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Abstract

Observations in the Arctic and Antarctic oceans show that where cold, dense brine is

rejected from new sea ice, hollow ice formations, known as brinicles form around these

streamers of brine. In an experimental study, we grew these brinicles in a tank maintained

at its freezing temperature inside a freezer. We pumped brine at a fixed temperature and

flow rate into this tank and recorded these brinicles growing. We grew and recorded these

brinicles in tanks of differing salinities, ranging from completely fresh water to the salinity

in McMurdo Sound, Antarctica (Martin, 1974). By analyzing these images in MatLab, we

were able to detect the edges of these brinicles, and compare the lengths and widths to a

model by Martin (1974). We were also able to compare these brinicles with aa new model,

based on the thickness of the walls of the brinicle. The shape of these brinicles was also

analyzed, and we saw that as the salinity of the water in which they grew increased, the

structure of the brincles changed. In more saline water, the ice crystals in the brinicles

were oriented radially, the brinicles were much more fragile and prone to falling apart, and

the outer edges appear smoother.



1 Introduction

Sea ice covers up to 12% of the surface area of the ocean during the winter months, which

is 7% of the total surface area of the planet (Weeks, 1967). Since the ice has a bright,

reflective surface, especially in comparison to the dark ocean around it, so large portions

of the polar regions reflect back most of the incoming solar energy and causing the rest of

the planet to cool. As sea ice melts, there is less of a reflective surface and more heat is

absorbed, which leads to the ice melting faster. Because of this, a slight shift in temperature

can lead to a large amount of ice melting and overall warming. While some of this sea ice

is permanent and persists all year, much of it freezes every winter. As seawater freezes, the

ice formed has a much lower salinity than the water it freezes from. The salt is rejected

from freezing ice in the form of cold, dense brine that sinks towards the ocean floor. As

large volumes of this brine sink, it contributes to the ocean’s global circulation. Cold,

denser water flows along the ocean floor away from the poles, while warmer water flows

from the equator towards the poles (National Snow and Ice Data Center, 2017).

To understand the dynamics of freezing, we must turn to concepts from the materials

science of solidification. The binary phase diagram (fig. 1.1) tells us what phases exist in

a mixture of a given concentration and temperature. The line separating the liquid and

crystalline solid + liquid phases is called the liquidus and is highlighted in fig. 1.1. The

point at which the two liquidus lines join is the eutectic point. For a sample at a particular

concentration and temperature there exists an equilibrium with a fraction of solid phase

and a fraction of liquid phase. As sea ice forms, it exists continuously in near-equilibrium

states. At equilibrium, pure ice and brine exist together at a ratio determined by the binary

phase diagram (Worster, 2000). Ideally, sea ice would freeze and result in a perfect sheet of

pure ice over salt-water where all the salt is rejected from the volume occupied by ice into

the brine below. In actuality, sea ice initially starts out salty, and over time the salinity
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Figure 1.1: The general binary phase diagram that shows the phase for a given concentra-
tion and temperature)

decreases (Weeks, 1967). The salinity decreases as brine drains out of brine pockets and

mushy regions, into the water below. This brine is much colder and more saline than the

ocean water below, as the seawater freezes from the top down due to air temperatures of

−10◦C and lower (Perovich et al., 1995). This sinking brine flows into the seawater below

in volumes of anywhere from 1.3 to 18 mL/sec depending on the conditions, as observed

by Perovich et al. (1995) and Dayton and Martin (1971). Heat can only flow into the brine

from the surrounding fresh water, which then freezes into the wall of the brinicle. As a

large volume of brine flows in, the brinicle continues to freeze and to grow in both length

and width. Both the inner and the outer radius of the structure grow with time. As the

brinicle freezes and the outer wall grows, heat is transferred across the ice wall to a layer

of warmer brine along the inner wall of the brinicle. This warmer brine then dissolves the

inner wall, bringing it back to the liquidus. The outer wall grows as heat flows to the cold

brine at the center, freezing the fluid at the outer wall. In this way, both the inner and the
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outer wall of the brinicle grow with time.

An interesting free-boundary problem arises in characterizing these brinicles. Multiple

phenomena, including heat transfer, diffusion of solutes across concentration gradients,

and phase changes, intersect in the occurrence of brinicles. The impact of these brinicles,

however goes beyond just interesting physics. The process by which salty brine escapes sea

ice is a topic of significant research as it impacts the growth of sea ice and the mixing of

the Arctic Ocean. The presence of these brinicles could help to throw light on this process

in some ways. Formation of these brinicles has been connected with the deformation of

thin, new sea ice. This highly saline ice has few, small brinicles growing below it, but when

it rafts and attaches to another ice sheet, the brine drained rapidly from the growing ice

and brinicles grew to a length of 2m (Perovich et al., 1995). Finally, this problem is not

already very well investigated, with only handful of publications touching upon brinicles

in the last few decades.

2 Experiment

To understand the growth of brinicles in a laboratory setting, we carried out an experiment

based on the study by S. Martin in 1972. We conducted this experiment inside a freezer,

which was maintained between −17◦ C and −20◦ C. The brinicle was grown in a tank inside

this freezer; this tank remained at its freezing temperature. A box filled with ice was fixed

to the top of the tank, and brine was pumped through a hole in this ice order to to grow

the brinicle as shown in fig. 2.1. The brine was stored in an open container in the freezer

and pumped with a peristaltic pump into the tank. In order to increase the salinity of the

tank, first a brinicle was grown in fresh water. Then the block of ice, pump, and brinicle

were removed and salt added to the tank. The salt was dissolved by running a submersible

pump in the tank, and the seawater was observed to be at its freezing temperature by
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Figure 2.1: The experimental setup, as viewed from above.

the presence of small ice crystals as well as the fact that the measured temperature of the

tank remained constant. Once again, the block of ice was fixed to the top of the tank,

and more brine pumped in to grow a second brinicle in the saltier water. This process was

repeated to iterate through different salinities, each time letting the tank reach its new

freezing temperature after the salt was added.

The experiment was conducted in a tank with a black background, lit from the side

with LED lights, and filmed at 90◦ from the lights, in the front. Up to four images were

taken per second, and the pump stopped shortly after the brinicle’s tip went out of the

frame of the camera. In order to more clearly see the outline and features of the brinicle,

the images were processed by taking a running median for every pixel in MatLab over 8

second intervals, and subtracting the first frame, as the background.

A threshold was then applied to the images shown in fig. 2.2 and the edges of the
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Figure 2.2: A sequence of photographs showing the growth of a brinicle. Salinity=22.4%,
T=-19.4 degrees C
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Figure 2.3: The edge of the brinicle as found by the edge-detection in MatLab, plotted at
the same time steps as in (2.2)

brinicle detected in MatLab based on the derivative of changing color. From these edges

we could then see where the tip was at every point in time, as well as the width at any

given height and time in the lab frame. In order to visualize the growth of the brinicle in

both length and width we can plot this width as a function of the height and time as seen

in fig. 2.5a. We can easily see the tip at the boundary between the brinicle having zero

and a positive width.

The schematic in fig. 2.4 shows this boundary, as well as the increasing width and

location in the tank. We can see clearly here the structure of these plots that display the

width (in color) as a function of both the time and the height in the lab frame, as filmed

by the camera.

We can then plot the position of the tip as a function of time, and in order to check that
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Figure 2.4: A schematic showing the way the brinicle grows in this type of space-time plot

the power law found by Martin holds, plot this on a log-log plot. We see in fig. 2.6 that

the tip grows with
√
t, as predicted by Martin (1974). At earlier times the rate of growth

of the brinicle fluctuates; we see regions of slow growth and even a region of particularly

rapid growth. As time passes, however, the slope eventually reaches the predicted value.

We can also plot the width at a given height over time. However, at any given height,

t = 0 occurs when the tip of the brinicle travels through that height. We can shift t0 in

two ways: either by the actual time that the tip travels through a given height, as shown

in fig. 2.8 or we can first fit a polynomial to the position of the tip as it depends on time,

and shift our t0 based on that function, as shown in fig. 2.7. We can see that figures 2.8

and 2.7 shows two regimes of growth, although we see this in different ways in both plots.

We can clearly see two different slopes in fig. 2.8 and in fig. 2.7, we see a region with

a larger spread before the widths collapse onto each other. From this spread at earlier

times and the collapse at later times, we can conclude that while the position of the tip

may not always move as ideally as predicted, the width as a function of time is more robust.

From looking at both the images in fig. 2.2 and the edges in fig. 2.3, we can see that the
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(a) The width of the brinicle at any given distance from the top (height) and
time is shown by color on this plot. We can see the brinicle growing in both
length and width, as well as see the growth of ‘bumps’ along the side of the
brinicle.

(b) The width of the brinicle at any given distance from the top (height) and
time is shown by color on this plot. We can see the brinicle growing in both
length and width. In this case, the brinicle was grown in salt water, and we can
see fewer ‘bumps’ and less variation as the height changes.

Figure 2.5
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Figure 2.6: The length of a given brinicle plotted as a function of time on a log-log plot in
order to see the dependence on

√
t

length and width are not the only ways of characterizing these brinicles. The shape evolves

over time as well. Simply observationally, we can see that ‘bumps’ develop over time on

the outer edge of these brinicles. In the photographs, we can see these on the front as well

as the sides. These bumps form from an instability that can be reduced by increasing the

salinity of the tank in which the brinicles are grown in. We can see in fig. 2.9 that this is

the case: the structure of the brinicle grown in 3% salt water is drastically different from

that grown in fresh water. Not only do we see far fewer bumps and smoother edges, but we

can also see the increasing presence of radially-oriented ice crystals, as observed in nature

by Perovich et al. (1995).

We also see that the brinicles grown in increasingly saline water grow slower. This makes

sense, given that we now have dissolution of ice at both the outer and inner boundaries.

When we plot the length of each brinicle in fig. 2.10a we can see that, for the most part,

it takes more time for a brinicle grown in salt water to reach a certain length than a
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Figure 2.7: The width of the brinicle at given heights plotted as a function of time. At each
height, t = 0 is shifted such that it is the time when the tip of the brinicle passes through
that height, according to the power law fit to the tip. Each data point is colored based on
its distance from the tip of the brinicle, divided by the total length of the brinicle.

brinicle grown in fresh water. Fig. 2.10a shows us that the shape of each growth curve is

similar, although we can see that for each salinity the curve is shifted in a slightly different

place. We see this in fig. 2.10b as well: all four lines appear to have the same slope, but

different intercepts. If we were to quantify this, we would say that the term A0 in front of

l(t) = A0t
0.5 depends on the salinity of the tank. The addition of salt to the tank changes

the condition that we wrote at the outer boundary; now, instead of the edge only freezing

outward, there is also dissolving occurring.

When we plot the same data on a log-log plot and shift t = 0 for each brinicle to where

that brinicle is 0.5 cm in length, as in fig. 2.10b, we can see that the the average of all four

have the same slope. We quantify this roughness as deviation from the ideal. First, we fit

a line using MatLab’s polyfit to the edge of the brinicle as shown in fig. 2.11, and then

calculate the root-mean-squared of the horizontal distance between that line and the edge
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Figure 2.8: The width of the brinicle at given heights plotted as a function of time. At
each height, t = 0 is shifted such that it is the first non-zero width at a given height, or
where the tip actually passes through that point. Each data point is colored based on its
height in the lab-space.

of the brinicle. We can do this for both the right and left edges of the brinicle, and average

over a time range of 10 seconds. This gives us a number that defines the ‘bumpiness’ of

each brinicle grown, which we can plot to see the relation with salinity.

As we see in fig. 2.10b, the addition of salt to the tank and therefore the dissolution

on the outer boundary does not affect the rate of growth of the brinicle once growth has

started. It does take slightly longer from when pumping begins for the brinicles in more

saline water to begin growing; as ice crystals formed in the saline water dissolve, more

loose ice crystals may form and not attach to the brinicle. This is also backed up by

the observation of more loose floating ice crystals in tanks with higher salt concentration.

The same dissolution applies to a thin sheet of ice, such as the wall of a new brinicle –

it is dissolving from both sides, and therefore has to grow faster than it is dissolving in

order to persist. So while the rate of growth of the tip is relatively unchanged despite the
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Figure 2.9: brinicles grown in tanks of different salinities and therefore different ambient
temperatures as well. Salinity=22.4%
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(a) The lengths with respect to time of four different brinicles, grown in tanks
of varying salinity.

(b) The lengths of the same brinicles grown in different salinities, this time with
each t = 0 when the brinicle is at a length of 0.5 cm

Figure 2.10
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Figure 2.11: The shape of the brinicle grown in fresh water vs. seawater. a) In fresh water,
the growth was uneven as can be seen from the deviation from a straight boundary. b) In
salty water, the edges of the brinicle are more uniform

addition of salt, the increased salinity of the tank slows the growth of bumps on the side

of the brinicle and changes the structure of crystals in the brinicle. We can see this both

in the photographs of brinicles as well as quantitatively in fig. 2.12. This fig. confirms

what we see just by looking at these photographs. While the data point at a salinity of

2% does not fit with the trend, the experimental conditions here were less than ideal –

the camera did not focus and moved, and the brinicle changed its direction of growth,

leaving a second, small brinicle, pointing in a different direction. Given more time, these

experiments should be tried again under better conditions, and the brinicles grown longer

so that the differences are more clearly visible.
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Figure 2.12: The root-mean-square error of the difference between the line fit and the
actual edge of the brinicle, plotted as a function of salinity.

3 Model

A way of formulating solidification problems with a moving boundary is as a Stefan problem

?. In this case, the boundary between ice and water moves as more ice freezes. This

boundary moves as more ice crystals form in place and attach to the growing wall of ice.

The simplest problem is where the whole system is held at Tm, the freezing temperature of

the fluid. The frame can shift such that the boundary is held still and fluid flows towards

it at rate Vn, the rate at which the boundary moves. We can create a control volume on

the boundary, and write the balance of heat entering and exiting as follows

ρHlVn − n · ql − ρHsVn + n · q
s

= 0, (1)
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Figure 3.1: The advancing ice moves at speed Vn. The control volume is shown in gray.

Where ρ is the density, H is the enthalpy, n is a vector normal to the interface, and q

is the heat flux.The first two terms correspond to heat flux into liquid, (l); the last two

correspond to heat flux into the solid(s). Equation 1 can be rearranged to read:

ρ(Hl −Hs)Vn = n · q
l
− n · q

s
, (2)

and simplified on noting that the latent heat of fusion (L) is defined as the change in

enthalpy from liquid to solid is

L = Hl −Hs (3)

While Fourier’s law of heat conduction,

q = −k∇T, (4)

So that we can substitute (4) and (3) into (2) and rewrite it as

ρLVn = ks
∂T

∂n

∣∣∣∣
s

− kl
∂T

∂n

∣∣∣∣
l

(5)

This is the Stefan condition (?). In this ideal case, the density of the solid and liquid are

assumed to be the same. In the case of ice and water, ρl > ρs. A velocity is induced when
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Figure 3.2: A schematic showing the boundary layers and variables used in the model.

the ice that freezes expands, and we end up with the same Stefan condition as above, but

only dependent on ρs (?).

In the brinicle, there are two moving boundaries both at the inner wall and the outer

wall. The inner wall moves as the warmer brine dissolves the wall, and the outer wall

moves as heat is transferred to the brine on the inside and the fresh water freezes.

We write and simplify the radial heat equation inside the ice:

∂Ti
∂t

=
ki
r

∂

∂r

(
r
∂T

∂r

)
+ ki

∂2Ti
∂z2

(6)

The temperature through the wall is quasi-steady, so ∂Ti
∂t = 0. Since ∆x � ∆r, the

dominant heat transfer is radial, so we also neglect z-dependence, and the heat equation

simplifies to

∂

∂r

(
r
∂Ti
∂r

)
= 0 (7)
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The boundary conditions at both the outer and inner walls are given by

∂Ti
∂r

=
Lρi
ki

∂b

∂t
at r = b(t), (8)

At the outer wall, and

ki
∂Ti
∂dr

= Lρi
∂a

∂t
+ k

∂T

∂r
at r = a(t), (9)

At the inner wall.

Solving equation 7 and substituting equations 8 and 9 into the heat flux at the inner

wall

Lρi
2ki

1

a

∂

∂t
(b2 − a2) =

k

ki

∂T

∂r

∣∣∣∣
r=a(t)

(10)

This gives us an equation for the growth of the wall in terms of the heat flux. The heat

flux appears on the right side of equation 10, and the time-derivatives of both a2 and b2

appear on the left side.

Having solved for the radial growth, we now focus on the moving tip. We must consider

how heat is transferred with the flow of brine down the tube at the center of the brinicle.

The Graetz problem solves for the temperature in a pipe with Poiseuille flow and constant

heating of the walls (Martin, 1974). The solution gives us that mean temperature rises

linearly with length down the pipe. In order to use this solution, we therefore assume that

the heat flux into the brine is independent of height and that the temperature rises linearly

from entrance to tip. We take this solution, and plug in our Poiseuille flow profile to get,
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in non-dimensional co-ordinates, where θ is our non-dimensional temperature θ = Tm−T
∆T

(1− r2)
∂θ

∂z
=

1

r

∂

∂r

(
r
∂θ

∂r

)
(11)

We apply boundary conditions at the side wall, entrance, and tip of the brinicle. At

the entrance, the brine is at a constant temperature and volume flux, which gives us the

condition

TA = q(∆T )α at z = 0, (12a)

Where TA is the averaged temperature, ∆T is the temperature difference across the wall

of the brinicle, and α accounts for the fact that not all ice crystals that form become a

part of the brinicle; some simply float to the top of the tank.

As discussed previously, the heat flux from the side at any height is only a function of

time, which we represent as follows, using the same dimensionless variables

∂θ

∂r
=

1

4
B(t) at r = 1 (12b)

As the tip is a moving boundary, we have to provide two boundary conditions. First, the

temperature of the brine is the same as the temperature of the tank at the tip:

θ = 0 at z = l, r = 1, (12c)

Second, the tip grows as a cylinder of constant cross-sectional area. The cross-sectional

area of the tip is π(b2 − a2), and so we have the following equation for the growth of the
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tip, up to a constant of proportionality

π(b2 − a2)
∂l

∂t
= θA(l), (12d)

After solving equation 11 for the given boundary conditions (12), Martin (1974) finds

that the tip of the brinicle moves as a power law of t: l(t) = β
√
t, where β depends on

the cross-sectional area of the tip, the ratio of the flux of ice to the flux of fluid into the

brinicle, and the thermal diffusivity.

While the fluid that we pump into the tank is at a constant salinity and temperature,

as the brinicle grows, the wall of the channel grows as the salty brine dissolves the ice.

As this happens, there is a layer of fresher water along the outside of the channel. This

layer is both at a different temperature and salinity than the water at the center of the

channel. This boundary layer of fresher, warmer water grows as the brine flows through

the channel, to the point where the stream exiting the brinicle is at the same temperature

as the surrounding water. Throughout, we assume that this boundary layer is of a constant

thickness.

We start with the Stefan condition

ρLȧ = k
∂T

∂y
(13)

Here ρ is the density, L is the latent heat of fusion, T is the temperature and k is the

thermal diffusivity. We have two moving boundaries, and we write the stefan conditions

at each boundary. At the outer boundary, we have

ρL∂b
∂t

= k
Ta − Tc
δT

(14)
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At the inner boundary, we have both freezing and dissolving at the boundary, and so our

Stefan condition looks like this

Tm − Ta
h

− Ta − Tc
δT

= ρL∂a
∂t

(15)

We write a similar condition for our moving inner boundary, but for the diffusion of salt,

rather than heat:

Sa
∂a

∂t
= D

Sc − Sa
δs

(16)

We can combine (16) with (15) as follows, to get an equation that depends on both the

diffusion of salt as well as heat

ρLD
Sa

(
Sc − Sa
δs

)
= −kTa − Tm

h
+ k

Tc − Ta
δT

(17)

Finally, using the liquidus on the binary phase diagram, we write the relationship between

the Tm, the freezing temperature, and S the salinity. For this purpose we use a linear

approximation ?.

Ta = Tm −mSa (18)
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We then have the following equations that describe our system.

ρL∂h
∂t

= k
Ta − Tc
δT

, (19a)

Sa
∂a

∂t
= D

Sc − Sa
δs

, (19b)

Tm − Ta
h

− Ta − Tc
δT

=
ρL
k

D

δs

Sc − Sa
Sa

, (19c)

Ta = Tm −mSa. (19d)

Here (19a) corresponds to the diffusion of heat, (19b) to the diffusion of salt, (19c) to the

diffusion of both heat and salt, and (19d) to the liquidus curve. We write the boundary

conditions of the brinicle at the tip. We fix the width of the wall at 0 at the tip, and fix

the inner radius as well.

h = 0 at x = `(t) and a = a0 at x = `(t). (20)

We now look for a traveling wave solution, with the brinicle moving at a constant velocity

V , so that `(t) = V t, i.e.

ξ = V t− x, (21)

where the tip is at ξ = 0 and the source is at ξ = `(t). Plugging (21) into (19), our
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equations transform to

ρLV ∂h
∂ξ

= k
Ta − Tc
δT

, (22a)

SaV
∂a

∂ξ
= D

Sc − Sa
δs

, (22b)

Tm − Ta
h

− Ta − Tc
δT

=
ρL
k

D

δs

Sc − Sa
Sa

, (22c)

Ta = Tm −mSa. (22d)

We now nondimensionalize the equations as follows, leaving ξ = Lξ such that we can

determine L

Ta = Tm + ∆Tθa, ∆T = Tm − Tc, Sa = ∆SCa, ∆S =
m

∆T
, a = δTa, h = δTh,

we determine L as a grouping of parameters after nondimensionalizing the rest. Inserting

these nondimensionalizations, this gives

L
cp∆T

V δ2
T

Lκ

∂h

∂ξ
= 1 + θa, (23a)

CaV δsδT
DL

∂a

∂ξ
=

∆TSc
m

− Ca, (23b)

θa
h

+ 1 + θa = − L
cp∆T

D

κ

δT
δs

∆TSc
m − Ca

Ca
, (23c)

θa = −Ca. (23d)

We define

κ =
k

ρcp
, ε =

D

κ
, S =

L
cp∆T

, C =
mSc
∆T

, Pe =
V δT
D

, b =
δs
δT
.

S is the Stefan number, defined as the ratio of sensible heat to latent heat; Pe is the Peclet
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number, the ratio of the rate of advection to the rate of diffusion. Thus, we can choose

that

L = δTSεPe.

Now using the non-dimensional eutectic relationship in (23), we can write our equations

only in terms of the non-dimensional ‘concentration,’ eliminating temperature as follows,

∂h

∂ξ
= 1− Ca, (24a)

∂a

∂ξ
=
Sε
b

C − Ca

Ca
, (24b)

Ca

h
− 1 + Ca =

Sε
b

C − Ca

Ca
. (24c)

We write the large conglomeration of terms as

T =
Sε
b

=
L

cp∆T

δTD

δsκ
. (25)

Writing the last equation of (24) as a quadratic of Ca, we have

(1 + h)C2
a + (T h− h)Ca = T Ch. (26)

Sending h to zero we find that the dominant balance must be between the first and last

terms as

C2
a ∼ T Ch→ Ca ∼ (T Ch)1/2 . (27)
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Using the quadratic formula to solve for Ca we have that

Ca =
(h− T h) +

√
(h− T h)2 + 4(1 + h)T Ch

2(1 + h)
, (28)

which agrees with the scaling as h→ 0.

The full system of equations is then

∂h

∂ξ
= 1− Ca, (29a)

∂a

∂ξ
= T C − Ca

Ca
, (29b)

Ca =
(h− T h) +

√
(h− T h)2 + 4(1 + h)T Ch

2(1 + h)
, (29c)

subject to

h = 0 at ξ = 0 and a =
a0

δT
at ξ = 0.

Now we estimate the size of our terms for when we solve these equations.

κ ∼ 1.4× 10−7 m2 s−1

D ∼ 2× 10−9 m2 s−1

∆T ∼ 20 K

L ∼ 3.34× 105 m2 s−2

cp ∼ 4.19× 103 m2 s−2 K−1

ρ ∼ 103 kg m−3

m ∼ 0.5 K (wt.%)−1

Sc ∼ 23 wt.%

δs ∼ 2× 10−4 m

δT ∼ 10−3 m

V ∼ 10−3 m s−1
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Figure 3.3: The outline of the brinicle, as solved for the model (29) at time steps 10, 100,
and 200.

This gives that the parameters are

ε ∼ 10−2, S ∼ 5, C ∼ 0.5, P e ∼ 500, b ∼ ε1/3 ∼ 10−2/3 ∼ 0.2, T ∼ 5× 10−4/3 ∼ 0.2.

We use MatLab to solve this system (29) of equations for h(ξ) and a(ξ). We can then

plot the edges of the brinicle at various time steps as in fig. 3.3, and plot the width as a

function of both time and height, as shown in fig. 3.4

4 Comparisons and Conclusions

The traveling wave solution of our model only solves for our brinicle with a tip that moves

linearly in time. Therefore, we can compare the surface plot generated from the model to

regimes of our experiment where we have close to linear growth. At the beginning of the

26



Figure 3.4: A surface plot showing the width of the modeled brinicle as a function of both
the height and time. In non-dimensional coordinates.

growth of the brinicle in fig. 2.5a and fig. 2.5b. In the case of the brinicles grown in salt

water (fig. 2.5b), we see even more similarities between the model and the actual data.

We see large regions that look close to linear in time, for example, from 250-400 seconds.

Particularly in this region, the width grows evenly without large deviations across the

height, unlike in fig. 2.5a, where we see deviations in the width as a function of height,

or as we referred to them earlier ‘bumps’. Although to model the brinicle in salt water

we have to add an extra term to the Stefan condition on the outer boundary (equation

14), when we compare our model to this data it does not make a huge difference. As we

saw earlier from comparing brinicles grown in tanks of different salinities, adding salt does

not affect the power law of the growth, and we see this is true for the width as well in

comparing this model with the growth of brinicles grown in salt water. If we look at the

plots of the brinicle grown in fresh water, we see that the bumps are what separates linear

sections of this from the model. These bumps come from some deviation from the ideal
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that then grows outward. When we add salt to the tank, these deviations no longer grow

without bound the addition of the salt to the tank means that dissolution occurs at the

outer boundary as well. Any small perturbations in the outer boundary would be dissolved

by the salt before they could grow as in the fresh water tank.

In all these observations, as well as in the model, we see that the width continues

to grow according the power law
√
t. However, according to Perovich et al. (1995), the

brinicles they observed had a constant width throughout. The brinicles they observed were

on a scale much larger than our scale – up to two meters. It appears that there may be

another regime of growth in which the width does not grow or grows very slowly. Diffusion

of heat is a slow process and as the brinicle grows in width it will eventually reach a width

where the heat from the outer wall would diffuse too slowly into the brine on the inside

to freeze and add onto the outer wall. Perovich et al. (1995) also observed that after a

period of time the brinicles became less mushy, more solid, and were able to broken off,

stored and observed properly. They also observed two different kinds of ice crystals: those

that were radially oriented, and the more disordered crystals close to the center of the

brinicles. In our experiments the brinicles grown in salt water never quite reached this

phase. The brinicles remained fragile and broke when the block of ice fixed to the top

of the tank was moved. We also only observed radially-oriented crystals. These are both

clear in the photographs and videos, but also when the brinicles broke, there was no sign

of a different kind of ice towards the center. Radially-oriented ice crystals were not present

in the brincles grown in fresh water, and these were less fragile, so it is likely that the

presence of more disordered ice adds more stability to the brinicle. While these are just

empirical observations, one could follow Perovich et al. (1995) in quantifying the fraction

of each type of ice inside the brinicle, and compare this with the stability or strength of

the brinicle.
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