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ABSTRACT

Algaenan, an aliphatic biopolymer found in various microalgae, has been implicated as the 

source of a sizable proportion of the aliphatic refractory organic matter in sedimentary rocks. 

Because of its recalcitrant nature, algaenan is thought to be preserved selectively in the formation 

of kerogen and microfossils.  The taxonomic distribution of algaenan in living organisms has not 

been studied in detail or in a phylogenetic context. Here, we evaluate the distribution and phylo-

genetic relationships of algaenan-producing organisms from a broad, eukaryote-wide perspective 

down to the level of genus and species.  We focus on the kingdom Plantae, as most described 

algaenan producers belong to this superkingdom. The phylogenetic distribution of algaenan pro-

ducers within the Plantae is actually quite limited and a detailed phylogenetic analysis of the two 

classes that include all green algal algaenan producers suggests that there is no finer-grained pat-

tern of phylogenetic distribution to the production of this biopolymer.  Our results suggest that 

the algaenan biopolymer is not widespread ecologically or phylogenetically, is not found abun-

dantly in marine organisms, and likely represents a functional description of molecular class, ra-
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ther than a biomarker for green algae.  This adds to a growing body of literature that questions 

the selective preservation hypothesis for insoluble organic matter and calls for a more detailed 

chemical and structural analysis of algaenan.

1. Introduction

1.1. Algaenan as a geomacromolecule and a biopolymer

Algaenan is a non-hydrolyzable, insoluble biopolymer (Tegelaar et al., 1989) that has 

been isolated from a variety of unicellular algae and is recognized as an important component in 

kerogen, the largest organic carbon sink on the planet (Berner, 1989; Hedges, 1995).  Despite the 

importance of kerogen in the organic carbon cycle, its synthesis incompletely understood.  The 

discovery of an algaenan-like signature in kerogens associated with algal microfossils (Derenne

et al., 1994; Derenne et al., 1992; Goth et al., 1988) led to the hypothesis that the preferential 

preservation of algaenan and other recalcitrant biopolymers plays a principal role in kerogen 

formation (Derenne et al., 1991; Gelin et al., 1996; Tegelaar et al., 1989). 

Recently, a number of taphonomic studies have begun to question the selective 

preservation hypothesis.   Taphonomic research on arthropod and leaf cuticles suggests that 

diagenesis creates an aliphatic signature in structures whose original composition was not 

aliphatic (Briggs et al., 1995; de Leeuw, 2007; Gupta et al., 2006a).  Another taphonomic 

experiment showed that soluble hydrocarbons in vegetable oil can generate an aliphatic signature 

like that of kerogens or biopolymers when exposed to conditions encountered during diagenesis 

(Versteegh et al., 2004).  Additionally, it has been shown that some kerogens with an aliphatic 

signature were predominantly sourced by organisms that do not produce aliphatic biopolymers, 

implying the aliphatic material formed during diagenesis and should be considered a geopolymer
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(Kuypers et al., 2002).  Together, these results suggest that the formation of an aliphatic 

signature in kerogens and fossils is more complex than the simple selective preservation of 

specific biopolymers, as concluded earlier (de Leeuw, 2007; Gupta et al., 2007b) and references 

cited herein).  The strongest evidence that biologically produced aliphatic biopolymer could be a

source of aliphatic signatures in kerogens and microfossils is the observed presence of an 

aliphatic biopolymer in certain microalgae.  

Although algaenan is indisputably an important chemical constituent of some unicellular 

photosynthetic organisms, current understanding of both its chemical nature and biological 

function is filled with ambiguities and uncertainties.  In large part, this reflects difficulties 

encountered in the isolation, purification and characterization of this complex material.  The 

structure of macromolecular compounds such as algaenan cannot be fully elucidated using 

conventional analytical methods. Analysis is has traditionally been restricted to techniques that 

yield information about the overall chemical nature of the biopolymer, such as Fourier transform 

infrared spectrometry (FTIR) or nuclear magnetic resonance (13C NMR), but do not provide an 

exact molecular composition.  Pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) 

has been widely used to evaluate the molecular entities comprising algaenan, but there are many 

aspects of the overall structure that this method cannot address, though some progress has been 

made using thermal decomposition models (Salmon et al., 2009; Salmon et al., 2008).  Metzger 

et al. (2007) combined pulse-field gradient NMR analysis and classical chemistry to infer that 

algaenan from Botryococcus braunii strain B is formed by intermolecular condensation of 

aliphatic polyunsaturated dialdehydes with triterpene diol (B-race) , or tetraterpene diol (L-race) 

moieties (Metzger et al., 2007).   The polyaldehydes, themselves, originate from polymerization 

of diunsaturated ���-dialdehydes via an aldolization-dehydration mechanism (Metzger et al., 
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2008).  Some structural information has also come from chemical degradation using RuO4

(Blokker et al., 2006; Blokker et al., 1998; Schouten et al., 1998), trimethyammonium hydroxide 

(TMAH) and TMAH thermochemolysis (Allard and Templier, 2000; Blokker et al., 1998) and 

HI (Blokker et al., 1998).  At present, however, the unifying character for the biopolymers 

classified as algaenan remains their aliphatic nature, long carbon chains and resistance to 

chemical and biological attack.

Biological investigations of the physiology, function and phylogenetic distribution of 

algaenan have also been limited. Algaenan has been isolated from the cell walls of 

chlorophycean algae from the genera Scenedesmus, Tetraedron, Chlorella (Allard et al., 2002; 

Goth et al., 1988),  Botryococcus (Templier et al., 1992; Metzger et al., 2008), and 

Haematococcus (Montsant et al., 2001).  Many of these genera have cell walls with a tri-laminar 

structure (TLS), though not all TLS-containing algae produce algaenan and not all algaenan-

producing taxa have TLS (Allard et al., 2002).  Beyond this ultrastructural feature, no other 

morphological traits seem to correlate with algaenan production or unite algaenan producers.  

Algaenan has also been identified in the zyogspores of Chlamydomonas monica (Blokker et al., 

1999),  the aplanospores of Dunaniella sp., and the akinetes of Haematococcus pluvialis

(Blokker, 2000), but no other resistant algal cysts or reproductive structures have been shown to 

be aliphatic in nature. Connections have also been drawn between putative algal fossils and 

algaenan, but the cell walls of modern analogs for the fossils in question -- the phycomata of 

Halosphaera, do not contain algaenan, calling such a correlation into question (Kodner, 2007).  

1.2. Distribution of algaenan-producing organisms

Reviews have compiled the literature on occurrences of algaenan and other non-

hydrolyzable insoluble biopolymers (de Leeuw et al., 2006; Versteegh and Blokker, 2004); 
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however, there has not been a broad scale phylogenetic assessment of algaenan-producing 

organisms.   To date, algaenans have been reported from green algae, eustigmatophytes, and a 

single dinoflagellate (Versteegh and Blokker, 2004) -- groups that doubtfully have a common 

ancestor that itself synthesized algaenan.  

To understand further how algaenan is distributed among eukaryotes, we have focused on 

the group in which the biopolymer is most abundant and diverse: the green algae.  Green algae 

are part of a eukaryotic kingdom called the Plantae (Cavalier-Smith, 1998) or the Archeoplastida 

(Adl et al., 2005) that is strongly supported in most phylogenies. This clade originated with the 

primary endosymbiotic event between a protist and a cyanobacterium that introduced 

photosynthesis to the Eukarya (Keeling et al., 2005), and displays impressive diversity in cellular 

structure, physiology and ecology.  Other groups of algaenan produces, eustigmatophytes and 

dinoflagellates have a much different evolutionary history.  To investigate the distribution and 

evolutionary history of algaenan production in the Archeoplastida, we assayed algaenan 

production in representatives of the three major subgroups of this clade: the green, red and 

glaucocystophyte algae. 

2. Methods

2.1. Biomass

Algae (Table 1) were grown in batch cultures in large flasks (2 or 4 L Erlenmeyer flasks or 2 L 

Fernbach flasks) under air lift conditions under 24 h of light.  All cultures were grown under the 

same temperature and light regime and on the Bolds Basal Media (BBM), all being freshwater or 

terrestrial strains. Cultures were harvested at the end of log phase. Acrochaetium (a macroscopic 

alga), Coleochaete succata, Compsopogon sp?, Chlamydomonas reinhardtii and Chlorella 
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vulgaris were supplied by Carolina Biological Supply. Cyanophora paradoxa (LB 555), 

Glaucocystis nostocinearum (64) and Klebsormidium flaccum (LB 1958) were supplied by the 

University of Texas Culture Collection (UTEX).  Scenedesmus bajacalifornica, Cylindrocystis 

brebesonii (LG2 VF30), Bracteococcus sp? (BC2-1), Chlorosarcinopsis gelatinosa (SEV2-VF1) 

were generously supplied by L. Lewis and Z. Cardon from the Biotic Crusts project. 

Chlorococcidiopsis sp? (CCMEE 171), Chlorosarcinopsis sp? (CCMEE 174), and Stichiococcus 

sp?(170) were supplied by the  Culture Collection of Microbes in Extreme Environments. 

Pycnococcus sp? (CCMP 1998), Dixonella grise (CCMP1916), and Cyanophora paradoxa

(CCMP329) were supplied by the Provasoli-Guillard Culture Collection of Marine 

Phytoplantkon (CCMP).

2.2. Algaenan extraction

Extraction was preformed as described by Allard et al. (1998) and was optimized to be as artifact 

free as possible.  Lyophilized biomass was extracted once with hexane, CHCl3, and 

CHCl3:CH3OH (1:1).  Lipid free biomass was then hydrolyzed (2 x) with 2N trifluoroacetic acid 

(TFAA) at 100 oC for 3 h, followed by hydrolysis in 4N and 6N TFAA at 100ºC for 18 h.  After 

each hydrolysis, the residual biomass was filtered from the supernatant and washed with hot 

water until there was no evidence of sugar.  Sugar was assayed using a colorimetric test for 

polysaccharides.  Phenol (0.1 ml, 80%) and conc. H2SO4 (0.5 ml) were added to 0.2 ml of wash 

solution.  Sugars in solution were indicated by a yellow color.  The residual biomass was 

retained on glass filter paper and returned to a Teflon tube for the next hydrolysis step.  After the 

6N TFAA hydrolysis, polysaccharide-free residual biomass was saponified with 5% KOH in 

CH3OH under reflux for 1 h, followed by extensive washing with hot water to remove 
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polysaccharides liberated by saponification.  Residual biomass was again retained on filter paper 

and returned to a Teflon centrifuge tube for the final 6N HCl hydrolysis at 110 ºC for 24 h.

2.3. Algaenan analysis

If no biomass could be recovered at any point in the extraction procedure, we concluded that the 

organism did not produce algaenan.  In questionable cases, filter paper or residual biomass used 

in extractions was pyrolyzed using py-GC-MS with a CDS Chemical 5100 pyroprobe coupled to 

a Micromass Autospec Ultima mass spectrometer via a Hewlett Packard 6890 gas 

chromatograph.  GC was performed with a JandW Scientific DB-1MS column (60 m x 0.25 mm 

ID, 0.25 μm film thickness) using He as carrier gas. The oven was programmed from 50ºC (held 

1 min) to 300ºC (held 28 min) at 8ºC min-1. The source was operated at 250ºC in the electron 

ionization (EI) mode at 70 eV ionization energy. The Autospec scan rate was 0.80 s/decade over 

a range of m/z 50 to 700with an inter-scan a delay of 0.20 s. Various pyrolysis temperatures were 

tested (330, 400, 600, 700 oC) and optimized using the algaenan of B. braunii as a standard. 

2.4. Phyolgenetic analysis 

A gene tree of the 18S small subunit ribosomal RNA gene was made for all organisms tested for 

algaenan production in this study and in the literature. Strain specific 18S sequences for all 

species investigated for their algaenan production were obtained from GenBank (National Center 

for Biotechnology Information), if available, or were sequenced in this study. All algaenan and 

sequence references were verified in original literature and with culture collections databases.  

The cross-checking is important because green algae are often misidentified in culture 

collections when the identification is based on morphology alone, so a specific name does not 
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always identify a strain reliably -- this especially true of the genus “Chlorella.”  Algaenan 

production may also be strain- rather than species-specific, as demonstrated by the three races of 

Botryococcus braunii (Bertheas et al., 1999; Gelin et al., 1994; Metzger et al., 2007).  See Table 

1 for species used in phylogenetic analysis, their strain designation, and accession number.

DNA for phylogenetic analyses was extracted from pelleted cultures. Primers were 

designed using 18S alignments for green algae or were provided by L. Lewis (Shoup and Lewis, 

2003).   Primer sequences can be found in Table 2.  DNA was amplified with the polymerase 

chain reaction (PCR) and purified for direct sequencing. Alignments of sequences were made 

using Geneious (Biomatters, 2007) and Jalview (Clamp et al., 2004) and then hand edited with 

MacClade.  Phylogenetic analysis was conducted with maximum likelihood methods, using the 

PHYLIP sequence package (Felsenstein, 2005) as well as the PHYML online server (Guindon et 

al., 2005) using the HKY substitution model, 1 substitution rate category and a 

transition/transversion ratio of 2 or 4.  Varying the substitution model and transition/transversion 

ratio did not affect tree topology.

3. Results

3.1. Algaenan extraction

The distribution of algaenan among investigated organisms is summarized in Table 3.  No 

algaenan production was found outside the Chlorophyceae or Trebouxiophyceae;  in extraction 

of lipid-free biomass from members of the Streptophyta, Rhodophyta, Glaucystophyta and 

Ulvaphyceae, all biomass was lost at some hydrolysis step.  To verify that the biopolymer was

not artificially assumed absent as a result of loss of small quantities during extraction, lipid-free 

biomass was analyzed using py-GC-MS to determine if an aliphatic signature was underpinning 
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the total ion current (TIC) or not.  No biomass of the ‘algaenan-negative’ taxa displayed aliphatic 

compounds that might signal the presence of algaenan.  

To verify the extraction procedure, we used two controls: Botryococcus braunii (race L), 

which has a previously characterized algaenan, and an analysis of biomass after successive hy-

drolysis of Scenedesmus deserticolata biomass.  The extraction of Botryococcus algaenan was 

similar to that in previous race L algaenan analysis (Behar et al., 1995).  Analysis of successive 

extractions shows that the highly aliphatic nature of the algaenan becomes more pronounced 

with each hydrolysis as it liberates contaminants bound within the biopolymer matrix (see Fig. 

1). This experiment suggests that screening partially extracted biomass will identify molecules of 

a highly aliphatic nature even in complex matrices. Incomplete extraction may influence inter-

pretation of algaenan characteristics.  Algaenan isolated from four species of Scenedesmus, 

showed the common attribute of aliphatic nature; however, the maximum and dominant chain 

lengths were variable (Fig. 2). 

3.2. Phylogenetic analysis

Fig. 3 shows a consensus phylogenetic tree made from analysis of the 18S SSU RNA 

gene using maximum likelihood with 100 bootstraps. This phylogeny resolves the three families 

of the Chlorophyta and confirms that algaenan production is limited to the Chlorophyceae and 

the Trebouxiophyceae.  Analysis includes all algaenan-producing strains for which a sequence 

was available either from GenBank or our sequencing efforts.  Because so many non-algaenan 

producing algae were tested, we used taxonomically informative strains from the literature and 

chlorophytes used in this study. Though bootstrap support is low for some of the species level 

relationships, the topology is robust; it was recovered in 20+ analyses and is in agreement with 

published phylogenies (Handa et al., 2003; Huss et al., 1999; Senousy et al., 2004).
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4. Discussion

Because the algaenans found in distantly related clades doubtfully have a common 

evolutionary origin, “algaenan” becomes an operational term for aliphatic, non-hydrolyzable 

biopolymers that have similar chemical features.

4.1. Phylogenetic patterns of algaenan production in the green algae 

Previously, algaenan was found most commonly within the green algae; thus, the 

majority of species assayed here come from this division. Green algae are divided into two major 

groups, which are further subdivided into five classes. Known algaenan producers had been 

previously limited to two classes (the Chlorophyceae and Trebouxiophyceae) found within one 

major group, the Chlorophyta. Consistent with previous work, our survey did not find algaenan 

outside the Chlorophyceae or Trebouxiophyceae (Fig. 3B), even though we surveyed many taxa 

in the other major clade of green algae, the Streptophyta. The Streptophyta contains the class 

Charophyceae, a diverse group of freshwater and terrestrial algae that gave rise to the land 

plants,. No streptophytes have previously been investigated for the presence of algaenan in 

vegetative tissues. Some Charophyceae, including members of the genera Mougeotia, Spirogyra, 

and Zygnema have been shown to produce acetolysis-resistant spores, suggesting that they may 

contain biopolymer (Versteegh and Blokker, 2004).  The nature of this polymer is unknown and 

has not been tied to algaenan. Our sample set also includes a number of liverworts, the earliest 

diverging land plants (Qiu et al., 2007; Qiu et al., 2006), which have also been shown to produce 

a acetolysis-resistant biopolymer (Kodner and Graham, 2001; Kroken et al., 1996).  Once again, 

our extractions suggest that this polymer is not algaenan.
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Fig. 3 shows the phylogenetic distribution of algaenan within the Chlorophyceae and the 

Trebouxiophyceae.  The Scenedesmus clade provides an example of a strong, genus-level 

phylogenetic signal.  All strains of Scenedesmus tested prior to this study had been found to

produce algaenan, and at least four other algaenan-producing species of Scenedesmus algaenan 

are not represented in the tree because 18s SSU rRNA sequence or strain information was 

unavailable.   Included in the Scenedesmus clade are two species previously described as 

Chlorella. The classically applied genus Chlorella is well known to be polyphyletic (Qiu et al., 

2007), based on biochemical, morphological and phylogenetic studies, and many species 

nominally assigned to Chlorella should be reassigned to Scenedesmus based on phylogenetic 

studies (Huss et al., 1999).  Chlorella emersonii CCAP 211-2p and Chlorella marina CCAP 

211-27 fall within the Scenedesmus clade in this analysis and, in character with this phylogenetic 

placement, produce algaenan.  Another Chlorella species, Chlorella fusca, has been reinterpreted 

as a unicellular Scenedesmus species (Huss et al., 1999) and is also known to produce algaenan 

(Burczyk et al., 1999; Derenne et al., 1992; Versteegh and Blokker, 2004). Because we were 

unable to identify this exact strain of Chlorella fusca used for algaenan extraction in the Derenne 

et al. and Burczyk et al. studies, we did not include it in our phylogenetic analysis.  Likewise, 

Chlorella vacuolatus CCAP 211-8b was found to produce algaenan (Derenne et al., 1992) and 

has since been renamed Scenedesmus vacuolatus; it groups with all other Scenedesmus in Fig. 3. 

The closely related genera Pediastrum, Sorastrum and Tetraedron all produce algaenan 

and are, in turn, closely related to Scenedesmus.  Only one sequence of Pediastrum was available 

for the phylogenetic analysis, but four other species are known to produce algaenan.  All species 

of Pediastrum grouped together in our analyses. The prevalence of algaenan in this group of 
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genera suggests that more detailed investigation of algaenan production within these groups 

would be informative.

The phylogenetic relationships among algaenan producers in the Trebouxiophyceae are 

not as clearcut. Only two of seven strains of Chlorella within the Trebouxiophyceae are 

algaenan producers; however, the two algaenan producing strains do group with Nanochlorum 

eukaryotum, another algaenan producer.  Botryococcus braunii strains (races A, B, and L) also 

fall within this group and are known to produce abundant algaenan.  

To test the hypothesis that algaenan serves as a protective compound, reinforcing cell 

walls and zygospores (Blokker et al., 1999; Graham and Wilcox, 2000; Versteegh and Blokker, 

2004) and conferring resistance to environmental stress (Allard and Templier, 2000; Versteegh 

and Blokker, 2004), we targeted terrestrial, stress-tolerant algal strains as well as species that are 

closely related to land plants and known to be resistant to desiccation.  A number of the strains 

analyzed here come from extreme environments, such as hot and cold deserts, but there does not 

appear to be a strong relationship between tolerance of environmental extremes and algaenan 

production. Terrestrial algae are subjected to greater UV stress than aquatic taxa and must be 

highly desiccation resistant; such algae are known to have exceptionally thick cell walls, but not 

all produce algaenan.  Specifically, of the seven desert species tested, only Scenedesmus 

deserticola was found to produce the biopolymer. Likewise, algaenan appears to be absent from 

desiccation-tolerant streptophytes. Further analyses are desirable, as our sampling of marine 

chlorophytes and ulvaphytes was minimal, but to date, none of these taxa has been shown to 

produce algaenan.

Our current understanding suggests that algaenan-producers do not represent the majority 

of green algae, nor do they include the groups most likely to contribute large amounts of biomass 
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to large marine organic geochemical sinks.  There are numerous examples of correlation between 

green algae and freshwater kerogens, the Messel Shale and the Queensland oil shale for example, 

and we do not discount the possibility that green algae are a principal source of algaenan in these

kerogens (Goth et al., 1988; Boreham et al., 1994). That stated, the majority of Paleozoic 

kerogens come from marine deposits

The most abundant green algae in modern oceans are the Prasinophyceae. Prasinophytes 

are a paraphyletic basal plexus of green algae (Fawley et al., 2000), and all are unicellular and 

lack cell walls, with the exception of the reproductive phycoma stage of a few genera and resting 

spores.  Because algaenan is linked to the cell walls of algae, the prasinophytes were not 

considered likely candidates for its production. Nonetheless, we tested for the presence of 

algaenan in the phycomata of a Halosphaera sp. and did not find an aliphatic biopolymer 

signature (Kodner, 2007).  Because these phycomata are considered to be the precursors of 

organic walled microfossils such as Tasmanites, this suggests that the aliphatic signature in these 

fossils is not original.  In addition to prasinophytes, we also found no trace of aliphatic 

biopolymer in the common marine ulvaphyte Ulva enteromorpha.  Further surveys within the 

prasinophytes and marine Chlorophyceae will provide more definitive tests of the hypothesis that 

green algae constitute likely candidates for the source of algaenan in ancient marine rocks, but 

current data provide little support this idea.  In this regard, cyst-forming prasinophytes merit 

further attention.

4.2. Physiological insights from phylogenetic assessment of algaenan producers

Some of the observed phylogenetic pattern could be explained by physiological 

differences in cultured organisms. In a notable example, extractions of two different strains of 
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Chlorella sorokiniana gave different results. Our phylogeny confirms that they are the same 

species or sub-species; the low bootstrap support is a function of a short sequence for CCAP 

211-8k, and is not reflective of confidence in the branching pattern or branch lengths. Where 

sequences overlap, the strains are identical.  Strain UTEX 1230 produced algaenan when 

harvested during log growth (Zleibor et al., 1988) while CCAP 211-8k did not when harvested 

after 30 days.  The growth phase of the culture was not identified, although it was likely 

stationary phase  (Burczyk et al., 1999). Although two different extraction methods were used in 

the algaenan analysis, CCAP 211-8k was subjected to the milder extraction (acid hydrolysis in 6 

N HCl, but without a saponification step) and would be less likely to produce a negative result as 

an artifact of processing.  

In contrast, an example from Botryococcus braunii (race L), examined at different phases 

of growth, (day 5, day 9 and day 21 of culturing) produced similar algaenan throughout the 

growth cycle.  Similarly, the monomeric composition of algaenan from Tetraedron minimum was 

identical in two separate studies that cultured the same species on different growth media and in 

different laboratories (Blokker et al., 1998) and is very similar to Tetraedron minimum algaenan 

analyzed by Goth et al. (1988). Standardization of culturing conditions and extraction methods 

will be necessary in further surveys for algaenan production.  Experimentation with culture 

conditions may also uncover a well supported physiological role for algaenan.

Another important consideration that has not been addressed experimentally is the 

biosynthesis of this biopolymer and its potential metabolic costs.  Studies of the biosynthetic 

pathway to algaenan are very limited. Investigations of the intermediates in strains of 

Botryococcus braunii showed that the building blocks are long-chain alkyl moieties in the form 

of polyunsaturated ���-dialdehydes, which then condense to polyacetals. These undergo further 
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condensation-polymerization reactions with triterpene or tetraterpene diols (Metzger et al., 2008; 

Metzger et al., 2007). However, it is unknown whether the assembly of algaenan is an active or 

passive process. Determining patterns of its production across a diversity of organisms will be 

difficult and likely superficial until considerably more is known about its physiology and 

biosynthesis.

5. Conclusions

5.1. Algaenan as a geomacromolecule and biomarker for green algae

The identification of algaenan in the geologic record is based mostly on the link between the 

aliphatic nature of the preserved organic material and the aliphatic nature of some algal 

biopolymer (van Bergen, 2004).  Algaenan appears to have diverse and convergent biosynthetic 

sources, but within the green algae may be limited to a phylogenetically restricted group 

dominated by freshwater taxa. Considering analytical difficulties, the limited diagnostic features 

of algaenan, the known taphonomic origin of some aliphatic signatures, and limited distribution 

of algaenan production in modern organisms, algaenan should be interpreted with great caution 

as a geomacromolecule and a biomarker. It now seems clear that plant and animal fossils, which 

had living counterparts devoid of algaenan, can have chemical compositions with all the known 

attributes of an algaenan (Gupta et al., 2007a; Gupta et al., 2006a; Gupta et al., 2006b; Gupta et 

al., 2007c).

A number of freshwater kerogens show an aliphatic algaenan-like signature alongside 

morphological fossils of green algae known to produce algaenan (Boreham et al., 1994; de 

Leeuw et al., 2006; Derenne et al., 1994; Goth et al., 1988). As microanalytical techniques 

become more specific, the aliphatic compounds in kerogen may become more precisely linked to 
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specific microfossils (Blokker et al., 2006), but this may be limited to freshwater environments 

and would not explain aliphatic kerogen from marine environments.

The role of algaenan as a precursor of petroleum remains unclear. The Neoproterozoic 

radiation of algae, and especially chlorophytes, corresponds in time with the oldest known 

commercial petroleum deposits (Knoll et al., 2007). Given the findings presented here, and the 

relative rarity of algaenan production discovered so far, it remains unclear whether there is any 

specific relationship between the selective preservation of algaenan and the formation of oil-

prone kerogen, especially in the marine realm. Algaenan in Paleozoic marine kerogen could 

reflect biosynthesis by some as yet unrecognized marine algae, a greater representation in ancient 

oceans of algaenan-producing chlorophyte clades today limited to non-marine environments, or 

diagenetic formation of an algaenan-like geopolymer within marine sediments.  It also remains in 

doubt whether the evolution of selectively preserved biopolymers such as algaenan had any 

significant effect on long-term carbon burial and, hence, the geological trajectory of the carbon 

cycle.

5.2.The nature of algaenan as a biological compound

As discussed above, much remains to be learned about the distribution of algaenan, its 

putative physiological role and its biosynthesis.   It is especially important to determine whether 

or not that the biosynthesis is an enzyme-mediated process that can be traced via the DNA that 

codes for the proteins involved. Biosynthetic studies will also begin to uncover the physiological 

role of algaenan, when carried out in conjunction with further experimentation with culture con-

dition.  In general, a greater understanding of the biology of algaenan will enhance its role as a 

biomarker and its possible geologic relevance. 
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Figure Captions

Fig. 1. Total ion current (TIC) traces of successive hydrolysis steps in algaenan extraction of 
Scenedesmus deserticola SN2-1. TIC generated using pyrolysis gas chromatography-mass spec-
trometry (py-GC-MS).  This series represents sequential algaenan purification steps.  A-C show 
TIC, D-F show extracted m/z 83+85 chromatograms. A and D are residual biomass after 1 2N 
TFA hydrolysis, B and E after 6N HCL hydrolysis and C and F after saponification

Fig. 2.  TIC traces from the py-GC-MS analysis of Scenedesmus algaenan in this study.A. Scen-
desmus acuminatus UTEX 415  B. Scenedesmus platydiscus UTEX 2547   C. Scenedesmus acu-
tiformis UTEX 416 D. Scenedesmus obliqus UTEX 1450.  All algaenan samples from this group 
display a similar alkane/alkene distribution, although the dominant alkane/alkene of the doublet 
is variable,  the longest alkane/alkene chain length being C26.

Fig. 3. Phylogeny of green algae tested for presence of algaenan.  3A. Consensus maximum like-
lihood phylogeny of 18S SSU rDNA of Chlorophyta tested for algaenan.  Identical topologies 
recovered with PHYML and PHYLIP analysis with 100 boostrapped datasets.  Bootstrap values 
reported as PHYML/PHYLIP.  Missing number means bootstrap value below 50;  * indicates 
sequence generated in this study.  Taxa in red produce algaenan. 3B. Representation of the diver-
sity and abundance of taxa at the class level in the green algae.  White numbers are numbers of 
species within the class represented in algaebase (Guiry and Guiry, 2008), blue numbers are 
number of species tested for algaenan, red numbers are numbers of species that produce algae-
nan. *Data on species from some morphologically recognized classes were grouped together.  
Ulvaphyceae includes the Bryopsidophyceae and the Prasinophyceae include the Pedinophyceae 
and the Nephroselmidophyceae for the Figure.



Species definition Strain Accession # Isolation/culture media
Botryococcus braunii Ayame AJ581910.1. FW/FW
Botryococcus braunii Songkla Nakarin AJ581911.1. FW/FW
Botryococcus braunii Titicaca AJ581912.1. FW/FW
Botryococcus braunii CCAP 807/1 AJ581913.1. FW/FW
Botryococcus sudeticus UTEX 2629 AJ581914.1. FW/FW
Bracteococcus sp. BC2-1 AF516676.1. Desert crust/FW
Chlamydomonas reinhardtii CBS this study soil/FW
Chlorella ellipsoidea IAM C-87 D13324.1. FW/FW
Chlorella ellipsoidea UTEX 20 DQ644520.1 FW/FW
Chlorella emersonii CCAP 211/8p This study
Chlorella marina RK83 CCAP 211/27 This study Marine/SW
Chlorella minutissima CCAP 211-52 AF360745.1 FW/FW
Chlorella multissima RK88 UTEX 2341 This study Marine/FW
Chlorella' saccharophila CCAP 211-1a EF030570.1. FW/FW
Chlorella sorokiniana UTEX 1230 (relative of CCAP This study FW/FW
Chlorella sorokiniana CCAP211/8k (relative of UTEX This study FW/FW
Chlorella vulgaris CBS This study FW/FW
Chlorococcum sp? RK30 CCMEE 176 This study Cold desert rock/FW
Chlorosarcinopsis gelatinosa SEV2-VF1 AF516678.1. Desert crust/FW
Chlorosarcinopsis sp?(RK29) CCMEE 174 This study Cold desert endolith/FW
Coelastrum reticulatum SAG 8.81 AF388382.1 FW/FW
Dunaliella tertiolecta CCMP 364 DQ009772.1 Marine/SW
Enteromorpha intestinalis AJ000040.1. Marine/SW
Haematococcus pluvialis UTEX 2505 AF159369.1. FW/FW
Nanochlorum eucaryotum Mainz 1 X06425.1. Marine/SW
Pediastrum boryanum var. UTEX LB 470 AY663035.1. FW/FW
Scenedesmus acuminatus RK74 UTEX 415 This study FW/FW
Scenedesmus acutiformis RK75 UTEX 416 This study FW/FW
Scenedesmus bajacalifornicus LG2VF16 AF513372.1. Desert crust/FW
Scenedesmus communis UTEX 76 X73994.1. FW/FW
Scenedesmus deserticola BCP-SNI-2 AY510462.1. Desert crust/FW
Scenedesmus deserticola BCP-HAF2-VF10 AY510464.1. Desert crust/FW
Scenedesmus obliquus UTEX 1450 AJ249515.1. FW/FW
Scenedesmus pannicus RK 86 UTEX 77 This study FW/FW
Scenedesmus vacuolatus Sag 211-8b X56104.1. FW/FW
Sorastrum spinulosum strain UTEX LB 2452 (relative SAG AY663041.1. FW/FW
Stichococcus bacillaris SAG 397-1b AJ416107.1. Brackish/FW
Tetraedron minimum strain UTEX LB 1367 AY663042.1. FW/FW
Trentepohlia sp. UTEX 1227 AY052569.1. From lichen/FW

Table 1



Sequence Name Sequence Reference

18sFsequencing TCG TAG TTG GAT TTC GGG TGG GTT This study
18sRsequencing TAC CGG AAT CAA CCT GAC AAG GCA This study
B0_PS2_L_chloro TAA ACG ATG CCG ACT AGG GAT TGG This study
B0_PS2_R_chloro CCC AGA ACA TCT AAG GGC ATC ACA This study
18s70f TGA AAC TGC GAA TGG CTC This study
18s2420r TAG GAG CGA CGG GCG GTG TG This study
SSUi TGG TTG ATC CTG CCA GTA G Shoup and Lewis, 2003
284F GCG ATG TTT CAT TCA AAT TTC TG Lewis lab
373c GAT TCC GGA GAG GGA GCC TG Booton et al., 1998
C18G TGG CAC CAG ACT TAC CCT Shoup and Lewis, 2003
N18G AGG GCA AGT CTG GTG CCA G Shoup and Lewis, 2003
1057f GAT GAC TCC GCC AGC ACC TTA TG Lewis lab
1081r CTC ATA AGG TGC TGG CGG AGT Lewis lab
C18H CCT CCG TCA ATT CCT TTA GTT TCA GC Shoup and Lewis, 2003
1243R AGA GCT CTC AAT CTG TCA Shoup and Lewis, 2003
C18J TCT AAG GGC ATC ACA GAC CTG TTA TTGShoup and Lewis, 2003

Table 2



Taxonomic Group Strain/Collection Algaenan production

Glaucophytes
Cyanophora paradoxa UTEX + CCMP -
Glaucocystis nosticarium UTEX + CCMP -

Green Algae

Chlorophyceans
Botryococcus braunii  (L race) from P. Metzer yes
Bracteacoccus  sp. BC2-1 -
Chlamydomonas reinhardtii CBS -
Chlorococcoidiopsis sp.? RK30 CCMEE 171 -
Chlorophycean sp. SEV2-VF1 -
Scenedesmus acuminatus  RK74 UTEX 415 yes
Scenedesmus acutiformis RK75 UTEX 416 yes
Scenedesmus deserticola BCP-SNI-2 yes
Scenedesmus deserticola BCP-HAF2-VF10 yes
Scenedesmus obliquus UTEX 1450 yes
Scenedesmus  sp. LG2VF16 -
Scenedesmus platydiscus  RK72 UTEX2457 yes

Trebouxiophyceans
Chlorosarcinopsis sp.?(RK29) CCMEE 174 -
Chlorella vulgaris CBS -

Ulvaphyceans
Enteromorpha intestinalis CBS -

Charophyceans
Coleochaete sucatta CBS -
Cylindrocystis brebsonii LG2 VF30 -
Zygnema  sp.? CBS -

Red Algae
Acrochaetium CBS -

Land Plants (Liverworts)
Conocephelum New Hampshire/Kentucky -
Monoclea fosterii collected in NX -
Marcantia polymorpha Kentucky -
Porella CBS -
Riccia CBS -

Table 3
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