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Chapter 1

Introduction

1.1 The Object Localization Problem

One of the most salient problems in the field of computer vision is object localization - the task

of identifying, locating, and orienting an object within a cluttered scene. The human brain

performs phenomenally at this task, and is able to perform whole-scene image processing

with very high accuracy in under 150 milliseconds [1]. In comparison, object localization

has proven to be difficult to mimic in computer systems with similar speed and accuracy.

This difficulty can be attributed to a variety of factors, including viewing position, object

rotation, scene complexity, occlusion, illumination and lighting, and object deformation [2].

1.1.1 2D Object Localization

Due to the availability and ease of use of 2D images, many techniques have been developed to

tackle this problem within two-dimensional photographs. Some of these techniques include

traditional classification techniques, such as local feature matching - finding correspondences

between local features of two images containing the same object to create a global match [3]

- and more complex machine learning-based efforts that aim to emulate the biological visual

cortex to improve computer-based localization [4]. However, 2D localization approaches
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are highly sensitive to illumination, shadows, occlusion, and pose [5]. Per contra, three-

dimensional object localization is resistant to many of these drawbacks of 2D localization,

and with recent advances in resolution, accuracy, and accessibility of three-dimensional depth

sensors such as the Microsoft Kinect sensor [6] and Intel RealSense cameras [7], a substantial

portion of recent work in computer vision has been on three-dimensional object localization.

1.1.2 3D Object Localization

The task of 3D object localization, can be defined as follows [8]: Given a model and a scene

that contains this model, what is a transformation that, when applied to the model, causes it

to match a subset of the scene? Due to the nature of three-dimensional data obtained from

depth sensors, which are primarily point clouds - sets of points in a 3D coordinate system

that represent the surfaces present in the scene - many of the problems with 2D localization,

such as lighting, shadows, and viewing position, no longer need to be considered in 3D

localization. However, 3D object localization comes with its own set of challenges. For

example, data produced by the Microsoft Kinect tends to be noisy and sparse, especially

with increasing distance from the sensor’s position [9].

1.2 The Scene Registration Problem

One common extension of object localization is scene registration. In scene registration,

instead of locating a pre-defined model within a 3D scene, two or more incomplete scene

views taken from different sensor positions and orientations are mapped onto one another

to create a composite scene cloud. An illustration of the difference between localization

and registration can be seen in Figure 1.1. Scene registration is a key problem for vision-

based autonomous robot systems, as many SLAM (Simultaneous Localization and Mapping)

algorithms rely on stable methods to align sensor readings over time to create a map of the

robot’s environment [10].
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Figure 1.1: Illustration of 3D object localization (left) and scene registration (right). In
localization, a pre-defined object (stuffed bear in green) is located within a scene (blue),
while in registration, two partial scans of the same scene taken from different views are
mapped to one another to create a composite point cloud.

1.3 Prior Work on 3D Localization and Registration

Initial efforts to work on 3D object localization and scene registration centered around voting

methods, in which aspects of the scene cast votes in the parameter space of the solution. In

Hough Voting [11], one of the more common voting methods, the solution space of trans-

formations is broken down into various buckets. Each feature within the scene then casts

a vote for the various possible object or scene transformations in this space. After voting

concludes, the bucket with the most votes is considered as a solution to the problem. Other

voting methods include Geometric Hashing [8], which is similar to Hough Voting, but votes

on geometry instead of on object or scene pose. While voting methods tend to perform

remarkably well in simple scenes or with exact data, adding occlusion, clutter, or even a

minimal amount of sensor noise can lead to dramatically lowered performance [12].

As a result, more recent efforts in 3D object localization and scene registration have

focused on correspondence-based methods. This class of solutions starts by creating local

geometry descriptors for cloud points in both the model and the scene in which the model is

being searched for. Many attempts to create local geometry descriptors have been informed
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by 2D image-based feature descriptors. For example, Zaharescu et al. [13] created a 3D

feature descriptor named MeshHOG that attempted to extend the Scale Invariant Feature

Transform (SIFT) [3] algorithm into 3D space. Sehgal et al. [14] used a square root scaling

technique to reduce three-dimensional point cloud data into two-dimensional space, allowing

them to apply standard 2D feature descriptors to 3D data. Other groups have created three-

dimensional harmonic shape context descriptors [15] and local multidimensional histograms

of multiple features [16].

Once points within the model and scene clouds are assigned descriptors, matches between

points in the model and scene are created by comparing these feature descriptors to each

other. Next, an initial alignment between these clouds is created. One of the more commonly

used techniques for initial alignment is the random sample consensus (RANSAC) algorithm

[17], which first creates an initial estimate of a transformation from a few points of the data,

and then iteratively improves this transformation to reduce the number of correspondence

outliers in the transformation. Compared to voting methods, using RANSAC with feature

descriptors is highly-resistant to both noise and occlusion [18], but only provides a rough

estimation of the true alignment between model and scene, and is also expensive to compute

if there are many candidate locations to test. Therefore, once an initial alignment is provided

by RANSAC, another method, such as the Iterative Closest Points algorithm [19] is often

used to improve on the initial alignment to minimize alignment error.

1.4 Current Challenges in 3D Object Localization

With recent improvements to sensor density, collected point cloud data tends to be very

massive, with even inexpensive sensors like the Microsoft Kinect generating nine million

points every second [9]. Unfortunately, increased point cloud density poses a problem for 3D

object localization, as runtime complexities of all of the previously described algorithms are

highly dependent on the number of points within a point cloud. For example, calculating
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SIFT features is at least quadratic [20], while the RANSAC algorithm is approximately cubic

[18] to the number of points in the point cloud. The original ICP algorithm ran quadratically

to number of points in the cloud [21], and while kd-tree improvements [22] were able to bring

this down to O(n∗ log(n)) and subsequent local search optimizations were able to make ICP

run in linear time to number of points [23], every function in correspondence-based solutions

to 3D object localization run at least linearly to the number of points in the point cloud.

Thus, the runtime of object detection with modern sensors is deeply tied to the density of

the generated point cloud.

Some effort has already been made to reduce point cloud density without affecting local-

ization accuracy. For example, Gomes et al. was able to use foveated point cloud resampling

to reduce localization runtime by 85 percent while only reducing accuracy by 8.4 percent

[24]. In their method, after an object is initially located, the point cloud is resampled to

remove points further away from the object’s last-seen position. This limits the number of

points that need to go through feature generation, RANSAC, and ICP to increase the speed

of object detection. However, foveated resampling still requires an initial, computationally-

intensive registration and can only function if an initial guess of object position is known,

making it unsuitable for single-shot object detection in an unknown scene.

There has been other research into non-uniform resampling of point clouds. Chen et al.,

after representing a 3D point cloud as a graph, apply a high-pass Haar-like graph filter to

point cloud data in order to filter out cloud points that had have low variability with respect

to their neighbors [25]. By doing so, they selectively resample the cloud to preserve contours

and edges of objects while removing points that offer little information relative to points

in the area. Such contour-enhanced resampling techniques are able to reduce point cloud

density while keeping points that are more likely to be useful to represent the object in the

cloud. However, such work has not yet been applied to the 3D object localization or scene

registration problems.
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1.5 Thesis Goals

The primary goal of this thesis is to tackle the aforementioned challenge to object localization

and scene registration - to decrease point cloud density to allow for faster computation of

a solution to one of these problems without a corresponding loss of accuracy. To do this, I

preprocess point clouds through contour-enhanced graph-based resampling before using the

rest of the correspondence-based matching pipeline. I also perform a comparative analysis

of using different depth sensors and point feature descriptors in generating solutions to the

point cloud matching problem to determine which setup of hardware and algorithms is best

for performing localization and registration.
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Chapter 2

Materials and Methods

2.1 Point Cloud Acquisition

Due to its ubiquity and inexpensiveness, the Microsoft Kinect was used to collect all data for

this thesis. Initial data was collected using the Kinect v2, which shipped with the Xbox One,

as it has a higher depth camera resolution, wider field of view, and higher precision. However,

being a time-of-flight depth sensor, the Kinect v2 performs poorly at depth discontinuities,

making erroneous point estimates at object boundaries known as ”flying pixels” [26]. An

example of this flying pixel effect seen in Kinect v2 data can be seen in Figure 2.1.

Figure 2.1: A side-view comparison of similar scenes captured by the Kinect v1 (left) and
Kinect v2 (right) at depth discontinuities. The Kinect v2 demonstrates significant flying
pixel effects, while the Kinect v1 accurately trims the point cloud at discontinuities.
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Furthermore, the Kinect v2’s depth determination is affected by object colors - darker

surfaces have a higher depth variability that is estimated to be four times as high as the

depth variability of brighter surfaces [27]. As such, black surfaces, when imaged by the

Kinect v2, tend to take on a distorted and warped appearance, as can be seen in Figure 2.2

below.

Figure 2.2: Comparison of a virtual reality headset captured by the Kinect v1 (left) and
Kinect v2 (right). The Kinect v2 demonstrates poor depth mapping of the black headband,
which appears uneven. Note, however, that the Kinect v2 provides improved details than
the v1, showing the ridge between the two blue bands on the headset that isn’t captured in
the point cloud on the left.

Despite this, the Kinect v2 demonstrates a higher depth resolution than the Kinect v1,

and is able to better capture small surface details on imaged objects. Furthermore, the color

camera on the Kinect v2 provides much higher contrast and improved color reproduction

as compared to the v1’s color camera. The contour-enhanced resampling filter used to

downsample clouds also has the added benefit being able to remove some of the flying pixels

present in v2 clouds. Due to all this, both Kinect v1 and v2 point clouds were used in

developing the algorithms presented below.

The point clouds themselves were captured using the Kinect Fusion Explorer [28], a open-

source tool developed by Microsoft for 3D surface reconstruction of scenes that is distributed

with the Kinect for Windows Developer Toolkit. The original Fusion Explorer only supports

output to mesh-based data formats (STL, OBJ, and PLY files), so an extension to the Fusion
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Explorer source was created that allows output in PCD (Point Cloud Data) file format by

extracting points from the voxels generated by Kinect Fusion.

All further post-acquisition processing and analysis was done using Point Cloud Library

[29], an open-source library used across academia and industry for point cloud-based research.

All code was written using PCL version 1.8.1. Many of the figures presented in this paper

were created by visualizing PCD files in CloudCompare [30], another open-source point cloud

processing software that includes a suite of powerful visualization tools, while all graphs were

created using the matplotlib and seaborn libraries for Python.

2.2 Transformation Estimation Pipeline

The approach to object localization and scene registration presented in this paper is modelled

after the one described by Holz et al. in ”Registration with the Point Cloud Library” [31].

An easily digestible flowchart of the process is provided in Figure 2.3.

Figure 2.3: A brief overview of the steps of transformation estimation for object localization
and scene registration.

After the two initial point clouds are loaded into memory, both clouds are resampled to

reduce the number of points used in downstream calculations. Next, feature histograms are
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calculated for each of the points in the downsampled clouds, which are then matched together

to create a correspondence from each point in one cloud to its most similar point in the other.

Random Sample Consensus (RANSAC) is next used to fit an initial transformation between

the clouds that is finally refined more precisely through the Iterative Closest Point (ICP)

algorithm.

2.3 Point Cloud Downsampling Techniques

In this paper, I compare three different resampling algorithms - uniform random resampling,

voxel-grid resampling, and graph-based contour-enhanced resampling. The first two are in

common use today as downsampling techniques, and are built into PCL as the Random-

Sample and VoxelGrid classes. Contour-enhanced downsampling, on the other hand, is a

very recent technique (published in 2017 [25]), and needed implementation from scratch. I

present an overview of these three methods below.

2.3.1 Uniform Random Resampling

In uniform random resampling, each point within the cloud has an equal probability p of

being included in the final sample. As a result, differences in density between areas of the

cloud are preserved, and when using sensors like the kinect (which have decreasing cloud

density as distance from the sensor increases), objects far away have a lower point density

than nearby objects. Uniform random sampling also preserves the location of points selected

for inclusion, so noise in the initial scan is not smoothed out during the resampling process.

An example of downsampling using the uniform random method at different values of p can

be seen in Figure 2.4.
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Figure 2.4: The original scan (left); Uniform random downsample with p = 0.25 (center);
Uniform random downsample with p = 0.05 (right).

2.3.2 Voxel-Grid Resampling

In voxel-grid resampling [32], a grid with side length l is created over the point cloud. Each

of these grid voxels then generates a new point at the position and color centroid of all of

the original cloud points within that voxel. Voxel-grid resampling fixes the two issues with

uniform random resampling mentioned above. First, as the downsampling grid is regular

over the original point cloud, the density of the sampled cloud will be uniform throughout

instead of less dense with increasing distance from the camera. Second, minor local noise

variations in the point cloud will be smoothed out as each group of points within the voxel

is resampled to the centroid of that point group. An example of downsampling using the

voxel-grid method is provided in Figure 2.5. Note how the voxel-grid resamples appear much

less noisy when compared to the clouds generated using uniform random resampling.

Figure 2.5: The original scan (left); Voxel-grid downsample with l = 2.5mm, preserving
24.1% of points (center); Voxel-grid downsample with l = 6mm, preserving 4.8% of points
(right).
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2.3.3 Contour-Enhanced Resampling

The final resampling technique is contour-enhanced graph-based resampling as presented

by Chen et al. [25]. In this method, each point xi in the graph is assigned a response

fi(X) = ∥(h(A)X)i∥22, where h(A) is a graph filter. In the Haar-like [33] filter presented here,

h(A) = I −A, where A is the graph shift operator A = D−1W , with W being an adjacency

matrix between points in the point cloud with edge weights equal to Wi,j = e−∥xi−xj∥22/σ2

and D being a diagonal matrix where Di,i is the sum of every element in the ith row of W .

To speed response calculation time, a k-d tree is built over the point cloud and the weight

Wi,j is assumed to be zero for any points more than k nearest neighbors away from the

point under evaluation. With k-d three optimizations, the overall runtime for point response

calculation is O(nk · log(n)), where n is the number of points in the cloud and k is the

number of neighbors for which weights are calculated. Both k and σ are parameters to the

resampling algorithm. Once responses are calculated for every point in the graph, resampled

points are chosen via weighted random selection with point selection weight equivalent to

the response fi(x) of the point. A demonstration of contour-enhanced downsampling can be

seen in Figure 2.6.

Figure 2.6: The original scan (left); Contour-enhanced downsample preserving 26.9% of
points (center); Contour-enhanced downsample preserving 4.97% of points (right). In these
images, k is equal to 10 and σ2 is 0.0005.

Additionally, both color-aware and color-blind versions of the contour-enhanced filter

were implemented. In the color-blind variant, the distance between two points xi and xj in

the cloud is the standard Euclidean distance in 3D space between two points. In the color-
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aware variant, the red, green, and blue channels each independently act as three additional

Euclidean dimensions with range from 0 to 1 based on the color value (stored as 8-bit color

from 0 to 255). The differential effects of the color-aware and color-blind filters can be seen

in Figure 2.7. Particularly, note the text on the shoebox at the back-right of the scene.

The text is preserved strongly in the color-aware filter, while the color-blind filter does not

sample the text as intensely, as when not provided with color information, the filter sees the

text simply as part of a plane.

Figure 2.7: Color-aware contour-enhanced downsample (left); Color-blind contour-enhanced
downsample (right). Both images contain a relatively equal number of points (approximately
8% of the original point cloud).

The decision to use the color-aware version of the contour-enhanced filter depends on

the nature of the collected data itself. Because object color can vary wildly depending on

lighting, use of the color-aware filter can lead 3D localization algorithms to develop many

of the issues present in 2D localization algorithms mentioned earlier, such as sensitivity to

illumination, shadows, and occlusion [4]. However, when the two input point clouds are both

evenly illuminated, as they are in the scene registration task, using the color-aware filter can

improve transformation estimation. Furthermore, use of the color-aware filter with Kinect

v2 data helps mitigate the number of flying pixels present in the downsampled cloud, as the

flying pixels tend to take on the same color as pixels at the edge of an object. In Figure 2.8,

we can see how the color-aware variant of the contour-enhanced downsampling algorithm

captures more useful surface points and fewer flying pixels than the color-blind variant in

extremely noisy Kinect v2 data.
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Figure 2.8: Color-aware contour-enhanced downsample (left); Color-blind contour-enhanced
downsample (right). Both images contain a relatively equal number of points (approximately
8% of the original point cloud).

The contour-enhanced downsampling algorithm still suffers from the two pitfalls of uni-

form random downsampling mentioned above. Since weights are assigned to all points in

the cloud regardless of location or number of neighbors in a point’s proximity, the output

cloud will still be less dense as distance from sensor increases. Similarly, contour-enhanced

resampling preserves location of points selected for inclusion, so the resultant cloud will still

contain sensor noise from the initial scan. As such, it may be useful to preliminarily down-

sample the cloud using the voxel-grid method prior to contour-enhanced downsampling in

order to achieve more useful data.

2.4 Feature Descriptor Calculation

As PCL offers almost thirty different local feature descriptors for point clouds, it was nec-

essary to compare different descriptors and select the ones that would work best for fast

point cloud matching using Kinect data. Many descriptors were disqualified from use due to

downsides that render them ineffective for the data being used - for example, the Rotation-

Invariant Feature Transform (RIFT) relies on an intensity gradient over the point cloud,
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making it highly sensitive to shadowing and occlusion.

Because speed is a priority when attempting to handle realtime object localization and

scene registration tasks, other descriptors were disqualified because they did not support

OpenMP-based parallelization of feature computation. On the target system’s CPU (Intel

i7-6820HK), OpenMP acceleration was able to reduce descriptor calculation time by approx-

imately 85% for all of the descriptors tested below, as can be expected from computation

across 8 separate threads. As a result, three candidate feature descriptors were selected for

use in this thesis - Fast Point Feature Histograms (FPFH) [34], Signature of Histograms of

Orientations (SHOT) [35], and Color SHOT, a color-aware SHOT variant [36].

FPFH descriptors are generated by calculating θ, ϕ, and α rotation values for each of 11

spatial bins containing neighbors within a given radius, creating a final vector of length 33.

FPFH feature calculation is O(n · k2), where n is the number of points in the cloud and k

is the number of neighbors within the point’s radius. SHOT descriptors are generated by

first calculating a 9-dimensional reference frame based on neighboring surface points within

a given radius, then creating an isotropic grid with 32 bins (10 angles within each bin) based

on the reference frame to create a final vector of length 329 (320 dimensions to describe the

bins and 9 dimensions for the reference frame). Color SHOT operates similarly to SHOT,

but calculates an additional set of bins to handle color information, leading to a final feature

vector of length 1344. SHOT feature calculation is in O(n ·k), with n and k defined as above.

Because FPFH has the shortest feature vector of all three descriptors under consideration,

correspondence calculation between FPFH features takes very little time, as is demonstrated

in Table 2.9. However, because FPFH descriptor calculation is quadratic with respect to

the number of neighbors of each point, generating feature vectors takes an exceptionally

long time. Furthermore, SHOT and FPFH provide similar accuracy in object localization

tasks, with FPFH performing slightly better with flat objects and SHOT performing slightly

better with objects that have more varied surfaces. Since this difference appeared to be fairly

minimal, and since SHOT feature calculation is much faster than FPFH feature calculation,
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I eliminated FPFH as a candidate for the point cloud matching task.

Feature Vector Size Descriptor Calculation Correspondence Matching
FPFH 33 45.631s 0.815s
SHOT 352 4.598s 14.929s
Color SHOT 1344 5.164s 80.044s

Table 2.9: A comparison of feature and correspondence calculation runtime of the three
studied feature descriptors. The results in this table are given based on calculations done
on 5% of the points (approximately 35,000 points in the scene cloud and 1,500 points in the
object cloud) in non-downsampled clouds (approximately 700,000 points in the scene cloud
and 30,000 points in the object cloud). Each cell contains the average runtimes of 5 tests.

After deciding to use one of the SHOT descriptors for further calculation, I conducted

simple tests to determine how useful color data is in object localization and scene registration.

In Figure 2.10, I match the same teapot object cloud to two differently-lit scenes containing

the teapot. The scene on the left is lit using a rectangle-shaped area light centered directly

above the table, while the scene on the right is lit using a single point light centered above a

point approximately 50 centimeters in front of the sofa. As can be expected of a color-based

description method, generated features were highly dependent on scene lighting. When scene

and object capture occur in similar lighting circumstances, Color SHOT is able to provide

highly regular correspondences between the object and the scene. When the lighting is

slightly different, as it is in the right subfigure of Figure 2.10, the correspondences returned

by matching Color SHOT features are irregular and unusable.

Therefore, while Color SHOT may be useful in providing matches between an object

in a scene with similar lighting to the lighting provided during object cloud capture, it

is not as useful for the generalized object localization problem, especially considering that

correspondence matching for Color SHOT features takes more than four times as long as

correspondence matching for normal SHOT features. Thus, I opted to use SHOT feature

descriptors for all object localization experiments.

When it comes to scene registration, however, both point clouds will be similarly lit,
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Figure 2.10: Correspondences calculated using Color SHOT with similar scene and object
capture lighting (left); Correspondences calculated using Color SHOT with disparate scene
and object capture lighting (right).

which makes Color SHOT much more useful. Figure 2.11 demonstrates a sample scene

registration task in which both input point clouds are downsampled using a 0.8% voxel-

grid resampling filter. We see that, when using Color SHOT, a much higher proportion of

correspondences are horizontal (true correspondences), while the correspondences calculated

with normal SHOT are much more irregular.

Figure 2.11: Correspondences calculated using Color SHOT (left); Correspondences calcu-
lated using normal SHOT (right). The subsampled point cloud contained just 0.8% of the
number of points that the original point cloud had.

The more regular correspondences obtained when using Color SHOT lead to improved

results in alignment. As shown in Table 2.12, using Color SHOT resulted in a rotational

improvement of 17.5% and a translational improvement of 32.9% over regular SHOT for the

experiment conducted in Figure 2.11. However, this improvement in accuracy comes at a cost
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- the use of Color SHOT leads to a 432% increase in runtime over the use of standard SHOT.

Furthermore, this accuracy improvement drops off as the downsampling rate is decreased. At

6% uniform random downsampling, both techniques have similar registration accuracy while

Color SHOT takes more than four times as long to compute features and correspondences for,

primarily due to the increased number of vector dimensions of the Color SHOT descriptors.

Color SHOT is thus only more useful than standard SHOT for scene registration when input

point clouds are sparse or if an extreme amount of downsampling is done prior to feature

calculation.

Feature Runtime (per point) Rotation Error Translation Error
SHOT 8.30ms 1.26◦ 3.01cm
Color SHOT 44.15ms 1.04◦ 2.02cm

Table 2.12: Demonstration of improved scene registration when using Color SHOT over
normal SHOT in a very sparse point clouds at the cost of significant extra runtime. Reported
metrics are results that have been averaged over five runs of the registration algorithms.

2.5 Correspondence Matching and Alignment

Once features are generated for each point cloud, a correspondence is created between each

point in the source scene or object cloud and its closest point in the target scene (determined

by L2-distance between feature vectors). In the correspondence figures presented herein, as

in Figure 2.10, only the top 50 correspondences between the clouds are graphed to reduce

clutter.

Since many of these correspondences are inaccurate, as can clearly be seen in Figure 2.11,

the initial correspondences are fed into a RANSAC algorithm that iteratively rejects false

correspondences until a satisfactory model is fit between the two clouds. Finally, ICP is

used to find a transformation between clouds that results in a locally minimal mean squared

error (MSE) between the points in the source cloud and their closest neighbors in the target

cloud.
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2.6 Error Metrics and Transformation Analysis

The accuracy and error metrics presented in this paper are used to compare location and

orientation produced by the cloud alignment algorithms to a ground truth for both object

localization and scene registration. The ground truth transformation is obtained by manually

aligning point clouds using CloudCompare, then running ICP to minimize MSE between

clouds. This is a rigid transformation, preserving distances between every pair of points in

the cloud, and is represented by a standard 4-by-4 rigidbody transformation matrix [37] in

the form [ R t
0 1 ], where R is a 3-by-3 rotation matrix and t is a 3-by-1 translation matrix. The

RANSAC and ICP algorithms performed in localization and registration produce similarly

formatted 4-by-4 rigid transformation matrices.

The translation error between a ground truth transformation A and a calculated trans-

formation B is simply the L-2 distance between the translation components of A and B, or

∥tA−tB∥2. The rotation error is slightly more difficult to compute, and first requires knowing

the rotation between the rotation components of A and B, which can be calculated as RT
A·RB.

This resultant rotation matrix can then be converted to axis-angle form. For 3D rotations,

the following formula [38] can be used to determine rotation error: Tr(RT
A·RB) = 1+2·cos(θ).

Translation and rotation error are the two primary error metrics used in Chapter 3 of this

thesis.
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Chapter 3

Results

3.1 Contour-Enhanced Resampling Parameter Tuning

Given that contour-enhanced resampling requires running a k-d tree search at every point

in the input point cloud, the algorithm runs in O(nk · log(n)) time, making it much more

computationally complex than uniform random resampling (which runs in O(n)) and voxel-

grid resampling (runs in O(n+m · log(m)), where m is the number of non-empty voxels in

the grid). Though the n · log(n) factor of contour-enhanced resampling cannot be reduced

without implementation of more advanced tree search techniques, such as an Approximate

Nearest Neighbor search [39] or Local Sensitivity Hashing [40], the k factor can be easily

reduced simply by selecting a lower value for k.

However, lowering the value of k also lowers the amount of information that each point

has about its neighborhood, reducing the strength of contour estimation. Figure 3.1 provides

a demonstration of contour strength loss with decreasing k. While the k = 15 case (a) has

rather strongly preserved contours, the k = 2 case (d) looks almost comparable to random

resampling due to the loss of neighbor information. This effect is particularly noticable when

looking at the circle-shaped object (rim of a coffee filter) in the middle of each subfigure -

it’s evident that the edges are much more clear in the k = 15 case than they are when k = 2.
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(a) k = 15 (b) k = 10

(c) k = 5 (d) k = 2

Figure 3.1: k-dependence of Contour Strength. All subfigures contain a 5% downsample

Figure 3.2 shows the runtime of contour-enhanced resampling on a cloud containing

approximately 743,000 points at various values of k. While a resampling that uses a k of

15 provides much higher contour strength than one that uses a k of 2 does, it also takes

approximately twice as long to run, with an increase of approximately 69.3 milliseconds in

runtime per extra neighbor used in weight calculation.

However, increased contour strength does not directly translate to corresponding im-

provements in transformation estimation. When contours are too strong, SHOT contains

many empty spatial bins in the calculated isotropic spherical grid for each point, resulting

in decreased feature descriptor quality. As such, it was necessary to select a value of k that

provides a good balance between runtime, contour strength, and transformation estimation

quality. Figure 3.3 shows the effect of varying k on transformation error for a scene reg-

istration task. To regularlize across runs, downsampling was done such that downsampled

clouds contained approximately 1.8% of the points that input clouds did. Both very low
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Figure 3.2: Runtime of contour-enhanced resampling at various values of k. Each point on
the graph is the result of averaging together runtimes from 5 runs of resampling.

and very high values of k lead to increased error in translation estimation, with a value of

approximately k = 5 having the best performance. Provided that resampling using k = 5

provided the best transformation accuracy while only being 30.2% slower than resampling

using k = 2, k was set to be equal to 5 for the rest of this analysis.

Figure 3.3: Translation error of estimated transformation at varying values of k. Each point
on the graph is the result of averaging together errors from 5 runs of scene registration. Tests
at different downsampling proportions had similar results (data not shown).
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3.2 Resampling Algorithm Speed

Figure 3.4: Comparison of runtimes of each resampling algorithm on a cloud containing
approximately 743,000 points. Each bar presented here is the result of averaging together
50 runs of each technique.

Next, I present a brief comparison of each resampling algorithm’s runtime. As seen in

Figure 3.4, these results are as expected based on the asymptotic dynamics of each method,

described in the previous section - contour-enhanced resampling is much slower than both

uniform random and voxel-grid resampling, largely due to k-d tree generation and search.

Basic performance profiling revealed that 12.30% of the runtime for contour-enhanced re-

sampling was spent building a k-d tree over the input point cloud while another 50.68% was

spent searching for the k-nearest neighbors of each point.

Due to the large k-d tree creation and search overhead, contour-enhanced resampling is

best used (1) when it can significantly decrease the number of post-downsampling points

(and thus overall localization or registration runtime) while maintaining similar accuracy,

or (2) when it can offer improved accuracy over random or voxel-grid resampling at the

same level of downsampling. Both of these cases are tested for object localization and scene

registration in the sections to follow.
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3.3 Object Localization

Figure 3.5: Comparison of translation error relative to ground truth for various resampling
strategies. Each bar presented here is the result of averaging together 5 runs of each tech-
nique.

The localization task tested in this section is the same as the task presented in the

left panel of Figure 2.10, in which a teapot model is localized within a busy and slightly

occluded scene containing that teapot. Data was obtained from the Kinect v1, and SHOT

features were calculated using a radius of 2 centimeters for all presented experiments. The

ground truth transformation matrix was obtained via manual alignment followed by ICP in

CloudCompare. As discussed in Section 2.3.3, the color-blind variant of contour-enhanced

resampling is used for object localization.

As can be seen in Figures 3.5, use of contour-enhanced resampling can dramatically

improve localization accuracy when the number of points post-resampling is held constant.
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Furthermore, this improvement in localization estimation is not accompanied by a large

increase in runtime. As shown in Table 3.7, contour-enhanced resampling introduces only

a 3.6% performance overhead at a downsampling rate of 4.5%, and a 0.7% performance

overhead at a downsampling rate of 10%, as most of the runtime is occupied by feature

description and correspondence matching, not by resampling.

Figure 3.6: Comparison of rotational error relative to ground truth for various resampling
strategies. Each bar presented here is the result of averaging together 5 runs of each tech-
nique.

While using contour-enhanced resampling leads to a decrease in translational error when

compared to the other two resampling strategies, it does not provide much of a corresponding

decrease in rotational error. As demonstrated in Figure 3.6, rotational error is significantly

more correlated to the proportion of original points in the downsampled cloud than it is

to the method of downsampling being applied. Nonetheless, when it comes to translational

error, 4.5% contour-enhanced resampling is able to perform just as well as 10% voxel-grid
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resampling despite taking less than a third of the runtime.

Runtime (seconds)
Resampling Technique 4.5% Downsample 10% Downsample
Uniform Random 20.863 69.601
Voxel-grid 20.580 68.623
Contour-enhanced 21.614 70.120

Table 3.7: Transformation estimation runtime of the various resampling strategies for a
localization task. Reported metrics are results that have been averaged over five runs of the
localization algorithms.

3.4 Scene Registration

Figure 3.8: Comparison of translation error relative to ground truth for various resampling
strategies. Each bar presented here is the result of averaging together 5 runs of each tech-
nique.
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The registration task tested in this section is the same as the task presented in the right

panel of Figure 1.1, in which a scene captured from a central angle is registered to the same

scene captured from above and to the left. Data was obtained from the Kinect v1, and SHOT

features were calculated using a radius of 5 centimeters for all presented experiments. The

ground truth transformation matrix was obtained via manual alignment followed by ICP in

CloudCompare. As discussed in Section 2.3.3, the color-aware variant of contour-enhanced

resampling is used for registration.

Figure 3.9: Comparison of rotational error relative to ground truth for various resampling
strategies. Each bar presented here is the result of averaging together 5 runs of each tech-
nique.

The results seen in comparative analyses of resampling methods for scene registration

differ markedly from the results seen for object localization, though contour-enhanced re-

sampling still shows considerable improvement over the other two resampling methods. As

seen in Figure 3.8, when it comes to translation error, all three resampling methods perform
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relatively equally at the low downsampling rate of 1.8%. However, when the downsampling

rate is increased to 10%, contour-enhanced resampling outperforms voxel-grid resampling by

34% and uniform random resampling by 67.6%.

Rotational error, on the other hand, is not impacted much by resampling rate, and

depends more on the resampling technique being used. As shown in Figure 3.9, contour-

enhanced resampling also is better when it comes to rotational error, outperforming voxel-

grid resampling by 43.1% and uniform random resampling by 25.1% at a resampling rate of

1.8%.

Runtime (seconds)
Resampling Technique 1.8% Downsample 10% Downsample
Uniform Random 14.83 137.60
Voxel-grid 15.06 155.25
Contour-enhanced 39.74 151.72

Table 3.10: Transformation estimation runtime of the various resampling strategies for a
registration task. Reported metrics are results that have been averaged over five runs of the
registration algorithms.

As for runtime, contour-enhanced resampling performs relatively poorly compared to

the other two methods at a 1.8% resampling rate, as a greater proportion of calculation

time is spent doing the actual resampling. At higher rates, however, 10% contour-enhanced

resampling does much better, and actually slightly outperforms 10% voxel-grid resampling

due to the increased granularity of the voxel grid. Comparing translational accuracy across

different methods, 1.8% contour-enhanced resampling is able to outperform 10% uniform

random resampling while being 3.46 times as fast. Therefore, as in object localization, scene

recognition efficiency and accuracy can be improved tremendously by using contour-enhanced

graph-based resampling.
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Chapter 4

Conclusions

In this thesis, I presented an efficient implementation of contour-enhanced graph-based re-

sampling of point clouds that runs in O(nk · log(n)) time. I develop both color-blind and

color-aware versions of this technique, which I then apply to the problems of object localiza-

tion and scene registration.

In object localization, use of contour-enhanced resampling prior to correspondence-based

transformation estimation can reduce calculation runtime by more than 67% while main-

taining a similar accuracy to a voxel-grid resampling method. When given a similar amount

of time to run, contour-enhanced resampling can reduce translation error of localization by

more than 50% over voxel-grid resampling. The contour-enhanced technique also has similar

effects in scene recognition, and is able to alternatively either lower runtime while maintain-

ing accuracy or improve accuracy while maintaining runtime, though these benefits tend to

diminish as the amount of downsampling is increased.

Ultimately, by being able to effectively downsample point clouds to their important

contour points, the contour-enhanced graph-based resampling technique presented in this

thesis is able to effectively reduce runtime and error in downstream processing, making it a

powerful tool within the field of computer vision.
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Chapter 5

Future Works and Applications

5.1 Improvements to Contour-Enhanced Resampling

Though contour-enhanced resampling can help dramatically speed up downstream calcu-

lations in object localization and scene registration, the resampling algorithm itself is still

somewhat slow - more than 12 times slower than voxel-grid resampling, primarily due to the

k-d tree search that occurs for every point within the source point cloud. One important

task to complete before contour-enhanced resampling can be used in a realtime framework is

to reduce its runtime considerably. Using a heuristic-based search algorithm similar to the

one presented by Jost and Hügli [23] could help dramatically accelerate contour-enhanced

resampling runtime. Alternatively, using neural networks for 3D contour detection [41] could

eliminate the need to search for neighbors to enable a much faster resampling algorithm.

Since each point in the original cloud is selected for inclusion in the final sample sepa-

rately, parallelization of the contour-enhanced resampling algorithm could also be used to

bring runtime down. Though initial attempts [42] to parallelize k-d tree search on GPUs

failed due to kernel switching and the overlapping nature of voxelized point clouds, recent

advances in GPGPU-based computation have made it possible to search for thousands of

points within a k-d tree simultaneously [43]. Implementation of this technique could effec-
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tively diminish the tree search overhead for contour-enhanced resampling to make it as fast

as the voxel-grid resampling algorithm.

5.2 Generalized 3D Object Recognition

One problem with all of the 3D localization approaches mentioned in section 1.3 is that

correspondence is tied to the exact model that is being searched for within the scene. That

is, if a model is deformed in some non-rigid way, none of the above algorithms would be

able to recognize it within the scene, even if they were able to recognize the original model.

An example of a non-rigid deformation is joint movement - an algorithm that is able to

find a model dog in a ”standing” pose within a scene would be unable to locate a ”sitting”

version of the same dog within that scene, or even a different dog in the same standing

position. Humans perform much better at this task than computer systems do, and are able

to recognize objects even after significant deformations have been applied. Though some

field-specific work has been done in recognition of deformed 3D objects, particularly in face

[44] and isometric pose-deformation recognition [45], these techniques are too specific for

general arbitrary 3D object recognition.

In the field of 2D object detection, on the other hand, deformed object recognition has

been studied a lot more deeply. For example, Le et al. at Google were able to use unsuper-

vised deep learning methods to create a detector that could identify if a face belonged to

a cat, regardless of cat species and picture viewpoint [46]. Though their detector required

around 10 million training samples, more recent advances in the field have been able to

perform identification from only a single training example - a technique known as one-shot

learning. One-shot learning techniques have potential to be used in object recognition tasks,

as a single model (the training example) is to be located within a scene that contains some

deformed version of that model.

One of the first uses of one-shot style learning was for signature verification [47]. In their
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work, Bromley et al. created a new class of neural network that they dubbed a ”Siamese

Network.” The Siamese Network was composed of two identical time-delay neural networks

that attempted to learn vector representations of the signature. The vector representations

were learned such that the distance between a signature and a forgery of the signature

was maximized, while the distance between a signature and its reproduction by the same

individual was minimized. The group was then able to feed the networks signatures outside

of the training set and were able to detect 80 percent of forgeries with only 219 training

examples. Siamese Networks have since been used for written language detection [48] and

even more advanced image identification tasks like face verification [49] and arbitrary image

patch comparison [50].

Though one-shot learning-based approaches have not yet been used to learn useful rep-

resentations of three-dimensional data for the purposes of object recognition, their ability to

learn vector representations of objects could be applied directly to the generalized 3D object

recognition task if learning is done over voxelized representations of point cloud data. These

vector representations could then be used to directly search for a voxelized scene subset that

matches a voxelized object for generalized 3D object localization.
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