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ABSTRACT  

 

Solar power is becoming increasingly important as a source of energy in the United 

States. While solar represents a low-emission source of energy, integrating it into 

the electrical grid is challenging. The power output of solar is not controlled by 

operators, but is instead determined by the weather. Since solar power is not able 

to be controlled as a typical power station would be, analyzing its behavior is 

essential. This paper looks at three main points: the significance of short term 

variability in solar power output, mitigation techniques for short term variability, 

and how solar resources could change over the 21st century. 

New England is the geographical focus of the analysis of short term variability as 

well as the geographical focus of the mitigation analysis. This region was chosen 

because its climate makes it especially susceptible to short term variability. 

Additionally, its solar industry is already being affected by policy decisions where 

short term variability plays a role. This study found that short term variability of 

solar photovoltaic arrays was significant in both magnitude and frequency. Over 

the course of a year, panels could be expected to fluctuate over 95% of their rated 

power output in a 5 minute time interval. Additionally, a strong seasonal correlation 

was found with short term variability. Variability reached a minimum in the winter, 

while peaking in the late spring and early autumn.  

The mitigation analysis found that the addition of a storage system could effectively 

moderate the effects of short term variability produced by solar panels. The driving 

factor of the effectiveness of the storage system in mitigating variability was its 

maximum power output.  

The Southwestern United States is the focus for the analysis on how solar resources 

may change in the 21st century. This region was chosen because it currently has the 

best solar resources in the US, which may lead to expensive and long-lasting 

infrastructure being installed in the area. Thus, the projected climate of the region 

becomes important. This study finds that solar resources in the Southwestern 

United States are projected to remain relatively steady over the coming century. 

The quality of the solar resources in the Southwest is expected to be maintained 

even under a medium or high carbon dioxide emissions scenario. Interestingly, the 

average cloudiness of the region is expected to increase with no effect on the 

amount of solar radiation the region receives.  
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INTRODUCTION 

 

Background of Solar Photovoltaic Power 

 

Solar photovoltaic panels harvest solar radiation and transform that energy into 

electricity.  They represent a clean and renewable source of energy. In years past, 

these panels provided a negligible source of electricity in the United States; 

however, in recent years, their use has exploded. Roofs of residential and 

commercial buildings are being outfitted with panels and firms are building utility-

scale photovoltaic systems on the scale of megawatts. This no-fuel, no-emissions 

source of electricity is a relatively new addition to the electrical grid and behaves 

differently than previous methods of generating power. One major difference is that 

it is non-dispatchable. This means that it is not turned ‘on’ or ‘off’ by an operator. 

This major drawback of solar photovoltaic power makes its installation on the 

electrical grid complicated. As solar PV becomes a more important source of 

power, research into how to add it to the grid in a safe and reliable manner becomes 

essential.  

Solar power offers a significant opportunity for a low-emission, yet substantial, 

source of energy. Compared to other renewable sources, solar is energy dense in 

terms of power output per unit of land exploited. On average, it produces between 

10-20 W/m2. This compares to other renewables favorably, with biofuels producing 

around 1W/m2 and wind less than 1 W/m2.1 This energy density shows that solar is 

                                                           
1 Keith, David. 2015.  
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a viable option to produce large amounts of energy in the future. On average, each 

square meter of the United States receives roughly 5 kWh of solar radiation per 

day. In the Southwest these values can be over 6.5 kWh/m2; in the Pacific 

Northwest and Northeast they can be as low as 3.75 kWh/m2 per day.2 To put this 

in perspective, the average US home used 30 kWh of electricity per day in 2014. 3 

Using the US average of 5 kWh/m2 of solar energy received per unit land area and 

a hypothetical solar photovoltaic efficiency of 15%, it would only take 40,000 km2 

of land (1/2 of the size of South Carolina) to provide the entirety of the United 

States’ energy over the course of a year. Thus, solar energy has the potential to 

power the country in the future.  

Solar photovoltaic technology is experiencing explosive growth in the United 

States. In 2010, 850 MW of solar photovoltaic capacity was installed in the United 

States. In 2014, this increased by 650% to 6212 MW of capacity being installed.4 

The newly installed capacity of over 6 GW was split between residential, 

commercial, and utility systems. The majority of installed capacity came from 

utility-scale solar PV systems. One reason for this explosive growth is dramatically 

falling prices for PV systems. Since 1998, prices have fallen 6-8% per year for solar 

photovoltaic modules. This translates into a drop from $12/Watt installed in 1998 

to under $4/W installed today.5 Solar is beginning to make a significant impact on 

the electricity landscape of the United States.  

                                                           
2 United States Photovoltaic Solar Resource: Flat Plate Tilted at Latitude 
3 How Much Electricity Does an American Home Use? 
4 SEIA Market Insight Report 2015 
5 Feldman et al. 2014 
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Solar photovoltaic power generation represents a departure from the typical 

way electricity is generated. Historically, power is produced in a few large power 

plants and distributed throughout the electrical grid. These power plants can be 

turned on and off and have their power output controlled. In contrast, solar power 

can be distributed, or spread out in small systems throughout the grid. More 

importantly, it cannot be controlled by human operators. Electricity produced by 

solar is “must-take”, meaning that whatever is produced must be used. This poses 

a significant and major change from the historical generation of electricity. Since 

solar is becoming a larger factor in US electricity supply, the importance of 

investigating these differences between solar and other power sources, as well as 

putting an effective plan in place for its use, has significantly increased. 

Although solar photovoltaic power is a promising energy source, it has two 

major problems: 1) it only works during the daytime and 2) its power output during 

the day can be variable. There is notable concern over the solar ‘duck curve’. The 

‘duck curve’ is the name for the hypothetical electrical load profile that would occur 

with a high level of solar penetration (seen in figure I below). Large amounts of 

power produced during the day from solar panels would cause a large dip in power 

required from conventional generation. Then, as the sun went down, a massive 

ramp up of conventional generation would be required to meet demand. This 

problem is currently being studied to a great extent. Variation in solar power output 

during the day is also important. Power output can vary on short timescales and this 

can pose problems for grid operators as this source of electricity is not steady. 

However, not as much research has gone into daytime volatility and very little has 
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gone into short-term volatility. This important problem requires more research, 

especially as the amount of solar photovoltaic capacity increases on the grid.  

 

Figure I | Hypothetical ‘Duck Curve’ projected by California ISO6 

This figure shows the projected load on a typical day in March for the California 

electrical grid over various years. The large dip occurring in the middle is due to 

solar power production, which reaches its peak just after noon. This graph is 

emphasizing the steep ‘ramp up’ period that utilities may have to deal with if a 

large amount of solar is added to the grid. This ‘ramp up’ period occurs because 

the sun is setting so solar power is dropping at the same time people are arriving 

home from work and using large amounts of electricity. 

 

Short Term Volatility of Solar Power 

 Short term solar power volatility is the fluctuation of power output over 

short timescales. These short timescales range from being measured as an hour in 

length to as short as being measured in seconds; the discrepancy usually occurs due 

                                                           
6 California ISO, 2013.  
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to the data resolution available. It is important to note that short term volatility does 

not have to do with day-night cycles. In other words, it is not the variation that 

occurs as the sun rises and sets. Short term volatility is unpredictable and the major 

factor in its creation is clouds. Clouds have their greatest effect during partly cloudy 

days when the clouds are cumulus in nature. These large, puffy clouds tend to cause 

deep shadows and are sporadically placed in an otherwise sunny sky. Figure II 

shows a partly cloudy day in May 2015 that is a prime example of how drastic the 

fluctuations in incoming solar radiation can be.  

 

Figure II | Solar radiation fluctuations during one day in May 2015 

This figure shows the change in solar radiation reaching the ground in Cambridge 

in May 2015. The large magnitude, as well as high frequency, of the fluctuations 

demonstrates the ability of solar radiation to be variable. 

 

 

 Currently, there is not much research that has been done in short term solar 

power volatility. However, there are a few papers that explore this topic using short 
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term timescales. In one study, Tomson and Tamm used 1-minute timescale solar 

radiation data in Estonia. They concluded that radiation variability is especially 

important in global regions that are prone to cyclonic activity. They found that there 

was a small amount of variability from high clouds and very little variability from 

low rain clouds. After statistical analysis, they determined that a one-minute change 

of < 50 W/m2 during sunny days and < 150 W/m2 during cloudy days could be 

considered stable.7 Another paper by Tomson used one second sampling to see how 

clouds affected solar radiation. This was again conducted in Estonia. This research 

was focused more heavily on clouds rather than solar radiation and found that visual 

recognition of cloud types can be used to estimate variability.8  

 Another study by Mohrail and Kukarni analyzed short-term variability in 

India. However, this study used a timescale of one hour and models to study 

variability rather than using real data from sub-hour timescales.9 An interesting 

paper by Tarroja, Mueller, and Samuelsen looked at how special distribution of 

solar photovoltaic arrays can affect short-term variability. They utilized 5 minute 

data from the Pacific Northwest to investigate their question. They concluded that 

geographic variation can help with short term variability significantly. In other 

words, more solar PV sites spread out over a larger area had less total volatility than 

one large system.10  

                                                           
7 Tomson and Tamm, 2005. 
8  Tomson, 2009.  
9 Moharil and Kulkarni, 2010. 
10 Tarroja, Mueller, and Samuelsen, 2012.  
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 Overall, short term volatility in solar photovoltaic power is an important 

topic that has received some research attention but not as much as it should have 

received. As solar capacity increases, short term variability of solar power will only 

become more important. More research is required to fully understand how much 

solar power can vary on short timescales and what effect, if any, this would have 

on the operation of the electrical grid.  

 

Why Short Term Variability of Solar Power Matters 

 Research into short term volatility is important because of the way the 

electrical grid operates. Supply must meet demand on the grid. This is difficult 

enough with dispatchable energy sources and gets more complicated as more non-

dispatchable sources are added. Short term solar volatility is especially important 

because of how the system currently manages volatility. Utility operators manage 

variability with a system of reserve generation capacity. Generation capacity 

known as ‘spinning reserves’ are synchronized to the system and can respond 

quickly to changes in electrical demand.11 However, spinning reserves are 

expensive both economically and environmentally. They are turbines that are 

running and utilizing energy but producing nothing useful in return. Put another 

way, spinning reserves are power plants (or single turbines) that are operating but 

not producing power. This makes them expensive to operate and they also produce 

atmospheric emissions of greenhouse gasses and other pollutants. Spinning 

                                                           
11 Milligan et al. 2010 

http://www.nrel.gov/docs/fy11osti/49019.pdf
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reserves are the piece of the electrical grid that would be most affected by short 

term volatility in power generated by solar photovoltaics.  

 Short term volatility research is also important from an energy policy 

perspective. Small scale solar installations can use what is called net-metering. Net 

metering allows for electricity consumers to produce their own electricity to offset 

their overall electricity usage. A net meter will spin forward when a customer is 

using electricity from the grid and spin backwards when their method of generating 

electricity is producing excess electricity. Thus, the customer would only be 

charged for their ‘net’ electrical usage from the grid.12 Net metering is important 

for solar photovoltaics because many residential and commercial users of PV arrays 

use this method to maintain a constant, quality supply of electricity. However, many 

states have capped the amount of net metering that is allowed within the grid 

system. Half of states that allow net metering also have caps, including 

Massachusetts. Explosive growth in PV capacity could cause several states to reach 

their capacity by 2018. 13 One reason for the cap is the volatility that panels 

introduce into the system. Thus, further research into this volatility will provide 

better information on how to manage net metering in the future.  

 

 

 

                                                           
12  CMR 220, 2014. 
13 Heeter, Gelman, and Bird, 2014.  
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Exploring Changing Solar Resources due to Climate Change 

 Another important factor in the future of solar power is how climate change 

will affect solar resources over the coming century. Solar energy resources are 

inherently susceptible to being affected by weather patterns. The more sunny a 

location is, the better suited it is for a solar photovoltaic system. An example of a 

prime location for solar photovoltaic arrays is the Southwestern United States. The 

Southwest has a dry climate and is drenched in sunlight. However, climate change 

will change weather patterns over the next century. Since solar photovoltaic arrays 

cannot be easily moved after being built and full exploitation of this resource will 

require a tremendous investment in long-term infrastructure, it is important to see 

how solar resources will change over the coming decades.  

 Solar radiation can come in two main forms, direct or indirect. The first, 

direct solar radiation, is light that is coming in a ‘beam’ from the sun. The second 

form, diffuse radiation, is light that is scattered by particles in the atmosphere and 

does not come from the direction of the sun. Solar photovoltaic panels accept both 

direct and diffuse radiation to produce electricity.14 The only measure that matters 

for a photovoltaic panel is the total energy of the radiation reaching the surface of 

the panel. While a panel does not discriminate between direct and indirect radiation, 

the placement of the panel can have an effect on how much diffuse radiation is 

reaching the surface. The amount of diffuse radiation reaching the surface depends 

on how much of the sky the panel is exposed to. For example, a flat panel will see 

                                                           
14 Bhatia, 2014. 
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all of the sky and will receive the full amount of indirect radiation. Tilting the panel 

by 45 degrees reduces the amount of the sky the panel sees by half, which reduces 

the amount of indirect radiation reaching the panel by half. 15 However, direct 

radiation is more valuable to photovoltaic panels than indirect radiation because it 

is typically much stronger. Tilting panels to receive more direct radiation from the 

sun will generally outweigh the loss of indirect radiation from seeing less of the 

sky. While both forms of radiation matter to the power production of solar 

photovoltaic panels, direct radiation is more important. 

 As mentioned earlier, clouds have a significant impact on how well an area 

is suited for solar PV systems. Clouds block sunlight that would otherwise reach 

the ground. Additionally, reflected or diffused radiation is not as valuable to solar 

photovoltaics as is radiation from a clear sky. Related to clouds’ effect on radiation 

are aerosols. Aerosols are tiny particles that are suspended in the air of the 

atmosphere.16 They can scatter radiation directly or influence the formation of 

clouds. Clouds and aerosols stand to be affected by climate change and there is 

research available into this topic that will be reviewed.  

 One tool that can be used to analyze changing solar resources is a global 

climate model (GCM). Global climate models utilize numerical methods to 

represent physical processes in the climate system.17 GCMs can be run with 

different greenhouse gas emission scenarios which allows for studying multiple 

situations in an uncertain future. These models use a grid across the Earth to depict 

                                                           
15 Masters, 2004. 
16 Allen, 1996. 
17 IPCC, 2013. 
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what will happen in each individual area. This allows for the effects of climate 

change to be analyzed on a more local level. Global climate models are not perfect 

and carry uncertainty but are a useful tool for examining how the future of Earth’s 

climate might behave. In particular, GCM data can be used to see how solar 

resources can change over the next century.  

 

Project Overview 

My project focuses on analyzing solar photovoltaic technology. It has three main 

parts: 

1. Determine the significance of short term volatility. 

2. Explore mitigation techniques for short term volatility. 

3. Examine how climate change can possibly affect solar resources over the 

coming century. 

Determining the significance of short term volatility means analyzing whether 

or not solar photovoltaic power can fluctuate enough in short time scales to effect 

power generation quality. This part will focus on how much hypothetical arrays can 

change on short time scales, specifically in the Northeastern United States. After 

determining its significance, mitigation methods for short term volatility and their 

effectiveness will be examined. A hypothetical system in the form of a 

mathematical model will be created to minimize the amount of volatility that occurs 

within the power production of the photovoltaic system.  Finally, there will be a 

literature review of how clouds and aerosols are expected to change throughout the 
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century. In addition to the literature review, global climate model data will be 

analyzed to better answer the question of how solar resources in the United States 

will be affected by climate change.  
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CHAPTER 1 – Significance of Short Term 

Volatility of Solar Power 

  

The goal of this chapter is to determine if short term variability from solar 

photovoltaic power is large enough in magnitude and frequency to be considered 

significant. To determine whether or not short term solar power variability is 

significant, a year’s worth of data from a weather station was collected and 

analyzed. Using a model, weather station data could be translated into power output 

data and the difference in power output between each five-minute timestep could 

be calculated. The difference in power output at these timescales is the short term 

variability in the system. The larger and more frequent the fluctuations, the more 

variability there is in the system.  

For a narrower focus on how short term solar power variability could affect 

a microgrid, the second part of the significance analysis adds in electrical demand 

data from a microgrid on Harvard’s campus. By adding in demand, two goals are 

accomplished: 1) solar variability could be placed in the context of a real microgrid 

and 2) it could be determined whether or not demand variability would help to 

mitigate or exacerbate solar power fluctuations.  
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1.1 Methods 

1.1.1 Data Collection 

To answer the question of whether or not short term variability of solar 

power is significant, weather and electrical demand data was acquired, cleaned, 

prepared and analyzed.  

 The first dataset analyzed consisted of weather data collected on five minute 

timescales. The weather data was collected from the top of Gund Hall, a building 

in the Harvard Graduate School of Design in Cambridge, Massachusetts. To collect 

this data, a HOBO U30 Weather Station18 with Wifi link was used. The HOBO U30 

measured temperature data by itself. However, for solar radiation intensity, a solar 

pyranometer (model S-LIB-M003) was used in conjunction with the HOBO U30 

station. Using this station, weather data was collected from June 2014 – December 

2014 (this experiment known as ‘Experiment 2’) and from February 2015 – July 

2015 (this dataset known as ‘Experiment 4’). Solar radiation intensity was 

measured in watts per meter squared. Temperature was recorded in degrees Celsius.  

 The second dataset utilized in the study was electrical demand data from 

Harvard’s campus. In conjunction with the weather station data from Harvard’s 

campus, the electrical demand data would provide the necessary components to 

study how a solar array’s power volatility could affect the Harvard microgrid. The 

electrical demand data was provided by Robert Manning, Director of Energy and 

Utilities for Harvard. The demand data was collected at the six substations serving 

                                                           
18 HOBO U30-NRC Weather Station Starter Kit 
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Harvard. Each substation connects to a different microgrid. The stations that data 

were collected from were CUP, Gutman, Hilles, Holyoke, McCollum, and 

Northwest. Demand data is given in the total amount of kilowatts that the substation 

is drawing from the overall electrical grid at the given time. The timescale of the 

data provided is 5 minutes. Data was provided for the period July 2014 – July 2015.  

 

1.1.2 Data Organization and Cleaning 

 For more precise resolution when analyzing the significance of variability, 

each dataset was split into parts by being separated by month. This data was stored 

and organized using Microsoft Excel. It is also important to note that the datasets 

were not perfect. For some timestamps, there was an error in one of the various 

sensors collecting the data. To remedy this situation and allow for the effective use 

of modeling, the missing piece of data was filled in by averaging the values of 5 

minutes pre- and post-error. This small amount of data cleaning was insignificant 

when compared to the amount of data points that were analyzed and were only used 

to allow for more effective and efficient modeling. 

 

1.1.3 Solar Variability Model 

 In order to effectively study the power production of solar panels without 

any solar power production data, a model was required to convert solar radiation 
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and temperature data into hypothetical power output. The PVWatts19 Module 

Model was used for this study. Its parameters are given below: 

  

𝑃(𝑡) {

𝐼(𝑡)

1000
× 𝐴𝑠𝑡𝑑 × [1 + 𝛾(𝑇𝑝𝑎𝑛𝑒𝑙 −  𝑇𝑠𝑡𝑑)]  ,                 𝐼(𝑡) ≥ 80

  
0.008 × 𝐼(𝑡)2

1000
× 𝐴𝑠𝑡𝑑 × [1 + 𝛾(𝑇𝑝𝑎𝑛𝑒𝑙 −  𝑇𝑠𝑡𝑑)] , 𝐼(𝑡) < 80

 

Overall, this model converts temperature and insolation data into power 

output from a given solar array. Power, P(t)¸ is the electrical power being produced 

at time t. I(t) is the insolation at time t, which is given by the dataset. 𝐴𝑠𝑡𝑑 refers to 

the solar panel array size, or the rated maximum power output of the array (ie 

100kW). 𝛾 is a constant value known as the temperature coefficient, which is fixed 

at -0.5 % per degree Celsius.20 𝑇𝑝𝑎𝑛𝑒𝑙 and 𝑇𝑠𝑡𝑑 refer to different temperatures that 

are associated with the model and will be discussed further in the following 

paragraph. Depending on the overall insolation, one of two equations will be used. 

This discrepancy comes from the way solar photovoltaic modules behave at low 

levels of insolation. Overall, this model represents a way to convert weather station 

data to hypothetical power output in an accurate manner.  

 The temperature variables in the PVWatts model are integral to the accuracy 

of the model. 𝑇𝑠𝑡𝑑 refers to the Standard Test Condition (STC) of temperature for 

solar panels. This standard temperature is 25° Celsius and remains constant 

throughout the entirety of the analysis. 𝑇𝑝𝑎𝑛𝑒𝑙 refers to the temperature of the solar 

                                                           
19 Dobos, 2013. 
20 Dobos, 2013. 
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cell itself and is more complicated. NASA’s Jet Propulsion Laboratory created a 

model21 used to solve for cell temperature:  

𝑇𝑝𝑎𝑛𝑒𝑙 =  𝑇𝑎𝑖𝑟 + 
𝑁𝑂𝐶𝑇−20

800
× 𝐼(𝑡) 

This equation relates the cell temperature of the solar panel to the air temperature, 

a value known as NOCT, and solar insolation. The air temperature and insolation 

value, provided by the weather station dataset, is used at each time step. NOCT 

refers to Nominal Cell Operating Temperature and is a value that provides a means 

to describe a solar panel’s thermal properties and their effects on power outputs. 

For this model, a NOCT of 48°C was used because it provided an average baseline22 

that would serve well in a hypothetical array simulation.  

 

1.1.4 Solar Variability Significance Analysis – Only Examining Solar Data 

 The first significance analysis consisted of examining how much solar 

power output could vary on short timescales throughout the year. For this part of 

the analysis, only the weather station data and solar power model were used. This 

section will isolate solar variability while later analyses will take electricity demand 

fluctuations into account. A Python script, using the PVWatts model, found the 

hypothetical power produced at each time step. This script also found the difference 

between the power productions at each time step and recorded it. This value, the 

difference in power at time t and t+1, represents the amount of variability produced 

by the solar array. The chosen array size does not matter as it is linearly proportional 

                                                           
21 Ross, 1981. 
22 Muller, 2010. 
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to the output power of the model. However, for the purposes of this study, it was 

set at 100kW.  

1.1.5 Solar Variability Significance Analysis – Adding Demand Data into the 

Model 

 The second analysis of short term solar variability adds a new variable to 

the model: electricity demand of a microgrid. The microgrid used in this analysis 

is made up of the Harvard Business School as well as Harvard Athletics facilities. 

McCollum substation is the interconnect between this microgrid and the wider 

electrical grid. McCollum also serves as the station where electricity demand for 

the grid was measured. A map of the microgrid can be seen below: 

 

Figure 1.1 | Map of the Harvard microgrid served by McCollum Substation  
The buildings included in the microgrid are a dark blue color. The microgrid serves 

Harvard Business School as well as the athletic complexes in Allston. 
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Looking at an entire microgrid’s demand introduces a new variable into the 

significance question. Now, rather than solar variability itself being studied, the 

interesting value is how much power the microdgrid requires from the outside 

electrical grid at a given time. The changes in the electricity pulled from the outside 

grid are the interesting value because they represent the stress created on the overall 

grid by the variability in the microgrid. This value is given as ∆𝐺.  

1.1.6 Computer Modeling of Solar Variability 

A Python script was used to model the data in terms of ∆𝐺. This script first 

loops through all of the demand data to find the change in demand for each time 

step. It then makes two new columns where ∆Demand is added and subtracted to 

the ∆Gmax constraint found earlier. These two columns are necessary because the 

maximum solar change is limited differently depending on how demand is growing 

or shrinking in the 5 minute timespan. For example, a growth in demand would 

allow PV output to grow more in that time period, hence an addition. If demand fell 

but PV grew, it could grow less because more electricity would be added to the 

grid, again leading to the addition column because of the way ∆Demand is added 

to ∆G. See table 1 for more information on the cases. This now provided a 

framework to see how much solar could be produced in each case, again depending 

on ∆Demand and ∆PV.  

Next, the model uses the temperature and insolation data to calculate the 

power output at time t of a 1 kW array. Then, it finds the difference in output 
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between each PV(t) and puts it in a different column as ∆ PV. Next, according to 

the logic table, the maximum ∆ PV is calculated and the array size to create this ∆ 

PV is calculated and stored in another column. Since array size is linearly 

proportional to power output, the maximum array size is calculated by dividing ∆ 

PV by the power output of the 1 kW array. The output of this division is the number 

of 1 kW arrays that can exist and still have volatility remain under the given 

threshold. The minimum of this maximum column was found manually and was 

the largest array size that could exist in the system to remain within the constraints 

given. Additionally, the 5th percentile of the arrays (in terms of size) was used to 

see the differences between the absolute largest array and the largest possible 

provided looser constraints.  

∆PV positive ∆D positive Solar can increase more, use addition 

column 

∆PV positive ∆D negative Solar can increase less, use addition 

column 

∆PV negative ∆D positive Solar can decrease less, use 

subtraction column 

∆PV negative ∆D negative Solar can decrease more, use 

subtraction column 

Table 1.1 | Logic for Python code to figure out correct ∆G, ∆D, ∆PV signs 

The logic of this table was used to determine the correct function of the model. In 

essence, it tells the model what to do for every situation that can be encountered. 

The columns referred to in the table are from the solar dataset. The addition column 

refers to ∆D being added to ∆PV to determine the constraint at the given timestep. 

The subtraction column refers to ∆PV being subtracted from ∆D. How the model 

remains within the constraint is determined by the absolute values of these 

additions or subtractions remaining below the constraint.  
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1.2 Results 

1.2.1 Absolute Changes in a Model Array 

The results of the significance analysis that focused on the solar variable 

showed variability that was large in magnitude as well as frequency. This section 

explores the variability of solar power production over the course of one year in the 

Northeastern United States. In particular, this section analyzes the data from the 

weather station at Gund Hall on Harvard’s campus. The results focus only on how 

much solar power itself can vary; there are no other variables being considered. The 

purpose of this initial data analysis is to isolate the amount that solar photovoltaic 

power can vary on short timescales. Later sections will introduce other variables to 

see if the variability of those quantities effects the overall microgrid system.  

 

Figure 1.2 | Fluctuations of a solar panel array over one year  

This plots the data points taken over the 2014-2015 year and shows the difference 

in power output at each 5 minute timestep.  
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 This figure shows the variability of solar power output over one year for 

each 5 minute timestep. Solar radiation and temperature data were used with a 

model to determine the amount of power output of a hypothetical 1 kilowatt array 

at each time. To determine the variability, the difference between each power 

output was plotted. The left-hand side of the graph marks June 2014 and the right-

hand side is the data from July 2015. In between the data from every month except 

January 2015 is plotted.  

 Overall, this graph shows that there is a significant amount of variability 

within the system. The magnitude of the largest changes in power output is large 

and the frequency of these large changes in power output is considerable. The other 

interesting part of this graph is that there is positive and negative variability. There 

are relatively equal instances of power output jumping or falling drastically within 

a 5 minute time period.  

 

Figure 1.3 | Power output changes 

The changes in power output were ordered from greatest to least and then plotted 

to show the relative amounts of each power output change. As night time data was 

also used in this analysis, about half of the tail of 0 output change can be accounted 

for due to the lack of sunlight during the night.  
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To get a better sense of the frequency of variability events as compared to 

their magnitude, the above figure plots the absolute magnitude of each change in 

power output. The magnitudes were ordered from greatest to least. This gives a 

sense of how frequent large variability events occur. From the graph, it is apparent 

that events with large magnitude are relatively rare. The plot drops off drastically 

in a ‘hockey-stick’ fashion. Most of the time, there is little to no variability at all. It 

is important to note, however, that for roughly half the time there will be no 

variability because it will be night time. Additionally, the magnitude of power 

output was plotted in terms of Watts rather than relative change to capture the scale 

of how large the variability can be. In other words, a 100% change in output over 

5 minutes is not significant if the power being produced was only 50W in a one 

kilowatt system. A smaller relative change may have a larger magnitude, and thus 

would be more important, if a large amount of power was being produced at that 

given time.  

 The important conclusion to draw from this graph is that variability events 

with large magnitudes do happen. However, their quantity is not overwhelming, as 

seen by the considerable drop in the graph. In an absolute sense, there are a good 

amount of variability events with a large magnitude. On the other hand, in a relative 

sense, the frequency is not as large. Overall, there are a substantial number of high 

variability events but the inverse relationship between magnitude of variability and 

frequency is strong.  
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1.2.2 Proportional Changes in a Model Array 

 

 

Figures 1.4 and 1.5 | Relative change in power output 

These graphs show the change in power output in terms of a percentage of the size 

of the array. By showing the data in this manner, the analysis can be applied 

different array sizes than the standard 1 kilowatt used earlier.  

 

 The next set of graphs translates the absolute data from the model run into 

relative numbers based on array size and shows that panels can be expected to have 

short term variability events on the order of 95% of their rated maximum power 
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output. By looking at changes in power output as a percentage of array size, these 

charts are more applicable to looking at a general case. From these values, one 

would be able to infer the variability that would occur in power output for any 

reasonable array size. An estimate could be made of how much raw volatility, in 

terms of Watts, would be introduced into a system by adding a solar photovoltaic 

array of any size. The relationships outlined in the absolute magnitude figures hold 

here; the general trend of events of significant occurring with a strong inverse 

relationship to frequency holds.  

 

1.2.3  Analyzing Monthly Distributions of Variability 

 

Figure 1.6 | Maximum power output changes by month  

The average of the top 10 power output changes was taken for each month and 

plotted here. Notice the seasonal variability with winter having the lowest power 

output volatility.  
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Solar variability has a strong seasonal relationship; it is at its minimum in 

the winter and peaks in the late spring and early autumn. When split into monthly 

timescales, an interesting trend emerges. This graph shows the average of the top 

ten highest variability events for each month. The average of the top ten was taken 

to capture the magnitude of the maximum amount of variability one could expect. 

The average helps to eliminate the effect of any one outlier having too much of an 

effect on the results.  

 There is a clear trend between season and variability. Summer months 

experience the highest level of variability, with power output being able to vary 

over 80% of the maximum array size. The maximum variability falls off sharply, 

however, as the transition to winter occurs. In December, the month with the lowest 

variability, the maximum amount of variability the system experienced was less 

than 30% of its rated output. Compared to the summer months, this is a significant 

drop in the amount of variability the same system can experience over a yearly 

timespan. Reasons for this strong seasonal dependence will be explored further in 

the discussion section.  

 

1.2.4 Adding Demand to the Model 

 

 The next part of the significance analysis section introduces another 

variable, electrical demand, into the model of power volatility within a system with 

a solar photovoltaic array and found that the variability of the system only increased 

with this additional variable. The system is the microgrid serviced by McCollum 
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Substation (see figure 1.1). By adding demand data, the variability analysis shifts 

solely from solar power output to the variability of the grid’s input of power into 

the system. In other words, the subject is now a microgrid system and its power 

demand rather than strictly a photovoltaic array and its power output. By modeling 

the microgrid with a hypothetical solar photovoltaic array, a better estimate of the 

strain the system puts on the electrical grid can be made. At each moment, the 

overall electrical grid must input enough power into the microgrid to perfectly 

match demand. However, demand alone can vary, which introduces a small amount 

of stress into the system. When one adds a photovoltaic array to the system, the 

effective demand that the overall grid sees changes. This is because the power 

produced by the photovoltaic array will meet demand within the microgrid system 

first, which changes the amount of electricity the overall grid would have to input 

into the system.  

 Rather than looking at the raw amount of variability that a solar photovoltaic 

array introduces into the microgrid, a new measure was used to explore the 

significance of the volatility introduced by the solar power system. For part of this 

analysis, the output of the model was the largest solar array that could exist within 

the system if given a certain volatility constraint. The larger the solar array, the 

larger the amount of variability in the system. The constraint is on the 5-minute 

change in the amount of power the overall grid must input into the microgrid. At 

each time, solar array output, microgrid demand, and electrical grid power input 

must match. Within this system, the constraint was placed on the amount the input 
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power from the electrical grid can vary. As a general rule, the smaller the array that 

can exist within the system, the larger the amount of solar volatility.  

Month 18% 24% 30% 36% 1500 kW 

July 1478 2147 2722 3279 2086 

August 1195 1701 2207 2713 1972 

September 1560 2291 2963 3637 2073 

October 1342 2047 2732 3460 2425 

November 1886 2584 3280 3951 3154 

December 2049 2892 3609 4388 3861 

February 2030 2647 3262 3881 3272 

March 1098 1549 2002 2454 2093 

April 844 1270 1696 2120 1635 

May 1305 1837 2354 2810 2056 

June 1109 1529 1948 2367 1801 

Minimum 844 1270 1696 2120 1635 

Table 1.2 | Short Term variability model results 

The top row refers to the constraint given to the model for that specific run. The 

percentage refers to the percentage of maximum demand, given in kW, that was 

used as the constraint. 

 

The above table shows the results of five different model runs using 

different constraints. For four of the runs, the constraint was determined by taking 

a percentage of the maximum electricity demand for the given month. For example, 

‘18% July’ had its constraint given by finding the maximum demand of McCollum 

substation in July and taking 18% of that. The last column, ‘1500kW’, had a hard 

constraint of 1500 kW given for each month when the model was run. Minimum 

refers to the largest photovoltaic array size that could exist within the system under 

the strictest constraint. In other words, it is the maximum array size that could be 

in the system to remain within the given constraints for the entire year. The values 

of the table are the hypothetical array sizes in the system given in kilowatts. 
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1.2.5 Model Results under a Fixed Constraint 

 

Figure 1.7 | Model results by month, fixed constraint 

The maximum array size that could exist in the system while still meeting the 

constraints given (in this case, 1500 kW variability) is plotted. Note the strong 

seasonal effect on variability.  

 

 The above graph shows the largest array size that would remain within a 

hard constraint of 1500 kW variability. The 1500 kW represents a 5-minute change 

of the electrical grid having to supply 1500 kW more or less electricity to the 

McCollum microgrid. The hard constraint of 1500 kW was applied equally to each 

month when the model was run. The larger the maximum size of the array for each 

month, the smaller the amount of variability that occurred. As noted earlier, this 

variability takes into account both fluctuations in solar power output as well as 

demand fluctuations from the buildings within the McCollum microgrid.  

There is a strong seasonal dependence visible in this graph. Winter months 

experienced the lowest amount of variability and thus had the largest array size that 

could remain within the 1500 kW constraint. This matches with the earlier analysis 

that focused strictly on solar power output without factoring in demand. In 
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particular, April is interesting. It has the smallest maximum array size out of any 

month.  

1.2.6 Model Results under a Variable Constraint 

 

Figure 1.8 | Model results by month, variable constraint 

The maximum array size that could exist in the system while still meeting the 

constraints given is plotted. The constraint for this model run varied by month and 

was set to 24% of the maximum electrical demand reached during that month.  

 

 Rather than using a constant 1500 kW constraint, this graph shows the 

results of using the model with varied constraints for each month. Rather than a 

blanket constraint given over the year, the variability constraint was determined as 

a percentage of maximum demand for each individual month. This has the effect of 

matching the variability the system is constrained by with the amount of power 

flowing through the system itself. Months with higher demand, namely the summer, 

would have larger variability constraints. This leads to the seasonal effect being not 

quite as drastic as the hard 1500 kW constraint for every month. There is still a 

seasonal dependence; however the correlation is not nearly as strong.  

1000

1500

2000

2500

3000

M
ax

im
u

m
 P

V
 A

rr
ay

 S
iz

e 
(k

W
)

Month

Maximum Array Size (24% of Maximum Monthly 
Demand Volatility) 



31 
 

 

1.2.7 Demand Increases Total Volatility in the System 

 

Figure 1.9 | Demand and solar variability 

This graph shows the average of the top-10 variations in the system for each month. 

The important piece of this graph is that demand variability always increases the 

total variability the system experiences. In no month does demand variability help 

to cancel solar variability. 

  

Adding demand data to the model resulted in an increase in system 

variability in every month. This graph plots the average of the top-10 variability 

events in the system by month. Unlike the earlier graph, this includes fluctuations 

in demand rather than solely solar fluctuations. In every month, the magnitude of 

the variability events actually increased. The blue bar represents the variability as 

seen by solar only. The orange bar is the increase in variability the system saw when 

demand was introduced into the model. In no months did random variability in 

demand cancel out variability introduced by a hypothetical solar array.   
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1.3 Discussion 

 

1.3.1 Importance of Short Term Variability 

 Short term variability of solar power matters because as more solar is 

installed on the electrical grid, the greater the effect variability can have on the 

infrastructure of the grid. Currently, over 22 gigawatts of solar capacity exist in the 

United States. This capacity is expected to double in the next two years.23 Thus, 

solar is beginning to have an impact on the makeup of the electrical grid. As solar 

is a non-dispatchable power source, there are challenges when adding solar 

photovoltaic capacity to the grid. One such problem is the so called ‘duck-curve’ 

where the diurnal cycle of the sun combines with the typical electrical demand 

curve to produce large ramp-up or ramp-down times for conventional power plants. 

In other words, when the sun goes down in the late afternoon and solar power goes 

offline, demand must be met quickly by conventional power sources. However, 

while important, the ‘duck-curve’ has received a tremendous amount of research. 

There exists another problem: solar fluctuations on short timescales. As supply 

must always meet demand on the electrical grid, short term fluctuations would have 

an impact. If the magnitude of the fluctuations were too great, the quality of the 

electricity supply would decrease drastically and the infrastructure of the grid could 

be harmed. Thus, studying short term variability is important because solar capacity 

is increasing around the United States and its effect on the grid must be anticipated.  

                                                           
23 SEIA, 2015. 
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 In Massachusetts, there is a cap on the amount of grid-connected solar that 

can be built in the state. One such reason for this cap is because of short-term 

variability and its effect on the health of the infrastructure of the grid. However, 

this cap is calculated somewhat arbitrarily: it is a set percentage of peak demand 

that the grid faces in a given year. By studying solar variability and quantifying the 

data, a better constraint could be put on the cap. Thus, the significance analysis 

from Harvard’s campus will give a better idea of how much power volatility is 

induced by solar photovoltaic power which could lead to better policy decisions 

regarding the amount of solar power on the electrical grid.  

 

1.3.2 Overall Significance – The Magnitude and Frequency of Variability 

Events 

The results of the significance analysis were striking: variability from solar 

power was considerable in both magnitude and frequency. Overall, the magnitude 

and frequency of these large variability events were higher than expected. Figure 

1.2 shows the fluctuations in solar power that occurred over just one year. From the 

graph, it is clear that solar power production is nowhere near constant. There are 

constantly large fluctuations occurring in power production. Figures 1.4 and 1.5 

show these fluctuations in more general terms that could be applied to any 

photovoltaic system. These graphs show power variability in terms of percent of 

array size. Thus, the numbers shown could be applied to a solar photovoltaic array 

of any size to figure out how much variability, in terms of Watts, it could introduce 

into a system. The surprising part of the analysis comes from just how large the 
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magnitude of the fluctuations can be. There are a non-negligible number of events 

with fluctuations over 90% of rated power output. This means that, in New 

England, any solar photovoltaic array could be expected to have its power output 

fluctuate by the entirety of its capacity in a very short amount of time.  

The magnitude and frequency of short term volatility of solar power has 

implications for its future as well as for the electrical grid that it will be connected 

to. As solar photovoltaic power has been shown to fluctuate to nearly its rated 

capacity in a short timescale, solar capacity on the grid will require significant 

electrical grid reserves (power plant reserves) in order to guarantee the quality and 

constancy of the electricity supply. This is because solar cannot be guaranteed to 

not lose all of its electrical production immediately. In other words, even if a panel 

is producing 100% of its rated capacity, it may drop to 0% in a short timeframe. 

Thus, to ensure the correct operation of the grid, spinning reserves would have to 

be ready to back up solar capacity in the system. As spinning reserves are expensive 

to operate and are expensive environmentally, this would be a significant drawback 

to solar.  

While the short-term variability significance analysis showed that there are 

concerns for the future of large amounts of solar power on the grid, this is the worst-

case scenario. As Tarroja, Mueller, and Samuelsen showed, short-term variability 

can be mitigated if solar arrays are spread out geographically. However, in the worst 

case scenario, short-term fluctuations could have an impact on the functioning of 

the grid or the reserve system that is in place.  
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1.3.3 Seasonal Variability – New England’s Climate is a Factor 

An interesting result that came from the significance analysis was a strong 

seasonal trend for short term variability. As seen in Figure 1.6, volatility is highest 

in the spring, summer, and autumn while the lowest in the winter. This seasonal 

dependence is not a small effect either; the maximum amount of variability can be 

over three times higher during June versus December. Thus, if planning for short 

term variability while building a solar array or while deciding on the optimum use 

of reserves in the grid, the time of year is important to consider.  

One possible explanation for this comes from the climate of Cambridge and 

Boston. According to NOAA, the area is classified as a “moist, subtropical mid-

latitude climate”24 which has implications for how solar resources behave 

throughout the year. This climate classification is characterized as being dominated 

by convective thunderstorms in the summer months. Large amounts of convection 

in these months leads to the conditions that cause the highest amount of solar 

variability. Convection in the atmosphere can be caused when sunlight warms the 

surface of the Earth early in the morning. This causes the atmosphere to become 

unstable and convection occurs. Convection can lead to cumulus clouds forming.25 

This causes problems for solar power because it has both high amounts of radiation 

(required to heat the surface of the Earth) and also intermittent, cumulus clouds. 

Thus, the conditions are perfect for large amounts of short term variability as there 

is a large amount of solar radiation hitting the ground that is broken up by the 

                                                           
24 National Weather Service, 2008. 
25 Convective Clouds 
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shadows of passing cumulus clouds. In summary, the convective atmosphere during 

the summer months in Cambridge and Boston leads to the formation of cumulus 

clouds during sunny days that leads to a significant amount of variation in solar 

power production on short timescales.  

 

1.3.4 Seasonal Variability – Upper Limit of Variability Shifts throughout the Year 

Another possible reason for the seasonal dependence of short term 

variability is the differing amounts of radiation that occur during each season in 

Cambridge. In the spring, summer, and autumn, maximum insolation values can 

reach over 1000 W/m2 in Cambridge. However, in the winter, these maximum 

values drop to less than 800 W/m2.26 This means that in winter, a solar panel array 

can never approach producing its rated power. This is because panel outputs are 

rated according to a standard insolation value of 1000 W/m2. If the maximum 

amount of radiation that is possible is only 800 W/m2, then the panel can only 

produce 80% of its rated output. Thus, even in the worst case scenario of full sun 

to full shade quickly, the panel output changes less in the winter than the summer. 

In other words, higher insolation levels in non-winter months allow the power 

output of a panel to fluctuate more because there is more room to fluctuate.  

 

 

 

                                                           
26 Calculation of Solar Insolation 



37 
 

1.3.5 Adding Demand Data to the Model Increases Variability in the System 

 Adding a demand variable to the model resulted in an increase in variability 

in the system. The initial analysis of the significance of short term variability in 

solar power only took into account production of solar power itself. This next 

section will examine when the system is complicated and acts more like a real 

scenario: the addition of demand data into the model. Since the model is now 

behaving more like a real system, the measure of variability is changed into how 

large of an array can exist within the given constraints of the system. A larger arrays 

means there is less variability while a small array indicates more variability. This 

is because power variability is directly proportional to the size of the photovoltaic 

array.  

 With a hard constraint of 1500 kW prescribed to the model for each month, 

adding in demand data had the result of variability acting exactly how it would be 

predicted to. There was a strong seasonal dependence in the amount of variability 

in the system. Adding demand data did not do much to change this earlier 

conclusion from the initial significance analysis. If remaining constrained to a given 

level of variability, December would be able to have the largest solar array and 

April the smallest (Figure 1.7).  

 However, if the variability constraint is allowed to change for each month, 

the results are slightly different. This model run (Figure 1.8) is interesting because 

the constraint varies according to the maximum demand in the system. By setting 

the constraint to be a given proportion of maximum demand, the system can behave 

more realistically. A grid operator will account for the variability in one part of the 
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grid as a proportion of how much demand is typical in the area. Thus, higher 

demand areas will be allowed more variance. Following this logic, peak demand 

for McCollum substation changes month-to-month so the variability in the system 

would also be expected to change. Thus, having a varied volatility constraint makes 

sense. 

 When the volatility constraint is varied according to monthly demand, the 

strict seasonal correlation is weakened. The least amount of variability still occurs 

in December. Some months, such as July, actually end up being less relatively 

variable with the new constraint (see Figure 1.8).  

 

1.3.6 How Maximum Variability Changes when Demand is Introduced 

 

 On the whole, the variability in the overall system increased when the 

demand variable was added to the model. The final part of the significance analysis 

deals with the question of whether or not introducing demand (which is itself 

variable) could affect the volatility of the system. The idea behind this is that, by 

random chance, demand variability and solar variability would cancel out. For 

instance, if the power output from the array dropped, but demand also dropped, 

some of the variability of the solar array would be canceled out.  

 In the end, demand variability did not help to cancel solar variability. 

Instead, the amount of variability in the system increased dramatically. The average 

of the top 10 most variable events in each month increased in every single month. 

The average amount of increase was over 10% of the panel rating. Thus, adding in 
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demand actually significantly increased the variability of the system rather than 

decreasing it. In conclusion, this means that the natural variability of the electrical 

grid is unlikely to cancel out the variability introduced by solar photovoltaic arrays.  

 

1.3.7 Variability and the Impact on Solar Photovoltaic Arrays  

 

 If short term variability is a constraint, it has a tremendous impact on how 

much solar can be added to the electrical grid. To illustrate this, an analysis was 

created that looked at the impact of a solar array with lowest constraint (April) 

versus the impact of a solar array with the highest constraint (December). The 

results are below:  
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Figures 1.10 and 1.11 | Hypothetical arrays in McCollum  

These figures demonstrate the difference the choice of constraint can make in terms 

of variables that matter heavily in the real world. The high constraint allows for an 

array that is over double the size of the low constraint, leading to real monetary 

savings as well as allowing for a higher percentage of renewable energy. The 

orange line represents money saved27 and is on the left axis, while the blue line 

represents how much power the array is providing to the grid. 

 

 Figures 1.10 and 1.11 show the impact of two different array sizes in 

McCollum substation’s microgrid. This analysis shows the impact that a volatility 

constraint can have on a system that would like to add solar photovoltaic arrays as 

a power source. If using the low volatility constraint, the amount of solar that can 

be added to the system is small. If using the high volatility constraint, the size of 

the array can be more than doubled. The impacts of this are tremendous. The larger 

array is able to meet a much higher proportion of demand than is the smaller array.28 

This illustrates how much a variability constraint can impact the potential of a solar 

photovoltaic array.  

                                                           
27 ‘Money Saved’ was calculated using the Cambridge average of $0.16 per kWh 
28 The large array meets 15.5% of overall electricity demand. The small array meets 5.6% of 
overall annual demand.  
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CHAPTER 2 – Mitigation Analysis of Short Term 

Variability of Solar Power 

 

 After determining that short term volatility of solar power was a significant 

issue for the future of solar power, exploring ways to mitigate this volatility became 

important. The volatility analysis showed that in New England, the amount of short 

term variability that can occur with solar photovoltaic panels is substantial. The 

magnitude and frequency of high variability events was greater than expected. This 

means that as more solar photovoltaic power gets added to the electrical grid, short 

term variability must be taken into consideration.  

 One such way to take short term variability into consideration is to look at 

ways to mitigate the variability at its source. This chapter explores the addition of 

a storage source to a hypothetical solar photovoltaic array that is optimized to 

minimize short term variability. In other words, the storage system’s only function 

is to fill in the valleys and clip the peaks of solar panel power output. As the 

variability events with large magnitudes were relatively infrequent, the hope was 

that a small, cheap storage system could make a meaningful impact on mitigating 

short term variability.  

 

 

 

 

 



42 
 

2.1 Methods 

 

2.1.1 Designing a Model that Utilizes a Storage System to Minimize Volatility 

The second part of this thesis explores basic mitigation techniques for short 

term solar power variability and utilizes a model created for that analysis. After 

determining the significance of short term volatility in the first section, the amount 

of how much variability could be mitigated with a simple and small storage solution 

was explored. To model how a battery could affect the system, linear programming 

methods were utilized to find how an optimally designed system would act.  

 To model a contained microgrid system, data from McCollum substation as 

well as the Harvard GSD weather station was used. The new element, the storage 

system, required two parameters to be put in the model: maximum power 

input/output as well as total energy storage capacity. To find data for these storage 

devices, currently available electricity options were researched and a variety were 

chosen, ranging from lithium ion batteries to flywheels. The different storage 

scenarios are listed below: 

Storage Method Smax (capacity, kWh) rmax (power, kW) 

Tesla 
Powerwall/Telecom 
flywheel 

500 165 

Tesla 
Powerwall/Telecom 
flywheel 

1000 330 

T-1275 12V lead 
acid 

497.5 225 

T-1275 12V lead 
acid  

995 450 

T-105 6V lead acid 499.5 149.85 
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T-105 6V lead acid 999 299.7 

Velkess Flywheel 500 100 

Velkess Flywheel 1000 200 

Table 2.1 | Stats of storage systems analyzed 

The above table lists the different storage methods tested within the model. The 

important specifications, capacity and maximum power output, are represented in 

terms of kWh and kW, respectively.  

 

 

2.1.2 Mathematical Equations Utilized in the Model 

 

The model equations are listed below: 

Objective 

Maximize 𝐴 

S.T. 

𝐺(𝑡) = 𝐷(𝑡) − 𝑃(𝑡) + 𝑟(𝑡) 

∆𝐺 =  |𝐺(𝑡) − 𝐺(𝑡 − 1)| 

𝑆(𝑡) = 𝑆(𝑡 − 1) + (𝑟 ∗ 0.0834) 

∆𝐺 ≤ 1500 (or decided upon constraint) 

0 ≤ 𝑆 ≤ 𝑆𝑚𝑎𝑥 

−𝑟𝑚𝑎𝑥 ≤ 𝑟(𝑡) ≤ 𝑟𝑚𝑎𝑥 

𝑃(𝑡) {

𝐼(𝑡)

1000
× 𝐴𝑠𝑡𝑑 × [1 + 𝛾(𝑇𝑝𝑎𝑛𝑒𝑙 −  𝑇𝑠𝑡𝑑)]  ,                 𝐼(𝑡) ≥ 80

  
0.008 × 𝐼(𝑡)2

1000
× 𝐴𝑠𝑡𝑑 × [1 + 𝛾(𝑇𝑝𝑎𝑛𝑒𝑙 − 𝑇𝑠𝑡𝑑)] , 𝐼(𝑡) < 80

 

𝑇𝑝𝑎𝑛𝑒𝑙 =  𝑇𝑎𝑖𝑟 + 
𝑁𝑂𝐶𝑇−20

800
× 𝐼(𝑡) 

 Testing the system with a battery uses a very similar setup to the 

significance analysis. However, two new elements, r and S are added into the 

system. r refers to the power output or input of the storage system at a given time. 
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It is measured in kilowatts. S refers to the energy storage capacity of the storage 

system. It is measured in kWh.  

 To run the model, Matlab’s linear programming toolbox was utilized. A 

script was written that would utilize the weather station data, McCollum demand 

data, and storage data to output the maximum size of a solar panel array that could 

exist within the constraints of the system. The linprog function of Matlab was used 

to optimize the function of the battery to minimize short term volatility.  

 

2.2 Results 

 

2.2.1 Adding a Storage System to Minimize Short Term Variability in the 

System 

 

This section provides the results of adding a hypothetical battery to the 

system in order to mitigate variability and shows that storage systems can be 

effective methods to mitigate short term variability. The model was run with the 

same data as was used with the significance analysis. However, in this scenario, a 

hypothetical storage solution was optimized to mitigate variability the system 

would experience. Multiple types of storage solutions, including batteries and 

flywheels, were tested to see how well they could manage the volatility in the 

system.  
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Variability 
Constraint (kW) 

kWh 
Capacity 

Maximum 
Power (kW) 

Array Size 
(output) generation/demand 

1500 0 0 1635 6.92% 

. 1500 500 100 1911 8.09% 

1500 499.5 149.85 2048 8.67% 

1500 500 165 2090 8.84% 

1500 1000 200 2187 9.25% 

1500 497.5 225 2256 9.54% 

1500 999 299.7 2449 10.36% 

1500 1000 330 2524 10.68% 

1500 995 450 2820 11.93% 
Table 2.2 | Results of mitigation modeling 

The outputs of the model that utilized the optimized storage system are listed above. 

The larger the array size, the better the storage system at mitigating short term 

variability.  

  

 The above table is the set of results received from running the model with 

different storage scenarios. The variability constraint was held constant for each 

run in order to have a fair comparison between types of storage. Listed are the stats 

for the storage system analyzed in that run, including the capacity of the storage 

system as well as its maximum power output. The model output the maximum array 

size that could exist within the given constraint. In terms of solar capacity, the larger 

the array size, the better. Finally, each array size is put into terms of how much of 

the annual demand it would meet within McCollum substation’s microgrid. 

Another important note is that the top row of this chart shows the ‘no-storage’ 

model run, which provides a useful comparison for how well each storage solution 

works.  
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2.2.2 The Effect of Storage on the Maximum Array Size allowed by the Constraint  

 

Figure 2.1 | Relationship of array size and storage power output 

The relationship between maximum power output and model output of array size is 

plotted above. The larger the array size, the better the performance of the storage 

system in mitigating short term variability.  

  

This graph depicts the relationship between the maximum array size that 

would be possible within the constraints of the system versus the maximum power 

output of the storage system. There is a clear positive correlation between the 

maximum power output achieved by the storage system and how well it works to 

mitigate short term variability. An important note is that storage capacity does not 

effect this relationship at all; the only thing affecting the ability of the storage 

system to mitigate short term variability is its maximum power output.  
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2.3 Discussion 

 

2.3.1 A Small Storage System can make a Significant Impact on Short Term 

Variability 

 

The results of this analysis show that relatively small storage options could 

potentially make a significant impact in managing volatility introduced by solar 

photovoltaic arrays. The power output or input of the storage unit helps to fill in the 

valleys and trim the peaks of the variability in the system. As see in the significance 

analysis, events with large magnitudes of variability are rare. The storage unit 

comes into play by managing those few, yet large, events. This allows the system 

to have a larger amount of solar power yet still remain within variability constraints.  

2.3.2 Maximum Power Output is the Driving Factor in Effectiveness of 

Mitigation 

 The other point to note in these results is that the power output of the storage 

option was the driving factor in how well it performed whilst managing variability. 

Storage capacity did not play any role in how well a storage solution was able to 

manage volatility. Additionally, it is also interesting that the relationship between 

how well a storage option managed variability in this model and how the magnitude 

of its maximum power output has a linear relationship.  

2.3.3 Impact of Storage Systems 

 Overall, if a solar installation was constrained by short term variability, this 

initial analysis shows that a storage option would be able to have a significant 
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impact. Storage solutions can effectively manage short term volatility. They work 

best when they are optimized to only mitigate short term variability rather than store 

power for any large amounts of time. Additionally, the analysis shows that storage 

capacity is not a meaningful factor when determining how well a given storage 

system can mitigate the power output volatility of a solar photovoltaic array. The 

best plan would be to have a cheap storage option that is capable of a high maximum 

power output. The results of this analysis are encouraging for the potential of 

mitigation of short term power variability by an electricity storage system.  
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CHAPTER 3 – Solar Resources in a Changing 

Climate 

 

 Solar photovoltaic power production is directly related to the climate of the 

area it is located in. Solar requires clear skies with high levels of solar radiation in 

order to perform optimally. Therefore, certain regions of the United States are better 

suited for solar photovoltaic arrays than others. However, the Earth’s climate is 

currently changing due to human activity.29 This changing climate causes problems 

for solar resources as they are directly related to the climate of the region in which 

photovoltaic arrays are built. If a region is sunny now, will it remain so in the 

future?  

Why the Long-Term Future Climate of a Region Matters to Solar 

 The long-term future of a region’s solar resources is important because of 

the cost and lifetime of infrastructure that may be built to fully exploit renewable 

energy resources. High voltage direct current electricity transmission lines are seen 

as one possible answer to boosting the amount of renewable energy being used in 

the United States.30 These transmission lines will require a significant investment 

in time, money, and space. The general idea is to build high voltage direct current 

transmission lines from areas with high quality renewable energy resources, such 

as windy plains and sunny deserts. These transmission lines would link these 

renewable energy resources to the large power markets in more heavily populated 

                                                           
29 IPCC, 2007. 
30 Kollipara, 2016. 
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areas, such as California and the East Coast. In terms of solar power, this makes the 

future climate of the Southwest in the United States even more important. 

Currently, there are plans for two large direct current transmission lines to be built 

from the Southwest to large electricity markets.31 These transmission lines will 

have a lifetime on the order of tens of decades and represent a commitment to 

building renewable energy sources in the Southwest. Thus, it is crucial to study the 

future of the region to be certain its prime renewable energy resources will remain 

so in the future.  

 Current research suggests that climate change could affect the positioning 

of Hadley Cells on Earth. Hadley Cells are circulation patterns where warm air rises 

from the equator and travels poleward before sinking at 30 degrees latitude. This 

sinking air is dry and generally causes deserts to form at 30 degrees across the 

Earth. This dry climate is favorable for solar power. However, some scientists are 

proposing that climate change can affect the positioning of Hadley Cells on the 

Earth which would dramatically affect the climate at 30 degrees of latitude. One 

study suggests that Hadley Cells extended all the way to the poles in ancient climate 

regimes. Anthropogenic forcing of the climate could cause this ‘equable climate’ 

to return, which would dramatically affect the regions of the world that currently 

have great solar resources. 32 Thus, proposed mechanisms for shifting the climate 

of regions with high quality solar resources exists. If climate change causes the 

                                                           
31 Clean Line Energy Partners, 2016. 
32 Farrell, 1990 
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regions of the world with dry climates to shift, it could adversely affect the solar 

resources of those regions.  

 Global Climate Models (GCMs) provide an excellent way to answer the 

question of how solar resources are projected to change over the coming century. 

They allow for flexibility in emissions scenarios which is important because there 

is no certainty regarding the amount of carbon dioxide emissions humans will emit 

throughout the 21st century. This allows for different scenarios to be studied which 

provides additional insight into how solar resources are projected to change.  

 

3.1 Methods 

 

The third part of this thesis investigates how solar resources are projected 

to change over the coming century due to climate change. To thoroughly explore 

this problem, current literature in the field was reviewed. An analysis on global 

climate model data was performed to explore this topic in a more in depth manner.  

3.1.1 Literature Review of Current Research of Changing Clouds and Aerosols 

 To begin investigating the topic of changing solar resources, a literature 

review of relevant studies was conducted. In particular, aerosol and cloud studies 

were focused on. Aerosols were chosen because they play an important role in 

cloud formation as well as the transparency of the atmosphere, which affects how 

well sunlight can pass through to the ground. Clouds were chosen because of their 

outsized impact on short term variability as well as the overall amount of solar 

radiation that reaches the ground. Clouds are important because they can be opaque 



52 
 

to sunlight and are a driver of the quality of solar resources in a given region. First, 

how aerosols and clouds affect solar irradiation levels was researched. Then, 

research on how aerosols and clouds are expected to change was conducted. This 

two-step process allowed for a link to be made between clouds, aerosols, and the 

future of solar power.  

3.1.2 Analyzing Data from the Source – Global Climate Models 

 The literature review did not answer the question in the depth required. Not 

enough relevant research has been done on the subject. In particular, how clouds 

are expected to change spatially as well as how cloud types could change over the 

coming century was not addressed. Thus, an analysis was made directly from the 

source – global climate model data. Global climate model data was chosen because 

it was created using various carbon dioxide emissions scenarios for the coming 

century. As it is unknown was the future of the climate will look like, GCMs were 

valuable because they allowed as many scenarios as possible to be studied.  

 The data used came from the National Center for Atmospheric Research 

(NCAR) CCSM4. Two runs were used, rcp45 and rcp85, which correspond to a 

model run that uses 4.5 W/m2 and 8.5 W/m2 of radiative forcing, respectively. Each 

emissions scenario was run 3 times by NCAR. To get the best results, all three runs 

were averaged for each emissions scenario, giving me an average dataset for each 

emissions scenario. By averaging three runs of the NCAR model, the internal 

variability within the model itself was minimized. Thus, a better prediction about 

real climate fluctuations could be made rather than focusing on the variability of 

the model.  
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3.1.3 GCM Variables Investigated 

 Three NCAR model outputs were analyzed: cloud cover, shortwave 

radiation reaching the ground, and shortwave radiation reaching the ground while 

assuming a clear sky. Matlab  was then utilized to examine the data present in each 

emissions scenario in three different years, 2015, 2050 and 2100. To begin, two 

variables to be examined were established: cloud cover and blocked radiation. 

Blocked radiation is the difference between the shortwave radiation reaching the 

ground while assuming a clear sky minus the shortwave radiation reaching the 

ground. The difference between these two variables is the amount of radiation the 

model is projecting to be ‘blocked’, or unable to hit the ground. If radiation is 

blocked, it cannot reach solar photovoltaic arrays on the ground. Thus, more 

blocked radiation is bad for solar power. Cloud cover and blocked radiation were 

plotted on a map of the United States using Matlab for each emissions scenario and 

for 2015, 2050, and 2100.  

3.1.4 GCM Data Manipulation 

 After plotting the initial data for each year to get a general idea of what it 

looked like, the next step was to compare the changes by year for each variable and 

each emissions scenario. To find the changes, the base year of 2015 was subtracted 

from the year to be plotted. Thus, the change that occurred between the reference 

year, 2015, and the analyzed year was plotted. This was done for clouds and 

blocked radiation in both emissions scenarios.  
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Finally, the difference was taken between each emissions scenario in a 

given year to isolate the effect that a medium or high emissions scenario would 

have on the variables that were examined. The medium emissions scenario dataset 

(rcp45) was subtracted from the high emissions scenario dataset (rcp85) to find the 

difference. Thus, the value calculated would be the difference in response of the 

variable to a medium versus a high emissions scenario.  

 

3.2 Results 

 

3.2.1 Literature Review 

The literature review focused on examining current research on clouds and 

aerosols and how they may change due to climate change. One study simulated 

aerosol-cloud feedbacks over the continental United States and found that there was 

a considerable decrease of solar radiation reaching the ground in July due to 

aerosols. This decrease was on the order of 10 W/m2 averaged across the country. 

This study also showed that aerosols can reduce incoming shortwave radiation via 

backscattering.33 In another study, by Lohmann, increasing aerosol emissions were 

shown to cause a decrease in solar radiation at the surface by increasing optical 

depth in the atmosphere directly and through cloud feedbacks.34 Additionally, the 

literature review also showed two interesting effects: 1) cloud optical depth 

increases with concentration of cloud droplets and 2) aerosols lead to a decrease in 

                                                           
33 Zhang et al. 2010 
34 Lohmann, 2005 
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cloud droplet size, leading to longer cloud lifetimes.35 These two findings show that 

increasing aerosols can lead to non-negligible effects on solar radiation reaching 

the ground through their impact on clouds. Thus, the first step of the literature 

reviewed confirmed a strong link between aerosols, clouds, and solar radiation. 

 The link between aerosols, clouds, and solar power was established in the 

first part of the literature review so determining how these factors will change in 

the coming century will provide insight into how solar resources may also change. 

In the 2013 IPCC report, it was stated that GCMs suggest climate warming will 

cause ice clouds to transition to water clouds and become more opaque. However, 

middle and high latitude cloud cover is projected to decrease.36 The White House 

Climate remote said that the Southwest is projected to become hotter and drier, 

which would be beneficial to solar resources. However, the same report also stated 

that there is an increased risk for wildfires, which would bring smoke and aerosols 

to the region and negatively affect solar resources.37 Hence, there is nothing 

conclusive that can be drawn from the report. Another study showed that 

precipitation in the subtropics and tropics will decrease but will increase in higher 

latitudes. Additionally, climate regimes that are determined by cyclonic activity 

will have more storminess, leading to more cloudy skies and less solar radiation.38 

The first point about precipitation gives little information about solar resources. 

Precipitation may change but that does not necessarily clouds will be affected in 

                                                           
35 Boucher, 2015 
36 IPCC, 2013 
37 Melillo, Richmond, and Yohe, 2014 
38 Trenberth, 2010 
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the same way. Since clouds are the driver of the quality of a solar resource, this 

point provides no insight. The second point about the effect of climate change on 

cyclonic activity does provide more information. However, this is not enough 

information to answer the question posed earlier – “If a region is sunny now, will 

it remain so in the future?”  

 Overall, the literature review yielded interesting information regarding 

variables that can affect solar resources; however, it did not provide information 

that was precise or relevant enough to analyze the future of solar resources in the 

United States. It provides a good groundwork for understanding complicated 

processes that are utilized by GCMs to make projections about the future. All in all, 

the literature review provides useful context but was not able to answer the main 

question of this section. 

3.2.2 Global Climate Model Analysis 

This section explores the output of a global climate model, NCAR CCSM4, 

to look at how solar resources are projected to change over the coming century. The 

data represented focuses on the United States. Each grid square was calculated by 

the model for the given time period and variable and then plotted on a map of the 

United States. The data explores two different emissions scenarios: rcp45 and 

rcp85. These emissions scenarios represent different levels of climate forcing put 

into the system by 2100 and are directly set in the model run. rcp45 means that the 

model was run with 4.5 W/m2 of forcing by 2100 and rcp85 had 8.5 W/m2 of 

radiative forcing by the end of the century as its input. As it stands, these are 

medium and high emissions scenarios, respectively.  
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 The first set of figures show the amount of cloud cover across the United 

States. Blocked radiation is the difference between the actual modeled insolation 

and the ‘clear-sky’ level of insolation. The data for 2015, 2050, and 2100 is 

represented for both rcp45 and rcp85. Following the cloud cover maps are the 

figures depicting the amount of blocked radiation across the United States. These 

again follow the convention of 2015, 2050, and 2100 for both rcp45 and rcp85. 

Next comes the changes in clouds and blocked radiation. The change is represented 

as the difference between projected values in 2050 and 2100 versus 2015. The 

changes are depicted for both emissions scenarios. The final set of figures shows 

the difference between the emissions scenarios for blocked radiation and clouds.  

3.2.3 Cloud Cover across the United States – Medium Emissions Scenario 

 

Average Cloud Cover (%) – 2015, rcp45 
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Figure 3.1 | 21st century average cloud cover, medium emissions 

The three figures show the output of the model under a medium, 4.5 W/m2 emissions 

scenario. Warmer colors denote higher average cloud cover than cooler colors. 

The colors themselves represent the average cloud cover in that grid square. The 

first map is 2015, the second 2050, and the last is 2100.  

 

Average Cloud Cover (%) – 2050, rcp45 

Average Cloud Cover (%) – 2100, rcp45 
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 The first set of maps depict average cloud cover in each grid square over 

the United States under a medium emissions scenario. Average cloud cover means 

the portion of the sky that is filled with clouds, not how much time is spent 

completely cloudy. Overall, the amount of clouds across the United States does not 

seem to change considerably over the coming century under rcp45. The values 

remain within a relatively small range and there are no standout features of change.  

 The most visible region in the cloudiness map is the Southwest. These 

region has extremely low cloud cover compared to the rest of the US. The low level 

of clouds begins in southern California, Nevada, and Utah and extends through 

Arizona into Baja California. Values in this region range between 20% and 30% 

cloudiness. These low values explain why the Southwest represents such a good 

solar resource. Its changes will be explored in much more depth later in this chapter. 
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3.2.4 Cloud Cover Across the United States – High Emissions Scenario 

 

Average Cloud Cover (%) – 2015, rcp85 

Average Cloud Cover (%) – 2050, rcp85 
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Figure 3.2 | 21st century average cloud cover, high emissions 

The three figures show the output of the model under a high, 8.5 W/m2 emissions 

scenario. Warmer colors denote higher average cloud cover than cooler colors. 

The colors themselves represent the average cloud cover in that grid square. The 

first map is 2015, the second 2050, and the last is 2100. 

 

 Cloudiness in rcp85 has similar qualities to rcp45. Again, the most striking 

region is the Southwestern United States. Values also do not appear to change 

considerably over the century. However, since cloudiness is of utmost important to 

determining the quality of solar resources, the changes under a high emissions 

scenario will be explored in more depth later in the section.  

 

 

 

 

Average Cloud Cover (%) – 2100, rcp85 
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3.2.5 Blocked Radiation – Medium Emissions Scenario 

 

 

 

 

Blocked Radiation (W/m2) – 2015, rcp45 

Blocked Radiation (W/m2) – 2050, rcp45 
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 Figure 3.3 | 21st century blocked radiation, medium emissions 

The series of maps depicts how blocked radiation will change over the coming 

century under a 4.5W/m2 forcing scenario. The first map is 2015, the second 2050, 

and the last is 2100. The colors represent the amount of radiation that is being 

blocked in the atmosphere. The warmer the color, the more radiation that is being 

blocked and not reaching the ground. The numbers are in W/m2.  

 

 The three maps above depict the amount of blocked radiation across the 

United States from 2015 to 2100 under a medium emissions scenario. There are 

two main regions of interest: the Southwest and east of the Mississippi. These 

regions are interesting because they have the lowest and highest values of blocked 

radiation on the map.  

 The region of low amounts of blocked radiation begins in southern Nevada, 

Utah, and California and runs all the way down Baja California. This region 

represents the lowest amount of blocked radiation on the map. Values here are 

around 20 W/m2 blocked, meaning that most of the time the sun is shining its light 

is reaching the ground. At first glance, it also seems that the region is not changing 

Blocked Radiation (W/m2) – 2100, rcp45 
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that drastically over the coming century in the medium emissions scenario. 

However, these changes will be explored in more depth later in this section.  

 East of the Mississippi, especially the Southeast, has the largest amount of 

blocked radiation. Values for the amount of radiation blocked here are on the order 

of 80 W/m2. This is four times more radiation being blocked than in the Southwest. 

This region also experiences more changes in its values over the century than the 

Southwest.  

3.2.6 Blocked Radiation – High Emissions Scenario   

  

Blocked Radiation (W/m2) – 2015, rcp85 
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Figure 3.4 | 21st century blocked radiation, high emissions 

The series of maps depicts how blocked radiation will change over the coming 

century under an 8.5W/m2 forcing scenario. The first map is 2015, the second 2050, 

and the last is 2100. The colors represent the amount of radiation that is being 

blocked in the atmosphere. The warmer the color, the more radiation that is being 

blocked and not reaching the ground. The numbers are in W/m2.  

 

Blocked Radiation (W/m2) – 2050, rcp85 

Blocked Radiation (W/m2) – 2100, rcp85 
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 The above set of figures shows the CCSM4 output of blocked radiation 

values for rcp85, the high emissions scenario, between 2015 and 2100. Similar to 

rcp45, the two main areas of interest are the Southwest and east of the Mississippi 

because of their blocked radiation values on either end of the spectrum. As with 

rcp45, the Southwest has very low blocked radiation values that remain relatively 

constant throughout the century. The region east of the Mississippi is interesting in 

the high emissions scenario because its blocked radiation values change a 

considerable amount over the century. In particular, the change between 2050 and 

2100 seems to be large and will be explored further in this chapter. 

3.2.7 Changes in Clouds over the 21st Century – Medium Emissions Scenario
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Figure 3.5 | Medium emissions changes in clouds 

These figures highlight the temporal changes projected for cloud cover in the 21st 

century under a 4.5 W/m2 forcing scenario. The first map is the change from 2015 

to 2050 and the second map is the change from 2015 to 2100. The colors represent 

the absolute change in average cloud cover in terms of a percentage. For example, 

going from 30% cloud cover to 25% would be represented as -5% on these maps.  

 

 This set of maps shows the change in cloud cover over the United States 

under a medium (4.5 W/m2 of forcing) emissions scenario. By 2050, some areas 

see significant change. The Western United States sees an increase in projected 

cloud cover. The largest amount of increase in in the Northwest. The states along 

the Gulf of Mexico also see an increase in cloud cover. The Midwest sees the most 

significant decrease in cloud cover compared to anywhere else during this time 

period.  

 By 2100, the trends from 2050 for the Pacific Northwest and Midwest 

strengthen. The Pacific Northwest sees even more projected cloud cover and the 

decrease in cloud cover in the Midwest continues. Of interest is the Southern United 
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States – both the Southwest and Southeast. These areas saw increases in cloud cover 

by 2050 under this emissions scenario but the increase tapers off by 2100. The 

overall values tend to a low amount of cloud cover increase, roughly on the order 

of 1%.  

3.2.8 Changes in Clouds over the 21st Century – High Emissions Scenario 
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Figure 3.6 | High emissions changes in clouds 

These figures highlight the temporal changes projected for cloud cover in the 21st 

century under a 8.5 W/m2 forcing scenario. The first map is the change from 2015 

to 2050 and the second map is the change from 2015 to 2100. The colors represent 

the absolute change in average cloud cover in terms of a percentage. For example, 

going from 30% cloud cover to 25% would be represented as -5% on these maps.  

 

 The high emissions scenario has some interesting results when looking at 

projected cloud cover change. There are two big regions of change: the West Coast 

and the rest of the United States. By 2050, the West coast sees a projected increase 

in total cloud cover. Of note is the fact that the largest increase is centered around 

the Southwest. The rest of the United States (except for a small portion of New 

England) sees a projected decrease in cloud cover. The decrease is not large in 

magnitude but it is spatially significant because it covers such a large area.  

 By 2100, the changes in cloud cover mellow out. The Southwest holds its 

projected increase of ~2% from 2050. Thus, from 2050 through 2100 not much 

changed in the area. The rest of the United States, however, sees its initial decrease 
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in cloud cover continue over the latter half of the 21st century. The Great Plains in 

particular see a significant drop (on the order of 5%) of cloud cover in the high 

emissions scenario.  

 

3.2.9 Changes in Blocked Radiation Over the 21st Century – Medium Emissions 

Scenario
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Figure 3.7 | Medium emissions changes in blocked radiation 

These figures highlight the temporal changes projected for blocked radiation in the 

21st century under a 4.5 W/m2 forcing scenario. The first map is the change from 

2015 to 2050 and the second map is the change from 2015 to 2100. The colors 

represent the absolute change in blocked radiation in terms of W/m2.  

 

 

 The first figure shows the change in blocked radiation between 2015 and 

2050 using rcp45. Warmer colors denote an increase in blocked radiation while 

cooler colors denote a decrease. In the context of solar resources, warm colors are 

undesirable. A striking feature of this map is the sizeable increase in blocked 

radiation in the Pacific Northwest. This region, centered around Oregon, sees an 

increase of roughly 6 W/m2 increase in blocked radiation. The Midwest, on the 

other hand, sees a considerable decrease in blocked radiation by 2050 under rcp45.  

 The second map shows the total change in blocked radiation from 2015 to 

2100 in rcp45. The map provides CCSM4’s projection on how much blocked 

radiation will change over the entire 21st century. The first point of interest is the 
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Pacific Northwest. This region saw a considerable increase in blocked radiation 

between 2015 and 2050. An additional 50 years tempered some of this increase 

around Oregon and even decreased blocked radiation in areas closer to the coast. 

The Great Plains and Midwest saw decreases in blocked radiation overall. Another 

region of interest, the Southwest, saw blocked radiation levels remain relatively 

stable throughout the entire century. 

 

3.2.10 Changes in Blocked Radiation over the 21st Century – High Emissions 

Scenario 
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Figure 3.8 | High emissions changes in blocked radiation 

These figures highlight the temporal changes projected for blocked radiation in the 

21st century under a 8.5 W/m2 forcing scenario. The first map is the change from 

2015 to 2050 and the second map is the change from 2015 to 2100. The colors 

represent the absolute change in blocked radiation in terms of W/m2.  

 

The next set of maps depict the change in blocked radiation over the 21st 

century with rcp85, the high emissions scenario. By 2050, blocked radiation levels 

do not change significantly for large portions of the United States. The Southwest 

sees very little change overall. However, a swath of the Great Plains through Texas 

sees a considerable decrease in blocked radiation levels. The Northeast and 

Southeast see some drop in blocked radiation but, for the most part, values stay 

relatively stable.  

At first glance, it looks as though the stability of blocked radiation levels 

under a high emissions scenario hold through from 2050 to 2100. However, it is 

important to note the changes in values represented by the colors. East of the 

Mississippi, blocked radiation decreases overall with some areas seeing decreases 
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of over 10 W/m2. The Great Plains and Texas see large magnitudes of decrease, 

with some places seeing decreases of blocked radiation on the order of 20 W/m2. 

The Southwest United States, of interest because of its great solar resources, sees 

surprisingly little change in blocked radiation in the high emissions scenario.  

 

3.2.11 Differences between Emissions Scenarios
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Figure 3.9 | Difference in emissions scenarios, blockd radiation 

The figures show the difference in the medium and high emissions scenario for 

blocked radiation for each year analyzed. Warmer colors denote that the given grid 

square had more blocked radiation in the high emissions scenario than it did in the 

medium emissions scenario. The numbers are in terms of W/m2. 

 

 

 

Difference in Cloud Cover Between Emissions Scenarios, 2050 
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Figure 3.10 | Difference in emissions scenarios, clouds 

The figures show the difference in the medium and high emissions scenario for 

average cloud cover for each year analyzed. Warmer colors denote that the given 

grid square had more cloud cover in the high emissions scenario than it did in the 

medium emissions scenario. The numbers are in terms of percentages. 

 

 

The final set of maps show the changes between the medium and high 

emissions scenarios. They are in terms of (high emissions values) – (medium 

emissions values). This means that a negative value for the blocked radiation maps 

indicates that, for that grid square, there is more blocked radiation under a medium 

emissions scenario than a high emissions scenario. For cloud cover, a positive value 

indicates that there is more cloud cover in the high emissions scenario than the low 

emissions scenario. Maps are provided for both 2050 and 2100.  

The difference in blocked radiation for the emissions scenarios shows not 

too much of a difference between the model runs except for the Pacific Northwest 

Difference in Cloud Cover Between Emissions Scenarios, 2100 
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and Southwest in 2050. The Pacific Northwest has negative values, indicating that 

there is more blocked radiation under a medium emissions scenario than a high 

emissions scenario. In the Southwest, the values are positive which indicates that 

there is more blocked radiation in the high emissions scenario than the medium 

scenario. It is also interesting to note that the difference between the emissions 

scenarios mellows out through 2100. Much of the United States is within +/- 5 

W/m2 of difference between the model runs. The other point of note is that when 

there are differences, they tend to be negative. This indicates that a higher emissions 

scenario would lead to less blocked radiation than a medium emissions scenario.  

The differences in cloud cover between the models is more interesting. In 

2050, there is a large section centered around New Mexico that has more clouds in 

the high emissions scenario than the medium scenario. Three other sections, 

including the Northern Plains, Pacific Northwest, and North Carolina/Virginia 

show lower amounts of cloud cover. By 2100, much of the United States shows not 

much of a difference in cloud cover in a high emissions scenario than a medium 

emissions scenario. Yellow and orange colors denote a low magnitude of difference 

and much of the United States falls within that range. The Southwest, however, is 

showing a higher amount of cloud cover in the high emissions scenario than the 

medium emissions scenario. The Pacific Northwest and Oklahoma see significantly 

less clouds in a high emissions scenario than a medium emissions scenario.  
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3.3 Discussion 

 

 Solar photovoltaic power is becoming a more important source of electricity 

in the United States. The amount of solar capacity being installed every year 

continues to increase but this is not spread equally across the country. The top 3 out 

of 4 states with the highest amount of solar installed are located in the Southwest 

(Arizona, Nevada, California) and are only beaten by Hawaii.39 California itself has 

nearly 10 GW of solar capacity installed, equivalent to 10 full-size nuclear power 

plants. It is clear that the most important region for solar power in the United States 

is the Southwest.  

 Since the Southwest is the most important region for solar power in the 

United States, it will be the focus of the analysis of changing solar resources over 

the 21st century. Any change in cloudiness or blocked radiation could potentially 

have a large impact on the solar that is installed in the region or would be installed 

in the future. The climate of this region, as well as how it will change, is integral to 

the future of solar photovoltaic power in the United States. 

 

3.3.1 Solar Resources under a ‘Medium’ Emissions Scenario (4.5 W/m2 of 

forcing by 2100) 

 According to the NCAR CCSM4 rcp45 model, the western part of the 

United States will become cloudier throughout the 21st century. The increase in 

cloudiness will be centered in Oregon, with the state seeing an increase of almost 

5% in average cloud cover. In this scenario, even the Southwest will see an increase 

                                                           
39 SEIA, 2016. 
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in average cloud cover. The increase will not be as high as the Pacific Northwest, 

however, and would be on the order of 2%. This does not mean good news for the 

Southwest and the quality of its solar resources. Increased amounts of clouds in the 

atmosphere would be expected to decrease the quantity of the solar radiation 

reaching the ground. Fortunately, this can be tested with another variable, blocked 

radiation.  

 Under the medium emissions scenario, blocked radiation behaves in an 

interesting manner. Since the western part of the United States showed an increase 

in average cloud cover, it would be expected that blocked radiation would increase 

across the entire region. However, this is not the case. In Oregon and the Pacific 

Northwest, blocked radiation does indeed increase. The Southwest, on the other 

hand, does not see this increase in blocked radiation. Rather, blocked radiation 

registers no meaningful change in either 2050 or 2100 for the Southwest. This 

creates a conundrum: how does the cloudiness of an area increase yet the amount 

of solar radiation reaching the ground remain relatively constant? 

 A possible explanation for how the Southwest can be cloudier and still 

retain the same level of blocked radiation is the temporal distribution of the increase 

in cloudiness. In other words, the timing of cloudiness matters. Since solar radiation 

would only be affected by clouds increasing during daylight hours, any increase in 

clouds that occurred overnight would have no effect on the blocked radiation in the 

region. Thus, since cloudiness of the Southwest increases but blocked radiation 

remains constant, the increase in cloud cover must be occurring during the night.  
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3.3.2 Solar Resources under a ‘High’ Emissions Scenario (8.5 W/m2 of forcing 

by 2100) 

 The high emissions scenario, like the medium emissions scenario, causes 

the western United States to increase in cloudiness. However, unlike the medium 

emissions scenario, this increase in cloudiness is center around the Southwest. By 

2050, the average cloud cover is projected to increase by about 2%. By 2100, this 

increase reaches 4% in some areas of the Southwest with the entire region seeing 

an increase in cloudiness.  

 As for blocked radiation, these values remain relatively constant through 

2050. Small portions of Arizona may see a slight decrease (less than 5 W/m2) but 

the entire region of the Southwest sees little change. By 2100, the Southwest is 

projected to see either no increase in blocked radiation or even a slight decrease.  

 The dichotomy between increasing clouds and unchanged (or even 

decreasing) blocked radiation occurs in the high emissions scenario. In this model 

run, the Southwest increases its average cloudiness yet sees little to no change in 

the amount of solar radiation reaching the ground. Thus, the temporal distribution 

of clouds must be important in this scenario as well. In both the medium and high 

emissions scenario the timing of changes in clouds proved to be important in their 

effect on solar resources. Therefore, this is an important consideration that must be 

taken into account when analyzing how the solar resources of a region could change 

in coming years.  
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3.3.3 Differences in Emissions Scenarios – Blocked Radiation 

 The difference in the projected change of blocked radiation between 

emissions scenarios is interesting because they will be mostly anthropogenic in 

origin. In other words, the choices that humans make will determine whether the 

21st century sees a medium or high emissions scenario which directly effects the 

variables studied in the solar resources analysis.  

 In 2050, the differences in blocked radiation in the Southwest United States 

between emissions scenarios are small except for Arizona and New Mexico. 

Besides these two states, there is little difference in the amount of blocked radiation 

under the different emissions scenarios. In Arizona and New Mexico, however, 

there is about 5 W/m2 more blocked radiation under a high emissions scenario than 

a medium emissions scenario. Consequently, these states will see benefits for their 

solar industries if emissions remain relatively constrained. Besides the Southwest, 

the Pacific Northwest is interesting to view in terms of differences between 

emissions scenarios. By 2050, the blocked radiation of these regions already begins 

to diverge. A high emissions scenario sees much less blocked radiation than a 

medium emissions scenario. Thus, solar resources in the Pacific Northwest will be 

better under a high emissions scenario.  

 By 2100, the differences between emissions scenarios in the Southwest all 

but disappear. The discrepancy between the scenarios seen in Arizona and New 

Mexico in 2050 dissipates to a negligible level by 2050. Thus, by the end of the 

century, there does not seem to be much hinging on the level of CO2 emissions in 

regards to solar resources in the Southwest United States. The Pacific Northwest, 
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however, is another story. These region sees a significant difference between 

emissions scenarios. Under the high emissions scenario, the lower levels of blocked 

radiation seen in 2050 become even lower in 2100. For the Pacific Northwest, the 

higher the emissions of the 21st century, the better the solar resources of the region.  

 

3.3.4 Difference in Emissions Scenarios – Clouds 

 

 In 2050, the difference between emissions scenarios in terms of clouds is 

relatively negligible. However, there are more clouds in the high emissions scenario 

in Arizona and New Mexico than in the medium emissions scenario. This difference 

in cloudiness helps to explain the difference in blocked radiation that was discussed 

above. In terms of differences between emissions scenarios, it seems that cloudiness 

does have an effect. This is a departure from what was seen earlier in analyzing the 

changes in blocked radiation and clouds throughout the 21st century.  

 By 2100, differences in average cloud cover in the Southwest disappear. 

The region is more or less unchanged in terms of cloudiness under either scenario. 

There is one interesting region in 2100, however. The Pacific Northwest sees a 

dramatic difference in the level of cloudiness between emissions scenarios. In the 

high emissions scenarios, the average cloud cover is on the order of 5% lower than 

the medium emissions scenario. This helps to explain the difference between 

blocked radiation in this region under the two emissions scenarios. As outlined 

above, the amount of blocked radiation in the Pacific Northwest is significantly 

lower under a high emissions scenario than a medium emissions scenario. The best 
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explanation for this is the substantial difference in average cloud cover seen 

between the emissions scenarios.  

3.3.5 Conclusions 

 

The solar resources analysis using a GCM provided interesting insight into 

how the future of solar power in the United States may change. One particularly 

noteworthy region was the Pacific Northwest. The Pacific Northwest is interesting 

because of the considerable difference between emissions scenarios. Under a high 

emissions scenario, the solar resources of the Pacific Northwest will be in a much 

better place than under a medium emissions scenario. More emissions drives a 

decrease in average cloud cover which leads to a decrease in blocked radiation. 

However, this finding may prove to be unimportant. The Pacific Northwest is not 

known for solar power. One reason is because of its climate. The region is cloudy 

and sits at a higher latitude, leaving little opportunity to gather significant amounts 

of energy from the sun. The other reason is because the Pacific Northwest has a 

substantial amount of hydroelectric power. The large amount of hydroelectric 

power leads to low electricity prices, which makes installing solar photovoltaic 

power unattractive. Thus, while the solar resources of the Pacific Northwest would 

be affected differently under emissions scenarios, the impact would be 

inconsequential.  

 On the other hand, the Southwest of the United States is the best place in 

the country for solar power. As one would expect, the country has most of its solar 

power capacity installed in this region. Thus, any changes in its climate over the 
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coming century could have a significant impact on the state of solar power. 

However, the region is not expected to see drastic changes in its solar resources. 

Under both emissions scenarios, clouds are expected to increase in this region. 

However, analysis of blocked radiation values shows that the solar radiation 

reaching the ground will remain relatively constant. Thus, the impact of the increase 

in clouds is negligible. Overall, the Southwest is projected to remain an area with 

outstanding solar resources.  

 Finally, the analysis of solar resources provided insight into an unexpected 

phenomenon. Typically, one of the driving forces of the quality of solar resources 

in a region is the level of clouds that are usually in the atmosphere. Clouds are 

excellent at blocking solar radiation from reaching the ground so the more clouds 

an area has, the worse the quality of its solar resources. However, this analysis 

showed that some regions can increase their average cloud cover yet have no 

significant change in the amount of blocked radiation in the area. Thus, the increase 

in clouds had a negligible effect on the solar resources of the area. One possible 

explanation for this is that the increase in clouds happens at night. If the amount of 

nighttime clouds increases while the average cloud cover of the day remains 

constant, the total average cloud cover will go up with no effect on solar radiation. 

This is an important finding that should be taken into consideration when analyzing 

how solar resources could change in an area.  
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CONCLUSION 

 

The Significance of Short Term Variability 

 

` The results of the short term variability analysis show that solar 

photovoltaic power production can fluctuate considerably in 5 minute timescales in 

New England. One year’s worth of data demonstrates that the magnitude of 

fluctuations approaches 100% of the rated capacity of a given array. This means 

that an array producing its maximum amount of power can drop to zero production 

in a short time period. The consequences of this are significant. Current electrical 

grid operation has systems designed to fix the sudden loss of power production, 

called contingencies, and maintain normal operation. What would the result be if a 

large portion of production capacity on the grid became solar and contingency plans 

became normal operation?  

This study provides a possible scenario on how the electrical grid may have 

to operate if large amounts of solar power capacity are added in the future. Since 

solar power production can fluctuate so considerably, its power production must be 

backed up by other power reserves on the grid. In the worst-case scenario, every 

kW of installed solar capacity would have to be backed up with an equal amount of 

reserves that could act on at least a 5 minute timescale. Geographic variation of 

panels will help to mitigate this worst case scenario, but the analysis showed that 

there is no upper bound for reserves required due to weather-related events.  
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 Another outcome of the significance analysis of short term variability is the 

discovery of a strong correlation between season and short term variability. 

Variability reaches a minimum in winter. Maximum variability values from the late 

spring, summer, and early fall can reach three times the maximum variability 

experienced in December. Two reasons have been proposed for this seasonal 

correlation. The first is that New England’s climate is a driver of the different levels 

of variability witnessed. In the summer, a convective atmosphere provides the right 

conditions for sunny days with intermittent cumulus clouds. The combination of 

these factors leads to high levels of variability as a solar panel can be fully irradiated 

and then have a shadow from a cloud quickly fall over it. Another reason for the 

seasonal correlation is that the winter has low levels of maximum insolation as 

compared to the other seasons. Since the maximum amount of insolation is lower, 

the maximum power production of the panels is lower. With a lower maximum 

power production, the magnitude of maximum change is lower. In other words, a 

lower amount of maximum insolation constrains the maximum amount of change 

that can occur.  

 Short term variability of solar power production has been shown to be an 

important problem that must be considered when determining the future of solar 

power. Power production can be highly variable and this has consequences for the 

current electrical grid. In order to maintain the quality and supply of electricity, the 

short term variability of solar power must be effectively managed. Overall, short 

term variability must be considered when examining the addition of solar 

photovoltaic power to the electricity system.  
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Mitigation of Short Term Variability 

 

Storage systems are able to make a meaningful impact on mitigating short 

term variability. Using an optimized mathematical model, it has been shown that a 

storage system is able to reduce the variability caused by a solar array in a system 

considerably. Thus, using storage systems would be an option to mitigate solar 

photovoltaic power variability at the source. Further research is required to design 

an optimal system, but this analysis has proven the concept.  

The best option to manage short term variability would be a storage system 

with a small capacity and high maximum power output that is optimized to focus 

on short term variability. In the analysis, the driving factor of mitigation of 

variability was the storage system’s maximum power output. Capacity of the 

storage system had no effect. Thus, when considering systems to mitigate 

variability, the best option would be a system that is able to obtain a high maximum 

power output. On the whole, storage systems would be an effective option in 

dealing with short term solar power variability.  

The ability to mitigate short term variability of solar photovoltaic panels 

effectively would be an important advancement in adding solar capacity to the 

electrical grid. As shown in the significance analysis, short term volatility can have 

a large enough magnitude and frequency to be a considerable problem. Short term 

variability causes problems for grid operators and is detrimental to the 

infrastructure of the grid. Storage solutions focused on mitigating variability that 

are coupled with arrays themselves could have a significant impact in solving this 
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problem. If short term variability mitigating storage systems became common, 

there would no longer be any worry about having enough spinning reserves backing 

up solar photovoltaic panels. This is an important step in the future of a renewable 

electrical grid that takes advantage of solar photovoltaic power.  

 

Solar Resources and the 21st Century 

 

 The analysis of how solar resources may change over the 21st century 

indicated that the high quality of solar resources in the Southwestern United States 

is secure. Even under a high emissions scenario, the climate of the Southwest is not 

projected to change drastically. It will maintain its sunny conditions throughout the 

century, making it a prime location for solar power installations.  

 Within the analysis, an interesting point was uncovered. In the Southwest, 

cloudiness is projected to increase under some emissions scenarios. However, 

under the same emissions scenarios, the amount of radiation being blocked by the 

atmosphere (mainly by clouds) is projected to remain the same. If clouds become 

increasingly common but the amount of radiation blocked by clouds remains the 

same, this would imply that cloud cover would mainly be increasing during the 

night. Under this scenario, the temporal distribution of the change in cloudiness 

proves to be a driving factor in how solar resources will respond to climate change.  

 The results of this analysis are important because they provide a level of 

certainty about the future of solar resources in the Southwestern United States. 

Expensive infrastructure projects like high-voltage direct current transmission lines 
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are not at risk of becoming obsolete in the next century due to a changing climate. 

In other words, if infrastructure to take advantage of sunny skies in the 

Southwestern United States is built, the region becoming cloudy is not one of the 

possible reasons of failure. This analysis showed solar resources will remain of high 

quality which provides a level of confidence for any future solar or infrastructure 

projects in the region. The Southwest will continue to be a tremendous opportunity 

for renewable solar power in the United States and is not at risk of losing this quality 

in the next century. The region is suitable for the investment and development of 

solar power in the near and long term. 

Directions for Future Research  

 Solar photovoltaic power will be an important part of any renewable energy-

based society of the future. This thesis has shown that short term variability is a 

significant problem that must be recognized in the New England region. Further 

research should expand the geographic extent of this analysis to see if it remains 

significant across the United States. The mitigation analysis proved that a battery 

could be an effective tool in reducing volatility; however the exact design of a 

mitigation system must still be designed and optimized. The Southwest is one 

region of the United States with high quality solar resources that will remain so 

throughout the next century in spite of climate change. Other regions of the world 

where large solar installations and infrastructure have been proposed, such as the 

Sahara and Gobi Deserts, would also benefit from an analysis of future climate to 

reduce the risk of future solar projects. Further research will ensure a bright future 

for solar photovoltaic power.  
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