
Measures in Algebraic Complexity

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811494

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811494
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Measures%20in%20Algebraic%20Complexity&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=d2437aac231c6511322ea871b2e911a8&department
https://dash.harvard.edu/pages/accessibility


Contents

Acknowledgements i

1 Algebraic P and NP 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Definitions and Preliminary Ideas . . . . . . . . . . . . . . . . . . . 2

1.1.3 VP vs. VNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Circuit Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Structural Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Division Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Depth Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

The Partial Derivative Measure 15

1.2.4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.5 A Hard Polynomial over Finite Fields . . . . . . . . . . . . . . . . 15

1.2.6 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.7 Determinant Lower Bound . . . . . . . . . . . . . . . . . . . . . . 17

Shifted Derivative Measure 20

1.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Shifted Partial Derivative Measure . . . . . . . . . . . . . . . . . . 22

1.4.3 Circuits under Affine Projections . . . . . . . . . . . . . . . . . . . 22

1.5 Embedded Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.1 Polynomial Construction . . . . . . . . . . . . . . . . . . . . . . . 23

1.5.2 Bounding Measure for Target Polynomial . . . . . . . . . . . . . . 23

1.5.3 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Putting it Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 Polynomial Embedding . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.2 Affine Subspace Restriction . . . . . . . . . . . . . . . . . . . . . . 27

Projected Shifted Derivative Measure 28

1.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ii



Contents iii

1.8 Projected Shifted Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.8.1 Proof Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Circuit Complexity Upper Bound . . . . . . . . . . . . . . . . . . . . . . . 31

1.9.1 Low rank gates are low-degree polynomials . . . . . . . . . . . . . 31

1.9.2 High rank gates are almost always zero . . . . . . . . . . . . . . . 31

1.9.3 Projected Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



Chapter 1

Algebraic P and NP

1.1 Motivation

On the long march towards resolving P vs. NP, theoreticians either lower bound the

size of Boolean circuits computing SAT or attempt to find efficient algorithms that show

otherwise. With super polynomial SAT lower bounds far in the horizon, it is tempting

to define an algebraic model of computation, the hope being that the vast array of alge-

braic tools could resolve fundamental questions in a model that is so rich in structure.

The standard model for studying the complexity of computing polynomials is that of

arithmetic circuits. Arithmetic circuits are directed graphs with addition and multipli-

cation gates, that take input variables and output a computed polynomial. Over this

model, we can define algebraic analogues of complexity classes P and NP, allowing us to

pose the VP vs. VNP problem. Although resolving VP vs. VNP does not resolve P vs.

NP, progress in the former can inform techniques in the latter and with the hindsight of

decades of work it turns out that VP vs. VNP poses immense technical challenges in its

own right. Consequently, arithmetic circuit complexity is fertile ground for beautiful re-

sults in polynomial identity testing and multilinear formulas, and it offers a large corpus

of problems for powerful lower bounding techniques in Geometric Complexity Theory

and Sum-of-Squares.

A survey of these results is beyond the scope of this thesis. So instead, we are focusing

on a particular line of work revolving around a family of lower bounding techniques

that study the space of the linear span of the partial derivatives of certain families of

polynomials. We refer to this approach as ”the method of lower bounding by partial

derivative measure”. We present three variants of this technique on various restricted

classes of circuits. We present lower bounding by the partial derivative measure, the

1
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shifted partial derivative measure, and the projected shifted derivative measure detailed

in Chapters 2,3, and 4 respectively. Our theoretical contribution is in Chapter 3 , which

is our main technical result in depth three circuits computing a family in VP.

If one chooses to skim, Chapter 3 is where the original content is.

With this landscape in view, we will begin Chapter 1 by giving the basic definitions of

arithmetic circuit complexity, define VP and VNP, and prove basic completeness and

hardness results for this model of computation. In addition, we will lay the foundations

for depth reduction and homogenization which justify the study of restricted circuit

models.

1.1.1 Introduction

An arithmetic circuit computes a polynomial by taking in input variables x1, x2, .., xn and

computing a polynomial with the arithmetic operations +,×. The complexity measure

of concern is the size (edges) of the circuit representing the number of operations required

to compute a polynomial.

Arithmetic circuits are imbued with a great deal of structure. In particular, when

studying arithmetic circuits we want to compute a specific representation of a polyno-

mial (a syntactic focus) whereas Boolean circuits aim to compute any representation

of a function (a semantic focus). Even after decades of work, we do not know how to

deterministically and efficiently determine whether a given arithmetic circuit computes

the zero polynomial, nor how to efficiently reconstruct a circuit using only queries to

the polynomial it computes.

1.1.2 Definitions and Preliminary Ideas

For a thorough survey on preliminary ideas in arithmetic circuit complexity see [SY10]

Definition 1.1. An Arithmetic circuit Φ over the field F and the set of variables X =

{x1, x2, ..., xn} is a directed acyclic graph. The vertices of Φ are gates. Every gate in Φ

of in-degree 0 is labeled by either a variable from X or a field element in F. Every other

gate in Φ is either a + (sum gate) or × (product gate) with in-degree 2. An arithmetic

formula is an arithmetic circuit that is also a directed tree from leaves to root.

Gates of in-degree 0 are input gates, and gates of out-degree 0 are output gates. The

size of Φ is the number of edges in Φ. However, in the case of bounded depth circuits

there is no restriction on the fan-in of gates unless explicitly stated.
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Arithmetic circuits compute polynomials by taking the input variables and summing and

multiplying monomials and constants until an output gate produces the polynomial in

question. In this manner every polynomial f ∈ F[X] can be computed by an arithmetic

circuit and by arithmetic formula. Then the natural complexity measure that arises is

the number of edges or gates required for computation. At least in the bounded depth

case, edges is popular because the unbounded fan-in is reasonably powerful.

Finally, it is worth remarking that arithmetic circuits compute formal polynomials in

F[X] but not functions from F|X| → F. In this way, arithmetic circuits differ from

Boolean circuits. For instance, 2x is the zero function over the field of two elements.

The arithmetic circuit must produce the polynomial 2x as the output of its computation,

which is necessarily the zero function, but it is not sufficient for the circuit to compute

the zero function. Again, the focus is on the syntactic rather than semantic content.

This distinction can be especially confusing when discussing the fields over which certain

lower bounds hold. The choice of field is for ease of analysis, but does not change the

fact that arithmetic circuits compute formal polynomials.

1.1.3 VP vs. VNP

Arithmetic complexity begins with defining algebraic analogues of P, NP, and complete-

ness results in the seminal work [Val79]. A natural starting point is then the algebraic

analogue of P, the class VP of ”polynomially bounded” circuits.

Definition 1.2. (VP) A family of polynomials {fn} over F is in V PF if there exists

some polynomial t : N → N such that for every n, both the number of variables in fn

and the degree of fn are at most t(n), and there is an arithmetic circuit of size at most

t(n) computing fn.

Note that we always work with a family of polynomials, but sometimes we will work

with a ”polynomial” and understand that the index n defines the entire family. Note

that we did not require the circuit computing fn to have polynomial degree, but this

holds without loss of generality [SY10]. Also note that even a size O(n) circuit can

compute a polynomial with exponential degree. The polynomial degree bound is moti-

vated by computations over rational numbers. An exponential degree polynomial is not

necessarily representable with an efficient number of bits.
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In particular, the determinant polynomial is in VP. This can be demonstrated by Gaus-

sian elimination which needs division gates. Removing the division gates will be dis-

cussed later in the chapter. We define the determinant as follows.

DETn(X) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xi,σ(i) (1.1)

for X = (xi,j) an n× n matrix, Sn the set of permutations of n elements and sgn(σ) is

the signatures of the permutation σ.

VNP is then the algebraic analogue of NP.

Definition 1.3. (VNP) A family of polynomials fn over F is p-definable is there exists

two polynomially bounded functions t, k : N → N and a family {gn} in V PF such that

for every n

fn(x1, ..., xk(n)) =
∑

w∈{0,1}t(n)
gt(n)(x1, ..., xk(n), w1, ..., wt(n))

One way to think of VNP is to regard the w as witnesses and the summing as an analog

of searching for witnesses in NP. We’ve also modified the existential quantifier in NP to

the addition operation, which makes VNP an analogue of P as well. It is also apparent

that the sum of a single polynomially bounded circuit gives us V P ⊆ V NP . A famous

example of a polynomial in VNP is the permanent.

PERMn(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i) (1.2)

It is quite remarkable that removing the signature of permutations can make a polyno-

mial so much harder to compute, but this is consistent with our experience of permanent

and determinant computation outside of the setting of arithmetic circuits. The smallest

known circuit computing the permanent is that given by Ryser’s formula.

Lemma 1.4. [Rys63] For every n ∈ N, PERMn(X) =
∑
T∈[n]

(−1)n−|T |
n∏
i=1

∑
j∈T

xi,j

We now pose the algebraic analogue of the P vs. NP question.

Valiant’s Hypothesis I: VP 6= VNP

Critically, we also need notions of reduction and examples of completeness.

Definition 1.5. A polynomial f(x1, x2, ..., xn) over F is called a projection of a poly-

nomial g(y1, ..., ym) over F if there exists an assignment p ∈ ({x1, ..., xn} ∪ F)m such

that f(x1, ..., xn) ≡ g(p1, p2, ..., pm). In other words, f can be derived from g by simple
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substitutions. This can be extended to projections between families of polynomials. The

family {fn} is a p-projection of the family {gn} if there exists a polynomially bounded

t : N→ N such that for every n, fn is a projection of gt(n)

Valiant showed that VP and VNP are closed under projections, and that the permanent

is complete for the class VNP.

Theorem 1.6. [Val79] For any field F such that char(F) 6= 2, the family {PERMn} is

VNP-complete.

Henceforth, when we say ”lower bound” we mean for a family of polynomials in VNP

unless specified otherwise. Similarly the determinant is VQP-complete where VQP is

the set of families of polynomials with variables, degree, and circuits bounded quasi-

polynomially (2polylog(n))

Theorem 1.7. [Val79] The family {DETn} is VQP-complete. It is also VP-complete

with respect to quasi-polynomial projections.

A quasi-polynomial projection is a generalization of polynomial projection where we

replace t(n) : N→ N to be a quasi-polynomially bounded function.

We present a few more results that motivate Valiant’s extended hypothesis.

Theorem 1.8. [VSBR83] Let f be a degree r polynomial computed by a size s circuit.

Then f can be computed by a circuit of size poly(r, s) and depth O(log r(log r + log s)).

If we define V NCk to be polynomials with polynomially bounded degree and variables

of depth O(logk n), then the above theorem shows V P = V NC2, which stands in stark

contrast to the Boolean world where it is conjectured that P 6= NC. Furthermore, this

has implications for arithmetic formulas. In particular, every polynomial in VP has a

formula of quasi-polynomial size.

Theorem 1.9. [Val79] For any polynomial f in F[X] that can be computed by a formula

of size s over F , there is a matrix A of dimensions (s + 1) × (s + 1) whose entries are

in X ∪ F such that DET (A) = f

We are now ready to state Valiant’s extended hypothesis that the permanent does not

belong to VQP.

Valiant’s Extended Hypothesis: VNP 6⊂ VQP

To prove the extended hypothesis it suffices to show that one cannot represent PERMn

as the determinant of a matrix of dimension quasi-polynomial in n (i.e DET is not
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a quasi-polynomial projection of PERM). Rather incredibly, this statement makes no

mention of circuits. But alas, quasi-polynomial lower bounds are far away and our best

lower bound is quadratic.

Theorem 1.10. [MR04] [CCL08] Let F be a field of characteristic different than two

and let X = (xi,j) be a matrix of variables. Then, any matrix A whose entries are linear

functions in {xi,j} over F such that DET (A) = PERMn(X) must be of dimension at

least n2/2

The proof idea is to compute the rank of the Hessian matrix of PERMn(X) and

DET (A). The rank for PERMn(X) is roughly quadratic and the rank for DET (A)

is dim(A).

To conclude this expository section, we restate the fundamental thrust of arithmetic cir-

cuit complexity, which is to improve upon the lower bounds on the dimension of a matrix

A with entries that are linear functions in {xi,j} such that DET (A) = PERMn(X).

1.1.4 Circuit Classes

As it is difficult to prove strong bounds for general circuits, we often work with circuits

of bounded depth, multilinear circuits, homogeneous circuits, non-commutative circuits,

etc. We will run through the more popular circuit classes.

The bounded depth circuit has bounded depth and unbounded fan-in. The two most

popular are the depth-3 or
∑∏∑

circuits and the depth-4 or
∑∏∑∏

circuits. In

this work we also discuss recent results related to depth-5 circuits
∑∏∑∏∑

which

is a far less common class of circuits to work with.

circuits have an addition gate as the output, with a middle layer of multiplication

gates, and then a level of addition gates at the bottom. A circuit with s multiplication

gates computes polynomials
s∑
i=1

di∏
j=1

`i,j(x1, ..., xn) where `i,j are linear functions. The

significance of depth-3 circuits, is that we do not have strong lower bounds over fields

of characteristic zero. In fact, the best lower bound for polynomials in VNP are almost

cubic Ω̃(n3). As it turns out, the best lower bounds in VP are also Ω̃(n3) which is the

primary result in this work. Also, for a restricted class of circuits, strong lower bounds

imply super-polynomial lower bounds on the formula complexity of the permanent.

A common technique in lower bounding depth-3 and depth-5 circuits is to expand or

project to depth-4 circuits which are notable for being the first depth for which we have

no strong lower bounds over fields F 6= 2. Furthermore, exponential lower bounds for

circuits are equivalent to exponential lower bounds for general depth circuits. That is
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to say, a polynomial can be computed by a sub-exponential general depth circuit if and

only if it can be computed by a sub-exponential circuit, a result in [AV08].

Only a few papers have ever explored depth-5, for which there are superlinear lower

bounds for large enough fields [Raz13a].

1.2 Structural Results

Depth reduction and strong lower bounds for constant depth circuits are the two ends of

the machinery that works to separate VP and VNP. The majority of this work discusses

lower bounding techniques over various circuit classes. However, this can feel vacuous

without any depth reduction results to ground our concern for
∑∏∑

,
∑∏∑∏

, and∑∏∑∏∑
circuits which at first glance appear to be fairly artificial. After all, con-

stant depth circuits have unbounded fan-in with alternating layers. In any case, it is

important to know just how strong our lower bounds have to be to separate VP from

VNP. The main result we present is the reduction of [VSBR83] for homogeneous poly-

nomials computed by homogeneous circuits, which has been strengthened and extended

by [AV08] [Koi10a]. We follow many of the proofs in [SY10] but change the order of

presentation and omit lengthy calculations. We begin our discussion with homogeneity

and then present a few results in depth reduction.

1.2.1 Homogenization

In this work we will explore homogeneous constant depth circuits [KS15]. Homogeneous

circuits are a popular circuit model, not only because it is a naturally arising class of

polynomials, but also that there exists strong homogenization results that justify the

study of homogenized circuits.

In the study of homogeneous circuits, it turns out that we can decompose any compu-

tation to its homogeneous parts without increasing the size by too much. We follow the

proof in [Str73]

Theorem 1.11. [Str73]

If f has an arithmetic circuit Φ of size s, then for every r ∈ N , there is a homoge-

neous circuit Ψ of size at most O(r2s) computing H0[f ], H1[f ], ...,Hr[f ] where given a

polynomial f , we denote by Hi(f) its homogeneous part of degree i.
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This transformation allows us to assume that circuits for families in VP have polynomial

degrees as well, that all their intermediate computations are also low degree polynomials.

We sketch the proof below.

Proof. We describe how to construct Ψ. For every gate v in Φ, we define r + 1 gates

in Ψ which we denote (v, 0), ..., (v, r) so that (v, i) computes Hi(Φv). We construct Ψ

inductively as follows. If v is an input gate, we can define (v, i) as an input gate with

the appropriate properties. If Φv = Φu+Φw we define Ψ(v,i) = Ψ(u,i) +Ψ(w,i) for all i. If

Φv = Φu×Φw define Ψ(v,i) =
i∑

j=0
Ψ(u,j)×Ψ(w,i−j). By inductive hypothesis Ψ computes

what we desired. Every gate in Φ corresponds to at most O((r+ 1)2) gates in Ψ and so

|Ψ| = O(r2s)

We have shown how to take a general circuit and transforms it into a homogeneous one

that computes the same polynomial without a heavy penalty in size. However, the same

can’t be said of the change in depth. Indeed, the depth may be increased by a factor

that is logarithmic in the degree.

1.2.2 Division Gates

Before moving on to depth reduction, a glaring feature of arithmetic circuits is that they

do not include division gates. Would introducing ÷ as an operator affect the power of

arithmetic circuits. This is a natural question. If we have division gates than each gate

computes a rational function instead of a polynomial. Thus we must stipulate that the

circuit does not divide by the zero polynomial.

The first answer to this line of questioning was provided by Strassen [Str73] who showed

that over infinite fields divisions do not add power to the model. The approach works

when the field contains nonzeros for the polynomial that we divide by [BQH82]. This

result was then extended to finite fields [HY09]. We will find that coping with division

gates will require us to use the homogenization procedure described above.

Theorem 1.12. If a polynomial f ∈ F[x1, ..., xn] of degree r can be computed by an

arithmetic circuit Φ of size s using the operations +,−,×,÷ then there is a circuit Ψ of

size poly(s, r, n) that uses only the arithmetic operations +,× and computes f

Proof. We will sketch the proof for large fields. First we show that if we slightly increas-

ing the size of the circuit we can assume that the only division gates appear at the top of

the circuit. In other words, we can assume that f = h÷g where h and g are computed by

the two children of the output gate, and the output gate is the only gate labelled by ÷.
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To see this, duplicate each gate v to two gates (v,numerator) and (v,denominator) such

that (v,numerator) computes the numerator of the rational function that v computes

and (v,denominator) computes the denominator of the function computed by v. This

can be done using the following identities.

1. h1/g1 + h2/g2 = (h1g2 + h2g1)/(g1g2)

2. h1/g1 × h2/g2 = (h1h2)/(g1g2)

3. h1/g1 ÷ h2/g2 = (h1g2)/(h2g1)

Finally, we show how to eliminate the division only division gate. If we express f = h/g

and notice that the field is large enough, g(α1, ..., αn) 6= 0 for some α1, ..., αn ∈ F. If we

translate the input and multiply by a field element, with a slight increase in size, we can

assume that g(0, 0, .., 0) = 1. In this case,

f =
h

g
=

h

1− (1− g)
=

∞∑
j=0

h(1− g)j (1.3)

where the last equality implies that every homogeneous part of f is the same as the

homogeneous part of the right hand side. As 1− g has no constants, the minimal degree

of a monomial (1− g)j is j. For every i ∈ {0, ..., r}

Hi(f) =
∞∑
j=0

Hi(h(1− g)j) =
i∑

j=0

Hi(h(1− g)j) (1.4)

So we can efficiently compute the homogeneous parts of f , using the homogeneous parts

of the polynomials {h(1 − g)j : j ∈ [r]}, each of which has a circuit of size poly(r, s).

Then we use 1.11 to complete the proof.

For small fields, we need to ”simulate” a large field. We must do so without increasing

the size by much. To make a field F larger we consider a field extension E of F that

is large enough for our purposes, and we need E to be of size poly(r, n). The point is

that we can think of the elements of E as vectors in F, and can therefore simulate the

arithmetic operations over E by operations over F. If ā = {a1, ..., ak} and b̄ = (b1, ..., bk)

are two elements of E = Fk, where k is the degree of E . Then the sum of ā and b̄ over E
is just the entry wise sum of ā and b̄ as vectors in Fk. The product of ā and b̄ over E can

be defined coordinate-wise as (ā × b̄)i = λi(ā, b̄) for i ∈ [k] where λi is a fixed bilinear

form (a k × k matrix with entries in F). To simulate a circuit over E by a circuit over

F we duplicate each gate k times and simulate the arithmetic operations over E by the

arithmetic operations over F.



Contents 10

1.2.3 Depth Reduction

We present the following facts about partial derivatives [SY10].

Lemma 1.13. Let v,w be two gates of a homogeneous circuit Φ. Denote with fv and fw

the polynomial computed by v and w respectively.

1. Either ∂wfv is zero or ∂wfv is a homogeneous polynomial of total degree

deg(v)− deg(w)

2. Assume that v is a product gate with children v1 and v2 such that

deg(v1) ≥ deg(v2). If deg(w) > deg(v)/2 then ∂wfv = fv2 · ∂wfv1.

3. Assume that v is a sum gate with children v1, v2. Then ∂wfv = ∂wfv1 + ∂wfvw

Proof. We outline the proof.

1. For the first point, notice that fv and fw are both homogeneous. As fv = fv,w|y=fw ,

and by definition of ∂wfv, it follows that if ∂wfv is nonzero then it is of degree

deg(v)− deg(w).

2. For the second point, since v is a product gate, deg(v) = deg(v1) + deg(v2). By

assumption we have deg(v2) < deg(w). Since the circuit is homogeneous, the gate

w is not in the sub-circuit rooted at v2. Hence ∂wfv2 = 0.

3. The third point follows from the definition of ∂wfv

Now we use these facts about partial derivatives to perform circuit depth reductions.

Namely, without loss of generality, we can assume that polynomial size circuits of poly-

nomial degree are of poly-logarithmic depth [VSBR83]. This directly implies that the

determinant of an n× n matrix can be computed by a polynomial size circuit of depth

O(log2 n).

Theorem 1.14. [VSBR83] For every homogeneous degree r polynomial f computed by a

circuit Φ of size s, there is a homogeneous circuit Ψ of size poly(r, s) computing f with

the following additional structure.

1. The circuit Ψ has alternating levels of sum and product gates.

2. Each product gate v in Ψ computes the product of five polynomials, each of degree

at most 2deg(v)/3.
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3. Sum gates have arbitrary fan-in. In particular, the number of levels in Ψ is

O(log r).

This theorem implies that if f is a polynomial of degree r computed by size s circuit,

then f can be computed by a size poly(s, r) circuit with fan-in at most two of depth

O(log r(log r + log s)).

To proceed we’ll have to define some notation. For an integer m ∈ N, denote by Gm

the set of multiplication gates t in Φ with children t1 and t2 such that m < deg(t) and

deg(t1), deg(t2) ≤ m

Before we can prove theorem 1.14 we state the following two lemmas without proof.

Lemma 1.15. Let m > 0 be an integer, and let v, w be two gates so that deg(w) ≤ m <

deg(v) < 2deg(w). Then,

fv =
∑
t∈Gm

ft × ∂tfv and ∂wfv =
∑
t∈Gm

∂wft × ∂tfv (1.5)

We can now prove theorem 1.14

Proof. First, assume without loss of generality that s ≥ n. Second, we can assume

without loss of generality that the circuit computing f, Φ, is a homogeneous arithmetic

circuit of size s′ = O(r2s). To prove the theorem we construct Ψ. The construction is

done in steps where at the i’th step we do the following:

1. Compute all polynomials fv, for gates v in Φ such that 2i−1 < deg(v) ≤ 2i

2. After we finish the first part, we compute all polynomials ∂wfv, for all appropriate

gates v, w so that

2i−1 < deg(v)− deg(w) ≤ 2i and deg(v) < 2deg(w) (1.6)

We show that we can perform the first part of the i’th step by adding a layer consisting

of O(s′2) product gates, of fan-in at most 3, and a layer of O(s′) sum gates, each of

fan-in O(s′). Similarly, for the second part we need to add a layer of O(s′3) product

gates, of fan-in at most 3, and a layer of O(s′2) sum gates, each of fan-in O(s′) to the

circuit that was computed in the first part. This procedure increases the size by O(s′3)

and the depth by a constant factor.

Now we construct Ψ. Gates in Ψ are denoted by v, t, and w. For a gate v, we denote

by v′ the gate in Ψ computing fv. For two appropriate gates, v, w, we denote by (w, v)

the gate in Ψ computing ∂wfv. We then proceed inductively.
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For every gate v in Φ satisfying deg(v) ≤ 1, fv is linear. So, since s′ ≥ n, we can compute

fv with a linear arithmetic circuit of size O(s′) and depth O(1). For every two gates

v and w in Φ such that deg(v) − deg(w) ≤ 1, lemma 1.13 implies that ∂wfv is linear.

Therefore, we can compute ∂wfv with a linear circuit of size O(s′) and constant depth.

We repeat this process i times. For the i+ 1 step we first compute the f ′vs. Let v be a

gate of degree 2i < deg(v) ≤ 2i+1, and denote m = 2i.

Now we know that if a gate t is not in Φv, then ∂tfv = 0. So lemma 1.15 gives us

fv =
∑
t∈Tv

ft × ∂tfv =
∑
t∈Tv

ft1 × ft2 × ∂tfv (1.7)

where Tv is the set of gates t ∈ Gm, with children t1 and t2, such that t is in Φv. We can

see that m < deg(t) ≤ 2m and deg(t1), deg(t2) ≤ m. This implies that deg(v)−deg(t) ≤
2i+1 − 2i = 2i and deg(v) ≤ 2i+1 < 2deg(t). So we find that ft1 , ft2 , and ∂tfv have been

computed. Then we compute fv using equation 1.7 by adding one layer of O(s′) product

gates with fan-in 3 and a sum gate with fan-in O(s′).

Now to compute the ∂wfv’s, let v and w be two gates so that

2i < deg(v)− deg(w) ≤ 2i+1 and deg(v) < 2deg(w) (1.8)

Now, we know m = 2i + deg(w). Therefore, deg(w) ≤ m < deg(v) < 2deg(w). We also

know that if a gate t is not in Φv then ∂tfv = 0. Also by lemma 1.13, if a gate t admits

deg(t) > deg(v), then ∂tfv = 0. So by lemma 1.15

∂wfv =
∑
t∈Tv

∂wft · ∂tfv (1.9)

For t ∈ Tv, we have deg(t) ≤ deg(v) < 2deg(w). Denote the children of t ∈ T by t1 and t2,

and assume without loss of generality that w is in Φt1 . We notice that deg(w) ≤ deg(t1)

and deg(t1) ≥ deg(t2). So using the second item of lemma 1.13 we have the following

equation

∂wfv =
∑
t∈Tv

ft2 · ∂wft1 · ∂tfv (1.10)

We now show that all the polynomials ft2 , ∂wft1 , and ∂tfv were already computed,

including the first part of the i+ 1 step described above.

Since deg(v) ≤ 2i+1 + deg(w) ≤ 2i+1 + deg(t1) = 2i+1 + deg(t) − deg(t2), it holds that

deg(t2) ≤ 2i+1 + deg(t)− deg(v) ≤ 2i+1. So we conclude that ft2 has been computed.

Likewise, deg(t1) ≤ m = 2i + deg(w), so we have deg(t1)− deg(w) ≤ 2i. Since deg(t1) ≤
deg(t) ≤ deg(v) < 2deg(w), the polynomial ∂wft1 has also been computed.
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Finally, deg(t) > m = 2i + deg(2), we get deg(v) − deg(t) < deg(v) − 2i − deg(w) ≤
2i+1 − 2i = 2i. Since deg(v) ≤ 2i+1 + deg(w) ≤ 2deg(t), the polynomial ∂tfv has been

computed.

Now using equation 1.10 we can compute ∂wfv by adding O(s′) product gates of fan-in

at most 3 and a sum gate of fan-in O(s′).

To conclude the proof of theorem 1.14, we address the problem that not every product

gate has children of sufficiently low degree. Completing the proof involves increasing the

fan-in of each multiplication gate to 5 by replacing ft1 in 1.7 with the sum of products

of lower degree polynomials. This concludes the proof.

Building on this foundational result, [AV08] proved that exponential lower bounds

for
∑∏∑∏

circuits computing polynomials of degree Ω(n) imply exponential lower

bounds for the size of general arithmetic circuits. This is presented as a corollary to the

following theorem that we state and prove as a sketch.

Theorem 1.16. Let f(x1, x2, ..., xn) be a polynomial of degree r = O(n) over F. If there

exists a circuit of size s = 2o(r+r log(n/r)) for f , then there exists a
∑∏∑∏

circuit of

size 2o(r+r log(n/r)) for f as well. Furthermore, the fan-in of the top layer of product

gates is bounded by `(n), where ` is any sufficiently slowly growing function tending to

infinity with n, and the fan-in of the bottom layer of product gates is bounded by o(r).

Proof. Break the circuits ensured by Theorem 1.14 into two parts: first of the topmost t

levels of multiplication gates together with the addition gates above them, and the second

is the rest of the circuit. The polynomial computed by the first part is a polynomial of

degree at most 5t in poly(r, s) variables, and therefore can be computed by a depth-2

circuit of size O(5t
(poly(r,s)+5t

5t

)
). The second circuit computes a polynomial of degree

at most D = deg(f)/(3/2)t and therefore has a depth-2 circuit of size on the order

of
(
n+D
D

)
. When we compose the two circuit parts we obtain depth-4 circuit of size

O(5t
(poly(r,s)+5t

5t

)(
n+D
D

)
) computing f . We can complete the proof by optimizing over

t.

An extension by [Koi10a] relates depth reduction back to VP and VNP.

Theorem 1.17. Let f be an n-variate polynomial of degree r that can be computed by a

polynomial size arithmetic circuit. Then f can be computed by a
∑∏∑∏

circuit with

nO(log r) addition gates and nO(
√
r log r) multiplication gates. Furthermore, multiplication

gates have fan-in at most
√

3r + 1.

Which yields the following corollary
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Corollary 1.18. A 2n
1/2+ε

lower bound on the depth-4 complexity of the permanent of

n by n matrices is sufficient for separating VP from VNP.

Our best lower bounds over char(F) 6= 2 is n1+c for some constant c > 0 [Raz10] which

gives rise to the following open problem.

Open Problem: Prove super-polynomial lower bounds for depth-4 circuits of fields of

char(F) 6= 2

After establishing depth reduction results, we can see how general depth-4 circuits can

be, which buys us a significant amount of structure. Thus, depth reduction lies at the

core of the justification for the constant depth circuit bounds we will be presenting for

the rest of this work.



The Partial Derivative Measure

1.2.4 Introduction

We present some of the seminal lower bounds in arithmetic circuit complexity. One the

way we provide motivation for the technique of lower bounding by partial derivative

measure. We flesh the technique out for the quadratic lower bound on determinants for

depth-3 circuits by [SW02] which held for 15 years until [KST16].

1.2.5 A Hard Polynomial over Finite Fields

Since it is so difficult to prove super-polynomial lower bounds for polynomials in VNP,

it is valuable to see what sort of polynomial is extremely hard to compute. It turns out

the MODq function has exponential lower bounds for
∑∏∑

circuits over small fields.

MODq is defined as MODq(x1, ..., xn) = 1 iff
∑

i xi = 0 mod q, thinking of xi as an

integer.

Theorem 1.19. [GR00a] Let p 6= q be two primes. Then, every
∑∏∑

circuit com-

puting the n-varaite MODq function over Fp must be of size at least 2Ω(n)

Proof. Let Φ be a
∑∏∑

circuit over the field with p elements Fp. The general idea

is to partition the product gates of Φ into two sets, and to find the weakness of each of

these sets. We partition the gates of Φ according to their rank: Every product gate v in

Φ of degree dv multiplies dv linear functions. Define the rank of v as the dimension of

the span of these dv linear functions. Partition the product gates of Φ into VHIGH and

VLOW , where VHIGH is the set of product gates of rank at least R and VLOW to contain

the low rank gates.

Now we discuss the weakness of
∑∏∑

circuits over finite fields. If we substitute

random field elements as inputs, each gate in VHIGH is nonzero with probability at most

(1 − 1/p)R = 2−cpR. In addition, each product gate in VLOW can be represented by a

low degree polynomial of degree at most pR. Then if we use union bound we find that

15
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a
∑∏∑

circuit Φ of size s can be approximated by a low degree polynomial. Indeed,

there exists a polynomial g ∈ Fp[x1, ..., xn] of degree at most pR so that

Pra[Φ(a) 6= g(a)] ≤ 2−cpRs (1.11)

where a is uniform in Fnp .

The MODq function cannot be well approximated by low degree polynomials over the

Boolean cube. This property should complete the proof, provided that the result over

the Boolean cube can imply the needed property over Fp. The final peice of the proof is

by Grigoriev and Raborov who used the observation that the uniform distribution over

Fnp is a convex combination of distributions that are uniform over translates of Fn2 .

1.2.6 Motivating Example

The following example proven in [NW96] motivates the use of complexity measures in

proving lower bounds on arithmetic circuits, variations of which are the focus of this

work.

Theorem 1.20. Any homogeneous depth 3 circuit computing the 2d’th symmetric poly-

nomial on n variables over a field of characteristic zero requires Ω((n/4d)d) size.

The following is both a proof and a general discussion of the technique for proving

theorem 1.20

Proof. Let F be a field of characteristic 0. We consider polynomials in n variables X.

For any set of polynomials V ⊆ F[X] we use dim(V ) to denote the dimension of the

linear span of V i.e maximum number of linearly independent polynomials over F in V .

Let f be a polynomial. We let ∂(f) denote the set of all partial derivatives of all orders

of f . To belabor this point, a single monomial that is the product of k variables will

have 2k different partial derivatives. The linearity, sum and product formulae for partial

derivatives upper bound the ability of the different circuit operations to increase the

dimension of the set.

Proposition 1.21. For every f1, f2, ..., fr ∈ F[X] and α ∈ F, α 6= 0 we have:

• dim(∂(α(f1))) = dim(∂(f1))

• dim(∂(
∑

i(fi))) =
∑

i dim(∂(fi))

• dim(∂
∏
i fi) =

∏
i dim(∂(fi))
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This proposition bounds the dimension of the output of depth-3 circuits.

Lemma 1.22. Let f be computed by a depth-3 circuits with fan-in s to the top gate,

and fan-in d or less at every multiplication gate. Then dim(∂(f)) ≤ s2d

Proof. Every linear function g satisfy ∂(g) = {1, g} and so we conclude dim(∂(g)) ≤ 2.

The lemma follows by proposition 1.21.

We conclude the proof of theorem 1.20 from lemma 1.22, the fact that homogeneous

circuits computing a degree d polynomial cannot have multiplication fan-in exceeding d,

and a lower bound on the dimension of the partials of symmetric functions below.

Lemma 1.23. Let SYMd
n denote the d’th elementary symmetric polynomial. Then

dim(∂(SYMd
n)) ≥

(
n

d

)
(1.12)

Proof. For a subset R ⊆ [n] we let SYMd
R be the d’th symmetric polynomial over

variables in R. Therefore, SYMd
n = SYMd

[n]. Now let S and T range over the set

I, which we order as vectors by fixing an order on the elements of I. The vector U

is comprised of all monomials of length d, i.e US =
∏
i∈S xi. The vector V contains

the partial derivatives of SYMd
[n] with respect to d-monomials, which can be calculated

to be VT = SYM2d
[n] obtained by assigning zeros to all variables in T . Now we must

lower bound dim(V ). We know that V = DU where D is the I × I disjointness matrix

DT,S = 1 if S ∪ T = and 0 otherwise. Since D is full rank and all monomials in U are

independent we have

dim(∂(SYM2d
n )) ≥ dim(V ) = dim(U) =

(
n

d

)
(1.13)

1.2.7 Determinant Lower Bound

Next to the permanent, the determinant is the second most studied polynomial in arith-

metic circuit complexity, and depth-3 circuits being the focus of this work it is fitting

that we present a lower bound for depth-3 circuits computing the determinant. The

following determinantal lower bound was proven in [SW02] and held for 15 years. The

recent improvements to this result are the main focus of this work. Finally, the proof uses
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canonical techniques of circuit lower bounds, and it’s instructive to see them deployed

in a well contained setting.

Theorem 1.24. Every
∑∏∑

circuit computing the determinant of an n × n matrix

must be of size at least Ω(n4/ log n)

Note that there are n2 variables in the matrix so this is actually a quadratic lower bound

for depth-3 circuits.

Proof. First we eliminate gates of high degree by restricting our inputs to an affine sub-

space. This makes certain linear functions vanish. Secondly, we use the partial derivative

method. In essence, we claim that the space of partial derivatives of the modified circuit

is of low rank whereas the determinant has high rank. To prove the determinant has

high rank we use the fact that the determinant is downward-self-reducible in the strong

sense.

For a polynomial f ∈ F[x1, ..., xn] we denote with ∂xi(f) the partial derivative of f with

respect to xi. We also define ∂[x1,x2](f) as ∂x1∂x2(f) = ∂x2∂x1(f). Similarly, for any

S ⊆ [n], we can define ∂S(f). Finally, for integer k we denote Γkf to be the dimension

of the vector space over F spanned by all polynomials of the form ∂S(f) where |S| = k

set. And we let ∂S(f) refer to the space.

We will use the following claims

Claim 1.25. For every product gate v of degree r in a
∑∏∑

circuit, Γk(f) is at most(
r
k

)
where fv is the polynomial that v computes

Proof. Assume fv =
∏r
i=1 `i for linear forms `i. The space ∂S(f) is spanned by

{
∏
i∈T `i : T ⊆ [r], |T | = r − k} whose size is at most

(
r
k

)
.

Claim 1.26. For every k, Γk(DETn) ≥
(
n
k

)2
where DETn is the determinant of an n×n

matrix which we denote X.

Proof. For every two sets R = {r1 < r2 < ... < rk} and C = {c1 < c2 < ... < ck} of [n],

let S(R,C) = {xr1,c1 , ..., xrk,ck}. The polynomial ∂S(R,C)(DETn) is linearly independent

over F. The number of such pairs (R,C) is
(
n
k

)2
.

The claims tell us that if all product gates in a
∑∏∑

circuit Φ computing DETn

are of degree at most D, then the size of Φ is at least
(
n
k

)2
/
(
D
k

)
for every k. If we

choose k = n2/(D · e), then using Stirling’s approximation we find that the seize of Φ
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is |Φ| > Ω(en
2/(D·e)). Therefore, if D is linear in n then we get an exponential lower

bound. The proof then requires us to massage the circuit into this form.

Idea: If there are ”many” gates of ”high” degree then the circuit has many wires. If

the circuit has a few gates of high degree then by restricting the inputs to a subspace

we can eliminate all gates and still get a circuit computing the determinant of a slightly

smaller matrix.

So far we know that when all product gates are of small degree, the circuit must be

large. If all the product gates containing a variable x1,n are of degree at most D then

the size of Φ is at least Ω(e(n−1)2/(D·e)). Indeed, if we consider the circuit where we

eliminate all product gates not containing x1,n in Φ and only maintain the gates of Φ

containing x1,n. Let’s call this new circuit Ψ, which computes DETn−1 and all its gates

are of degree at most D. Hence a lower bound on the size of Ψ and hence on the size of

Φ follows. We can also generalize this reasoning to variables x1,n−1, x2,n−2, ..., x1,1.

On the other hand, if there is a gate v1,n of degree at least D that contains x1,n then

there is a linear function `1 so that the restriction of the polynomial Φv1,n to the subspace

x1,n = `1 is zero. Applying this restriction, we can eliminate at least D wires from Φ.

Applying this line of argument for x1,n−1, x2,n−2, ..., x1,2, if at some point we find that

all gates containing x1,i are of degree D then we proceed as in our former argument.

Otherwise we find an appropriate substitution to x1,i. At the end of the process we get

that either there are at least Ω(en
2/(D·e)) gates in Φ or that we eliminated (n − 1)D

wires. In the latter case we set x1,1 = 1 and xi,1 = 0 for all i ∈ {2, ..., n} which yields a

circuit computing DETn−1. Finally, if we denote the size of the smallest
∑∏∑

circuit

computing the determinant of an n× n matrix as
∑∏∑

(DETn), then for every D,

∑∏∑
(DETn) ≥ max

(
Ω(e(n−1)2/(D·e)),

∑∏∑
(DETn−1) + (n− 1)D

)
(1.14)

If we choose D = n2/(4e log n) the theorem follows by induction.

Thus, almost quadratic lower bounds were known for polynomials in VNP since [SW02],

but it would not be until [KST16] that an almost cubic lower bound would be proven for

polynomial families in VNP. Nevertheless, the technique of lower bounding the dimension

of the span of partial derivatives of a polynomial family, and then upper bounding the

span of partial derivatives computed by a circuit model lays the foundations for the

more sophisticated techniques that will be the focus of the remainder of this work.



Shifted Derivative Measure

1.3 Introduction

We present the results of [Yau16] A depth three
∑∏∑

circuit consists of a layer of

sum gates, followed by a layer of multiplication gates, followed by a single sum gate

that outputs the computation of the circuit. The fan-in is unbounded, and the circuit

size is measured in terms of the number of edges. As such, depth three circuits capture

”sums of products of linear polynomials”. A recent line of work on depth reduction

[AV08, Koi10b, GKKS16? ] has shown that moderately strong lower bounds for circuits

of depth three imply a super-polynomial lower bound for general circuits. In addition,

[Raz13b] shows that a strong enough lower bound for set-multilinear depth three circuits

implies a super- polynomial lower bound for general arithmetic formulas. These depth

reduction results pave an avenue towards proving super-polynomial lower bounds for

general circuits/formulas by leveraging the apparent simple structure of depth three

circuits. Unfortunately, it is still an open problem to prove super-polynomial lower

bounds for depth three circuits over fields of characteristic zero. Below we present some

of the seminal results in depth three lower bounds.

In [SW02], Shpilka and Widgerson proved a Ω(n2) depth three circuit computing the

elementary symmetric polynomials ESYMd
n
(x1, x2, ..., xn) =

∑
S⊆[n],|S|=d

∏
i∈S xi on n

variables and degree d = Θ(n). In the same paper, the authors prove a near quadratic

lower bound for the determinant polynomial [SW02]. Restricting the circuit model (ho-

mogeneity, multilinearity) and restricting the field characteristic yields better results.

Over fixed finite fields, [GR00a] prove an exponential lower bound for the determi-

nant and in [NW96] it was shown that any homogeneous depth three circuit computing

ESYM
2d
n has size Ω

(
( n4d)d

)
. More recently, in [KS15] a nΩ(

√
d) lower bound was proven for

depth three circuits, with bottom fan-in bounded by nε for any fixed ε < 1, computing

an explicit n-variate polynomial of degree d.

Despite success in many restricted settings (homogenous, degree bounded product gates)

the lower bounds in general cases remain relatively weak. Recently [KST16] gave near

20



Contents 21

cubic Ω̃(n3) lower bounds for a polynomial family in VNP, which was followed by [BLS16]

who gave a Ω
(

n3

2
√

logn

)
lower bounds for a polynomial family in VP.

In this work we strengthen the latter lower bound to get a polynomial in VP on N vari-

ables and degree D satisfying poly(N) > D > log2N , with size lower bound Ω̃(N2D).

Setting D = N , this recovers the VNP result up to a log5(N) factor. Along the way we

present a simplified polynomial and a tighter analysis of its multiplicative complexity.

We also expand on the trade off between circuit size as a joint function of the degree of

the polynomial and the number of variables — something that does not seem to have

been explicitly clarified before.

Our main result is as follows.

Theorem 1.27. There exists an explicit polynomial family PN,D computable in V P on

N variables of degree D satisfying poly(N) > D > log2N such that any depth 3 circuit

computing it has size Ω̃(N2D). Setting D = N as in previous works recovers, up to a

log4(N) factor the Ω̃(N3) bound for polynomials in VNP [KST16]

1.4 Preliminaries

We discuss some of the language and common techniques relating to arithmetic circuits.

An extended treatment can be found in the survey [SY10] of Shpilka and Yehudayoff.

Our general organization is as follows. Section (3) constructs a ”hard” polynomial and

bounds its size for bounded fan-in circuits. Section (4) presents the embedding procedure

producing a polynomial that can be analyzed for unbounded fan-in.

1.4.1 Basic Notation

The ideal generated by a set of polynomials of the ring P will be denoted 〈P 〉. We use

poly(N) to denote polynomial in N with an arbitrary constant exponent. A
∑∏Y ∑

circuit computes polynomials that are the sum of the product of at most Y affine linear

forms. Similarly, a
∑∏Q∏R∑ circuit consists of a layer of sum gates, followed by two

layers of product gates with fan-in bounded by R and Q respectively, followed by a final

sum gate. We observe that each
∑∏Q∏R∑ circuit can be converted to a

∑∏QR∑
circuit with constant factor overhead in size.
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1.4.2 Shifted Partial Derivative Measure

As in previous works, we use a measure µ : F[x] → N to capture weakness of a circuit

model in opposition to a ”hard” family of polynomials giving us a lower bound for

the circuit family. Our choice of measure is the ”dimension of the shifted partials”

introduced in [Kay12]. For polynomial P ∈ F[x1, x2, ..., xN ], let 〈P 〉=k be the set of k’th

order partials of P . Furthermore, let

〈P 〉=k≤` := {f · p|∀ monomials f s.t deg(f) ≤ `, ∀p ∈ 〈P 〉=k} (1.15)

Then for k, ` ∈ N, the shifted derivative measure is defined to be

µk,`P = dim(〈P 〉=k≤` ) (1.16)

Adding the parameter ` produces this shifted derivative measure that introduces ”lee-

way” into the measure of the ”dimension of the partial derivatives” introdued in [NW96]

1.4.3 Circuits under Affine Projections

Given polynomial P ∈ F[x1, x2, ..., xN ] as above, let A : FN → FN be an affine linear

transform, then it is easy to show that µk,`P ◦A ≤ µk,`P . In which case if A is invertible,

then µk,`P ◦A = µk,`P . The takeaway is that the shifted derivative measure is invariant

under invertible affine transforms.

Now let V be a subspace of FN and V ⊥ be its complement. Then if A is an affine

projection onto the space V , then we say P ◦ A is a subspace restriction P |V . If we let

UV be the orthogonal projection of FN to V , by the above discussion we observe that

µk,`P ◦ UV ◦A = µk,`P ◦ UV . This is useful for the following reason.

The central barrier to proving lower bounds for bounded depth circuits is the unbounded

fan-in. The key idea is then to restrict the polynomial with an affine transform A to

an affine subspace V so that the product gates with large fan-in can be pruned. We

are then left with a bounded fan-in circuit which we can analyze. However, we must

now compute the measure of the polynomial P ◦A. We do this precisely by noting that

µk,`P ◦UV ◦A = µk,`P ◦UV and construct P so that its shifted derivative measure is easy

to compute under orthogonal affine restrictions. In some sense we are ”embedding” a

polynomial for which we can analyze its shifted derivative measure within P . Section 3

constructs the embedded polynomial and section 4 details how the subspace restrictions

are performed in practice.



Contents 23

1.5 Embedded Polynomial

First we construct a polynomial in VP for which we can analyze its shifted derivative

measure and bound its circuit size for constant depth circuits with bounded fan-in.

1.5.1 Polynomial Construction

Let X be a b-by-n matrix of formal variables as shown below.

X =


x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . . . . . . . . .

xb1 xb2 . . . xbn

 (1.17)

Let J = (j1, j2, .., jb) for J ∈ [n]b. Then define the function Permute(X) to be

Permute(X) =
b∏
i=1

n∑
j=1

x
D
b
ij =

∑
J∈[n]b

x
D
b

1j1
x
D
b

2j2
...x

D
b
bjb

(1.18)

Notice that Permute(X) has N = nb variables and has degree D. For b = log n,

Permute(X) is in VP by inspecting the sum and product in the definition.

1.5.2 Bounding Measure for Target Polynomial

The first lemma is presented as Proposition 9 in [AG13]. If polynomial f ∈ F[x1, ..., xN ]

is of the form f =
s∑
i=1

Q∏
j=1

Gij(x1, x2, ..., xN ) where each Gij is a polynomial of degree no

greater than R, then the following inequality bounds the size of s.

Lemma 1.28. For all k, ` ∈ N let the shifted partial derivative measure µk,`f =

dim(〈f〉k≤`). Then for k < Q the following lower bounds the size of s

µk,`f(
Q+k
k

)(N+`+k(R−1)
`+k(R−1)

) ≤ s (1.19)

With respect to circuits, s is the size of the top fan-in which is what we’ll be using as

a lower bound for circuit size. Q can then be interpreted as the top layer product gate

fan-in. So long as each product gate has a fan-in consisting of polynomials of degree no

greater than R, the above lemma holds. Summarizing these remarks, we find that the

left hand side of the inequality is dependent only on the circuit model, and that k and

` are chosen for analytical convenience.
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The next lemma has several formulations. We will present the formulation in Lemma 3

of [CM13].

First, we define a distance metric between any pair of monomials g and g′ of identical

degree. Let h be the monomial of minimum degree divisible by both g and g′. Then let

|g∆g′| = deg(h)− deg(g) which is well defined because deg(g) = deg(g′).

Lemma 1.29. Let f ∈ F[x1, x2, .., xN ] be a polynomial, then the following inequality

lower bounds the shifted partial derivative measure µk,lf for all k, l ∈ N. If S ⊆ ∂k〈f〉 is

a set of monomials satisfying for distinct g, g′ ∈ S, |g∆g′| ≥ τ then

|S|
(
N + `

`

)
− |S|2

(
N + `− τ
`− τ

)
≤ µk,`f (1.20)

Putting Lemma 0.1 and 0.2 together we obtain

|S|
(
N+`
`

)
− |S|2

(
N+`−τ
`−τ

)(
Q+k
k

)(N+`+k(R−1)
`+k(R−1)

) ≤ s (1.21)

Now we must determine the size of a set S satisfying the properties of Lemma 0.2 with

a corresponding minimum distance τ for our polynomial Permute(X).

Consider the following, we set k = b = log n, and define ∂JPermute(X) for J =

(j1, j2, ..., jk) ∈ [n]k to be the k’th order derivative obtained by differentiating Permute(X)

by x1j1x2j2 ...xkjk . Then

∂JPermute(X) = x
D

logn
−1

1j1
x

D
logn
−1

2j2
...x

D
logn
−1

kjk
(1.22)

Then we define S := {∂JPermute(X)|∀J ∈ [n]k} which gives us |S| = nk. Furthermore,

for any distinct J, J ′ ∈ [n]k, J and J ′ differ in some coordinate ji implying τ = D
logn − 1.

Armed with our values of |S| and τ , we can set the circuit parameters Q,R and the

shifted derivative parameters k, ` and compute a lower bound on bounded fan-in depth

four circuits.

1.5.3 Calculation

Lemma 1.30. For any
∑∏Q∏R∑ circuit computing Permute(X), if we set the

values for the circuit parameters Q = n
1− 5

logn , R = τ
log2 n

and the shifted derivative

parameters k = log n, l = n logn

2
log2 n+1

τ −1

, then the top fan-in s is greater than N4. Adjusting

the constant in the definition of Q gives us an poly(N) bound of arbitrary constant degree.
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Proof. Plugging these parameters into (5) we find

nk
(
N+`
`

)
− n2k

(
N+`−τ
`−τ

)(
Q+k
k

)(N+`+k(R−1)
`+k(R−1)

) ≤ s (1.23)

We apply standard binomial inequalities to obtain

nk
(
N+`
`

)
− n2k

(
N+`
`

)(
N+`
`

)−τ
(
Q+k
k

)(
N+`
`

)(
N+`
`

)k(R−1)
≤ s (1.24)

And remove the
(
N+`
`

)
term to obtain

nk − n2k
(
N+`
`

)−τ
(
Q+k
k

)(
N+`
`

)k(R−1)
≤ s (1.25)

Now our setting of ` gives us
(
N+`
`

)−τ
= 1

2n
−k so that the numerator reduces to

nk − n2k
(N + `

`

)−τ
=

1

2
nk (1.26)

The denominator reduces to(
Q+ k

k

)(N + `

`

)kR
=

(
Q+ k

k

)
n
k2R
τ 2

kR
τ (1.27)

Now combining numerator and denominator we obtain

s ≥
1
2n

k(
Q+k
k

)
n
k2R
τ 2

kR
τ

≥
1
2n

k(
Q+k
k

)
n
≥

1
2n

k

Qkn
≥

1
2n

k

n
(1− 5

logn
)k
n

=
1

2
n4 (1.28)

This concludes our analysis of Permute(X). We can obtain any polynomial lower bound

by adjusting the constant parameter 5 in the setting of Q which is all we need for the

subspace restrictions detailed next.

1.6 Putting it Together

We present the technique of subspace restrictions following the general presentation

in [BLS16, KST16]. The proof idea is to construct an explicit polynomial FN ′,D′ in

VP with N ′ = Θ(N logN) variables and degree D′ = Θ(D logN) where any circuit

computing FN ′,D′ satisfies the property that restricting any N product gates yields

a circuit computing Permute(X). So long as Permute(X) must be computed by a
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poly(N) sized circuit with some large constant degree, then FN ′,D′ must be computed by

a Ω(NQR) = Ω̃(N2D) = Ω̃(N ′2D′) sized circuit. Note, it is for FN ′,D′ , not Permute(X),

for which we produce our almost cubic lower bound. First we present the construction of

FN ′,D′ , then we present the subspace restriction procedure, and finally we prove Theorem

0.1.

1.6.1 Polynomial Embedding

Permute(X) takes N = n log n variables. We now introduce the formal variables W =

{w1, w2, ..., w2N} and U = {U1, U2, ..., UN}. Where each Ui ∈ U is a collection of q

variables Ui = {ui1, ui2, ..., uiq} for q = C log n for constant factor C. Now let M =

{m1,m2, ...,m2N} be 2N pairwise distinct subsets of [C log n] where each mi ∈M is of

size |mi| = C ′ log n. . Then for i ∈ [2N ] and j ∈ N , we define φi(Uj) =
∏
y∈mi

ujy. Now

we are ready to define FN ′,D′(U,W ). Let V be a set of N formal variables, defined as

follows

V =


φ1(U1) φ2(U1) . . . φ2N (U1)

φ1(U2) φ2(U2) . . . φ2N (U2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ1(UN ) φ2(UN ) . . . φ2N (UN )




w1

w2

...

w2N

 (1.29)

Then we define

FN ′,D′(U,W ) = Permute(V ) (1.30)

Their is slight notational abuse since we initially defined Permute to be a function

taking a matrix of N variables but V is a vector. It is to be understood that in

writing Permute(V ) we implicitly arrange V into a matrix. First we observe that

FN ′,D′(U,W ) has N ′ = CN logN + 2N = Θ(N logN) variables. Furthermore, the de-

gree D′ = C ′D logN = Θ(D logN). Since the sets mi ∈ M are pairwise distinct, for

each subset A ∈ [2N ] satisfying |A| = N there exists a setting of the variables in U such

that

FN ′,D′(U,W ) = Permute(χA(W )) where χA(W ) selects N variables from W corre-

sponding to A. Therefore, we call the W ’s ”relevant” variables and the U ’s ”indicator”

variables that we eventually set to be {0, 1}. We restate this critical property in the

following lemma.

Lemma 1.31. For each subset A ∈ [2N ] satisfying |A| = N , there exists a setting of

the variables in U such that FN ′,D′(U,W ) = Permute(χA(W )) where χA(W ) selects N

variables from W corresponding to A.
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1.6.2 Affine Subspace Restriction

Here we finish proving Theorem 0.1. For any
∑∏∑

circuit computing

FN ′,D′(U,W ) we say a product gate is ”heavy” if its fan-in consists of more than QR

sum gates that have a relevant variable wi ∈ W in their fan-in. Then there are two

cases.

case 1: If there are more than N = Θ(n log n) product gates with fan-in greater than

QR = n
1− 5

logn τ
log2 n

= nD
32 log3 n

, then we have an N nD
32 log3 n

= Ω( N2D
polylog(N)) lower bound

on the number of wires in the circuit and we’re done.

case 2: Consider a
∑∏∑

circuit with top fan-in s computing FN ′,D′(U,W ). If there

are fewer than N heavy product gates than we remove them in the following manner.

Let P (U,W ) be a heavy product gate, then choose any sum gate L(U,W ) in the fan-in

of P (U,W ) that is the affine sum of variables including a relevant wi ∈W . Therefore we

can write L(U,W ) = αwi+L
′(U,W ) where L′(U,W ) is an affine linear form not involving

wi. Then rewiring the circuit so that wi = −1
α L
′(U,W ) removes the sum gate L(U,W )

and the product gate P (U,W ). Repeating this process at most N times for all heavy

product gates we are eventually left with a
∑∏QR∑ circuit which we then pull apart

to a
∑∏Q∏R∑ circuit (Note: pulling the product apart does not change the size of

the top fan-in). Now let Y ∈ [2N ] be the set of indices corresponding to the unrestricted

variables in W , and let A ⊆ Y be a subset of the unrestricted variables of size |A| = N .

Then by lemma 0.5 we can set the U ’s so that FN ′,D′(U,W ) = Permute(χA(W )).

Taken together, we have a
∑∏Q∏R∑ circuit with some top fan-in s′ computing

our hard polynomial Permute(χA(W )). In the process of converting from
∑∏∑

to∑∏Q∏R∑ we have performed affine restrictions and set the variables in U , operations

that can only decrease the size of the top fan-in. Therefore s > s′, and by lemma 0.4

we know s > s′ > N4.

Taking the minimum of case 1 and case 2 we obtain the size of any
∑∏∑

circuit

computing FN ′,D′(U,W ) is greater than min
(

N2D
polylog(N) , N

4
)

= Ω̃
(
N ′2D′

)
where we un-

derstand that N4 can be any poly(N). As a final comment, the Ω̃ hides a log7N factor,

whereas the VNP result in [KST16] is almost cubic by a log2N factor. One avenue

towards removal is avoiding the overhead in both variables and degree in the polynomial

embedding.



Projected Shifted Derivative

Measure

1.7 Introduction

The last idea we present in this work is that of lower bounding by projected shifted

derivatives. The method was introduced in [KLSS14] to prove exponential lower bounds

for depth-4 homogeneous formulas. We present an elaboration of this technique in

the more recent paper [KS15] which proves exponential lower bounds for homogeneous

depth-5 circuits over finite fields. [KS15] puts together many of the ideas that pervade

arithmetic circuit complexity i.e taking advantage of multiplicities, projected shifted

derivatives, multilinearization, the Nisan-Widgerson polynomial family, etc. Thus, we

will end this work with an partial sketch of the [KS15] result, and discuss its connections

to the depth reduction and homogeneity.

1.8 Projected Shifted Derivative

The main theorem we prove

Theorem 1.32. [KS15] There is an explicit family of polynomials {Pd : d ∈ N} with

Deg(Pd) = d in the class V NP such that for any finite field Fq any homogeneous depth-5

circuit computing Pd must have size exp(Ωq(
√
d)).

Here the polynomial is chosen from the Nisan-Widgerson family introduced by [KSS14].

Instead of proving 1.32 we will prove an equally strong version where we replace homo-

geneity with a restricted fan-in for the top product gates.

Theorem 1.33. There is an explicit family of polynomials {Pd : d ∈ N} with Deg(Pd) =

d in the class V NP such that for any finite field Fq any
∑∏O(

√
d)∑∏∑

circuit

computing Pd must have size exp(Ωq(
√
d)).

28
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For perspective, it is known that for characteristic zero fields a lower bound of exp(ω(d1/3 log d))

suffices to separate VP from VNP using the depth reduction results in [AV08, Koi10b,

Tav15, GKKS16].

Now we may proceed with an outline of the proof. The key technique is to approximate

the growth of the space of projected shifted partial derivatives of a polynomial. Instead

of working with a space of formal polynomials, the idea is to treat them as a space

of functions from Fnq → Fq. The primary advantage of ”projecting” the derivatives is

that we can choose a well engineered subset of Fnq over which we can make a variety of

simplifying assumptions.

1.8.1 Proof Idea

The proof proceeds as follows

1. Define a complexity measure Γ : Fq[x]→ N.

2. For all homogeneous depth-5 circuits C of size at most exp(δ(
√
d)) prove an upper

bound on Γ(C)

3. For the target hard polynomial P, show that Γ(P ) is much larger than the upper

bound provided in step 2.

We will present points (1) and (2) to explore how the projected derivative measure can

be applied on a circuit. Point (3) is less instructive, and follows from more well known

properties of the Nisan-Widgerson family of polynomials.

When working with the derivative and shifted derivative measure, we associate a linear

space of polynomials to every polynomial in Fq[x] and use the dimension of this space

over Fq as a measure of complexity of the polynomial.

For the projected shifted derivative, the space of shifted derivatives is replaced by their

evaluations on a subset of Fnq , where we give the evaluations some ordering, say lexico-

graphically, to form vectors of evaluations. The precise definition is as follows.

Definition 1.34. Let k, l be some positive integer parameters and let S ⊂ Fnq . For any

polynomial P define Γk,l,s(P ) as

Γk,l,s(P ) := Dim{EvalS(x=l∂=k(P ))} (1.31)

Next we define the Nisan-Widgerson polynomial family.
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Definition 1.35. Let d,m, e be arbitrary parameters with m being a power of a prime,

and d, e ≤ m. Since m is a power of a prime, let us identify the set [m] with the field

Fm of m elements. Note that since d ≤ m we have that [d] ⊆ Fm. The Nisan-Widgerson

polynomial with parameters d,m, e denoted by NWd,m,e is defined as

NWd,m,e(x) =
∑

p(t)∈Fm[t]
Deg(p)<e

x1,p(1)...xd,p(d) (1.32)

That is for every univariate polynomial p(t) ∈ Fm[t] of degree less than e we add one

monomial that encodes the graph of p on the points [d]. This is a homogeneous, multi-

linear polynomial of degree d over dm variables with exactly me monomials.

Now we introduce some notation

1. For a polynomial P ∈ Fq[x] and for a set S ⊆ Fnq we shall denote by EvalS(P ) the

vector of the evaluation of P on points in S (say in lexicographic order). For a set

of vectors V , their span over Fq will be denoted by Span(V ) and their dimension

by Dim(V ).

2. We shall use H to denote the set {0, 1}n ∈ Fnq

3. A depth-5 circuit C computes a polynomial of the form

C =
∑
a

∏
b

∑
c

∏
d

La,b,c,d (1.33)

Where La,b,c,d are linear polynomials.

Furthermore we define the rank and terms of a circuit.

Definition 1.36. For a depth-5 circuit we shall denote by Terms(C) the set

Terms(C) :=
{∏

d

Labcd

}
a,b,c

(1.34)

which are all products of linear polynomials computed by the bottommost product gates.

For any term T =
∏
d Ld, define Rank(T ) to be Dim{Ld}d which the maximum number

of independent linear polynomials among the factors of T . For a depth-5 circuit C we

shall use Rank(C) to denote maxT∈Terms(C)Rank(T ). For a parameter τ we shall use

Terms>τ (C) to refer to terms T ∈ Terms(C) with Rank(T ) > τ .
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1.9 Circuit Complexity Upper Bound

We will present the upper bounding of the projected shifted derivative measure on our

circuit model. The bound hinges upon several insights.

1.9.1 Low rank gates are low-degree polynomials

The following lemma was presented in [GR00a, GR00b], to transform gates of low rank

when working over a finite field.

Lemma 1.37. [GR00a, GR00b] Let Q be a product of linear polynomials of rank at

most τ . Then, there is a polynomial Q̃ of degre at most (q− 1)τ such that Q̃ = Q(a) for

all a ∈ Fnq .

Proof. Without loss of generality, we shall assume that the rank is equal to τ as the

degree upper bound will only be better for a smaller rank and let L1, ..., Lτ be linearly

independent. Let

Q =
∏
i=[τ ]

Li
∏
j 6=[τ ]

Lj (1.35)

Here, each linear form in the second product term is in the linear span of the linear

forms {Li : i ∈ [τ ]}, and so can be expressed as their linear combination. Therefore, Q

can be expressed as a polynomial in {Li : i ∈ [τ ]}. Let Q = f(L1, L2, ..., Lτ ). Since we

are working over Fq it follows that for every choice of Li and for every a ∈ Fnq , we have

Lqi (a) = Li(a). So for every a ∈ Fnq

f(L1, L2, ..., Lτ )(a) = [f(L1, L2, ..., Lτ )] mod 〈{Lqi − Li : I = 1, ..., τ}〉](a) (1.36)

The lemma then follows by setting Q̃ := f(L1, L2, ..., Lτ ) mod 〈{Lqi − Li : I = 1, ..., τ}〉

1.9.2 High rank gates are almost always zero

Let us assume that size(C) ≤ 2
√
d/100. Now we fix a threshold τ and all terms T with

Rank(T ) > τ we call high rank terms and the rest are low rank. Under a random

evaluation in Fnq every non-zero linear polynomial takes value zero with probability 1/q.

Thus, if we have a term that is a product of many independent linear polynomials, then

with very high probability many of them will be set to zero. That is to say the term

will vanish with high multiplicity at most points. We formalize this notion below.
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Definition 1.38. Multiplicity: For any polynomial P and a point a ∈ Fnq we say that

a vanishes with multiplicity t on P if Q(a) = 0 for all Q ∈ ∂≤t−1(P ). In other words, a

is a root of P and all its derivatives up to order t− 1.

We shall denote by Mult(P,a) the maximum t such that a vanishes on ∂≤t−1(P )

Now we would like to prove that high rank terms vanish with high multiplicity almost

everywhere. We will use the fact that if T is a product of linear polynomials then a

vanishes with multiplicity t on P if a vanishes on at least t factors of P .

Lemma 1.39. Let T =
∏d
i=1 Li be a term of rank at least r. Then, for every δ > 0,

Pr
a∈Fnq

[
Mult(T,a) ≤ (1− δ)r

q

]
≤ exp

(
− δ2r

2q

)
(1.37)

Proof. Let L1, ..., Lr be linearly independent. Then, the evaluations of L1, ..., Lr at a

point a ∈ Fnq are also linearly independent and Pr
a∈Fnq

[Li(a) = 0] = 1/q for i = 1, ..., r.

For i = 1, ..., r, we let Yi be the indicator random variable that is one if Li(a) = 0 and

zero otherwise. Then if we define Y =
∑

i∈[r] Yi, we have by linearity of expectations

E[Y ] =
∑
i∈[r]

E[Yi] =
r

q
(1.38)

Since the events Yi are linearly independent, by Chernoff Bound, we know that for every

δ > 0

Pr
[
Y ≤ (1− δ)r

q

]
≤ exp

(
− δ2r

2q

)
(1.39)

Then we apply union bound on the high-rank gates in a small circuit to obtain

Corollary 1.40. Let C be a depth-5 circuit over Fq such that size(C) ≤ 2
√
d/100. Let

τ = O(
√
d) so that

exp
( τ

8q

)
< 2

√
d/50 (1.40)

Then the union bound gives us

Pr
a∈Fnq

[
∃T ∈ Terms>τ (C) : Mult(T,a) ≤ τ

2q

]
≤ 2−

√
d/50 (1.41)

Hence, we set our parameter τ = O(
√
d) and k = τ/2q3
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1.9.3 Projected Set

Next we discuss how we select the set of points S that we evaluate the shifted derivatives

on. For a circuit of size 2
√
d/100, let E be a set of points a such that there is some

T ∈ Terms>τ (C) for which Mult(T, a) ≤ k = τ/2q3. Then by 1.40 we know that the

”bad set” E is not too large. In fact,

|E| = δ · qn for some δ = exp(−O(
√
d)) (1.42)

Let S be any subset of Fnq /E that is contained in a translate of a hypercube, that is

there exists some c ∈ Fnq such that

S ⊂ (c +H)/E (1.43)

We choose a translated hypercube to take advantage of the following fact, that evalua-

tions of a polynomial on a hypercube can be approximated by a multilinear polynomial

thus drastically reducing the degree of the polynomial computed by circuit C.

Lemma 1.41. Fix a translate of a hypercube c + H. Then for every polynomial Q ∈
Fq[x], there is a unique multilinear polynomial Q′ such that Deg(Q′) ≤ Deg(Q) and

Q′(a) = Q(a) for every a ∈ c +H

Proof. If a ∈ c + H then for each i ∈ [n] we have ai to be either ci or ci+1. Thus it

suffices to replace each x2
i by a linear polynomial in xi that maps ci to c2

i and ci + 1 to

(ci + 1)2. We want Q′ to agree on all points on c +H of degree at most Deg(Q). One

way to do this is to define Q′ = Q mod Ic where Ic is the ideal defined by

Ic := 〈{x2
i − (c2

i + (xi − ci)(2ci + 1)) : i = 1, ..., n}〉 (1.44)

It is easy to check that Ic vanishes on c +H and any Q can be reduced to a multilinear

polynomial modulo Ic. And since no multilinear polynomial can vanish on all of c +H,

Q′ is necessarily unique.

We are now ready to present the upper bound of the complexity of the circuit C.

Lemma 1.42. Let C be a depth-5 circuit, of formal degree at most 2d and size(C)

≤ 2
√
d/100, that computes an n-variate degree d polynomial. Let τ and k be chosen as

above, and l be a parameter satisfying l + kτq < n/2. If S is any subset of Fnq E that is

contained in a translate of a hypercube, then

Γk,l,s ≤ 2
√
d/100

(
4d/τ + 1

k

)(
n

l + kτq

)
poly(n) (1.45)
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Proof. We can write the circuit as the sum of depth-4 circuit C = R1 + ...+ Rs, where

s ≤ 2
√
d/100 and each Ri is a product of depth-3 circuits with Deg(Ri) ≤ 2d. Since Γk,l,s

is subadditive, it suffices to show that for each Ri we have

Γk,l,s(Ri) ≤
(

4d/τ + 1

k

)(
n

l + kτq

)
poly(n) (1.46)

Then for each Ri, define the R≤τi as the polynomial obtained by removing all high rank

terms satisfying T ∈ Terms>τ (Ri) Then the lemma would follow from the following two

claims.

Claim 1.43. For every i ∈ [r], Γk,l,s(Ri) = Γk,l,s(R
≤τ
i )

Claim 1.44. For every i ∈ [r], Γk,l,s(R
≤τ
i ) ≤

(4d/τ+1
k

)(
n

l+kτq

)
poly(n)

In essence, we can remove high rank gates because we are evaluating the measure on a

set S that removes the ”bad set”, and then sub-additivity will reduces the problem to

a sum over depth-4 circuit complexity. Thus we conclude this section with a proof of

claim 1.43 and 1.44

Proof. 1.43 Let R = Q1...Qm. Let T ∈ Terms>τ (C). We shall show if

R′ = (Q1 − T )Q2...Qm, then for any k’th order partial derivative ∂xα ,

EvalS(∂xα(R)) = EvalS(∂xα(R′)) (1.47)

Consider R−R′ = T ·Q2...Qm. By the chain rule, every term in ∂xα(R−R′) is divisible

by some k’-th order partial derivative of T with k′ ≤ k. Since we chose S so that every

a ∈ S satisfies Mult(T, a) > k, and hence a vanishes on ∂≤k(T ) for any T ∈ Terms>τ (C).

Thus, EvalS(∂xα(R≤τ )) where Deg(xα) = k, and Γk,l,s(R) = Γk,l,s(R
≤τ )

Proof. 1.44 As this proof is fairly involved, we will present it as a proof sketch. Let

R≤τ = Q1...Qd with each Qi being a
∑∏∑

circuit. Some of these Q′is could have

degree more than τ although their rank is bounded by τ Let us denote them Q1, ..., Qm.

Then let us group the low degree gates together (multiplying them) to ensure that all

of them have degree between τ/2 and τ denoted Q′1, ..., Q
′
r. Then we can write

R≤τ = Q1...Qm ·Q′1..Q′r (1.48)

Note all the Q’s and the Q′ terms are low rank, and m+ r ≤ 4d/τ + 1. Now that we’ve

separated R≤τ into the product of high degree and low degree polynomials, we can use

the fact that low rank gates are low degree polynomials. Then we evaluate these low

degree polynomials over a subset of a hypercube so we can multilinearize the polynomial.
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Taken together, we can severely restrict the complexity of R. Thus, we present the exact

manipulations required to upper bound the projected shifted derivative measure on R.

∂xα(R) ∈ Span
{
∂xβ (QA)·∂xγ (Q′B)·QĀ·Q′B̄ : xα = xβ ·xγ , A ⊆ [m], B ⊆ [r], |A|+|B| = k

}
∈ ∂xα(R) ∈ Span

{
∂xβ (QA)·x≤kτ ·QĀ·Q′B̄ : xα = xβ ·xγ , A ⊆ [m], B ⊆ [r], |A|+|B| = k

}
=⇒ x=l∂xα(R) ⊆ Span

{
∂xβ (QA)·x≤l+kτ ·QĀ·Q′B̄ : xα = xβ ·xγ , A ⊆ [m], B ⊆ [r], |A|+|B| = k

}
=⇒ EvalS(x=l∂xα(R)) ⊆ Span

{
EvalS(∂xβ (QA)·x≤l+kτ ·QĀ·Q′B̄) : xα=xβ ·xγ

A⊆[m],B⊆[r],|A|+|B|=k

}
Now consider the term ∂xβ (QA), which is a linear combination of term T1, ..., T|A| where

each Ti is a product of linear polynomials and has rank at most τ . Then using lemma

1.37 on each of the T ′is we obtain

EvalS(∂xβ (QA)) ∈ Span
{

EvalS
(

x ≤(q−1)τ |A|)}
Therefore,

EvalS(x=l∂xα(R)) ⊆ Span
{

EvalS(∂xβ (QA) · x≤l+kτ ·QĀ ·Q′B̄) : xα=xβ ·xγ
A⊆[m],B⊆[r],|A|+|B|=k

}
=⇒ EvalS(x=l∂xα(R)) ⊆ Span

{
EvalS( x ≤l+kτ+(q−1)kτ ·QĀ ·Q′B̄) : xα=xβ ·xγ

A⊆[m],B⊆[r],|A|+|B|=k

}
(1.49)

Now we apply the multilinearization lemma 1.41. To rehash, multilinearization of a poly-

nomial f produces an equivalent multilinear polynomial that agrees with all evaluations

on a translate of a hypercube. Hence,

EvalS(x=l∂xα(R)) ⊆ Span
{

EvalS( x ≤l+qkτmult ·QĀ ·Q′B̄) : xα=xβ ·xγ
A⊆[m],B⊆[r],|A|+|B|=k

}
(1.50)

Finally, we use the fact that m+ r ≤ 4d/τ + 1 to get the bound

Γk,l,s(R) ≤
(

4d/τ + 1

k

)(
n

l + kτq

)
· n (1.51)

Putting claim 1.43 and 1.44 together with the sub-additivity property of the projected

shifted derivative measure concludes the lemma.
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This completes the treatment of upper bounding the projected derivative measure on

depth-5 circuits with restricted top product gate fan-in which can be shown to be equiv-

alent to depth-5 homogeneous circuits. The rest of the proof technique would require

a strong lower bound on the projected derivative measure of the Nisan-Widgerson fam-

ily of polynomials, which together with the lower bound on the circuit will give us the

exponential lower bound as advertised.
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