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1 Introduction

As of 2016, only a quarter of primary and secondary schools in the United States offer com-
puter science courses with a programming component [31]. This proportion is far too low
given the current industrial demand for computer scientists and the intrinsic value of a com-
puter science education. Last year, fewer than 43,000 computer science students graduated
into a field with over 600,000 open jobs [5]. Regardless of their ultimate career path, students
benefit from the design thinking, creativity, and problem solving skills computer science de-
velops. Research has shown that students who study computer science at the secondary level
“demonstrate improved readiness for post-secondary studies” [34].

Administrators at the state and federal levels are realizing and responding to the need for
computer science education in K-12 schools, where the pipeline1 begins. In 2016, President
Obama announced an initiative to dedicate over $4 billion to expand K-12 computer science
education [31]. As of 2016, San Fransisco is phasing in computer science courses for all
students, starting in pre-school [2]. By 2018, a yearlong computer science course will be a
high school graduation requirement in Chicago. By 2025, every New York City public school
will be required to offer courses in computer science [22].

As more high schools are required to offer computer science courses, more educational re-
sources must be made available to teachers and students. Since computer science education
at this scale is relatively new, we must be willing to experiment in order to discover curricula
that lead to the best learning outcomes.

This thesis contributes to the freely and publicly available educational resources for introduc-
tory computer science courses. I present a high school-level introductory computer science
curriculum that uses Elm. To my knowledge, it is the first high school-level course to use
the Elm programming language. Given the untraditional language choice, I justify the use
of Elm as an introductory language by identifying five features of an ideal introductory
language and demonstrating that Elm exhibits each of these features.

The curriculum includes twelve hours worth of lesson plans, eight homework assignments,
and a pre / post survey used to measure students’ attitudes towards computer science. The
curriculum’s level of detail is such that a teacher with any level of experience with Elm can
take advantage of it. I also developed learn-elm.com/try, an open source adaption of the
Elm online editor. My adaption houses distribution code for the course and allows students
to save and upload programs. All materials will be made freely and publicly available. I am
teaching a pilot course using the materials and present preliminary observations that point
to the success of the curriculum.

This thesis proceeds as follows. In Section 2, I describe the Elm programming language and
its current use in computer science education. In Section 3, I explain why Elm is a good
choice of an introductory language. In Section 4, I describe the structure and content of my

1The computer science pipeline refers to the educational path that students take towards computer
science-related careers.
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introductory curriculum. In Section 5, I discuss my experience teaching the introductory
course to a group of high school students in Boston, Massachusetts. The Appendix includes
lesson plans, modular material, homework assignments, and a pre / post survey.

2 The Elm Programming Language

The introductory computer science curriculum I present in this thesis uses the Elm program-
ming language. In this section, I provide a high-level description of the language and the
paradigms it supports. I also describe its current place in computer science education.

2.1 Description

Elm is a functional reactive programming language that allows developers to create simple,
responsive graphical user interfaces (GUIs) for the Internet [9]. It was introduced in 2012 and
has since cultivated an active developer community. Elm is used commercially by companies
including Prezi and NoRedInk [8].

2.2 Functional Reactive Programming

Programming languages can generally be classified as functional or imperative. In functional
languages, functions are treated as values. In other words, there is no meaningful difference
between the treatment of a function (like f(x) = x+2 in mathematics) and a value (like x or
2) [6]. Functional languages tend to be pure, which means that functions are self-contained
(they have no knowledge of or effect upon their environment) and stateless (the same input
will always result in the same output) [23]. Imperative is the opposite of pure.

Functional reactive programming (FRP) applies pure functional programming paradigms to
time-varying values, known as signals. For example, the position of the user’s mouse may
be represented as a signal since the value may change over time. For more information on
functional reactive programming and how it distinguishes Elm, see [9].

2.3 Elm in Education

Elm is not commonly used in formal educational settings. Two significant exceptions are
courses offered by McMaster University Computing and Software Outreach and The Uni-
versity of Chicago. The former uses Elm in an introductory computer science course for
middle school students [20]. The University of Chicago uses Elm in an undergraduate course
on data structures [30]. To my knowledge, there are no high school-level computer science
courses that use Elm.
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There are also very few online resources that use Elm to introduce computer science concepts
or principles. Many of the online Elm tutorials are out-dated, not available free of charge,
or assume significant computer science knowledge.

The curriculum presented in this thesis is the first introductory computer science course for
high school students that uses Elm. It will be made publicly and freely available online. Given
Elm’s absence in computer science education, I dedicate the following section to justifying
its use in an introductory curriculum.

3 Elm as an Introductory Language

There is broad consensus that introductory computer science courses should not focus on
the details of any particular programming language [3, 10, 11, 16]. Instead, courses should
introduce core computer science principles and problem-solving skills. In an introductory
course, a programming language should be the means of teaching content, not the content
itself. As Demurjian et al. explain, the language serves “as both an explanation and demon-
stration vehicle for the various course topics. It provides the means through which students
can obtain practical experience with the concepts discussed in class” [10].

In an introductory computer science curriculum, the ultimate goal is to teach language-
independent principles; however, the choice of programming language can have enormous
influence. A programming language can affect not only whether the principles are successfully
conveyed, but also how they are perceived. Research by Schollmeyer et al. has found that
introductory languages shape students’ programming habits and problem-solving skills [26].
McLuhan’s famous maxim from media theory—that the “medium is the message”—readily
applies to programming. Just as natural language can never be completely removed from
the medium of communication, computer science principles are colored by the programming
languages that put them into practice [19].

In this Section, I justify the use of Elm in an introductory computer science course by
identifying five features of an ideal introductory language. I outline each feature below,
drawing on existing research to justify the importance of each, and demonstrate that Elm
exhibits each feature.

3.1 Simple Syntax

The syntax of a programming language refers to the ways in which symbols can be combined
to create programs. It provides a structural description of the “legal” expressions in the
language. Unlike semantics (defined in Section 3.2), syntax does not consider the meaning
of the symbols, only their structure [27]. The syntax of the English language specifies that
there should be a period at the end of each sentence; the syntax of the Java programming
language specifies that there should be a semicolon at the end of each statement.
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A good introductory programming language has simple syntax. In particular, the syntax is
minimal and easy to understand and adopt.

Mannila et al. found that “verbose and complex syntax” often causes novices “to focus on
getting the syntax correct to such an extent that the algorithm becomes a secondary concern”
[16]. In other words, complex syntax can distract students from the fundamental concepts
the programming language is meant to convey. Simple syntax allows the primary emphasis
of the course to remain on computer science principles and problem-solving skills [14].

Simple languages result in fewer syntax errors and, more importantly, fewer logic errors.
Studies have also found that learning to program in a syntactically simple languages does
not lead to disadvantages when moving to a more complex one [16].

Elm’s Syntax

One of Elm’s main features is its simple syntax. For example, Elm does not require the
use of semicolons, and there are no parentheses around function arguments. These syntac-
tical elements are found in many other languages, particularly imperative languages [8]. In
general, modern functional languages tend to be very concise [3].

Traditionally, when a person learns a new programming language, he or she begins by writ-
ing a simple program that displays the phrase “Hello, world!” Consider the “hello world”
program written in Elm:

import Html exposing (text)

main = text "Hello , world!"

Compare this to the “hello world” program in Java, the language currently used on the
College Board’s AP Computer Science A Exam [1]:

public class HelloWorld {

public static void main(String [] args) {

System.out.println("Hello , world!");

}

}

Although the programs do not differ significantly in length, notice how many more symbols
are required in the latter. In order to fully explain the syntax of the Java program, one must
at least explain the use of braces, square brackets, parentheses, quotation marks, semicolons,
and periods, and the key words public, class, static, void, and main. In order to fully
explain the syntax of the Elm program, one only needs to explain the use of the equal sign,
quotation marks, and parentheses, and the key words import and main.

Elm’s simple syntax allows students to begin understanding and writing programs quickly

9



and reduces the chance that the syntax will distract from core content.

3.2 Straightforward Semantics

Semantics refers to the meaning of syntactically valid code. In natural languages, semantics
connects phrases with objects, ideas, and experiences. In programming languages, semantics
describes how a program executes [27].

A good introductory programming language has straightforward and accessible semantics
so that a student can understand how the computer derives meaning (i.e. extracts instruc-
tions) from programs. Chakravarty et al. find that clean semantics allow teachers to explain
programming techniques clearly. With straightforward semantics, reasoning about programs
becomes “simple and natural” [3].

Elm’s Semantics

Like most functional programming languages, Elm has straightforward and accessible se-
mantics. In particular, students can understand how an Elm program works by manually
simulating the stepwise execution of the program [3]. Since the focus of functional languages
is on values and operations on values, the computational model is only a minor extension of
the models of high school algebra [11].

Elm’s semantics also allow for natural translations from algebraic functions to Elm expres-
sions. For example, in the third lesson of the introductory course presented in this paper,
students are asked to write a function that determines the end point of the hour hand on
a clock, given the hour. Students can begin by writing the necessary algebraic equations to
calculate the x and y coordinates of the end of the hour hand. If the length of the hour hand
is 100, then the student might develop the following equations:

angle = hour × (360/12)
x = 100× sin(angle)
y = 100× cos(angle)

In Elm, let foo = bar in assigns the variable foo to bar in all of the code in the function
that follows the key word in. Knowing this, the formulas above translate easily into an Elm
function that evaluates to the desired coordinate pair:

hourHandEnd hour =

let angle = hour * (360/12) in

let x = 100 * sin (degrees angle) in

let y = 100 * cos (degrees angle) in

(x,y)
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For more context and a stepwise evaluation of this function, see Appendix A.3.

Elm’s straightforward semantics allow students to quickly gain an understanding of how
programs evaluate. This makes it easier for students to understand what a given program
does and how to develop their own programs.

3.3 Helpful Error Messages

Error messages are an important part of a programmer’s user experience. Ideally, error
messages should help programmers progress towards working programs and should help
programmers understand the problems that led to each error they encounter [18]. As Marceau
et al. explain, error messages are especially critical tools for “novice programmers, who lack
the experience to decipher complicated or poorly-constructed feedback” [17].

The infrastructure for an introductory programming language should be able to provide
helpful error messages to users. Ideally, each message should use simple vocabulary, guide
the user towards the location of the error, and provide information about why the error
occurred [11, 18]. Both runtime errors (errors that occur while a program is executing) and
compilation errors (errors that occur when the program is being put into a state that the
computer can execute) should be clearly reported so that students can address and learn to
avoid them [11].

Elm’s Error Messages

Elm’s error messages are extremely helpful and all occur at compile-time. Elm boasts no
runtime exceptions: “Elm’s compiler is amazing at finding errors... The only way to get Elm
code to throw a runtime exception is by explicitly invoking crash” [8].

Suppose a beginner programmer forgets the closing quotation mark in the Elm “hello world”
program introduced in Section 3.1. The Elm compiler would report the following error
message:

SYNTAX PROBLEM

I ran into something unexpected when parsing your code!

4| text "Hello, World!

I am looking for one of the following things:

"\""

"\\"

"\n"

"\r"
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The error message provides the line on which the error occurs. The online programming
environment described in Section 3.4 also includes a link to go directly to the error in the
text editor [8]. The error message also tells the programmer the type of error that occurred
(in this case, a syntax error) and, as best as it can, tries to point the programmer towards
the fix (in this case, adding the first character suggested, a quotation mark).

The Elm compiler is also able to provide helpful error messages for more complex errors. For
example, the fourth lesson asks students to consider the following program, which draws a
red circle with a 100 unit radius at (0,0) in a 500 by 500 unit area:

1 import Color exposing (..)

2 import Graphics.Collage exposing (..)

3
4 main =

5 collage 500 500

6 [ circle 100

7 |> filled red

8 |> move (0,0)

9 ]

If red is replaced with 10, the compiler reports the following error:

TYPE MISMATCH

The argument to function ‘filled’ is causing a mismatch.

7| |> filled 10

Function ‘filled’ is expecting the argument to be:

Color

But it is:

number

Again, the compiler reports the line on which the error occurs and the type of error. It
identifies the type of the expected value (Color) and the type of the value it was given
(number). This level of detail helps new programmers quickly identify and fix errors.

Elm’s error messages are incredibly helpful for beginners, who are prone to mistakes. Without
such detailed error messages, a small error can completely derail a student. The Elm compiler
helps students get quickly back on track.
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3.4 User-Friendly Programming Environment

In order to execute a program, it must be compiled (translated to machine code, which a
computer can run directly) or interpreted (executed by another program). Often, a compiler
or interpreter is made available to the programmer in a programming environment. The
simplest of these environments may consist of a text editor and a command-line or graphical
interface. More complex programming environments may incorporate additional tools, such
as a debugger.

As Felleisen et al. found, the choice of introductory language should take into account the
programming environment. The environment “should be a lightweight, easy-to-use tool.
That is, it should provide just enough to edit and execute functions and programs, plus
some tools for understanding fundamental concepts” [11]. If an environment is unnecessarily
complex, teachers will have to take time away from teaching core content to help students
learn how to use the tool. The programming environment should facilitate, not encumber,
learning.

Elm’s Programming Environment

Although one can easily install the Elm compiler locally, the online editor, shown in Fig-
ure 1, is a perfect programming environment for beginners. This editor is available at
elm-lang.org/try and allows the programmer to compile and write code directly in the
browser [8]. This is ideal for students since they can access the editor from any computer
with an Internet connection, without installing anything or going through a configuration
process.

Figure 1: Elm online editor
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Using the programming environment is also extremely straightforward. Users can type in
an editor on the left side of the screen, press a compile button, and see the results of their
program on the right side of the screen. The only other buttons are “lights,” which changes
the color scheme of the text editor, and “hot swap,” which is an important feature for
functional reactive programming. The latter button will not be particularly important for
beginners, but it does not distract significantly from the more important features of the
programming environment.

I created a slightly modified version of Elm’s open source online programming environment
for the introductory course presented in this paper. Two buttons, “save” and “upload,” were
added so that students could easily save their programs locally. The editor is available at
learn-elm.com/try, and the code is available at github.com/hblumberg/elm-lang.org.
This website also makes it possible to create and share distribution code for the course.

The Elm programming environment, as provided by the original Elm site and learn-elm.com,
also provides “hints.” If the user begins to type the name of a function that is defined in
one of the core libraries, a link to the documentation appears above the editor. It does not
disrupt the coding process, but it does provide an extremely helpful reference.

More advanced programming tools certainly exist in Elm. For example, Elm has a time-
traveling debugger that allows developers to pause time, replay user inputs, and change code
during execution [8]. These tools, however, are not primary components of the program-
ming environment. The restricted set of tools available in Elm’s online editor keeps the
environment straightforward and accessible to beginners.

The online Elm programming environment strikes an ideal balance for an introductory lan-
guage. It is a clean interface that provides helpful tools, but does not overwhelm or confuse
the user.

3.5 Ability to Engage Students

An ideal introductory programming language would provide students with extrinsic or in-
trinsic motivation to learn computer science. One such extrinsic motivation may be the
potential to use the programming language in industry or in future computer science courses
[14].

An intrinsic motivation may be the potential for creative expression. Maeda explains, com-
puters provide “a new material for expression” [15]. In their study of the Scratch pro-
gramming language, Peppler and Kafai found that students can form “specific personal and
epistemological connections to their work” when they are given the opportunity to be creative
through programming [25].
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Elm’s Ability to Engage Students

Usually a programming language provides students with extrinsic motivation if it is used in
future classes or in industry. At the high school level, it is hard to cater to future classes
since a student may not take his or her next computer science course until college and college
courses use a wide variety of languages. Industry is also less immediately important at the
high school level than it is at the college level, where students are more likely to seek summer
internships and full-time employment.

While Elm does not lend itself to significant extrinsic motivations, its emphasis on graphics
provides particularly compelling intrinsic motivation. When learning to program in Elm,
students immediately have the opportunity to create simple drawings, and they can quickly
advance to interactive tools, animations, and games. Studies have found that game-based
learning offers many benefits, most notably that it gives students the opportunity to engage
with computer science in a familiar context [21]. It is both exciting and empowering for
students to use computer science as a creative outlet.

When given the opportunity to be creative, students are often motivated to go beyond the
“required” material. For example, the first lesson of the introductory curriculum presented
here asks students to draw a smiley face and provides the following example:

Here are the smiley faces three of the students in the pilot course created:

In order to draw these more creative faces, the students learned about more complex shapes
than the lesson requires. The opportunity to create their own drawings was enjoyable and
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motivating for students, and in a student’s words, they liked learning “how to apply computer
language to real applications.”

Elm is an engaging programming language because it gives students the opportunity to be
creative.

4 An Elm-Based Introductory Computer Science

Curriculum

In this section, I present an introductory computer science curriculum for high school stu-
dents that uses Elm. The course consists of twelve hours worth of lessons and eight homework
assignments. A complete set of lesson plans and assignments can be found in Appendices
A and C respectively. The only background knowledge assumed in this course is a basic
understanding of the Cartesian coordinate system.

The course is designed to teach students core computer science principles and problem-
solving skills. (Specific topics are outlined in Section 4.1). It provides students with the
skills necessary to program in Elm and explore other programming languages, independently
or in future courses. The course is also designed to foster students’ creativity. Students
should leave the course excited about computer science and comfortable with their ability
to approach the subject.

I offered this course in the spring of 2016 as a weekly after-school program at a high school
in Boston, Massachusetts. I modified the lesson plans based on informal and formal student
feedback. I provide further reflections on the course in Section 4.3.

4.1 Topics

The topics of the first eight one-hour lessons are described briefly below. The remaining two
lessons, each two hours in length, are dedicated to a self-guided lesson on game development
and a free-form final project, respectively. Lesson plans are available in full in Appendix A.

Although the curriculum is short, it covers all of the “core” features of a functional language.
According to Felleisen et al., “all a beginner needs [in a functional language] are [sic.] function
definition, function application, variables, constants, a conditional form, and possibly a
construct for defining algebraic types” [11]. A complete list of topics that ought to be
covered by an introductory curriculum is outside the scope of this paper; however, I briefly
justify each of the topics I chose to include and explain why I chose to exclude certain
potential topics.

• Lesson 1: Drawing with Elm
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This lesson illustrates the importance of precision (unambiguous instructions) in com-
puter science and introduces students to the Elm programming language. Students
leave feeling comfortable creating basic drawings with Elm.

Precision is one of the most fundamental computer science principles as it helps to
explain how and why programs are developed. This lesson purposely glosses over
topics such as functions, which are introduced but not explained in depth. These
topics are revisited and explained in later lessons. The material covered in the first
lesson is limited so that students can begin programming themselves as quickly as
possible. The emphasis on drawing is meant to pique students’ interest and motivate
them to continue the course.

• Lesson 2: Drawing and Functions

This lesson teaches students more advanced drawing commands and introduces the
concept of functions. Students have the opportunity to define functions and create
their own pictures through independent practice.

This lesson demystifies the basic drawing functions used in the first lesson. Students
learn how to use and create their own functions and are formally introduced to ar-
guments. In order to continue an emphasis on graphics and creative expression, the
functions that students develop allow them to draw new shapes by combining existing
functions.

• Lesson 3: Functions and Variables

This lesson teaches students how to use functions for computation. It also introduces
students to the concept and use of variables.

Because functions are such a fundamental topic in functional languages and computer
science more generally, two lessons are devoted to teaching them. While the previous
lesson focuses on developing functions that create drawings, this lesson focuses on
developing functions that perform computations. Variables are implicitly introduced
in previous lessons through arguments, but this lesson explains their use more generally.

• Lesson 4: Types

This lesson introduces students to Elm’s type system. Students learn about primitive
types, function types, partial application, and type annotations.

An introductory course could avoid the explicit introduction of types; however, a basic
understanding of types helps students determine which operations are valid for a given
value. Furthermore, since type annotations serve as a form of documentation, students
can more easily learn how to use new functions independently.

• Lesson 5: Lists and Map

This lesson provides students with a more complete understanding of lists, including
their purpose and their properties. It also introduces the map function, which trans-
forms elements in a list.
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Lists and map are fundamental topics since they allow for repeated computation and
provide an important basis for signals. Since a signal is a value that may change
over time, it can be conceptualized as an infinite list of values. Recursion (another
important technique for repeated computation) is notably absent from the curriculum
and would certainly be included if time permitted. Lists and map were included in
favor of recursion because of the foundation they create for signals, which in turn allow
for the creation of interactive programs.

• Lesson 6: Conditionals

This lesson introduces students to conditionals in Elm. They have the opportunity to
use conditionals in both graphical and non-graphical programs.

Conditionals are one of the “core” topics identified by Felleisen et al. [11]. This lesson
follows lists and map since it allows students to apply more complex and interesting
functions to lists of values. During this lesson, students work though FizzBuzz, a
traditional technical interview question that is meant to test problem-solving skills
[13].

• Lesson 7: Mouse Signals

This lesson introduces students to signals, focusing on mouse signals. Mouse signals
are time-varying values that provide information about the user’s mouse; these signals
include the position of the mouse and whether or not the mouse is being clicked.
Students learn how to use signals to create interactive programs and get further practice
with map and conditionals.

This lesson introduces the most fundamental principle of functional reactive program-
ming. While not a general computer science principle itself, signals are a form of I/O
(input/output), which is commonly regarded as a fundamental topic [12]. Signals are
particularly exciting for students because they can begin to make interactive programs.

• Lesson 8: State and Pattern Matching

This lesson introduces students to Signal.foldp, a function that enables programs
to accumulate state. Students also work with record types and pattern matching to
simplify their increasingly complex programs.

State and pattern matching are the final topics required to create complex interactive
programs. The lesson builds to the creation of a Paint-like program that allows the
user to draw using their mouse and change color using the keyboard.

4.2 Lesson Plan Structure

Each lesson plan begins with a high-level objective, a list of key words and concepts, and
a specific list of assessments. The assessments are meant to measure the degree to which
students learn the material covered in the lesson. They consist of in-class exercises and
homework assignments.
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The majority of each lesson plan is dedicated to a “timeline.” This section includes lecture
components and in-class exercises. The lecture components are meant to read like scripts.
This format is ideal as it caters to a wide variety of potential users. For example, a computer
science teacher who has experience with Elm might only use the lesson plans as a starting
point for his or her own lessons. A teacher with no prior experience may learn the language
him or herself by working through the curriculum before using the lesson plans to teach his
or her students. An independent learner could similarly use the lesson plans to learn Elm
outside a formal educational setting.

Following the three step process proposed by Wiggins et al., I developed each lesson’s as-
sessments first and used them to guide the development of the lecture components [33].

4.3 Course Evaluations

The course objectives described at the start of Section 4 might be summarized by two general
objectives: (1) to provide students with fundamental computer science knowledge and skills
and (2) to increase students’ interest in computer science.

The first objective can be measured through in-class exercises, homework assignments, ex-
ams, and/or final projects. The course presented here primarily takes advantage of in-class
exercises and final projects to assess learning. Since the course was piloted as an optional
after-school program, there was not enough time to allow for an exam. In addition, manda-
tory homework could not be assigned. An optional assignment was distributed after each
lesson, but as expected, only a few students opted to complete it each week.

The second objective, to increase students’ interest in computer science, is more difficult
to measure. A thorough evaluation might consist of a longitudinal study of each student
in the course. A student might demonstrate interest in computer science by completing
more advanced courses, studying computer science independently, or pursuing a career in a
computing-related field. Since this sort of evaluation would be costly and time-consuming, a
course could instead be evaluated by pre and post surveys. These surveys would ask students
to rate their level of comfort and confidence and interest in computer science. The responses
before and after the course would be compared; an ideal computer science course would
increase each student’s comfort, confidence, and interest whenever possible.

The course presented here uses a pre and post survey. This survey was adapted from Wiebe
et al.’s Computer Science Attitude Survey [32] and is available in Appendix D.
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5 Pilot Course

5.1 Structure and Students

I am teaching the introductory course presented in Section 4 to a class of ten high school
students at Boston University Academy, a private school in Boston, Massachusetts. The
course meets once a week for an hour after school. Participation is not mandatory for any
students, all assignments are optional, and no grades are assigned. At the time of writing,
half of the classes have been taught (i.e. up to and including lesson 6).

The students in the course chose to participate after hearing a short presentation on the Elm
programming language. Of the ten students, nine are in tenth grade, and one is in eleventh.
There are five female students, four male students, and one non-binary student.

5.2 Preliminary Observations

Here, I offer some preliminary observations from teaching the first half of the pilot course. I
organize my observations according to the features identified in Section 3.

Simple Syntax and Straightforward Semantics

Elm’s syntax required little time to explain thoroughly. Although students encountered
syntax errors, these errors were usually a result of mistyping rather than misunderstanding
and were therefore resolved quickly and easily.

Elm’s straightforward semantics allowed me to explain programs by manually simulating
their executions. I also encouraged students to perform stepwise evaluation themselves to
find and fix logic errors in their programs. This is a useful technique since it helps students
understand the cause of each problem.

Helpful Error Messages

While students worked on in-class exercises, I observed their interactions with error messages
from the Elm compiler. Students consistently read error messages and attempted to address
issues using the given information. Most of the time, the compiler correctly identified both
the location and the source of the error. This allowed the students to find and fix their errors
quickly.

Although the error messages were largely helpful in guiding students towards resolving er-
rors, there remains room for improvement. In particular, students were confused by error
messages that specified lines that didn’t contain errors. For example, consider the following
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program, which is missing a closing parenthesis (or has an unnecessary opening parenthesis)
on line 4:

1 main = show (getParity 42)

2
3 getParity n =

4 if (n % 2 == 0

5 then "even"

6 else "odd"

Attempting to compile this program results in the following error message:

SYNTAX PROBLEM

I ran into something unexpected when parsing your code!

5| then "even"

I am looking for one of the following things:

a closing paren ’)’

whitespace

The compiler specifies line 5 since it expects a closing parenthesis before the key word then.
This, however, is confusing for students since they are led to believe the correction must also
be made on line 5.

I observed a student as she responded to this error message in lesson 6. She began by
looking at line 5, but when was unable to find any errors, she told me she would “just
give the computer what it’s looking for.” Following the error message’s suggestion, she first
changed line 5 to then "even"). When that resulted in the same error, she added spaces at
the end of the line. Interactions like the one described here were not uncommon in the first
several weeks of the course.

While this example demonstrates that Elm error messages could be improved, students found
them to be helpful in the majority of cases.

User-Friendly Programming Environment

Students did not have any difficulties working with the programming environment at
learn-elm.com/try. Since several students used school-owned computers during the course,
it was crucial that the environment could be used from the browser and did not require
them to download or configure software. The introduction to the environment was brief, and
students did not have any questions about the environment in the first six weeks.
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Several changes could be made to the programming environment to enhance the teaching
and learning experiences. For teachers, it would be helpful to have a graphical user interface
to add distribution code. Currently, only someone with access to the learn-elm.com server
can add new distribution code. For students, it would be helpful to be able to save and
upload programs to and from the server. Currently, programs can only be saved to and
uploaded from local storage.

Ability to Engage Students

Elm’s emphasis on graphics provides a great deal of opportunity for students to be creative.
The first six lessons give students the opportunity to create increasingly complex drawings.
Starting with lesson 7, students begin learning the skills necessary to create interactive tools,
animations, and games.

I found that students were the most excited and immersed in their work when they had
the opportunity to customize their drawings. Students enjoyed sharing their work with
classmates and were more motivated to complete goals they set for themselves than tasks
assigned to them.

Students were also surprisingly motivated to learn skills that might help them pursue job
opportunities. During lesson 6, I mentioned that FizzBuzz (one of the in-class exercises) is
a common interview question for jobs in software engineering [13]. The students found this
exciting and were more motivated to complete the exercise as a result.

I anticipate that students will be most excited about the last two lessons, which give them
the opportunity to work on a final project of their choice.

6 Conclusion

This thesis contributes to the freely and publicly available educational resources for intro-
ductory computer science courses. I present a high school-level curriculum that uses the Elm
programming language. I justify the unusual choice of Elm as an introductory language by
identifying five desirable features of an introductory language and demonstrating that Elm
exhibits each. The curriculum includes twelve hours worth of lesson plans, eight homework
assignments, and infrastructure including an adaption of the Elm online editor. All materi-
als and tools will be made publicly and freely available and are designed for use by teachers
with any level of experience with the Elm language. I am teaching this curriculum in a
pilot course with ten high school students in Boston, Massachusetts. I present preliminary
observations, which point towards the success of the curriculum.

Future work includes soliciting feedback on the curriculum from the Elm community and
improving it accordingly. I also hope to expand the curriculum beyond its current length,
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ideally creating a yearlong course. I will also improve learn-elm.com based on the obser-
vations described in Section 5.2.

Computer science is a rapidly growing and changing field, but educational resources lag
behind. Policymakers, educators, and computer scientists must help to bring the innovation
that characterizes computer science as a whole to computer science education. This thesis
serves as a starting point for experimentation in introductory computer science courses, a
starting point for the creation of educational material using Elm, and a starting point for
ten high school students’ computer science educations.
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A Lesson Plans

Note on formatting: As described in Section 4.2, the following lesson plans are meant to
read like a script. Sections that are written in italics are included as notes to the teacher
and should not be read aloud.

A.1 Drawing with Elm

Objective: This lesson illustrates the importance of precision (unambiguous instructions)
in computer science and introduces students to the Elm programming language. Students
will leave feeling comfortable creating basic drawings with Elm.

Key Words and Concepts: computer science, programming language, Elm, precision,
code, program

Assessments:

• Define or describe: “programming language.”
• Write precise instructions for how to draw an image.
• Explain what a simple Elm program does.
• Draw a smiley face using Elm.

Timeline:

[0:00 - 0:10]

This semester, we are going to learn about computer science using a programming
language called Elm.

Before we get started, please take 10 minutes to fill out a quick survey at
learn-elm.com/csas-survey.

[0:10 - 0:15]

Computer science is the study of computers and algorithms, including their principles, their
designs, their applications, and their impact on society [7].

Programming languages are languages that allow us to communicate instructions to comput-
ers. Programming languages differ from human languages in that they are more structured
and less permissive. In the same way that there are many human languages (English, Span-
ish, French, etc.), there are also many programming languages (C, Java, Python, etc.).

Elm is a programming language that was created by a Harvard student named Evan Czaplicki
in 2012. This language is especially well-suited for creating graphics for the web. We will be
using Elm to create drawings, animations, tools, and games as we learn some fundamental
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computer science concepts.

Let’s take a look at some websites and games that were made using Elm to get a sense of
what kind of projects we’ll be working towards:

• To-do list application: http://todomvc.com/examples/elm/

• Breakout: http://daiw.de/games/breakout/

• Maze: http://daiw.de/games/maze/
• Concentration: http://daiw.de/games/demoscene-concentration/

• Froggy: http://thsoft.github.io/froggy/

[0:15 - 0:25]

Now that we’ve seen some Elm programs, let’s get started on our own! We’ll start by learning
how to use Elm to draw pictures. Let’s think about how we might draw a smiley face on the
board.

Divide the board in half; use the left side for instructions and the right side for drawings.
This will mimic the style of the editor. Ask the students to give you instructions on how to
draw the smiley face. Collect a complete set of instructions before drawing.

When you begin drawing, misinterpret students’ instructions at every opportunity. For exam-
ple, if a student tells you to draw a circle for one of the eyes, draw a circle that is too big or
in the wrong position. In particular, have your misinterpretations emphasize the importance
of specifying the size and location of the shapes.

If time permits, allow students to change their instructions until the smiley face is drawn
correctly. At the end of the exercise, ask the students what lessons they took away. The goal
is for students to recognize the importance of giving unambiguous instructions.

There are many different programming languages, but all enable and require you to write
precise instructions. Precise means “definitely or strictly stated, defined, or fixed” [29]. In
other words, precise instructions are unambiguous and leave no room for interpretation. We
have to be precise when giving instructions to a computer because if there is more than one
way for it to interpret our instructions, it will not know how to proceed.

If we want to draw a shape using Elm, we need to specify:

• the shape
• the size
• the color
• the location

[0:25 - 0:35]

Let’s draw a smiley face, starting with a large yellow circle in the center of the screen.
Navigate to learn-elm.com/examples/smile.
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You’ll notice that the screen is split in half (just like the board). On the left side of the
screen, we have a text editor where we can write instructions. At the top of this editor is a
“compile” button, which is what we’ll press when we’re ready for the computer to execute
the instructions.

The right side of the screen is essentially the computer’s canvas. Today, we’ll be instructing
the computer to draw shapes; the computer will do so on the right half of the screen.

Here are the instructions that draw a large yellow circle:

import Color exposing (..)

import Graphics.Collage exposing (..)

main =

collage 300 300

[ circle 100

|> filled yellow

|> move (0,0)

]

Let’s walk through these instructions line by line to get a better understanding of what’s
going on.

The first two lines tell the computer that we’re going to be using something called Color and
something called Collage. We’ll see where we use each in just a moment. In future weeks,
we’ll discuss exactly how these two lines work, but for now we can understand them at a
high level.

main is a special word in Elm. It tells the computer where the instructions start. We’ll always
have to have the word main somewhere in our instructions. Next we have collage 300 300.
This tells the computer that we will be drawing in an area that is 300 by 300 units.

Draw a large square on the board to illustrate.

Now the computer will treat this area as a Cartesian coordinate system. This will allow us
to specify exactly where we want to draw our shapes.

Draw axes for reference.

Now the computer is going to draw any shapes listed between the square brackets after
collage 300 300. Here, we’re asking the computer to draw a circle. We do this with the
word circle. We then specify the radius of the circle, in this case 100. This ensures that
the computer will know what size to make the circle.

We need to specify two more things: the color and the location. You’ll notice we have the
characters |>. This tells the computer to apply the following operations to the circle we’re
drawing. filled yellow tells the computer we want to color the circle yellow. Finally, move
(0,0) tells the computer that we want the center of the circle to be at position (0, 0), the
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origin of the coordinate system.

Let’s pretend to be the computer and execute these instructions on the board. We will start
at the origin then draw a circle with radius 100.

Draw the circle on the board, remembering that the area is 300 by 300. It might be helpful
to label the axes where they meet the area’s boundary. Clockwise, starting from the top: (0,
150), (150, 0), (0, -150), (-150, 0). Color the circle yellow.

When we press “compile,” the computer reads and executes the instructions just like we did
on the board.

Notice that the instructions we gave the computer left nothing up to interpretation. Another
word for these precise instructions is code. When code is put together to accomplish some
task, in this case drawing a yellow circle, it is called a program.

Congratulations, we’ve written our first Elm program!

[0:35 - 0:40]

Suppose we want to change our smiley face from yellow to red. All we would have to do is
change yellow to red and press “compile.”

Take a few minutes to try changing the color again. Then try making the circle bigger.
What’s the biggest you can make the circle without cutting off part of the shape? Why?

Reconvene and discuss the answers. In order to increase the size of the circle, change 100
to a number greater than 100 and less than or equal to 150. 150 is the maximum radius of
the circle because the collage is 300 units wide and tall.

[0:40 - 0:50]

Now we have our smiley face’s face, let’s add two eyes and a mouth. We can add the first
eye by adding another circle to the collage. Let’s add a new line after move (0,0) and add
a comma. Then we can copy and paste the code that drew the first circle. Now our code
looks as follows:

main =

collage 300 300

[ circle 100

|> filled yellow

|> move (0,0)

, circle 100

|> filled yellow

|> move (0,0)

]

It’s very important that each shape is separated by a comma. If you forget this comma, the
computer will not understand that we are trying to draw multiple shapes. After checking
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that we have a comma between the circles and that we don’t have any typos, we can press
“compile.” Even though our program executes successfully (we don’t see any errors), our
drawing hasn’t changed. This is because the computer is just drawing two identical yellow
circles directly on top of one another.

Let’s try making the second circle smaller and black, so it looks more like an eye. Now our
code is as follows:

main = :

collage 300 300

[ circle 100

|> filled yellow

|> move (0,0)

, circle 15

|> filled black

|> move (0,0)

]

If we press “compile” again, we’ll see a small black circle on our original yellow circle. What
would have happened if we had switched the order of these two shapes? Our code would be:

main =

collage 300 300

[ circle 15

|> filled black

|> move (0,0)

, circle 100

|> filled yellow

|> move (0,0)

]

If we press “compile,” we’ll see that the black circle disappears! This is because the computer
follows our instructions exactly. It draws the shapes in the order that they appear in our
code. So it draws a small black circle first then draws the bigger yellow circle on top. If we
could peel away the yellow circle, we’d see the black circle hiding underneath.

Returning to our correct code, we notice that our eye is directly in the center of the circle.
How can we move it left and up?

Let’s start by moving it to the left. Right now, we’re drawing the circle at (0, 0). We know
that going left on the Cartesian coordinate system means decreasing the value of x. So let’s
try changing (0,0) to (-30,0). If we press “compile,” we’ll see that the eye moved to the
left, as we hoped!

We also know that going up on the Cartesian coordinate system means increasing the value
of y. So let’s try changing (-30,0) to (-30,30). If we press “compile” again, we’ll see that
the eye moved up, as we hoped!
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Our complete code is as follows:

main =

collage 300 300

[ circle 100

|> filled yellow

|> move (0,0)

, circle 15

|> filled black

|> move (-30,30)

]

[0:50 - 1:00]

Take the remaining time to try adding a second eye to your smiley face.

If you have time left over, try to add a trapezoid for the mouth. The following instruction
will create a black trapezoid at position (0, 0):

polygon [(-50,25), (-20,0), (20,0), (50,25)]

|> filled black

|> move (-30,30)

Other shapes you can try out are rect and oval. For each, you have to specify the desired
width and height. For example if you wanted a rectangle 10 units wide and 5 units high,
you would write: rect 10 5

Ultimately, your smiley face should look something like this:

but feel free to get creative!

Finished code:

(Available at: learn-elm.com/examples/finished-smile.)

import Color exposing (..)

import Graphics.Collage exposing (..)

main =

collage 300 300

[ circle 100

|> filled yellow

|> move (0,0)
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, circle 15

|> filled black

|> move (-30,30)

, circle 15

|> filled black

|> move (30,30)

, polygon [(-50,25), (-20,0), (20,0), (50,25)]

|> filled black

|> move (0,-60)

]
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A.2 Drawing and Functions

Objective: This lesson teaches students more advanced drawing commands and introduces
the concept of functions. Students will have the opportunity to define functions and create
their own pictures through independent practice.

Key Words and Concepts: function, argument

Assessments:

• Define or describe: “function” and “argument.”
• Write a simple Elm function.
• Draw a house using Elm.

Timeline:

[0:00 - 0:10]

Last week, we learned how to use Elm to draw a smiley face. We worked together to draw
the face and the left eye with the following code.

main =

collage 300 300

[ circle 100

|> filled yellow

|> move (0,0)

, circle 15

|> filled black

|> move (-30,30)

]

You then had the opportunity to add the right eye and the smile yourself. To draw the right
eye, we’ll have to create another small black circle. We can add the following shape to our
list:

circle 15

|> filled black

|> move (30,30)

We know from experience that circle 15 will draw a circle with a radius of 15 units. If we
had instead written circle 20, the computer would have drawn a circle with a radius of 20
units. In general, circle always draws a circle, and the number that follows specifies the
radius.

circle is an example of a function in Elm. Functions are simply pieces of code that take
in some input (also known as arguments) and perform some action.

In this case, the name of the function is “circle.” The input it takes in is the radius of the
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circle, and the action it performs is creating a circle of the specified radius.

At the end of last week’s lesson, we briefly mentioned three new shapes: rect, oval, and
polygon. Like circle, these are also functions. rect and oval each take two arguments: the
width and height of the desired shape. polygon takes one argument: a list of points that
define the vertices of the polygon.

Let’s see if we can use the polygon function to make a triangle. Since a triangle has three
vertices, we need three points. Suppose we put the first vertex 30 units above the origin.
We can represent this point as (0, 30). Let’s put the second vertex 15 units to the left of
the origin. This point is (-15, 0). Let’s put the third and final vertex 15 units to the right
of the origin. This point is (15, 0).

Just like when we create a list of shapes, we’re going to put these points inside square braces
and separate them with commas. In this case, we would write: [(0,30), (-15,0), (15,0)]

This will be our the input to the polygon function. So polygon [(0,30), (-15,0), (15,0)]

will create a triangle.

[0:10 - 0:20]

Two other functions that we encountered last week are filled and move.

filled takes two arguments: the color that we want to color the shape and the shape itself.
So if we wanted to create a black circle with radius 15, we could write:

filled black (circle 15)

In math, the order of operations (PEMDAS) dictates that operations within parentheses
happen first. It works the same way in Elm. So (circle 15) first creates a circle of radius
15. This circle is then used as input to filled, which creates a black circle.

In our smiley face code, however, we wrote this a little differently:

circle 15

|> filled black

If we wanted to write this on one line, it would look like:

(circle 15) |> filled black

Remember that we said the characters |> apply the following function to the circle. So the
following two lines of code are equivalent:

(circle 15) |> filled black

filled black (circle 15)

Since these statements are the same, we can choose whichever one makes our code easier to
read.
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Similarly, move is a function that takes a point (coordinate pair) and a shape to move to that
point. If we want to move a black circle with radius 15 to the point (-30, 30) then we could
write:

move (-30,30) (filled black (circle 15))

When the computer sees this line of code, it first creates a circle of radius 15, then creates a
black circle of radius 15, then creates a black circle of radius 15 centered at (-30, 30). You
can start to see how this format might get messy or confusing. The following structure is
equivalent, but it makes the order of operations much more clear:

circle 15

|> filled black

|> move (-30,30)

collage is also a function. What are its arguments? A number for the width, a number for
the height, and a list of shapes. What does the function do? Draws the specified shapes in
an area specified by the width and height.

[0:20 - 0:30]

Let’s get back to using Elm to draw. Suppose we want to draw a house. To give ourselves
plenty of space, let’s start with a collage that is 500 by 500 units.

Let’s start by making the base of the house a red square. We could use the rectangle function
we introduced last week, but we can use an even simpler function, square. This function
takes one argument, the length of an edge, and creates a square.

If we want a square that is 200 by 200 units appearing at the bottom of the collage, we
should put the center of the square 100 units above the bottom of the collage. So the center
of the square should be at (0, -150). Whenever we’re unsure how to move our shape exactly
where we want it, we can sketch it out on a coordinate plane as follows:

This gives us the following code:

main =
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collage 500 500

[ square 200

|> filled red

|> move (0,-150)

]

Take 5 minutes to try drawing a triangular roof for the house. Recall that we can use the
polygon function, which takes a list of points as input.

Solution:

, polygon [(-100,0), (100,0), (0,100)]

|> filled black

|> move (0,-50)

Now suppose that we wanted to add a window to our house. We can add a small white
square with two thin black rectangles to create window panes:

, square 50

|> filled white

|> move (-50,-100)

, rect 50 5

|> filled black

|> move (-50,-100)

, rect 5 50

|> filled black

|> move (-50,-100)

If we add these shapes to our collage and press “compile,” we’ll see a house with a window.
(Code available at: learn-elm.com/examples/house-1.)

Now suppose we want to add another a window on the right side of the house. We can copy
and paste all of the code we wrote for the first window, just changing the location. For
example, we could replace (-50, -100) with (50, -100).
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This works perfectly well, but suppose we want yet another window. We would have to copy
and paste our code again and change the location of the three new shapes. This would leave
us with three sets of three shapes. The repetition would make our program unnecessarily
long and difficult to read. Furthermore, if we decided to make any changes to the windows,
we’d have to make changes to each of the three different code segments. With each new
window, it will become increasingly difficult to make changes or find mistakes.

Luckily, we have a solution to this problem. In the same way that we can use functions like
circle and square, we can make our own functions.

Let’s define a function called window, which creates a window using a square and two rect-
angles, as before. Below main, we can write:

window = group

[ square 50

|> filled white

|> move (-50,-100)

, rect 50 5

|> filled black

|> move (-50,-100)

, rect 5 50

|> filled black

|> move (-50,-100)

]

group is a new function that simply takes in a list of shapes and groups them together into
a single shape. We have just defined a function, called window, that creates a window. Now,
any time the computer encounters the word window, it will know to create a window using
the new function we defined. We can now change the main function to the following:

main =

collage 500 500

[ square 200

|> filled red

|> move (0,-150)

, polygon [(-100, 0), (100, 0), (0, 100)]

|> filled black

|> move (0,-50)

, window

]

[0:30 - 0:35]

Our new function certainly makes our code easier to read and understand, but it still only
creates a window in one particular location, in this case centered at (-50, 100). We’d like to
be able to specify a new location for each window we create.

In order to do this, we can define our function so that it takes a single argument: the
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position of the window in the form (x, y). This is a pair of numbers that represents the
x-coordinate and y-coordinate, respectively. We simply add (x,y) after the name of the
function and before the equal sign. Everywhere we see (-50,-100) in our original function,
we can instead use (x,y). The computer will replace all instances of (x,y) with whatever
location is given to the function as an argument.

window (x,y) = group

[ square 50

|> filled white

|> move (x,y) ,

, rect 50 5

|> filled black

|> move (x,y) ,

, rect 5 50

|> filled black

|> move (x,y)

]

If we tried to compile our code now, we’d get a bunch of errors. This is because we used the
window function in the main function without giving it any arguments. We need to change
window to window (-50,-100). This will tell the computer to draw a window at (-50, 100),
using the function we defined. Now if we want to draw a second window at (50, -100), we
could just add window (50,-100) to our list of shapes, as follows:

main =

collage 500 500

[ square 200

|> filled red

|> move (0,-150)

, polygon [(-100,0), (100,0), (0,100)]

|> filled black

|> move (0,-50)

, window (-50,-100)

, window (50,-100)

]

If we press “compile” now, we’ll see that the computer now draws two windows, one at each
of the specified locations. We could add as many windows as we want without repeating
much code at all. Our code is also easier to understand because the name of the window
function makes it obvious what it does.

(Code available at: learn-elm.com/examples/house-2.)

[0:35 - 1:00]

For the rest of the class, you will have the opportunity to continue working on your house.
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Here are a few goals you should try to accomplish:

1. Add a sky and grass behind the house.
2. Define a function that creates a door, and add the door to your house.
3. Define a function that creates a bush, and add several bushes around your house.

Once you finish these tasks, you should spend the rest of your time customizing your house
in any way you like! Be sure to create new functions whenever appropriate.

For reference, here’s a list of functions that we can use to create shapes (argument descrip-
tions are written in caps):

• rect WIDTH HEIGHT

• oval WIDTH HEIGHT

• square EDGE LENGTH

• circle RADIUS

• ngon NUMBER OF SIDES RADIUS

• polygon LIST OF VERTICES

Finished code:

(Available at: learn-elm.com/examples/finished-house.)

import Color exposing (..)

import Graphics.Collage exposing (..)

main =

collage 500 500

[ square 500

|> filled blue

|> move (0,0)

, rect 500 50

|> filled green

|> move (0,-225)

, square 200

|> filled red

|> move (0,-150)

, polygon [(-100,0), (100,0), (0,100)]

|> filled black

|> move (0,-50)

, window (-50,-100)

, window (50,-100)

, door

, bush (-50,-225)

, bush (-80,-225)

, bush (50,-225)

, bush (80,-225)

]
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window (x,y) = group

[ square 50

|> filled white

|> move (x,y)

, rect 50 5

|> filled black

|> move (x,y)

, rect 5 50

|> filled black

|> move (x,y)

]

door = group

[ rect 50 80

|> filled black

|> move (0,-210)

, circle 5

|> filled white

|> move (15,-215)

]

bush (x,y) = group

[ circle 25

|> filled darkGreen

|> move (x,y)

]
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A.3 Functions and Variables

Objective: This lesson will teach students how to use functions for computation. It will
also introduce students to the concept and use of variables.

Key Words and Concepts: variable, return, evaluate

Assessments:

• Write Elm functions to
– draw a simple picture (e.g. cloud, balloon).
– draw the minute hand on a clock.
– perform simple mathematical computations (e.g. addition, multiplication).
– calculate the roots of a second-order polynomial using the quadratic equation.

Timeline:

[0:00 - 0:25]

Last week, we learned how to use functions to make drawing easier. Today we’ll see that
functions can also be used for computation.

Let’s return briefly to our house drawings. Suppose we want to add a tree. We can define
a function called tree that takes the position as an argument. We’ll start by drawing the
trunk of the tree as a brown rectangle at the given position:

tree (x,y) = group

[ rect 20 150

|> filled brown

|> move (x,y)

]

Now suppose we want to add a green circle for the leaves of the tree. We could update our
function as follows:

tree (x,y) = group

[ rect 20 150

|> filled brown

|> move (x,y)

, circle 50

|> filled green

|> move (x,y)

]

If we add tree (-180,-160) to our list of shapes and press “compile,” we’ll see that the circle
ends up in the center of the rectangle. In the first lesson, we discussed how we could increase
the y-coordinate of a shape to move it upwards. If we try changing -160 to a smaller number
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like -100, we’ll see that the whole shape moves up, but the circle is still in the middle of the
rectangle.

Instead, we need to give the circle and rectangle different y-coordinates, each relative to the
given location. We could, for example, put the given location (x,y) between the leaves and
the trunk. Let’s sketch out our tree to determine the coordinates we want to give our circle
and rectangle.

It’s clear from our drawing that we want the y-coordinate of the rectangle to be y - 75 and
the y-coordinate of the circle to be y + 25. So we can update our code as follows:

tree (x,y) = group

[ rect 20 150

|> filled brown

|> move (x, y-75 )

, circle 50

|> filled green

|> move (x, y+25 )

]

If we compile our code again, we’ll see that the circle now sits on top of the rectangle, as
expected.

Take 15 minutes to create a function that draws a cloud using several ovals. For example,
your cloud might look like this:
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[0:25 - 0:40]

Let’s leave our houses behind for now, and look at a new program:

import Color

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main =

collage 500 500

[ image 400 400 "http ://learn -elm.com/assets/clock.png"

|> toForm

|> move (0,0)

]

(Code available at: learn-elm.com/examples/clock-1.)

There are two new functions here: image and toForm. image is a function that allows us to
use an existing image in our drawings. It takes three arguments: a width, a height, and an
URL in quotation marks. image 400 400 "http://learn-elm.com/assets/clock.png" tells
the computer to create a 400 by 400 unit version of the image found at
http://learn-elm.com/assets/clock.png.

We’ll learn more about why we need to use toForm next lesson, but for now, know that it
allows us to draw the image in the same way that we can draw shapes.

If we compile this code, we’ll see that it draws the face of a clock. Let’s try to add an
hour hand so that the clock shows 12 o’clock. We’ll need a few new functions. segment is a
function that takes two points and creates a line segment connecting them. traced takes a
line-style and a segment and draws the line segment with the given style. We can put these
together to get a piece of code like the following:

segment (0,0) (0,100)

|> traced (solid black)

This piece of code draws a solid, black line-segment from (0, 0) to (0, 100). If we add this
to our list of shapes and press “compile,” we’ll see that an hour hand is drawn on our clock!
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Suppose we now want to have our hour hand point to the 1 on clock instead of the 12. The
line-segment will still start at the center of the clock, (0,0), but we have to figure out where
the line-segment should end. We could try to guess points until we found one that looks
good, but it would take a long time if we wanted to do this for all of the numbers between
1 and 11. It would be nice if we could come up with a more general formula that will work
for any number.

If your students have not yet encountered trigonometry, you can skip straight to the formulas
rather than working through their derivation. Replace angle = hour * 30 with angle = hour

* (360 / 12), and explain that 360 is the number of degrees in the circle and 12 is the
number of hours on the clock. Also note that 100 is the length of the hour hand.

Let’s go over a little math that will help us come up with this formula. Let’s make the line
100 units long; that was the length of the line that we drew to point to 12. Our hour hand
shouldn’t change length it moves.

There are 360 degrees in a circle. Since the numbers on the clock break the circle into 12
pieces, then we can divide 360 by 12 to get that there are 30 degrees between each number
on the clock. Since our goal is to figure out the x and y coordinates of the end of the hour
hand, we can label our drawing as follows:

We can use some basic trigonometry to find that sin(30◦) = x/100 and cos(30◦) = y/100.
The formulas for x and y are therefore x = 100× sin(30◦) and y = 100× cos(30◦).

We said that there are 30◦ between subsequent numbers on the clock. If we want to calculate
the appropriate angle for a different hour, we can just multiply the hour by 30◦.

Our final formulas are as follows:

angle = hour × 30
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x = 100× sin(angle)
y = 100× cos(angle)

[0:40 - 0:50]

Let’s use these formulas to write a function that will calculate the end position of the clock’s
hour hand given the hour. As we learned last week, we can define a function by writing
the name of the function, followed any arguments that it takes. If we call our function
hourHandEnd and the argument hour, then our function begins

hourHandEnd hour =

Now we want to calculate angle, x, and y so that we can use x and y to draw our line segment.
We can calculate and store these values in variables. A variable is simply a symbol that
represents a value. In this case, we want 3 variables: angle, x, and y.

In order to tell the computer that we’re creating a variable, we use the special words let

and in. To create a variable called angle we would write:

let angle = hour * 30 in

This tells the computer that in the code that follows, replace the word angle with the value
of hour * 30. Similarly, we can create variables for x and y:

let angle = hour * 30 in

let x = 100 * sin (degrees angle) in

let y = 100 * cos (degrees angle) in

Notice that these lines of code look almost identical to the formulas we defined earlier. Also
notice that we have to include the word degrees to tell the computer that angle is measured
in degrees. Now that we have calculated the values of x and y, we can just add (x,y) to the
end of the function:

hourHandEnd hour =

let angle = hour * 30 in

let x = 100 * sin (degrees angle) in

let y = 100 * cos (degrees angle) in

(x,y)

Now, if we use the function hourHandEnd, it will give us back the position it calculated, (x,y).
In computer science, we say that the function returns or evaluates to the position, (x,y).

We can now use this function within the code that draws our line segment. For example, if
we want to draw the hour hand so that it points to 2, we would write:

segment (0,0) (hourHandEnd 2)

|> traced (solid black)

(Code available at: learn-elm.com/examples/clock-2.)
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Let’s go over what the computer is doing when it sees hourHandEnd 2. First, it finds the
function called hourHandEnd. It then executes the code within the function, using the value
2 whenever the variable hour is encountered. So when it executes the code

let angle = hour * 30 in

it computes 2 * 30, using the value 2 for the variable hour. The computer will then use the
value 60 (since 2 * 30 = 60) whenever the variable angle is encountered. Similarly, when
the computer executes the code

let x = 100 * sin (degrees angle) in

it computes 100 ∗ sin(60◦), using the value 60 for the variable angle. The computer will
then use the value 86.6 (since 100 ∗ sin(60◦) = 86.6) whenever the variable x is encountered.
Finally, when the computer executes the code

let y = 100 * cos (degrees angle) in

it computes 100∗cos(60◦), using the value 60 for the variable angle. The computer will then
use the value 50 (since 100 ∗ cos(60◦) = 50) whenever the variable y is encountered.

As a result, the last line of the function, (x,y), evaluates to the pair (86.6, 50). This is then
used as the end position of the line segment. When we press “compile,” we’ll see that we
drew the hour hand as expected!

[0:50 - 0:60]

On your own, define another function called minuteHandEnd that takes the current minute
(between 0 and 59) as input and calculates the end position of the minute hand. Remember
that there are 360 degrees in a circle and 60 minutes total. Make your minute hand longer
than your hour hand and a color other than black.

If you have time left over, try writing an additional function, hands, that takes two arguments,
hour and minute, and creates both hands. (In other words, adding hands 12 15 to your list
of shapes should draw the clock’s hands to show 12:15.)

Finished code:

(Available at: learn-elm.com/examples/finished-clock.)

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main =

collage 500 500

[ image 400 400 "http ://learn -elm.com/assets/clock.png"

|> toForm

|> move (0,0)
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, hands 12 15

]

hands hour minute = group

[ segment (0,0) (hourHandEnd hour)

|> traced (solid black)

, segment (0,0) (minuteHandEnd minute)

|> traced (solid red)

]

hourHandEnd hour =

let angle = hour * 30 in

let x = 100 * sin (degrees angle) in

let y = 100 * cos (degrees angle) in

(x,y)

minuteHandEnd minute =

let angle = minute * 6 in

let x = 140 * sin (degrees angle) in

let y = 140 * cos (degrees angle) in

(x,y)
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A.4 Types

Objective: This lesson will introduce students to Elm’s type system. Students will learn
about primitive types, function types, partial application, and type annotations.

Key Words and Concepts: type, functional language, partial application, type annotation

Assessments:

• Define or describe: “type” and “partial application.”
• Identify the types of values and create examples of values with specified types.
• Write type annotations for Elm functions.
• Write a “hello world” program given the type annotations of new functions.

Timeline:

[0:00 - 0:10]

Let’s start by looking at a simple program:

import Color exposing (..)

import Graphics.Collage exposing (..)

main =

collage 500 500

[ circle 100

|> filled red

|> move (0,0)

]

(Code available at learn-elm.com/examples/types.)

We’ve learned that this code creates a 500 by 500 area and draws a red circle with radius of
100 at (0, 0). We can press “compile” to confirm this.

What would happen if we changed red to 10? As humans, we recognize that it makes sense
to color a shape red, but it doesn’t make sense to color a shape 10. Will the computer
recognize this? We can press “compile” to find out.

We receive the following error message:

TYPE MISMATCH

The argument to function ‘filled’ is causing a mismatch.

7| |> filled 10
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Function ‘filled’ is expecting the argument to be:

Color

But it is:

number

Seems like the computer recognizes the mistake too. It prints the line with the error and
displays the 10 in red to show us that there is something wrong with using 10 as input to the
filled function. It goes on to tell us that there is a “conflict” between Color and number.
This shouldn’t be too surprising since we knew we were supposed to give filled a color (like
red) and instead we gave it a number (10). If we look at the top of the error message, we’ll
see that the computer calls this a “type mismatch.”

A type is a categorization of a value that determines the operations that can be performed
with it [28]. The type of red is Color, and we’ve seen that we can use Colors to fill shapes.
blue, yellow, green, etc. also have the type Color. The type of 10 is number, and we’ve seen
that we can use numbers to specify the sizes of shape. Other values of type number are -1,
15, 0.5, etc.

number is special in that it is a type that includes two more specific types: Int and Float.
Int stands for integer and is the type of whole numbers. Float is the type for numbers with
decimals. -1 and 15 are Ints while 0.5 is a Float.

What other types have we seen? Recall that the argument to the function move is a pair of
numbers. The type of (0,0) is (number, number). The type of a pair is made of up of the
types of each of the values in the pair.

In the same way that we can have a pair of type (number, number), we can have a pair of type
(Color, Color). For example (red, red) and (red, black) both have type (Color, Color).
We can also have a pair that contains values with two different types. For example, (50,

black) has type (number, Color). Note that (black, number) has type (Color, number).
In a pair, order matters!

Pairs can contain values of any type. Pairs can even contain pairs! For example, the type of
((1, 2), (3, 4)) is ((Int, Int), (Int, Int)).

What is an example of an expression with type

((Color, Color), (Int, Int))?

Possible solution: ((red, black), (10, 20))

(Float, (Int, Color))?

Possible solution: (0.5, (10, red))
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What is the type of the expression

((1.5, 0.5), red)?

Solution: ((Float, Float), Color)

(red, (blue, (yellow, black)))?

Solution: (Color, (Color, (Color, Color))

[0:10 - 0:20]

Elm is a functional language. This means that functions are treated as values. Since all
functions are values, this means that functions must also have types. Similar to pairs, the
types of functions are made up of other types. Consider the following function:

double x = 2 * x

This is a function that takes a number as input and evaluates to a number. The type of
double is therefore number -> number.

Consider another function:

add_pair (x,y) = x + y

This is a function that takes a pair of numbers as input and evaluates to a number. The
type of add_pair is therefore (number, number) -> number.

Consider another similar function:

add x y = x + y

This is a function that takes two numbers as input and evaluates to a single number. The
type of add is therefore number -> number -> number.

Consider one more similar function:

mult_pair (x,y) z = (x*z, y*z)

This is a function that takes a pair of numbers and a number as input and returns a pair
of numbers. The type of mult_pair is therefore (number, number) -> number -> (number,

number). Like pairs, notice that the order matters.

What is the type of

add_pair z (x,y) = (x+z, y+z)?

Solution: number -> (number, number) -> (number, number)

add_pairs (x,y) (z,w) = (x+z, y+w)?
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Solution: (number, number) -> (number, number) -> (number, number)

What is an example of a function that has the type

(number, number) -> (number, number)?

Possible solution: switch (x,y) = (y,x)

number -> (number, number)?

Possible solution: twice x = (x,x)

[0:20 - 0:30]

Let’s return to the function add:

add x y = x + y

As we saw earlier, the type of add is number -> number -> number.

What is the type of add 1 2? We know that add 1 2 would return 3, which is a number.
So the type of add 1 2 is number. What is the type of add 1? This is essentially a function
that takes a number and returns the sum of 1 and the input. The type is therefore number

-> number. If we give a function some, but not all, of its arguments, it is called partial
application.

We can use our add function to define a function inc (short for increment) that takes one
argument and adds 1 to it.

inc x = add 1 x

Now if we want to add 1 and 2, we can use add 1 2 or inc 2 since inc is equivalent to add 1.

Suppose we had a function called sub, defined as follows:

sub x y = x - y

If we wanted to write a function dec that decrements (subtracts 1) a number, we could not
write:

dec x = sub 1 x

This will subtract the argument from 1 instead of subtracting 1 from the argument. More
generally, remember that the order of the arguments matters. The correct function would
be:

dec x = sub x 1

[0:30 - 0:40]

We can include the types of values in our programs using type annotations. For example:
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add : number -> number -> number

add x y = x + y

Type annotations begin with the name of the value and a colon, followed by the type of the
value. Type annotations are especially useful for functions, since they help to explain how
to use the function. In particular, they give the types of the arguments and the type to
which the function evaluates. Type annotations also allow the computer to verify that we
are using values appropriately. For example, if we tried to compile

add : Color -> number -> number

add x y = x + y

we would get another “type mismatch” between Color and number because the computer
realizes we can’t add a value of type Color and a value of type number and expect to get a
value of type number.

Let’s come up with type annotations for a few more functions. Consider the program we
saw at the beginning of the lesson:

main =

collage 500 500

[ circle 100

|> filled red

|> move (0,0)

]

This program involves a number of types we haven’t yet named. An Element is a graphical
element that can be displayed in the browser. A Shape is simply a shape, like a rectangle,
circle, etc. A Form is a graphical element that can be manipulated or changed. For example,
a Form can be moved, rotated, and scaled.

Here are the type annotations for the functions in this program:

main : Element

collage: Int -> Int -> List Form -> Element

circle : Float -> Shape

filled : Color -> Shape -> Form

move : (Float , Float) -> Form -> Form

These type annotations fit with our understanding of these functions, but it would have been
difficult to figure them out ourselves. Luckily, the people who wrote these functions wrote
a type annotation for each function, which we can reference. Once you become comfortable
with types, you can look up any function and very quickly get an idea of how to use it!

[0:40 - 1:00]

Last week, we saw a new type; let’s give it a name. One of the inputs to the image function is
a URL contained in quotation marks. Any series of characters contained in quotation marks
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is called a String. For example, "Hello, world" is a String, as is "Elm" and "computer

science".

Note that strings need quotation marks. hello, for example, is not a string. Why not? We
need to be able to distinguish between variable names and strings.

Below are some new functions. Using the types to guide you, use these functions to create a
program that displays a string — perhaps “Hello, world!” or your name. Experiment with
different styles, and don’t forget to add type annotations to your functions!

fromString : String -> Text

Convert a string into text which can be styled and displayed.

height : Float -> Text -> Text

Set the height of some text.

color : Color -> Text -> Text

Set the color of some text.

bold : Text -> Text

Make text bold.

italic : Text -> Text

Make text italic.

text : Text -> Form

Create some text.
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A.5 Lists and Map

Objective: This lesson will provide students with a more complete understanding of lists,
including their purpose and their properties. It will also introduce the map function, which
transforms elements in a list.

Key Words and Concepts: list, element, map

Assessments:

• Define or describe: “list.”
• Write a program that uses List.map to transform a list of integers.
• Write a program that uses List.map, List.map2, or List.map3 to draw a

– flower.
– colored target.
– grayscale.

Timeline:

[0:00 - 0:05]

Let’s start by looking at a simple program that draws a flower:

import Color exposing (..)

import Graphics.Collage exposing (..)

main =

collage 500 500

flower

petal x y deg =

oval 100 50

|> filled yellow

|> rotate (degrees deg)

|> move (x,y)

flower =

[ petal -60 0 0

, petal 60 0 0

, petal 0 -60 90

, petal 0 60 90

, petal -45 -45 45

, petal -45 45 -45

, petal 45 -45 -45

, petal 45 45 45

, circle 35

|> filled black
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|> move (0,0)

]

(Code available at learn-elm.com/examples/flower-1.)

As a review of types, let’s take a few minutes to add type annotations to each function.

Solution:

main : Element

petal : Float -> Float -> Float -> Form

flower : List Form

Let’s focus on the type of flower. We’ve seen lists before (as argument to collage and
polygon), but we have not yet discussed them in depth. Lists are ordered collections of
things. We call each thing in a list an element. In Elm, lists are required to contain
elements of the same type. This allows us to give types to lists. In the case of flower, we
have a list of Forms.

[0:05 - 0:10]

So far, we’ve only seen lists of Forms, but we can have a list of elements of any type. For
example, consider a list of Ints:

[1,2,3,4,5,6,7,8,9,10]

Notice that just like lists of Forms, lists of Ints are contained in square brackets and the
elements are separated by commas. If we want all integers in some range, we can also use
the following shorthand:

[1..10]

If we want to be able to see the list displayed on the right side of the screen, we can use a
function called show.

show : a -> Element

Convert anything to its textual representation and make it displayable in the browser.

56



The following program will display a list of integers between 1 and 10, inclusive:

import Graphics.Element exposing (..)

main : Element

main = show [1..10]

Take a few minutes to write a program that displays the even numbers between 2 and 20,
inclusive.

Solution:

import Graphics.Element exposing (..)

main : Element

main = show [2,4,6,8,10,12,14,16,18,20]

[0:10 - 0:20]

What if instead of creating a list of even numbers between 2 and 20, we wanted to create a
list of even numbers between 2 and 200? We could take the time to write each of the 100
numbers out, but this would be tedious and error-prone.

We know that it’s easy to make a list of integers between 1 and 100, inclusive: [1..100] If
we could simply multiply each of these integers by 2, then we’d have our list of even numbers
between 2 and 200. Let’s write a function that multiplies a given integer by 2:

mult2 : Int -> Int

mult2 x = 2 * x

Since we want to apply the same function to each element in a list, we can use a special
function called map. List.map takes a function and a list and returns the result of applying
the function to each element in the list. (The result will also be a list.)

So if we write List.map mult2 [1..100], it will apply mult2 to each integer in the list. We
can now define main as follows:

main : Element

main =

show (List.map mult2 [1..100])

(Code available at: learn-elm.com/examples/map-mult2.)

If we make these changes and press “compile,” we’ll see the even integers between 2 and 200,
inclusive.

Take a few minutes to write a program that uses map to display all multiples of 3 between 0
and 150, inclusive.

[0:20 - 0:25]
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Let’s return to our flower example. Suppose we want to make our flower twice its current
size. One option is to go through the list of forms and change the arguments to each of the
shape functions. But with so many forms (each with one or two arguments), that would be
tedious and error-prone. Another option is to use the scale function:

scale : Float -> Form -> Form

Scale a form by a given factor.

Since scale takes a float and a form, we could apply scale 2 to each of the forms in the
list. To simplify this even further, we could define a function that takes a form as input and
returns the same form, scaled by a factor of 2:

double : Form -> Form

double f = scale 2 f

Since we want to apply double to each form in the list, we can use List.map again:

main : Element

main =

collage 500 500

(List.map double flower)

(Code available at learn-elm.com/examples/flower-2.)

If we press “compile,” we’ll see that flower doubles in size, as desired.

[0:25 - 0:30]

Let’s consider the type of List.map:

map : (a -> b) -> List a -> List b

Apply a function to every element of a list.

Notice that a and b are not types; they are just placeholders for types. For example, we used
map with double, which has type Form -> Form. In this case, both a and b are Form. This
tells us that the second argument to map must be a list of forms (List Form) and the output
of map will be a list of forms (List Form).

We can also use map with types other than Form. For example, suppose we wanted to divide
each integer in a list by 2. We would begin by writing a function that takes an integer and
returns half its value. Since the result might not be an integer, this will be a function from
integers to floats. In order to treat the input as a float, we can use the function toFloat.

toFloat : Int -> Float

Convert an integer into a float.

We can define our functions as follows:

half : Int -> Float

half i = (toFloat i) / 2
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If we use half as the first argument to map, then we know the second argument should be
a list of integers (List Int), and the output will be a list of floats (List Float). In other
words, we replace a in the type of map with Int and we replace b with Float.

Now we can use map to apply this function to the integers between 1 and 10, inclusive:

List.map half [1..10]

Our entire program would be:

import Graphics.Element exposing (..)

main : Element

main =

show (List.map half [1..10])

half : Int -> Float

half i = (toFloat i) / 2

[0:30 - 0:40]

Let’s see how we can use map to transform a list of Ints into a list of Forms. Suppose we
wanted to draw a row of 10 circles across the screen. If our canvas is 500 by 500 units, each
circle will have a diameter of 500/10 = 50 units and a radius of 50/2 = 25 units. We’ll start
with a list of numbers between 1 and 10, inclusive. We want to write a function that takes
an integer and creates a form. We might start with the following code:

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main = collage 500 500

(List.map draw_circle [1..10])

draw_circle : Int -> Form

draw_circle i =

circle 25

|> filled red

|> move(0,0)

(Code available at learn-elm.com/examples/circles-1.)

This program draws 10 circles, each with a radius of 25, but it draws them all on top of one
another. If we want to spread them out over the screen, we’ll have to take advantage of our
input. We can start by changing the x-coordinates of the circles to be dependent on i:

draw_circle : Int -> Form

draw_circle i =
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circle 25

|> filled red

|> move( toFloat i ,0)

We need to use the function toFloat so that the given integer is treated as a float (the type
that move expects). If we press “compile,” we’ll see that the circles have spread out very
slightly, but not across the screen as we had hoped. We want the distance between the
centers of two adjacent circles to be 50 units. So we could update our code as follows:

draw_circle : Int -> Form

draw_circle i =

circle 25

|> filled red

|> move(toFloat (i*50) ,0)

Now the circles are spread out across the screen as we expect, but they start at the center
of the screen instead of at the left-hand side. Our last change will be to shift the entire row
of circles to the left by decreasing all of the x-coordinates:

draw_circle : Int -> Form

draw_circle i =

circle 25

|> filled red

|> move(toFloat (i*50-275) ,0)

If we press “compile,” we’ll see that we successfully drew 10 circles in a row across the screen!

(Code available at learn-elm.com/examples/circles-2.)

[0:40 - 0:45]

Suppose we have two lists of integers, and we want to add corresponding elements in each
list. We can easily write a function that adds two integers:

add : Int -> Int -> Int

add x y = x + y

We want to apply this function to the elements of two lists. Here, we can use the map2

function. This takes two lists and transforms them into a single list, using the given function.

map2 : (a -> b -> result) -> List a -> List b -> List result

Combine two lists , combining them with the given function. If one

list is longer , the extra elements are dropped.

We can use map2 as follows:

import Graphics.Element exposing (..)

main : Element
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main =

show (List.map2 add [1..10] [11..20])

add : Int -> Int -> Int

add x y = x + y

This program will go through both lists, applying the add function to corresponding elements.
The result will be a single list, containing the sums.

[0:45 - 1:00]

In the time remaining, use map to transform the lists: [6,5,4,3,2,1] and [red,orange,

yellow,green,blue,purple] into the following picture:

What other drawings can you create using List.map?

Finished code:

(Available at learn-elm.com/examples/rainbow-target.)

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main = collage 500 500

(List.map2 draw [6,5,4,3,2,1]

[red ,orange ,yellow ,green ,blue ,purple ])

draw : Float -> Color -> Form

draw r c =

circle (r * 40)

|> filled c

|> move (0,0)
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A.6 Conditionals

Objective: This lesson will introduce students to conditionals in Elm. They will have the
opportunity to use conditionals in both graphical and non-graphical programs.

Key Words and Concepts: boolean, conditional

Assessments:

• Define or describe: “boolean” and “conditional.”
• Construct conditionals English.
• Implement FizzBuzz [13].
• Write a function that determines

– the quadrant of a point.
– if two points are in the same quadrant.

• Draw a checkerboard.

Timeline:

[0:00 - 0:10]

Suppose we want to check if an integer is even. We know that even numbers are divisible by
two. In other words, when we divide an even integer by 2, the remainder is 0. If we want to
calculate the remainder when a is divided by b in Elm, we can write a % b. We read this as
“a mod b.”

So if n % 2 is equal to 0, then n is even. We can test if two numbers are equal using two
equal signs: ==. (Recall that we use one equal sign for assignment.) Using this information,
let’s write a function that determines if a given integer is even.

isEven n = n % 2 == 0

When given an argument, this function will evaluate to either true or false. A value that
can either be true or false is called a boolean. In Elm, the type of a boolean value is Bool.
So the type of isEven is Int -> Bool.

Suppose that we want to write a new function that displays “even” if a given integer is
even and “odd” otherwise. In order to accomplish this, we’ll need to use a conditional. A
conditional in Elm is something of the form:

if boolean

then expression1

else expression2

An example of a conditional in English is “If it is raining, then I will wear rain boots;
otherwise, I will wear flip-flops,” The boolean in this conditional is “it is raining.” The first
statement is “I will wear rainboots” and the second statement is “I will wear flip-flops.”
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A second example is “if it is a weekend, then I will sleep in; otherwise, I will wake up for
school.” What is the boolean? It is a weekend.

Take a few minutes to come up with some of your own conditionals in English.

Let’s return to our original problem: if a given integer is even, we want to display the word
even; otherwise, we want to display the word odd. The boolean is “a given integer is even.”
The first expression is “display the word even”, and the second expression is “display the
word odd”. This translates nicely to Elm code:

if isEven n

then show "even"

else show "odd"

Suppose we now want to write a function that displays “positive” if the argument is greater
than 0, “negative” if the argument is less than 0, and “zero” if the argument is 0. Whereas
our previous problem had two cases (even and odd), notice that this problem has three cases
(positive, negative, and zero).

We can start with a standard conditional. If our argument is n, we might start with

if n > 0

then show "positive"

else ...

Now we’ve covered the case where n is greater than 0. If n is not greater than 0, it is either
less than 0 or equal to 0. As a result, we want the second statement to be another conditional
that checks if n is less than 0.

if n > 0

then show "positive"

else if n < 0

then show "negative"

else ...

Now we’ve covered the cases where n is greater than 0 and and where n is less than 0. Since
only one case remains (n is equal to 0), we can just use the else as usual:

if n > 0

then show "positive"

else if n < 0

then show "negative"

else show "zero"

[0:10 - 0:20]

A popular interview question for software engineering candidates is called FizzBuzz. The
instructions are as follows:

• Print the numbers 1 through 100, but...

63



• For multiples of 3, print “Fizz” instead of the number
• For multiples of 5, print “Buzz” instead of the number
• For multiples of 3 and 5, print “FizzBuzz” instead of the number

If you want to check if two booleans are both true, you can use “logical and:” &&. The
boolean b1 && b2 is only true if both b1 and b2 are true.

Take ten minutes to try implementing FizzBuzz in Elm! (Hint: the function toString takes
an integer as an argument and returns its string representation.)

If you have time leftover, create your own variation of FizzBuzz and implement it (or swap
with a partner and have him or her implement it).

[0:20 - 0:25]

Review the solution, available at learn-elm.com/examples/fizz-buzz.

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main = show (List.map fizzBuzz [1..100])

fizzBuzz : Int -> String

fizzBuzz n =

if n % 3 == 0 && n % 5 == 0

then "FizzBuzz"

else if n % 3 == 0

then "Fizz"

else if n % 5 == 0

then "Buzz"

else toString n

[0:25 - 0:35]

Suppose we want to write a function that determines the quadrant of a Cartesian coordinate
(x,y).

Recall that a coordinate is in...

• quadrant I if x > 0 and y > 0
• quadrant II if x < 0 and y > 0
• quadrant III if x < 0 and y > 0
• quadrant IV if x > 0 and y > 0

If x or y is equal to 0, then the point is not in any quadrant.

Let’s try to write this function using conditionals. A natural first step is “check if x or y is
equal to 0.” We know how to check if x is equal to zero (x == 0) and we know how to check
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if y is equal to zero (y == 0). We want to combine these booleans using “or.” In Elm, the
symbol for or is ||. The boolean b1 || b2 is true if b1 or b2 (or both) are true.

So x == 0 || y == 0 means x is equal to 0 or y is equal to zero. If x == 0 || y == 0, then
the point is not in any quadrant. In this case, the function should evaluate to "none".

Recall that the symbol for “and” is Elm is &&. So if we want to check if x > 0 and y > 0,
we would write x > 0 && y > 0. In this case, the function should evaluate to "quadrant I".

Navigate to learn-elm.com/examples/cartesian-1 and complete the program:

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main = show (quadrant (-10, 10))

quadrant : (Int , Int) -> String

quadrant (x,y) = "none"

If you have time leftover, change your program so that it also determines which axis the
point is on if not in one of the quadrants.

[0:35 - 0:40]

Review the solution, available at learn-elm.com/examples/finished-cartesian.

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main = show (quadrant (-10, 10))

quadrant : (Int , Int) -> String

quadrant (x,y) =

if x == 0 || y == 0

then "none"

else if x > 0 && y > 0

then "quadrant I"

else if x < 0 && y > 0

then "quadrant II"

else if x < 0 && y < 0

then "quadrant III"

else "quadrant IV"

[0:40 - 0:45]

Last week, we wrote the following code to draw a row of 10 red circles:

import Color exposing (..)
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import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main = collage 500 500

(List.map draw_circle [1..10])

draw_circle : Int -> Form

draw_circle i =

circle 25

|> filled red

|> move (toFloat (i*50-275),0)

(Code available at learn-elm.com/examples/circles-2.)

How could we modify this code so that every other circle is purple instead of red? We could
start by defining a variable that will store the color of the circle. If i is even, we can set the
variable to purple, and otherwise, we can set the variable to red.

let c = if (i % 2 == 0) then purple else red in

Now we can replace filled red with filled c.

draw_circle : Int -> Form

draw_circle i =

let c = if (i % 2 == 0) then purple else red in

circle 25

|> filled c

|> move (toFloat (i*50-275),0)

If we press “compile,” we’ll see that the colors alternate as desired!

[0:45 - 1:00]

Navigate to learn-elm.com/examples/checkerboard. Complete the program so that it
draws a checkerboard.

Note that // performs integer division (a//b is number of times a “goes into” b). The
following numbering might be helpful!
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If you have time left-over, try making a more elaborate pattern.

Finished code:

(Available at learn-elm.com/examples/finished-checkerboard.)

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

main : Element

main =

collage 400 400 (List.map checkerBoard [0..63])

checkerBoard : Int -> Form

checkerBoard n =

let row = n // 8 in

let column = n % 8 in

let c =

if (row + column) % 2 == 0

then black

else red in

square 50

|> filled c

|> move

(-175 + (toFloat column) * 50, -175 + (toFloat row) * 50)
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A.7 Mouse Signals

Objective: This lesson will introduce students to signals, focusing on mouse signals. Stu-
dents will learn how to use signals to create interactive programs and will get further practice
with map and conditionals.

Key Words and Concepts: signal

Assessments:

• Define or describe: “signal.”
• Draw shapes whose color, size, and/or type change according to mouse signals.
• Implement “buried treasure” game using mouse signals and conditionals.

Timeline:

[0:00 - 0:15]

At the beginning of the semester, we looked at a few Elm programs, including a number of
games. These games allow the user to interact with the program using the mouse or the
keyboard. Today, we will learn how we can get input from the user so we can create our own
games.

Let’s start with the following program:

import Graphics.Element exposing (..)

import Mouse exposing (..)

main : Signal Element

main =

Signal.map show Mouse.position

(Code available at learn-elm.com/examples/mouse-position.)

Before we discuss the code, let’s see what the program does. There is a pair of integers in
the top-left corner, and if we move our mouse around, the numbers change. This program
displays the current position of the mouse.

Now that have a sense of what the program does, let’s take a look at the code. Mouse.

position is a function provided by Elm. It has type Signal (Int, Int). A signal is a
time-varying value (a value that changes over time). In this case, the time-varying value is
a pair of integers that represent the current position of the mouse.

For example, if we started at the origin and moved the mouse to the right, the value of
Mouse.position would start at (0,0) and change to (1,0), then (2,0), then (3,0), and so
on as we move the mouse across the x-axis.

Signal.map show applies the function show to the current mouse position. If we think of
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a signal as an infinite list of values, we can see that Signal.map works like the List.map

function we’ve worked with. While List.map works on a finite list, Signal.map works on
“infinite lists.” The type of Signal.map is as follows:

map : (a -> b) -> Signal a -> Signal b

Apply a function to a signal.

Each time a the value of Mouse.position changes, the function show is reapplied. As a result,
Signal.map show Mouse.position always shows the current position of the mouse. Note that
up until now, main has always had the type Element. Now, main is an Signal Element. This
means that what is displayed (in this case the text in the upper-left corner of the screen)
may change over time.

Let’s define a function draw that will draw a circle given a pair of integers. We will use it to
draw a circle at the current mouse position.

draw : (Int ,Int) -> Element

draw (x,y) =

collage 500 500 [

circle 50

|> filled red

|> move (toFloat x, toFloat y)

]

Notice that we have to use toFloat to make x and y (integers) appropriate arguments to
move (which expects a pair of floats).

If we replace show with draw, Signal.map will apply draw to the current mouse position so
that the circle is drawn wherever the mouse is. If we press “compile,” we’ll see that the
circle moves around as we move the mouse, but it doesn’t follow the mouse as we had hoped.
This is because the mouse position is measured from the top-left corner of the screen, with x
increasing to the right and y decreasing down. This is in contrast to the collage’s coordinate
system, whose origin is at the center of the collage.

Let’s transform the mouse position so that it matches the coordinate system used for collages.
We know that placing the mouse in the top-left corner of the screen will give the position
(0,0). We want the top-left corner of the screen to be (-250,250). (Recall that the center
of a 500 by 500 collage is (0,0) with x ranging from -250 to 250 left-to-right and y ranging
from -250 to 250 bottom-to-top.) We can change the code as follows:

draw : (Int ,Int) -> Element

draw (x,y) =

collage 500 500 [

circle 50

|> filled red

|> move (toFloat x - 250, 250 - toFloat y)

]
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If we press “compile” again, we’ll see that the circle follows the mouse around, as desired.

(Code available at learn-elm.com/examples/mouse-circle.)

[0:15 - 0:20]

Let’s pause our discussion of signals to improve the design of our program. Notice that in our
draw function, 500 and 250 are used multiple times. What if we wanted to change the size
of our collage? We’d have to change four numbers, which is cumbersome and error-prone.

In order to avoid these problems, let’s define a variable halfWidth whose value will be half
the width of our collage. Above draw, add the following:

halfWidth = 250

This defines a variable, called halfWidth, that will be available throughout the program. We
can then make the following changes to draw:

draw : (Int ,Int) -> Element

draw (x,y) =

collage (halfWidth * 2) (halfWidth * 2) [

circle 50

|> filled red

|> move (toFloat x - halfWidth, halfWidth - toFloat y)

]

Now we can change the size of our collage by changing the value of one, easy to identify
variable.

[0:20 - 0:35]

Let’s go ahead and add a second signal to our program: a signal of booleans that tells us
whether or not the mouse is pressed. This signal is called Mouse.isDown and is provided by
Elm.

Let’s change our main function to

main : Signal Element

main =

Signal.map2 draw Mouse.position Mouse.isDown

Signal.map2 applies the a given function to two signals. In this case, it applies function draw

to (1) a (Int,Int) Signal representing the position of the mouse and (2) a Bool Signal that
is true when the mouse is clicked and false otherwise. The type of draw must then change
to (Int,Int) -> Bool -> Element.

We can add a second argument to draw as follows:

draw (x,y) isClicked =
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Take a few minutes to change draw so that the circle is blue if isClicked is true and red
otherwise. If you have time left over, try changing the size depending on whether or not the
mouse is clicked.

Go over solution, available at learn-elm.com/examples/mouse-click-circle:

import Color exposing (..)

import Graphics.Element exposing (..)

import Graphics.Collage exposing (..)

import Mouse exposing (..)

halfWidth = 250

main : Signal Element

main =

Signal.map2 draw Mouse.position Mouse.isDown

draw : (Int ,Int) -> Bool -> Element

draw (x,y) isClicked =

let c = if isClicked then blue else red in

collage (halfWidth * 2) (halfWidth * 2) [

circle 50

|> filled c

|> move (toFloat x - halfWidth , halfWidth - toFloat y)

]

[0:35 - 1:00]

Now we’ll create our first game. In our game, there will be some buried treasure at a secret
location. The player is a small purple circle that can move around the screen using the
mouse. The player must look for the secret location. If he or she finds it, the circle should
turn green.

We’ll start with the code that draws a purple circle at the mouse’s position. We’ll define
variables secretX and secretY to hold the x and y coordinates of the secret location. We
also have a function distance that determines the approximate distance between two points.

import Color exposing (..)

import Graphics.Element exposing (..)

import Graphics.Collage exposing (..)

import Mouse exposing (..)

secretX = 10

secretY = 100

halfWidth = 250

main : Signal Element

main = Signal.map draw Mouse.position
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draw : (Int ,Int) -> Element

draw (x,y) =

let mouseX = toFloat x - halfWidth in

let mouseY = halfWidth - toFloat y in

let c = purple in

collage (halfWidth * 2) (halfWidth * 2) [

circle 10

|> filled c

|> move (mouseX ,mouseY)

]

distance : (Float ,Float) -> (Float ,Float) -> Int

distance (x1,y1) (x2,y2) =

round (sqrt ((x1 - x2)^2 + (y1 - y2)^2))

(Code available at learn-elm.com/examples/treasure-1.)

In order to make the circle turn green if the player has found the secret location, we first
need to determine if the mouse is within 10 units (the radius of the circle) of the secret
location. To accomplish this, we can use the following boolean:

distance (mouseX ,mouseY) (secretX ,secretY) <= 10

Begin by modifying the program so that the circle turns green if the mouse is within 10 units
of the secret location.

When you’re done, try playing this game yourself. You’ll notice that it’s pretty tricky. Make
this game easier by adding a “hint” feature. When the user clicks the mouse, the circle
should turn red if the mouse is more than 100 units away from the secret location, orange if
it is between 100 and 50 units away, and yellow if it is between 50 and 10 units away.

When you’re done, you can pair up with a partner and play his or her game! (In order to
hide the values of secretX and secretY, simply drag the line separating the editor from the
output to the left.)

Finished code:

(Available at learn-elm.com/examples/finished-treasure.)

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

import Mouse exposing (..)

secretX = 10

secretY = 100

halfWidth = 250

main : Signal Element
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main = Signal.map2 draw Mouse.position Mouse.isDown

draw : (Int ,Int) -> Bool -> Element

draw (x,y) isClicked =

let mouseX = toFloat x - halfWidth in

let mouseY = halfWidth - toFloat y in

let d = distance (mouseX ,mouseY) (secretX ,secretY) in

let c =

if d <= 10 then green

else if isClicked && (d > 100) then red

else if isClicked && (d <= 100) && (d > 50) then orange

else if isClicked && (d <= 50) && (d > 10) then yellow

else purple

in

collage (halfWidth * 2) (halfWidth * 2) [

circle 10

|> filled c

|> move (mouseX ,mouseY)

]

distance : (Float ,Float) -> (Float ,Float) -> Int

distance (x1,y1) (x2,y2) =

round (sqrt ((x1 - x2)^2 + (y1 - y2)^2))
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A.8 State and Pattern Matching

Objective: This lesson will introduce students to Signal.foldp, a function that enables
the program to accumulate state. Students will also work with record types and pattern
matching to simplify their increasingly complex programs.

Key Words and Concepts: foldp, record type, pattern matching

Assessments:

• Define or describe: “foldp” and “record type.”
• Create a drawing program where the “paint”

– is controlled by Mouse.isDown.
– is erased by space key.
– color is changed by letter keys.

• Write a program that draws a circle that grows each time the mouse is clicked and
returns to its original size whenever the space key is pressed.

Timeline:

[0:00 - 0:10]

Last week, we used signals to draw a circle that moves with the mouse. Suppose we wanted
to modify this program so that it draws a circle at every mouse location, leaving a “trail” of
circles. This is not possible with the tools we have now because he have no way to accumulate
or collect values. Right now, we can only assign and calculate values.

In order to write this program, we’ll need a new function, Signal.foldp:

foldp : (a -> state -> state) -> state -> Signal a -> Signal state

Notice that foldp takes three arguments: a function, a state, and a signal. foldp allows us
to “collect” the values from the given signal into a single state. The initial state is specified
by the second argument. Each time the signal produces a new value, the function specified
by the first argument is applied to the new value and the existing state to produce a new
state. The new state becomes a new value in the output signal. This function is called foldp

because it performs a “fold from the past” on the input signal’s values [4].

Let’s consider a concrete example that “collects” the number of mouse clicks:

import Graphics.Element exposing (..)

import Mouse exposing (..)

main : Signal Element

main =

Signal.map show (Signal.foldp incrementTotal 0 Mouse.isDown)

incrementTotal : Bool -> Int -> Int
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incrementTotal isClicked total =

if isClicked then total + 1 else total

(Code available at learn-elm.com/examples/foldp-clicks.)

foldp is applied to three arguments: incrementTotal, 0, and Mouse.isDown. In this case, the
state is an integer that represents the number of mouse clicks. The initial state is 0 (specified
by the second argument). Every time Mouse.isDown has a new value, incrementTotal is
called. It takes the current value of Mouse.isDown (a boolean) and the current state (an
integer) and produces a new state (an integer).

In main, we can use Signal.map and show to display the current value of the state (i.e. the
counter).

The following diagram (inspired by [24]) may help you understand how foldp operates in
the general case and in the case described above.

[0:10 - 0:20]

Now that we have the necessary tools, let’s return to the program we described earlier. We
want to be able to “draw” by moving the mouse around the screen. Here, our state will be a
list of forms that we want to draw. Each time the mouse moves to a new position, we want
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to add a new circle to the list.

First, we’ll need a function that takes a mouse position and a list of forms and adds a new
circle at the mouse position to the list. In order to add a new element to a list, we can use
the function List.append, which takes two lists and combines them.

drawCircle : (Int ,Int) -> List Form -> List Form

drawCircle (x,y) circleList =

List.append circleList [

circle 10

|> filled red

|> move (toFloat x - halfWidth , halfWidth - toFloat y)

]

Now we can use drawCircle with foldp. The initial state will be an empty list and the input
signal will be the mouse position.

Signal.foldp drawCircle [] Mouse.position

This will give us a signal of lists of forms. We can see the forms accumulate using the show

function:

main : Signal Element

main =

Signal.map show (Signal.foldp drawCircle [] Mouse.position)

(Code available at learn-elm.com/examples/drawing-0.)

In order to actually draw these forms, we’ll need one more function:

draw : List Form -> Element

draw form_list =

collage (halfWidth * 2) (halfWidth * 2) form_list

In main, we can then map this function over the signal of lists of forms:

main : Signal Element

main =

Signal.map draw (Signal.foldp drawCircle [] Mouse.position)

(Code available at learn-elm.com/examples/drawing-1.)

If we try this program out, we’ll see that it draws circles as we move our mouse around!

[0:20 - 0:30]

After using this program for a while, we’ll see that it’s pretty difficult to draw anything
when the computer always draws a circle wherever the mouse is. It would be better if the
computer only drew circles when the mouse is clicked.
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In order to do this, we’ll need two signals: Mouse.position and Mouse.isDown. We can
combine them into a single signal with the following function:

inputSignal : Signal ((Int ,Int), Bool)

inputSignal = Signal.map2 (,) Mouse.position Mouse.isDown

(,) is shorthand for a function that takes two values and returns a pair consisting of those
values. We could implement a function f that performs the same operation: f x y = (x,y)

inputSignal is a signal of a pair of a pair of integers and a boolean representing the mouse
position and whether or not the mouse is clicked. For example, if the mouse were at the origin
and the mouse button was clicked, inputSignal would emit the value ((0, 0), True). If
we replace Mouse.position with inputSignal in main, then the first argument to drawCircle

must be a pair of a pair of integers and a boolean.

drawCircle : ((Int ,Int), Bool) -> List Form -> List Form

drawCircle ((x,y), isClicked) circleList = ...

Navigate to learn-elm.com/examples/drawing-2 and take a few minutes to change drawCircle
so that it only adds a circle to the state if the mouse is clicked. Otherwise, it should return

the given state unchanged.

If you have time left over, try changing the color of the circles depending on which quadrant
the mouse is in.

Review solution:

drawCircle : ((Int ,Int), Bool) -> List Form -> List Form

drawCircle ((x,y), isClicked) circleList =

if isClicked

then (List.append circleList [

circle 10

|> filled red

|> move (toFloat x - 250, 250 - toFloat y)

])

else circleList

[0:30 - 0:40]

Now suppose we want to be able to erase everything we’ve drawn by clicking the space key.
We can use a new signal, Keyboard.space. Similar to Mouse.isDown, Keyboard.space is a
signal of booleans that indicates whether or not the space key is pressed.

Try to modify your program so that if the space key is pressed, the drawing is erased. A few
hints to get you started:

1. You’ll want to change inputSignal to combine three signals. map3 and (,,) will be
useful.

2. In order to “erase” the drawing, the state should be set to an empty list: [].

77



Review solution (available at learn-elm.com/examples/drawing-3):

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

import Keyboard exposing (..)

import Mouse exposing (..)

halfWidth = 250

inputSignal : Signal ((Int ,Int), Bool , Bool)

inputSignal =

Signal.map3 (,,) Mouse.position Mouse.isDown Keyboard.space

main : Signal Element

main =

Signal.map draw (Signal.foldp drawCircle [] inputSignal)

draw : List Form -> Element

draw form_list = collage (halfWidth * 2) (halfWidth * 2) form_list

drawCircle : ((Int ,Int), Bool , Bool) -> List Form -> List Form

drawCircle ((x,y), mouseIsClicked , spaceIsClicked) circleList =

if spaceIsClicked

then []

else if mouseIsClicked

then (List.append circleList [

circle 10

|> filled red

|> move (toFloat x - halfWidth , halfWidth - toFloat y)

])

else circleList

[0:40 - 0:45]

Our program is starting to become very cluttered with all of the different inputs. We can
define a new type to cleanly represent all three inputs:

type alias Input =

{ mousePos : (Int ,Int)

, mouseIsClicked : Bool

, spaceIsClicked : Bool

}

This allows us to create a new type, Input, that is made up of the types of our three inputs.
Input is known as a record type. Record types allow us to store related values in a single
type.

We could explicitly construct a value of type Input as follows:
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inputExample =

{ mousePos = (0,0)

, mouseIsClicked = True

, spaceIsClicked = False

}

In order for to create a Input Signal with (1) the current location of the mouse, (2) whether
or not the mouse is being clicked, and (3) whether or not the space key is being clicked, we
can change inputSignal to the following:

inputSignal : Signal Input

inputSignal =

Signal.map3 Input Mouse.position Mouse.isDown Keyboard.space

This will take the values of the three signals and construct a value of type Input. Now we
can change drawCircle accordingly:

drawCircle : Input -> List Form -> List Form

drawCircle userInput circleList = ...

If we make these changes and press “compile,” we’ll see that the computer no longer
knows what x, y, mouseIsClicked, and spaceIsClicked are. These values are now fields
within userInput. We can access (x,y) with userInput.mousePos, mouseIsClicked with
userInput.mouseIsClicked, and spaceIsClicked with userInput.spaceIsClicked. Notice
that userInput is the name of the value with type Input and the word after the period is
the name of the field within Input.

We can easily replace mouseIsClicked with userInput.mouseIsClicked and spaceIsClicked

with userInput.spaceIsClicked, but how do we get (x,y) from userInput.mousePos? We
can do this with pattern matching.

let (x,y) = userInput.mousePos in ...

Pattern matching allows us to name each of the two integers in the integer pair, mousePos.
If we put this at the top of our function, we’ll see that our program compiles without any
errors.

We can also use pattern matching to avoid writing userInput.spaceIsClicked and userInput

.spaceIsClicked. At the top of our function, we can write:

let { mousePos , mouseIsClicked , spaceIsClicked } = userInput in

let (x,y) = mousePos in

Now we can use x, y, mouseIsClicked, and spaceIsClicked as before. With our new Input

type, we can even add more input signals without changing the type of the first argument
to the draw function.

(Code available at learn-elm.com/examples/drawing-4.)
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[0:45 - 1:00]

Our drawings would be a lot more interesting if we were able to change the color of the circle.
We can use Keyboard.presses, which gives us the key code for the most recently pressed
key on the keyboard. For example, if the user presses the ‘b’ key, we could draw blue circles
instead of red ones.

Try modifying your program to allow the user to change colors by clicking different keys on
the keyboard. The type of Keyboard.presses is Signal KeyCode.

You might also find Char.fromCode useful:

fromCode : KeyCode -> Char

Convert from unicode.

Finished code:

(Available at learn-elm.com/examples/drawing-5.)

import Char exposing (..)

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

import Keyboard exposing (..)

import Mouse exposing (..)

type alias Input =

{ mousePos : (Int ,Int)

, mouseIsClicked : Bool

, spaceIsClicked : Bool

, keyCode : KeyCode

}

halfWidth = 250

inputSignal : Signal Input

inputSignal = Signal.map4 Input

Mouse.position Mouse.isDown Keyboard.space Keyboard.presses

main : Signal Element

main =

Signal.map draw (Signal.foldp drawCircle [] inputSignal)

draw : List Form -> Element

draw form_list =

collage (halfWidth * 2) (halfWidth * 2) form_list

drawCircle : Input -> List Form -> List Form

drawCircle userInput circleList =
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let { mousePos , mouseIsClicked , spaceIsClicked , keyCode } =

userInput in

let (x,y) = mousePos in

if spaceIsClicked then [] else

let c =

if Char.fromCode keyCode == ’r’ then red

else if Char.fromCode keyCode == ’y’ then yellow

else if Char.fromCode keyCode == ’b’ then blue

else black in

if mouseIsClicked

then (List.append circleList [

circle 10

|> filled c

|> move (toFloat x - halfWidth , halfWidth - toFloat y)

])

else circleList
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A.9 Paddle Game

Today, you’ll have the opportunity to work through the development of your first game. The
finished product will look like this: learn-elm.com/examples/paddle/result. We’ll walk
you through the steps, introducing any new syntax or functions that you’ll need!

1. Let’s start by creating a ball. We can define a new type for the ball using type alias,
which we saw last week. For now, you’ll probably want to give the ball an x-coordinate,
a y-coordinate, and a radius.

Solution:

type alias Ball =

{ x : Float

, y : Float

, r : Float

}

2. Now you’ll want to create an actual ball that has the type you just defined. Recall
that last week we defined the type Input as follows:

type alias Input =

{ mousePos : (Int ,Int)

, mouseIsClicked : Bool

, spaceIsClicked : Bool

}

In order to create a value of type of Input, we wrote:

inputExample =

{ mousePos = (0,0)

, mouseIsClicked = True

, spaceIsClicked = False

}

Using this example for guidance, create an initial ball (called initBall) with type Ball.

Solution:

initBall =

{ x = 0

, y = 0

, r = 15

}

3. Now define a function draw that takes an argument of type Ball and evaluates to an
Element. In other words, write a function that draws a ball. Remember that you can
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access values inside a record type using a period.

You might also want to define a variable called halfWidth that specifies half the width
of the playing area (e.g. 250). This value will be used throughout your program so
defining (and using) a variable to the store it will help make your code cleaner and
easier to read. You might also want to draw a colored rectangle that is the size of the
collage so that you can see the boundaries of the playing area.

Solution:

draw : Ball -> Element

draw ball =

collage (halfWidth * 2) (halfWidth * 2)

[ rect (halfWidth * 2) (halfWidth * 2)

|> filled gray

|> move (0,0)

, circle ball.r

|> filled black

|> move (ball.x, ball.y)

, rect paddle.width paddle.height

|> filled purple

|> move (paddle.x, paddle.height / 2 - halfWidth)

]

4. At this point, you should be able to write a main function that draws the ball.

Solution:

main : Element

main = draw initBall

5. Now let’s make the ball bounce around the screen. Start by adding a horizontal velocity
(vx) and a vertical velocity (vy) to the type Ball and your initial ball. The velocity
specifies how fast the ball moves and in what direction. For example, if vx and vy were
both 1, the ball would move up and to the right at a speed of 1 unit per time unit.

Here, realize that you will be modifying code you wrote previously (instead of writing
code from scratch, as we have up until this point).

Solution:

type alias Ball =

{ x : Float

, y : Float

, vx : Float

, vy : Float
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, r : Float

}

initBall =

{ x = 0

, y = 0

, vx = 4

, vy = 8

, r = 15

}

6. At some regular interval, we’d like to increment x by vx (i.e. add vx to x) and increment
y by vy (i.e. add vy to y). In order to do this, we’ll need a new function that an Elm
library provides:

fps : number -> Signal Time

Time.fps 30 will give us a signal that emits a new value (the elapsed time since the
last value) 30 times per second. fps stands for frames per second.

Write a new function updateBall that takes a Time and a Ball and increments x by vx

and y by vy. In order to change certain values in a record, we’ll need new syntax. If
ball is the name of the ball, then

{ ball |

x = ball.x + ball.vx,

y = ball.y + ball.vy

}

gives us a record that has the same values as ball, except x is replaced with x + vx

and y is replaced with y + vy.

Solution:

updateBall : Time -> Ball -> Ball

updateBall t ball =

{ ball |

x = ball.x + ball.vx,

y = ball.y + ball.vy

}

7. Now, using Signal.map, Signal.foldp, and Time.fps 30, update main so that the ball
moves each time Time.fps 30 emits a value.

Solution:
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main : Signal Element

main = Signal.map draw

(Signal.foldp updateBall initBall (Time.fps 30))

At this point, if you press “compile,” the ball should start moving and disappear off
the screen.

8. We now want the ball to “bounce” off the sides of the screen. Start by defining two
functions: isTouchingSide and isTouchingTopOrBottom. The first function should re-
turn true only if the ball is touching the left or right sides of the screen and the second
function should return true only if the ball is touching the top or bottom of the screen.
Drawing a picture might help you work out the math!

Solution:

isTouchingSide : Ball -> Bool

isTouchingSide ball =

ball.x < (-halfWidth + ball.r) ||

ball.x > (halfWidth - ball.r)

isTouchingTopOrBottom : Ball -> Bool

isTouchingTopOrBottom ball =

ball.y < (-halfWidth + ball.r) ||

ball.y > (halfWidth - ball.r)

9. Modify updateBall so that vx is negated if the ball is touching a side of the screen and
vy is negated if the ball is touching the top or bottom of the screen.

Solution:

updateBall : Time -> Ball -> Ball

updateBall t ball =

let newVx = if isTouchingSide ball then -ball.vx

else ball.vx in

let newVy = if isTouchingTopOrBottom ball then -ball.vy

else ball.vy in

{ ball |

x = ball.x + newVx ,

y = ball.y + newVy ,

vx = newVx ,

vy = newVy

}

If you press “compile” at this point, the ball should bounce around the screen.

10. Now let’s add the paddle. Start by defining a new type, Paddle, and an initial paddle,
initPaddle. Paddle should have an x-coordinate, a height, and a width. You might

85



also want to define a new type, Game, and an initial game, initGame. A value of type
Game should have a value of type Ball and a value of type Paddle.

Solution:

type alias Paddle =

{ x : Float

, width : Float

, height : Float

}

initPaddle =

{ x = 0

, width = 50

, height = 20

}

type alias Game =

{ ball : Ball

, paddle : Paddle

, playing : Bool

}

initGame =

{ ball = initBall

, paddle = initPaddle

, playing = True

}

11. Modify draw so that it takes a Game as an argument and draws both the paddle and
the ball.

Solution:

draw : Game -> Element

draw game =

let (ball , paddle) = (game.ball , game.paddle) in

collage (halfWidth * 2) (halfWidth * 2)

[ rect (halfWidth * 2) (halfWidth * 2)

|> filled gray

|> move (0,0)

, circle ball.r

|> filled black

|> move (ball.x, ball.y)

, rect paddle.width paddle.height

|> filled purple

|> move (paddle.x, paddle.height / 2 - halfWidth)
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]

12. Create a value called inputSignals:

inputSignals : Signal (Int ,Int)

inputSignals = Signal.sampleOn (Time.fps 30) (Mouse.position)

At a rate of 30 frames per second, inputSignals will emit the current position of the
mouse. This ensures that the ball (which moves at a rate of 30 frames per second) and
paddle (which will be controlled by the mouse) will move at the same speed.

13. Define a new function called update that takes a pair of integers (the mouse’s position)
and a Game and returns an updated Game. In particular, the ball should bounce around
the screen as before and the paddle should follow the x-coordinate of the mouse. Re-
place initBall with initGame and updateBall with updateGame. You may want to use
updateBall in updateGame, but notice that updateBall will no longer need an argument
of type Time.

Solution:

updateGame : (Int ,Int) -> Game -> Game

updateGame (mouseX , mouseY) game =

let (ball , paddle) = (game.ball , game.paddle) in

let newPaddle =

{ paddle | x = toFloat mouseX - halfWidth } in

let newBall = updateBall ball newPaddle in

{ game |

ball = newBall ,

paddle = newPaddle

}

updateBall : Ball -> Paddle -> Ball

updateBall ball paddle =

let newVx =

if isTouchingSide ball

then -ball.vx

else ball.vx in

let newVy =

if (isTouchingTop ball || isTouchingPaddle ball paddle)

then -ball.vy

else ball.vy in

{ ball |

x = ball.x + newVx ,

y = ball.y + newVy ,

vx = newVx ,

vy = newVy

}
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If you press “compile” at this point, the ball should bounce around the screen and the
paddle should move with the mouse.

14. If the ball hits the paddle, we want it to bounce off. Create a new function called
isTouchingPaddle that returns true if the ball is touching the paddle and false other-
wise. Incorporate this function into updateGame or updateBall so that the ball bounces
off the paddle.

Solution:

isTouchingPaddle : Ball -> Paddle -> Bool

isTouchingPaddle ball paddle =

ball.x > (paddle.x - paddle.width / 2) &&

ball.x < (paddle.x + paddle.width / 2) &&

(ball.y - ball.r) < paddle.height - halfWidth

15. If the ball hits the bottom of the screen, we want the game to stop. Split the function
isTouchingBottomOrTop into two functions: one that checks if the ball is touching to
bottom and one of the ball is touching the top. If the ball touches the bottom, we
should stop the game. This may require adding a boolean field to Game, hasLost. At
the beginning of the updateGame function, check if hasLost is true and return the game
unchanged if so.

Solution:

isTouchingTop : Ball -> Bool

isTouchingTop ball = ball.y > (halfWidth - ball.r)

isTouchingBottom : Ball -> Bool

isTouchingBottom ball = ball.y < (-halfWidth + ball.r)

updateGame : (Int , Int) -> Game -> Game

updateGame (mouseX , mouseY) game =

if game.hasLost

then game

else

let (ball , paddle) = (game.ball , game.paddle) in

if isTouchingBottom ball

then { game | hasLost = True }

else

let newPaddle =

{ paddle | x = toFloat mouseX - halfWidth } in

let newBall = updateBall ball newPaddle in

{ game |

ball = newBall ,

paddle = newPaddle
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}

16. If you finish early, try to give the user a way to pause or restart the game!

Finished code:

(Available at learn-elm.com/examples/paddle.)

import Color exposing (..)

import Graphics.Collage exposing (..)

import Graphics.Element exposing (..)

import Time exposing (..)

import Mouse exposing (..)

type alias Ball =

{ x : Float

, y : Float

, vx : Float

, vy : Float

, r : Float

}

initBall =

{ x = 0

, y = 0

, vx = 4

, vy = 8

, r = 15

}

type alias Paddle =

{ x : Float

, width : Float

, height : Float

}

initPaddle =

{ x = 0

, width = 50

, height = 20

}

type alias Game =

{ ball : Ball

, paddle : Paddle

, hasLost : Bool

}
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initGame =

{ ball = initBall

, paddle = initPaddle

, hasLost = False

}

halfWidth = 250

main : Signal Element

main = Signal.map draw (Signal.foldp updateGame initGame

inputSignals)

inputSignals : Signal (Int , Int)

inputSignals = Signal.sampleOn (Time.fps 30) (Mouse.position)

draw : Game -> Element

draw game =

let (ball , paddle) = (game.ball , game.paddle) in

collage (halfWidth * 2) (halfWidth * 2)

[ rect (halfWidth * 2) (halfWidth * 2)

|> filled gray

|> move (0,0)

, circle ball.r

|> filled black

|> move (ball.x, ball.y)

, rect paddle.width paddle.height

|> filled purple

|> move (paddle.x, paddle.height / 2 - halfWidth)

]

isTouchingSide : Ball -> Bool

isTouchingSide ball =

ball.x < (-halfWidth + ball.r) || ball.x > (halfWidth - ball.r)

isTouchingTop : Ball -> Bool

isTouchingTop ball = ball.y > (halfWidth - ball.r)

isTouchingBottom : Ball -> Bool

isTouchingBottom ball = ball.y < (-halfWidth + ball.r)

isTouchingPaddle : Ball -> Paddle -> Bool

isTouchingPaddle ball paddle =

ball.x > (paddle.x - paddle.width / 2) &&

ball.x < (paddle.x + paddle.width / 2) &&

(ball.y - ball.r) < paddle.height - halfWidth
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updateGame : (Int , Int) -> Game -> Game

updateGame (mouseX , mouseY) game =

if game.hasLost

then game

else

let (ball , paddle) = (game.ball , game.paddle) in

if isTouchingBottom ball

then { game | hasLost = True }

else

let newPaddle =

{ paddle | x = toFloat mouseX - halfWidth } in

let newBall = updateBall ball newPaddle in

{ game |

ball = newBall ,

paddle = newPaddle

}

updateBall : Ball -> Paddle -> Ball

updateBall ball paddle =

let newVx =

if isTouchingSide ball

then -ball.vx

else ball.vx in

let newVy =

if (isTouchingTop ball || isTouchingPaddle ball paddle)

then -ball.vy

else ball.vy in

{ ball |

x = ball.x + newVx ,

y = ball.y + newVy ,

vx = newVx ,

vy = newVy

}
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A.10 Final Projects

Today, you’ll have the opportunity to work on a final project! You can create anything of
interest to you - an animation, a game, a tool, or even a website. The project should be at
least as complex as the paddle game we developed. Here are three examples of appropriate
final projects:

1. A “falling objects” game: learn-elm.com/examples/dog/result

(code available at: learn-elm.com/examples/dog)

2. Tic-tac-toe: learn-elm.com/examples/tic-tac-toe/result

(code available at: learn-elm.com/examples/tic-tac-toe)

3. A tool to create photo filters: learn-elm.com/examples/filters/result

(code available at: learn-elm.com/examples/filters)

You may choose to recreate one of these examples or you can work on something completely
new.

When we worked on the paddle game last week, we built up the game step-by-step. Before
you begin programming, create a step-by-step plan for developing your final project. The
plan does not need to be as detailed as last week’s plan, but ensure that each step is testable.
In other words, after completing each step, you should be able to compile your program and
determine if some piece of the project is working.

Along with each step, include the “test” that will tell you whether you’ve completed the
step successfully. You should also include relevant notes or questions.

For example, if we writing a plan to develop the paddle game, it might look as follows:

1. Create a bouncing ball.

(a) Define a type and initial value for the ball. At the end of this step, the program
should not have any type errors.

(b) Write a function that can draw the ball.

(c) Make the ball bounce.

• Make the ball move at some time interval.

• Make the ball bounce off the sides.

2. Create a moving paddle.

(a) Define a type and initial value for the paddle. At the end of this step, the program
should not have any type errors.
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(b) Might want to create a game type and value that includes the paddle and ball (so
that they can be easily updated and drawn together).

(c) Update the function that draws the ball to also draw the paddle.

(d) Make the paddle move left and right according to the position of the mouse.

3. Determine when the game is over.

(a) Determine if the ball hits the ground and update the status of the game.

(b) Stop everything if the game is over.

4. Possible extensions:

(a) Enable the user to pause or restart the game.

(b) Keep track of points.

Creating a new project from scratch can seem really daunting; your plan will help you break
it into smaller, more manageable pieces.

Here are a few tips that you might find helpful as you develop your final project:

• We’ve seen how to use type alias to create new types from existing types. This can
be useful since there are often functions already defined for existing types.

You might, however, want to create completely new types that do not use any existing
types. This is appropriate if you want to define all operations on your type. For
example, if you are creating a game of Tic-tac-toe, you might want a type called
Player to represent the current player or the player whose piece is in a given spot. The
possible values of Player might be X, O, or None.

You can define the type Player as follows: type Player = X | O | None. This creates
a new type called Player where the values of type Player are X, O, or None. There are
no operations defined for values of type Player. You can now define them!

For example, you might define a function that evaluates to the string representation
of a Player:

toString : Player -> String

toString player =

if player == X then "X"

else if player == O then "O"

else "None"

• In order to access a particular element of a list, include the nth function available at
learn-elm.com/examples/nth in your program. This function takes three arguments:
the index of the element you want to retrieve, the list you want to retrieve from, and
a default value (in case there is no element at the given index in the given list). The
default value must have the same type as the type of the elements in the list.
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• If you want to perform some operation that we haven’t seen in class, there might be a
helpful library or function available. The best place to look is the documentation for
the core Elm libraries: package.elm-lang.org/packages/elm-lang/core/3.0.0/.

Below are plans for each of the sample programs. Your students’ plans should be at least as
detailed as these plans, but they do not have to be identical.

Falling Objects Game

1. Create a character.

(a) Define a type and initial value for the character. At the end of this step, the
program should not have any type errors.

(b) Write a function that can draw the character.

(c) Make the character move left and right according to the arrow keys.

2. Create a “good” object and a “bad” object.

(a) Define a type and initial value for the good object. At the end of this step, the
program should not have any type errors.

(b) Have the good object start at the top of the screen and fall to the bottom.

(c) If the good object reaches the bottom of the screen, have it return to a random
location at the top of the screen.

• Will need a random number generator!

(d) Repeat steps 2(a) – 2(c) for the bad object.

3. Add a point system.

(a) Add a value to keep track of points.

(b) Determine if the character “catches” the good object and add points if so.

(c) Determine if the character “catches” the bad object and subtract points if so.

(d) Ensure objects return to the top of the screen if they are “caught.”

Tic-Tac-Toe

1. Create the game.

(a) Define a type and initial value for the game, including the pieces on the board
and the current player. At the end of this step, the program should not have any
type errors.

2. Write drawing functions.

94



(a) Write a function to draw the board.

• Draw the board’s lines.

• Draw the boards pieces.

(b) Write a function that draws an X given an index (0-8, corresponding to the spaces
on the board). Test with all indices.

(c) Write a function that draws an O given an index. Test with all indices.

3. Update the game.

(a) When the player clicks on a space, update the board’s value.

• Determine the index of the space given the mouse’s position.

• Determine if the move is valid (no other piece is in the space).

• If the move is valid, add the player’s piece to the board and update the current
player.

Photo Filter Tool

1. Create a filter.

(a) Define a type and initial value for the filter, including the red, green, blue, and
alpha values of the filter. At the end of this step, the program should not have
any type errors.

2. Display an image, filter, and sliders.

(a) Display an image.

(b) Draw a colored rectangle over the image, using the red, green, blue, and alpha
values specified by the filter.

(c) Draw four sliders (red, green, blue, alpha value) such that the position of each
slider represents the current values of the filter.

3. Update the filter.

(a) When the user moves a slider, update the filter.

• When the user presses the mouse, determine on which (if any) slider’s circle
the mouse is.

• If it is on a slider’s circle, move the circle left and right with the mouse and
update the filter accordingly.
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B Modular Material

Below are short lessons (less than 5 minutes each) that can be taught whenever time per-
mits. Note that the first two topics, comments and imports, are fundamental and should be
incorporated into the curriculum as soon as possible. They are not included in any particular
lesson because there is some flexibility in when they can be taught; these topics are not strict
“prerequisites” for other material. The rgba function was written at the request of students
in the pilot course.

B.1 Comments

Programmers commonly revisit their own code or read, use, or modify code that other
programmers have written. Especially if these programs are long or confusing, it is helpful
to have “notes,” written in a natural language, alongside the code.

Most programming languages allow us to write “notes” in our code. These notes are called
comments. In Elm, comments start with {- and end with -} or start with -- and end at
the end of the line. The computer knows to ignore anything between or following these
characters so you’re free to write words that the computer won’t necessarily understand.

For example, we can add descriptive comments to a simple program as follows:

import Color exposing (..)

import Graphics.Collage exposing (..)

{- Draws a red circle with a radius of 100 units on a 500 by 500

unit collage. -}

main =

collage 500 500

[ circle 100

|> filled red

|> move (0,0) -- Centers the circle at the center of the collage.

]

Documenting your code with comments will become increasingly helpful as we develop longer,
more complex programs.

B.2 Imports

At the beginning of each Elm program that we have seen, there have been a number of
expressions that begin with the word import. These import statements tell the computer
that we want to use values that have been defined outside of our program. These statements
take the following form:
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import Module exposing (values)

where values is a list of values we want to use and Module is where the values are defined.
A module is simply a program that contains definitions of values.

For example, we can write import Color exposing (red) to tell the computer we want to
have access to the value red from the module Color. We can also write import Color

exposing (red,blue) to tell the computer we want to have access to the values red and blue

from the module Color. If we want to have access to all of the values defined in the Color

module, then we can write import Color exposing (..).

B.3 rgba

It is best to introduce this material during or after lesson 2 so that students know the termi-
nology (function and argument).

As you have been creating drawings, you’ve probably found that you’ve wanted to use a
color that is not made available by Elm. For example if you try to use “filled pink,” you’ll
get an error from the computer.

If you want to create a custom color, you can use a function called rgb. This function
takes three arguments: three integers that represent the amount of red, green, and blue
respectively. Each integer should be between 0 and 255.

So you could create the color red with rgb 255 0 0, green with rgb 0 255 0, and blue with
rgb 0 0 255. Since purple is a mix of red and blue, you could create a shade of purple with
rgb 150 0 150. If we want to create a shade of pink, we might use rgb 255 20 145.

There is a similar function, rgba that allows you to vary the “alpha component” of the color
in addition to the amount of red, green, and blue. The alpha component is essentially the
opacity of the color; an alpha component of 0 means that it is completely transparent and
an alpha component of 1 means that it is completely opaque.

The rgba function takes four arguments: three integers that represent the amount of red,
green, and blue respectively and a floating point number the represents the alpha component.
Each integer should be between 0 and 255, and the floating point number should be between
0 and 1.
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C Homework Assignments

C.1 Drawing with Elm

1. Define or describe: “programming language”

2. Write instructions (in English) for drawing the flag of a country of your choosing.

3. Describe what the following program does:

import Color exposing (..)

import Graphics.Collage exposing (..)

main =

collage 200 200

[ circle 25

|> filled black

|> move (0,0)

, circle 20

|> filled black

|> move (-25,25)

, circle 20

|> filled black

|> move(25,25)

]

C.2 Drawing and Functions

1. Define or describe: “function”

2. Define or describe: “argument” (“input”)

3. Write a function that takes a coordinate pair as an argument and draws a target (like
the one below) centered at the specified location.

Complete the code at learn-elm.com/examples/target.
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C.3 Functions and Variables

1. Write a function that takes a coordinate pair as an argument and draws a balloon (like
the one below) centered at the specified location.

Below, you will write a few Elm functions that perform mathematical computations.

For example, here’s a function that doubles its argument:

double x = 2 * x

2. Write a function that adds its arguments.

3. Write a function that multiplies its arguments.

4. (Bonus) Write a function that calculates the roots of a second-order polynomial using
the quadratic equation.
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C.4 Types

1. Define or describe: “type”

2. Define or describe: “partial application”

3. Write a type annotation for the following function: square x = x * x

4. Write a type annotation for the following function: difference (x,y) = x - y

5. Write a type annotation for the following function:

dot c =

circle 10

|> filled c

|> move (0,0)

6. Write a function with the following type annotation:

combine : (number,number) -> number

C.5 Lists and Map

1. Define or describe: “list”

2. Use List.map3 to simplify the code at learn-elm.com/examples/flower-1.

(N.B. You can combine lists using ++.)

3. Write an Elm program that draws the grayscale below using List.map.

(Hint: http://package.elm-lang.org/packages/elm-lang/core/3.0.0/Color#grayscale)
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C.6 Conditionals

1. Define or describe: “boolean”

2. Define or describe: “conditional”

3. Write an Elm program that, given two points, plots them on the Cartesian coordinate
plane. Both points should be green if they are in the same quadrant and both points
should be red if not.

See examples below. Complete the code at learn-elm.com/examples/draw-points.

C.7 Mouse Signals

1. Define or describe: “signal”

2. Modify http://learn-elm.com/examples/mouse-circle so that the circle becomes
a square whenever the mouse is clicked.

3. Write an Elm program that draws a circle that changes color according to the mouse
position.

For example, as the mouse moves from the leftmost point to the rightmost point, the
circle could change from white to black.

(Hint: http://package.elm-lang.org/packages/elm-lang/core/3.0.0/Color#grayscale)
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C.8 State and Pattern Matching

1. Define or describe: “foldp”

2. Define or describe: “record type”

3. Write an Elm program that draws a circle that grows each time the mouse is clicked
and returns to its original size whenever the space key is pressed.
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D Pre/Post Survey

This survey was adapted from Wiebe et al.’s Computer Science Attitude Survey [32].

Instructions

Please note that your answers will be kept anonymous.

This survey contains a series of statements.
1. Read each statement.
2. Think of the extent to which you agree or disagree with each statement.
3. Mark your response.

Please remember:
- There are no right or wrong answers. Don’t be afraid to put down what you really think.
- Don’t spend a lot of time on any one questions. Move quickly!
- Complete all of the questions.

Respond to each of the following questions, using the following scale:
(1) strongly agree
(2) agree, but with reservations
(3) neutral, neither agree nor disagree
(4) disagree, but with reservations
(5) strongly disagree

Questions

1. I plan to major in computer science in college.

2. I generally feel secure attempting computer programming problems.

3. I am sure that I could do advanced work in computer science.

4. I am sure that I can learn programming.

5. I think I could handle difficult programming problems.

6. I can get good grades in computer science.

7. I have a lot of self-confidence when it comes to programming.

8. I’m not good at programming.

9. I don’t think I could do advanced computer science.

10. I’m not the type to do well in computer programming.

11. I’ll need programming for my future work.
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12. I want to study programming because I know how useful it is.

13. Knowing programming will help me earn a living.

14. Computer science is a worthwhile and necessary subject.

15. I’ll need a firm mastery of programming for my future work.

16. I will use programming in many ways throughout my life.

17. Programming is of no relevance to my life.

18. Programming will not be important to me in my life’s work.

19. I see computer science as a subject I will rarely use in my daily life.

20. Taking computer science courses is a waste of time.

21. In terms of my adult life, it is not important for me to well in computer science in
college.

22. I expect to have little use for programming when I get out school.
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