DIGITAL ACCESS 10 —
SCHOLARSHIP s HARVARD e for Scnolry Communicaton

DASH.HARVARD.EDU

Computational Harmonic Analysis and Prediction in
the Bach Chorales

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811426

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811426
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Computational%20Harmonic%20Analysis%20and%20Prediction%20in%20the%20Bach%20Chorales&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=859746e7957e133bc952071713a92a50&department
https://dash.harvard.edu/pages/accessibility

ii

Acknowledgements

I would like to acknowledge and thank my advisors, Professors Alexander
Rush and Christopher Hasty, for their invaluable guidance, patience and support

throughout the research and writing process.

To my friends, your support has always meant more to me than you might

know. I'look forward to our many future adventures.

And to my family, I am forever in gratitude for your love and encouragement.

Thank you for lighting a fire under my feet and always encouraging me forward.

"Works of art make rules; rules do not make works of art.”

Claude Debussy

Contents

1 A Theoretical Overview

1.1 Anintroduction for the musician

1.2 Introducing tonal harmony and the Chorales

Establishing a baseline model

2.1 Motivation for the harmonizationtask
2.2 Literaturereview
2.3 Baselinemodels
24 Harmonizationtasks
GCTencoding
Defining harmonization subtasks
25 Methods
Resources. e
Data. e
26 Results
2.7 Discussion

Neural models for harmonic analysis and prediction

3.1 Introducing neuralnetworks
32 Methods
Two approaches to harmonization
Oracleexperiment.
Architecture for neuralmodels 000
33 Results

iv

34 Discussion 40
Neural networkresults 40
Analyzing Random Forest harmonizations 41
Methods for an improved sequential subtask model 42

4 Further exploration: Bach’s Inventions 47

41 Generalizing the harmonizationmodel 47
Added complexity oo Lo 48
Subject identification L L oo L oL 49
Form identification0 ... 51
Harmonic identification 51
Contrapuntal melodic generation 52

42 Conclusion L 54

Codeand related files 54

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3

3.1
3.2
3.3

41
4.2

The sigmoid function 4
Neural network representation 7
Recurrent neural network representation 10
LSTMmemorycell 11
Chord-scaleduality 13
Nun lob mein” Seel’, den Herren, harmonized by J.S.Bach 16
Warum betrbst du dich, mein Herz, Roman numeral analysis 18
GCT vs. Roman numeral harmonic encoding 26
Harmonization subtask model 27
Baseline model comparison for harmonization subtasks 33
Proposed model: sequential prediction of harmonization subtasks. . 43
Example harmonization: Helft mir Gotts Giite preisen 45
Example harmonization: Herr Jesu Christ, dich zu uns wend 46
Invention No. 4 in D Minor (BWV 775), subject and transformations . 50

Invention No. 13 in A Minor (BWV 784), excerpts 52

Chapter 1

A Theoretical Overview

This thesis examines the potential for algorithmic models to learn the musical pro-
cesses involved in harmonizing a chorale melody. One of the primary objectives
is to improve upon previous computational attempts at chorale harmonization by
consistently incorporating musical knowledge about the Chorales and the general
approach to harmonizing a melody into the major design decisions of the research.
By thoughtfully extracting features and selecting model architectures that are well-
suited to the format of the musical dataset, we hope to advance computational
knowledge related to the Chorales and the ability of various models to approxi-

mate the complex tasks of harmonic analysis and melodic harmonization.

The purpose of this chapter is to provide a high-level introduction to the topics
in the music and computer science fields that are relevant to this thesis. The highly
interdisciplinary nature of this research requires a certain level of familiarity with
both the fundamentals of music theory and counterpoint, as well as the mathemat-

ical mechanisms that drive the machine learning models used in later chapters.

1.1 An introduction for the musician

Supervised machine learning

Supervised learning is a category of tasks in machine learning concerned with
learning outcomes based on observations from a dataset. Machine learning can be
broadly divided into two categories, supervised and unsupervised learning, which
are defined by their different learning objectives. Unsupervised learning involves
examining datasets for pattern or statistical structures that define the dataset. There
are no explicit outcomes specified, so an unsupervised learning algorithm has no
sense of the “correct” answer. In contrast, a supervised learning model is trained to
correlate observations from a data set with a corresponding set of outcomes. Given
a dataset of observations and outcomes, the model can learn to predict future out-
comes. Consider the task of learning to predict the price of a car given a set of
information that describes the car’s features (i.e. the car’s color, its year of man-
ufacture, etc.). In supervised learning, the model observes several cars and their
corresponding prices (the “outcomes”), and then updates its parameters in order
to more accurately predict other car prices based on the data it has observed. There-
fore, the primary task in supervised learning is to optimize the model’s parameters,
denoted by the symbol 6, in order to improve accuracy of predictions. In algebraic
terms, 6 is a n-dimensional array of parameters where we model our prediction as
h(x) ~ 6Tx and x represents the “observation”. During training, the model up-
dates its parameters based on a cost function - a metric for calculating the error
between the predicted outcome and the known outcome - in order to minimize

error in future predictions.

Distributions and classification

The models used in this thesis are classifiers, meaning that they accept a vector of
input features - or a series of input vectors - and for each input, it outputs a cor-
responding distribution. In logistic regression and other classification algorithms,

the possible outcomes or values of y represent a discrete set of k classes, and the

distribution produced by the algorithm represents the probability that x belongs to
each class. These distributions are initially unknown, but the objective is to learn to
estimate these distributions given a dataset of observations and known outcomes.
Mathematically, the objective is to learn the mapping f : X — V), given a set of n
examples, such that /i(x) =~ y, where x is an individual input vector. The training
data is the subset of the original data on which the model learns h(x) by updat-
ing its parameters, and the model’s ability to predict future outcomes is measured

based on a test set.

Logistic regression

Logistic regression is a binary (2-class, {0, 1}) classification algorithm. Given an
observation x, logistic regression predicts a binary outcome, where x is classified
as y = 1 with probability p, and y = 0 with probability 1 — p (this is also known
as a Bernoulli distribution). More simply, logistic regression models h : X — Y €
{0,1} (Murphy, 2012, p. 21). A real-life example of logistic regression might be
predicting a binary outcome of a patient (i.e. whether they have a disease or not)

given an input vector that describes a patient’s symptomes.

P(y = 1|x,0) = Ber(y = 1|i(x))

The output distribution is therefore a function (specifically, a linear combina-

tion) of the input x and the model parameters 6.

h(x) ~0Tx = 01x) + 6oxp 4 ... + Oy

where m is the number of features, and 67 x representing a activation value. Differ-
ent parameters for 6 will alter the activation for the given input, and consequently
alter the model’s prediction for x. In order to obtain a probability distribution from
the activation 07, the sigmoid function (i), or “squashing function” is then ap-

plied, which maps any real value in R to the range [0, 1].

Figure 1.1: The sigmoid function: ¢ : 0Tx € R — [0, 1]

Sigmoid (7)
0.75
< 050
[«
0.25
0.00
-6 -4 -2 0 2 4 6

The hypothesis, hy(x) given the weights 6, is defined as

he(x) = o(8Tx) = a(i@ixi)
i=1

Pr(ylx, 8) = Bern(y|hq(x))

Finally, y is mapped to the discrete binary set {0,1} using a decision boundary d,

where 0 < d < 1.

hg(x)Zd%y:1

hg(x)<d—>y:0

Based on training data, a logistic regression model learns to optimize its predic-
tions for newly observed data by updating the weights 6. The weights in 6 can be
thought of as the control gates for the flow of information, and increasing the value
of weight represents an increase in the importance of that information. In order to
make the parameter update, a cost function | is used to generate an error metric for
the predicted outcome hy(x) based on the “correct” observed outcome y for each

observation-outcome pair in the training data. 6 is then updated based on J(6) by a

method known as stochastic gradient descent (SGD). The ultimate objective, using

SGD, is to minimize the cost J(0) over the training data.

1
J(0) = - Y Cost(lg(x). y)
Therefore, the optimal parameters @ are
0 = argmin J(0]X,))
0

Multinomial logistic regression is a generalization of logistic regression to the
case where we want to classify data into K classes, not just two. The objective is
to develop a hypothesis to estimate Pr(y = k|x) for k € 1,...,K. This is useful in
handwritten digit recognition, for example, where x is a numerical representation
of an image, and hy(x) describes the probability that the image represents a specific
digit for all digits 0-9 (K = 10). arg max; /ig(x) therefore tells us which digit is most

likely represented in the image.

In order to represent K classes, 0 is now a matrix of weights, making 6T x an acti-
vation vector. The sigmoid function is replaced with the softmax, which generalizes
the sigmoid function and normalizes the activation vector such that the resulting
vector represents a probability distribution over the K classes. Since hy(x) is a dis-

tribution, its elements must sum to 1.

P(y =1|x,0) exp(6M7x)
P(y =2|x,0) 1 exp(B(z)Tx)
LK exp(00)Tx)

| P(y = K|x,0)] _exp(B(K)Tx)

where 0 is represented as

and the most likely classification is the class k with the greatest probability
given x and 0

argmax Pr(y = k|x,0)
k

Neural Networks

In this section, we introduce artificial neural networks, a family of machine learning
models that are the primary models for this thesis. Neural networks give us a way
to model deeper interactions, and to generate predictions based on a combination
of many cascading, non-linear functions. They are exceptionally powerful, and
by the Universal Approximation Theorem (Cybenko et. al. 1989), a feed-forward
3-layer neural network of finite size is proven to approximate any continuous func-
tion bounded by n dimensions with any desired non-zero error (Goldberg, 2015).
As in multinomial logistic regression, the objective is K-class classification. Neu-
ral networks are loosely inspired by the architecture of biological neural networks,
where the complex decisions computed by the human brain is a function of many,
small computations made by individual neurons. In an artificial neural network,
the “neuron” is a computational unit that accepts a vector input and returns a scalar
output. Neurons are organized as a series of layers, where the first is referred to
as the “input” layer, the intermediary layers being the “hidden” layer, and the fi-
nal layer being the “output” layer. In order to obtain the K-class distribution, x is
“fed forward” through the network by a process known as forward propagation.
The process is shown below for a 3-layer network, where ¢ is the sigmoid function
(applied element wise). 8) is the matrix of parameters that control the mapping of

input units to hidden units for the ith layers. b'") is the bias neuron for the ith layer.

L; is the size of the ith layer.

where

x €]Rm/ he(x) c]RK,Q(i) c]RLiXLiH,b(i) c]RLi

When a layer is reached, each neuron in the layer performs a linear combination

of the input and its parameters, applies a non-linear function (i.e. sigmoid ¢), and

then passes the result forward to each neuron in the next layer. Each connection

between two neurons also carries a separate, adjustable parameter. This contin-

ues until the final layer, where the output layer returns a vector that is forwarded

through a softmax function to obtain the K-dimensional distribution hg(x).

Figure 1.2: Abstract representation of a 3-layer neural network architecture, where
each circle represents a neuron. 6 controls the flow of information between layers.

For all neural models used in this thesis, the objective is to minimize negative

log likelihood. Likelihood (£) is a function of the parameters 6 given a set of obser-

vations X, and it is in fact equivalent to the probability of those observations given
the parameters.

L(6]X) = P(X]6)

For mathematical ease, log likelihood is used.

m m
log £ = loth(xi|9) = Zh(xi|9)
i=1 i=1

And maximizing log likelihood is equivalent to minimizing negative likelihood.

m m

0= argmax Y h(x;|0) = argmin [— Zh(xi\(?)}
6 i=1 6 i=1

The parameters 6 are updated by calculating J(0) and computing the partial
derivatives (the “gradients”) of J(6) with respect to each of the parameters.

9/ (0)

96;

9]':9]'—06

The partial derivatives of], or the gradient vectors, describe the direction of steep-
est ascent of J(6). So by subtracting these gradients at each update, the network
descends towards a minimization of J. The learning rate, #, adds a multiplicative
factor that controls the strength of each gradient update. This process of passing
gradients through the network and updating 6 is known as backwards propaga-

tion.

Recurrent neural networks (RNNs) and sequential data

An important limitation of “vanilla” (meaning standard) neural networks, like the
ones described in the previous section, is that they treat each input independently
of all other inputs. In supervised learning tasks where the input data is in the form
of sequences, recurrent neural networks (RNNs) are an effective model because of
their ability to “remember” features of recent computations. Formally, a sequence

of data is defined as a series of input vectors over a discrete set of time-steps, such

that x; is the input vector at time step i. RNN architecture is optimized for se-
quences of inputs and outputs, and they can train very effectively on datasets even

when the inputs lack a naturally sequential order (Karpathy, 2015).

At each time step, the recurrent model receives two inputs, the feature vector
x¢ as well as the output of the hidden layer from the previous time step s;. During
forward propagation, an RNN internally stores the output of each hidden layer and
returns a distribution for the next time step, 11 1. The most basic RNN architecture,
known as the Elman network or simple RNN (S-RNN) (Goldberg, 2015, p. 56), can

be modeled as follows:

where

o) ¢ RIxI<k g(2) ¢ Rixh

and ¢ is a non-linear transformation, such sigmoid (¢) or tanh. Note that the pa-
rameters 6 can be updated in the middle of forward propagation over a sequence,
or after the entire sequence has been fed through. Training an RNN follows the
same procedure as standard neural networks - create a computation graph over
time, calculate error for the most recent prediction, and then backpropagate the er-
ror across the unfolded network, generating gradients and updating the weights in

0 (ibid., p. 63).

The recurrent model of incorporating feedback from the computation at the
previous time step is a promising approach for the harmonization task, where the
chorale can be represented as a sequence of melody notes with corresponding, in-
terrelated harmonizations. Karpathy, 2015 famously cited the “unreasonable ef-

fectiveness” of recurrent neural networks in learning sequential data for a variety

10

Figure 1.3: Abstraction of an RNN over a time series. The activation of the neurons
in the hidden layer is a function from the previous layer (in this architecture, this is
always the input layer) and the hidden layer output from the previous time step.

S
0000 O
DECECRORD

t=3 t=4 t=>5 t

I
o

of tasks, including speech recognition, language translation, and image captioning.
As a result, we hypothesize that recurrent models will perform particularly well on
musical tasks that require contextualized decision-making and benefit from corre-

lating temporally distant inputs.

Improving the recurrent model: Long Short-Term Memory networks

Long Short-Term Memory networks (LSTMs) are a variant of RNNs that replace
the hidden layer neurons with specialized cells for enhanced memory capabilities,
first introduced by Schmidhuber and Hochreiter in 1997. In the original RNN ar-
chitecture, the feedback is “short-term” in that s; is only a function of the input at
time t — 1 (and much more weakly for previous time steps). Therefore as the se-
quence is fed through the network, the signal from earlier time steps is gradually
lost. This phenomenon is known as the “vanishing gradients problem” (Goldberg,
2015, p. 56) and it constitutes a major drawback to using the original RNN archi-
tecture. LSTMs solve this long-term dependency issue by substituting the regular
neuron with a memory cell that can retain much more distant signals from previous
inputs. Information is stored and segregated within the cell by use of multiplicative
gate units, such as input, forget, and output gates. These gates allow information

to flow through the cell without affecting other memory contents, while also de-

11

ciding what cell information should be kept versus overwritten by newer signals.
A gate g is represented as a n-dimensional one-hot vector, and the values of g are
considered parameters of the model. A value of 1 in a gate has the effect of re-
taining its corresponding signal element, while a value of 0 effectively eliminates
that element. The deeper mathematical foundations for LSTMs are not necessary
to understand, but they have proven to be exceptionally effective models, designed
specifically for retaining information over long periods of time. When applied to
music, LSTMs have proven effective at learning global musical structures and gen-

erating melodies (Eck and Schmidhuber, 2002b; Johnson, 2015).

& @, ®
t |

A
R
X o >
Enh>
A Fn T A
jb

I I
® ® ©

Figure 1.4: The chained structure of an LSTM memory cell. Each cell contains
multiple network layers, where the RNN presented previously has only one (the
sigmoid layer). Diagram created by Olah (2015).

1.2 Introducing tonal harmony and the Chorales

The primary objective of this thesis is to train a variety of models on the four-voice
chorales composed by J.S. Bach in order to learn the task of chorale harmonization.
However, each model is not given an actual musical score as input, but rather a nu-
merical representation of “features” extracted from the score. Features are variables
that describe some aspect of the data, and a thoughtful selection of features is one
of the largest factors that contributes to an effective model. The features selected
from the chorales include both score-wide features, such as the key signature, as

well as local features that describe the melody at a specific moment in numerical

12

terms, such as the beat strength of the melody note. In order to understand the
meaning of the musical features selected from the chorales and their significance
in learning the task of harmonization, a tailored overview of tonal harmony and
the properties of the chorales is provided here. Musical properties are described as
computational objects to illustrate the ability to translate between these properties

and numerical representation.

Pitch class, pitch, note

The fundamental musical object in Western tonal music is the pitch class. The tonal
system operates over a series of 12 pitch classes, and some pitch classes (i.e. Cf/Db)
are referred to by different names depending on the current context. A pitch class
is defined by its unique index - a integer between 1 and 12. It is common to assign

the tonic pitch class as 1, the pitch class above it as 2, and so on.
C,Ct/Db, D, Dt /Eb, E, F, Ft/Gb, G, Gt/ Ab, A, At/Bb, B

A pitch is an object defined by a pitch class and an octave, identifying a unique
frequency. A common representation of pitch is MIDI (Musical Instrument Dig-
ital Interface) notation, which today remains the most widely used protocol for
communication of musical information between electronic instruments. In MIDI, a
pitch is identified by a unique integer between 21 and 108 (inclusive). However, a
disadvantage to MIDI is that it conflates enharmonic pitches (i.e. C45 has the same
MIDI value as Db5), so information about the function of a pitch within a key sig-

nature is lost with this representation.

We then define a note as a pitch with the additional feature of duration.

Scale, chord, key

The musical objects defined here are fundamental indicators of harmonic informa-

tion. A scale is an ordered collection of pitch classes defined by an initial pitch class

13

and a quality - major or minor - that defines the intervals between each note in
the collection. Each pitch class in the scale is given an indexed scale degree and a
name. The two most important elements in the scale are the “tonic” (1) and ”domi-
nant” (5). But more generally, a melody over a scale is guided by the characteristic
tension or stability of the scale’s pitch classes. The “tonic” represents the ultimate
point of stability, whereas the leading tone (7) creates a sense of motion towards
the tonic. Therefore, pitch is a crucial feature in predicting the continuation of a

melody or the harmonization of an existing melody.

The strong parallel between scales and chords can be defined as a chord-scale
duality. A chord is a collection of three or more notes sounded together. The pitches
that comprise a chord imply a scale that contains those pitches; and similarly, a
scale implies the set of triads that can be constructed starting from each note of the
scale. The important connection is that both scales and chords express harmonies

through the pitch classes that comprise them.

é’#ﬁ A= g o 000

A major chord A major scale

| |

Figure 1.5: Chord-scale duality

The key of a piece is a combination of two pieces of harmonic information - the
tonic pitch class, and the chord (or scale) that represents full harmonic resolution.
In major and minor keys, this chord is a triad, which in the key of C major is the
pitch class set {C, E, G}. The triad alone is able to define the diatonic scale for the
piece, which is represented symbolically as a key signature that specifies the pitch

classes of the diatonic scale.

14

Harmonic analysis and motion

When harmonizing a chorale, an important first step is to analyze the chorale
melody and determine the chord progression that the harmonizing voices will de-
scribe. A standard approach for notating chord progressions in classical harmony
is Roman numeral analysis. Roman numeral analysis describes a harmony by as-
signing a Roman numeral based on the chord root and a uppercase or lowercase
version (i.e. II vs. ii) based on the chord quality. Superscripts are used to denote
chord inversions, indicating which pitch class in the chord appears in the lowest
voice (Laitz, 2012, pg. 68-9). For example, in the key of A major, the A major triad
{A, Ct, E} is assigned I and an E dominant 7th chord {E, Gf, B, D} is assigned V’
based on the E major triad, notated as V, and a seventh extension that creates the
dominant quality. Roman numeral analysis is powerful because it focuses on the
harmonic information stored in triads. The motion between tonic and dominant
triads alone can firmly establish a key, as well as a sense of tension and resolution
that is generated by harmonic motion away from and towards the tonic harmony

(ibid., pg. 106).

Importantely, context is a crucial factor in performing Roman numeral analysis
because each harmony is analyzed with respect to the key of the chorale as well
as the harmonies that preceded it. This is why harmonies are often described as a
progression, or a sequence. The ordering of harmonies - like the ordering of words
in a sentence - is a essential feature of the progression, and an important feature to

consider when constructing models to generate new progressions.

Cadences are the components of a harmonic progression that conclude a musical
phrase or section. They are important harmonic indicators that lead to a point of a
resolution or heightened tension, depending on the type of cadence, and as a result
they control the flow of the music. Statistically, the ability of a model to accurately

predict the location and quality of a cadence can serve a useful qualitative indica-

15

tor of a model’s performance because cadences are the most defining feature of a

harmonic progression.

Bach’s settings of the chorales

A chorale is a congregational hymn that first came into use during the early decades
of the German Protestant Reformation, under Martin Luther. These hymns were
originally composed as a one-voice melody with lyrical text, and composers of
the time drew heavily (and sometimes borrowed verbatim) from existing secu-
lar songs, medieval Gregorian chant, and other sacred works when writing new
chorales. In the Baroque era, the composer Johann Sebastian Bach revived the
chorale tradition and composed several new chorale melodies. However, his most
lasting contribution to the chorale form remains his hundreds of chorale harmo-
nizations, which were inserted into many of his larger vocal and instrumental com-
positions, including the St. Matthew Passion and the cantatas (Leaver and Mar-
shall, 2015). His harmonization of four-voice chorales - of which 341 exist in the
Riemenschneider collection - are masterful studies in four-voice counterpoint, and
they remain a guide for modern church musicians, jazz writers, arrangers and stu-
dents alike. This corpus established fundamental conventions for tonal harmony
with respect to voice leading, cadential movement, and intervallic relationships be-

tween voices.

Structurally, the chorale is written for the four standard voice ranges: soprano,
alto, tenor, and bass. The original chorale melody is sung by the soprano, while the
lower voices collectively embody the harmonization of the melody. It closely resem-
bles the chordal motion of the modern sacred hymn, and the rhythmic complexity
of the chorales is intentionally minimal in order to draw focus to the harmonic mo-
tion taking place on each beat. The entire chorale is segmented into shorter phrases

by a series of fermatas that indicate pauses and points of emphasis. In the Chorales,

16

fermatas denote the conclusion of cadences, where a tension or resolution is firmly

established.

In order to full understand the chorale form, it must be viewed in multiple di-
mensions. In the vertical dimension, the notes of each voice at time f can be heard
simultaneously as a chord; and therefore, the chorale can be abstracted to a four-
voice chordal progression. Learning to recognize and generate choral progressions
is the primary task of this thesis. The progression is guided by the cadences that
structure each phrase, and each cadence is defined by the relationship between the
melody and the bass line. The inner voices (alto and tenor) function as supportive
voices that “fill out” the harmonies. In the linear dimension, the chorale represents
a combination of four independent but complimentary melodic lines, where the
contour of each line is governed by the conventions of voice leading. Voice leading
embodies a broad set of characteristics, but they include rules about preferred and
undesired intervals, parallel and contrary motion, and the use of passing tones for
creating smooth melodic lines. The conventions of voice leading the acceptable

motion in each voice as the harmony shifts in the vertical dimension.

Figure 1.6: Opening phrase of the chorale Nun lob mein” Seel’, den Herren, harmo-
nized by].S. Bach.

1 2 3 4 5 6 7 8
Gﬂu#n I I I LT I I I I' I I I I I.} } Il |
L I | LI I — |] IF P F 1 2 | |] I
e ie 1, ;Idi*’ H {F IIiI” rlii*’ e—=|
n s 4 N . | N
i —— e —t— 1 — —— —
_4\ L 1 1 | LT I i T 1 | | 1 | | I = P | | P | I I Il |
| o | A = 1 i P & Il |
_\'jl_hx_d_A_a_._l_‘i_“jl_._i_d_l_et_d_i fe P o
~ F 3 o
T N N 5 PANEE . . =l U .
q.gﬂ3 F F | I P | I 1 1 N | | 1 I || || Il
] | | | | 1 1 1| | 1 |1 I | | il |
L1 S - T | | | | 1| | I | I 1| | | | T il |
L S 3 | | | 1 1 | | | 1 1 1l }
Ty - 1 | . - | | . -
_qzzu%g IF {}?] | | I I IF I&O . —— | | | | = I
LA, 1 . | - I‘ ﬁ ' I.‘ ' [| |] |kl il H ’ ‘I ' [i l
1_“x | . | . | 1 | 1 | I IJI |- 1 Il 1 1 1 | 1 }
h,

17

The opening section of the chorale Nun lob mein” Seel’, den Herren (Figure 1.6)
illustrates the importance of context in chorale harmonization. Bach’s choice of
harmonization for each beat is not an independent decision, but rather a choice
guided by the harmonic destination of each phrase, which the composer almost
certainly decided in advance of writing out the other voices. The harmony at time
t constrains the set of harmonies that it can smoothly transition to at time t 4 1.
Consequently, the reverse is true: if we decide to assign a certain harmony at time
t, the preceding harmonies must be chosen with the constraint that they provide
a satisfying towards that harmony. Note, for example, the ii® - V - I cadences that
Bach constructs in measures 3-4 and 7-8 of Figure 1.6. Were we harmonizing this
chorale ourselves and decided to assign a ii® harmony to beat 2 of measure 3 or 7,
we would constrain which harmonies we could convincingly transition to on beat
3. The fermata on the downbeat of measure adds the additional constraint that a
cadence - likely an authentic (I) or half (V) cadence - concludes on that beat. The
harmonization of beat 3 must therefore bridge its surrounding harmonies to satisfy

the expression ii® - * - {I, V}.

The Cf” harmony in measure 5 further illustrates the need for careful planning
when constructing a harmonic progression because the C” harmony isn’t diatonic
in the chorale’s key of A-major. Non-diatonic harmonies most commonly occur in
areas of tonicization - when the harmony briefly establishes a new tonic - or when
the harmony is functioning a secondary dominant. In this instance, the C#” is func-
tioning as a secondary dominant, since it acts a dominant harmony with respect to
Ff-minor in measure 6. Secondary dominants are an effective tool for prolonging
the resolution towards a certain harmony, and Bach uses them frequently to expand
his harmonic palette. The chorale Warum betrbst du dich, mein Herz (Figure 1.7) also
contains non-diatonic harmonies functioning as secondary dominants, which facil-

itate the chromatically ascending bass line in measures 2 and 3.

18

Figure 1.7: Roman numeral analysis of Warum betrbst du dich, mein Herz

n | pr—
7 |

A .

[

o

—

[Ny 1l
L 18
e f_
TT™ e {\
el
e
T e
L 1NN

J . bd 1 .

¢): 7 — W *
e i . ie — |
I ! | ! ! ‘
a: i if i Vi iy iv vii /V \Y%

In summary, the process of harmonization requires consideration of the larger
harmonic structure and how each chosen harmony will contribute to the harmonic
progression of the phrase. Characteristics of the melody note - such as pitch, beat
strength, or the presence of a fermata - provide information about what harmonies
might compliment it, while knowing the location of the next fermata or the preced-
ing harmony inform how future harmonies should be chosen to create a satisfying

progression.

19

Chapter 2
Establishing a baseline model

2.1 Motivation for the harmonization task

J.S. Bach’s collection of chorale harmonizations is used as the dataset for this thesis
because it remains one of the largest and finest examples of four-part counterpoint
in Western music. Each harmonization is a complex solution, satisfying a variety of
voice leading and cadential constraints, as well as innumerable other conventions
of musical style. Chorale harmonization is therefore a fundamentally difficult com-
putational task. The reader might ask whether a rule-based approach is suitable to
this task. Couldn’t musical constraints would be computationally encoded and
then only harmonizations that satisfy them are generated? However, a purely rule-
based approach is rendered impractical by a couple important factors. One is the
sheer number of conventions that would need to be encoded, each with a varying
level of specificity and precedence with respect to the other encoded conventions.
Determining precisely what those conventions are is an even more difficult prob-
lem, since many chorale constraints are vaguely defined or flexible in application.
Another reason for avoiding a rule-based approach is that many different harmo-
nizations exist that satisfy a given chorale melody. The goal is not to simply pro-
duce satisfying harmonizations, but to approximate Bach’s style of harmonization
as closely as possible. Unlike a rule-based model, an adaptive model updates its pa-

rameters to capture the complex correlations and patterns it discovers in the train-

20

ing set of harmonizations. Applying those parameters to a new chorale melody
will then yield a predicted harmonization, and its predictions will directly reflect

(and only reflect) the harmonizations the model was trained upon.

2.2 Literature review

Hild, Feulner, and Menzel (1992) presented the first effective neural network ap-
proach for harmonizing chorales. Referring to their model as HARMONET, their
prediction harmonizations were qualitatively described to on the level of an “im-
provising organist” (p. 272), although little quantitative evidence is provided. The
task decomposed into three subtasks, each learned by a neural network. A har-
monic skeleton is first created by sweeping through the chorale melody and deter-
mining a harmony for each beat, where the harmony is represented by a unique
figured bass notation. For each time step t, the network takes an input a win-
dow of information, including the harmonies chosen in the interval[t — 3,¢ — 1]
and the melody pitches in the interval [t — 1, 4 1]. The resulting harmonic skele-
ton is passed to another network to generate a chord skeleton, which selects the
inner voices based on the input figured bass, and a final network adds ornamen-
tal eighth notes to restore passing tones between chords. Although, HARMONET
demonstrated strong success at harmonizing melodies, the model used external
“chorale constraints” (ibid., p. 271) in constructing the chord skeleton in order to
avoid unfavorable chord structures. The models presented in this paper attempt to
learn the task of harmonization without any such form of manual intervention in

the network’s learning process.

Substantial work has been done in the field of music generation using RNNs
and LSTMs that demonstrate their ability to learn complicated musical structures
and relate temporally distant events, particularly in the realm of melodic gener-
ation. Toiviainen (1995) developed a neural network that generates a jazz bebop

melody over series of chord changes. The network achieves melodic continuity

21

by using a “target-note technique”, where the end of a previous melody segment
and the present chord are used to predict the next melodic pattern at time t + 1,
while the following chord at time t + 2 is use to optimize of the melodic pattern,
thereby smoothing the melodic transitions over chord changes. Eck and Schmidhu-
ber (2002a) improved on the results of Mozer (1994), who used RNNs to compose
melodies with chordal accompaniment but found the resulting music lacked larger
thematic and phrase structure. They attributed Mozer’s results to the “vanishing
gradients” problem (described briefly in chapter 1) and then trained LSTMs to first
generate the chordal structure and use that as a input to the LSTMs that gener-
ates a blues-style melody with promising results. Franklin (2006) also used LSTMs
to compose jazz melodies over a chord progression, training the networks on a

dataset of well-known jazz standard melodjies.

Research specifically on modeling the Bach chorales has seen a variety of ap-
proaches. Many of these studies have been based on a dataset generated by Allan
and Williams (2005), which contains hundreds of chorales transposed to C major
or C minor and then sampled every quarter note. The dataset contains the pitches
(encoded as MIDI values) for all voices at each time step of a chorale. Allan and
Williams (ibid.) trained Hidden Markov Models (HMMs) on the data to model
chorale harmonization, creating a probabilistic framework for deciding the most
likely choice of alto, tenor, and bass notes to complement the melody in each time
frame. More recent work has focused on music generation models rather than com-
pletive models. Boulanger-Lewandowski, Bengio, and Vincent (2012) used this
version of the dataset, along with multiple other corpuses, to make a comprehen-
sive survey of music generation models that performed next-step prediction for all
voices. Using log-likelihood and overall accuracy as the performance metrics on
test data, a specific flavor of RNNs was found to be most effective on all corpuses
used in the study. Other studies have sought to “re-construct” chorales using more
sophisticated neural models, including a large-scale survey of polyphonic music

modeling that evaluated the performance of eight LSTM variants Greff et al. (2015).

22

Both previous papers mentioned highlight the use of RNNs and LSTMs as effective
models because of their ability to learn temporal dependencies within polyphonic
music (i.e. how distant musical events can be related). Notably, the latter found
the ”vanilla”, unmodified LSTM equally effective as the other variants (Greff et al.,
2015, p. 7), which is why the standard neural network architecture is incorporated

into the neural models for our research.

Our approach consists of applying a variety of non-neural and neural models
to the task of chorale harmonization. Recent harmonization and generative mod-
els (Allan and Williams, 2005; Cambouropoulos and Kaliakatsos-Papakostas, 2014;
Greff et al., 2015) relied on a dataset that includes only pitch information about each
time step, and the objective was in all cases next step pitch prediction. Our goal is to
extract a new set of features from Bach’s chorales and examine how those features
improved or worsened model performance. Moreover, the objective is to learn a
series of musical processes that decide the harmony at each time step that include
both harmonic analysis and note selection. We chose this approach to mimic the

decisions a musician would make today in harmonizing a chorale.

2.3 Baseline models

Due to the unique classification problems examined in this thesis, previous compu-
tational research on the chorales does not provide any adequate baseline models.
Baseline models are important because they provide a basis for comparison when
evaluating more sophisticated model architectures. As the complexity of the model
changes and features are added or removed, it is important a baseline performance
metric to compare against and see how changes to the model improved or wors-
ened the results. In classification problems, a simple baseline model to consider
is one that chooses the most common class for every observation. We refer to this
as the Most Common Class Frequency (MCCF) baseline model. Three other clas-

sifiers are used to get a comprehensive set of baseline performances upon which

23

we can judge the complexity of different harmonization tasks. These classifiers are

described below:

Multiclass logistic regression was introduced in Chapter 1 as a generalization of
the binary classification system of logistic regression. Despite its name, this regres-
sion is a linear model. The objective is to minimize the following cost function,

given the learned parameters 6.

51001 10 (220)

= Yjexp(a;

Where m is the number of examples, k is the number of classes, and aj is the ”acti-

vation” function 8Tx(), denoted for the ith example and the kth class.

Multinomial naive Bayes generalizes the naive Bayes algorithm for multi-class
data, and it makes the “naive” assumption of independence between every pair of
input features. The assumption therefore states that, given the input vector x and

the class c € [1,K]

n

P(x|c) = P(x1,x2,...,xn]c) = [[P(xilc)

i=1

And based on that assumption, this baseline classifier the predicted output class is

decided by
P(xlc)P(c) _ _ TTiP(xifc)P(c)
L P(xIC)P(C) L IT P(xilCy) P(Cy)

P(c|x) =

Random Forest is a powerful supervised learning technique that involves clas-
sification based on a majority vote of a series of small decision trees. Each tree is
initialized with data from a random subset of features and is then trained on the
data by sampling inputs with replacement. The randomness involved in this tech-
nique is known to be highly effective in preventing overfitting on training data,
and it generalizes well on weaker datasets where one or more training examples

do not strongly suggest differences between classes (Breiman, 2001, p. 18).

24

2.4 Harmonization tasks

Each model was tasked with learning both harmonic analysis and harmonic pre-
diction processes. Each of these processes is referred to as a subtask, and together
they represent a full set of decisions about the harmony for a specific time step. Ini-
tially, 4 subtasks were selected. The first two are referred to as harmonic analysis

subtasks because they relate to the general classification of harmony.

1. Roman numeral. This subtask symbolizes the selection of the numeral in Ro-
man numeral analysis. The numeral carries most of the weight in harmonic
classification since it implies the both the root of the harmony as well as the

quality of the triad built upon it (i.e. major, minor, diminished, etc.).

2. Inversion. This subtask decides the chord inversion, which provides addi-
tional harmonic information about the ordering of the voices. The inversion
implies which pitch class in the harmony is assigned to the bass voice, so
this is also in some sense a harmonic prediction subtask as well. However,
it is designated as analytical because the inversion is primarily a component
of Roman numeral analysis. Functionally, an inverted harmony carries im-
plications for future harmonies. First inversion triads can lessen the weight
of a tonic or dominant harmony by not placing the chord root in the bass.

Inversions are also utilized to improve voice leading bass.

The next two subtasks are referred to as harmonic prediction subtasks, as they

decide which pitches are assigned to the inner voices (alto and tenor).

3. Alto. This subtask decides which pitch should be assigned to the alto voice,

which should be a pitch that supports the chosen harmony.

4. Tenor. This subtask decides the pitch assigned to the tenor voice. Selection of

the tenor voice completes the harmonization.

25

GCT encoding

While Roman numeral analysis has been the traditional method for describing har-
mony in the Chorales, it presents issues for statistical learning. Roman numeral
classification mainly depends on the key signature, but also requires the context
of the preceding harmonies. For example, a D major chord in a C major chorale
might be labelled as a II or V/V depending on whether a modulation to D ma-
jor had occurred or whether the preceding harmonies indicate that it functions as
a secondary dominant. During training, finding two or more inputs that suggest
a D major chord but are labeled differently can cause confusion in learning, par-
ticularly since in non-recurrent models there is no sense of context about other
local harmonies. Roman numeral chord labeling can be further complicated by the
presence of non-chord tones, which makes, for example, differentiating IV® and ii’

chords computationally confusing.

The general chord type (GCT) representation provides an idiom-independent
solution to encoding harmony that assigns a unique encoding to each chord, re-
gardless of context (Cambouropoulos, Kaliakatsos-Papakostas, and Tsougras, 2014).
To encode a chordal harmony, the GCT algorithm takes as input the chord to be
encoded, a pitch scale that describes the tonality, and a binary “consonance vec-
tor” v such that v[n] = 1 if an interval of n semitones is considered consonant
for 0 < n < 11. In this study, I chose v = [1,0,0,1,1,1,0,1,1,1,0,0]. GCT then
constructs an ordering of the chord pitches that maximizes the consonant intervals
between all pairs of pitches. The remaining notes that create dissonant intervals
are labeled as “extensions”. Finally, the algorithm outputs an encoding of the form
[root, [base, extensions]], where root is the pitch class of the chord root relative to
the tonic, and the base is the ordering of maximal consonance. I adapted the al-
gorithm to also output the degree of inversion, where 0 represents root position, 1
represents first inversion, and so on. Figure 2.1 demonstrates an application of the

GCT algorithm to a tonal harmonic progression, comparing the Roman numeral

26

analysis with the GCT encoding. The base [0, 4, 7] encodes a major triad, while [0,

3,7,10] encodes a minor seventh chord.

Figure 2.1: Comparison of GCT and Roman numeral analysis notation, courtesy of
Kaliakatsos-Papakostas et al. (2015).

s} = \
— 1Y 1 L
Ll 1 7Ty 1 B =
iﬁ E i (] h g r 1) B, 17824 (8] 1} e %
L 3 v [&] Ll | - Il!“ [&] [&] irr a-; [&]
) o o =Y o O O 4 8
| - —
Y]] A = iy [&) [%] L =
hall [L A [FE &) iaT e
rd b q 1 — © [8]
(v7) . “
| IN———IIN V&/s | Vi ii6/s V7 |
tonal:. [0,[0,4,7]] [1,[0.47]] [0,[0,3,6]] [1,[0,4,7]] [7.[0,4,7,200] [O,[0,4,71] [9,10,3,71] [2,(0,3,7,1011[7,[0,4,7,1011 [0,[0,4,71]

In comparison with a Roman numeral analysis dataset compiled by David Tem-
perley, GCT labeled 92% of the chords accurately, of which about 1/3 of mislabeled
chords were diminished sevenths - excusable because each note in the chord can
function as the root (Kaliakatsos-Papakostas et al., 2015, p. 3). In order to minimize
duplicate encodings, I implemented the following policies, partially drawn from

suggestions by the original authors of GCT encoding.

1. For dyads, prefer an interval of a 5th over a 4th, and an interval of a 7th over

a 2nd.

2. Preference encodings where all intervals are larger than a major 2nd. This
heuristic preferences a minor 7th or a major chord with an added 6th, and

generally more evenly spaced encodings.
3. If more than one encoding remains, choose randomly.

The GCT algorithm was incorporated into a newly generated dataset for the
chorales by replacing the numeral and inversion subtasks in ¥ with the new root,
base, and inversion subtasks. The root subtask establishes the chord root, while
the rest of the chord structure is determined by the base. As in Roman numeral
analysis, the inversion implies which chord tone is assigned to the bass. As well,

the new dataset classifies the tenor and alto voices by their distance from the tonic

27

pitch, instead of as encoding MIDI values directly, in order to make all subtasks
key-independent and reduce the output class space to a maximum of 12 classes

(for the 12 chromatic intervals).

The same baseline models were used to evaluate the new subtasks. In both

cases, there were 293 chorales in the training set, and 33 chorales in the test set.

Defining harmonization subtasks

Mathematically, the objective is approximate the complex function f : X — Y

e X € V™ is the aggregate input data over n observations, each with m fea-

tures (x € R™)

e Y € YK contains the output distributions for a subtask over 1 observations

and K output classes

Each observation describes the melody note at a specific time step, which we use
to predict the most probable harmony and voicing for that time step as a series of
smaller subtasks. Figure 1 illustrates the subtask learning process.

Figure 2.2: Harmonic subtasks: collectively, they describe the harmony for a spe-
cific time step and which pitches are assigned to the alto, tenor, and bass voices.

Melody

Numeral { ‘ Inversion

28

2.5 Methods

Resources

We gathered the chorales in MusicXML format through the MUSIC21 corpus mod-
ule, and which were originally obtained from Greentree (2005). MUSIC21 is a toolkit
for computational musicology maintained by Professor Michael Scott Cuthbert at
MIT (Cuthbert and Ariza, 2010) that was used extensively in this thesis. The MU-
s1c21 library is built upon a comprehensive array of objects and methods that rep-
resent the fundamental musical components introduced in Chapter 1, such as keys
and scales. For our purposes, MUSIC21 was used extensively to transform musical
scores into symbolic representations and extract musical features from those scores
for machine learning. The library was also used to generate realizations of pre-
dicted chorale harmonizations as actual scores, which are provided at the end of

Chapter 3.

In order to construct and train neural networks, the scientific computing frame-
work Torch was used, which is written in the Lua programming language. The
rnn library, which is designed to extend the capabilities of the nn module in Torch,
was used to implement recurrent neural networks like RNNs and LSTM networks
(Léonard, Waghmare, and Wang, 2015). Non-neural models were selected from
the fully implemented classification algorithms in the machine learning library

scikit-learn (Pedregosa et al., 2011).

Data

The dataset consists of 326 4-voice chorales gathered from the MUsIC21 library.
Once collected, some manual cleaning was then performed to correct mistakes in
the musicXML format related to key signatures and significant mistakes in notation
(based on a visual comparison with the Riemenschneider edition of the Chorales).
Chorales with significant periods of rest were removed from the dataset because 3-

voice harmonies have ambiguous implications in the 4-voice model that the chorales

29

conventionally observe. Next, the chorales were “quantized” to create strictly
chordal progressions of 4-voice harmony. Like modern church hymns, Bach’s chorales
are uniformly structured as chordal progressions, with a consistent beat-long rate
of harmonic transition. Therefore, the process of quantizing each chorale into a
series of discrete and uniform time steps, each the length of a beat, could be ac-
complished without damaging the underlying harmonic progression. Eighth notes
were removed from the voices to eliminate additional rhythmic complexity. Eighth
notes facilitate voice leading in Bach’s harmonizations, but rarely function as an
essential part of the harmony, making their removal a reasonable design decision.
This process of quantizing the chorale into quarter-note samples has been found to
be effective in several other studies (Hild, Feulner, and Menzel, 1992, Madsen and

Jorgensen, 2002; Cambouropoulos and Kaliakatsos-Papakostas, 2014).

From the chorales, data for each subtask needed to be extracted for each time
step of each chorale. For the harmonic analysis subtasks, Roman numeral analysis
was implemented to extract the correct Roman numeral and inversion. We relied
on a combination of MUSIC21’s roman module for initial analysis followed by sub-
stantial manual correction due to incomplete functionality in the roman module.
The alto and tenor voices were extracted as a sequences of notes encoded as MIDI

values.

For each time step, a feature vector x was extracted that represents an obser-
vation about the melody note. A Python script was then used to preprocess the
chorales to extract the above features from each time step of each chorale, and
stores the generated training and test data in an HDF?5 file. The selected attributes

of each feature vector are enumerated below:
1. The number of sharps in the key signature. Flats were given negative values.
2. The mode (i.e. major or minor) of the chorale.

3. The time signature of the chorale.

30

4. Beat strength, or metrical accent. A 4/4 measure would be assigned the fol-

lowing pattern: [1.0, 0.25, 0.5, 0.25]
5. The presence of a fermata - a binary attribute indicating a cadence.
6. Number of beats until the next fermata.
7. Number of measures until the end of the chorale.

8. The melody pitch, encoded as a MIDI value. A search across all chorales
indicated that each voice had a well-defined pitch range, verified by Madsen
and Jorgensen (2002):

e soprano: [60, 81]
e alto: [53, 74]
e fenor: [48, 69]

e bass: [36, 64]
9. The interval to the previous melody note.
10. The interval to the next melody note.
11. The Roman numeral for the previous time step.

12. The inversion for the previous time step.

The first 10 attributes are used for all experiments in Chapter 2, while the final
two attributes are introduced only for the “Oracle experiments” in Chapter 3. In
the GCT implementation, the two Oracle attributes are substituted for attributes

that describes the GCT encoding (root, base, inversion) for the previous time step.

These attributes were carefully chosen. The key signature (attributes 1 and 2)
and time signature (3) are constant across all features vector for a chorale since they
denote chorale-wide features. The pitch of the melody note (8) and the presence of

a fermata (5) provide information about the melody note, but all of the remaining

31

features denote contextual information. Beat strength (4) denotes the melody note’s
position (and the weight of that position) within the measure. Features 6 and 7
describes the melody’s note location with the current phrase. Features 9 and 10

describe the local direction of the melody voice.

2.6 Results

Results for baseline model performance on the Roman numeral analysis subtasks
and harmonic prediction subtasks are shown in Table 1. Table 2 lists the frequencies
of the most frequent class for each subtask (Table 2), which serves as a basic metric
of comparison. With the exception of inversion, all baseline models performed sig-
nificantly above the most common class frequency. The models performed only
marginally better than the MCCF threshold for the inversion subtasks, but the
uniquely high MCCF should be taken into account. Amongst the baseline mod-
els, the random forest classifier outperformed the other models by a non-trivial

degree, averaging 9.75% increase in accuracy over multinomial logistic regression.

Table 2.1: Baseline model accuracy on test set, harmonization subtasks.

Classifier ‘ Numeral Inversion Alto Tenor
Multi-Class Logistic 31.61% 59.76% 37.55% 37.86%
Multinomial Naive Bayes | 27.44% 56.66% 35.06% 34.40%
Random Forests 49.29% 61.64% 49.44% 45.43%

Table 2.2: Most common class frequency (MCCEF).

Subtask ‘ Training Set Test Set

Numeral 19.2% 19.2%
Inversion 55.5% 57.6%
Alto 15.7% 14.6%
Tenor 15.6% 15.5%

These experiments were repeated after substituting the Roman numeral analy-
sis subtasks with the GCT ones. For the harmonic analysis subtasks, the objective

was to now independently predict the root, the harmonic function (base), and the

32

inversion. In this set of experiments, inversion was encoded using the GCT repre-
sentation, which explains the change in class distribution. The harmonic prediction
subtasks, however, remained the same, but are still included in the results shown

in Table 2.3.

Table 2.3: Baseline model accuracy with GCT harmonic analysis subtasks.

Classifier Root Base Inversion Alto Tenor
Multi-Class Logistic 58.29% 56.09% 67.06% 37.55% 37.86%
Multinomial Naive Bayes 48.19% 50.43% 62.66% 35.06% 34.40%
Random Forests 63.71% 59.72% 69.73% 49.44% 45.43%

Table 2.4: MCCF with GCT subtasks.

Subtask Training Set Test Set
Root 28.5% 28.0%
Base 49.5% 49.9%
Inversion 63.9% 65.5%
Alto 15.7% 14.6%
Tenor 15.6% 15.5%

2.7 Discussion

Figure 3 provides a visual comparison of baseline model performance across all
harmonization subtasks. For all subtasks, a majority of the multinomial models
outperformed the MCCF baselines. In particular, Random Forests consistently out-
performed the other models, with a 35% increase in accuracy over the MCCF base-
line for the root subtask. However, the multinomial models struggled to perform
above the MCCF baselines for both the base and inversion subtasks, which appears
correlated with a high predominance of a single class in the dataset. Musically, this
is not surprising. The predominance of a single class in the base subtask is consis-
tent with the frequencies of the major triad found by Rohrmeier and Cross (2008)
in the Chorales, while the vast majority of harmonies in the dataset - and in other

corpora from the Baroque era - are in root position. In contrast, the more even class

Test Accuracy (%)

100

80

60

40

20

33

Figure 2.3: Baseline model comparison for harmonization subtasks

Multinomial Naive Bayes
Random Forests
MCCF-Training

MCCF - Test

iU

69.7

67.1
63.7 62.7 63.963.9
583 59.7
56.1]
50.4/
49.549.5
48.2] 47.2 46.8
347 36.3
31.6
28.528.5
22.622.6
20.320.3
82

Root Base Inversion Alto Tenor
Subtasks

distribution of the Roman numeral and GCT root subtasks are consistent with the

well-known harmonic complexity of the Chorales.

The variation in performance between subtasks suggests a general issue with
imbalanced class distributions in the data. Of the 133 output classes for the GCT
base subtask, the most common class is associated with 50% of all observations
in entire dataset (this happens to be the major triad), and the top 3 most frequent
classes account for 77% of all observations. Consequently, the vast majority of out-
put classes are observed too infrequently in the training data to be classified ac-
curately in the test data. Imbalanced data is a widely recognized phenomenon in
data mining that is comprehensively detailed in Sun, Wong, and Kamel (2009). The
significant advantage achieved using random forests can potentially be explained
by its known effectiveness at classification when one or more observations is not

sufficient to generally distinguish a class (Breiman, 2001, pg. 18).

Multinomial Logistic Regression

34

Chapter 3

Neural models for harmonic

analysis and prediction

3.1 Introducing neural networks

I'will now shift focus to supervised learning of the chorales using both non-recurrent
and recurrent neural models, seeking to improve upon the baseline models pre-
sented in Chapter 2. Neural networks are able to engage in sophisticated decision-
making by passing the input forward through the network and making more com-
plex and abstract decisions in the hidden perceptron layers. As demonstrated in
the literature review at the beginning of Chapter 2, neural networks are popular
in computational musicology for their ability to perform highly complex pattern
recognition over large datasets and generalize when given unexpected musical se-
quences. In particular, recurrent neural networks (RNNs) show great promise in
sequence labelling because of their ability to incorporate contextual information
about previous computations. In the case of next-step harmonic prediction, we
discuss in Chapter 1 the constraints placed on the next harmony by the preceding
harmonies. A satisfying harmonic sequence is additionally constrained by the ulti-
mate goal of reaching resolution, and each harmony in the sequence can be labeled

as a step towards or away from that goal. Therefore, I hypothesize that a next-step

35

prediction model will benefit from additional features that denote the harmony
chosen at the previous time step. This hypothesis will be evaluated by use of an

”Oracle experiment.”

3.2 Methods

Two approaches to harmonization

The experiments described in this chapter explore harmonization via two different
methods. The first approach is predicting harmonization as a series of individual
subtasks - identical to the approach in Chapter 2. Collection, a set of the predic-
tions for all subtasks describe the harmony and its voicing for a given time step.
The prediction of each subtask, moreover, is independent of the predictions for
other subtasks at the same time step. Note that this does not particularly reflect the
compositional process of a musician. The choice of inversion in Roman numeral
analysis, for example, is dependent upon the chosen Roman numeral, and the se-
lection of pitches for inner voices is dependent on the general harmony intended
for that time step. The second approach groups a full set of predictions for all sub-
tasks as a single prediction. This is referred to as the full harmonization task, since
the harmony and its voicing is decided by a single prediction. The set of output
classes consists of all full sets of predictions observed in the training data, where
each set of predictions is mapped to a single class, which describes a complete
“harmonization”. A single harmonization class might represent the following, for
instance: D chord, major triad, root position, the 3rd above D in the alto, the 5th
above in the tenor. This new approach adds a weak dependency between the sub-

tasks because they are predicted collectively rather than separately.

In the full harmonization approach, approximately 5% of harmonization classes
in the test set do not occur in the training set. While this 5% of classes represents
a relatively infrequent set of harmonizations, the neural models will never predict

these classes when evaluating test data. To understand why, imagine a model that

36

accepts an image and classifies the content of the image as either a cat, a dog, or
a bird. If the model is only shown cats and dog during training time, then it will
update its parameters to reflect these observations - namely, that the input image is
never of a bird but only either a cat or a dog. Consequently, an image of a bird in the
test set will inevitably be misclassified. The images of bird are analogous to these
infrequent harmonizations, which will essentially never be predicted. While we do
not believe this classification discrepancy significantly affects the results achieved
with the full harmonization approach, a better method for encoding harmony in

future studies could eliminate this.

Oracle experiment

Before incorporating recurrent models, I wanted to know if having the context of
previous harmonies would in fact improve the model’s ability to predict subse-
quent harmonies. In the field of natural language processing, an Oracle experiment
refers to the inclusion to the addition of an “Oracle” in the data that always pro-
vides accurate information about some feature. By comparing the original model
with the enhanced model, one can directly attribute the difference in error to the
absence of the Oracle data. We use this experiment for the full harmonization task
by including the correct harmonization class for the previous time step in each in-
put vector. An improvement in performance with the Oracle data suggests that
the harmonic information is a valuable component of the input data, and therefore
a recurrent model that receives feedback from previous time steps will likely per-

form well.

Attributes 11 and 12 of the feature vector described in section 2.4.2 describe
predictions for the harmonic analysis subtasks at the previous time step. Once GCT
encoding was introduced, this became 3 features that described the root, base, and
inversion of the previous harmony. By providing these features in the input vector,

we simulate the feedback provided in a recurrent model from the computation at

37

the previous time step. The baseline models and the “vanilla” neural network were

re-evaluated using the Oracle features, using the same training-test split as before.

Architecture for neural models

All neural models were implemented in Torch, using the rnn module for the recur-
rent components. The “vanilla” neural network (NN) contained 3 layers, with one
layer of varying sizes that was optimized based on performance over a validation
set. The validation set consisted of 33 chorales randomly extracted from the train-
ing set. A lookup table was added as a layer of convolution that takes the input as
a vector of indexed features and outputs a matrix where each column represents
an embedding for a feature in the original input. After passing through the hidden
layer, the intermediate output is transformed by a softmax to output a probability
distribution over all possible output classes. The criterion used was negative log
likelihood (NLL), and the objective is to continue training until NLL converges to a
local minimum. All neural models were trained using backpropagation across all
time steps of the chorale. Each chorale was padded with padding inputs mapped
to a padding class in order to make each chorale a sequence a length equal to the
length of the longest chorale. Optimal learning rates, based on performance over

the validation set, varied from 0.01 to 0.001.

After noting the success of the Oracle experiment, two recurrent models were
constructed with the objective of improving accuracy by feeding in the chorales as a
sequence of inputs. As discussed in Chapter 1, RNNs include recurrent connections
that allow for feedback from the computation that occured at the previous time
step. During the forward pass, at each time step in the data sequence, the RNN
input layer receives an external input from the ith sequence xt(i) as well as internal
feedback from the hidden layer /;, and then outputs a distribution x;; for the next

time step. Here, each element of the sequence is a feature vector describing a single

melody note, drawn from the same dataset used for previous models. Internally,

38

the network stores /; as a “memory” of the melody features at time t + 1, which

will be used to predict the harmonization x; >, and so forth.

time — hy —
xt(i) R hii
— h; 11 (feedback) —

The recurrent layer (R) accepts as input a sequence of input vectors describing
each time step of a chorale and outputs a corresponding sequence of distributions
describing the probability of each harmonization class at each time step. The most
likely harmonization for each time step is selected by taking the arg max of that

time step’s output distribution, /.

ht-‘rll

htJrlz
argmax h;1 = arg max

k

| Pty |

The first model is a “simple” recurrent neural network, or S-SRNN (Goldberg,
2015, p. 56). The network has a single recurrent hidden layer, The second model
is a 5-layer LSTM network with standard input, output, and forget gates. For both
models, the hidden layers have a consistent size of 200 neurons. For regulariza-
tion on the NN and LSTM model, we implemented dropout with probability 0.5
between all hidden-to-hidden layers. Dropout is a technique that address the over-
titting problem associated with neural networks by “dropping” a random subset of
activations in a given layer of the network. By eliminating a fraction of the signals
at each layer, the network becomes comparable to a series of smaller, separately
trained networks who outputs are averaged together to obtain a collective predic-

tion.

3.3 Results

First, the “vanilla” neural network (NN) was evaluated on the same individual
subtasks used in Chapter 2 for the baseline models, using GCT encoding. Table
3.1 provides the results for the NN performance on each subtasks for both training
and test data. The training accuracy and NLL suggest that the neural model did not
overfit on the subtasks. And comparing these results to the baseline model results

shown in Figure 2.3, the neural network performs on average at the same accuracy

rate as Random Forest, the strongest baseline model.

Table 3.1: ”Vanilla” neural network performance.

Task Training NLL ~ Acc% Test NLL Acc% Test MCCF
Root 0.768 71.92% 1.164 58.66% 27.7%
Base 1.265 62.48% 1.694 55.09% 48.4%
Inversion 0.701 70.78% 0.770 67.86% 64.5%
Alto 0.903 67.90% 1.680 42.32% 21.7%
Tenor 0.900 67.57% 1.721 42.66% 20.7%

The Oracle experiment demonstrated favorable results and improved perfor-
mances across the board by a few percentage points. Interestingly, the neural net-

work performs only slightly better than logistic regression on harmonic analysis

subtasks, but performs an average of 12.5% better on prediction of inner voices.

Table 3.2: Baseline and neural model test accuracy, Oracle experiment.

Classifier Root Base Inversion Alto Tenor
Multi-Class Logistic 59.75% 56.49% 64.43% 38.99% 38.93%
Multinomial Naive Bayes 54.31% 48.48% 63.06% 37.08% 34.10%
Random Forests 71.62% 65.85% 74.56% 53.91% 52.20%
”Vanilla” Network (NN) 60.86% 57.83% 69.67% 56.27% 46.67%

Based on the favorable results from the Oracle experiment, the two recurrent
models were constructed and evaluated. Naive Bayes was left out because it con-
sistently underperformed in comparison to the other neural and non-neural mod-

els. The recurrent models took significantly longer to training, averaging between

40

18-24 hours. Random Forest, in contrast, reached convergence in 2-3 minutes.

Table 3.3: Neural and baseline model accuracy, full harmonization task

Model Train NLL Train Test

Multinomial Logistic - 42.74% 25.15%
Random Forest - 88.41% 30.38%
NN 1.127 67.41% 25.59%
S-RNN 0.756 45.95% 24.73%
LSTM 0.807 38.01% 29.35%

Given that the MFFC frequency is 5%, these results reveal a promising ability
to predict full harmonizations over a large set of harmonization classes (K = 1980).

Surprisingly though, the recurrent models did not outperform Random Forest.

3.4 Discussion

Neural network results

Neural networks proved capable learners for both harmonic analysis and predic-
tion tasks. They outperformed the majority of baseline models and more than dou-
bled accuracy when compared to the MCCEF baselines for subtasks with more even
class distributions (i.e. lower MCCF), such as the root and the alto and tenor voices.
As discussed in Chapter 2, the uneven distribution of output classes means that
the model’s parameters will be updated predominantly to reflect the most frequent
output classes at the expense of learning to recognize the rarer ones. This appears
to be the case with the base and inversion tasks, where the network struggled to
outperform the fairly high baseline set by the MCCF model. However, the overall
performance of the standard neural network is considered a success considering

the complexity of these musical tasks.

With respect to the recurrent neural models, it was surprising to see them out-
performed by the Random Forest baseline model. This may be due to a variety of

reasons, including a structural issue in the data or a class imbalance. Yet viewed

41

another way, the Random Forest model performed exceedingly well considering
that it does not receive the temporal feedback built into the recurrent models. We
hypothesize that the Random Forest model likely generalized well despite the high
frequency of a small set of harmonizations - a set mostly consisting of various tonic
and dominant triad voicings. The non-recurrent models also benefitted greatly
from the context already present in the input feature vector, which informs of the
model of the position of the harmony within the measure and within the phrase.
Hopefully, more work is done to examine the ability of both the Random Forest
model and LSTM networks to perform other predictive musical tasks, and to ex-
amine how different features affect the model’s sense of context within a musical

phrase.

Analyzing Random Forest harmonizations

Figures 3.1 and 3.2 compare Bach’s harmonizations against predicted harmoniza-
tions generated by the Random Forest model for the full harmonization task. Note
that the “Original” score represents the Bach’s score after the quantization pro-
cess (Section 2.5), and the accuracy rating refers to the average accuracy of harmo-
nization class prediction, where each class describes a set of predictions over all
subtasks. While the accuracy over test chorales varied greatly, two chorales were
chosen to demonstrate the Random Forest harmonizations in both major and mi-
nor with accuracy levels close to the mean (30.38%). The diagrams were created by
reversing the feature extraction process, decoding feature indices and converting
them back into musical symbols. The scores were generated using a Python script
that used MUSIC21 to reconstruct the chorale melody and harmonization from the
harmonization classes. Minor manual correction was then required to adjust the

ranges of inner voices to the proper octave.

These figures are clear evidence of the success of this model. The example har-

monizations indicate a diversity of harmonic choices and voice-leading patterns.

42

Most cadences are well-executed and provide a satisfying resolution to either tonic
or dominant harmonies. In Helft mir Gotts Giite preisen (Figure 3.1), two cadences
in particular deserve note. Measure 12 features an authentic cadence to G major
(PVII), despite no prior introduction of an Ff in the soprano voice or other indica-
tion of this tonicization. The final measure, moreover, is correctly predicted as a

Picardy cadence, resolving to an A major harmony in an A minor key.

The ends of phrases were also correctly identified, and the model typically out-
put the same harmony for multiple beats when a fermata was being held. Exam-
ining other chorales, the model appears to struggle with more advanced harmonic
progressions, particularly where tonicizations occur based on a tonic that is non-
diatonic within the original key. Yet on the whole, we have produced harmoniza-
tions that largely satisfy the major counterpoint constraints while also reflecting

many of the key features in the compositional style of the Chorales.

Methods for an improved sequential subtask model

Recall that the full harmonization task combines an independent series of subtasks
into a single prediction task, where each harmonization class represents a set of
predictions for the subtasks which are weakly interdependent. There are two sig-
nificant flaws to this approach. First, the accuracy metric here is harsh because by
combining a series of decisions into a single class, a much more fine-grained de-
cision must be made to choose the correct class. This concern could be resolved
by creating a more sophisticated accuracy metric that took into account its over-
all accuracy across all subtasks. The metric should weigh each subtask differently
in order to reflect the different levels of musical importance associated with these
harmonic aspects. The inversion, for example, is a much less decisive aspect of
the harmony than the root or base. The selection of inner voices should also be
weighed appropriately to reflect its role as expressing the harmony rather than de-

ciding it. The alto and tenor voices can be often be assigned several different pairs

43

of pitches that express the chosen harmony in a satisfying way. The second issue
is that neither approach discussed in Section 3.2 recognizes the highly dependent
nature of the subtasks. A sequential subtask model may likely improve the results
by recognizing the sequential nature of the tasks performed when harmonizing
chorales. In particular, predictions for harmonic analysis subtasks would seem a
highly useful source of information for predicting the inner voices. The choice of
harmony constrains the possibilities of the inner voices since they must support
that harmony. So while the current model only provides the melody-focused fea-
ture vector for each subtask, a stronger model will consider predictions made for
previous subtasks at the same time step. Figure 3.1 shows the proposed ordering

of those subtasks.

Figure 3.1: Proposed model: sequential prediction of harmonization subtasks.

Melody
Root | 1J Base Inversion Alto Tenor

We briefly describe this approach mathematically. Assume for the sake of nota-

tion that there are only three subtasks. Then the objective is to select

argmaxP(X =x,Y =y, Z = z|X) (3.1)

X,Y,Z

where X, Y, and Z are random variables associated with a specific subtask and
can only takes value representing the subtask’s output classes. X represents the

input data, and let £, 7, Z be the predicted classes for the 3 subtasks. Then by the

44

chain rule, we can show that

%,7,2=argmaxP(X =x,Y =y, Z = z|X) (3.2)

XY,z

=argmaxP(X =x|X,Y=y,Z=2z2)-P(Y=y|X,Z=2z2) -P(Z=2z|X)

XY,z

(3.3)

While mathematically equivalent, the implementation suggested by Equation
3.3 would consist of separate classifiers for each subtask, where each classifier is
trained to predict its respective subtask given the original input vector x along
with the predictions for the previous subtasks in the sequence. To reduce the out-
put space represented by all possible set of predictions for all subtasks, the model

would only consider sets of predictions that occur in the training set.

45

tion of Helft mir Gotts Giite preisen

iza

Example harmon

Figure 3.2

Helft mir Gotts GUte preisen

Predicted (30.71% accuracy)

o

-1 Celd

Tl Cedd

[sl

Lo
v
v
5
o
)

t
I

P

»

b

i

L7

n

%
%
%
3
/1

)4
%

./l

»
T
i

»
T
i

»
T
i

y /-

§ O i
%
3

#
}

ravs

Ty

D&

0
v
v
e

col

n
1
Hf

.
b

.
b
i

.
T
i

A
A
A

¢

e

Original
|

ey

iy

L
n
&

Qi

Golll

%
§ O i
%

ravs

.
b

y /-
) O i
%

.
b
i

Iy

¢

¢

.
T
i

Titgl

D

0
v
v
e

./

.
T
i

s

»
T
i

46

Figure 3.3: Example harmonization of Herr Jesu Christ, dich zu uns wend

Herr Jesu Christ, dich zu uns wend

Predicted (accuracy 43.75%)

D)

e £ £ i

"5 £ o rs

-

Yo YN, 2 /um)

J L x

Z
L 3

Original

g2 o

[

r'a X2 /mm)

y Cv'x

i 3

L. /
y O 3

-

47

Chapter 4

Further exploration: Bach’s

Inventions

4.1 Generalizing the harmonization model

It must be admitted that a model trained to harmonize chorales has limited utility
in modern times (although it might have made Bach’s work as Kapellmeister a bit
easier). Musicians today mainly look to Bach’s Chorales as early model composi-
tions for 4 voices and for theory-related exercises. Moreover, the Chorales them-
selves use a limited rhythmic and textural vocabulary, since the rate of harmonic
change and many other stylistic properties remain constant. This simplicity makes
the chorales advantageous for statistical learning and allows our models to output
a uniform set of harmonizations over all inputs. But as chorale harmonization is
increasingly well-understood as a computational task, it is worth recognizing the
ways in which the chorale harmonization model can be extended to more com-
mon musical processes. As one potential application, I will explore the task of
composing a counterpoint line given an input melody, and how this might be ap-
proached from a computational standpoint. We will refer to this task as contrapun-
tal melodic generation - the composition of a melody in counterpoint with another

melody. This task is intentionally open-ended and could be applied to a wide vari-

48

ety of musical corpora. For this chapter, I will focus on how one might potentially
implement such a model for Bach’s 15 Inventions. Bach’s Inventions were selected
because they represent exemplary two-voice counterpoint compositions that use
Bach’s harmonic language, which allows for comparison with the chorale model.
Despite being written explicitly as musical exercises, the Inventions are far more

melodically and rhythmically complex than the Chorales.

Added complexity

Generating harmonizations for inventions introduces several new layers of mu-
sical complexity that were not considered when harmonizing the chorales. One
is rhythmic complexity, since Invention melodies cannot be effectively quantized
into uniform samples as we did with the Chorales, so a method for representing
rhythmic features in the contrapuntal melody is need. One method for describ-
ing rhythm is to generate predictions at the level of the smallest rhythmic unit in
the Invention. For example, if the smallest rhythmic unit in a melody is the 32nd
note, then each measure of the melody would be divided into 32 samples. A pre-
diction of the pitch (or a rest) for the contrapuntal melody would be output cor-
respondingly for each sample. Rhythmic variation would then be introduced into
the contrapuntal melody by defining the duration of a note or rest as the number
of consecutive samples for which the same pitch or rest is predicted by the model.
Eck and Schmidhuber (2002b) found this approach effective for composing blues
melodies. An similar but alternative method for describing pitch alongside rhythm
was proposed by Franklin (2006), where separate LSTMs are trained to decide pitch

and duration.

An additional layer of complexity to consider is the need for subject identifi-
cation. In an Invention, one or more melodic motives govern the development of
the entire work, and each motive is restated in various transformations. Collec-

tively, we refer to these motives, or subjects, within the work as the “invention”

49

(Dreyfus, 1996, p. 10). Dreyfus argues that the composition process behind an In-
vention is in many ways analogous to process behind writing an oration, which
he describes in terms of Ciceronian rhetoric. In the same way that a writer ”in-
vents” a speech based on a central idea and then provides arguments and coun-
terarguments, Bach’s ”obsession with inventive process” led him to centralize his
Inventions around the development of a musical subject (ibid., p. 35). Therefore,
subject identification must be a critical initial stage of analysis before composing a
contrapuntal melody. The “invention” of the work reveals the melodic, harmonic,
and rhythmic material used in the Invention, and features from the subject should

be extracted to create contrapuntal melodies.

A final layer of complexity to note is the form, or large-scale structure of the In-
vention. Inventions typically consist of a series of thematic statements interleaved
with episodes - modulatory sections that are melodically derived from the subject
and create transitions between thematic statements in different keys. Return to the
oratory analogy provided by Dreyfus, these sections are the arguments and coun-
terarguments that are presented in between restatements above the main idea. The
remaining sections of the Invention are termed “elaborations”, which refers to the
sections of each piece that connect the larger sections of the piece and do not typ-
ically contain thematic states. This includes small cadential phrases that smooth
the transitions to a new tonicization, or the codettas that appear at the end of some
Inventions. Each type of section has a specific set of conventions that govern its

structure as well as the relationship between the two voices.

Subject identification

Bach’s Inventions are two-voice compositions, where the lower voice can be char-
acterized as a function of the upper voice. In order for the model to learn the har-
monic and rhythmic material that Bach employs in the work, the model should

first identify and extract features from the Invention’s primary subject. Identify-

50

ing the subject generally straightforward for the listener, since the primary subject
is typically the first statement in the upper voice. However, inventions can con-
tain multiple subjects with varying levels of importance. And in Invention No. 6
in E major, Bach introduces two subjects of equal importance and develops them
both consistently throughout. Therefore, a better approach might be to identify
subjects by selecting melodic ideas based on the frequency with which they are re-
stated. Dreyfus (1996) notes that the frequency of a subject is directly correlated
with its importance in the Invention - a principle of repetition that is generally true
of melodies in Western music. One candidate algorithm for subject identification
based on repetition is hierarchal agglomerative clustering (HAC), which can learn
to “cluster” melodic segments based on a supplied distance metric. Nagler (2014)
applied HAC to the task of motivic analysis in Schubert’s song cycle Die Winterreise
and found promising results in extracting the main motive from each song. How-
ever, a significant difficulty in subject identification would be the harmonic and
rhythmic transformations that are often applied to the subject when it is restated.
For this task, it could be useful to encode the melody as a series of intervals rather
than pitches in order to identify subjects in their original form as well as their trans-

formed state.

Figure 4.1: The subject and transformations in Invention No. 4 in D Minor, BWV
775.

m. 1 X (original statement) m. 18 m.22 SHIFT(INV(X),10)
T | \ \
S EEPEE e = = SRR
L\ o " * T e [
S — fo o o e B
(0,10,3,711 |17,10,4,7,100 || [4100,4,7]] |[10,[0,4,7,10]]|| [4,10,4,7]] |[0,[0,4,7,610]
: B EEEE
U = S==sEi=EsSEE = =
e} " L

*

SHIFT(X, 4)

51

Form identification

Once rhythmic and melodic features are extracted from the subject, the model can
incorporate these in order to analyze the large-scale structure of the Invention and
divide the work into a series of sections. One classifier could be trained to create
the general boundaries of each section, while a separate classifier could label each
section as a thematic statement (T, episodes (S), and elaborations (E) by analyzing
if and how the subject is presented in the upper voice. Complete, sequential state-
ments of the subject suggest a thematic statement, while partial and transformed
subject statements will suggest an episode. Elaborations will most likely differen-

tiate themselves by the unique and less repetitiv e melodic material.

Harmonic identification

Before generating the melody, a useful preprocessing step would be to perform
harmonic analysis over the upper voice. The classifier would be trained to accept
the upper voice as input and output a sequence of corresponding harmonic encod-
ings. This task is well-suited to the model presented in Chapter 2 and 3, where
information about a segment of the melody would be classified as a GCT-encoded
harmony. While many pleasant melodies can be generated for the counterpoint
melody, the most crucial constraint is harmonic agreement. A crucial purpose of
the contrapuntal lower voice is to support the upper voice in harmony. The up-
per voice typically guides the progression, while the lower voice may echo and
reinforce harmonic transitions, as Figure 3a illustrates. This relationship reverses
when the contrapuntal voice contains a thematic statement, at which point the up-

per voice may provide harmonic support.

The primary technique for implying harmonies is the one-voice Invention melodies
is the use of scalar and triadic passages. Not coincidentally, many of Bach’s sub-
jects are constructed to facilitate various transformations (SHIFT, INV, AUGMENT,

etc.) and be harmonically indicative. However, given a scalar or triadic passage,

52

it can be difficult to determine which of many potential chords is most strongly
implied. There are several important indicators, including the harmony in the pre-
vious melodic unit and the beat strength of the notes in the current unit. A recur-
rent model would likely perform well on this task because of the sequential format
of the data (representing the upper voice as a sequence of melodic units) and the
feedback loop that would provide information about preceding harmonies. The
size of each melodic unit, however, is an additional parameter that would require

adjustment since the implied harmonies have varying durations (Figure 3b).

Figure 4.2: Excerpts from Invention No. 13 in A Minor, BWV 784.

A) B)
Am F#7/A F#7 BYDE B] GE Am ET09?
2 <
) ! e IR N re—
@zﬁj et e o e e,
| R
. . \ .
o PP, oy e, L l L
0 I I =] L. I F o I N o 7 —F r
4 = = T

Contrapuntal melodic generation

Using the structural information gathered during preprocessing, a final classifier
is trained to generate the contrapuntal melody. The classifier would accept input
features describing the current relevant subject, the current section of the form, and
the current implied harmony, as well as melodic features related to the upper voice
near time ¢. The output feature would describe the most likely pitch for time ¢, with
an implied duration of the length of the time step. Consecutive time steps of the

same pitch could be merged to represented longer notes.

The generalization of this model allows for a wide range of corpora to be incor-
porated into the training data. Stylistically similar candidates include Bach’s Sin-

fonias (the 3-voice equivalent of the Inventions) and the Fugues. Stylistically sep-

53

arate candidates include Palestrina’s masses and motets, which feature significant
contrapuntal and imitative composition and contain melodic motives that are de-
veloped in multiple voices. Incorporating a larger musical dataset during training
will improve model performance and generalize the model’s musical style. Further
work should be done to explore this extension of the harmonization task to various

musical corpora.

54

4.2 Conclusion

In this paper, we applied a variety of neural and non-neural models to different
musical processes that are components of chorale harmonization. These models
are meant to supplement existing work on computational approaches to genera-
tive and completive musical tasks. The Random Forest model and recurrent neural
models proved to be most effective at learning harmonization tasks, bringing into
question what forms of musical context are necessary to produce effective harmo-
nizations. Comparison of predicted Random Forest harmonizations with Bach’s
”correct” version demonstrates that the model has a promising ability to learn mu-

sical structure and connect temporally distant events.

Code and related files

All code and data related to this paper is freely available on GitHub at

https://github.com/glasperfan/thesis/.

https://github.com/glasperfan/thesis/

55

Bibliography

Allan, Moray and Christopher Williams (2005). “Harmonising chorales by proba-
bilistic inference”. In: Advances in neural information processing systems 17.

Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent (2012). “Mod-
eling temporal dependencies in high-dimensional sequences: Application to
polyphonic music generation and transcription”. In: arXiv:1206.6392.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5-32.

Cambouropoulos, Emilios and Maximos Kaliakatsos-Papakostas (2014). “Proba-
bilistic harmonization with fixed intermediate chord constraints”. In: ICMC—SMC.
Ann Arbor, MI: Michigan Publishing, University of Michigan Library.

Cambouropoulos, Emilios, Maximos Kaliakatsos-Papakostas, and Costas Tsougras
(2014). An idiom-independent representation of chords for computational music analy-
sis and generation. Ann Arbor, MI: Michigan Publishing, University of Michigan
Library.

Cuthbert, Michael Scott and Christopher Ariza (2010). “music21: A toolkit for computer-
aided musicology and symbolic music data”. In: International Society for Music
Information Retrieval, pp. 637-642.

Dreyfus, Laurence (1996). Bach and the Patterns of Invention. Cambridge, MA: Har-
vard University Press.

Eck, Douglas and Juergen Schmidhuber (2002a). “A first look at music composi-
tion using Istm recurrent neural networks”. In: Istituto Dalle Molle Di Studi Sull

Intelligenza Artificiale.

56

Eck, Douglas and Jurgen Schmidhuber (2002b). “Finding temporal structure in mu-
sic: Blues improvisation with LSTM recurrent networks”. In: Neural Networks
for Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on. IEEE,
pp. 747-756.

Franklin, Judy A (2006). “Jazz melody generation using recurrent networks and
reinforcement learning”. In: International Journal on Artificial Intelligence Tools
15.04, pp. 623-650.

Goldberg, Yoav (2015). A Primer on Neural Network Models for Natural Language Pro-
cessing. Tech. rep. Bar-Ilan University.

Greentree, Margaret, ed. (2005). Chorales harmonized by].S. Bach. Retrieved October
2015 from music21.

Greff, Klaus et al. (2015). “LSTM: A Search Space Odyssey”. In: arXiv:1503.04069.
URL: http://adsabs.harvard.edu/abs/2015arXiv150304069G.

Hild, Hermann, Johannes Feulner, and Wolfram Menzel (1992). “HARMONET: A
neural net for harmonizing chorales in the style of JS Bach”. In: Advances in
Neural Information Processing Systems, pp. 267-274.

Johnson, Daniel (2015). Composing Music With Recurrent Neural Networks. Blog. URL:
http://www.hexahedria.com/2015/08/03/composing—-music-—
with-recurrent—-neural-networks/.

Kaliakatsos-Papakostas, Maximos et al. (2015). “Evaluating the General Chord Type
Representation in Tonal Music and Organizing GCT Choral Labels in Func-
tional Chord Categories”. In: 16th International Society for Music Information Re-
trieval Conference.

Karpathy, Andrej (2015). The Unreasonable Effectiveness of Recurrent Neural Networks.
Blog. URL: http://karpathy.github.i0/2015/05/21/rnn-effectiveness/.

Laitz, Steven Geoffrey (2012). The complete musician: An integrated approach to tonal
theory, analysis, and listening. 3rd. Vol. 1. New York: Oxford University Press,
USA.

http://adsabs.harvard.edu/abs/2015arXiv150304069G
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://www.hexahedria.com/2015/08/03/composing-music-with-recurrent-neural-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

57

Leaver, Robin A. and Robert L. Marshall (2015). “Chorale”. In: Oxford Music On-
line. URL: http://www . oxfordmusiconline .com.ezp—-prodl.hul.
harvard.edu/subscriber/article/grove/music/05652.

Léonard, Nicholas, Sagar Waghmare, and Yang Wang (2015). “rnn: Recurrent Li-
brary for Torch”. In: arXiv 1511.07889.

Madsen, Soren Tjagvad and Martin Elmer Jorgensen (2002). “Harmonisation of
Bach chorales: KBS project report”. In: p. 31.

Mozer, Michael C (1994). “Neural network music composition by prediction: Ex-
ploring the benefits of psychoacoustic constraints and multi-scale processing”.
In: Connection Science 6.2-3, pp. 247-280.

Murphy, Kevin P (2012). Machine learning: a probabilistic perspective. Cambridge,
Massachusetts: MIT press.

Nagler, Dylan Jeremy (2014). “SCHUBOT: Machine Learning Tools for the Auto-
mated Analysis of Schubert’s Lieder”. Honors thesis. Harvard University.

Olah, Christopher (2015). Understanding LSTM Networks. Blog. URL: http://colah.
github.io/posts/2015-08-Understanding—LSTMs/.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825-2830.

Rohrmeier, Martin and Ian Cross (2008). “Statistical properties of tonal harmony
in Bach’s chorales”. In: Proceedings of the 10th international conference on music
perception and cognition. Hokkaido University Sapporo, Japan, pp. 619-627.

Sun, Yanmin, Andrew KC Wong, and Mohamed S Kamel (2009). “Classification of
imbalanced data: A review”. In: International Journal of Pattern Recognition and
Artificial Intelligence 23.04, pp. 687-719.

Toiviainen, Petri (1995). “Modeling the Target-Note Technique of Bebop-Style Jazz
Improvisation: An Artificial Neural Network Approach”. English. In: Music
Perception: An Interdisciplinary Journal 12.4, pp. 399-413. 1SSN: 07307829. URL:

http://www.jstor.org/stable/40285674.

http://www.oxfordmusiconline.com.ezp-prod1.hul.harvard.edu/subscriber/article/grove/music/05652
http://www.oxfordmusiconline.com.ezp-prod1.hul.harvard.edu/subscriber/article/grove/music/05652
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.jstor.org/stable/40285674

