chronic/Oncogenicity: Increased incidence of 

mineralized particles in thyroid colloid in males. 
Rat 0.057 1.0 1 – 56 0.03 – 0.15 29 

Thiacloprid 

(U.S. EPA 2003) 
1.2 

Chronic: Hepatic hypertrophy and cytoplasmic 

change and thyroid hypertrophy and retinal 

degeneration. 

Rat 0.004e 14.2 1 – 10 0.03 30 

Thiamethoxam 

(U.S. EPA 2000) 
0.6 

2-Generation reproduction: Increased incidence 

and severity of tubular atrophy in 

testes of F1 generation males. 

Rat 0.006 9.5 1 - 80 0.03 31 

aNOAEL, no observed adverse effect level. 
bcRfD, U.S. EPA derived chronic reference dose. 
cRPF, relative potency factor calculated based on cRfD of each neonic normalized by the cRfD of imidacloprid. 
dLOD, limit of detection. 
eClothianidin: Additional 10x for the absence of developmental immunotoxicity study; Dinotefuran: Additional 10x for the extrapolation from LOAEL to 

NOAEL; Thiacloprid: Additional 3x as safety factor (SF) for the lack of morphometric assessments for the low- and mid-dose group animals in the developmental 

neurotoxicity study. 
fLOAEL, lowest observed adverse effect level.  
gReference.
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Table 2. Estimated long-term usual intake (UI) from NHANES 2011-2012. 

  Food Items 
Long-term Usual Intake (g/day) 

Mean 5th Median 95th 

Vegetables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Avocado 1.79 0.69 1.67 3.32 

Green Beansa 5.36 0.60 3.36 16.79 

Broccoli 4.85 0.28 2.36 17.63 

Cabbage 1.88 0.20 1.36 5.31 

Carrot 4.44 0.10 1.63 18.30 

Cauliflower 1.17 0.35 1.02 2.50 

Celery 1.04 0.09 0.64 3.31 

Cornb 5.28 2.30 5.03 9.13 

Cucumber 3.49 4.45E-02 0.91 15.05 

Hot pepper 0.06 0.04 0.06 0.09 

Lettuce 10.84 1.31 7.34 32.14 

Onion 2.31 0.15 1.23 8.13 

Snap Peas 1.88 1.82 1.88 1.93 

Bell Pepper 2.10 0.09 0.91 7.97 

Spinacha 2.31 2.02E-02 0.49 10.10 

Squashc 2.06 1.01 1.95 3.49 

Tomato 11.93 0.73 7.12 39.47 

Fruits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Apples 19.83 0.31 7.12 85.34 

Apple juice 12.64 0.01 0.94 70.11 

Apple sauced  1.50 0.31 1.32 3.31 

Banana 18.63 0.39 8.23 73.27 

Blueberriese 1.91 <0.01 0.14 9.50 

Cantaloupe 3.86 0.44 2.42 11.99 

Cherriesf 1.70 1.65 1.70 1.75 

Cranberries 0.46 0.04 0.25 1.52 

Grape juice 3.49 1.14 2.96 7.63 

Grapes 4.74 0.13 1.78 19.83 

Honeydew melon 0.74 0.25 0.63 1.58 

Nectarine 1.93 1.40 1.92 2.49 

Orange juice 35.28 0.25 9.69 162.85 

Peach 4.79 2.33E-02 0.8 22.3 

Peard 4.60E-02 1.26E-08 1.51E-05 1.81E-02 

Plum 0.70 0.26 0.61 1.45 

Strawberries 3.86 0.06 1.09 17.17 

Tangerine 1.36 0.60 1.24 2.55 

Watermelon 9.12 8.73 9.12 9.53 

aIncluding canned and frozen; bSweet corns, including fresh and frozen; cIncluding summer and winter squash; dBaby 

food; eIncluding cultivated and frozen; fIncluding frozen. 
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Table 3 shows the descriptive statistics of the estimated average daily intake (ADI) of 

imidacloprid-equivalent total neonic or IMIRPF, under the assumption that the mean imidacloprid-

equivalent total neonic was used as the total neonic residue level in fruits and vegetables that were 

consumed. For items collected from the USCC study, tomatoes contributed the most to the ADI of 

IMIRPF, among vegetables at the 5th percentile (1.33 ng/kg/day), median (14.4 ng/kg/day), and the 

95th percentile (108 ng/kg/day). Apples contributed the most to the ADI of IMIRPF among fruits at 

median (2.03 ng/kg/day) and the 95th percentile (28.6 ng/kg/day), whereas honeydews contributed 

the most of ADI at the 5th percentile (0.12 ng/kg/day). For USDA/PDP dataset, squash, tomatoes, 

and spinach contributed the most to the ADI of IMIRPF among vegetables at the 5th percentile (2.69 

ng/kg/day), median (7.28 ng/kg/day), and at the 95th percentile (106 ng/kg/day), respectively. 

Cherries (5.91 ng/kg/day) and banana (26.5 and 286 ng/kg/day) contributed the most to the ADI 

of IMIRPF among fruits at the 5th, and median and 95th percentile. Figure 2 shows the estimated 

overall ADI distributions of IMIRPF via fruits and vegetables consumption using the USCC, 

USDA/PDP, and both datasets on the same scale of IMIRPF (x-axis), and its relationship to the 

cRfD of imidacloprid. With the USCC residue data, the distributions of fruit ADI were higher than 

that of vegetable ADI. Whereas with the USDA/PDP residue data, the distributions of fruit ADI 

were lower than that of vegetable ADI. In general, we found that the estimations of ADI of IMIRPF 

using either residue dataset were several orders of magnitude lower than the cRfD of imidacloprid 

(57x103 ng/kg/d). 
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Figure 2. Average Daily Intake (ADI) Distribution of Neonicotinoid Dietary Exposure through 

Fruit and Vegetable Consumption from USCC and PDP 2011-2014 Datasets. The blue shaded area 

showed the difference of cumulative density of IMIRPF estimated ADI originated from 

distribution of neonicotinoid residues in USCC (5th to 95th percentile of residue levels; blue lines 

were for mean residue levels). The orange shaded area showed the difference of cumulative density 

of IMIRPF estimated ADI originated from distribution of neonicotinoid residues in PDP 2011-

2014 (5th to 95th percentile of residue levels; orange lines were for mean residue levels). The 

labeled 95th percentiles showed the 95th percentile IMIRPF estimated ADI when mean residue 

levels were consumed. 
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Table 3. Estimated Average Daily Intake (ADI) of Total Neonics by Vegetable and Fruit 

Consumption Using the Mean IMIRPF as the Total Neonic Residue. 

     ADI (ng/kg/day) 

  USCC Food Items Mean 5th Median 95th 

Vegetables 

 (N=7) 

  

  

  

  

  

Broccoli  0.34 0.01 0.13 1.25 

Corn 0.01 <0.01 <0.01 0.02 

Cucumber 0.67 0.01 0.14 2.70 

Lettuce  0.36 0.03 0.19 1.20 

Pepper 3.70 0.11 1.24 14.00 

Spinach 1.45 0.01 0.24 5.90 

Tomato 31.50 1.33 14.40 108.00 

Fruits 

 (N=6) 

 

  

  

  

  

Apple 7.17 0.08 2.03 28.60 

Cantaloupe  1.23 0.09 0.59 4.18 

Cranberries  0.12 0.03 0.08 0.35 

Grapes 0.10 <0.01 0.03 0.42 

Honeydew 0.57 0.12 0.36 1.72 

Strawberries 1.27 0.01 0.28 5.28 

  PDP/USDA Food Items Mean 5th Median 95th 

Vegetables 

 (N=16) 

 

  

  

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

Avocado 2.12 0.51 1.42 6.38 

Green Beansa  11.19 0.84 5.36 38.14 

Broccoli 15.80 0.62 5.95 58.60 

Cabbage 2.95 0.22 1.60 9.57 

Carrot 6.43 0.11 1.84 25.50 

Cauliflower 1.20 0.23 0.76 3.60 

Celery 1.53 0.09 0.72 5.30 

Cornb  7.63 2.01 5.16 23.02 

Hot Pepper 0.46 0.18 0.32 1.40 

Lettuce 12.50 1.02 6.42 41.40 

Onion 16.50 0.72 6.80 59.60 

Peas  2.00 0.86 1.37 6.16 

Pepper 11.80 0.35 3.96 44.80 

Spinacha  26.20 0.16 4.36 106.00 

Squashc  9.30 2.69 6.27 28.02 

Tomato 15.90 0.67 7.28 54.70 

Fruits 

 (N=16) 

 

  

  

  

  

  

  

Apple Juice 15.10 0.01 0.88 72.10 

Apple 31.60 0.35 8.85 126.00 

Applesauced 4.83 0.66 3.09 14.70 

Banana 77.30 1.14 26.50 286.00 

Blueberriese  5.07 <0.01 0.29 22.13 

Cantaloupe 14.10 1.08 6.75 48.00 

Cherriesf  13.70 5.91 9.38 42.20 
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 (Continued) 

  

  

  

  

  

  

  

  

Grape Juice 4.05 0.82 2.53 12.20 

Nectarine 10.40 4.04 7.17 31.80 

Orange Juice 35.50 0.18 7.63 149.00 

Peach 16.50 0.06 2.12 70.10 

Peard 0.05 <0.01 <0.01 0.02 

Plum 0.68 0.15 0.44 2.03 

Strawberries 7.01 0.07 1.55 29.20 

Tangerine 4.69 1.23 3.08 14.00 

Watermelon 11.60 5.02 7.99 35.90 
aIncluding canned and frozen; bSweet corns, including fresh and frozen; cIncluding summer and winter squash; dBaby 

food; eIncluding cultivated and frozen; fIncluding frozen. 

(Common commodities collected in both residue datasets were colored in shade.) 

 

 

Figure 3 shows the results from the sensitivity analyses for the estimations of ADI 

distributions by including fruits and vegetables (including broccoli, corn, lettuce, pepper, spinach, 

tomatoes, apple, cantaloupe, and strawberries) that were collected by the USCC study and 

USDA/PDP 2011 – 2014. We summarized the ADI estimates with respect to different uncertainty 

scenarios and across different residue levels in Table 4. It appears that the results of ADI 

estimation using USCC residues were generally more stable than those using USDA/PDP residues. 

The estimated ADIs using the USCC study data were also relatively robust in terms of having 

similar means at different residue levels regardless of how those ND were managed, except for the 

inclusion of a single squash residue data. However, estimations of ADI based on USDA/PDP 

residues were much more fluctuated across different ND management strategies. In the case that 

we replaced ND samples with zeros (Strategy #3 in Table 4), the USDA/PDP estimated ADIs 

were actually lower than those estimated by the USCC residue data when individuals consumed 

fruits and vegetables containing the 5th percentile and mean of IMIRPF. 
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Figure 3. Sensitivity analysis of both USCC and PDP 2011 - 2014 residue datasets. Only common vegetables and fruits (broccoli, 

corn, lettuce, pepper, spinach, tomatoes, apple, cantaloupe, and strawberries) in both datasets were included for comparison. The blue 

shaded area showed the difference of cumulative density of IMIRPF estimated ADI originated from distribution of neonicotinoids 

residues in USCC (5th to 95th percentile of residue levels; blue lines were fore mean residue levels). The orange shaded area showed 

the difference of cumulative density of IMIRPF estimated ADI originated from distribution of neonicotinoid residues in PDP 2011-

2014 (5th to 95th percentile of residue levels; orange lines were for mean residue levels). The labeled 95th percentiles showed the 95th 

percentile IMIRPF estimated ADI when mean residue levels were consumed.  
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We conducted additional sensitivity analyses by including squash as an uncertainty factor 

because of the concern of a single large measurement of 427.2 ng/g of IMIRPF, a value to which 

the ADI distributions could be significantly affected. We found large variations among squash’s 

IMIRPF, calculation in which the 5th and 95th percentiles of IMIRPF were 10 and 448.8 ng/g, 

respectively, using the USDA/PDP dataset. Therefore, we have adopted the most conservative 

approach treating IMIRPF of USCC squash as a fixed value (427.2 ng/g) for all residue percentiles. 

We found that squash could be influential in terms of the relative percentage increase in the USCC 

ADI distributions involving mean IMIRPF residues. Compared to the original settings (Strategy #1 

in Table 4), significant differences of ADI distributions (p<0.0001) at all three residue levels were 

observed. The estimated mean ADI with respect to consumption of mean IMIRPF increased from 

66 to 91 ng/kg/day (38% increase) in the USCC dataset. However, no significant differences 

among the USDA/PDP dataset were observed, in which the mean ADI with respect to consumption 

of mean IMIRPF increased from 202 to 215 ng/kg/day (7% increase).  
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Table 4. Results from the Sensitivity Analysis on the Estimated Average Daily Intake (ADI in 

ng/kg/day) of Imidacloprid-Equivalent Total Neonics. 

Residue Dataset 

Uncertainty 

Scenarios/ 

ND Management 

Strategyb 

Estimated Mean ADI (p-value)a 

5th IMIRPF Mean IMIRPF 95th IMIRPF 

USCC 

1 26 66  122 

2 
30* 

(1.1x10-4)  
69 124 

3 25 65 
121 

(0.78) 

4 
50* 

(<0.0001) 

91* 

(<0.0001) 

147* 

(<0.0001) 

USDA/PDP 

1 163 202  338  

2 
80* 

(<0.0001) 
189 

259* 

(<0.0001) 

3 
0* 

(<0.0001) 

40* 

(<0.0001) 

217* 

(<0.0001) 

4 165 215 
372* 

(1.38x10-2) 
aMean of the estimated ADI used the 5th, mean, or 95th percentile residue levels of every common commodities 

included in the sensitivity analysis. P-values were for Welch's t-tests comparing between strategies with Strategy #1. 

Bonferroni correction for the significance levels was used for multiple testing (p-values < 1.67x10-2), statistically 

significant differences were marked with *. bND Management Strategies: 1. NDs replaced with ½  of LODs; 2. NDs 

replaced with a random variable from Uniform (0, LOD); 3. NDs replaced with zero; Main analyses were conducted 

based on the shaded strategy; 4. Analyses included neonic residues from the single squash sample. Strategies 1-3 

excluded neonic residues from the single squash sample.   

 

To our best knowledge, this is the first study aiming to estimate the daily intake of total 

neonic from fruit and vegetable consumption based on the U.S. population. We found the estimated 

average daily intake (ADI) of imidacloprid-equivalent total neonic using residue data from the 

USCC study were lower than those using USDA/PDP dataset. One of the reasons to explain such 

disparity is that fruits and vegetables served in the US Congressional cafeterias were provided by 

a food service company that advertises sustainable food practices and source organically grown 

agriculture.17 Whereas food commodities collected by USDA/PDP are intended to supply general 

supermarkets and grocery stores across the country and therefore may be more representative of 

typical U.S. consumption. Notably though, the estimated ADIs of IMIRPF using either USCC, 
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USDA/PDP, or the combined dataset were significantly lower than the existing cRfD of 

imidacloprid. 

Intuitively, this outcome would be interpreted as the daily total neonic intake via fruit and 

vegetable consumption at the U.S. population level is unlikely to pose an appreciable risk of 

adverse health effects over a lifetime. However, we are aware that the uncertainties embedded in 

the analysis may alter such conclusion in the event that one of the following circumstances was 

existed. First of all, if more neonic residue data for fruits and vegetables collected from more 

diverse sources were available, the distributions of ADI of total neonic intake are likely to shift to 

the right from those estimated values as shown in Figure 2. This scenario seems plausible given 

the fact that both USCC and USDA/PDP residue datasets only covered a small portion of fruits 

and vegetables that were consumed by NHANES participants. Even with the expansion of the 

sampling years to include NHANES 2013 and 2014 for USDA/PDP analysis, the results presented 

here were still not sufficient for implication on the total fruit and vegetable consumption. 

Furthermore, we did not take into account other possible dietary sources, such as the consumption 

of other crops and drinking water which might also be contaminated with neonics. 

Secondly, had more precise analytical methods with substantially lower LODs for neonics 

been used by the USDA/PDP, it is likely that many ND samples as reported by USDA/PDP would 

have become detectable with concentrations higher than the one-half of the LODs that we assigned 

for the purpose of model simulation. This would have direct impact on the upward estimation of 

ADI distributions for total neonic. As we compared the uncertainties originated from the selection 

of LODs in the sensitivity analysis, it is evident that the USCC dataset gave more stable ADI 

estimates regardless of how the ND samples were managed, but this is not the case for the 

USDA/PDP dataset. One plausible explanation is that USCC study utilized the analytical method 
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with LODs that are two to three orders of magnitude lower than those used by the USDA/PDP for 

the same neonic (Table 1). That led to 91% of detection for the USCC samples were detectable 

with at least one of the six neonics whereas only approximately 15% of USDA/PDP samples were 

above the LODs, and therefore we have to arbitrarily assign the values of one-half of their 

respective LOD for simulation. We are also aware that USDA/PDP datasets aimed for risk 

monitoring and management and therefore higher LODs close to the regulatory level were used. 

However, due to the lack of more comprehensive and precise datasets that could be used to 

generalize the risk assessment for the U.S. population, USDA/PDP dataset that contained lots of 

ND data was chosen for dietary risk assessment and comparison with the USCC dataset. 

Lastly, in the future event when cRfD were to be revised lower based on the growing 

evidence of toxicological effects of neonics in mammals, the issue of the sensitivity of analytical 

methods used to analyze neonics in fruits and vegetables would become critically important. For 

instance, the current cRfDs of neonics were established based on observed endpoints listed in 

Table 1, which have very little or no relevance to the known toxicological mechanism of neonics 

that is functioned as the nAChR agonists. Even though neonics are known to be less selectively 

bound to mammalian nAChR, it is possible that the inhibition of nAChR would occur at lower 

levels of neonic exposure than those observed endpoints. Under the current cRfDs for neonics, the 

issue of ND data resulting from the elevated LODs might not be a matter for concern because the 

estimated ADIs are significantly lower than those cRfDs. However, if results from the future 

studies prove the hypothesis that the inhibition of nAChR or other neurological adverse outcomes 

could take place at lower NOAELs as shown in Table 1, the revision of cRfDs for neonics to lower 

levels would be necessary in order to better reflect biologically plausible endpoints and 

subsequently to better protect public health. Under this circumstance, a sensitive analytical method 
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would be essential to quantify neonic residues in foods at levels that are allowed to compute ADI 

with great confidence in order to compare to the cRfDs. 

In this chapter, we demonstrated a methodology aiming to simulate human dietary intakes 

of total neonic by linking residue data with fruit and vegetable consumption patterns. There are 

two innovate approaches that we used in order to facilitate the estimation of the average dietary 

intake (ADI) of total neonic. We adopted the validated NCI method24 for estimating the 

distribution of long-term ADI of food items among the population using the NHANES two 24-hr 

dietary recalls. It is generally agreed that when using these short-term recall measurements to 

estimate UI, 24-hr recall intake is an unbiased estimate of the long-term UI,32 and by repeating the 

measurements of recalls from an individual, the within-person variations should be canceled out. 

However, we should also note that NCI method assumed no misclassification of respondent's food 

intake even though this ideal scenario would most likely to be violated giving the nature of using 

recall data. Although the 24-hr dietary recalls could capture more comprehensive and detailed 

information about all food consumption by the respondents in the past 24 hours, the memory 

dependent interview leading to potential recall bias (e.g. bad estimation of consumed food portion, 

bias reporting of food types based on knowledge of nutritional values) and interviewers’ bias 

(whether they were well-trained to conduct the interview) should not be neglected33, 34.  

We applied RPF approach to integrate individual neonics found in a fruit or vegetable 

sample into a single matrix that is corresponding to the imidacloprid-equivalent total neonic, or 

IMIRPF. RPF has been used for integrating a mixture of chemicals that share the same toxicological 

mode of action, such as PAHs15 or dioxins16, and has recently been applied in assessing neonics in 

pollen collected from honeybees based on relative lowest-observed-adverse-effect-level 

(LOAEL).23 By integrating all neonics into an imidacloprid-equivalent total neonic, the IMIRPF 
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reported for each food item is no longer a simple summation of individual neonic residues, but 

encoded with the cumulative toxicity of all six neonics via fruits and vegetable consumption.  

We calculated RPFs based on the comparison of individual neonic’s cRfD with 

imidacloprid’s cRfD. We used relative cRfD rather than the relative no-observed-adverse-effect-

level (NOAEL) or LOAEL because cRfD is independent from species used in the toxicological 

studies and therefore is more suitable for the application in integrating human exposure to total 

neonic. Since U.S. EPA uses cRfD in their regulatory framework for assessing daily exposure to 

human population without an appreciable risk of adverse non-cancer health effects over a 

lifetime,35-37 using cRfD in the RPF calculation shall minimize the uncertainties arising from 

interspecies, intraspecies, sub-chronic to chronic experiments, and incomplete to complete 

database. 

We acknowledge that the methodology and the residue and consumption databases that we 

utilized for estimating the ADIs of total neonic comes with several limitations. First of all, although 

the USDA/PDP residue dataset offers more fruit and vegetable samples, a large portion of those 

samples were either ND that leads to very low frequency of detection of any neonic. As we 

replaced ND samples with one-half of their respective LODs in the main analyses, it occurred quite 

often that the average IMIRPF for less frequently detected items remain positive and sometimes 

even higher levels than more frequently detected items. This problem would have been prevented 

had more sensitive analytical methods with lower LODs been used for USDA/PDP samples. Per 

our own research experience, we have developed an analytical method with LODs that are two-

three orders of magnitude lower than those used by the labs contracted with USDA/PDP without 

any technical difficulties or cost issues.38 In order to improve the robustness of the ADI simulation 
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for total neonic, it is necessary to lower the LODs, or reduce the percentage of ND samples so the 

ADI estimates would not be affected by how the ND data is managed. 

The second limitation has to do with the use of NHANES consumption information in 

which two 24-hr dietary recalls from the same participants were collected within 3-10 days. 

Although the collection of dietary recalls in consecutive days could be reflective of random daily 

consumption, by no mean that it reflects the seasonal or annual consumption patterns both 

qualitatively and quantitatively. Besides, we didn’t adjust for other participants’ characteristics 

(such as race, gender, or ages) in the analyses. As we stratified all participants by consumption 

items, further adjustment for other covariates would lead to non-identifiability of the covariates’ 

effects in certain food items, especially in the analyses of food items that are less likely to be 

consumed. However, since we are interested in an inference for the general population, the 

variabilities within population were still reflected by the body weight, in which were presented in 

the ADI cumulative distribution.  
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Abstract 

Neonicotinoids, a group of widely used systemic insecticides, have been shown as one of 

the risk factors to honeybee colony collapse disorder (CCD). Although the exact biological 

mechanisms of CCD have yet to be made clear, we postulated that mitochondrial DNA damage in 

honeybees leading to mitochondrial dysfunction and malfunctioned thermoregulation of bees is a 

plausible biological mechanism. In this chapter, we aimed to demonstrate using relative 

mitochondrial DNA copy number (RmtDNAcn) as an early biomarker of chronic sub-lethal 

neonicotinoid effects in honeybees.  We analyzed three generations of adult worker bees collected 

from sub-lethal imidacloprid-, clothianidin-treated and control hives before, during, and after 

treatments. We found a significantly higher (p<0.001) mean RmtDNAcn among bees reared from 

later brood generations by the same queens. In addition, positive but not significant association 

between RmtDNAcn among later brood generations and neonicotinoid treatments was observed. 

These results gave support to the hypothesis of the causation of sub-lethal neonicotinoid exposure 

and increase in mitochondrial DNAcn in two perspectives. Firstly, increase in RmtDNAcn could 

be inheritable in honeybees regardless of neonicotinoid treatments. Secondly, sub-lethal 

neonicotinoid exposure could result to additional increase in RmtDNAcn caused by normal aging 

in bees. Future research should focus on verifying inheritable mtDNAcn due to chronic sub-lethal 

neonicotinoid exposure and its subsequent mitochondrial damage in bees in order to elucidate the 

potential toxicity of sub-lethal neonicotinoid exposure. 
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Introduction 

Although the cause of the massive decline in global honeybee (Apis mellifera) population 

remains unclear or controversial, the phenomenon of massive disappearing of honeybee in winter, 

known as colony collapse disorder (CCD), has been linked to pesticide/insecticides use, habitat 

loss, parasites, or other factors.1, 7, 8 Neonicotinoids (neonics) are systemic insecticides  that are 

most widely used worldwide with considerable increasing usage nowadays.1, 3 Neonics have been 

shown to associate with impairing reproductive and behavioral abilities in honeybees at sub-lethal 

levels39, including decreasing brood size40-42, affecting foraging activities8, 40-43 and syrup 

consumption, and implication in the occurrence of CCD.6 

Neonics’ effects on mitochondrial bioenergetics and dysfunctions among honeybees and 

bumblebees (Bombus terrestris) renders the biological plausibility linking sub-lethal neonics 

exposure to the reduction in ATP generation. Because the lack of sufficient ATP would adversely 

influence high energy-demanding activities in bees, it could be a possible mechanism leading to 

CCD.9-11 Study has shown that imidacloprid could inhibit respiration, influence electron transit 

chain (ETC) and reduce the generation of ATP dose-dependently in both thorax and head.9 

Bumblebees exposed to 1 nM of imidacloprid for 2 days and 10 nM of clothianidin in acute manner 

(minutes) were found to express rapid nicotinic acetylcholine receptor (nAChR)-dependent 

mitochondrial depolarization.10 In order to eliminate colony heat loss and minimize energy 

expenditure in winter, bees are shivering and crowding tightly together by forming a cluster inside 

the hive.11 Being the thermal homeostasis maintaining mechanism, shivering thoracic flight muscle 

is highly energy demanding.11 Therefore, considering the thermoregulation mechanism in bees and 

the appearance of CCD in winter season in which massive numbers of adult bees suddenly 
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disappear from their hive,44 the hypothesis of mitochondrial dysfunction being a plausible cause 

of colony death bears significant scientific merit for further investigation. 

In this chapter, we hypothesized that chronic sub-lethal exposure to neonics could lead to 

increase in relative mitochondrial DNA copy number (RmtDNAcn) in adult honeybees. As 

increasing RmtDNAcn has been shown to relate to mtDNA damage12 and knowing the mechanism 

of mitochondrial heteroplasmy45-47, we proposed using RmtDNAcn as a novel biomarker to detect 

mitochondrial dysfunction at an earlier stage under the sub-lethal exposure conditions that are 

more environmentally relevant. We evaluated the hypothesis that (i) later brood generations from 

the neonics-treated hives would have higher level of RmtDNAcn than the control hives; (ii) 

whether or not RmtDNAcn could be inherited from queen to worker bees raising from later brood 

generations; (iii) whether neonics-treated hives have a higher onset risk of bee disappearance and 

mortality risk over the winter; and (iv) whether the higher onset risk of bee disappearance and 

mortality risk, as downstream outcome measurements of mitochondrial dysfunction, were 

associated with increased level of RmtDNAcn ratio. 
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Materials and Methods 

Neonics Administration in adult foraging honeybees. We collected adult worker bees at the 

entrance of their hive after returning from the foraging activity in a split-plot designed field study 

in 2012.48 We set up those experimental hives at three independent sites (at least 12 km away from 

one another) with six honeybee hives per site (N = 18). At each site, colonies were either fed with 

sucrose- (table sugar; N = 3) or high-fructose corn syrup-fed (HFCS; N = 3) group. Colonies within 

each sugar group (N=3) were administered with either imidacloprid (IMI), clothianidin (CLO), or 

no pesticide (control) weekly. We administered 258 µg of IMI (1-((6chloro-3-pyridinyl) methyl)-

N-nitro-2-imidazolidinimine) or CLO ((1-(2-Chloro-5-thiazolylmethyl)-3-methyl-2-

nitroguanidine) dissolved in 0.5 gallon of either sucrose or HFCS to the colonies each week for 13 

consecutively weeks, or equivalent to 37 µg/colony/day for 91 consecutively days. The dosing 

regime started on July 2nd and ended on September 17th, 2012. With an estimation of 50,000 bees 

per colony during the active foraging season, the administered dose was approximately equivalent 

to 0.74 ng/bee/day for both IMI- and CLO-treated hives. All 18 colonies in the study were healthy 

and alive before, during, and after the 13-week neonics administration. 

We collected adult worker bees from each hive on July 2nd (F0), August 20th (F2), and 

October 15th (F4) 2012 by intercepting them at the entrance of the hive when they returned from 

foraging. Those adult bees were subsequent generations from the same queen at different “ages”, 

and also represented as pre-treatment (F0), during-treatment (F2), and post-treatment (F4) groups. 

As normal spring and summer worker bees generally have an average lifespan of 25 – 35 days49, 

50 and they start foraging when they are approximately 21 days old51, worker bees collected 

monthly represented different generations brooded by the same queen. Upon capturing, we 
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transferred bees to a 50-mL centrifuge tube immediately, placed the tubes in a cooler with dry ice 

during transportation, and stored in a -80oC freezer in the lab until analysis.  

Mitochondrial DNA copy number (mtDNAcn) Measurement. We quantified mtDNAcn in the 

thoracic muscle (middle) section of an adult foraging honeybee. We dissected bees immediately 

after removing them from the -80oC freezer and then extracted the total gDNA using the DNeasy 

Blood & Tissue Kit (Qiagen). We first homogenized individual thoracic samples with 180 µL of 

ATL buffer using a disposable pestle, and then added 20 µL of proteinase K to the homogenized 

samples and vortexed thoroughly. The mixture was incubated at 56 °C overnight on a shaking 

water-bath. To obtain RNA free gDNA, we added 4 uL of 100mg/ml of RNase A (Qiagen) to the 

sample and then incubated the mixture at room temperature for 2 minutes followed by vortexing 

for 15 seconds. We then added the following buffers in the order of 200 μL of AL and 200 μL of 

ethanol (100%) to the sample. The final mixture was applied into the DNeasy Mini spin column. 

After washing the column with AW1 and AW2 buffer, the total gDNA was obtained by eluting 

the DNeasy Mini spin column with 200 µL of AE.   

We used the QuantiTect SYBR Green PCR Kit (Qiagen) for the q-PCR analysis (Applied 

Biosystem StepOne Plus Real-time PCR). We selected Cyt b gene (11004bp-12155bp) and 18s 

rRNA to represent mtDNA and the nuclear gene, respectively. The thermal cycling conditions for 

cyt b and 18s rRNA PCR are as follows; initial 15 minutes at 95 °C to activate the HotStarTaq 

DNA Polymerase and 40 cycles comprised of 15 seconds denaturation at 95 °C, 30 seconds anneal 

at 58 °C, and 30 seconds extension at 72 °C. Each run is completed by melting curve analysis to 

confirm the amplification specificity and the absence of primer dimers.  

We normalized mtDNA copy number (mtDNAcn) by the copy number of a selected 

nuclear DNA (nDNAcn) as the internal reference gene to ΔCt using equation (6):  
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ΔCt = Ct (Cyt. b) – Ct (18s rRNA)   

(Equation 6) 

 where Ct is the threshold cycle number at the determined level of log-based fluorescence 

and therefore inverse proportional to the log-based initial copy number of the target gene. Cyt b 

and 18s rRNA were used to measure the Ct for mtDNA and nDNA, respectively. The primers used 

for Cyt b and18s rRNA genes for q-PCR were: Cyt b F-5’AGC AGC TGC ATT TAT AGG ATA 

TG 3’; Cyt b R-5’ AGA TTA GTA ATA ACT GTT GCA CCT C 3’; 18s rRNA F- 5’GTG GGC 

CGA TAC GTT TAC TT 3’; 18s rRNA R-5’ CCG AGG TCC TAT TCC ATT ATT CC 3’.  

To ensure similar amplification efficiencies for the designated primers of Cyt b and 18s 

rRNA, we calculated the amplification efficiencies for those primers by running five serial 

dilutions of DNA samples on q-PCR using equation (7) and (8): 

 Ct = α – β log10[X0]          

(Equation 7) 

 E =10-1/β -1                    

(Equation 8) 

where X0 is the initial DNA concentrations of targeted genes, and E is the amplification efficiency.  

Well-being Measurements of Honeybee Hives.  We kept track of the well-being of experimental 

hives by measuring the brood counts and numbers of frames containing adult bees during and after 

neonics administration using the methods described previously.6 Brood counts were recorded bi-

weekly from June 29th
, 2012 (before treatment administration started) to September 24th

, 2012 (one 

week after the completion of neonics administration), and the numbers of frames containing adult 

bees in each hive were then tracked from October 27th
, 2012 to April 4th

, 2013. We then used both 

measurements served as the outcomes linking to the changes in RmtDNAcn.  
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Data analysis. We used R software (3.4.1) to perform all statistical analyses. We used the 

comparative Ct (2-ΔΔCt) method to calculate the relative mtDNAcn (RmtDNAcn) ratio45, 52, 53. 

Because of the auto-correlation among those three bees collected at the same time from the same 

hive, they were considered replicate samples. Therefore, we measured RmtDNAcn ratio (which is 

2-ΔΔCt) at the hive level (N = 18) using regression in the following steps: 

1. Quality control.  We conducted quality control analyses of ΔCt within treatment-sugar groups 

(6 groups). Since we only have triplicates per generation per hive, it is rather difficult to 

identify outliers. We therefore computed the average ΔCt among the hives per treatment-sugar 

group per generation (F0, F2, F4), and then excluded outliers (or samples) not within the range 

of IQ3 ± 1.5 x (IQ3 − IQ1) where IQ3 is the upper quartile and IQ1 is the lower quartile.  

2. Statistical modeling. Since the objective of this chapter was to identify the association between 

sub-lethal neonicotinoid treatments and change in RmtDNAcn, as well as treatments’ ultimate 

adverse effects on honeybee health, we conducted the following statistical analyses:  

2.1. Association between RmtDNAcn ratios and neonicotinoid treatments over time. We 

used equation (9) as an application of the 2-ΔΔCt approach to calculate RmtDNAcn ratios 

between treatment groups across generations of honeybees in individual hives: 

- ΔCthive* log (2)            (Equation 9) 

= a0 + ahive + b * J + ∑ ck I[Treatmentk, hive] + ∑dk J * I[Treatmentk,hive]  

where ahive represents random hive effect; J = 2 and 4, corresponding to F2 and F4 (linear 

assumption on normal aging effects), respectively; k = 1 and 2, corresponding to IMI and CLO 

treatments, respectively; 

2b represents the RmtDNAcn ratio of F2 vs. F0 or F4 vs. F2 generation among control groups 

treatment effects;  
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2ck
 represents the RmtDNAcn ratio of treatmentk as compared to the control group; and 2dk 

represents the additional generational effects due to treatmentk (that didn’t exist in the control 

group). 

2.2. Association between onset of bee disappearance and neonicotinoid treatments. We 

tracked the numbers of frame (2 sides per bee frame) that contained bees weekly over 

the winter and spring next year (from October 27th to April 4th) in order to confirm the 

timing of onset of bee disappearance. To incorporate the information of time that we 

observed for the onset of bee disappearance and to determine whether both (a) 

neonicotinoid exposure and (b) its contribution to the higher RmtDNAcn ratios would 

pose significant risk of bee disappearance, we adopted the mixed effect Cox 

proportional hazard model shown in equation (10) to calculate the average onset risk 

of bee disappearance over the winter associated with treatments and RmtDNAcn levels. 

We used RmtDNAcn ratio of F4 versus F0 as it was the last measurement of 

RmtDNAcn before we started collecting the bee disappearance data within the same 

hive. 

h(tfs) = h0(tfs) exp[afs, hive + ∑ ak I[Treatmentk, fs] + b0 Log2(RmtDNAcn Ratiofs)]  

afs, hive ~ N(0, σhive
2)         (Equation 10) 

where tfs represents the duration of time that one side of any given frame remained the presence 

of bees (or no onset of bee disappearance); h(tfs) represents the onset risk of bee disappearance 

from a side of frames in a hive at tfs, adjusting for treatments and RmtDNAcn ratio; h0(tfs) is 

the baseline hazard at tfs, known as the onset risk of bee disappearance in a side of bee frames 

of a control hive when RmtDNAcn ratio was 1 at F4; afs, hive refers to the random intercept that 
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influence the onset risk of bee disappearance from a side of frames, which is assumed to follow 

a normal distribution with a variance of σhive
2.  

Similarly, Exp[ak] and exp[b0] show the hazard ratios of the onset of bee disappearance in a 

side of frames in a hive due to neonicotinoid treatments and with every 2 times increase in 

RmtDNAcn ratio, adjusting for other covariates. Under the assumption of Cox PH model, 

hazard ratios were independent of time. 

2.3. Association between hive survival over the winter and neonicotinoid treatments. 

Similar to 2.2., we used the Cox PH model in equation (11) to calculate the average 

mortality risk of bee hives over the winter that were associated with treatments and 

RmtDNAcn levels: 

h(thive) = h0(thive) exp[∑ ak I[Treatmentk, hive] + b0 Log2(RmtDNAcn Ratiohive)] 

(Equation 11) 

where thive represents the survival time of a hive; h(thive) represents the mortality risk at thive 

given treatment (k = 1 and 2, corresponding to IMI and CLO treatments, respectively) and the 

last measurement of RmtDNAcn ratio; h0(thive) is the baseline hazard at thive, known as the 

mortality risk of control hives with RmtDNAcn ratio equal to 1 at F4; Exp[ak] and exp[b0] 

represent the hazard ratios due to neonicotinoid treatments and with the increase in RmtDNAcn 

ratio, adjusting for other covariates. 

Power analysis. To evaluate the experimental goal of identifying the neonics-induced generation 

effects we also conducted a power analysis. We simulated the data to determine the number of 

total hives (n) needed to achieve certain power (%) of detecting the estimated magnitude difference 

of generation effects between the IMI/CLO treatments and the control (the four interaction terms) 

using equation (9). We run 5000 simulations and power was defined as the probability of these 
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simulations (for the effect sizes of each interaction term) in detecting a statistically significant 

effect of each interaction term at our model estimated level using equation (9). 

Results and Discussion 

To ensure the quality of experimental data, we implemented several quality control steps. 

Results from the five serial dilutions of DNA samples on q-PCR showed that the amplification 

efficiencies (E) of the designated primers for 18srRNA and cyt b genes were about the same (-3.41 

and -3.37). The measurements for Ct of 18s rRNA and cyt b gene were within 18 – 24 and 15 – 23 

with the coefficient of variations (CV) across samples of 6.9% and 9.6%, respectively. Those 

results showed stable Ct measurements. Overall, there was one missing measurement (control 

sample at F0) out of the 162 samples (18 hives x triplicates/hive x 3 generations). We excluded 

measurements for eight samples because they were either outliers (n = 7) or missing (n = 1) among 

their corresponding treatment-sugar groups (Figure S1). At the end, a total of 154 bee samples 

across 18 hives were included in the following analyses. 

Table 5. Relative mitochondrial DNA copy numbers (RmtDNAcna) in the thoracic muscle of 

honeybees collected before (F0), during (F2), and post-administration (F4) of no neonicotinoids 

(control), imidacloprid (IMI), or clothianidin (CLO) in sucrose, or high-fructose corn syrup 

(HFCS). 

Treatmenta Sampling 

Generation 

Hives 

(NHives) 

Bees 

(NBees) 

Mean (95% CI) 

Sucrose HFCS Sucrose & HFCS 

Control 

F0b 3/3 16 0.18 (0.10, 0.36) 0.17 (0.08, 0.36) 0.18 (0.11, 0.28) 

F2b 3/3 17 0.47 (0.30, 0.74) 0.35 (0.20, 0.62) 0.41 (0.19, 0.86) 

F4b 3/3 18 1.18 (0.61, 2.29) 0.73 (0.34, 1.53) 0.93 (0.58, 1.49) 

IMI 

F0b 3/3 16 0.23 (0.12, 0.44) 0.17 (0.08, 0.36) 0.20 (0.12, 0.32) 

F2b 3/3 18 0.70 (0.44, 1.10) 0.55 (0.31, 0.97) 0.62 (0.44, 0.87) 

F4b 3/3 18 2.14 (1.11, 4.12) 1.80 (0.85, 3.80) 1.96 (1.22, 3.15) 

CLO 

F0b 3/3 15 0.18 (0.10, 0.35) 0.20 (0.09, 0.41) 0.19 (0.12, 0.30) 

F2b 3/3 18 0.53 (0.34, 0.83) 0.46 (0.27, 0.82) 0.50 (0.35, 0.70) 

F4b 3/3 18 1.53 (0.79, 2.95) 1.10 (0.52, 2.32) 1.30 (0.81, 2.08) 
aRmtDNAcn is defined as the relative mitochondrial DNA copy numbers with respect to the nuclear DNA copy 

number (2-∆Ct, where ∆Ct = Ct (Cyt b) – Ct (18s rRNA)). 
bF0, F2, and F4 generations of bees were collected on 7/2/2012, 8/20/2012, and 10/17/2012, respectively. 
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Table 5 summarizes the RmtDNAcn in the thoracic muscle of honeybees with respect to 

different neonic treatment groups and generations (F0, F2, and F4). To better understanding 

whether RmtDNAcn were different between hives fed with different sugar syrups, we presented 

the mean and the 95% CI of RmtDNAcn across treatments and generations among hives fed with 

sucrose-based syrup, HFCS-based syrup, and with both sucrose- and HFCS-based syrup. We found 

that at each sampling generation, hives fed with HFCS had slightly lower average of RmtDNAcn 

than those fed with sucrose, although the differences were not significantly different (Tables S2 

and S4). Therefore, we combined both sugar groups when presenting patterns across treatments 

and generations for all statistical analyses. 

Table 6. Relative mitochondrial DNA copy numbers (RmtDNAcn) ratioa in the thoracic muscle 

of honeybees collected before (F0), during (F2), and post-administration (F4b of no neonicotinoids 

(control), imidacloprid (IMI), or clothianidin (CLO). 

Treatment Sampling 

Generation 
Hives (NHives) Bees (NBees) Mean (95% CI) c 

Control 

F0b 6 16 1.00 

F2b 6 17 2.29 (1.64, 3.18) 

F4b 6 18 5.23 (2.70, 10.12) 

IMI 

F0b 6 16 1.11 (0.57, 2.16) 

F2b 6 18 3.50 (1.87, 6.55) 

F4b 6 18 11.06 (5.06, 24.15) 

CLO 

F0b 6 15 1.07 (0.55, 2.09) 

F2b 6 18 2.80 (1.50, 5.23) 

F4b 6 18 7.31 (3.35, 15.97) 
aRmtDNAcn ratio is defined as the relative mitochondrial DNA copy numbers with respect to the nuclear DNA copy 

number of specific group compared to that of the June Control group (2-∆∆Ct, where ∆∆Ct = ∆Ct (TRT, j) – ∆Ct (CON, j)). 
bF0, F2 and F4 generations of bees. were collected on 7/2/2012, 8/20/2012, and 10/17/2012, respectively. 
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As we compared models with different assumptions on the generational effect (or normal 

aging) expressed as the levels of mtDNAcn, the linear generation effect model was selected for 

the final interpretation (Details shown in Tables S2 and S3). We did not find significant difference 

of RmtDNAcn among all 3 treatment groups (Control: 0.18; IMI: 0.20; CLO: 0.19) prior to neonics 

administration, suggesting the similar baseline of mtDNA status among queens across 

experimental hives. However, we found significant increase (p<0.001) of RmtDNAcn in bees 

collected from later brood generations of the same colony regardless of the treatment groups 

(control, IMI or CLO). The ratios of RmtDNAcn in bees collected from the control group increased 

from 2.29 in F2 to 5.23 in F4 (Table 6), comparing to mtDNAcn levels in F0 (p< 0.001).  

 

We also found positive associations between RmtDNAcn and neonics-treated bees, in 

which higher RmtDNAcn ratios among later-brood generations were seen among neonics-treated 

bees. Table 6 shows the descriptive statistics of RmtDNAcn ratios of F2 and F4 in IMI and CLO 

treated bees as compared to that of F0 in the control group. At F2 and F4, the magnitude of increase 

of the mean RmtDNAcn ratios among the neonics-treated bees was clearly higher than those in 

the control bees. The mean RmtDNAcn ratios of F2 vs. F0 among IMI and CLO bees were 3.15 

(=3.50/1.11), and 2.62 (=2.80/1.07), respectively, whereas the mean RmtDNAcn ratios of F4 vs. 

F0 among IMI and CLO bees were 9.96 (=11.06/1.11), and 6.83 (=7.31/1.07), respectively. IMI-

treated bees showed the largest increase of RmtDNAcn ratios for F4 vs. F2 and F2 vs. F0. These 

trends were presented visually in Figure 4A, where steeper slopes for mean RmtDNAcn among 

neonics-treated bees were observed when subsequent brood generations were compared. In Figure 

4B, we also showed that RmtDNAcn levels associated with neonics exposure were cumulative 

over time in the subsequent brood generations. We found increasing trend of mean RmtDNAcn 
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when excluding the normal aging effect (levels observed among neonics-treated groups divided 

by that of the control group, also known as RmtDNAcn ratio) as exposure time lengths increase. 

The incremental increases of the mean RmtDNAcn among neonics-treated bees could still be 

observed at the post-treatment generations (F4), indicating that the increasing levels of RmtDNAcn 

in adult foraging honeybees were associated with cumulative exposure of sub-lethal neonics of the 

queens over time. Those results clearly demonstrated that while normal aging effect on increasing 

RmtDNAcn levels of the queens that pass on to the later brood generations is observed, the 

additional increase in RmtDNAcn levels measured in F2 and F4 worker bees were likely inherited 

from the aging queen bees who have been exposure to IMI or CLO. 

 

Figure 4. Increasing mtDNA copy numbers in the subsequent brood generations from the same 

colony (queen) with sub-lethal neonics administration.(A) Magnitude of RmtDNAcn (2--∆Ct) across 

different brood generations (F0, F2, F4) representing pre- (F0), during- (F2), and post-

administration (F4) of neonics. Gray, pink, and green points and error bars show the mean and 95% 

CI of the RmtDNAcn levels we observed from the control, IMI, and CLO groups. (b) Increasing 

mean RmtDNAcn ratios in subsequent brood generations in conjunction with sub-lethal IMI and 

CLO administration. Dosing Period (13 weeks in total) is shaded, which started immediately after 

baseline (F0) measurements on July 2nd and completed on September 17th, 2012. 
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Beyond finding the increasing trend of RmtDNAcn levels associated with cumulative 

exposure to sub-lethal levels of neonics, we also linked these findings to brood sizes during neonic 

administration and survival probabilities of hives over winter. Figure 5 shows overall decreasing 

trends of brood counts and frames with bees per hive over the study period regardless of neonics 

treatments (as the mean ±SD intervals already overlapped). Although no significant difference of 

brood sizes was seen, we observed a clear separation of the numbers of frames remained with bees 

between control and neonics treated-hives since the 180th day from the beginning of neonics 

administration (December 29th, 2012).  IMI-treated hives showed the greatest disappearance of 

bees from frames in hives with an average 1.42 frames that left with bees on April 4th, 2013, 

followed by the 2 frames of CLO-treated hives. Control hives, on average, were left with 5.83 

frames of bees at the end of the study.  

We noticed that hives suffered from disappearance of bees could eventually recover toward 

the end of winter (decreasing then again increasing numbers of frames with bees), as shown in 

Figure 5. This phenomenon was especially obvious in control hives at an earlier time during winter. 

For example, the average frames of bees in the control hives increased from December 16th, 2012 

to January 26th, 2013 as well as from March 7th to April 4th, 2013. On the other hand, hives treated 

with IMI or CLO exhibited a steady decrease of the number of frames with bees.  

  



45 

 

 

 

Figure 5. Records of brood size and frames of bees per hive. Error bars were referred to (±SD). 

Lower bounds below zero were set to zero.  

 

In Figure 6, we compared the numbers of bee frame (two sides per frame) that had onset 

of bee disappearance at multiple time points over the winter (October 27th to April 4th, 2013) and 

found that IMI-treated hives had a faster onset of bee disappearance, followed by CLO-treated 

hives. Figure 6 also shows the time to the death of bee hives across different treatments (Ctrl, IMI, 

or CLO) over the winter. Overall, we observed a higher survival probability of control hives 

compared to IMI- or CLO-treated hives, in which less dead control hives was observed at all time 

points. At the end of the field study (April 4th, 2012), 5 out of 6 control hives still alive, however, 
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4 and 2 out of 6 CLO and IMI hives remained survive, respectively. It is also true that not only 

higher mortality was associated with neonic-treated hives, but also the timing of dead hives 

occurred earlier among the neonic-treated hives than the control hives.  

 

Figure 6. Chronological events of dosing period, RmtDNAcn measurements (F0, F2 and F4) 

observation of bee disappearance, and observation of dead hives over the winter from the 

beginning of neonics administration until the end of field study. Solid lines show the time of bee 

disappearance (measured as the first-time complete disappearance of bees from inside of bee hive) 

and dotted lines show the time of the occurrence of hive death. Events are shown as ‘x’ and 

censored data are shown as ‘+’. Gray, pink, and green represent the control, IMI, and CLO 

treatments, separately.
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We summarized the hazard ratios of the onset risk of bee disappearance associated with 

neonicotinoid treatment and RmtDNAcn levels in Table 7 and the mortality risk of a hive in Table 

8. IMI- and CLO-treated hives posed a 2.2 and 1.6 times higher onset risk (nearly statistically 

significant, p = 0.056) of bee disappearance compared to the control hives. Adjusting for the 

treatment effects, we found a 1.2 times higher onset risk of bee disappearance in an any given side 

of a frame inside a hive with every 2-fold increase of RmtDNAcn ratio. In addition to the increase 

risks of the onset of bee disappearance in neonic-treated hives, we also found higher hazard ratio 

of mortality in both IMI- (HR = 5.3) and CLO- treated (HR = 2.6) hives, and slightly larger hazard 

ratios of mortality associated with increasing RmtDNAcn adjusting for the effect of treatments 

(HR = 1.1).  
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Table 7. Hazard ratios of the onset of bee disappearance (as measured of the numbers of frame 

sides containing adult bees) in hives over the winter across treatments and with respect to the 

change of every 2-fold increase in RmtDNAcn ratiosa. 

Coefficient Hazard Ratio (95% CI) p-value 

Treatment Effects:   

Ctrl 1.00  

IMI 2.15 (0.98, 4.73) 0.056b  

CLO 1.55 (0.74, 3.27) 0.25b 

RmtDNAcn Effects:   

RmtDNAcn Ratio 1.21 (0.80, 1.84) 0.37b 

aRmtDNAcn ratio is defined as the relative mitochondrial DNA copy numbers with respect to the nuclear DNA copy 

number of the last sampled generation (F4) to that of the baseline generation (F0) for each hive (2-∆∆Ct, where ∆∆Ct 

= ∆Ct (F4, hive) – ∆Ct (F0, hive)). 
bp-values were testing whether the effects were significantly (α = 0.05) different from that of the Ctrl group; note that 

Ctrl: RmtDNAcn effects were testing whether significant risk exists with increasing RmtDNAcn ratio among the Ctrl 

group. 

 

 

 

Table 8. Hazard ratios of dead hives over winter season across treatments and with respect to the 

change of every 2-fold increase in RmtDNAcn ratioa. 

Coefficient Hazard Ratio (95% CI) p-value 

Treatment Effects:   

Ctrl 1.00  

IMI 5.29 (0.51, 55.04) 0.16b 

CLO 2.60 (0.23, 29.10) 0.44b 

RmtDNAcn Effects:   

RmtDNAcn Ratio 1.06 (0.45, 2.47) 0.90b 

aRmtDNAcn ratio is defined as the relative mitochondrial DNA copy numbers with respect to the nuclear DNA copy 

number of the last sampled generation (F4) to that of the baseline generation (F0) for each hive (2-∆∆Ct, where ∆∆Ct 

= ∆Ct (F4, hive) – ∆Ct (F0, hive)). 
bp-values were testing whether the effects were significantly (α = 0.05) different from that of the Ctrl group; note that 

Ctrl: RmtDNAcn effects were testing whether significant risk exists with increasing RmtDNAcn ratio among the Ctrl 

group. 

 

These findings are of crucial as studies have shown that higher level of mtDNAcn is 

associated with mtDNA damage, and we could support the current understanding of mechanism 

of sub-lethal neonic exposure by linking both upstream with neonics exposure45-47 and downstream 

with hives’ overall health (brood sizes, numbers of frames with bees, and hive survival). 

Mitochondrial DNA is known to be more vulnerable to environmental toxicants than nuclear DNA 
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(nDNA) with its close proximity of nucleoids to the electron transit chain (ETC) and limited repair 

pathway.54 Dysfunction of ETC could lead to increasing reactive oxidative species (ROS) 

generation, reduction in ATP production, and changes in membrane potential.47 Mitochondria are 

eukaryotic organelles for energy production through oxidative phosphorylation. In cells with 

higher energy demands, there is larger number of mitochondria per cell. In addition to energy 

needs, the state of mtDNA could also vary given different oxidative stress conditions.12 Under 

normal condition, ROS generated during oxidative phosphorylation (1 - 2% of the oxygen 

consumption) can damage mtDNA while could be gradually repaired. With multiple copies of 

mitochondrial genome, the corresponding biochemical defects and tissue dysfunction are not 

detected until certain threshold (typically a ratio of 60% - 90% mutant to wild-type mtDNA 

variated by tissues and species).47, 55, 56 In contrary, ROS generated under ROS-stressed conditions 

could damage mtDNA persistently, leading to dysfunction of oxidative phosphorylation.57 This 

chronic oxidative stress resulted from damaged mitochondria could increase mtDNA replication 

and repair.12 Therefore, increasing mtDNAcn could be the compensatory mechanism to maintain 

mitochondrial transcripts by increasing the number of wild-type mtDNA.12, 58-60  

Limited repair pathways of mtDNA compared to nDNA, such as the absence of nucleotide 

excision repair (NER) responsible for repairing processes of several environmental genotoxicants 

(e.g. PAHs, mycotoxins), could indirectly result in irreparability of certain types of mtDNA 

damage.47, 54, 57, 61, 62 As shown in the present study, the increasing mtDNAcn in the adult bees 

from later brood generations in the same hive (or queen), may have caused by the limited repair 

capability of mtDNA, and under the circumstance when exposure to neonics is continuous and yet 

at the sub-lethal levels the neonic-induced mtDNA damage is likely to be irreparable and even 

inheritable. One plausible explanation linking to CCD is that winter bees inherit a higher baseline 
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level of RmtDNAcn as they were more later brood generation by their queens, and higher baseline 

level of RmtDNAcn leads the insufficient energy production a hive needs to survive through winter. 

The observation of lower survival probabilites among neonic-treated hives over the winter could 

be a supportive evidence.  Therefore, studies evaluating hive thermoregulation due to 

mitochondrial dysfunction following sub-lethal neonics exposure is in need to further evaluate this 

mechanism. 

One major limitation of this chapter is the numbers of bees that we collected from those 18 

hives were too small to achieve meaningful statistical power, even though we found positive 

relationship between RmtDNAcn in adult foraging honeybees and the cumulative sub-lethal 

exposure of neonics of their queens As the outcomes of model simulation shown in Figure 7, we 

would need to substantially increase the number of hives to 90 hives in order to achieve 80% of 

the statistical power for detecting the same levels of significant increase in RmtDNAcn due to IMI 

exposure, and even larger hive numbers for CLO-induced effects. This no doubt would add 

significant burden to the research personnel and the project resources due to the nature of year-

long field study involving intensive and frequent data and specimen collected throughout the year. 

In addition, the considerably increasing variability of RmtDNAcn among bees collected from later 

brood generations could result from both the variations among individual adult bees, as well as 

different inherited levels of mtDNAcn from their queens. As the baseline levels of RmtDNAcn 

levels were quite similar across all experimental hives, we could exclude the possibility that the 

variability was originated from the baseline age of different.  
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Figure 7. Power simulation for number of hives (N) needed in the field study to observe significant 

coefficients of individual treatment x generation interactions at the modeled level. Variances 

(between hive variation = 0.06, and model residual variance = 0.34) from our predicted model 

were used for the simulation. 
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Supplemental Materials 

 

Figure S1. Log2(RmtDNAcn) levels for all samples by sugar and pesticide treatments. Outliers were circled and 

excluded from all analyses. 

 
Log2(RmtDNAcn) levels for all samples by sugar and pesticide treatments. Outliers were circled and excluded 

from all analyses. 
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Table S1. Ct values for 18srRNA and Cytb for all hives and replicates. 

HiveID 
18srRNA  

(3 replicates) 
Cytb  

(3 replicates) Treatment Hive Location Generation 
Average 
18srRNA 

Average 
Cytb 

 1 2 3 1 2 3      

D3S1  18.09 19.89  19.42 21.69 Sucrose-Control 0 0 18.99 20.56 

D3S3 18.37 16.37 20.39 19.41 15.69 21.40 Sucrose-Control 0 2 18.38 18.83 

D3S5 16.97 16.86 20.71 16.98 18.44 19.42 Sucrose-Control 0 4 18.18 18.28 

L3S1 18.82 18.80 18.78 21.31 21.45 16.41 Sucrose-Control 1 0 18.80 19.72 

L3S3 21.62 20.57 19.52 18.58 23.60 20.93 Sucrose-Control 1 2 20.57 21.03 

L3S5 20.72 18.69 19.41 20.95 20.08 18.46 Sucrose-Control 1 4 19.60 19.83 

R3S1 20.46 19.49 19.29 22.07 22.13 21.89 Sucrose-Control 2 0 19.75 22.03 

R3S3 20.73 18.95 19.77 23.03 22.30 21.40 Sucrose-Control 2 2 19.82 22.24 

R3S5 21.74 20.09 20.56 19.23 18.12 19.16 Sucrose-Control 2 4 20.80 18.84 

D1S1 19.78 18.46 20.30 21.85 19.96 21.66 Sucrose-IMI 0 0 19.51 21.16 

D1S3 20.66 17.61 19.58 18.27 19.60 21.09 Sucrose-IMI 0 2 19.28 19.65 

D1S5 20.04 18.65 20.73 20.84 16.27 20.03 Sucrose-IMI 0 4 19.81 19.05 

L1S1 20.63 19.00 18.86 20.05 22.47 20.17 Sucrose-IMI 1 0 19.50 20.90 

L1S3 19.90 19.14 20.09 21.02 18.85 22.82 Sucrose-IMI 1 2 19.71 20.90 

L1S5 20.44 19.93 19.97 21.85 19.91 17.95 Sucrose-IMI 1 4 20.12 19.91 

R1S1 21.92 19.79 20.10 22.91 23.09 22.45 Sucrose-IMI 2 0 20.60 22.82 

R1S3 20.87 20.43 21.24 22.72 20.63 19.93 Sucrose-IMI 2 2 20.85 21.09 

R1S5 22.23 21.65 21.90 18.87 20.08 19.52 Sucrose-IMI 2 4 21.93 19.49 

D2S1 19.94 17.11 19.81 21.19 19.39 22.46 Sucrose-CLO 0 0 18.95 21.01 

D2S3 18.73 17.82 23.20 20.72 19.01 21.52 Sucrose-CLO 0 2 19.92 20.41 

D2S5 20.41 16.68 20.61 19.74 17.78 20.19 Sucrose-CLO 0 4 19.23 19.24 

L2S1 19.30 18.31 18.34 23.04 22.40 16.32 Sucrose-CLO 1 0 18.65 20.59 

L2S3 19.92 20.92 20.93 22.12 20.80 20.77 Sucrose-CLO 1 2 20.59 21.23 

L2S5 19.77 20.92 18.82 20.91 21.59 17.78 Sucrose-CLO 1 4 19.84 20.09 

R2S1 20.98 20.08 20.85 22.20 23.46 23.59 Sucrose-CLO 2 0 20.63 23.08 

R2S3 21.88 19.23 21.17 19.74 20.93 19.99 Sucrose-CLO 2 2 20.76 20.22 
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 (Continued) 

R2S5 21.89 21.25 19.84 18.76 20.27 20.87 Sucrose-CLO 2 4 20.99 19.97 

D3H1 16.88 17.65 20.97 18.60 20.02 24.07 HFCS-Control 0 0 18.50 20.90 

D3H3 16.27 18.63 20.99 17.84 15.78 23.29 HFCS-Control 0 2 18.63 18.97 

D3H5 17.53 17.85 21.08 15.16 20.08 17.99 HFCS-Control 0 4 18.82 17.75 

L3H1 18.71 17.99 19.34 22.24 21.89 21.90 HFCS-Control 1 0 18.68 22.01 

L3H3 20.15 18.79 19.77 17.83 23.16 22.45 HFCS-Control 1 2 19.57 21.15 

L3H5 18.96 21.10 19.37 20.88 19.96 19.61 HFCS-Control 1 4 19.81 20.15 

R3H1 20.78 20.02 19.48 22.41 23.50 21.99 HFCS-Control 2 0 20.09 22.63 

R3H3 20.79 20.17 20.13 22.35 23.42 19.41 HFCS-Control 2 2 20.36 21.72 

R3H5 20.54 19.40 18.77 22.50 20.76 23.67 HFCS-Control 2 4 19.57 22.31 

D1H1 17.38 17.81 19.70 19.83 20.76 21.95 HFCS-IMI 0 0 18.30 20.85 

D1H3 16.94 18.50 20.16 18.69 18.01 21.08 HFCS-IMI 0 2 18.53 19.26 

D1H5 16.35 18.62 21.11 15.52 17.12 19.14 HFCS-IMI 0 4 18.69 17.26 

L1H1 18.97 19.23 19.94 21.39 23.05 22.14 HFCS-IMI 1 0 19.38 22.19 

L1H3 20.28 20.62 21.41 22.76 24.31 19.63 HFCS-IMI 1 2 20.77 22.23 

L1H5 20.61 21.70 20.51 19.81 22.14 20.60 HFCS-IMI 1 4 20.94 20.85 

R1H1 19.44 19.52 18.45 22.58 22.23 22.96 HFCS-IMI 2 0 19.14 22.59 

R1H3 21.08 19.06 21.38 19.20 19.46 20.44 HFCS-IMI 2 2 20.51 19.70 

R1H5 21.37 19.61 20.20 18.01 21.81 20.08 HFCS-IMI 2 4 20.40 19.97 

D2H1 17.46 17.25 19.37 18.95 18.80 21.52 HFCS-CLO 0 0 18.03 19.76 

D2H3 16.97 17.92 19.90 18.94 19.93 21.65 HFCS-CLO 0 2 18.26 20.17 

D2H5 17.84 17.98 21.91 15.57 18.44 20.61 HFCS-CLO 0 4 19.24 18.21 

L2H1 20.28 19.58 19.39 21.81 17.57 21.55 HFCS-CLO 1 0 19.75 20.31 

L2H3 20.69 19.30 19.78 19.93 22.82 19.43 HFCS-CLO 1 2 19.92 20.73 

L2H5 20.31 19.26 21.14 17.98 19.85 19.28 HFCS-CLO 1 4 20.24 19.04 

R2H1 20.19 18.75 18.96 22.47 21.17 23.27 HFCS-CLO 2 0 19.30 22.30 

R2H3 21.17 19.02 19.86 22.29 22.93 23.35 HFCS-CLO 2 2 20.02 22.86 

R2H5 19.97 20.91 20.22 22.19 22.05 18.97 HFCS-CLO 2 4 20.37 21.07 
Shaded cells were excluded as outliers during quality control step. 
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Table S2. Statistical tests and analysis for final model selection.  

Test Description of the testing modelsb  LRTa results 

Analysis of generation effects among control group (normal aging effect of queens): 

Test 1:  

‘Categorical 

generation 

effect’ >  ‘Linear 

generation 

effect’ (null)  

H0: y ~ a0 + ahive + b * Jhive + ∑ ck * I[Treatmentk, hive]  

+ ∑dk * Jhive * I[Treatmentk,hive] 

 

H1: y ~ a0 + ahive + ∑bj * I[Fjhive] + ∑ ck * I[Treatmentk, hive]  

+ ∑djk I[Fjhive] * I[Treatmentk,hive] 

p = 0.93; 

fail to reject the 

null; 

linear generation 

model is 

sufficient 

Test 2:  

‘Quadratic 

generation 

effect’ >  ‘Linear 

generation 

effect’ (null)  

H0: y ~ a0 + ahive + b * Jhive + ∑ ck * I[Treatmentk, hive]  

+ ∑dk * Jhive * I[Treatmentk,hive] 

 

H1: y ~ a0 + ahive + b * Jhive + b’ * J2
hive + ∑ ck * I[Treatmentk, 

hive]  

+ ∑dk * Jhive * I[Treatmentk,hive] 

p = 0.92; 

fail to reject the 

null; 

linear generation 

model is 

sufficient 

Analysis of sugar (sucrose/HFCS) effects: 

Test 3:  

‘Separate 

sucrose/HFCS 

effect’ >  

‘Combined 

sucrose/HFCS 

effect’ (null)  

H0: y ~ a0 + ahive + b * Jhive + ∑ ck * I[Treatmentk, hive]  

+ ∑dk * Jhive * I[Treatmentk,hive] 

 

H1: y ~ a0 + ahive + b * Jhive + ∑ ck * I[Treatment-sugark, hive]  

+ ∑dk * Jhive * I[Treatment-sugar k,hive] 

 

p = 0.87; 

fail to reject the 

null; 

combined sugar 

effect model is 

sufficient 

   

   
aLRT = Likelihood Ratio Test. Nested model comparisons were conducted using maximized log-likelihoods (ML) 

fitted mixed models. Summary of model statistics are presented in Table S2 and S3. 
bGeneration effects (F0, F2, F4) are presented as J, where J = 2 or 4. I[Fjhive] represent indicator variables for 

categorical generations (e.g. I[F2hive] = 1 means that the sample was collected from the second generation after 

treatments started and from the specific ‘hive’.) 
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Table S3. Summary of statistical models of different generation trend assumptions. 

Categorical generation effect model  Value Std.Error DF t-value p-value 

(Intercept) -1.6968658 0.2661051 30 -6.38 4.89E-07 

factor(Generation)1 0.7299132 0.3511761 30 2.08 4.63E-02 

factor(Generation)2 1.6539405 0.3511761 30 4.71 5.28E-05 

factor(treatment)2.IMI 0.01785783 0.3763295 15 0.05 9.63E-01 

factor(treatment)3.CLO 0.04100932 0.3763295 15 0.11 9.15E-01 

factor(Generation)1:factor(treatment)2.IMI 0.58093903 0.4966381 30 1.17 2.51E-01 

factor(Generation)2:factor(treatment)2.IMI 0.64525665 0.4966381 30 1.30 2.04E-01 

factor(Generation)1:factor(treatment)3.CLO 0.21503813 0.4966381 30 0.43 6.68E-01 

factor(Generation)2:factor(treatment)3.CLO 0.26772914 0.4966381 30 0.54 5.94E-01 

      

Linear generation effect modela  Value Std.Error DF t-value p-value 

(Intercept) -1.7292182 0.2410237 33 -7.17 3.19E-08 

Generation 0.8269703 0.1684894 33 4.91 2.42E-05 

factor(treatment)2.IMI 0.1039614 0.3408589 15 0.30 7.65E-01 

factor(treatment)3.CLO 0.0680672 0.3408589 15 0.20 8.44E-01 

Generation:factor(treatment)2.IMI 0.3226283 0.2382800 33 1.35 1.85E-01 

Generation:factor(treatment)3.CLO 0.1338646 0.2382800 33 0.56 5.78E-01 

      

Quadratic generation effect model  Value Std.Error DF t-value p-value 

(Intercept) -1.7345863 0.2494462 32 -6.95 7.09E-08 

Generation 0.85917898 0.3825424 32 2.25 3.17E-02 

Generation_sq -0.0161044 0.1710781 32 -0.09 9.26E-01 

factor(treatment)2.IMI 0.1039614 0.3434282 15 0.30 7.66E-01 

factor(treatment)3.CLO 0.06806717 0.3434282 15 0.20 8.46E-01 

Generation:factor(treatment)2.IMI 0.32262833 0.241941 32 1.33 1.92E-01 

Generation:factor(treatment)3.CLO 0.13386457 0.241941 32 0.55 5.84E-01 
aFinal selected model. 
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Table S4. Summary of statistical models of different sucrose/HFCS assumptions. 

Combined sucrose/HFCS effecta Value Std.Error DF t-value p-value 

(Intercept) -1.72921819 0.2410237 33 -7.17 3.19E-08 

Generation 0.41348513 0.0842447 33 4.91 2.42E-05 

factor(treatment)2.IMI 0.1039614 0.3408589 15 0.30 7.65E-01 

factor(treatment)3.CLO 0.06806717 0.3408589 15 0.20 8.44E-01 

Generation:factor(treatment)2.IMI 0.16131416 0.11914 33 1.35 1.85E-01 

Generation:factor(treatment)3.CLO 0.06693228 0.11914 33 0.56 5.78E-01 

      

Separate sucrose/HFCS effect Value Std.Error DF t-value p-value 

(Intercept) -1.691426461 0.3590051 30 -4.71 5.26E-05 

Generation 0.465253028 0.1234967 30 3.77 7.21E-04 

factor(Pesticide)2 0.217809046 0.5077099 12 0.43 6.76E-01 

factor(Pesticide)3 -0.003663355 0.5077099 12 -0.01 9.94E-01 

factor(Pesticide)4 -0.075583459 0.5077099 12 -0.15 8.84E-01 

factor(Pesticide)5 -0.085469702 0.5077099 12 -0.17 8.69E-01 

factor(Pesticide)6 0.06421424 0.5077099 12 0.13 9.01E-01 

Generation:factor(Pesticide)2 0.092893004 0.1746507 30 0.53 5.99E-01 

Generation:factor(Pesticide)3 0.064943859 0.1746507 30 0.37 7.13E-01 

Generation:factor(Pesticide)4 -0.103535803 0.1746507 30 -0.59 5.58E-01 

Generation:factor(Pesticide)5 0.126199519 0.1746507 30 0.72 4.76E-01 

Generation:factor(Pesticide)6 -0.034615093 0.1746507 30 -0.20 8.44E-01 
aFinal selected model. Note that this is the same selected model in Table S2. 
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Abstract 

The causation of honeybee colony collapse disorder (CCD) is a long-time mystery ad has 

been linked to multiple factors, including insecticide exposure, particularly neonicotinoids. 

Previous hypothesis and findings of neonicotinoids’ influence on honeybees were to do with 

diminishing ATP generation in mitochondria for highly demanding foraging or thermoregulation 

activities. Previously, we found that increasing relative mitochondrial DNA copy number 

(RmtDNAcn) in bees that brood later by the aging queens and that cumulative imidacloprid and 

clothianidin exposure led to additional increase in RmtDNAcn over time. In this chapter, we 

conducted metabolomics analyses with a selection of pathways associated with energy metabolism 

to further understand the metabolic mechanism of sublethal cumulative neonicotinoids exposure. 

We found that both biological aging- (due to queens’ aging) and neonicotinoids- induced change 

in abundance of several metabolites indirectly or directly related to energy metabolism. Biological 

aging was significantly associated with change in reducing abundance in several precursors of 

glutathione metabolism that could be associated with oxidative stress. Neonicotinoids exposure 

were associated with reducing abundance of intermediates in TCA cycle or increasing NAD+ 

abundance and increasing RmtDNAcn ratio contributed to further disturbance in metabolite 

abundance in control and treated bees. Although none of the change in metabolite abundance due 

to neonicotinoids treatments remained significant after we adjust for multiplicity, we believe this 

exploratory result served as a start to encourage more research on neonicotinoids’ impact on the 

relative abundance of metabolites in the glutathione and energy metabolism (TCA cycle and 

OXPHOS). 
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Introduction 

Neonicotinoids are the most widely used insecticides globally with the registration in more 

than 100 countries for more than 120 different crops.1, 7, 8 Although their primary use in agriculture 

is in the seed treatments for crops such as corn, oilseed rape, and sunflower, neonicotinoids are 

also commonly used in nursery and veterinary medicine. Because all neonicotinoids are highly 

water soluble, they are systemic insecticides and persistent in the environment where 

neonicotinoids are found in soil and groundwater with the biological half-lives ranging from 100 

to 1000 days.63 In recent years, neonicotinoids have been receiving great attention worldwide 

because of the implication in the causation to the massive and sudden decline in global honeybee 

(Apis mellifera) population over the winter, a phenomenon referred as colony collapse disorder 

(CCD).48, 64 In combination of their property as systemic insecticides, lengthy biological half-lives 

in the environment, and increasing global usage, the concern of neonicotinoids exposures and their 

toxic effects not only to pollinators, such as honeybees, but also human is warranted. 

Neonicotinoids were found to be associated with adverse effects in honeybees at the sub-

lethal levels, including impairing reproductive and behavioral abilities39, decrease in brood size41, 

42, 65, affecting foraging activities and syrup consumption, 8, 41, 42, 65, 66 and the occurrence of CCD.48 

In terms of neonicotinoids association with CCD, one main hypothesis is the link to the lack of 

sufficient ATP generation for bees’ high energy-demanding activities.9-11 To maintain the thermal 

homeostasis in a colony during winter, bees cluster tightly and shiver inside their hive and this 

shivering mechanism is in fact very energy demanding. 11 Since CCD usually occurs during winter 

season, the sudden and massive disappearance of adult bees from their hives resulted from 

insufficient ATP production due to mitochondrial dysfunction is biologically probable.44  
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In Chapter 2, we found chronic sub-lethal neonicotinoids exposure could result in 

additional increase in mitochondrial DNA copy number (mtDNAcn) in worker bees, a biological 

measurement that often leads to impairments in energy metabolism. In order to understand the 

metabolic mechanism of this process, we conducted metabolomics analyses with a selection of 

pathways associated with energy metabolism. We hypothesized that metabolite abundance could 

be modified across different honeybee brood generations from the same queens due to biological 

aging (earlier aging compared to the observed age due to later-brood by aging queens), chronic 

sub-lethal neonicotinoids exposure, along with the increase in mtDNAcn associated with both 

aging and treatment effects. We evaluated the hypothesis by detecting change in metabolite 

abundance closely related to the energy metabolism using KEGG PATHWAY Database and aimed 

to identify key metabolites with meaningful change that are related to both biological aging- and 

neonicotinoids treatment. 
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Materials and Methods  

Specimen Collection and Mitochondrial DNA copy number (mtDNAcn) Measurement. Detailed 

specimen collection scheme has been published earlier.48 In brief, we set up 6 honeybee hives at 

each of the 3 independent apiaries, or a total of 18 hives. At each apiary, hives were fed with 0.5 

gallon of either sucrose (table sugar; N = 3) or high-fructose corn syrup (HFCS; N = 3). In each of 

the two sugar feeding groups, hives were given a weekly dose of either 258 µg of imidacloprid 

(IMI), 258 µg of clothianidin (CLO), or no pesticide (control) for 13 consecutive weeks (from July 

2nd to September 17th, 2012). Assuming each healthy hive contained 50,000 bees during the dosing 

weeks when bees are active in brood rearing and foraging, the weekly dose of 258 µg in 0.5 gallon 

of sugar water per hive is equivalent to 0.74 ng/bee/day. Adult worker bees per hive were collected 

by intercepting at the entrance of their hives returned from foraging. We collected samples from 

three brood generations of each hive (from the same queens) on July 2nd (F0, the baseline/pre-

treatment generation), August 20th (F2, the during-treatment generation), and October 15th (F4, the 

post-treatment generation) in 2012. After interception, bees were transferred to a 50-mL centrifuge 

tube immediately after capture, placed in a cooler with dry ice during transportation, and then 

stored in a -80oC freezer in the lab until mtDNAcn and metabolomics analyses.  

We quantified mtDNAcn in the middle section, or thoracic muscle, of an adult foraging 

honeybee using the DNeasy Blood & Tissue Kit (Qiagen) in triplicates per hive per brood 

generation, as previously described in Chapter 2. We selected Cyt b (11004bp-12155bp) and 18s 

rRNA to represent mtDNA and the nuclear DNA, respectively. The primers used for Cyt b and18s 

rRNA genes for q-PCR were: Cyt b F-5’AGC AGC TGC ATT TAT AGG ATA TG 3’; Cyt b R-5’ 

AGA TTA GTA ATA ACT GTT GCA CCT C 3’; 18s rRNA F- 5’GTG GGC CGA TAC GTT 

TAC TT 3’; 18s rRNA R-5’ CCG AGG TCC TAT TCC ATT ATT CC 3’. We normalized 
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mtDNAcn by the copy number of a selected nuclear DNA (nDNAcn) as the internal reference gene 

to calculate ΔCt for each sample, known as log2-transformed relative mtDNAcn (RmtDNAcn), 

using the following equation:  

ΔCt = Ct (Cyt. b) – Ct (18s rRNA)          

(Equation 12) 

where Ct is the threshold cycle number at the determined level of log-based fluorescence and 

therefore inverse proportional to the log-based initial copy number of the target gene. At the final 

step, we took the average of ΔCt (the hive-level ΔCt, n = 3 brood generations x 18 hives = 54) for 

the samples collected from the same hive at the same time to link with the hive-level metabolite 

abundance, which will be described below.  

Metabolic Profiling. A total of 325 metabolites were analyzed in each of the 54 samples at 

Metabolon Inc.(Morrisville NC) in which Metabolon has been participating in numerous 

metabolomic analyses.67, 68 In brief, samples were prepared using the automated MicroLab 

STAR®  system (Hamilton Company, Salt Lake City, UT, USA). After the preparation process, 

sample extracts were frozen and dried under vacuum before analyzed either by GC/MS (Thermo-

Finnigan Trace DSQ fast-scanning single quadrupole mass spectrometer using electron impact 

ionization) or by LC/MS/MS (Waters ACQUITY UPLC and a Thermo-Finnigan LTQ mass 

spectrometer using electrospray ionization (ESI) source and linear ion-trap (LIT) mass analyzer) 

platform. Metabolites were identified either by comparing biochemicals to the purified standards 

in the metabolic library or by their recurrent chromatographic and mass spectral nature.  
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Figure 8. Data Processing and Analyses Flowchart.
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Data processing. 

1. Missing data exclusion. To ensure the robustness of statistical analyses on metabolomics data 

and to avoid the potential over-imputation of missing data, it is a common practice to remove 

metabolites containing high proportion of missing data.69 We excluded metabolites with more 

than 20% of features missing within each generation and treatment group (the 80% rule applied 

to the subset datasets70). In addition, we excluded metabolites with more than 50% of missing 

values (the 50% rule applied to the whole dataset). After this QC step, 286 metabolites were 

left in the combined dataset (with 6% missing values remained) for the metabolomics analyses. 

The 39 excluded metabolites were summarized in Table S5. 

2. Missing data imputation.  Raw metabolite abundance data were normalized to Bradford 

protein concentration and then rescaled to set the median as one per metabolite. Samples with 

missing values for the 286 metabolites were imputed with the minimum value of the scaled 

abundance of such metabolite. 

Metabolic pathway selection. We used ‘pathview’ in R package to map our metabolites with their 

involved pathways of honeybee’s metabolism using Kyoto Encyclopedia of Genes and Genomes 

(KEGG) PATHWAY Database. Since we hypothesized chronic sub-lethal neonicotinoids 

exposure would lead to change in RmtDNAcn, mitochondrial malfunction, and subsequently 

change in metabolite abundance, we selected the following pathways (KEGG Pathway ID), which 

are also shown in Figure 9: 

1. Citrate cycle (TCA cycle, ame00020) and oxidative phosphorylation (OXPHOS, 

ame00190) pathways are energy metabolic pathways that directly take place in mitochondria.  

2. Glutathione metabolism (ame00480) pathways are part of the Phase II detoxification, which 

is important for detoxifying xenobiotics, such as neonicotinoids.67 Two relative abundance 
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metabolites, glutathione (GSH) and oxidized-glutathione (GSSG), are related to reactive 

oxygen species (ROS) generation.67, 71  

3. Glycolysis/Glycogenesis (ame00010), Nicotinate/Nicotinamide (ame00760), Pentose 

Phosphate (ame00030), Purine metabolism (ame00230), and Pyruvate metabolism 

(ame00620) pathways are included due to their indirect but close link to metabolites involved 

in the energy metabolism (citrate cycle and oxidative phosphorylation).  

4. Neuroactive ligand-receptor interaction metabolism (ame04080) pathway is included 

because of the mode of action of neonicotinoids that is nicotinic acetylcholine receptor 

(nAChR) agonism.  

Among those 286 metabolites, we were able to map 57 metabolites that specifically match with 

the study interest, as described in 2.1 – 2.4. Detail information for these metabolites is summarized 

in Table S6.  
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Figure 9. Schematic overview of the selected metabolites and pathways. Metabolites involved in multiple metabolic pathways were 

colored in gray.
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Statistical modeling for metabolome-wide association (MWA). We used the following mixed 

effect model (Equation 13) with random hive intercept and fixed effects (treatments, brood 

generations, log2 RmtDNAcn ratio, and their two-/three-way interactions) to study the association 

between sub-lethal neonicotinoids treatments and change in the abundance of those 57 metabolites 

through increasing relative mitochondrial DNA copy number (RmtDNAcn). P-values (two-sided) 

for these covariates were reported (α = 0.05) for determination of significant changing metabolite 

abundance ratio due to the covariates. We also used false discovery rate (FDR, q-values) to adjust 

the results from multiple testing, in which q-values < 0.05 were presented. The model could be 

grouped into four parts; 

Log2(FCFJ vs. F0) ~ ahive  

+ Ctrl F2 vs. F0 + Ctrl F4 vs. F2  
(A) Biological aging effect on 

metabolite abundance ratio 

 

+ Ctrl F2 vs. F0 *[-∆∆CT, F2 vs. F0]  

+ Ctrl F4 vs. F2*[-∆∆CT, F4 vs. F2]  

(B) Metabolite abundance ratio changes 

with increasing RmtDNAcn ratio 

 

+ ∆IMI F2 vs. F0 + ∆CLO F2 vs. F0  

+ ∆IMI F4 vs. F2 + ∆CLO F4 vs. F2 

(C) Treatment effect on metabolite 

abundance ratio 

 

+ ∆IMI F2 vs. F0 *[-∆∆CT, F2 vs. F0]  

+ ∆CLO F2 vs. F0 *[-∆∆CT, F2 vs. F0] 

+ ∆IMI F4 vs F2 *[-∆∆CT, F4 vs. F2]  

+ ∆CLO F4 vs. F2 *[-∆∆CT, F4 vs. F2] 

(D) Metabolite abundance ratio changes 

with neonicotinoids-attributed 

increasing RmtDNAcn ratio 

(Equation 13) 

where:  

• FC is the abundance ratio of later-brood (F2 and F4) generations versus the baseline (F0) 

generation;  

• ahive represents random hive effect on log2 abundance ratio at F2;  
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• CtrlF2 vs. F0, ∆IMI F2 vs. F0 and ∆CLO F2 vs. F0 represent the abundance ratio in relate to 

biological aging and neonic-attributed change in log2 abundance ratio at F2 compare to F0; 

biological aging was defined as the effects seen in later-brood adult bees brood by the aging 

queens, which had the same age of days on average while were in fact aging in a faster 

speed biologically.  

• ∆IMI F4 vs. F2 and ∆CLO F4 vs. F2 show the change in abundance ratio due to cumulative 

neonic-treatments from F2 to F4, comparing to non-neonic treatment (Ctrl F4 vs. F2); 

• -∆∆CT is the log2 RmtDNAcn ratio between two generations, which is the –(ΔCtFj – ΔCtF0). 

CtrlFj vs. Fk*[-∆∆CT, Fj vs. Fk] shows the change in log2 abundance ratio in relate to every 2-

fold increase in RmtDNAcn ratio between j and k generations adjusting for the effect of 

treatments. As a result, we defined this effect as the biological association between change 

in RmtDNAcn and change in metabolite abundance;  

• ∆neonic Fj vs. Fk*[-∆∆CT, Fj vs. Fk] represents the neonic-attributed change in the above 

described association between j and k generations.  
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Results and Discussion 

Table 9 shows the total number of metabolites with significant changes in abundance ratios 

associated with the biological aging effect, the effect of increasing RmtDNAcn ratio, treatment 

effect, or the effect from neonic-attributed change in RmtDNAcn ratio. In general, we found 

several metabolites their abundances are significantly perturbed for biological aging, and most of 

them associated with reduction of abundance especially among the F4 generation. Fewer 

metabolites were seen to significantly associate with additional change in their abundance due to 

neonicotinoids treatments or increasing RmtDNAcn ratio. 

 

Table 9. Numbers of metabolites with significant changes (red for increase and green for decrease) 

in abundance ratios (out of the 57 selected metabolites).  

Total number of 

biochemicals regarding 

effects in  

Biological 

Aging Effect  

Effect of 

Increasing  

RmtDNAcn 

Ratio  

Treatment Effect 

Effect from Neonic-

Attributed 

 Change in RmtDNAcn 

Ratio  

IMI CLO IMI CLO 

• with p < 0.05 

Biochemicals (↑↓) at F2 0|3 3|1 0|4 2|0 2|1 0|0 

Biochemicals (↑↓) at F4 2|14 0|2 2|0 3|0 0|0 0|2 

• with 0.05 < p < 0.1 

Biochemicals (↑↓) at F2 2|2 0|3 0|1 1|1 0|1 1|3 

Biochemicals (↑↓) at F4 0|6 3|0 3|1 2|1 3|1 0|3 

• with q < 0.05 

Biochemicals (↑↓) at F2 0|0 0|0 0|0 0|0 0|0 0|0 

Biochemicals (↑↓) at F4 2|9 0|0 0|0 0|0 0|0 0|0 

• with 0.05 < q < 0.1 

Biochemicals (↑↓) at F2 0|0 0|0 0|0 0|0 0|0 0|0 

Biochemicals (↑↓) at F4 0|0 0|0 0|0 0|0 0|0 0|0 
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Figure 10 shows the changes in metabolite abundance ratios across F0, F2 and F4 brood 

generations (vertical alignment, results from Part (A) of equation 13), as well as between 

neonicotinoids-treated and control groups (horizontal alignment, results from Part (C) of equation 

13). Figure 11 distinguishes the additional changes in metabolic abundance ratios resulting from 

biological aging- (vertical alignment, results from Part (B) of equation 13) and neonicotinoids 

treatment- induced (vertical alignment, results from Part (D) of equation 13) increase in 

RmtDNAcn ratios. In both figures, we used the heatmaps to show the average abundance ratios of 

different treatment/generation groups under the circumstances when any of the tested change in 

equation 13 was significant (p < 0.05, without adjustment of multiplicity). We highlighted 

metabolites with significance by their abundance ratios and p-values in Figures 10B and 11B, and 

cross-compared these findings with Figures 10A and 11A. Specifically, the blue-boxed areas of 

the volcano plots in Figures 10B and 11B show the changes of metabolite abundance due to 

biological aging effects and due to increasing RmtDNAcn ratios that we observed in the control 

group, respectively. Likewise, the yellow-boxed areas in Figures 10B and Figure 11B show the 

change of metabolite abundance ratio due to treatment effects and due to neonicotinoids-attributed 

increase in RmtDNAcn ratio, respectively. For the purpose of streamlining the results, we 

summarized the findings into the following four categories: 
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Figure 10. (A) Heatmap of average log2 fold change (FC) of abundance between later-brood 

generations (F2 or F4) vs. baseline generation (F0) for metabolites with significant abundance 

changes. Averages were calculated by Equation 13 given no change in RmtDNAcn ratio. 

Hierarchical clusters of metabolites were based on Euclidean distance of the log2 FC values, where 

metabolites aligned closer were more correlated. (B) Volcano plots showing the log2 fold change 

of abundance in later-brood generations (F2 or F4) versus F0 for 57 metabolites given no change 

in RmtDNAcn ratio. Differences in log2 fold change between treatments (Ctrl vs. NULL, IMI vs. 

Ctrl and CLO vs. Ctrl) were tested using Equation 13 and metabolites with significant abundance 

changes were labeled here if p < 0.05 without multiplicity adjustment. Metabolites remain 

significant after FDR adjustment for multiplicity (q < 0.05) were marked with (*).   

 

A B 
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1. Biological aging effects on metabolite abundance ratios. As shown in Figure 10B (and in 

Figure S2 in the supplemental materials), we found significant change (p<0.05) of abundance 

ratios due to biological aging for glutathione, nicotinate/nicotinamide, neuroactive, and purine 

metabolisms. In general, those changes were in the decreasing trend of abundance levels. Several 

of them, including the reduction in trigonelline and glutamine, remained statistically significant 

after adjustment of multiplicity using FDR method (q<0.05) in the F4 generation. Although none 

of those metabolites directly take part in the TCA cycle, we observed significant increase in NAD+ 

abundance, which is an important intermediate in both oxidative phosphorylation and 

nicotinate/nicotinamide metabolisms in the F4 generation (p<0.05 and q < 0.05).  

2. Neonicotinoids-attributed change in metabolite abundance ratios. As shown in Figure 10B 

(and in Figure S3 in the supplemental materials), we found significant (p < 0.05) IMI-attributed 

reduction in abundance levels of citrate and malate, which are intermediates of the TCA cycle, in 

the F2 generation that were directly exposing to imidacloprid. Although we didn’t observe similar 

reduction of CLO-attributed abundance levels in these intermediates in the F2 generation, we 

observed significant increase in NAD+ abundance among them along with significant increase in 

Acetyl CoA abundance (the metabolite linking glycolysis metabolism and the TCA cycle). 

3. Effect of RmtDNAcn on metabolite abundance ratios. As shown in Figure 11B, we found 

significantly (p < 0.05) lower abundance ratios of malate and higher abundance ratios of acetyl 

CoA that were associated with increasing RmtDNAcn ratios in the control group. Both directions 

were the same as those we observed in the treatment effects of IMI and CLO, as shown in Figure 

11B. Xanthosine and guanosine in purine metabolism were statistically (p < 0.05) lower with 

increasing RmtDNAcn ratios, which appears to be similar to the observation of reduction in most 

metabolites in the purine metabolism due to biological aging.  
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4. Neonicotinoids-attributed change in RmtDNAcn ratio on metabolite abundance ratios. As 

shown in Figure 11B, we found significant (p < 0.05) differences in abundance ratios of malate, 

ascorbate, acetyl CoA, and 5-oxoproline in both F2 and F4 generations that are associated with 

IMI-attributed increasing RmtDNAcn ratio. On the other hand, significant abundance changes due 

to CLO-attributed increasing RmtDNAcn ratio were only observed for xanthine and hypoxanthine 

in the F4 generation. 
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Figure 11. (A) Heatmap of average log2 fold change (FC) of abundance associated with every 2-

fold increase in RmtDNAcn ratio between later-brood generations (F2 or F4) vs. baseline 

generation (F0) for metabolites with significant abundance changes. Averages were calculated by 

Equation 13 given no change in RmtDNAcn ratio. Hierarchical clusters of metabolites were based 

on Euclidean distance of the log2 FC values, where metabolites aligned closer were more 

correlated. (B) Volcano plots showing effect of RmtDNAcn ratio on metabolite abundance ratio 

(Ctrl vs. NULL; highlighted with blue box) and neonicotinoids-attributed (IMI vs. Ctrl and CLO 

vs. Ctrl; highlighted with yellow box) change in log2 fold change of abundance associated with 

increasing RmtDNAcn ratio in later-brood generations (F2 or F4) versus F0 for 57 metabolites. 

These effects were tested using Equation 13 and metabolites with significant abundance changes 

were labeled here if p < 0.05 without multiplicity adjustment. Metabolites remain significant after 

FDR adjustment for multiplicity (q < 0.05) were marked with (*).   
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In our best knowledge, this is the first study that aims to explore the trans-generational 

effects in organisms as the result of chemical exposure to environmentally relevant levels over 

multiple generations. Such trans-generational effects were subsequently validated in a 

metabolome-wide association study (MWAS) in which perturbation of metabolic pathways 

relevant to the biological changes as observed in the trans-generational effects were identified. The 

use of honeybee specimens collected from the field ecological study in which honeybees that are 

exposed to neonicotinoids in a sub-lethal dosing regime is ideal for the purpose of this chapter. 

This is because none of the honeybee hives that are set up for the ecological study showed any 

apparent toxicological effects during the 13-week of neonicotinoids administration, but later 

exhibited the symptoms of colony collapse disorder (CCD) in the brood generations that are absent 

from neonicotinoids exposure.48  

We conducted MWAS using the mixed-effects model for the 57 pre-selected metabolites 

of interests as it allows us to discover how sub-lethal neonicotinoids exposure could influence the 

micro levels of biomarkers (the abundance of individual metabolites) and their associated 

metabolic pathways.72 As a result, we were able to reference the discovery of abundance changes 

in metabolites in literature for the explanation of the results from the honeybee study in a 

biologically feasible manner. Although the results from the MWAS models have demonstrated the 

perturbation of metabolic pathways that are more related to the aging effects in the F2 and F4 

generations, these changes in abundance levels could also be reflective of energy-related 

metabolisms, such as TCA cycle or OXPHOS. Minor changes in several metabolites associated 

with TCA cycle or OXPHOS were also observed in the generation at the presence of either IMI or 

CLO exposure, which might be supportive of our hypothesis that neonicotinoids could perturb 
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pathways that are relevant to energy metabolism, and therefore added on to the effects of biological 

aging.  

The significant reduction of glutamine abundance (p < 0.05 and q < 0.05) in both F2 and 

F4 generations seen in Figure 11A and Table 9 is consistent to the effect of aging, as reported by 

previous studies. Being the most abundant non-essential amino acid73, the reduction in glutamine 

signals that less glutamine was available for the catabolic states, which is generally associated with 

aging due to protein wasting and with higher risk of morbidity and mortality.71, 74 Moreover, 

glutamine plays an important role in the glutathione metabolism, which regulates the redox 

potential.71 Glutamine can be synthesized from glutamate by glutamine synthase with consumption 

of ATP and ammonia (NH3). Reversely, glutamine can be converted to glutamate by glutaminase. 

Glutamate, along with cysteine and glycine71, are the precursors of glutathione (the reduced form: 

GSH; the oxidized form: GSSG). Since it is generally agreed that aging is associated with 

accumulation of oxidative damage, GSH and GSSG levels (or in together, tGSH) are also crucial 

markers of aging. It is also true that increasing levels of tGSH is a sign of detoxification67 and 

protection mechanism of cells from moderate but not yet imbalanced level of oxidative stress while 

decreasing level of GSH and GSSG could be a sign of excessive oxidative stress.75 Although age-

dependent change in abundance of GSH or tGSH could vary by tissues and animals, studies have 

shown that decreasing level of GSH and tGSH are generally associated with aging.75 In this chapter, 

we found lower abundance levels of glutamate (not statistically significant), glycine (statistically 

significant at F4, p < 0.05 and q < 0.05), and cysteine (not statistically significant) in bees collected 

from F2 and F4 generations, which is associated with the generation effects in Figure 11B. 

Although we didn’t find significant change in GSH nor GSSG comparing to the F0 generation 
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associated with biological aging, we found changing levels of both metabolites due to 

neonicotinoids treatments and change in RmtDNAcn in which will be discussed in later sections.  

Glutamine and glutamate are also the precursors of neurotransmitters, γ-Aminobutyric acid 

(GABA), and reduction of GABA and glutamate levels could be a sign of aging in adult honeybees 

resulted from neuro-degeneration because both precursors of neurotransmitters would reach the 

maximum abundance level in bees at age of 10 days and declining since then.76 Although we did 

not find significant difference in the abundance of GABA in all treatment groups, GABA 

abundance levels eventually decreased in F4 generation of the control group, which coincides with 

findings of previous literature about aging related to neuro-degeneration. In addition to glutamate 

and GABA, decreasing level of acetylcholine (ACh) is also aging-related in adult bees76, and we 

found a significant reduction of ACh abundance in the F4 generation compared to the F0 

generation. Besides the association with aging, glutamine, GABA, glycine, and ACh are also 

important neurotransmitters in which changes in their abundances across generations could 

indicate perturbation in neurological metabolic pathways.77  For instance, GABA and glycine are 

the inhibitory neurotransmitters in the central nervous system (CNS), and significant reduction in 

these inhibitors could result in continuously less synaptic inhibition.51   

In addition to GABA’s involvement in neurotransmission, it is also an important precursor 

of the energy metabolism as shown in Figure 10. GABA is abundant in all neuropils of honeybee 

brain78, and it’s predominately synthesized from glucose through GABA shunt in which α-

ketoglutarate goes through transamination in the TCA cycle to form glutamate.51, 79  GABA could 

be converted to succinate and then metabolized in the TCA cycle by enzymes, such as 

aminotransferase and succinic semialdehyde dehydrogenase, in order to mediate cellular ATP 

synthesis.51 Based on the outcomes from the MWAS, we observed a reduction, although non-



79 

 

significant reduction of succinate abundance in both F2 and F4 generations along with the increase 

in ascorbate and NAD+ abundance levels in the F4 generation compared with the F0 generation 

(Figure 11B). These findings could be the signs of defense over oxidative stress. Increased 

ascorbate (also known as the antioxidant, vitamin C) abundance levels could also be an indication 

of the antioxidant defense system in which the antioxidant would increase to defend the production 

of ROS (similar to the glutathione metabolism).80, 81 On the other hand, NAD+ and its redox 

mechanism play a very important role in energy metabolism in mitochondria.82, 83 NAD+ accepts 

H+ to form NADH, which maintains the process of TCA cycle to fuel OXPHOS. Decreasing 

NAD+ is commonly seen in animals during aging or when they are on high-fat diets,84 while 

increasing NAD+ is associated with aging-related metabolic complications and protection 

mechanism against dietary in mammals.83 The associations between aging and reduction in the 

activity of citrate synthase (CS: for citrate synthesis), α-ketoglutarate dehydrogenase (KGDH: for 

succinyl CoA synthesis), and malate dehydrogenase (MDH: OAA synthesis) found in yeast 

experiments could provide some plausible explanations to our results.85, 86 When the queen bee in 

any given experimental hive continues to age, worker bees collected from F2 and F4 generations 

should biologically reflect the aging status of the queen bee. The reduction of CS, KGDH, and 

MDH activities should lead to less load into the TCA cycle, and subsequently led to lower 

abundance of Acetyl CoA and NADH in F2 generation while these continuing reductions in those 

enzyme activities could ultimately lead to the accumulation of Acetyl CoA and NAD+. Hence, we 

saw higher abundance level of NAD+ in F4 generation compared to the baseline, according to the 

MWAS results.  These findings support the hypothesis that in addition to normal aging as 

associated with the queen, bees rearing from the later-brood generations could suffer from 
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additional aging, which likely involved the biological changes of mitochondria, as indicated by 

the perturbation of energy metabolism.  

Beyond the implication on aging, another objective of this chapter was to understand 

whether IMI or CLO treatment would lead to perturbation of different metabolic pathways or 

accelerate the biological aging effects. The attribution of IMI exposure to the perturbation of the 

TCA cycle by significantly reducing the abundances of citrate and malate (p<0.05, while not 

q<0.05) and succinate (while p > 0.05) further provided the evidence of acceleration of aging in 

worker bees. We also observed that IMI-attributed effects on glutathione metabolism, which could 

also further accelerate the normal biological aging process in the F2 and F4 generations. Additional 

lower levels of glutamine, glutamate, cysteine and glycine during IMI exposure, although non-

significant, were observed that should have led to lower level of GSH accordingly if the glutathione 

mechanism functioned properly as usual. Therefore, the observation of higher abundance of GSH 

but lower GSSG abundance during IMI exposure could be a sign of accumulation of GSH rather 

than more GSH synthesis. As articulated earlier, increasing biosynthesis of GSH is usually a 

protection mechanism against oxidative stress.75 The finding of significant (p<0.05) increasing 

abundance of 5-oxoproline and gluconate in IMI-treated bees were also important signs of 

oxidative stress in the F4 generation.68 Accumulation of 5-oxoproline could be due to the activation 

of ATP-depleting futile 5-oxoproline cycle due to simultaneous decline in GSH and cysteine.87 

Decrease in GSH induces the activity of γ-glutamyl cysteine synthase (utilization of ATP) to 

formulate γ -glutamyl phosphate while lack of cysteine to form γ-glutamyl cysteine.87 The 

perturbation of energy metabolism was also captured by the increasing levels of intermediates in 

glycolysis/gluconeogenesis in IMI-treated bees, resulting in higher levels of glucose, G6P, F6P, 

and Acetyl CoA in the F4 generation because they are metabolic precursors of TCA cycle. 
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Comparing to IMI, CLO treatment didn’t reduce the abundance of TCA intermediates as 

much as by IMI. According to MWAS results, CLO exposure only reduced malate abundance. 

Interestingly, abundance of NAD+ increased then decreased during and post neonicotinoids 

treatments, respectively. Those changes, when evaluated with the reduction in abundance of TCA 

intermediates, were likely the sign that the flow of TCA cycle became more active while the cycle 

was in fact less efficient in actual production. Similar to those seen in the control group, CLO 

didn’t significantly lead to the changes in GSH and GSSG abundance levels in F2 and F4 

generations. However, CLO treatment led to slight increase in glutamine and glutamate abundance 

levels. As both changing directions of GSH and GSSG could potentially due to increasing levels 

of ROS at different intensity, and the effects were not significantly different from that of the control 

group, we could not conclude that neonicotinoids exposure would lead to excessive oxidative 

stress but to present our exploratory findings as a guide for future study of neonicotinoids effects.  

Another important finding of this chapter was to evaluate whether the aging- and 

neonicotinoids-induced changes in RmtDNAcn could explain any change in metabolite abundance 

levels. Although MWAS were not able to detect any significant (q<0.05) changes of metabolite 

abundance associated with increasing RmtDNAcn after adjusting for multiplicity, we found 

several metabolites that are significant (p<0.05) and meaningful to the study objectives before 

FDR adjustment. For instance, reducing malate abundance and increasing acetyl CoA abundance 

along with increasing RmtDNAcn in F2 and F4 generations, which was the same changing 

direction as the effects of neonicotinoids-treatment described earlier. However, there were other 

abundance change associated with increasing RmtDNAcn that were in fact different from what we 

observed in age- or neonicotinoids-related effects in F2 and F4 generations. As the change in 

metabolite abundance levels could vary due to a lot of factors as well as sensitive to sampling time 
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points, we claimed that the significant changes in abundance should be seen as signs of 

perturbation of metabolisms captured by the increase in RmtDNAcn while more evidence are in 

needs for further interpretation of associations between increase in RmtDNAcn and aging or 

neonicotinoids treatments.  

Despite of the above new findings, we noted several limitations. The most profound 

limitation has to do with the numbers of beehives we have set up for this experiment to achieve 

meaningful statistical power with these many metabolites and covariates of interest. With the 

consideration of lacking statistical power to detect effects when adjusting for multiple testing, we 

chose to report effects that were significantly different when evaluating with p-values or q-values 

for every metabolite. In addition, the aims to evaluate the changes of metabolite abundance levels 

due to biological aging, neonic treatments, and their influence through the pathway of changing 

RmtDNAcn have left us with too many covariates in the model. This could also compromise the 

power to detect changes for main effects when the true metabolic mechanisms are not associated 

with the hypothetical influence from other pathways. For example, when the change in abundance 

of a metabolite mainly due to biological aging but not neonic treatment, then our model would 

lead to a loss of power in detecting the biological aging effect by incorporating too many other 

covariates. However, with 57 metabolites to be analyzed simultaneously, we could not fit 57 

models with different assumptions on the hypothetical mechanisms. In addition to the sample size 

issue, the field experimental design also left with several uncertainties in interpreting our results. 

As we collected foraging bees when they came back to hives, we could not strictly control their 

ages and foraging activities in which could influence their metabolite abundance at either direction 

or the abundance variability between bees.   
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Figure S2. Heatmap of log2 transformed abundance ratios of later-brood generation (F2 and F4) vs. baseline generation (F0) for 

the 57 selected metabolites. 
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Figure S3. Heatmap of Difference in log2 fold change of abundance between later-brood generation (F2 and F4) vs. baseline 

generation (F0) for the 57 selected metabolites. Difference of the log2 abundance fold change were calculated by comparing that 

of individual neonicotinoids treated hives to the average levels (conditioning on generation and sugar syrup) of control hives. 
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Table S5. Summary of excluded metabolites due to severe missing measurements. 

Metabolite Pathway Sub-pathway 

2-aminopentanoate Amino acid Lysine metabolism 

2-linoleoylglycerophosphoinositol* Lipid Lysolipid 

2-methylcitrate Energy Krebs cycle 

2-oleoylglycerophosphoinositol* Lipid Lysolipid 

2-oleoylglycerophosphoserine* Lipid Lysolipid 

3-hydroxydecanoate Lipid Fatty acid, monohydroxy 

3-hydroxyoctanoate Lipid Fatty acid, monohydroxy 

4-hydroxycinnamate Amino acid Phenylalanine & tyrosine metabolism 

8-hydroxyoctanoate Lipid Fatty acid, monohydroxy 

ala-ala-ala Peptide Polypeptide 

alpha-hydroxyisocaproate Amino acid Valine, leucine & isoleucine metabolism 

anthranilate Amino acid Tryptophan metabolism 

arabinose Carbohydrate Nucleotide sugars, pentose metabolism 

biochanin A Xenobiotics Food component/Plant 

chrysoeriol Xenobiotics Food component/Plant 

cinnamate Xenobiotics Food component/Plant 

coniferyl alcohol Xenobiotics Food component/Plant 

coniferyl aldehyde Xenobiotics Food component/Plant 

dihydromyricetin Xenobiotics Food component/Plant 

ferulate Xenobiotics Food component/Plant 

formononetin Xenobiotics Food component/Plant 

glutamate, gamma-methyl ester Amino acid Glutamate metabolism 

glycerophosphoethanolamine Lipid Glycerolipid metabolism 

HEPES Xenobiotics Chemical 

heptanoate (7:0) Lipid Medium chain fatty acid 

isovalerate Lipid Fatty acid metabolism 

kaempferol 3-O-beta-glucoside Xenobiotics Food component/Plant 

leucylglutamate Peptide Dipeptide 

lysylvaline Peptide Dipeptide 

malitol Xenobiotics Sugar, sugar substitute, starch 

muco-inositol Lipid Inositol metabolism 

N-acetyltyrosine Amino acid Phenylalanine & tyrosine metabolism 

N1-methylguanosine Nucleotide Purine metabolism, guanine containing 

phenethylamine (isobar with 1-phenylethanamine) Amino acid Phenylalanine & tyrosine metabolism 

phenylacetate Amino acid Phenylalanine & tyrosine metabolism 

phenylacetylglycine Amino acid Phenylalanine & tyrosine metabolism 

phenylalanylaspartate Peptide Dipeptide 

pyroglutamylvaline Peptide Dipeptide 

serylvaline Peptide Dipeptide 
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Table S6. 57 selected metabolites using KEGG PATHWAY Database. 

KEGG Compound ID Metabolite KEGG Pathway ID KEGG Pathway 

C00003 NAD+ 
ame00760  Nicotinate and nicotinamide metabolism 

ame00190  Oxidative phosphorylation 

C00004 NADH ame00190  Oxidative phosphorylation 

C00009 Pi ame00190  Oxidative phosphorylation 

C00013 PPi ame00190  Oxidative phosphorylation 

C00020 AMP ame00230  Purine metabolism 

C00024 AcetylCoA 

ame00020  Citrate cycle (TCA cycle) 

ame00480   Glutathione metabolism 

ame00010  Glycolysis / Gluconeogenesis 

ame00620  Pyruvate metabolism 

C00025 Glutamate 
ame00480   Glutathione metabolism 

ame04080 Neuroactive ligand-receptor interaction 

C00031 Glucose 
ame00010  Glycolysis / Gluconeogenesis 

ame00030  Pentose phosphate pathway 

C00037 Glycine 
ame00480   Glutathione metabolism 

ame04080 Neuroactive ligand-receptor interaction 

ame00230  Purine metabolism 

C00042 Succinate 

ame00020  Citrate cycle (TCA cycle) 

ame00760  Nicotinate and nicotinamide metabolism 

ame00190  Oxidative phosphorylation 

ame00620  Pyruvate metabolism 

C00049 Aspartate 
ame04080 Neuroactive ligand-receptor interaction 

ame00760  Nicotinate and nicotinamide metabolism 

C00051 GSH ame00480   Glutathione metabolism 

C00054 Adenosine3',5'-Diphosphate ame00230  Purine metabolism 

C00061 FMN ame00190  Oxidative phosphorylation 

C00064 Glutamine ame00230  Purine metabolism 

C00068 ThPP 
ame00020  Citrate cycle (TCA cycle) 

ame00010  Glycolysis / Gluconeogenesis 

ame00620  Pyruvate metabolism 

C00072 Ascorbate ame00480   Glutathione metabolism 

C00086 Urea ame00230  Purine metabolism 

C00097 Cysteine ame00480   Glutathione metabolism 

C00099 Beta-Alanine ame04080 Neuroactive ligand-receptor interaction 

C00114 Choline ame00031 Neuroactive ligand-receptor interaction 

C00121 Ribose ame00030  Pentose phosphate pathway 

C00122 Fumarate 

ame00020  Citrate cycle (TCA cycle) 

ame00760  Nicotinate and nicotinamide metabolism 

ame00190  Oxidative phosphorylation 

ame00620  Pyruvate metabolism 

C00127 GSSG ame00480   Glutathione metabolism 

C00130 IMP ame00230  Purine metabolism 

C00134 Putrescine ame00480   Glutathione metabolism 

C00147 Adenine ame00230  Purine metabolism 

C00149 Malate 
ame00020  Citrate cycle (TCA cycle) 

ame00620  Pyruvate metabolism 

C00153 Nicotinamide ame00760  Nicotinate and nicotinamide metabolism 

C00158 Citrate ame00020  Citrate cycle (TCA cycle) 

C00212 Adenosine 
ame04080 Neuroactive ligand-receptor interaction 

ame00230  Purine metabolism 

C00227 Acetylphosphate ame00620  Pyruvate metabolism 

C00245 Taurine ame04080 Neuroactive ligand-receptor interaction 

C00253 Nicotinate ame00760  Nicotinate and nicotinamide metabolism 
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 (Continued) 

C00257 Gluconate ame00030  Pentose phosphate pathway 

C00258 Glycerate ame00030  Pentose phosphate pathway 

C00262 Hypoxanthine ame00230  Purine metabolism 

C00294 Inosine ame00230  Purine metabolism 

C00301 Adenosine5'Diphosphoribose ame00230  Purine metabolism 

C00315 Spermidine ame00480   Glutathione metabolism 

C00334 GABA 
ame04080 Neuroactive ligand-receptor interaction 

ame00760  Nicotinate and nicotinamide metabolism 

C00366 Urate ame00230  Purine metabolism 

C00385 Xanthine ame00230  Purine metabolism 

C00387 Guanosine ame00230  Purine metabolism 

C00388 Histamine ame04080 Neuroactive ligand-receptor interaction 

C00455 NMN ame00760  Nicotinate and nicotinamide metabolism 

C00668 G6P 
ame00010  Glycolysis / Gluconeogenesis 

ame00030  Pentose phosphate pathway 

C01004 Trigonelline ame00760  Nicotinate and nicotinamide metabolism 

C01367 3'-AMP ame00230  Purine metabolism 

C01672 Cadaverine ame00480   Glutathione metabolism 

C01762 Xanthosine ame00230  Purine metabolism 

C01879 5-Oxoproline ame00480   Glutathione metabolism 

C01996 Acetylcholine ame04080 Neuroactive ligand-receptor interaction 

C02350 Allantoin ame00230  Purine metabolism 

C03794 Adenylosuccinate ame00230  Purine metabolism 

C05345 F6P 
ame00010  Glycolysis / Gluconeogenesis 

ame00030  Pentose phosphate pathway 

C05382 S7P ame00030  Pentose phosphate pathway 
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CONCLUSION 

With our exploration of exposure, novel biomarker, and intermediate outcomes of 

neonicotinoids exposure in human and honeybee health, we came to the following conclusions in 

this dissertation. 

Firstly, the results from Chapter 1 imply that the current dietary intakes of total neonic at 

the population level do not impose a safety concern under the current cRfD established for 

imidacloprid. The model simulation coupled with the uses of UI and RPF that we demonstrated in 

this chapter is merely the first step toward the development of a more sensitive and robust dietary 

exposure assessment for total neonic intakes. We recommend that future research should focus on: 

(1) collecting more and better-quality residue data as an intervention to the elevated LOD issue 

seen with the USDA/PDP dataset; and (2) better understanding of biologically relevant 

toxicological thresholds of neonics in mammals in order to reduce the uncertainty in the cRfD 

establishment. Since neonics have been, and most likely will continue to be the most widely used 

insecticides worldwide in the future given its increasing rate of usage88, 89, it is logical to expect 

the ubiquity of neonic residues in foods that individuals consume daily. Therefore, it is important 

to carry out routine dietary intake assessment for total neonic at the population level. 

Secondly, Chapter 2 elucidated the possible mechanism of increasing RmtDNAcn resulting 

from sub-lethal exposure of neonics by quantifying mtDNAcn in honeybees’ thoracic muscle over 

subsequent brood generations of honeybee. In addition to normal aging occurred in queen bees, 

results from this chapter have demonstrated cumulative RmtDNAcn in foraging bees over 

subsequent brood generations even at the absence of neonics exposure. We found higher levels of 

RmtDNAcn in adult bees from later brood generations associated with sub-lethal neonics exposure, 
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and the RmtDNAcn were cumulative and likely inheritable from the aging queen bees. Although 

there were no apparent adverse health effects at individual bees, or the whole hive, during neonic 

administration and prior to the arrival of winter, the persistent and cumulative increase in 

RmtDNAcn in winter bees might negatively impact their hives’ survival over the winter due to 

insufficient energy production. Those results shall contribute to the explanation of potential 

mechanism of CCD.  It is therefore imperative to focus on validating our finding in the future 

research and to fill the gap of neonics induced mitochondrial dysfunctions and inefficient hive 

thermoregulation, which could ultimately lead to the explanation of the onset of CCD.  

Lastly, Chapter 3 illustrated the application of MWAS to identify metabolic pathways of 

biological aging and mechanisms of neonicotinoids exposure in adult honeybees. Our results 

demonstrated several possible metabolic pathways for accelerating biological aging of the adult 

bees in later brood generations with the change in metabolite abundance levels. We also provided 

evidences that neonicotinoids exposure was associated with less efficient TCA cycles that might 

also be likely the sign of aging. Although we did not find significant changes of metabolite 

abundance that is due to the effects of increasing RmtDNAcn ratio in later-brood generations, 

neonicotinoids treatments, or increasing RmtDNAcn ratio due to neonicotinoids treatments over 

time, we suggest more research should be conducted focusing on the metabolic pathways in the 

glutathione and energy metabolism (TCA cycle and OXPHOS). 
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