Social and Psychological Factors in Cancer and Longevity

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citable link</th>
<th>http://nrs.harvard.edu/urn-3:HUL.InstRepos:37945645</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
SOCIAL AND PSYCHOLOGICAL FACTORS IN CANCER AND LONGEVITY

EMILY ZEVON

A Dissertation Submitted to the Faculty of
The Harvard T.H. Chan School of Public Health
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Science
in the Department of Social and Behavioral Sciences
Harvard University
Boston, Massachusetts
May, 2018
Health behaviors are frequently considered as risk factors for cancer and other diseases that contribute to premature mortality. Despite this consideration, the prevalence of many deleterious behaviors has remained constant or even increased over recent decades. This lack of success in modifying behavior may be due to focus on the individual, and a failure to consider social context and psychological states that pattern and influence the performance of behavior. To fully understand risk factors for cancer and premature mortality it is necessary to look further upstream from behaviors and consider psychosocial risk factors and assets, as well as the pathways through which they are associated with health. The studies in this dissertation used data from the Nurses’ Health Study to evaluate relationships that link the social environment to mortality and cancer incidence via pathways including adaptive resources, adverse psychosocial exposures, and health behaviors.

Study 1 found that participants with higher levels of depressive symptoms had a greater risk of lung cancer compared to those with lower levels of depressive symptoms. In a test of mediation by smoking history, lifetime pack-years of smoking accounted for approximately half of the observed relationship. Study 2 revealed that childhood socioeconomic status, operationalized as parental occupation, was associated with patterns of health behavior and colon cancer risk in later life. Compared to participants with white collar parents, participants with blue collar parents were at greater risk of adopting an unhealthy lifestyle in adulthood. Additionally, participants with blue collar parents had a slightly elevated, but not statistically significant,
increased risk of colon cancer compared to participants with white collar parents. Study 3 demonstrated that higher levels of social integration were associated with longer lifespan and a greater likelihood of achieving exceptional longevity. This association was slightly attenuated but remained statistically significant after controlling for health behaviors.

In conclusion, this dissertation demonstrates the role that social and psychological factors play in cancer risk and longevity. By examining these fundamental determinants of health, this line of research may facilitate identification of targets for effective intervention that go beyond traditional attempts to modify single proximal risk factors for disease.
Table of Contents:

Abstract ... ii
List of Figures with Captions ... vi
List of Tables with Captions .. vii
Acknowledgements ... ix
Introduction .. 1
 References .. 9

Study 1. Depressive Symptoms and Risk of Incident Lung Cancer Among Women in the Nurses’ Health Study ... 14
 Abstract .. 15
 Introduction: .. 17
 Methods: ... 20
 Results ... 25
 Discussion ... 35
 References .. 39
 Supplemental Materials ... 43

Study 2. The Association between Childhood Socioeconomic Status, Adult Health Behaviors, and Risk of Incident Colon Cancer in the Nurses’ Health Study ... 44
 Abstract .. 45
 Introduction .. 47
 Methods .. 50
 Results .. 55
 Discussion .. 61
 References .. 65

Study 3. Social Integration and Lifespan in the Nurses’ Health Study ... 69
 Abstract .. 70
 Introduction .. 72
 Methods .. 74
Results ... 81
Discussion .. 87
References .. 91
Supplemental Materials .. 95
List of Figures with Captions

INTRODUCTION

Figure 1.1: Theoretical Framework ... 5
List of Tables with Captions

STUDY 1
Table 2.1 Selected characteristics by level of depressive symptoms among 57,877 women from the Nurses’ Health Study in 1992………………………………………………………………………………..26
Table 2.2 Hazard ratios and 95% confidence intervals for lung cancer by level of depressive symptoms among 51,907 women from the Nurses' Health Study……………………………………….28
Table 2.3 Mediation of the association between depressive symptoms and lung cancer risk by smoking history………………………………………………………………………………………………………..30
Table 2.4 Association between depressive symptoms (standard deviation change in reverse-coded MHI-5 score) and lung cancer risk, stratified by smoking history……………………………………….32
Table 2.5 Hazard ratios for lung cancer by level of depressive symptoms- alternative strategies for modeling depressive symptoms…………………………………………………………………..34
Table S2.1 Tumor types by smoking status, n (%).…………………………………………………………43

STUDY 2
Table 3.1 Age-adjusted covariates by parent occupation Values are either mean (SD) or percentages. N=100,932……56
Table 3.2 Hazard ratios for adopting an unhealthy lifestyle over 20 years of follow-up by parent occupation among 90,032 women from the Nurses' Health Study…………………………………….58
Table 3.3 Hazard ratios for incident colon cancer by parent occupation among 100,932 women from the Nurses' Health Study……………………………………………………………….60

STUDY 3
Table 4.1 Scoring criteria for social integration measure…………………………………………………………………………………..77
Table 4.2 Age-adjusted covariates by quartiles of social integration among women in the Nurses’ Health Study in 1992. Values are either mean (SD) or percentages. N= 73,276………………82
Table 4.3 Percent change in lifespan associated with social integration, Nurses' Health Study, 1992-2012. N= 73,276……………………………………………………………………………………………84
Table 4.4 Odds ratios for the association of social integration with survival past age of 85, Nurses' Health Study. N=17,309…………………………………………………………………………………86
Table S4.1 Percent change in lifespan associated with components of social integration, Nurses' Health Study, 1992-2012. N= 73,276……………………………………………………………………..95
Table S4.2 Odds ratios for the association of social integration score components with survival past age of 85, Nurses' Health Study. N= 17,309……………………………………………………………96
Acknowledgements

This dissertation would not have been possible without the support, guidance, and wisdom of my advisor, Laura Kubzansky. I have been fortunate to have a mentor who thinks deeply about the needs of her students, and her patience and steady hand have been invaluable throughout the dissertation process. Beyond her mentorship, Laura is a rigorous and innovative researcher, and I am proud to become a part of her intellectual legacy.

I would also like thank my committee members, Ichiro Kawachi and Reginald Tucker-Seeley, for their input and sage advice on my research. This dissertation owes much to their insights.

I would like to thank my peers for their good humor and support. They are a group of remarkably smart and giving people, and have contributed to this project and my life in many ways. I have been lucky to have them along this journey with me.

I would like to thank my parents, Michael Zevon, Linda Nash, and Frank Alabiso, for their constant support and modeling of education. They have instilled in me a lifelong interest in research and getting to the root of a problem. My sister, Margot Zevon, has been my partner in crime for thirty years, and her support for this project provided valuable perspective.

Last, I would like to thank my husband and partner, Matt Linton, for his unwavering patience, support, and love. Thanks for believing in me through thick and thin, and for making me laugh through it all.
Introduction

Lifespan in the United States has risen in recent decades. Between 1975 and 2015, life expectancy at birth rose from 68.8 to 76.3 for men and from 76.6 to 81.2 for women (Statistics, 2017). However, the achievement of longevity without good health across the lifespan is a hollow victory. It is necessary to consider illness and risk factors for illness to attain a comprehensive understanding of morbidity and ensure that additional quantity of life is not achieved at the expense of quality. Cancer is one such illness that contributes to significant morbidity and premature mortality. Cancer is the second leading cause of death in the United States, accounting for one in every four deaths in the country (American Cancer Society, 2014). According to estimates derived from the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program data, there were 600,920 cancer deaths and 1,688,780 new cases of cancer diagnosed in 2017 (Howlader, 2017). With such high disease burden, it is imperative to understand modifiable risk factors for cancer, with the eventual goal of developing low-cost and effective interventions. By understanding and ultimately mitigating these risk factors we will be able to both reduce cancer incidence and promote general health and longevity.

Health behaviors and health behavior-related factors are frequently-assessed risk factors for cancer and other diseases that contribute to morbidity and premature mortality. For example, smoking, overweight and obesity, and diet are associated with higher risk of lung, colorectal, esophageal, stomach, and other forms of cancer (Key et al., 2004; US Department of Health and Human Services, 2014). Furthermore, a recent study of cancer in the United Kingdom (UK) estimated that the combined population attributable risk fractions for 14 lifestyle and environmental factors (including tobacco, diet, obesity and physical activity) accounted for 43% of cancers in the country in 2010 (Parkin, Boyd, & Walker, 2011). These behavioral risk factors
for cancer are similar to those for all-cause premature mortality. Another study conducted in the UK estimated that individuals with four unhealthy lifestyle factors had a mortality risk equivalent to being 12 years older compared to those with no unhealthy lifestyle factors (Kvaavik, Batty, Ursin, Huxley, & Gale, 2010).

Despite this demonstration of the relationship between health behaviors and disease and mortality, the prevalence of most behavior-related risk factors has remained constant over recent decades (Spring, King, Pagoto, Van Horn, & Fisher, 2015), while the prevalence of some behavior-related factors (e.g., overweight and obesity) has increased (Wang, McPherson, Marsh, Gortmaker, & Brown, 2011). Smoking, the health behavior responsible for the greatest number of cancer cases, has declined overall, but this reduction has not occurred equally across gender, racial/ethnic, and socioeconomic groups (Centers for Disease Control, 2011).

Spring and colleagues suggest that one factor contributing to the failure to significantly reduce cancer and premature mortality risk behaviors is that health behavior change interventions have focused primarily on the individual, and have ignored the broader social factors that pattern behavior and restrict choice (Spring et al., 2015). As Spring et al. state: “The individual- whose attitudes, beliefs, and habits behavioral treatments target- is embedded in a complex system that either promulgates or discourages cancer risk behaviors” (pg. 76). Individuals engaging in health behaviors that put them at greater risk for disease do so within a particular social, economic, and cultural milieu. Failure to situate health behaviors within this broader context makes it impossible to address the most fundamental causes of disease, limiting the impact of interventions that seek to improve health by changing individual’s behaviors without regard to the social context in which they occur (Link & Phelan, 1995).
As research has increasingly considered the social context of health and health behaviors in cancer risk and premature mortality, three key factors have emerged. The first of these factors is that socioeconomic status (SES) strongly patterns population-wide distributions of deleterious behaviors. Research documents that individuals with lower SES are more likely to act in health-damaging ways, although many studies rely on cross-sectional data and narrow assessments of social status. For example, individuals with less education and lower incomes are more likely to smoke (Centers for Disease Control, 2011; Schoenborn, Adams, & Peregoy, 2013). Additionally, less educated and poorer individuals are less likely to meet physical activity guidelines, maintain a healthy body mass index (BMI), and meet United States Department of Agriculture (USDA) recommendations for fruit and vegetable consumption (Casagrande, Wang, Anderson, & Gary, 2007; Schoenborn et al., 2013).

A second key factor in the association between social environment and health is emotional distress, characterized by depression, anxiety, and hostility, which occurs more frequently among those with low social status (Bosma, Schrijvers, & Mackenbach, 1999; Kubzansky, Kawachi, & Sparrow, 1999; Mendelson, Thurston, & Kubzansky, 2008). These factors are hypothesized to increase risk of illness both through direct physiological pathways and by contributing to the likelihood of engaging in unhealthy behaviors. For example, individuals who are depressed are more likely to smoke and less likely to succeed in cessation (Anda et al., 1990; Glassman et al., 1990). Depression and anxiety are also associated with reduced physical activity, unhealthy eating habits, poor sleep quality, and excessive alcohol consumption (Allgöwer, Wardle, & Steptoe, 2001; Strine et al., 2008). Although these relationships are likely bi-directional, prospective research has demonstrated that high levels of emotional distress can lead to unhealthy behaviors. For example, studies have documented that
depression and anxiety in earlier adolescence predict subsequent cigarette smoking initiation in adolescents (Patton et al., 1998; Windle & Windle, 2001). Additionally, studies have shown that depression in adolescents is associated with subsequent obesity and high BMI (Goodman & Whitaker, 2002), and that depression in adults predicts subsequent decline in physical activity (Patten, Williams, Lavorato, & Eliasziw, 2009).

A third key factor in the relationship between social context and health is the role of social relationships, which function both as direct contributors to health and health behaviors and also as a buffer that mitigates the effect of harmful exposures (e.g., stress) (Cohen & Wills, 1985; Heaney & Israel, 2008). Strong social support and other characteristics of social relationships are associated with increased performance of healthy behaviors, including physical activity (McNeill, Kreuter, & Subramanian, 2006), successful management of chronic illnesses (Gallant, 2003), and smoking cessation (Wagner, Burg, & Sirois, 2004). Social relationships also affect health independent of health behaviors by enhancing positive affect and feelings of belonging and self-worth, which may have direct effects on physiology through neuroendocrine and immune pathways (Cohen, Gottlieb, & Underwood, 2000). The effect of social relationships is not universally beneficial however, and research has demonstrated that social connectedness may also have negative health effects (House, Umberson, & Landis, 1988; Shumaker & Hill, 1991).

With an understanding of the broad social and environmental, as well as the more specific individual forces, that shape health behaviors, we can begin to see how an isolated examination of behavior is insufficient. Instead, an integrated model is required, one that looks upstream from behavior to social, psychological, and environmental factors. We propose such an integrated model (Figure 1) as the conceptual framework for the studies in this dissertation. As shown in Figure 1, the social environment (i.e. the society and culture within which individuals
are embedded) shapes emotional distress, which includes both chronic distress and emotional dysregulation. These psychosocial exposures are then embodied in individual biology and ultimately health outcomes, both directly through their effect on physiology and indirectly by shaping health behaviors. Material and psychosocial resources, such as social support, are included as another potential pathway linking the social environment to health outcomes. The model recognizes that understanding will be enhanced with a life course perspective, and includes explicit consideration that these exposures and their attendant health effects may occur differently at various points and may have cumulative effects across individuals’ lifespans. The overall aim for this dissertation is to identify and assess empirical support for the pathways described within this theoretical framework, to better understand how relationships between the social environment, psychosocial resources, and emotional distress influence cancer disease processes and premature mortality.

Figure 1.1: Theoretical Framework
Note: arrows are drawn in a single direction for simplicity, but bidirectional relationships are likely for many constructs within the framework.
Study 1 considers the relationship between depression and lung cancer incidence. Much research has been conducted on the potential role of depression and related psychosocial factors in cancer incidence, progression, and survival (Blumberg, West, & Ellis, 1954; Giese-Davis & Spiegel, 2003), with mixed results suggesting a complex association (Chida, Hamer, Wardle, & Steptoe, 2008; McKenna, Zevon, Corn, & Rounds, 1999). For example, in a 2008 meta-analysis Chida et al. found that stress-related factors increased lung cancer risk, but had no effect on breast cancer and were associated with a reduction in the risk of thyroid cancer (Chida et al., 2008). The specific relationship between depression and lung cancer incidence has remained under-explored; a 2002 review of prospective research addressing the association between psychological states and cancer identified only four studies specifically considering depression and lung cancer risk (Dalton, Boesen, Ross, Schapiro, & Johansen, 2002). These four studies produced inconsistent support for an effect of depression on lung cancer incidence. Dissertation Study 1 hypothesizes that individuals with higher levels of depressive symptoms will be at increased risk of developing lung cancer, and that this relationship will be strongly mediated by smoking status.

Study 2 examines the relationship between childhood SES, health behaviors in adulthood, and risk of incident colon cancer. Recent studies have established a pervasive effect of socioeconomic status on subsequent health, with each progressively higher level of status associated with incremental gains in well-being (Adler & Ostrove, 1999; Cohen, Janicki-Deverts, Chen, & Matthews, 2010; Feinstein, 1993). Multiple types of cancer, however, have been shown to defy the typical SES/health gradient, both within the US and in cross-country comparisons (Clegg et al., 2009; Kanavos, 2006; Kawachi & Kroenke, 2006). For example, investigations of colon cancer in the US and Europe have demonstrated conflicting results, with
various studies finding positive, inverse, and null relationships between adult SES and incidence (Baquet, Horm, Gibbs, & Greenwald, 1991; Krieger et al., 1999; Papadimitriou et al., 1984; Tavani et al., 1999; Van Loon, Van den Brandt, & Golbohm, 1995). These studies, however, have had myriad limitations in design and methodology, including small sample size, potential recall bias, and unmeasured confounding. To more completely capture harmful exposures across the life course, Study 2 in this dissertation assesses childhood SES, rather than adult SES. Childhood SES both establishes lifelong trajectories for health behaviors associated with colon cancer risk (Cohen et al., 2010; Potter, Slattery, Bostick, & Gapstur, 1993) and predicts low SES later in life (Urahn et al., 2012). We hypothesize the individuals with lower childhood SES will have less healthy patterns of health behaviors and will have a higher risk for colon cancer in adulthood.

Study 3 in this dissertation considers longevity more broadly, and investigates the association between social integration and participants’ lifespans. A large body of research has demonstrated beneficial effects of social relationships on a wide range of health outcomes (Berkman & Krishna, 2014; Nausheen, Gidron, Peveler, & Moss-Morris, 2009). The relationship between social relationships and premature mortality has been assessed extensively, with many studies demonstrating an association between social isolation and increased risk of death (Barger, 2013; Berkman & Krishna, 2014; Seeman, 1996). Despite the large volume of research showing a relationship between weak social relationships and risk of premature mortality, less research has utilized a positive framework to consider social relationships as a health asset and assessed their relationship with longer lifespan or with exceptional longevity, and no studies have done so in a large prospective cohort. The third study in this dissertation utilizes such a cohort to examine the relationship between social integration and longevity, testing the
hypothesis that participants with higher levels of social integration will have longer lifespans and a greater likelihood of achieving exceptional longevity, even when controlling for known confounders.

The three studies in this dissertation evaluate various relationships in our proposed theoretical framework that link the social environment to cancer incidence and mortality via pathways including adaptive resources, adverse psychosocial exposures, and health behaviors. We hope that by evaluating these aspects of the model we are contributing to a greater understanding of the complex interplay between the social environment and individual risk factors, and helping to contextualize important health behaviors that place individuals at increased risk for cancer and other diseases. Furthermore, by contextualizing health behaviors and looking at more fundamental determinants of cancer risk and mortality, we hope this work will facilitate identification of targets for more effective interventions that go beyond traditional attempts to modify single proximal risk factors for disease.
References

STUDY 1. Depressive Symptoms and Risk of Incident Lung Cancer Among Women in the Nurses’ Health Study

Emily S. Zevon¹, Ichiro Kawachi¹, Reginald D. Tucker-Seeley², and Laura D. Kubzansky¹

¹ Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115
² University of Southern California Leonard Davis School of Gerontology, 3715 McClintock Avenue, Los Angeles, CA 90089
Abstract

Objective: Few studies have assessed the association between depressive symptoms and lung cancer risk, and findings from existing studies have been contradictory. We examined the association between depressive symptoms and lung cancer risk in a large prospective cohort, and also sought to determine the role of smoking in this association.

Methods: Data are from the Nurses’ Health Study (NHS), an ongoing cohort of women followed since 1976. Measures of depressive symptoms, smoking, and incident lung cancer were available for 51,907 women. Depressive symptoms were first assessed in 1992 via the five-item Mental Health Index (MHI-5), a subscale of the Short-Form 36 survey. In follow up between 1992 and 2008, 944 cases of lung cancer were identified. Lifetime pack-years of smoking were calculated from reported smoking behaviors at baseline. Cox proportional hazards models were used to evaluate risk of developing lung cancer according to level of depressive symptoms, adjusting for relevant covariates. Subsequent analyses assessed mediation and effect modification by lifetime pack-years of smoking, as well as alternative strategies for modeling depressive symptoms (e.g. physician diagnosis & medication prescription).

Results: In multivariable analyses, women with the highest versus lowest level of depressive symptoms had an increased risk of lung cancer (hazard ratio= 1.74; 95% CI: 1.43, 2.12) after adjusting for age, exposure to secondhand smoke during childhood, childhood socioeconomic status, and socioeconomic status in adulthood. When stratifying by smoking status, the hazard ratio was 1.08 (95% CI: 0.98, 1.18) among current smokers, 1.22 (95% CI: 1.10, 1.34) among former smokers, and 1.21 (95% CI: 1.00, 1.48) among participants without history of smoking. In a test of mediation, lifetime pack-years of smoking accounted for 46% of the overall
association between depressive symptoms and cancer risk. Results were similar when employing alternative strategies for modeling depressive symptoms.

Conclusions: Depressive symptoms are associated with greater risk of developing lung cancer among women in the NHS. Smoking history accounts for approximately half of this association.
Introduction:

Lung cancer is the second most common cancer and the leading cause of cancer death in the United States (American Cancer Society, 2015). Although lung cancer incidence has fallen in recent decades in tandem with declining smoking prevalence (American Cancer Society, 2015), this trend has not been equal across population subgroups. Due in large part to smoking patterns, the decline in lung cancer began later and has occurred more slowly in women than in men (American Cancer Society, 2015; Henley et al., 2014). Given these disparities and the still significant overall disease burden, it is critical to identify additional modifiable risk factors to target for prevention efforts in women, as well as to identify upstream determinants of smoking.

It has long been suggested that depression plays a role in cancer etiology and progression, with behavioral and psychoneuroimmunological pathways commonly used to explain observed associations (Blumberg, West, & Ellis, 1954; Giese-Davis & Spiegel, 2003; McGee, Williams, & Elwood, 1994). Animal models support the plausibility of carcinogenic effects of stress and depression by demonstrating their contributions to immune dysfunction (Glaser & Kiecolt-Glaser, 2005; Holden, Pakula, & Mooney, 1998), DNA damage (Gidron, Russ, Tissarchondou, & Warner, 2006), and tumor initiation and growth (Reiche, Nunes, & Morimoto, 2004; Sklar & Anisman, 1979). Evidence from animal and human studies suggests that depression may play an important etiologic role in cancers, including lung cancer (Chida, Hamer, Wardle, & Steptoe, 2008; Giese-Davis & Spiegel, 2003; Holden et al., 1998). However, prior epidemiologic studies have often addressed cancer progression or mortality rather than incidence (Buccheri, 1998; Giese-Davis & Spiegel, 2003). Only a few studies have investigated the association between depression and incident lung cancer in humans, and they have presented contradictory findings. However, these studies have been limited in various ways, including small sample size, lack of
prospective design, short duration of follow-up, and failure to include women (Dalton, Mellemkjær, Olsen, Mortensen, & Johansen, 2002; Gallo, Armenian, Ford, Eaton, & Khachaturian, 2000; Gross, Gallo, & Eaton, 2010; Kaplan & Reynolds, 1988; Knekt et al., 1996; Penninx et al., 1998).

Depression is modifiable, and evaluating its role as a potential risk factor for lung cancer may provide valuable insight into avenues for reducing disease. Depression is a particularly common psychosocial exposure; in 2012, 6.9% of US adults reported having experienced at least one major depressive episode over the previous year (Substance Abuse and Mental Health Services Administration, 2013). Given the prevalence of exposure, prior research suggesting it may contribute to cancer etiology, and the limited work evaluating its contribution to lung cancer, we propose that a more detailed examination of the association between depression and lung cancer risk is warranted. Furthermore, because women are at significantly higher risk of depression than men (Kessler, 2003), an examination of lung cancer etiology among women may be particularly informative.

There are multiple ways in which depression may be associated with lung cancer risk. First, there may be a direct (i.e., independent of health behaviors) association between depression and physiological or immunological dysregulation that promotes cancer initiation or progression. Second, there may be an association that operates through behaviors that serve as risk factors for cancer, such as cigarette smoking. In this case, these behaviors may serve either as mediators or confounders of an association between depression and lung cancer, depending on whether they are causes of or consequences of depression. Given the strong association between cigarette use and both depression and lung cancer, it is necessary to consider the role of smoking in the association between depression and lung cancer.
Prior work, however, has not explored this role in detail. Cross-sectional data indicate that individuals with a history of depression are more likely to smoke and less likely to succeed in cessation than individuals without a history of depression (Anda et al., 1990; Glassman et al., 1990). Prospective studies also indicate that depression affects smoking behaviors (Breslau, Peterson, Schultz, Chilcoat, & Andreski, 1998; Windle & Windle, 2001). Given that tobacco exposure is the primary cause of lung cancer (Wynder & Hoffmann, 1994), smoking thus likely represents an important mediator of the relationship between depression and lung cancer risk. However, some prospective studies have indicated an effect in the opposite direction, i.e., that cigarette use increases the risk of depressive symptoms (Boden, Fergusson, & Horwood, 2010). In this case, smoking would represent a potential confounder of the association between depressive symptoms and lung cancer risk.

Two prior studies of the association between depression and lung cancer incidence found that smoking was a strong modifier of the relationship, with depression being a stronger predictor of lung cancer among smokers than nonsmokers (Knekt et al., 1996; Linkins & Comstock, 1990). While the precise mechanism for this interaction is unclear, the investigators hypothesized that depression may influence smoking behavior (e.g. depth of inhalation and number of cigarettes per day) in ways that alter the effect of smoking on lung cancer. They also hypothesized that there may be a synergistic immunological effect triggered by the combination of depression and smoking (Linkins & Comstock, 1990; Penninx et al., 1998), given that both exposures have been shown to suppress immune function (Holden et al., 1998; Sopori, 2002). In particular, prior research has suggested both cigarette smoking and depression lead to diminished function of natural-killer (NK) cells, which play an important role in tumor surveillance and destruction (Smyth, Hayakawa, Takeda, & Yagita, 2002).
Building on prior work in this area, we hypothesize that higher versus lower levels of depressive symptoms will be associated with higher risk of lung cancer, and that this association will be partially mediated by smoking history. We additionally assess the association between depressive symptoms and lung cancer risk independent of smoking status, to ensure that the observed association between depression symptoms and lung cancer is not attributable to confounding by smoking. In addition to assessing depressive symptoms at study baseline, we also consider depressive symptoms updated over the study period to determine whether there is a different effect of more proximal exposure to depression. Lastly, we assess the effect of chronic depression, motivated by evidence that chronic, as compared to transient, depression may be more strongly associated with cancer risk (Penninx et al., 1998; Spiegel & Giese-Davis, 2003).

We aim to overcome the limitations of previous research by assessing the association between depression and lung cancer incidence in a large ongoing cohort of middle-aged women (n=121,700) followed for a mean of 36 years. The size of the cohort and length of follow-up provide more disease cases for consideration than previous research, improving statistical power. In addition, our study has the advantage of evaluating smoking behavior, a key potential mediating pathway. We control for relevant confounders, including age, exposure to secondhand smoke during childhood, childhood socioeconomic conditions, and adult socioeconomic status (SES). We have chosen to focus on a cohort of women because the higher prevalence of depression in women (Kessler, 2003) and slower decline of lung cancer incidence among women compared to men (Henley et al., 2014) make women an especially vulnerable population.

Methods:

Study Population:
Data are from the Nurses’ Health Study (NHS) cohort, which began in 1976 with 121,700 30 to 55 year-old female registered nurses. Since 1976, NHS participants have returned biennial questionnaires querying health, nutrition, and lifestyle, as well as a variety of social and psychological factors. Seventy percent of invited participants responded to the initial questionnaire, and follow-up throughout the study has exceeded 90% (Colditz, 1994).

The sample for our study included women from the Nurses’ Health Study who completed the baseline assessment of depression in 1992. Participants who completed the assessment and those who failed to do so were similar with regard to age and exposure to secondhand smoke in childhood. However, participants whose parents had blue collar occupations, as well as those with lower socioeconomic status, were less likely to complete the depression measure. We additionally excluded women who had previously been diagnosed with cancer from the sample.

Measures:

Depression status

Depressive symptoms were assessed via the validated five-item Mental Health Inventory (MHI-5), a subscale of the 36-Item Short Form Survey from the RAND Medical Outcomes Study (Ware & Sherbourne, 1992). The MHI-5 was administered in the NHS in 1992, 1996 and 2000. MHI-5 scores are highly correlated (r = .95) with scores from the longer Mental Health Inventory from which the measure is derived (Ware & Sherbourne, 1992), and the measure has strong internal consistency reliability (alpha = .80 in the NHS) (Kroenke et al., 2005). Depression ascertained with the MHI-5 has been shown to be highly correlated with depression identified via the Diagnostic Interview Schedule (Robins, Helzer, Croughan, & Ratcliff, 1981), with an area under the curve (AUC) of .89 (Berwick et al., 1991). MHI-5 scores range from 5 to 30, but are transformed to a 0 to 100 scale. Scores were classified in four categories: 0-60 (severe
depressive symptoms), 61-75 (high), 76-85 (moderate) and 86-100 (low or none). A cut-point of 60 was used for analyses where depressive symptoms were dichotomized; participants with MHI-5 scores of 60 or below were considered to have high levels of depressive symptoms (Rumpf, Meyer, Hapke, & John, 2001). Starting in 1996 and 2000 respectively, participants reported whether they had used antidepressants (yes/no) or received a diagnosis of depression (yes/no) on each biennial questionnaire.

Primary analyses used depressive symptoms as measured by participants’ MHI-5 scores from 1992. When considering depression updated over the follow-up period, MHI-5 scores from the 1996 and 2000 questionnaires were used and reports of antidepressant prescription and physician diagnosis of depression were combined. A participant was considered to have depressive symptoms at a particular time point if she reported a diagnosis of depression or antidepressant prescription over the prior two years, or had an MHI-5 score at or below the cut-point of 60. For analyses assessing chronic depression, a variable was created indicating whether participants reported depressive symptoms at no time points, one time point, or multiple time points over the study period.

Ascertainment of lung cancer

Lung cancer cases were ascertained from participant questionnaires, and confirmed with medical records. Death certificates were also examined to identify cases. To limit the possibility that latent disease experienced prior to diagnosis affected depressive symptoms, cases of lung cancer occurring less than two years after the baseline assessment were excluded.

Cigarette smoking

Information about smoking history was collected on biennial questionnaires throughout the study and used to classify participants according to lifetime pack-years of smoking at study
baseline (Al-Delaimy, Willett, Manson, Speizer, & Hu, 2001). Similar questionnaire-based self-report measures have shown good ability to distinguish between smokers and non-smokers when validated with serum cotinine (Vartiainen, Seppälä, Lillsunde, & Puska, 2002). Pack-years was modeled as a continuous variable.

Covariates

Age, SES, exposure to secondhand smoke during childhood, and childhood SES were assessed on the 1976 questionnaire unless otherwise stated. Age was calculated based on reported year of birth and was modeled as a continuous variable. SES was based on participants’ husbands’ educations, as reported in the 1992 questionnaire, and was modelled as a categorical variable. Exposure to secondhand smoke during childhood was captured in the 1982 questionnaire with the question “Did your parents smoke while you were living with them?” A dichotomous variable was created, indicating whether at least one parent or no parents smoked in the household. Childhood SES was operationalized according to parental occupation when the participant was 16. Maternal and paternal occupations were each classified by one of three categories, and the more prestigious occupational category between the parents was assigned to the participant with the following hierarchy: farmer, blue collar, and white collar. A separate category was used to indicate whether both the participant’s parents were deceased when the participant was aged 16.

Statistical Analyses:

Statistical analyses were conducted using SAS, v9.4 (SAS Institute, Cary NC). Initial analyses examined the distribution of covariates across 1992 depressive symptom levels, adjusting for age. Cox proportional hazards models were used to estimate the association between depressive symptoms and time until diagnosis of lung cancer over the follow-up period.
Person-years were counted from study baseline in 1992, with participants contributing person-time until death, diagnosis of lung cancer, or the termination of the follow-up period, whichever came first. Our first model assessed time until lung cancer diagnosis as a function of the 4-level MHI-5 score (86-100 as reference group), adjusting for age only. A second model further included additional potential confounding variables, including SES, exposure to secondhand smoke in childhood, and childhood SES.

We used causal mediation analysis techniques (Valeri & VanderWeele, 2013; VanderWeele, 2011) to assess both potential effect modification and mediation by smoking history. First, we calculated the magnitude and statistical significance of a multiplicative interaction term between depressive symptoms and smoking to determine whether the association between depressive symptoms and lung cancer varied by smoking history. Second, we assessed two regression models: a Cox proportional hazards model regressing time until lung cancer diagnosis on MHI-5 score, and a linear regression model regressing pack-years on MHI-5 score. Both models were adjusted for the same covariates described above.

From these models, we estimated the natural direct effect of depressive symptoms on lung cancer risk and the natural indirect effect mediated through smoking history at baseline. The natural direct and indirect effects were also used to calculate the proportion of the total effect of that was mediated by smoking history. Depressive symptoms were modeled as a dichotomous variable to maximize interpretability. Confidence intervals were calculated for all mediation estimates with standard errors obtained via the delta method (VanderWeele, 2013).

We additionally used Cox models to assess the association between depressive symptoms and lung cancer risk in models stratified by smoking status (i.e., never, former, or current) to isolate the independent association between depressive symptoms and lung cancer. In these
models, MHI-5 score was reverse coded (higher scores indicate greater depressive symptoms) to facilitate interpretation.

Secondary analyses were conducted to determine whether the observed effects were robust to alternative methods for classifying depressive symptoms. These analyses were conducted following the modeling strategy described for the primary analysis. First, we assessed the association between chronic exposure to depressive symptoms and lung cancer risk over the study period, using the measure of chronic depression described above. Second, depression status was updated over the course of the study period.

Results:

Over the follow-up period, 51,107 women contributed 401,612 years of person-time, and 944 cases of lung cancer were diagnosed. The age-adjusted distributions of covariates under study are presented according to level of depressive symptoms (Table 2.1). Approximately 15% of the sample was classified as having severe depressive symptoms (MHI-5 scores 0-60). Participants classified as having severe levels of depressive symptoms were older, had greater lifetime pack-years of smoking exposure, were more likely to have been exposed to second-hand smoke in childhood, were more likely to be unmarried, and were more likely to have parents with blue collar occupations. An examination of tumor type by smoking status demonstrated that tumors strongly associated with smoking (e.g., squamous cell) were common among women with a smoking and uncommon among women who had never smoked (Table S2.1).
Table 2.1 Selected characteristics by level of depressive symptoms among 57,877 women from the Nurses’ Health Study in 1992

<table>
<thead>
<tr>
<th>Level of depressive symptoms</th>
<th>Severe depressive symptoms (n=8,667)</th>
<th>High depressive symptoms (n=11,437)</th>
<th>Moderate depressive symptoms (n=20,646)</th>
<th>Low or no depressive symptoms (n=17,127)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average MHI-5 score</td>
<td>50.52(10.16)</td>
<td>68.67(3.26)</td>
<td>80.45(3.25)</td>
<td>90.87(3.24)</td>
</tr>
<tr>
<td>Age*</td>
<td>56.96(7.20)</td>
<td>57.59(7.20)</td>
<td>58.15(7.12)</td>
<td>59.44(6.94)</td>
</tr>
<tr>
<td>Lung cancer cases^</td>
<td>235 (3%)</td>
<td>269 (3%)</td>
<td>410 (2%)</td>
<td>335 (2%)</td>
</tr>
<tr>
<td>Exposure to smoke in childhood, %</td>
<td>70</td>
<td>69</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td>Husband’s education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not married, %</td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>< High school, %</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>High school degree, %</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>College degree, %</td>
<td>25</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Graduate degree, %</td>
<td>20</td>
<td>21</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Parent’s occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both parents dead, %</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Farmer, %</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Blue collar, %</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>White collar, %</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Values are means(SD) or percentages and are standardized to the age distribution of the study population.

Values of polytomous variables may not sum to 100% due to rounding.

* Value is not age adjusted.

^ Number of lung cancer cases over the course of the study period.
In modeling the risk of lung cancer according to 1992 depressive symptoms, participants with severe depressive symptoms (MHI-5 score 0-60) had a higher risk of developing lung cancer compared to those with low depressive symptoms (MHI-5 score 86-100) in both age-adjusted (hazard ratio= 1.80; 95% CI: 1.48, 2.19) and fully-adjusted (HR= 1.74; 95% CI: 1.43, 2.12) models (Table 2.2). Women with high depressive symptoms (MHI-5 score 61-75) also had an elevated risk of developing lung cancer compared to those with low depressive symptoms (fully-adjusted HR= 1.37; 95% CI: 1.13, 1.65), although they had comparatively a lower risk than women with severe depressive symptoms (fully-adjusted HR= 0.79; 95% CI: 0.64, 0.96).
Table 2.2 Hazard ratios and 95% confidence intervals for lung cancer by level of depressive symptoms among 51,907 women from the Nurses' Health Study

<table>
<thead>
<tr>
<th>Level of depressive symptoms/category of MHI-5*</th>
<th>Depressive (0-60)</th>
<th>61-75</th>
<th>76-85</th>
<th>Reference (86-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-adjusted hazard ratio</td>
<td>1.80</td>
<td>1.39</td>
<td>1.11</td>
<td>1.00</td>
</tr>
<tr>
<td>95% confidence interval</td>
<td>1.48, 2.19</td>
<td>1.15, 1.67</td>
<td>0.94, 1.32</td>
<td></td>
</tr>
<tr>
<td>Multivariable-adjusted hazard ratio^</td>
<td>1.74</td>
<td>1.37</td>
<td>1.10</td>
<td>1.00</td>
</tr>
<tr>
<td>95% confidence interval</td>
<td>1.43, 2.12</td>
<td>1.13, 1.65</td>
<td>0.93, 1.30</td>
<td></td>
</tr>
</tbody>
</table>

* MHI-5, five-item Mental Health Index, a subscale of the Short Form Survey from the RAND Medical Outcomes Study

^ Multivariable-adjusted analyses adjusted for age (continuous); exposure to second-hand smoking during childhood (yes,no (reference)); parents' occupations when participant was 16 years old (both parents dead, farmer, blue collar, white collar (reference)); and husband's education (participant unmarried, less than high school, high school graduate, college graduate, graduate school (reference))
The interaction term for smoking and dichotomous MHI-5 score was not statistically significant (fully-adjusted HR= 1.00; 95% CI: 0.99, 1.01), suggesting that the association between depressive symptoms and lung cancer risk did not meaningfully vary by smoking history. Mediation analyses suggested the relationship between depressive symptoms and lung cancer risk was at least partly mediated by lifetime pack-years of smoking (Table 2.3). While there was a significant natural direct effect of depressive symptoms in 1992 with a hazard ratio of 1.23 (95% CI: 1.04, 1.47), the natural indirect effect of depressive symptoms (HR= 1.16; 95% CI: 1.13, 1.19) was also significant. Findings suggested that 46% of the total effect of depressive symptoms on lung cancer risk was mediated by smoking.
Table 2.3 Mediation of the association between depressive symptoms and lung cancer risk by smoking history

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio*</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural direct effect</td>
<td>1.23</td>
<td>0.02</td>
<td>1.04, 1.47</td>
</tr>
<tr>
<td>Natural indirect effect</td>
<td>1.16</td>
<td><0.001</td>
<td>1.13, 1.19</td>
</tr>
<tr>
<td>Total effect</td>
<td>1.43</td>
<td><0.001</td>
<td>1.21, 1.69</td>
</tr>
</tbody>
</table>

Proportion mediated: 0.46

* Hazard ratio comparing high depressive symptoms (MHI < 61) to low depressive symptoms (MHI ≥ 61). Model is adjusted for age (continuous); exposure to second-hand smoking during childhood (yes,no (reference)); parents' occupations when participant was 16 years old (both parents dead, farmer, blue collar, white collar (reference)); and husband's education (participant unmarried, less than high school, high school graduate, college graduate, graduate school (reference))
In Cox analyses stratified by smoking history, the hazard ratio for a standard deviation increase in depressive symptoms was 1.08 (95% CI: 0.98, 1.18) among current smokers, 1.22 (95% CI: 1.10, 1.34) among former smokers, and 1.21 (95% CI: 1.00, 1.48) among participants with no history of smoking (Table 2.4). This indicates that, while smoking may serve as a mediator, there is also an independent association between depressive symptoms and lung cancer risk.
Table 2.4 Association between depressive symptoms (standard deviation change in reverse-coded MHI-5 score) and lung cancer risk, stratified by smoking history

<table>
<thead>
<tr>
<th>Smoking History</th>
<th>Hazard Ratio*</th>
<th>p-value</th>
<th>95% CI</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current smokers</td>
<td>1.08</td>
<td>0.12</td>
<td>0.98, 1.18</td>
<td>471</td>
</tr>
<tr>
<td>Former smokers</td>
<td>1.22</td>
<td><0.01</td>
<td>1.10, 1.34</td>
<td>373</td>
</tr>
<tr>
<td>Never smokers</td>
<td>1.21</td>
<td>0.05</td>
<td>1.00, 1.48</td>
<td>100</td>
</tr>
</tbody>
</table>

* Hazard ratio for standard deviation change in MHI-5 score. MHI-5 score has been reverse-coded so that higher scores indicate greater depressive symptoms. Model is adjusted for age (continuous); exposure to second-hand smoking during childhood (yes, no (reference)); parents' occupations when participant was 16 years old (both parents dead, farmer, blue collar, white collar (reference)); and husband's education (participant unmarried, less than high school, high school graduate, college graduate, graduate school (reference)).
In a secondary analysis, participants who reported high depressive symptoms at two or more time points over the study period had a higher risk of developing lung cancer than those who reported depressive symptoms at no time points (fully-adjusted HR= 1.47; 95% CI: 0.96, 2.24). Participants with depressive symptoms at one time point had a slightly higher risk than those who reported depressive symptoms at no time points (fully-adjusted HR= 1.35; 95% CI: 0.97, 1.87), although neither estimate reached conventional values of statistical significance (p-values .073 and .078, respectively) (Table 2.5). Findings from an additional secondary analysis evaluating the association between updated smoking status and risk of lung cancer risk were similar to those using baseline depressive symptom measures. Time-varying high versus low levels of depressive symptoms were associated with an increased risk of developing lung cancer (fully-adjusted HR=1.36; 95% CI: 1.03, 1.79).
Table 2.5 Hazard ratios for lung cancer by level of depressive symptoms - alternative strategies for modeling depressive symptoms

<table>
<thead>
<tr>
<th></th>
<th>Level of depressive symptoms</th>
<th>Time-varying depression status*</th>
<th>Chronic depression**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High depressive symptoms</td>
<td>Low depressive symptoms</td>
<td>Depressive symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(reference)</td>
<td>at 2+ time points</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depressive symptoms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>at 1 time point</td>
</tr>
<tr>
<td>Age-adjusted hazard ratio</td>
<td>1.39</td>
<td>1.00</td>
<td>1.50</td>
</tr>
<tr>
<td>95% confidence interval</td>
<td>1.05, 1.82</td>
<td>0.99, 2.27</td>
<td>0.99, 1.91</td>
</tr>
<tr>
<td>Multivariable-adjusted hazard ratio^</td>
<td>1.36</td>
<td>1.00</td>
<td>1.47</td>
</tr>
<tr>
<td>95% confidence interval</td>
<td>1.03, 1.79</td>
<td>0.96, 2.24</td>
<td>0.97, 1.87</td>
</tr>
</tbody>
</table>

* Assessment of depressive symptoms includes MHI-5 score (0-60), physician diagnosis of depression, and prescription of antidepressants. Depressive symptoms were updated over the study period.

** Participants were considered to have depressive symptoms at a given time point if they reported an MHI-5 score <= 60.

^ Multivariable-adjusted analyses adjusted for age (continuous); exposure to second-hand smoking during childhood (yes,no (reference)); parents' occupations when participant was 16 years old (both parents dead, farmer, blue collar, white collar (reference)); and husband's education (participant unmarried, less than high school, high school graduate, college graduate, graduate school (reference))
Discussion:

To our knowledge, this is the largest study to address the association between depressive symptoms and incident lung cancer, and the first to consider the role of smoking history among women. Consistent with our hypothesis, higher levels of depressive symptoms were associated with an increased risk of developing lung cancer over the study period. This effect was robust to alternative specifications of depressive symptoms. Contrary to prior findings (Knekt et al., 1996; Linkins & Comstock, 1990), in this sample, the effect of depressive symptomology on lung cancer risk did not differ by lifetime pack-years of smoking. However, there was evidence that smoking partly mediated the association of depressive symptoms with incident lung cancer, accounting for approximately half of the overall effect. Findings further suggested that additional mediators are at play given the significant direct effect that was also evident. While we hypothesized that smoking behavior mediates the association between depressive symptoms and lung cancer risk, data available in the present study did not allow us to distinguish between mediation and confounding. However, the persistence of an association between depressive symptoms and lung cancer risk among participants with no history of smoking indicates that the observed relationship is not entirely due to confounding by smoking.

These findings are consistent with prior research that has identified a positive association between depression and lung cancer risk, including a prospective cohort study conducted among 3,239 Finnish men over 14 years of follow-up. (Knekt et al., 1996) and a retrospective cohort study that assessed cancer outcomes for 89,491 Danish adults with depression over 12.5 years of follow-up (Dalton, Mellemkjær, Olsen, Mortensen, & Johansen, 2002). An additional prospective cohort study found an overall association between depressed mood and cancer, but no association with lung cancer specifically (Penninx et al., 1998). However, findings in this
study were statistically adjusted for smoking, rather than considering smoking as either an effect modifier or mediator. Contradicting our findings, two prior prospective cohorts following both men and women found no association between depression and lung cancer (Gross, Gallo, & Eaton, 2010; Kaplan & Reynolds, 1988), although the number of lung cancer cases identified in these studies was limited (n of 64 and 65, respectively).

Many of the prior studies of depressive symptoms and lung cancer have been conducted with samples that include both men and women. Although some studies have only considered male participants, we did not identify any studies that solely included women. Studies that failed to find an association between depressive symptoms and lung cancer were conducted in mixed-gender cohorts. It is possible that the effect observed in the present study among women would not be observed among men, which could partially explain the lack of association seen in studies where men and women are analyzed together.

In addition to smoking, there are likely other behavioral pathways and perhaps direct biological pathways (i.e., those not mediated by health behaviors) that contribute to the observed association between increased depressive symptoms and higher lung cancer risk. Given that smoking history accounted for only half of the observed relationship, other behaviors such as exposure to secondhand smoke in adulthood may be considered. It is also likely that physiological dysregulation caused by persistent depressive symptoms contributes meaningfully to the observed relationship. Although data were not available in the present study to assess these factors, prior research in animal models supports the plausibility of direct endocrine and neuro-immune pathways between depression and cancer mediated by processes such as immune dysregulation and DNA damage due to increased oxidative stress (Gidron et al., 2006; Glaser & Kiecolt-Glaser, 2005; Reiche et al., 2004). Furthermore, research demonstrating an association
between depressive symptoms and higher risk of cancers that are less associated with smoking than lung cancer (i.e., colon cancer and ovarian cancer) in the same Nurses’ Health cohort lends support to the presence of direct biological effects of depression that are not mediated by smoking (Huang et al., 2015; Kroenke et al., 2005). Additional studies with measurements of relevant biomarkers are needed to validate these potential pathways and assess the extent to which they contribute to disease.

The current study has several limitations. The MHI-5, which was used as the primary measure of depressive symptoms, asks participants to recall their feelings over only the previous four weeks. It is therefore possible that the measure captured transient negative affect, rather than the type of enduring depressive symptomatology (and related cumulative damage) we expect is most salient for lung cancer risk. In using this measure, we assumed that depression was a semi-stable phenomenon, and that participants who reported depressive symptoms over a short period of time were likely to also experience them in the longer term. While secondary analyses indicated that the risk of depressive symptoms may be enhanced with chronic exposure, our primary analysis supports the conclusion that even depressive symptoms assessed at a single time point are predictive of lung cancer risk.

A second limitation is lack of generalizability. The NHS is a predominantly white sample of professional women, and it is unknown whether the relationships observed in our study would apply equally in other demographics. Additional research is required to assess how the observed associations may apply in a more representative sample. A third limitation of the study, as with all observational research, was the potential for residual or unmeasured confounding. While we controlled for a variety of covariates that may be common prior causes of both depressive symptoms and lung cancer, it is possible that these factors were inadequately measured or that
additional salient confounders were excluded from analyses. However, given the size of the observed effect and its robustness to the covariates included in our models, we do not expect that unmeasured confounding would substantially change our conclusions.

The current study also had numerous strengths. A primary advantage was its large sample size and long duration of follow-up, which facilitated the ascertainment of a large number of cases and provided sufficient power to detect a statistically significant association between depressive symptoms and lung cancer risk. Additional strengths of the study included its validation of lung cancer diagnoses via medical records, thorough consideration of the potential role of smoking, and assessment of lung cancer risk specifically among women.

In conclusion, this study demonstrates a prospective association between depressive symptoms and greater risk of lung cancer that is partially mediated by smoking history. Smoking, however, remains the overwhelming cause of lung cancer. In the sample used for this analysis, 90% of all lung cancer cases were observed among women who were current or former smokers. Thus, smoking prevention and cessation remain the most important factors for the reduction of lung cancer. Depression, however, is a modifiable risk factor that promotes smoking initiation and interferes with cessation, and thus should be prioritized as an upstream contributor to behavior. Additionally, as demonstrated in this study, depression appears to also contribute to lung cancer risk independent of its association with smoking. This finding warrants additional research into the potential biological mechanisms for such an effect. Considered together, this research points to the necessity of looking beyond behavioral determinants of disease to consider the social and psychological factors that may shape the distribution of those determinants as well as exert a direct effect on disease risk.
References

Substance Abuse and Mental Health Services Administration. (2013). *Results from the 2012 national survey on drug use and health: summary of national findings*. Retrieved from Rockville, MD:

Table S2.1 Tumor types by smoking status, n (%)

<table>
<thead>
<tr>
<th>Category of smoking status</th>
<th>Non-smokers</th>
<th>Former smokers</th>
<th>Current smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous cell</td>
<td>3 (2.2)</td>
<td>76 (13.3)</td>
<td>117 (18.8)</td>
</tr>
<tr>
<td>Small cell</td>
<td>2 (1.5)</td>
<td>56 (9.8)</td>
<td>121 (19.5)</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>100 (73.0)</td>
<td>287 (50.3)</td>
<td>238 (38.3)</td>
</tr>
<tr>
<td>Large cell</td>
<td>5 (3.7)</td>
<td>25 (4.4)</td>
<td>21 (3.4)</td>
</tr>
<tr>
<td>Combined epidermoid and adenocarcinoma</td>
<td>7 (5.1)</td>
<td>67 (11.7)</td>
<td>73 (11.8)</td>
</tr>
<tr>
<td>Carcinoid</td>
<td>12 (8.8)</td>
<td>17 (3.0)</td>
<td>5 (0.8)</td>
</tr>
<tr>
<td>Papillary tumor surface epithelium, mixed tumor with carcinosarcoma, sarcoma, pleural tumor/mesothelioma</td>
<td>3 (2.2)</td>
<td>7 (1.2)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Other carcinoma/unknown type</td>
<td>5 (3.7)</td>
<td>36 (6.3)</td>
<td>45 (7.3)</td>
</tr>
<tr>
<td>Proportion of total cases</td>
<td>10%</td>
<td>43%</td>
<td>47%</td>
</tr>
</tbody>
</table>
STUDY 2. The Association between Childhood Socioeconomic Status, Adult Health Behaviors, and Risk of Incident Colon Cancer in the Nurses’ Health Study

Emily S. Zevon¹, Ichiro Kawachi¹, Reginald D. Tucker-Seeley², and Laura D. Kubzansky¹

¹ Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115
² University of Southern California Leonard Davis School of Gerontology, 3715 McClintock Avenue, Los Angeles, CA 90089
Abstract

Objective: Prior studies have considered the association between SES and colon cancer risk, but no clear pattern has been established. Few studies have considered socioeconomic status assessed in childhood, which captures a longer history of exposure and may set trajectories for cancer-relevant health behaviors (e.g., diet and physical activity) in adulthood. We tested the hypothesis that lower childhood SES would be associated with engaging in fewer healthful behaviors and with a higher risk of incident colon cancer in adulthood.

Methods: Data are from the Nurses’ Health Study, an ongoing cohort of women started in 1976. Childhood socioeconomic status was operationalized as parent occupation when the participant was 16 years old, and was assessed at study baseline. Unhealthy lifestyle in adulthood was operationalized via a score incorporating smoking status, body mass index [BMI], diet, alcohol consumption, and physical activity. Analyses used Cox proportional hazards models to evaluate the association between childhood SES and time until adopting an unhealthy lifestyle over 20 years of follow-up. Additional analyses used Cox proportional hazards models to assess the risk of developing colon cancer according to parent occupation over 36 years of follow-up, during which 2,090 cases of colon cancer were identified.

Results: Women whose parents had white collar occupations served as the reference group in all analyses. Women whose parents were blue collar were at greater risk of adopting an unhealthy lifestyle over the study period (HR= 1.06; 95% CI: 1.04, 1.09). Having blue collar parents was associated with a small increase in the risk of developing colon cancer after adjusting for age and family history of colon cancer, however the effect was not statistically significant (HR= 1.07; 95% CI: 0.97, 1.18). Women whose parents were farmers had a lower risk of colon cancer (HR= 0.83; 95% CI: 0.70, 0.98).
Conclusions: Low childhood socioeconomic status was associated with risk of developing an unhealthy lifestyle in adulthood, even among a sample of professional women. However, in this sample, women whose parents were white collar did not have a meaningfully lower risk of colon cancer than women whose parents were blue collar.
Introduction:

The association between socioeconomic status (SES) and health status has been extensively documented (Adler et al., 1994) across diverse health outcomes (Adler & Ostrove, 1999; Feinstein, 1993; Smith, Carroll, Rankin, & Rowan, 1992). Not only does SES predict overall health status, research demonstrates that each incremental increase in the social hierarchy is associated with health gains, an effect often described as the SES-health gradient (Marmot et al., 1991). As part of this body of research, many studies have examined social disparities in cancer incidence and mortality (Krieger, 2005; Ward et al., 2004). However, in the case of cancer, the SES-health gradient is not as consistent as with other health outcomes, and with some types of cancer (e.g., breast cancer and melanoma) the gradient is even reversed (Adler & Ostrove, 1999; Kawachi & Kroenke, 2006). Colon cancer is the third most common cancer among men and women in the US, and the second leading cause of cancer death among men and women combined (American Cancer Society, 2015). Research on the relationship between SES and colon cancer incidence has demonstrated significant heterogeneity of effect across different studies and populations. Given the high disease burden and need for effective intervention, it is imperative to reconcile these conflicted findings.

Previous research has considered the effect of adult SES on colon cancer risk. Some of these studies have unexpectedly found that higher SES was associated with increased risk of developing colon cancer (Ferraroni, Negri, La Vecchia, D'Avanzo, & Franceschi, 1989; Tavani et al., 1999; Van Loon, Van den Brandt, & Golbohm, 1995), while others found the more expected association between lower SES and colon cancer risk (Kim, Masyn, Kawachi, Laden, & Colditz, 2010), and some found no association (Papadimitriou et al., 1984). Large prospective cohort studies have found conflicting inverse versus positive associations between SES and
colon cancer risk (Kim et al., 2010; Van Loon et al., 1995). However, with an increasing
appreciation of the importance of a life course perspective (Berkman, 2009), investigators have
noted that assessments of the relationship between adult SES and disease risk may provide too
limited an approach to the study of disease etiology. While SES in adulthood strongly predicts
many health outcomes, consideration of proximal exposure to harmful social environments may
be insufficient for understanding risk in diseases with long latency periods such as colon cancer.

An additional limitation of SES assessment in previous research has been the focus on
measures of occupation and education, which do not reliably capture SES for women (Duncan,
Daly, McDonough, & Williams, 2002). This may be especially problematic in studies conducted
among participants born in the early 20th century, when women were subject to different social
expectations for work and education than men. Even in recent generations, the social and
psychological implications of occupation and education may be different for men and women,
with women experiencing less advantage in income and status from equivalent educational and
occupational achievement (Macintyre & Hunt, 1997).

Recent epidemiological research has increasingly suggested the importance of
considering early life determinants and possible childhood origins of disease. Childhood SES has
been shown to predict mortality and other health outcomes in adulthood, frequently exhibiting
the same positive monotonic relationship observed between adult SES and health (Cohen,
Janicki-Deverts, Chen, & Matthews, 2010; Galobardes, Lynch, & Smith, 2004; Galobardes,
Lynch, & Smith, 2008; Stringhini et al., 2010). Environmental, behavioral, and physiological
pathways through which childhood SES may affect adult health have been identified (Cohen et
al., 2010). Childhood SES has the advantage of encapsulating a longer history of exposure to
adverse socioeconomic conditions, and may be less subject to gender-based differences in
meaning. Childhood SES also captures participants’ broader social environment, which may be a better predictor of women’s health than individual measures of SES (Krieger, 1991).

While research on the health effects of childhood SES has primarily focused on mortality and cardiovascular disease outcomes (Cohen et al., 2010), there are plausible mechanisms by which childhood SES may also affect colon cancer risk. Health-related behaviors are likely to be an important pathway. For example, lower childhood SES is associated with reduced physical activity and less healthy diet in childhood, which establishes trajectories for these health behaviors that extend through adulthood (Cohen et al., 2010). Health behavior-related factors in adulthood such as diet, physical activity, and BMI strongly pattern the incidence of colon cancer (Giovannucci et al., 1995; Willett, Stampfer, Colditz, Rosner, & Speizer, 1990), and we expect that by shaping these behaviors, childhood SES may influence colon cancer risk later in life. Thus, by examining the relationship between childhood SES and health behaviors in adulthood, as well as the association between childhood SES and colon cancer risk, we can contribute to a broader understanding of predictors of disease incidence and suggest possible targets for early intervention.

The current study utilized a large prospective cohort of women to investigate the association between childhood SES and cancer-relevant health behaviors in adulthood, as well as the association between childhood SES and colon cancer. We hypothesized that participants with lower childhood SES would exhibit worse patterns of health behaviors by adopting an unhealthy lifestyle sooner than participants with higher childhood SES. We additionally hypothesized that participants with low SES would demonstrate a higher risk for incident colon cancer than participants with high childhood SES. Because unhealthy behaviors tend to cluster rather than occurring individually (Noble, Paul, Turon, & Oldmeadow, 2015), we considered health
behavior-related factors individually at baseline and combined in a healthy lifestyle score that was measured repeatedly over the 20-year study period. Based on prior work, effect modification by BMI and smoking status was also assessed in analyses evaluating SES in relation to colon cancer risk.

Methods:

Study Population:

Data are from the Nurses’ Health Study (NHS) cohort, which began in 1976 with 121,700 30 to 55 year-old female registered nurses. Since 1976, NHS participants have returned biennial questionnaires collecting data on health, nutrition, and lifestyle, as well as a variety of social and psychological factors. Seventy percent of invited participants responded to the initial questionnaire, and follow-up throughout the study has exceeded 90% (Colditz, 1994). Additional details about the sample, protocol, and follow-up have been described elsewhere (Colditz, 1994). The sample for our analysis of healthy lifestyle included women enrolled in the cohort as of 1990 who had data available for at least four of the five health behaviors at any assessment point over the 20-year follow up period, and who completed the measure of childhood SES (n=90,032). The sample for our analysis of colon cancer risk included women who had not been previously diagnosed with cancer at study baseline in 1976 and who completed the measure of childhood SES (n=100,932). The institutional review board at Brigham and Women’s Hospital reviewed and approved this study, and participants provided informed consent by returning questionnaires.

Measures:

Exposure. Childhood SES was operationalized according to parental occupation when the participant was 16, as reported on the 1976 questionnaire. Following Census Bureau classification standards, maternal and paternal occupations were assigned to the following
categories: professional/technical, managers/officials/proprietors, clerical and kindred workers, skilled blue collar, domestic and service workers, farmers/farm workers, and laborers. These classifications have been shown to be a good proxy for income and prestige, which importantly shape childhood environment (Gliksman et al., 1995; Liberatos, Link, & Kelsey, 1987). Following previous work with this measure in the NHS (Gliksman et al., 1995), these categories were consolidated to three broader classifications: white collar (professional/technical, managers/officials/proprietors, clerical and kindred workers), blue collar (skilled blue collar, domestic and service workers, laborers), and farmer. We additionally determined whether either parent was deceased when the participant was sixteen by comparing mother’s and father’s years of death with the participant’s year of birth (Gliksman et al., 1995; Liberatos et al., 1987).

For participants that had a deceased parent at age 16, the surviving parent’s occupational classification (i.e. white collar, blue collar, or farmer) was used as the indicator of parental SES. Participants that reported both parents as deceased (n=557) were excluded from the analyses. For participants with both parents living at age 16, the higher prestige parental occupation was used, with the following the hierarchy from highest to lowest: white collar, blue collar, and farmer (Gliksman et al., 1995). Thus, parental SES was modeled as a three-level categorical variable with the following categories: white collar (reference), blue collar, and farmer.

Outcomes.

Healthy lifestyle. Following prior work, a healthy lifestyle was defined by meeting recommended levels on at least four of five health behavior or behavior-related factors, including weekly physical activity levels, body mass index (BMI), smoking, daily alcohol consumption, and diet quality (Trudel-Fitzgerald et al., 2017). In NHS, prior work has found approximately 37% of colon cancer cases are attributable to unhealthy lifestyle using a similar score (Erdrich,
Zhang, Giovannucci, & Willett, 2015). Each component of the healthy lifestyle score was assessed at 4-year intervals over the 20-year follow-up period between 1990 and 2010. Weekly physical activity was determined according to the number of minutes per week spent in moderate to vigorous activity (e.g., brisk walking, bicycling). Participants were considered to have healthy physical activity if they met the recommendations for engaging in physical activity 150 or more minutes per week. BMI was calculated using participants’ self-reported height (1976 questionnaire) and weight. Self-reported weight has been shown to be highly correlated ($r = 0.97$) with weight measured by study staff among a sample of women from the NHS cohort (Rimm et al., 1990). Healthy BMI was defined as 25kg/m^2 or less. Smoking was assessed according to self-reported status. Participants were classified as healthy if they reported never having smoked or being former smokers.

Daily alcohol consumption was assessed via self-report, which has demonstrated strong validity when compared to a gold standard dietary record measure (Giovannucci et al., 1991). Participants were considered to have healthy alcohol consumption if they averaged no more than one 14-gram alcoholic drink per day (US Department of Health and Human Services & US Department of Agriculture, 2010). Diet was assessed via a 131-item food frequency questionnaire, a detailed description of which has been previously published (Hu et al., 1997). The Alternative Healthy Eating Index (AHEI) (McCullough et al., 2002) was used to assign a score ranging from 0-110, based on high intake of fruit, vegetables, nuts, soy, and cereal fiber, and low consumption of red meat, saturated fat, and trans fats. Participants were considered to have a healthy diet if they scored in the top 40% of AHEI scores.

These behavior-related variables were combined to create a healthy lifestyle score, which has been used extensively in the NHS (Trudel-Fitzgerald et al., 2017). While some individual
behavior-related variables were measured earlier in the follow-up, the 1988 and 1990 questionnaires were the first time that all components of the healthy lifestyle composite were available, yielding the potential for six measurements of healthy lifestyle over the follow-up period. To derive a healthy lifestyle score, participants were assigned one point for each of the five health behavior-related domains (i.e., physical activity, BMI, smoking, alcohol consumption, and diet) on which they met recommendations for healthy behavior. These points were summed to create a score ranging from 0 (least healthy) to 5 (healthiest). For time points at which one of the component scores was missing, the score was computed by dividing the available score by the fraction of components available and rounding to the nearest whole number. The score was set to missing if two or more of the five components were missing. At each of the six time points, the lifestyle score was dichotomized at the cut-point of four, with participants considered to have a healthy lifestyle if they met recommendations in four or more of the health behavior-related domains (Trudel-Fitzgerald et al., 2017).

Colon cancer. Colon cancer cases have been ascertained from participant questionnaires, with death certificates also used to identify incident cases. For any report of incident disease, participants were contacted for permission to review medical and pathology records. These documents were reviewed by study physicians who were blinded to exposure status. Colon cancer cases were defined per the International Classification of Diseases, Ninth Revision (ICD-9). To mitigate the risk of observing a spurious association due to latent disease at baseline, we only considered colon cancer cases occurring more than two years after the baseline assessment in 1976. Cases of colon cancer were ascertained through the end of the follow-up period in 2012.

Other covariates.
Age was included in all analyses as a potential confounder, and parental history of colon cancer was included as a potential confounder in analyses modeling colon cancer risk. Age was calculated based on the date of birth reported on the 1976 questionnaire and modeled as a continuous variable. Parental history of colon cancer was assessed on the 1996 questionnaire. Because parental colon cancer during participants’ childhoods (rather than parental colon cancer during participants’ adulthoods) is most likely to serve as a confounder, we only considered colon cancer diagnosed when the parent was aged 50 or younger. Parental history was modeled as a dichotomous variable (yes/no) indicating whether the participant had a parent diagnosed with colon cancer before age 50.

Statistical Analysis:

Statistical analyses were conducted using SAS, v9.4 (SAS Institute, Cary NC). We compared participants who were versus were not included in analyses of either healthy lifestyle or colon cancer risk. We then examined the association between parental occupation categories and each of the covariates, adjusting for age. To evaluate the association between childhood SES and individual health behaviors in adulthood, we used separate logistic regression models to assess the association between parental occupation categories and likelihood of engaging in each unhealthy behavior in 1988 or 1990. Cox proportional hazards models assessed the association between parental occupation and time until adoption of an unhealthy lifestyle between 1990 and 2010, with unhealthy lifestyle defined as dropping below a score of four out of five healthy behaviors.

Cox proportional hazards models were also used to estimate the association between parental occupation and time until diagnosis of colon cancer over the follow-up period. Person-years were counted from study baseline in 1976, with participants contributing person-time until
death, diagnosis of colon cancer, or the termination of the follow-up period, whichever came first. A minimally adjusted model assessed time until colon cancer diagnosis as a function of parental occupation, adjusting for age. A second model added parental history of colon cancer as a potential confounder. Analyses were subsequently stratified to assess potential effect modification by BMI (≥ 25 vs. <25 kg/m2) and smoking status (ever smoker vs. never smoker) assessed at baseline in 1976. When results differed by strata, we evaluated an interaction term between parental occupation and a dichotomous version of the effect modifier variable. Analyses evaluating whether health behaviors might mediate effects of SES on colon cancer risk were planned. However, as reported below, because the association between childhood SES and colon cancer was not statistically significant, we did not further explore mediation by healthy lifestyle.

Results:

Descriptive: Descriptive statistics are shown in Table 3.1. Over a 36-year follow-up period, 100,932 women contributed 2,948,998 years of person time and 2,090 cases of colon cancer were diagnosed. Among these women, 8% had parents who were farmers, 23% had blue collar parents, and 69% had white collar parents. Participants whose parents were white collar tended to be younger and more educated than participants whose parents were in other occupation categories. In 1988, children of white collar parents were less likely to have BMI >25kg/m2 and to be inactive, although they were more likely to be current smokers.
<table>
<thead>
<tr>
<th>Parent Occupation</th>
<th>Farmer (n=8,077)</th>
<th>Blue collar (n=23,441)</th>
<th>White collar (n=69,415)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in 1976*</td>
<td>44.75(6.81)</td>
<td>42.47(7.05)</td>
<td>41.66(7.19)</td>
</tr>
<tr>
<td>Colon cancer, %</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Family hx, %</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- RN, %</td>
<td>75</td>
<td>76</td>
<td>68</td>
</tr>
<tr>
<td>- BA, %</td>
<td>18</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>- Master’s, %</td>
<td>6</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>- Doctorate, %</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BMI ≤25kg/m² in 1988, %</td>
<td>55</td>
<td>50</td>
<td>56</td>
</tr>
<tr>
<td>Former/never smoker in 1988, %</td>
<td>87</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td>Physically active in 1988, %</td>
<td>32</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>≤15g/day alcohol in 1990, %</td>
<td>92</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>Healthy diet in 1990, %</td>
<td>41</td>
<td>39</td>
<td>41</td>
</tr>
</tbody>
</table>

Values are means(SD) or percentages and are standardized to the age distribution of the study population.
Values of polytomous variables may not sum to 100% due to rounding.
* Value is not age adjusted.
Analysis of health behaviors: When considering health behavior-related factors assessed in 1988 and 1990, 7% of the sample did not meet recommendations for any health behaviors or met recommendations for one health behavior, 58% met recommendations for two or three health behaviors, and 34% met recommendations for four or five health behaviors. In logistic regression analyses controlling for age and modeling the odds of failing to meet recommendations for each of the health behavior-related factors, participants with blue collar parents were more likely to have unhealthy levels of physical activity (OR=1.15; 95% CI: 1.11, 1.20), to be overweight (OR=1.24; 95% CI: 1.20, 1.29), and to have poor diet quality (OR=1.10; 95% CI: 1.06, 1.14), and were less likely to consume excess alcohol (OR=0.69; 95% CI: 0.65, 0.73) than participants with white collar parents. There was no association with smoking status. Participants with parents who were farmers were less likely to consume excess alcohol (OR=0.59; 95% CI: 0.54, 0.65) and were less likely to be current smokers (OR=0.61; 95% CI: 0.57, 0.65) than participants with white collar parents. Physical activity, BMI, and diet were not associated with having parents who were farmers versus white collar workers.

In a Cox proportional hazards model assessing the relationship between parent occupation and time until adopting an unhealthy lifestyle between 1990 and 2010, relative to women whose parents were white collar workers, women whose parents were farmers were 6% less likely to adopt an unhealthy lifestyle (95% CI: 0.91, 0.98), while women whose parents were blue collar were 6% more likely to adopt an unhealthy lifestyle (95% CI: 1.04, 1.09) over the study period when controlling for age (Table 3.2).
Table 3.2 Hazard ratios for adopting an unhealthy lifestyle over 20 years of follow-up by parent occupation among 90,032 women from the Nurses' Health Study

<table>
<thead>
<tr>
<th>Parent occupation</th>
<th>Model 1 (Age adjusted)</th>
<th>Model 2 (Fully adjusted)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>White collar</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>1.06 1.0 1.09</td>
<td></td>
</tr>
<tr>
<td>Blue collar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bold text indicates p<0.05
* Model is adjusted for age and parents' history of colon cancer (yes, no (reference))
CSES and colon cancer risk: In Cox models, compared with women whose parents were white collar workers, participants whose parents were farmers had a lower risk of incident colon cancer in both age adjusted and fully adjusted models (HR for fully adjusted model= 0.83; 95% CI: 0.70, 0.98) (Table 3.3). There was a small increase in risk of cancer associated with having parents who were blue collar (HR for fully adjusted model= 1.07; 95% CI: 0.97, 1.18), but the association did not reach statistical significance. There was no evidence of effect modification by either BMI or smoking status, as effects were similar across strata in stratified analyses.
Table 3.3 Hazard ratios for incident colon cancer by parent occupation among 100,932 women from the Nurses’ Health Study

<table>
<thead>
<tr>
<th>Parent occupation</th>
<th>Model 1 (Age adjusted)</th>
<th>Model 2 (Fully adjusted)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>95% CI</td>
</tr>
<tr>
<td>White collar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>0.83</td>
<td>0.70</td>
</tr>
<tr>
<td>Blue collar</td>
<td>1.07</td>
<td>0.97</td>
</tr>
</tbody>
</table>

* Model is adjusted for age and parents' history of colon cancer (yes, no (reference))

Bold text indicates p<0.05
Discussion:

To the best of our knowledge, this is the first study to evaluate the association between childhood SES and a healthy lifestyle score in adulthood, as well as the first study to explicitly address the association between childhood SES and incident colon cancer. We hypothesized that more prestigious parental occupations would be associated with a healthier profile of health behavior-related factors in adulthood by establishing a pattern of healthy behavior that persists across the life course. We also hypothesized that higher childhood SES would be associated with reduced risk of colon cancer in adulthood through health behaviors and other unmeasured pathways.

In analyses considering the association between childhood SES and individual health behaviors in adulthood, children of white collar parents had better diet, better physical activity levels, and were less likely to be overweight than children of blue collar parents, although they were more likely to consume excess alcohol. In Cox models assessing the time until adoption of an unhealthy lifestyle, women whose parents had white collar occupations were at lower risk of adopting an unhealthy lifestyle over the follow-up period than those whose parents had blue collar occupations. This effect of low childhood SES on worse health behaviors in adulthood is in line with previous research that has identified how adversity and social stress experienced in early life can manifest in unhealthy lifestyle across the life course (Miller, Chen, & Parker, 2011; Repetti, Taylor, & Seeman, 2002). Observed in a cohort of women who have achieved high levels of education and professional occupations, it indicates that there is a strong and persistent effect of low socioeconomic status that may not be fully overcome or reversed by improved social environment in adulthood. This “behavioral residue” of poor social conditions in childhood is analogous to the “biological residue” identified by Miller et al. (Miller et al., 2009);
early life experiences leave a mark on both immediate biology and health behavior-related factors that may not be modified by later intervention.

Our hypothesis that higher childhood SES would be associated with reduced risk of colon cancer was not strongly supported by the data, as the magnitude of the association between having blue versus white collar parents was small (albeit in the expected direction) and did not reach statistical significance. These effect estimates were similar when the sample was stratified by BMI or by smoking status. Somewhat unexpectedly, our findings suggested that having parents who were farmers versus white collar was significantly associated with reduced risk of developing colon cancer even after adjusting for all potential confounders. To our knowledge, this is the first study to find that the children of farmers versus white collar parents have a lower risk of colon cancer, although some research has identified a higher risk of cancers associated with pesticide exposure. This lower observed risk of colon cancer may be partially explained by the health behavior profiles of children of farmers, who were much less likely to consume excess alcohol and to have ever smoked than children of white collar workers. It is likely that some aspect of childhood spent in a farm environment in the early 20th century established lifelong patterns for these behaviors which reduced colon cancer risk in adulthood. Given that dairy consumption has been shown to be protective against colon cancer (Aune et al., 2012), it is also possible that some of the reduced risk observed among the children of farmers is due to greater consumption of milk products. However, data on childhood diet were not available in the present study to further test this hypothesis.

The finding that colon cancer risk was only suggestively higher among children of blue versus white collar parents may reflect a true absence of association, or may be a product of limitations of the current study. In favor of the finding reflecting a true null association, the
survival analysis for cancer incidence included a large number of participants and more than three decades of follow-up, which allowed the evaluation of more than 2,000 cases of colon cancer. With such a large sample, the current study should have had sufficient power to detect even a small effect of childhood SES. Additionally, by validating participants’ self-reports of cancer via medical records, we were able to ensure accuracy and completeness in our enumeration of cases.

However, the sample within which we assessed the association may not capture the relationship between childhood SES and colon cancer risk within the general population. Participants enter the NHS cohort by virtue of their singular professional occupation. Thus, women who join the cohort and come from lower status backgrounds may share characteristics that facilitate the achievement of a nursing career, and may not be representative of the broader social group. This could distort the associations observed in this study, and may partially account for the weak finding regarding whether lower SES childhood may confer increased colon cancer risk in adulthood. In addition, women who choose nursing as a profession likely have a special interest in health and well-being, which may shape their health behaviors and other colon cancer risk factors and thus obviate a more substantial effect of childhood SES.

An additional limitation that may have contributed to the weak finding is the study’s limited assessment of childhood SES. While parental occupation has predicted diverse health outcomes across numerous studies (Cohen et al., 2010; Galobardes et al., 2004), and was associated with adult health behaviors in the current study, it likely fails to capture the full picture of a child’s social environment. For example, parent’s occupation does not necessarily capture whether a participant experienced social or material deprivation during their childhood. Accordingly, it may not allow us to fully identify a true relationship between childhood social
conditions and cancer incidence. Additionally, while our study is prospective in that childhood SES is assessed prior to ascertainment of study outcomes, assessment of the exposure is still dependent on recollection of conditions from childhood, and therefore is potentially subject to bias.

The results from our analyses indicate that, even in a sample of women who have achieved professional status in their adult lives, there is a residual effect of low childhood SES that manifests in health behavior profiles in adulthood. If we were able to assess associations in a sample that was not selected based on a shared profession, these effects of childhood SES on health behaviors would likely be more pronounced and perhaps so too would there be a more pronounced risk of incident colon cancer. This finding contributes to a body of research emphasizing the importance of early childhood environments for adult health risks, and supports the theory that there are lasting effects of childhood environment that cannot be overcome by improved circumstances in later life. To mitigate these effects, it is essential to develop interventions and policies to reduce childhood poverty and enrich deprived childhood environments.
References

STUDY 3. Social Integration and Lifespan in the Nurses’ Health Study

Emily S. Zevon1, Ichiro Kawachi1, Reginald D. Tucker-Seeley2, and Laura D. Kubzansky1

1 Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115

2 University of Southern California Leonard Davis School of Gerontology, 3715 McClintock Avenue, Los Angeles, CA 90089
Abstract

Background: Prior studies have documented a consistent association between stronger social relationships and reduced risk of mortality. However, fewer of these studies have focused on social integration, which considers both quantity and quality of social contacts. Additionally, prior work has focused on adverse health outcomes, but has less often considered the association between social relationships and the extension of lifespan or achievement of exceptional longevity. In this study, we tested whether greater levels of social integration were associated with longer lifespan and a greater likelihood of achieving exceptional longevity.

Methods: Data are from the Nurses’ Health Study (NHS), an ongoing cohort of women followed since 1976 with biennial mailed questionnaires. Social integration was assessed using the Berkman-Syme Social Network Index, administered in 1992. Deaths were ascertained from participants’ families, postal authorities, and death registries. Primary analyses (n=73,276) used accelerated failure time models to assess changes in lifespan associated with each category of social integration, in models progressively controlling for demographic confounders, health status variables, and health behavior-related factors measured at baseline. Secondary analyses used logistic regression to evaluate the likelihood of surviving to the age of 85 among the subset of women who had the possibility of reaching that age during cohort follow-up (n=17,309).

Results: Across models, higher levels of social integration were associated with increased longevity in a graded relationship (p-value for trend <0.01). For example, in models adjusted for demographic variables and health status, women with the highest versus lowest levels of social integration had 18.0% (95% CI: 15.8, 20.3) longer lifespan. Among women who could have reached the age of 85 during follow-up, participants with the highest versus lowest levels of social integration had 1.7 times the odds of surviving to the age of 85. In both failure time and
logistic regression analyses, findings were maintained after adjusting for all relevant covariates, including depression.

Conclusion: Higher levels of social integration are associated with greater lifespan and likelihood of achieving exceptional longevity among women in the NHS.
Introduction:

As lifespan has increased in industrialized countries, exceptional longevity beyond 85 years has become increasingly common. Research across diverse organisms has consistently demonstrated that increases in lifespan are often accompanied by delayed morbidity (Longo et al., 2015), indicating that studying factors associated with increased longevity may yield new insights regarding how to promote long and healthy lives. Research on exceptional longevity has largely focused on identifying biomedical factors (e.g., genetic variants) that are associated with increased survival, but an emerging body of research has suggested non-genetic factors matter as well. Accordingly, research has begun to identify psychosocial assets, such as optimism and other facets of positive psychological well-being, as potential predictors of longer life (Boehm & Kubzansky, 2012; Kim et al., 2017).

Social relationships have also been identified as a key predictor of human health (Berkman & Krishna, 2014; Cohen & Wills, 1985; House, Umberson, & Landis, 1988). Research has demonstrated beneficial effects of social support and networks on a wide range of health outcomes (Berkman, Leo-Summers, & Horwitz, 1992; Kawachi et al., 1996), with cognitive, emotional, behavioral, and direct biological pathways proposed to explain observed associations (Cohen, 1988). The relationship between social relationships and premature mortality has been assessed extensively, with many studies demonstrating an association between social isolation and increased risk of death (Barger, 2013; Berkman & Krishna, 2014; Seeman, 1996). Fewer studies have utilized a positive framework to consider social relationships as a health asset and examined the association between social integration and the likelihood of achieving or maintaining health or healthy aging.
Research suggests that psychosocial assets, such as social integration, are associated with health outcomes above and beyond the effects of poor psychosocial functioning (Kubzansky, Boehm, & Segerstrom, 2015). As such, the consideration of risk factors that are associated with disease and mortality is not necessarily equivalent to the examination of positive factors that are associated with the attainment and maintenance of good health. For example, in a nationally representative sample of adults, individuals with the greatest emotional vitality had a 23-30% lower risk of developing disease than individuals with the lowest emotional vitality (Kubzansky & Thurston, 2007). This associated persisted after controlling for psychological distress, indicating that psychological assets are predictive of health beyond the effect of negative affect.

Identifying diverse assets that promote health across the life course, particularly health in aging, will both help to achieve optimal functioning and reduce exposure to health risks, informing a “primordial prevention” approach (Strasser, 1978). Although healthy aging is a multidimensional construct that is often defined to incorporate physical, cognitive, and emotional well-being, the achievement of long lifespan is its most basic prerequisite (Woods et al., 2016). By understanding assets that promote longevity we can take a step outside the paradigm of disease and mortality, and create new insights regarding the means through which long and healthy lives can be achieved.

In the present study, we assessed social integration, which refers to the number, type, and frequency of social contacts, and evaluated its association with increased longevity. We focus on social integration, rather than social support or social network characteristics, because it has been associated with health outcomes more consistently than other social relationship constructs (Cohen & Janicki-Deverts, 2009; Holt-Lunstad, Smith, & Layton, 2010). To assess the association between social integration and duration of lifespan, we used data from a large
ongoing cohort of women to evaluate if higher levels of social integration are associated with longer lifespan, as well as with greater likelihood of attaining exceptional longevity. These analyses controlled for initial health status, as well as a range of other potential confounders, identified based on prior research in this domain.

To explicitly evaluate one potential underlying pathway, we included a set of models assessing health behavior-related factors, and additionally considered individual domains of social integration (e.g., religious participation and number of close friends) to ascertain whether some components were differentially salient for longevity. We also considered the role of depression, because prior research has suggested that greater social integration is associated with less depression, although the direction of causality is unclear (Berkman, Glass, Brissette, & Seeman, 2000). While it is possible that depression affects both social integration and lifespan, thus confounding our association of interest, we think it is more likely that depression is a consequence of social integration and thus a mediator. However, as we do not have the appropriate data to fully test the directionality of these effects, we considered depression as a potential confounder in a sensitivity analysis.

Methods:

Study Population:

Data are from the ongoing Nurses’ Health Study (NHS) cohort, which began in 1976 with 121,700 30 to 55 year-old female registered nurses. Since 1976, NHS participants have returned biennial questionnaires collecting data on health, nutrition, and lifestyle, as well as a variety of social and psychological factors. Seventy percent of invited participants responded to the initial questionnaire, and follow-up throughout the study has exceeded 90% (Colditz, 1994). Additional details about the sample, protocol, and follow-up have been described elsewhere.
(Colditz, 1994). The sample for our primary analysis included women enrolled in the first NHS cohort who completed the 1992 measure of social integration and have been followed through 2012. Participants were excluded from analyses if they were missing data on social integration or demographic covariates, reducing the sample size from 103,601 to 73,276 women. For secondary analyses assessing the likelihood of survival to the age of 85, the sample was further restricted to participants born before 1928, for whom it was possible to reach the age of 85 during the study period (n=17,309).

Measures:

Social integration. Social integration, a construct that captures the number, type, and frequency of social contacts, was assessed with the Berkman-Syme Social Network Index (SNI) (Berkman & Krishna, 2014; Berkman & Syme, 1979), administered via questionnaire in 1992. The SNI assesses quantity and type of social relationships across four domains: marriage, contacts with close friends and relatives, religious membership, and informal and formal group associations (Berkman & Syme, 1979). The measure has shown good test-retest reliability and acceptable construct validity, and has predicted breast cancer survival and mental functioning in samples of women from the NHS (Achat et al., 1998; Berkman & Krishna, 2014; Kroenke, Kubzansky, Schernhammer, Holmes, & Kawachi, 2006). Following prior work with this measure in the NHS (Chang et al., 2017), each of the four domains of social integration was scored from 0 (least integrated) to 3 (most integrated) (Table 4.1). These domain scores were summed to create a continuous SNI score ranging from 0 (least integrated) to 12 (most integrated). The continuous SNI score was considered missing if scores for any of the four domains were unavailable. This score was then divided into quartiles to allow for examination of discontinuous or threshold effects. Thus, participants were classified according to four levels of social
integration: least integrated (reference), moderately integrated, well integrated, and most integrated (Kawachi et al., 1996; Kroenke et al., 2006). Because effects are hypothesized to be cumulative and stable, the social integration score was not updated in longitudinal analyses, but the construct was relatively stable ($r=.71$ between assessments separated by eight years).
<table>
<thead>
<tr>
<th>Item</th>
<th>Score of 3 if:</th>
<th>Score of 2 if:</th>
<th>Score of 1 if:</th>
<th>Score of 0 if:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marital status</td>
<td>Married, living with a partner</td>
<td>N/A</td>
<td>N/A</td>
<td>Widowed, separated, divorced, or single</td>
</tr>
<tr>
<td>Religious service attendance</td>
<td>≥ once/week</td>
<td>1-3 times/month</td>
<td><once/month</td>
<td>Never</td>
</tr>
<tr>
<td>Number of close friends</td>
<td>6+</td>
<td>3-5</td>
<td>1-2</td>
<td>None</td>
</tr>
<tr>
<td>Group participation</td>
<td>6+ Hours/week</td>
<td>3-5 Hours/week</td>
<td>1-2 Hours/week</td>
<td>None</td>
</tr>
</tbody>
</table>

N/A: not available
Lifespan. Lifespan was operationalized as changes in predicted lifespan. We also considered exceptional longevity, which was defined as survival to the age of 85. Deaths are reported by participants’ families and by postal authorities. The names of non-respondents are searched within the National Death Index, which has compiled data from state death registries since 1979 (Kreger, 1979). A test of the sensitivity of death ascertainment from the National Death Index found that the method correctly identified 97% of known deaths among a sample of NHS participants for whom death certificates were available (Stampfer et al., 1984). Date of death is ascertained from death records. In the current study, deaths were identified through the end of 2012. To address potential concerns about reverse causation (i.e., that poor health may lead to worse rating of social integration), only deaths occurring more than two years after the baseline assessment were considered.

Covariates. Demographic variables including age (continuous), education level (registered nurse/associate degree, bachelor degree, or master’s/doctoral degree), and husband’s education level (less than high school, some high school, high school graduate, college graduate, or graduate degree) were considered as potential confounders. These variables were queried on the 1992 questionnaire. Analyses also considered self-reported history of major chronic diseases, including high cholesterol, high blood pressure, diabetes, cancer, stroke, and myocardial infarction (MI). These variables were assessed at study baseline in 1992 and were included in analyses individually as dichotomous variables (yes vs. no). Depressive symptoms were assessed in 1992 via the five-item Mental Health Inventory (MHI-5), a subscale of the 36-Item Short Form Survey from the RAND Medical Outcomes Study (Ware & Sherbourne, 1992). Scores on the measure ranged from 0 (most depressed) to 100 (least depressed), and participants were
classified as having depressive symptoms (yes vs. no) if their score was less than 60 (Rumpf, Meyer, Hapke, & John, 2001).

Health behavior-related variables, such as smoking history, physical activity, alcohol consumption, diet quality, and body mass index (BMI) were considered as covariates that might either confound or potentially lie on the pathway between social integration and longevity. Self-reported smoking history (current vs. former/never) was collected on the 1992 questionnaire. Physical activity was also queried on the 1992 questionnaire, and was modeled as a dichotomous variable indicating whether the participant met recommended levels of physical activity, i.e., reported ≥150 minutes of moderate-to-vigorous physical activity per week. Alcohol consumption and diet quality were assessed via a food frequency questionnaire (Hu et al., 1997) administered in 1994. Alcohol was modeled as a dichotomous variable indicating whether participants met recommendations for no more than one 14-gram alcoholic drink per day (US Department of Health and Human Services & US Department of Agriculture, 2010). Diet quality was operationalized as a continuous variable using the Alternative Health Eating Index (AHEI), which assigns a dietary score ranging from 0 (lowest quality) to 110 (highest quality) based on high intake of fruits, vegetables, nuts, soy, and cereal fiber, and low consumption of red meat, saturated fat, and trans fat (McCullough et al., 2002). Body mass index (BMI) was calculated using participants’ self-reported height (1976 questionnaire) and weight (1992 questionnaire). Self-reported weight has been shown to be highly correlated (r = 0.97) with weight measured by study staff among a sample of women from the NHS cohort (Rimm et al., 1990).

Statistical Analysis:

Statistical analyses were conducted using SAS, v9.4 (SAS Institute, Cary NC). We first examined the association between categories of social integration and each covariate, adjusting
for age. A set of four accelerated failure time (AFT) models were used in primary analyses to estimate the proportion by which participants’ lifespans changed in association with level of social integration. These models provide the advantage of easily interpretable results (i.e., percent change in lifespan), while incorporating longitudinal data and control for multiple covariates. A minimally-adjusted model included potential demographic confounders (age, husband’s education, and participant’s education). A second model, the core model, further adjusted for baseline health status variables (high cholesterol, high blood pressure, and history of MI, stroke, diabetes, and cancer). A third model included demographic confounders and health behavior-related factors (i.e., smoking history, physical activity, alcohol consumption, diet quality, and BMI) to assess whether behavior accounted for any of the observed association between SI and longevity. A fourth model adjusted for all covariates simultaneously. Sample size for the third and fourth models was slightly reduced because of incomplete data for health behavior variables; participants who were missing data on any health-behavior related variable were excluded (n=2,086). We applied the transformation $100(e^\beta - 1)$ to the regression coefficient for our primary exposure, social integration, to interpret the findings as the percent change in the expected survival time comparing each social integration category to the reference (least integrated). A positive coefficient suggests that categories representing greater levels of social integration are associated with greater longevity.

We conducted two sensitivity analyses. First, we examined whether any of the four domains of social integration (i.e. marriage, close friends, group membership, and religious involvement) were differentially predictive of longevity. In this analysis, we evaluated separate models, considering each domain as an independent predictor in the core AFT model described above. A second sensitivity analysis considered the role of depression by evaluating changes in
the effect estimates for social integration when including depressive symptoms in the core model controlling for demographic and health status covariates.

We also conducted analyses using logistic regression to assess the likelihood of survival to the age of 85, using the same modeling strategy described for AFT analyses. Similar sensitivity analyses were also conducted to explore the roles of individual domains of social integration and to assess depressive symptoms as a potential confounder.

Results:

The age-adjusted distributions of covariates in 1992 are presented by level of social integration for the primary analytic sample (i.e., the sample for AFT analyses) in Table 4.2. Twenty-five percent of this sample (n=18,446) died within the study period. Participants classified as “most integrated” (highest category of social integration) had continuous SNI scores that ranged from 10-12, and the mean SNI score in the sample was 7.6. The mean participant age in 1992 was 58 years. Participants classified as having high levels of social integration reported husbands having higher levels of education, were less likely to be depressed, had better health behavior profiles (e.g., were less likely to have smoked, and were more likely to be active), and were less likely to have high blood pressure or diabetes. At the study baseline in 1992, 82% of participants were married, 40% reported having six or more close friends, 54% reported attending religious services once a week or more, and 11% reported participating in non-religious groups for six or more hours per week.
Table 4.2 Age-adjusted covariates by quartiles of social integration among women in the Nurses’ Health Study in 1992. Values are either mean (SD) or percentages. N= 73,276

<table>
<thead>
<tr>
<th>Quartile of Social Integration</th>
<th>Least Integrated (n=15,061)</th>
<th>Moderately Integrated (n=17,881)</th>
<th>Well Integrated (n=22,965)</th>
<th>Most Integrated (n=17,369)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in 1992*</td>
<td>58.2 (7.1)</td>
<td>58.5 (7.2)</td>
<td>58.7 (7.1)</td>
<td>59.8 (7.0)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- RN or BA %</td>
<td>90</td>
<td>89</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td>- MA or doctoral, %</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Husband’s education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- < High school degree, %</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>- High school degree, %</td>
<td>30</td>
<td>34</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td>- > High school degree, %</td>
<td>34</td>
<td>45</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>- Missing, %</td>
<td>29</td>
<td>15</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Health conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressive symptoms, %</td>
<td>22</td>
<td>17</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>High cholesterol, %</td>
<td>45</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>High blood pressure, %</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cardiovascular disease, %</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Health behaviors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer, %</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Ever smoker, %</td>
<td>66</td>
<td>60</td>
<td>53</td>
<td>46</td>
</tr>
<tr>
<td>Physically active, %</td>
<td>49</td>
<td>55</td>
<td>56</td>
<td>62</td>
</tr>
<tr>
<td>Low-moderate alcohol, %</td>
<td>88</td>
<td>89</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>BMI</td>
<td>26.10 (5.67)</td>
<td>25.96 (5.34)</td>
<td>25.93 (5.10)</td>
<td>25.89 (5.06)</td>
</tr>
<tr>
<td>Alternative healthy eating index</td>
<td>50.57(14.83)</td>
<td>51.48(14.00)</td>
<td>51.47(13.72)</td>
<td>52.35(13.45)</td>
</tr>
</tbody>
</table>

Values are standardized to the age distribution of the study population.

* Value is not age adjusted
Accelerated failure time analyses demonstrated a graded association between higher levels of social integration and longer lifespan (p-value for trend <0.01 in all models) (Table 4.3). In models adjusted for demographic variables and health status, compared to women with the lowest levels of social integration, women who were well integrated and women who were the most socially integrated had 11.9% (95% CI: 9.9, 13.9) and 18.0% (95% CI: 15.8, 20.3) longer lifespan, respectively. These associations declined slightly to 8.4% (95% CI: 6.5, 10.4) and 12.2% (95% CI: 10.0, 14.4) when health behaviors were added to the model, but remained statistically significant. In a fully-adjusted model assessing SNI score as a continuous variable, each one-unit increase in social integration was associated with a 1.7% (95% CI: 1.5, 2.0) increase in lifespan.
Table 4.3 Percent change in lifespan associated with social integration, Nurses' Health Study, 1992-2012. N= 73,276

<table>
<thead>
<tr>
<th>Social Integration Score Quartile</th>
<th>Least Integrated</th>
<th>Moderately Integrated</th>
<th>Well Integrated</th>
<th>Most Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>95% CI</td>
<td>%</td>
<td>95% CI</td>
</tr>
<tr>
<td>Model 1: Demographics</td>
<td>1.00 Referent</td>
<td>9.21, 11.32</td>
<td>13.5</td>
<td>11.44, 15.60</td>
</tr>
<tr>
<td>Model 2: Demographics and health conditions</td>
<td>1.00 Referent</td>
<td>8.13, 10.19</td>
<td>11.90</td>
<td>9.89, 13.94</td>
</tr>
<tr>
<td>Model 3: Demographics and health behaviors</td>
<td>1.00 Referent</td>
<td>6.91, 8.97</td>
<td>9.58</td>
<td>7.58, 11.63</td>
</tr>
<tr>
<td>Model 4: All variables*</td>
<td>1.00 Referent</td>
<td>6.14, 8.17</td>
<td>8.42</td>
<td>6.46, 10.41</td>
</tr>
</tbody>
</table>

Model 1: age, education, and husband's education
Model 2: age, education, husband's education, high cholesterol, high blood pressure, diabetes, hx of cancer, hx of stroke, and hx of MI
Model 3: age, education, husband's education, smoking hx, physical activity, alcohol, BMI, and diet index
Model 4: age, education, husband's education, high cholesterol, high blood pressure, diabetes, hx of cancer, hx of stroke, hx of MI, smoking hx, physical activity, alcohol, BMI, and diet index

* Sample size for these models was 71,190 because of missing data for health behaviors.
In AFT models assessing the domains of social integration separately, three of the four domains were associated with increased longevity in models controlling for demographic and health status variables (Table S4.1). Participants with the highest versus lowest level of group participation had a lifespan 7.4% longer (95% CI: 5.2, 9.7). Participants with the highest versus lowest level of religious attendance had a lifespan 11.3% longer (95% CI: 9.6, 13.1). Additionally, being married as of 1992 was associated with a 10.3% increase in lifespan compared to being unmarried (95% CI: 8.6, 12.0). Number of close friends was not associated with changes in longevity. In a sensitivity analysis assessing depressive symptoms as a potential confounder, findings were materially unchanged; for example, the effect estimate comparing the most to the least socially integrated participants declined slightly to 16.5% and remained statistically significant (95% CI: 14.3, 18.8).

Of the women who were included in analyses of exceptional longevity, 11,347 (66%) survived to the age of 85. Similar to findings in AFT analyses, there was a graded association between higher levels of social integration and greater likelihood of exceptional longevity (p-value for trend <0.01 in all models) (Table 4.4). For example, in the core model, compared to women with the lowest levels of social integration, the odds of achieving exceptional longevity for participants who were well integrated and who were the most integrated were higher with odds ratios (ORs) 1.5 (95% CI: 1.3, 1.6) and 1.7 (95% CI: 1.6, 1.9), respectively. These associations declined slightly, but remained statistically significant, when health behaviors were included in the models. In a fully-adjusted model assessing SNI score as a continuous variable, the odds ratio for exceptional longevity associated with a one-unit increase in social integration was 1.05 (95% CI: 1.04, 1.07).
Table 4.4 Odds ratios for the association of social integration with survival past age of 85, Nurses' Health Study. N=17,309

<table>
<thead>
<tr>
<th>Social Integration Score Quartile</th>
<th>Least Integrated</th>
<th>Moderately Integrated</th>
<th>Well Integrated</th>
<th>Most Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR 95% CI</td>
</tr>
<tr>
<td>Model 1: Demographics</td>
<td>1.00 Referent</td>
<td>1.28 1.17, 1.41</td>
<td>1.52 1.38, 1.66</td>
<td>1.79 1.63, 1.97</td>
</tr>
<tr>
<td>Model 2: Demographics and health conditions</td>
<td>1.00 Referent</td>
<td>1.26 1.14, 1.39</td>
<td>1.46 1.33, 1.61</td>
<td>1.71 1.55, 1.88</td>
</tr>
<tr>
<td>Model 3: Demographics and health behaviors*</td>
<td>1.00 Referent</td>
<td>1.20 1.08, 1.32</td>
<td>1.34 1.22, 1.48</td>
<td>1.49 1.35, 1.64</td>
</tr>
<tr>
<td>Model 4: All variables*</td>
<td>1.00 Referent</td>
<td>1.18 1.06, 1.31</td>
<td>1.31 1.18, 1.44</td>
<td>1.44 1.30, 1.59</td>
</tr>
</tbody>
</table>

Model 1: age, education, and husband's education
Model 2: age, education, husband's education, high cholesterol, high blood pressure, diabetes, hx of cancer, hx of stroke, and hx of MI
Model 3: age, education, husband's education, smoking hx, physical activity, alcohol, BMI, and diet index
Model 4: age, education, husband's education, high cholesterol, high blood pressure, diabetes, hx of cancer, hx of stroke, hx of MI, smoking hx, physical activity, alcohol, BMI, and diet index

* Sample size for these models was 16,789 because of missing data for health behaviors.
Component-specific analyses of the SNI demonstrated that greater group participation, greater religious service attendance, and currently being married were associated with greater likelihood of exceptional longevity, although there was no statistically significant association for number of friends (Table S4.2). In an additional sensitivity analysis, effect estimates were materially unchanged (OR for most vs. least integrated in core model=1.7, 95% CI:1.6, 1.9) when depressive symptoms were included in the model as a potential confounder.

Discussion:

To our knowledge, this the largest study to assess the association between social integration and lifespan, and the first to consider the association between social integration and the achievement of exceptional longevity. Consistent with our hypothesis, higher levels of social integration were associated with an increased lifespan and greater likelihood of exceptional longevity. This association persisted in models adjusting for chronic health conditions, and was slightly attenuated when controlling for health behaviors. The attenuation of the effect estimate when health behaviors were added to the model is congruent with our hypothesis that health behavior-related factors serve as pathways by which social relationships affect human health although further work is needed temporality and rule out the possibility of confounding. Due to data availability, we could not definitively assess whether depression preceded or was consequent to social integration; however, sensitivity analyses controlling for depressive symptoms indicated only slight attenuation of the association between social integration and lifespan and effect estimates remained statistically significant.

In analyses where the domains of the SNI were assessed separately, religious participation, participation in social groups, and being married were associated with increased lifespan and likelihood of exceptional longevity, while number of close friends was not. This is...
consistent with previous research in the same cohort that demonstrated an overall association between higher social integration and lower risk of coronary heart disease but no association with the close friend subdomain (Chang et al., 2017). However, other research using a breast cancer patient population from this cohort demonstrated that number of close friends, but no other individual domains of social integration, was associated with greater likelihood of survival (Kroenke et al., 2006). This discrepancy points to the potential specificity of the health effects of social relationships- what is beneficial in one set of circumstances (i.e., a healthy population) may be less effective in another (i.e., a patient population)- and lends support to the idea that the health effects of social integration may be context dependent, rather than universal. At a minimum, findings in healthy versus patient populations may not be interchangeable.

There are a variety of mechanisms that might explain the association between social integration and improved health outcomes. Strong social support and other characteristics of social relationships are associated with increased performance of healthy behaviors, including physical activity (McNeill, Kreuter, & Subramanian, 2006), successful management of chronic illnesses (Gallant, 2003; Tay, Tan, Diener, & Gonzalez, 2013), and smoking cessation (Wagner, Burg, & Sirois, 2004). Social relationships may increase likelihood of experiencing positive psychological states that promote the performance of health-related behaviors. They may also improve health independently of health behaviors by enhancing positive affect and feelings of belonging and self-worth, which may have direct beneficial effects on physiology through neuroendocrine and immune pathways (Cohen, Gottlieb, & Underwood, 2000). In both cross-sectional and longitudinal observational studies, greater social integration and other positive characteristics of social relationships have been linked to improved biomarkers of metabolic
function (e.g., cholesterol and blood pressure) (Yang et al., 2016; Yang, Li, & Ji, 2013) and to reduced systemic inflammation (Penwell & Larkin, 2010; Yang et al., 2016).

Several limitations of the present study are important to note. Findings may not be generalizable, as the NHS is comprised of predominantly white women with a common profession. It is possible that some characteristics shared among this cohort change the observed association between social integration and exceptional longevity, such that the same relationship would not hold in a more nationally representative sample. An additional limitation of this study, as with all observational research, is the potential for unmeasured confounding. However, our analyses controlled for a wide range of demographic and health status variables that may serve as confounders, as well as for variables that are more likely to be mediators, such as depressive symptoms. The relationship between social integration and exceptional longevity remained robust and statistically significant when controlling for all these variables, mitigating the possibility of a spurious relationship.

This study also has several strengths, chief among them its well-characterized cohort and duration of follow-up. By following a large number of women over decades, we were able to assess social integration at an early date, and prospectively observe participants’ lifespans over twenty years of follow-up. This prospective follow-up enabled the assessment of exceptional longevity, and provided reasonable power to detect an effect of social integration. Prospective follow-up also reduces concerns about the potential for reverse causation. Another important strength of the study is the rich characterization of the cohort, permitting control for a wide range of potential confounders.

As longer lifespans become more achievable through improved disease prevention and medical technology, it is increasingly important to work towards a better understanding of
psychosocial assets that can help promote longer and healthier lives. A greater appreciation of these assets may be able to inform our thinking about the resources or reserves that are necessary to help people successfully age with better health. Social integration, as demonstrated in these analyses and others, is one such health asset that has a strong and consistent association with longevity. Furthermore, although many efforts at intervention have fallen short, there is good evidence that social integration is modifiable (Cohen & Janicki-Deverts, 2009). If we can find effective ways to intervene on social integration we may be able to develop low-cost and targeted interventions to help individuals achieve longer, healthier, and happier lives.
References

Supplemental Materials

Table S4.1 Percent change in lifespan associated with components of social integration, Nurses' Health Study, 1992-2012. N = 73,276

Core Model*

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group participation (ref=0 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 hours</td>
<td>6.24</td>
<td>4.57, 7.94</td>
</tr>
<tr>
<td>3-5 hours</td>
<td>8.45</td>
<td>6.49, 10.44</td>
</tr>
<tr>
<td>6+ hours</td>
<td>7.44</td>
<td>5.23, 9.70</td>
</tr>
<tr>
<td>Religious attendance (ref= almost never)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><once/month</td>
<td>1.83</td>
<td>-0.50, 4.21</td>
</tr>
<tr>
<td>1-3x/month</td>
<td>9.45</td>
<td>6.85, 12.11</td>
</tr>
<tr>
<td>>=once/week</td>
<td>11.34</td>
<td>9.60, 13.09</td>
</tr>
<tr>
<td>No. of friends (ref= 0 friends)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 friends</td>
<td>2.00</td>
<td>-2.66, 6.76</td>
</tr>
<tr>
<td>3-5 friends</td>
<td>4.29</td>
<td>-0.02, 8.97</td>
</tr>
<tr>
<td>6+ friends</td>
<td>5.38</td>
<td>0.85, 10.09</td>
</tr>
<tr>
<td>Marital status (ref=unmarried)</td>
<td>10.29</td>
<td>8.58, 12.04</td>
</tr>
</tbody>
</table>

*Model includes: age, education, husband's education, high cholesterol, high blood pressure, diabetes, hx of cancer, hx of stroke, and hx of MI
Table S4.2 Odds ratios for the association of social integration score components with survival past age of 85, Nurses' Health Study. N= 17,309

Core Model*

<table>
<thead>
<tr>
<th>Component</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group participation (ref=0 hours)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 hours</td>
<td>1.24</td>
<td>1.14, 1.35</td>
</tr>
<tr>
<td>3-5 hours</td>
<td>1.34</td>
<td>1.22, 1.46</td>
</tr>
<tr>
<td>6+ hours</td>
<td>1.30</td>
<td>1.18, 1.43</td>
</tr>
<tr>
<td>Religious attendance (ref= almost never)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><once/month</td>
<td>1.03</td>
<td>0.91, 1.16</td>
</tr>
<tr>
<td>1-3x/month</td>
<td>1.32</td>
<td>1.16, 1.50</td>
</tr>
<tr>
<td>>=once/week</td>
<td>1.37</td>
<td>1.26, 1.48</td>
</tr>
<tr>
<td>No. of friends (ref= 0 friends)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 friends</td>
<td>0.93</td>
<td>0.73, 1.19</td>
</tr>
<tr>
<td>3-5 friends</td>
<td>1.00</td>
<td>0.79, 1.23</td>
</tr>
<tr>
<td>6+ friends</td>
<td>1.06</td>
<td>0.84, 1.34</td>
</tr>
<tr>
<td>Marital status (ref=unmarried)</td>
<td>1.32</td>
<td>1.23, 1.42</td>
</tr>
</tbody>
</table>

*Model includes: age, education, husband's education, high cholesterol, high blood pressure, diabetes, hx of cancer, hx of stroke, and hx of MI