
Defuse the News: Predicting Misinformation and
Bias in News on Social Networks via Content-Blind
Learning

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811538

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811538
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Defuse%20the%20News:%20Predicting%20Misinformation%20and%20Bias%20in%20News%20on%20Social%20Networks%20via%20Content-Blind%20Learning&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=85b737f68cd8f20ab81fa9ca077f3a88&department
https://dash.harvard.edu/pages/accessibility

Contents

1 Introduction 1
1.1 Overview . 5
1.2 Contributions . 9
1.3 Related Work . 11
1.4 Roadmap . 14

2 The News Classification Problem 16
2.1 Formal Definition . 17
2.2 Data Collection and Curation . 19

3 Supervised Learning Models 26
3.1 Network Features . 27
3.2 Graph Kernels . 33

3.2.1 Overview . 33
3.2.2 The Weisfeiler-Lehman Kernel 35
3.2.3 Node Labels . 40

3.3 Implementation . 43

4 Results 45
4.1 Predictive Performance . 46

4.1.1 Metrics . 46
4.1.2 Experimental Results . 47

4.2 Label Tuning Results . 50
4.3 Interpretation . 54
4.4 Timing Results . 58
4.5 Adversarial Robustness . 61

5 Conclusion 65

References 75

iv

Acknowledgments

I am indebted to many individuals for their help in this project. Thanks to David
Parkes, my mentor, advisor, and friend, for his steady guidance, boundless expertise,
and remarkable ability to conjure up extra time despite an airtight schedule. Thanks
also to Nir Rosenfeld, maestro of network science, for his advice and keen eye for
detail.

I am appreciative of Deb Roy, Soroush Vosoughi, and the Lab for Social Machines at
MIT for opening their dataset to me and thus allowing this work to take on some sem-
blance of social relevance. Thanks as well to Christopher Hase for his help with pre-
liminary experimentation regarding bias and topic models and to Sasha Rush for his
advice and provision of computational resources. Thank you to Hal Roberts and Rob
Faris of the Berkman Klein Center, DuncanWatts and Markus Mobius of Microsoft Re-
search, and Michael Bronstein of the Radcliffe Institute for stimulating conversations
along the way.

I am grateful to Margo Levine for her advice and friendship in matters both aca-
demic and decidedly not. I also thank Sarah Iams for helping me think about trans-
forming this work from a highly technical and esoteric machine learning paper into a
thesis accessible to a wider audience.

I thank my friends, especially Camille N’Diaye and Joe Kahn, for their companion-
ship during late nights, for providing me with sustenance in the form of coffee and
encouraging thoughts, and formaking each day at Harvard fun, interesting, and bright.
Thanks as well to the Harvard Ultimate community for keeping me sane through this
process and for entertaining lots of fake news jokes that weren’t very funny.

Last, thanks to my family – David Szanto, Lesley Rosenthal, Ted Rosenthal, Istvan
Szanto, Vali Sajber, Nancy Fadem, and all the others – for more love, support, and
wisdom than I could have ever asked for. None of this would be possible without you
all.

v

All control, in essence, is about who controls the truth.

Joseph Rain

1
Introduction

As social media becomes the world’s largest source of real-time news, understand-

ing how false information spreads is vitally important. The stakes are high: over

three billion people worldwide use social media platforms like Twitter and Facebook,

and more than two thirds of Americans consume their news primarily through social

1

media (Kemp, 2017; Shearer & Gottfried, 2017). While the social benefits of these tech-

nologies are undeniable, the risks to truth are striking. 2016 saw fake news become

not just a cultural phenomenon but a genuine threat to democracy and the civic fabric.

Researchers estimate that Americans clicked on false stories 760 million times before

that year’s presidential election, an average of nearly four such stories per adult (All-

cott & Gentzkow, 2017). The ubiquity of fake news, combined with the critical mass

of social media users, has led some analysts (Parkinson, 2016; Read, 2016) to conclude

that these stories contributed directly, even decisively, to the outcome of the election.

No less alarming is the recent and sharp uptick in online racial extremism, terrorism,

and harassment closely linked with the proliferation of fake news (Rainie et al., 2017).

Having already become a key vector for the spread of hate and civic unrest, fake

news now has the potential to cause irreparable damage to the social order. Worry-

ingly, there is little hope to slow or prevent its spread through conventional means,

as it operates at a scale where human fact checkers fall somewhere between stretched

thin and entirely useless. As such, false stories will continue to propagate ever faster

and more pervasively through social networks if left unchecked. The pivotal question

then becomes how quickly and accurately we can identify fake news using methods

that do not require human oversight, and how resistant these methods are to mali-

cious interference by the originators of false stories. Technological problems call for

2

technological solutions.

Social media platforms like Twitter and Facebook are well-represented by networks

(sometimes known as graphs) whose nodes are users and whose connecting edges are

aspects of their interactions. Just as experiments on physical social networks helped

early public health officials implement vaccination schemes to prevent epidemics, re-

search on social media networks could provide insight into the ways that information

is broadcast and spread online (Bailey et al., 1975). It is thus fitting that rather than

viruses it is viral articles that are used to uncover patterns in the diffusion of misin-

formation.

While much work has been done on the separate fields of network classification

(making predictions about a network never seen before) and social network modeling

(applying graph theory to the field of interpersonal interaction), there is little research

at their intersection. Because of the power that social media commands in arenas from

politics to security, deciphering the dynamics of information flow through these net-

works via methods at this nexus has critical implications for analyzing and predicting

matters of societal importance. Indeed, presidential election outcomes, terrorist at-

tack planning, and the viral spread of misinformation each rely heavily on large-scale

social networks.

Thiswork studies Twitter as a substrate for information and rumor diffusion. Founded

3

in 2006, themicroblogging platform has amassed over 300million users, becoming one

of the ten most popular sites on the internet (Molina, 2017). Twitter has also cemented

itself as one of the foremost online hubs for current events: on the day of the 2016 elec-

tion, Twitter saw over 40 million election-related posts, making it the world’s largest

source of breaking news (Isaac & Ember, 2016). Because of the way that users interact

by replying to and sharing each other’s content, techniques from network science are

advantageous for constructing predictivemodels for how information spreads through

the Twittersphere. This research examines whether the characteristics of the network

of tweets about a particular news article contain information about the textual content

of the article.

In particular, we focus on discerning three latent features of a news article – ve-

racity, political bias, and topic – knowing only information about the shape of the

social network that forms around it. We term this content-blind prediction. Within

the content-blind domain, no linguistic, temporal, or user-identifying information –

not even the title of the article or the names of the users sharing it – is known to

the predictor. Instead, content-blind models only have access to the patterns of user

interaction with respect to the article, attempting to make a determination about the

characteristics of the news based solely upon the structural diffusion pattern of the

article through social media. We posit that models that use these fundamental at-

4

tributes of a social network to predict information about news articles have several

attractive features not found in content-aware systems, including portability across

worldwide languages, easy application to a wide variety of prediction problems, and,

most importantly, resistance to adversarial agents trying to pass off fake news as real.

1.1 Overview

Network modeling is fundamental to a wide variety of areas whose core abstraction is

a structure typified by entities with distinctive relationships between them. Systems

as essential as those that underlie power grids, air traffic control, and GPS all rely on

suchmodels. One important domain inwhich networkmodels are vital is social media,

characterized by users connected by their interactions on the platform. A network

is defined in a formal sense as a collection of entities called nodes (also known as

vertices) and the connective relationships between them called edges. Edges may be

directed – drawn from one node towards another, for example denoting the direction

of electricity flow – or undirected, for example in a social network in which there are

no unrequited friendships. In this work, we model discussions of current events on

Twitter via directed networks.

On Twitter, each user shares tweets with their followers. A tweet may include text,

multimedia content, or a link to an external website, such as a news article. A user

5

(a) New York Times (b) Breitbart News

Figure 1.1: Article networks for one New York Times story and one Breitbart News story. Red
dots denote tweets sharing the story in question, and blue edges denote retweet relationships be-
tween tweets. The content-blind domain requires that a model take in information only about
the shape of the networks and make a determination as to, for example, the political leaning of
each story. A successful model will discriminate between stories based only on the topology of the
networks, in this case labeling these two networks correctly as politically liberal and conservative,
respectively.

viewing a tweet authored by one of their followers may elect to reply to it directly

or retweet it to their own follower circle, thus extending the reach of that tweet. The

pattern of retweeting for one ormore related tweets is known as a cascade. The essence

of this work is to determine whether the underlying characteristics, or topology, of

a particular cascade is informative of the veracity, political bias, or topic of the news

article encapsulated by the network.

We formalize our analysis of discussions on Twitter by rendering each tweet as a

node and treating retweet connections as directed edges. For example, if tweets A and

B are each nodes, then there is a directed edge between A and B if B is a retweet of A.

6

Within this paradigm, we can begin analyzing the patterns in the networks associated

with various types of news. To do this, we first assemble all the tweets that reference

a particular news article. Then, we build the network induced by these tweets; we

term this the network that surrounds the article. For example, Figures 1.1a and 1.1b

illustrate the networks surrounding stories from The New York Times and Breitbart

News. The structure of one such network, defined by the tweet nodes and retweet

edges for a given article, is the input to a content-blind model. We collect Twitter data

for many thousands of news articles, building a corpus of cascades as a foundation

for analysis. For each cascade, we tag the news article it surrounds as real or fake,

liberally or conservatively biased, and political or apolitical1. Once we have amassed

this collection of articles and tags, however, the question remains as to how to analyze

them to uncover the latent patterns in their structure. For this, we use an ensemble of

methods from the field of machine learning.

The approaches taken in this work are members of the class of techniques known

as supervised learning algorithms. This methodology relies on a two-part dataset, of

which one segment is used to learn patterns (the training phase) and the other is used

to validate the performance of the model (the testing phase). With a model trained on

one subset of data, the task at hand is to make a prediction about an example found in

the other subset, namely to determine a tag (i.e., veracity, bias, or topic) associatedwith
1For a discussion as to how we determine these tags, see Chapter 2.2.

7

it. A veracity model, for example, after having learned topological patterns associated

with the truthfulness of news on Twitter, makes an informed decision as to whether

a network it has not encountered before corresponds to an article that is real or fake.

Because we have the “correct” tags for each example, repeating this experiment for

each network in the testing set and comparing the model’s output with the ground

truth will allow us to deduce roughly how accurate the model is. A fully trained and

tested model, then, could be released to the Internet and make accurate predictions

about networks forming in real time.

If we had a simple metric that could determine the similarity between two networks,

this problem would be easily solved: to decide if a network corresponds to a real or

fake article, we would just ask whether it is more similar to those that surround real

articles or fake ones. However, networks are complex structures with exponentially

many possible configurations for any given number of nodes. As such, the task of de-

termining the similarity between two networks is extremely difficult (Garey & John-

son, 1990). This work leverages a family of algorithms known as graph kernels (Vish-

wanathan et al., 2010) to approximate this similarity by measuring the divergence in

shape between two networks at the level of small neighborhoods of nodes. Once a

kernel has calculated the similarity between each pair of graphs in the training data,

we can use the kernel to make a prediction for a novel example, tagging it based on

8

the tags of the networks in the training group to which it bears the greatest similarity.

To evaluate the success of a kernel, we apply simpler models that depend on basic

statistics (such as the number of nodes and edges) called network features to the same

set of tasks. If the kernel outperforms these baseline models, then we can conclude

that the shape of a network encodes information interpretable by the kernel about the

characteristics of the content that the network surrounds.

1.2 Contributions

This thesis makes three main contributions. First, it introduces the content-blind do-

main and several archetypal problems therein, including the determination of verac-

ity, bias, and topic for a news article based solely on the topology of the social net-

work that surrounds it. Second, it employs twomethodologies for supervised machine

learning on social media networks within this domain, applying both network feature

and graph kernel techniques to the tasks defined. We start by gathering the Twitter

retweet networks that form around a large set of news articles and rumors from two

datasets. The first is built from scratch, drawing on news articles from a wide variety

of journalistic outlets spanning the political spectrum. The other is based on work by

Vosoughi et al. (2018), who collated 126,000 rumor cascades on Twitter, labeling them

as true or false by consulting the determinations of independent fact-checking orga-

9

nizations such as Snopes. Comprising over 4.5 million tweets, it is the largest dataset

of fake news stories and social networks ever assembled. The analysis in this thesis

begins by using standard network feature predictive models as baseline performance

indicators for the task of gleaning information about the underlying stories. Then

we present a novel use of graph kernel learning models to capture information-rich

topological encodings of the networks in an attempt to improve on the baselines. This

work is the first application of machine learningmodels to these data, representing the

first set of results for fake news detection at this scale. Strikingly, topological graph

kernels significantly outperform the baseline models, predicting the veracity of news

articles at 84% accuracy, the political bias at 93%, and the topic at 76% while adhering

to the content-blind guidelines. This performance is competitive with or superior to

state-of-the-art systems for fake news detection, whose accuracies fall between 78%

and 89% (Yu et al., 2017; Ruchansky et al., 2017). Remarkably, while all current models

for fake news detection are content-aware and depend on large corpora of article texts,

user behavior histories, and website data (Ma et al., 2016; Liu et al., 2015), the meth-

ods presented here require nothing but the basic propagation contours of information

through Twitter to classify its veracity accurately.

The third contribution of this work is to demonstrate that for the problem of mis-

information detection, graph kernel methods are much faster than standard models

10

and are robust to adversarial interference from the producers of fake news. The com-

pliance of graph kernels with content-blindness means that even the cleverest of fake

news writers would have to go beyond writing a story that could fool a content-aware

veracity model, such as one that analyzes the text of an article. Instead, producers of

false content could only dupe a content-blind model by changing the network topol-

ogy writ large, which would require much broader influence over the behavior of the

crowd interacting with the false content than is currently viable.

1.3 Related Work

Despite the relatively recent rise of fake news as a cultural fixture, there has long

been academic interest in the propagation of true and false information through so-

cial media networks. Friggeri et al. (2014) describe the ways in which rumors spread

on Facebook, finding that trust relationships play an important role. Bakshy et al.

(2012) model information propagation and virality using field experiments to deter-

mine whether strong or weak ties between users are more responsible for the diffu-

sion of novel information. And Gabielkov et al. (2016) report results on Twitter in

particular, studying different types of retweet cascade patterns. Most recently, All-

cott & Gentzkow (2017) explore the role of fake news in the 2016 presidential election,

including a statistical analysis of the rate at which Americans consumed false stories

11

on social media prior to Election Day.

There have also been several systems proposed to predict information veracity on

social media platforms. Castillo et al. (2011), Liu et al. (2015), Ma et al. (2016), and Tac-

chini et al. (2017) each use statistical models of article and tweet text combined with

detailed user histories to classify rumors. More recently, deep learning approaches

as in Yu et al. (2017) and Ruchansky et al. (2017) combine these features with news

website data, using convolutional and recurrent neural networks to achieve good pre-

dictive performance on datasets from Twitter and its Chinese analogWeibo. However,

this research is only tangential to our work, as we deny our models access to such rich

linguistic and user-based data, instead focusing strictly on topological information as

predictive of veracity. It is this insight that makes our results robust to adversarial

writers of fake news or clever botnet administrators.

At the intersection of network theory and fake news, the study that is most similar

to our research is Vosoughi et al. (2018), which characterizes the differential diffusion

of true and false rumors through Twitter. Indeed, in this work we perform analysis on

the dataset that they constructed. However, while their conclusions are retrospective,

ours go one step further, to the predictive: whereas they report how real and fake

news spread through social networks differently without attempting to identify mis-

information, we determine that real and fake news can indeed be differentiated by the

12

shapes of their cascades. Thus, this is the first work to perform predictive analytics

on this important dataset.

Much of the existing research in network classification and graph kernels has been

done in the field of computational biology in order to understand protein structures,

biological compounds, and gene regulation for the purpose of drug discovery.

Walk-based kernel methods compare two graphs in terms of the paths taken by ran-

dom walks on those graphs. Borgwardt et al. (2005) make use of random walk graph

kernels to predict protein function based on their molecular shape. Kashima et al.

(2003) use similar methods for two tasks, classifying one set of biological compounds

by carcinogenicity and another by mutagenicity.

Another type of graph kernel makes use of subgraph similarity: Kriege & Mutzel

(2012) apply this method to a host of chemical compound datasets. A comparable

graph kernel that counts matching cyclic patterns was used for the classification of

molecules by Horváth et al. (2004).

Graph kernels using subtree patterns developed by Ramon & Gärtner (2003) count

matching structures within subtrees over pairs of graphs. These types of graph ker-

nels were also successfully applied to chemical compound classification tasks by Sher-

vashidze et al. (2011), who were the first to introduce the Weisfeiler-Lehman graph

kernel used in this work.

13

The literature on the use of graph kernels in social network classification is sparse.

One study in this space develops so-called deep graph kernels, which are traditional

graph kernels augmented with neural networks, and applies them to predict Reddit

sub-community interactions (Yanardag & Vishwanathan, 2015). Nikolentzos et al.

(2017) use a graph kernel based on a convolutional neural network that performs well

on a synthetic dataset but has limited success on real-world social network datasets.

Though relevant, neither of these studies makes a comparison to a baseline classifier

that uses standard features extracted from the networks. Thus, it is unclear if their

results demonstrate that graph kernels are particularly effective.

1.4 Roadmap

The remainder of this work will proceed as follows: Chapter 2 contextualizes the

content-blind domain, provides a formal definition of the supervised learning task

over news articles and Twitter networks, and describes the data collection and cu-

ration methodology. Chapter 3 details the technical approach in two parts: Section

3.1 specifies the network feature models built as baseline performance indicators and

Section 3.2 provides an overview of graph kernel methods before introducing the par-

ticular algorithms employed. Chapter 4 presents experimental results, comparing the

baseline and graph kernel methods along dimensions of predictive power and com-

14

putational efficiency while providing topological interpretations of the findings. The

end of this chapter highlights the advantages of content-blind methods over alterna-

tive approaches, such as those that rely on natural language models. Finally, Chapter

5 concludes and discusses extensions of this work to allied areas of research.

15

The amount of energy needed to refute bullshit is

an order of magnitude greater than that needed to

produce it.

Linda Gordon

2
The News Classification Problem

The task of interest in this work is to deduce a tag associated with a news article,

having access only to the social network that surrounds the article. The exposition

of this problem has two parts: a mathematical formulation and the curation of corre-

sponding real-world data.

16

2.1 Formal Definition

We define the problem space as follows: each data point is a tuple (ai, Gi), where ai

is an abstract piece of online content with arbitrary underlying features and Gi is a

directed graph (network1) characterizing its diffusion. In this paper, we refer to ai as

an article and define the set of articles as A, while the set of networks is Ω. When

an article and a network are linked like this, we say that the network surrounds the

article.

Gi, a network in Ω, is defined as a 3-tuple (Vi, Ei, Li), where Vi is the set of entities

that interacted with ai; (u, v) ∈ Ei iff u ∈ Vi, v ∈ Vi, and u had an interaction with

v that involved ai; and Li : Vi → Σ is a many-to-one labeling function that assigns

labels (letters in a finite alphabet Σ) to nodes. Thus, Li(v) is the label of node v ∈ Vi

in network Gi. We define the size of Gi as the cardinality of the set of nodes, |Vi|,

referred to later as n. In this work, a v ∈ Vi that interacts with ai is a tweet about an

article ai, and a directed edge (u, v) denotes that u and v both tweeted about ai, and

v is a retweet of u.

A tag is a discrete value associated with an article reflecting some aspect of its

content. Given a tagging function y : A → Λ, an article ai’s tag is y(ai) ∈ Λ. For
1Because of the interdisciplinary nature of this work, consistency in nomenclature is difficult. Graph

theorists refer to graphs, while those who study information propagation talk about networks. We use
the terms interchangeably.

17

example, in a veracity model the tag y(ai) is an indicator for whether the content in

article ai is fake, and the corresponding Λ = {0, 1}.

Thus, the problem of interest is as follows: given a set of N training examples

(y(a1), G1), . . . , (y(aN), GN), learn a function F : Ω → Λ to predict the tag y(ai) for

article ai, looking only at the network Gi associated with the article.

In our dataset, one (a,G) pair consists of a news article and the Twitter network

that surrounds it. Each article is given a set of tags: whether the article is political

in nature, whether (conditional on the article’s being political2) the article’s source is

a liberal or conservative media outlet, and whether the article’s content is false. We

discuss the assignment of node labels in Section 3.2.3, as their use is confined to graph

kernel methods.

There are thus three concrete tasks related to the formal problem above: given just

the social network that surrounds a news article, predict whether the article is political

(POL), whether the article is liberal or conservative (BIAS), and whether the article is

fake news (VER). Section 2.2 describes the construction of datasets for these problems.
2This condition is important because we would, for example, expect sports articles from liberal and

conservative outlets not to differ significantly based on the political leaning of their sources.

18

2.2 Data Collection and Curation

The process of data collection for this work was done in two parts. The first involved

the creation of a novel dataset from scratch for use in the POL and BIAS tasks, while

the second drewuponwork done byVosoughi et al. (2018), benefiting from the authors’

special agreement with Twitter to amass large-scale cascade data for true and false

rumors.

For the first part, we aggregated URLs and other metadata for 10,351 news stories

over the course of 14 nonconsecutive days in November and December 20173. These

articles were drawn from several dozen journalistic outlets with a variety of reader-

ships and political leanings, including The New York Times, Breitbart News, The Wall

Street Journal, Fox News, The Huffington Post, and others. We tagged an article as po-

litical if and only if the item had a title or URL that included one of the strings in the

set {“clinton”, “elect”, “democrat”, “republican”, “trump”, “senate”, “congress”, “bill”,

“politic”, “legislat”, “gop”, “government”, “campaign”, “vot”, “ballot”, “conservative”,

“liberal”, “progressive”, “libertarian”}. Each political article received an additional tag

corresponding to its political leaning, assigned by consulting findings from Mitchell

et al. (2014). This work is a large-scale Pew Research study that labels a news outlet as

liberal if its readers are more liberal than the average internet user and conservative if
3via NewsAPI (https://newsapi.org)

19

its readers are more conservative than the average internet user. Articles from outlets

not expertly categorized in this manner are omitted from the dataset.

Next, for each article, we query the Twitter Standard Application Programming In-

terface (API)4 for tweets that included a link to the article. This API does not grant

unfettered historical access, however. Instead, it imposes strict limits on the content

that can be retrieved. In particular, only tweets published in the last seven days

are searchable, and searches are run against a 1% sample of these tweets. As such,

there was some difficulty in constructing a complete and accurate dataset under these

constraints. Moreover, extreme care had to be taken to ensure that despite the 1%

sampling, the cascades constructed from the API results resembled real networks, i.e.,

edges connected exactly two nodes and there were no orphan tweets with an in-edge

but no corresponding parent tweet.

We built a network per article by representing tweets about the article as nodes

and drawing edges where one tweet was a retweet of another. We filtered our results

to include only those networks with at least 50 nodes and discarded networks whose

set of tweets included retweets of a particular tweet but not the tweet itself5. Compli-

cating this task significantly was the fact that Twitter’s Standard API does not always

return full retweet chains. Rather, if tweet B retweets tweet A, and tweet C retweets B,
4https://developer.twitter.com/en/docs/tweets/search/overview/standard
5This was an indication that our search results were incomplete for that particular query, since by

definition a retweet must have a corresponding tweet.

20

then the API may compress the path from A to C through B by simply returning two

retweet edges: one between A and C and one between A and B, making no mention

of the (B,C) edge. It is unclear under what conditions this compression occurs, but the

median longest path over all networks in this dataset was 2, and the overall longest

path was 3. Clearly, this suggests a fairly high rate of path compression. By way of

example, Figure 2.1a depicts a true Twitter cascade, while Figure 2.1b illustrates its

compressed counterpart that might have been returned in response to a Standard API

query. As shown, the chains between Node 1 and Node 7 and between Node 1 and

Node 4 have been collapsed, but the chain between Node 1 and Node 8 remains intact.

This compression proved important for tuning the graph kernel because it meant that

in almost all cases the model would not learn anything new by looking for topological

patterns in locations more than one edge away from any particular node.

Ultimately, this dataset was composed of 2,652 tweet networks, each tagged as po-

litical or non-political, and 1,842 tagged as liberal or conservative. From here, four

datasets were constructed. For each tag (POL/BIAS), we created both a class-balanced

version and a class-unbalanced version. For the class-balanced version, we used all

the examples in the minority class (political and conservative, respectively) and ran-

domly sampled from the majority class to give a class-balanced dataset. For the class-

unbalanced version, we used all examples in both classes. We report the final number

21

(a) Original network (b) Network with some edges compressed

Figure 2.1: The Twitter Standard API collapses some retweet edges, compressing the cascade
topology in certain network localities.

of examples in each class for each problem in Tables 2.1 and 2.2.

Table 2.1: Class Sizes for Balanced and Unbalanced POL Datasets

Label Unbalanced Balanced
Political 936 936
Not Political 1,716 936

From there, we calculated the requisite network feature statistics for each example

and split the datasets into training and testing portions in accordance with Sections

3.1 and 3.3.

For the VER task, we operate on the same dataset as in Vosoughi et al. (2018), which

comprises a set of cascades, each corresponding to a rumor that has been fact-checked

and labeled as true or false. Benefiting from a direct relationship with Twitter, the

22

Table 2.2: Class Sizes for Balanced and Unbalanced BIAS Datasets

Label Unbalanced Balanced
Liberal 1,444 398
Conservative 398 398

(a) Network surrounding real news article (b) Network surrounding fake news article

Figure 2.2: Article networks for one real and one fake story. Significant differences in topology
cannot be easily discerned by the naked eye. However, techniques such as graph kernels may be
able to tag these two networks correctly.

authors were able to construct a larger and more complete set of rumor cascades than

any prior work has. They begin building their collection of networks by searching

the full Twitter historical archive for any tweets whose replies include a link to a fact-

checking article from one of six websites6. These tweets were termed rumors. They

confirmed that the fact-checking article was related to the content of the rumor by

computing a word embedding for the tweet’s text (Vosoughi et al., 2016) and for the
6snopes.com, politifact.com, factcheck.org, truthorfiction.com, hoax-slayer.com, and urbanle-

gends.about.com

23

article’s content (Le & Mikolov, 2014), then measuring the cosine similarity between

the two. If this metric, a measure of semantic correspondence between two texts,

was high enough, they deemed the fact-checking article to have been written about

the rumor. Then they collected all the retweets of the rumor, building the full cascade

while discarding tweets thatwere determined by a bot-detection algorithm (Varol et al.,

2017) to have been written automatically. Last, they applied a method known as time-

inferred diffusion (Goel et al., 2012) to uncompress implied retweet edges by consulting

the full Twitter follower graph, an index of the relationships among all Twitter users

that is not made available to the public. As such, the authors’ close ties to Twitter

were pivotal to the construction of a complete dataset that sidestepped the issue of

path compression affecting the data collected via the Standard API.

In total, this dataset contains about 126,000 cascades made up of over 4.5 million

tweets. Surprisingly, however, 97% of these cascades had size less than 50, so for our

analysis we discarded them as we did for the networks in the POL/BIAS dataset. Last,

we performed class balancing, extracted network features for the baseline models7,

and split the examples into training and test sets. The class sizes for the balanced and

unbalanced datasets in the VER dataset are given in Table 2.3, while basic descriptive

statistics for the networks in all the tasks can be found in Table 2.4. Note the difference

in longest paths between the POL/BIAS and VER data; this is illustrative of the path
7As described in Section 3.1.

24

compression associated with the Standard API.

Table 2.3: Class Sizes for Balanced and Unbalanced VER Datasets

Label Unbalanced Balanced
Fake 2,995 468
Real 468 468

Table 2.4: Descriptive Statistics for Networks By Task

Statistic POL BIAS VER
Mean # Nodes 435 461 636
Mean # Edges 330 350 635
Max # Nodes 18,095 17,736 30,967
Max # Edges 21,908 19,546 30,966
Total # Nodes 1,153,620 849,162 2,202,468
Total # Edges 875,160 644,700 2,199,005
Median Longest Path 2 2 4
Max Longest Path 3 3 17

The authors’ use of six fact-checkingwebsites to collect the largest fake news dataset

of its kind exposes a critical problem in the domain of misinformation prediction: the

state of the art for deciding conclusively if a story is true or false is hoping that one of

these websites invests time andmoney in an individual tomanually label a rumor. This

observation further motivates our work, which hopes to develop an automatic proce-

dure to make veracity prediction both instant and free– a vast improvement over the

human-driven procedure.

25

Artificial intelligence is no match for natural stupidity.

Albert Einstein

3
Supervised Learning Models

This work focuses on two methodologies for extracting information from retweet

networks in order to make accurate predictions about the articles they surround. In

the first, we tabulate per-network feature vectors that correspond to standard statistics

about the nodes and their connections. Using these data, we tune logistic regression,

26

support vector machine, random forest, and multilayer perceptron models to establish

a set of baseline performance results against which to compare more sophisticated

algorithms. The second technique uses the Weisfeiler-Lehman (WL) (Shervashidze

et al., 2011) graph kernel to compute a high-dimensional comparison between each

pair of networks in the dataset in order to learn a linear separation function in the

kernel space.

Our analysis considers six datasets, as described in Section 2.2. We apply the net-

work feature and graph kernel methodologies to each.

3.1 Network Features

For a networkG = (V,E,Σ), we compute a set of 14 network features, concatenating

them into a vector x that reflects attributes of the shape of the network. These features

are enumerated as x1 . . . x14 and fall into several groups.

To begin, observe some basic definitions relating to node and edge statistics: let n

andm be the number of nodes and edges (|V |; |E|), respectively. Let a node v’s neighbor-

hood N(v) be the set of nodes it points to via directed edges: N(v) = {v′|(v, v′) ∈ E}.

Let the in-degree of v be deg−(v), defined as |{v′|(v′, v) ∈ E}|, or the number of

edges that terminate at v. Let the out-degree of v deg+(v) be defined analogously as

|{v′|(v, v′) ∈ E}|, or the number of edges that emanate from v. Note that this is equiv-

27

Figure 3.1: Network 1

alent to the size of the neighborhood of v, or |N(v)|. Last, let the degree of a node be

the sum of its in- and out-degrees: deg(v) = deg−(v) + deg+(v).

Features x1, x2, and x3 correspond to basic statistics about the network: x1 is the

number of nodes n and x2 is the number of edges m. x3 is the density of the network,

a statistic that proxies the level of connectedness among the nodes. The density is a

ratio of the number of edges to the number of potential edges given the number of

nodes in the network. Density is thus calculated as

x3 =
2m

n(n− 1)
(3.1)

28

For example, in Network 1, Node 4 has an in-degree of 2 and an out-degree of 2

(noting its bidirectional connection with Node 5), and the network as a whole has the

following basic features: x1 = 5, x2 = 6, x3 =
6
10

= 0.6.

The next feature relates to a network’s assortativity. Assortativity refers to the ex-

tent to which similar nodes are connected. For example, in a social network, high

assortativity indicates that gregarious people tend to talk to popular people, whereas

quiet people talk (albeit less) to fellow loners. Though the first application of assorta-

tivity was the epidemiological study of the spread of disease within networks, recent

work has found that it tends to be important vis-à-vis the propagation of Internet

content as well(Yao et al., 2017) 1.

The standard metric of network assortativity is the Pearson correlation between

the degrees of nodes that connect to each other (Newman, 2003). Define eij to be the

fraction of edges in the network that connect nodes of out-degree i − 1 to nodes of

in-degree j − 1, noting that over all i and j these values compose a joint probability

distribution. We offset i and j by one because we are interested in the excess degree of

each vertex, i.e., the number of nodes that it connects to outside of the current edge

being counted. Then let αi =
∑
j

eij and βj =
∑
i

eij . These are the proportions of

1Assortative network architectures tend to exhibit slow but robust cascades, making information
spread difficult to stop even when certain producers of content are cut out of the network after the
original publication. On the other hand, disassortative networks spread information faster, but are
easier to “immunize” by removing certain producers from the network in order to quash a cascade in
progress.

29

edges that begin and end at nodes of out- and in-degree i− 1 and j − 1. As they each

define univariate probability distributions, their standard deviations σα and σβ are

also easily obtainable. Finally, the assortativity coefficient, termed x4 in our network

feature vector, is calculated as

x4 =

∑
ij

ij(eij − αiβj)

σασβ

(3.2)

Feature x4 is high if similarly popular nodes tend to connect and low if nodes that

connect tend to be different in popularity.

Features x5 through x14 relate to two ways of describing a network’s centrality. The

degree centrality of a network is associated with the distributions of in- and out-degree

centrality of its nodes. One node v’s in- and out- degree centralities are calculated as

D−
cen(v) =

deg−(v)

n− 1
(3.3)

D+
cen(v) =

deg+(v)

n− 1
(3.4)

For example, the out-degree centrality of Node 4 in Network 1 is 2
5−1

= 0.5, or the

proportion of other nodes in the network that Node 4 connects to.

As such, features x5 through x8 are tabulated as the mean, max, standard deviation,

and skew of the in-degree centrality distribution over all the nodes, while x9 through

30

Table 3.1: Out-degree centrality statistics for Network 1

Node Out-Degree Centrality
1 0.5
2 0
3 0.25
4 0.5
5 0.25

Feature Statistic
Mean (x9) 0.3
Max (x10) 0.5
Std. (x11) 0.19
Skew (x12) -0.34

x12 are the corresponding statistics for the out-degree centrality distribution. Table 3.1

gives the out-degree centrality statistics for Network 1, corresponding to x9 through

x12 for that network.

Out-degree centrality statistics describe how powerfully the nodes can push infor-

mation through the network, while in-degree centrality statistics denote the propen-

sity of the nodes for learning information that is moving through the network. For ex-

ample, a high max out-degree centrality value indicates the existence of an important

influencer in the network who might be able to trigger a large cascade independently,

and a low standard deviation of in-degree centrality suggests that every node is about

equally likely to receive a piece of information as every other node.

Another metric for measuring centrality is closeness centrality. Terming the length

of the shortest path between nodes v and u the distance d(v, u) between them, the

31

closeness centrality of a node v is

C(v) =
n− 1∑

u∈V
d(v, u)

(3.5)

or the sum of reciprocal distances to each other node, normalized by the number of

shortest paths it takes into account. x13 is calculated as the average closeness central-

ity of a network:

x13 =

∑
v∈V

C(v)

n
(3.6)

x14 is the standard deviation of the distribution of node closeness centralities:

x14 =

√√√√ ∑
v∈V

(C(v)− x13)2

n− 1
(3.7)

Having constructed x as this 14-dimensional vector, the baseline performance mod-

els comprise a diverse set of classification techniques. For all three tasks, logistic

regression (LR), support vector machines (SVM), random forests (RF), and multilayer

perceptrons (MLP) are trained, representing a wide variety of model types and com-

plexities (Maroco et al., 2011). Implementation details, such as methods for hyperpa-

rameter tuning, may be found in Section 3.3.

32

3.2 Graph Kernels

3.2.1 Overview

Graph kernels are algorithms for computing topologically rich similarity metrics be-

tween networks. While network feature models attempt to extract relevant statistics

based on network attributes, graph kernels are designed to take the full shape of a

network into account, incorporating information from both small and large neigh-

borhoods of nodes. Consider the task of determining the similarity between the two

small networks shown in Figure 3.2 (Feragen, 2013). While to the human eye the net-

works seem nearly identical, it is a non-trivial problem to compute network similarity

even at this small scale. Indeed, it is unclear which standard metrics could be com-

puted over the two networks in Figure 3.2 to give insight into their near-isomorphism.

Graph kernels move beyond tabulating these traditional features and instead focus on

higher-order similarities like identical subgraphs and similar path patterns. Given a

dataset, once all pairs of graphs have been compared using a graph kernel, the result-

ing matrix may be fed into a kernelized learning model to compute a linear separation

between networks of different types.

Formally, a graph kernel implicitly represents a networkX ∈ Ω as a vector ϕ(X) in

a reproducing Hilbert spaceH (Scholkopf & Smola, 2001). A graph kernel k : Ω2 → R

33

Figure 3.2: Graph kernels compute a rich comparison between two networks that takes into ac-
count the shape of the networks, something that naive feature models are unable to do.

is a positive semidefinite function such that given a mapping ϕ : Ω → H and a

network pair (X ,X ′), the kernel value is equal to the Hilbert-space inner product:

k(X ,X ′) = ⟨ϕ(X), ϕ(X ′)⟩H (3.8)

This inner product represents a similarity metric between two networks. Intuitively,

a graph kernel attempts to find topology-informed representations of two networks

in H and determine their geometric distance from each other. The larger k(X ,X ′) is,

the more similar X and X ′ are.

To use a graph kernel in a classification model, we arrange our data as a sequence of

networksG1, . . . , Gn and construct amatrixK such thatKij = k(Gi, Gj). Thismatrix

is the basis for kernelized learning techniques like support vector machines (Cortes &

34

Vapnik, 1995), Gaussian Processes (MacKay, 1997), and Kernel PCA (Scholkopf et al.,

1998).

Graph kernels generally have one of three flavors, corresponding to their core net-

work algorithm: random walks, shortest paths, and subtrees. Paths on the Twitter

networks are very short (the median longest path is between two and four over all

datasets), so we would expect random walk and shortest path approaches to perform

poorly due to their inability to encode information about networks whose paths are

highly invariant. Thus, we choose a state-of-the-art subtree method, the Weisfeiler-

Lehman (WL) kernel, which we hypothesize will capture important information about

each network’s structure despite the relatively short average paths thereof.

3.2.2 The Weisfeiler-Lehman Kernel

We apply the Weisfeiler-Lehman kernel (Shervashidze et al., 2011) to the problem

of content-blind social network classification. The WL kernel is a subtree-based ap-

proach that measures the similarity of labeled networks by iteratively comparing com-

mon labels, merging labels by edge, then comparing again. It derives its name and

underlying technique from the Weisfeiler-Lehman test of isomorphism between net-

works, which it applies sequentially to compute a metric for how “close to” (or far

from) isomorphism two networks are.

35

The computation of the WL kernel begins with a network G = (V,E, L) ∈ Ω and

the choice of a number of iterations p. We proceed by iteration, with each indexed

by i. Iteration i associates a label ℓi(v) ∈ Σ and a multiset of strings Mi(v) for each

vertex v ∈ V , where ℓ0(v) is set initially to L(v).

In iteration i, we set Mi(v) = {ℓi−1(v
′)|v′ ∈ N(v)}. For each v, we sort and con-

catenate the stringsMi(v) to obtain si(v). Next, we prefix si(v)with ℓi−1(v), the label

from the previous iteration, such that si(v) := ℓi−1||si(v), where || is the concatena-

tion operator. Last, we compress the new si(v) by encoding it with a hash h : Σ∗ → Σ,

stipulating that h(si(v)) = h(si(w)) ⇐⇒ si(v) = si(w) (i.e., h is a perfect hash func-

tion2). We set ℓi(v) = h(si(v)) for all v.

At each iteration i, the label ℓi(v) of a node is thus a distinctive encoding of a se-

quence of merges of labels from its neighbors in each iteration. Notice that at iteration

i, the label for each node depends on information about vertices i edges removed from

the node. At the end of p iterations, we compute ci(G, σij), which is a count of the

number of times the label σij ∈ Σ occurs in the labels ofG at iteration i. Formally, let

the set of labels associated with each vertex of G at iteration i be Σi = {ℓi(v)|v ∈ V }.

Assume without loss of generality that Σi = {σi0, . . . , σi|Σi|} is lexically sorted. Then

the mapping ci : Ω × Σ → N represents the number of times that the label σij oc-
2While this is theoretically impossible due to the pigeonhole principle, it is a trivial condition for

modern 32- or 64-bit computers to guarantee with near certainty. Indeed, our implementation simply
hashes character string labels to an integer.

36

curs in Σi. Applied to G and each label in Σ, ci induces a vector corresponding to the

topological features of G:

ϕ(G) = (c0(G, σ00), . . . , c0(G, σ0|Σ1|), . . . cp(G, σp0, . . . cp(G, σp|Σp|)) (3.9)

That is, ϕ(G) is the concatenated values of the counts for each label at each iteration,

a topologically rich encoding of G in H. Then the WL kernel is computed as

k(G,G′) = ϕ(G)Tϕ(G′) (3.10)

Figure 3.3 (Shervashidze et al., 2011) shows the computation of aWLkernel with p =

1 for a small network. A kernel value for a network pair is large if the two sequences of

WL merges are alike, i.e., they have similar collections of node neighborhoods. For p

large, a high kernel value means that not only are the networks similar around small

groups of nodes, but that entire regions are similar, since the inherited labels from

several hops away are similar. Of course, k(G,G′) is maximized whenG is isomorphic

to G′, and thus their merges are identical for arbitrary iterations.

To calculate the time required to compute ϕ(G) as described above, letm = |E| and

n = |V |, noting that m ≥ n. For one iteration of the kernel, each node receives and

37

Figure 3.3: Computation of the WL graph kernel for one iteration. The initial labels are merged
along the edges for each node, sorted, then finally compressed (hashed) so that the set of total
labels increases in size. The final representation of a network is a vector constructed by counting
the number of occurrences for each label. The kernel is then computed as the inner product of the
vectors associated with the two networks. Figure from Shervashidze et al. (2011).

38

sorts its neighbors’ labels. Because the list of all labels is finite and known, bucket sort

can be used to order each node’s multiset of neighbors’ labels. There are n buckets,

one for each label, and m elements to sort, i.e., one label passed along each edge. The

sorting time is thus O(n + m). The time to run p iterations of the kernel is thus

O(p(n+m)) = O(mp).

The naive implementation of the WL graph kernel is both slow and exceedingly

wasteful. At first glance, the calculation of k for all pairs of N networks for p it-

erations seems to be an O(N2mp) algorithm. Worse, there are exponentially many

possible label sets that could result from a merge, meaning that the space complexity

to store ϕ(G) could be as high as O(2n). However, the implementation of two im-

portant optimizations ameliorates both issues. First, instead of representing ϕ(G) as

a vector with exponentially many dimensions, it is stored as a hashmap from (itera-

tion, vertex) pairs to nonzero values. The space required to store this sparse ϕ(G) is

O(np): each of n nodes will have exactly p labels, one assigned at the end of every

iteration3. These sparse vectors support linear time addition and multiplication, as

such operations merely involve n constant time lookups. Second, ϕ(G) and ϕ(G′) are

not computed lazily for each pair of networks. Rather, values of ϕ(G) are cached for

each network in the dataset. These vectors are then stacked to form the sparse design
3The actual number of entries in the sparse vector will be weakly less than np because nodes with

the same label will be counted in one entry.

39

matrix Φ (of worst-case dimension N × np) before computing the kernel matrix as

K = ΦTΦ. Thus, computing the kernel over all pairs requires time O(Nmp+N2np)

and spaceO(Nnp), a vast improvement over the naive implementation’s runtime and

space requirement.

3.2.3 Node Labels

Assigning initial labels to nodes is a three-step process. First, a labeling scheme assigns

a value to a node. Then, nodes of similar values are grouped into buckets. Finally, nodes

are given labels based on their assigned buckets.

A labeling scheme is a way to allocate initial values to nodes in a network. A well-

chosen labeling scheme is key to the performance of the WL kernel. We experiment

with two types of labeling schemes: uninformative and informative. Uninformative

labeling schemes use only the information inherent to the definition of the retweet

network, for example assigning a node the value corresponding to its out-degree. In-

formative labeling schemes use a statistic associated with the user who published the

tweet represented by a node, for example the number of followers or followees that

the user has. In order to preserve content-blindness, care is taken with informative

labeling schemes to ensure that individual users cannot be identified by their labels.

This is done by assigning the same label to nodes with similar values, a procedure

40

known as bucketing.

Nodes are assigned to one of several variable-size buckets based on their values

within the labeling scheme. For example, for an informative labeling scheme that

assigns values based on the number of followers a user has, we choose a bucket size

B and assign each node v the label

L(v) =

⌊
Fol(v)

B

⌋
(3.11)

This means that nodes whose users have between 0 and (B − 1) followers will share

a label, nodes whose users have between B and (2B − 1) followers will share a la-

bel, and so on. Decreasing B makes each node more distinguishable from its peers,

allowing the model to ingest richer information from the network. However, increas-

ing B reduces the number of distinct kinds of nodes, which may mitigate overfitting.

Bucketing therefore allows for tunable regularization for labeled kernel models.

In the case of an informative labeling scheme, bucketing also enforces content-

blindness by ensuring that a model never has any user-identifying information avail-

able to it. Recalling that nodes correspond to tweets, a user could conceivably be

identified by a model by matching the labels of two nodes within the same labeling

scheme. Given the bucketing procedure, this would be possible if, for example, a

bucket were to contain only one node. However, given the kernel parameters chosen

41

by cross-validation, the bucket with the smallest number of nodes in the training set

contained 13 examples. This provides good protection against the model being able to

single out individual users at test time, thus preserving content-blindness. Further ev-

idence that the model learns topological features rather than user-identifying features

is presented in Section 4.2.

One final concern is that if a single user strongly associated with one tag (e.g., fake)

participated in many networks across the training and testing sets, then their node

label might be used to trivially predict tags for the test set networks in which they

participate. A WL kernel that implicitly re-identified users like this would see opti-

mal performance at p = 0, calculating the kernel matrix solely from the initial labels

without having to look at network connections. However, our results (as described

in Section 4.2) demonstrate that ideal kernels run for up to four iterations, learning

rich topological encodings at the large neighborhood level rather than stopping before

they combine information from adjacent nodes. As such, both the theory and empir-

ical results indicate that kernels employing informative labeling schemes maintain

content-blindness, using the labels as topological building blocks.

For the POL and BIAS tasks, we report results only for a labeling scheme corre-

sponding to a node’s degree due to lack of access to user-level information4. For the
4Twitter APIs impose heavy restrictions on public access to information about users’ followers,

meaning that for POL and BIAS we could not construct informative labeling schemes. The VER dataset
includes user-level information returned by an internal API, so our analysis on the VER task includes

42

VER task, we experiment with a wide variety of informative and uninformative label-

ing schemes, including those based on followers, followees, user engagement scores5,

and the age in days of a user’s account.

3.3 Implementation

The implementation of themodels in this work is in Python 3.5, making use ofmethods

from the networkx (Hagberg et al., 2008) package and Sugiyama et al. (2017). Random

forest, logistic regression, and SVM classifiers drew on functions from scikit-learn (Pe-

dregosa et al., 2011), while the neural networks were implemented in PyTorch (Paszke

et al., 2017).

The train/test split was executed by shuffling the data, then selecting the last 20% to

be the test set. Tuning across regularization constants, penalty functions, and other

hyperparameters shown in Table 3.2 for all models was done using 10-fold cross vali-

dation on the training set. Parameters were updated via the Adam optimizer (Kingma

& Ba, 2014) with at most 1000 epochs for the neural network and via the LIBLINEAR

solver (Fan et al., 2008) with at most 100 epochs for LR, with training halting via early

stopping when appropriate. Modules that depend on random states were seeded deter-

ministically for consistency. The parameter space was explored by grid search, with

experimentation with several informative labeling schemes.
5Number of user tweets, retweets, replies and favorites divided by the account’s age in days.

43

Table 3.2: Hyperparameters Tuned

Model Parameter Description Values Tested

LR C Regularization Constant 0.0001-100
Penalty Regularization Type L1, L2

SVM λb Regularization Constant 0.0001-100
k Kernel Function RBF, Linear

RF
nest Number of Estimators (Trees) 100-10,000
max-depth Decision Tree Max Depth 1-100
max-features Max Features Per Split 1-14

MLP
σ Nonlinearity sigmoid, tanh, ReLU

Hsz Hidden Layer Sizes (20)-(100); (10, 10)-(50, 50);
(5, 5, 5)-(20, 20, 20)

WL

p Number of Iterations 0-10

Sℓ Labeling Scheme
Followers, Followees, Age,
Followers-Followees,
Engagement, Deg., Unique

λwl SVM Regularization Constant 0.0001-100
B Bucket Size 1-10,000

candidate values for each parameter listed in Table 3.2.

44

A lie can travel halfway around the world

while the truth is putting on its shoes.

Charles Spurgeon

4
Results

We refer to the political, bias, and veracity tasks with and without class balancing

as POL-B, POL-U, BIAS-B, BIAS-U, VER-B, and VER-U, respectively.

45

4.1 Predictive Performance

4.1.1 Metrics

To analyze the predictive performance of each model, we report two standard classi-

fication metrics: accuracy and F1 score. While accuracy – the proportion of articles

tagged correctly – is the most straightforward, the F1 score tells a more complete

story and may be more important in determining the real-world applicability of a

model. This is especially true in the VER task, where the implications for tagging a

real story as fake and a fake story as real are particularly fraught. The F1 score is calcu-

lated as the geometric average of two important metrics, precision and recall. Letting

TP , FP , and FN be the number of true positives, false positives, and false negatives,

respectively, precision (prec) and recall (rec) are calculated as:

prec =
TP

TP + FP
(4.1)

rec =
TP

TP + FN
(4.2)

In the VER task, for example, precision measures the proportion of stories that were

indeed fake out of all the stories that the model tagged as fake. Recall measures the

proportion of the fake stories in the full dataset that the model was able to correctly

tag as fake. Intuitively, low precision indicates that a model is tagging many true

46

stories as fake, and low recall indicates that a model is tagging many fake stories as

true. Integrating the two, the F1 score is calculated as:

F1 = 2 · prec · rec
prec+ rec

(4.3)

4.1.2 Experimental Results

POL and BIAS accuracy and F1 score for the network feature baselines and the WL

kernel are reported in Table 4.1. The WL kernel significantly outperforms the base-

line accuracy and F1 on the balanced and unbalanced versions of both tasks. On the

balanced BIAS task in particular, the graph kernel approach demonstrates its effective-

ness, predicting the political leaning of an article at 93% accuracy simply by looking at

the topology of the network surrounding it. In all, the kernel approach represents a 10-

31% improvement on the network feature methods. Notably, the graph kernel model

maintains a high F1 score independent of the balance of classes in the dataset. This

suggests that the model holds significant predictive power unrelated to idiosyncrasies

in the class distribution.

Shown in Table 4.2, results from the VER task are similarly positive. On the bal-

anced dataset, the graph kernel model improves significantly on the network feature

baseline, discriminating between true and false stories with 84% accuracy. While the

47

Task Model acc F1

BIAS-B

LR 0.65 0.65
SVM 0.70 0.69
RF 0.69 0.68
MLP 0.71 0.62
WL 0.93 0.94

BIAS-U

LR 0.80 0.88
SVM 0.77 0.87
RF 0.82 0.91
MLP 0.77 0.87
WL 0.90 0.93

POL-U

LR 0.67 0.66
SVM 0.68 0.66
RF 0.67 0.65
MLP 0.67 0.64
WL 0.76 0.72

POL-B

LR 0.74 0.52
SVM 0.71 0.49
RF 0.74 0.57
MLP 0.74 0.58
WL 0.82 0.74

Table 4.1: Classification performance for the POL and BIAS tasks. The best performer for each
problem and for each metric is bolded.

48

baseline models had trouble on the unbalanced dataset, which was skewed 87%-13%

towards fake stories, the WL kernel performed at 93%– far better than a naive model

that predicts all positives.

This is the first set of results for fake news prediction based solely on network topol-

ogy. Because we are the first to perform classification on the dataset compiled by

Vosoughi et al., there is naturally no baseline against which to directly compare these

performance results. For context, however, previous work has developed content-

aware models that look at both article text and author publication history. These

systems have been able to classify rumors as true or false with between 78% and 89%

accuracy (Liu et al., 2015; Ma et al., 2016; Ruchansky et al., 2017; Yu et al., 2017). The

WL kernel model is thus fully competitive with content-aware models while preserv-

ing the advantages associated with content-blindness1. This novel result suggests that

real-world content classification systems could benefit from the inclusion of topolog-

ical models.
1The benefits of content-blind systems are explained in more detail in Section 4.5.

49

Task Model acc F1

VER-B

LR 0.58 0.58
SVM 0.59 0.59
RF 0.66 0.67
MLP 0.62 0.66
WL 0.84 0.85

VER-U

LR 0.79 0.51
SVM 0.81 0.53
RF 0.86 0.63
MLP 0.86 0.65
WL 0.93 0.77

Table 4.2: Classification performance for the VER task. The best performer for each metric is
bolded.

4.2 Label Tuning Results

For the POL and BIAS task, one iteration of WL was sufficient for high predictive

power. Recall that at iteration i = 1, the label for a node v is

ℓ1(v) = h(L(v)||s1(v)) (4.4)

where s1(v) is the sorted and concatenated M1(v) = {L(v′)|v′ ∈ N(v)}. Thus, each

label at iteration 1 was passed information from the nodes at most one hop away. If

one such label merging operation from neighbors to nodes is sufficient to detect sim-

ilarity (as these results demonstrate), then even the compressed shapes of the local

neighborhood structures around single nodes in a retweet network are highly predic-

tive of the article that the network surrounds. Moreover, the result lends weight to

50

Table 4.3: VER Performance by WL Kernel Parameters

Kernel Parameters Task Accuracy
Labeling Scheme Bucket Size Informative WL-p VER-B VER-U
Unique – × 1 0.51 0.86
Degree 1 × 2 0.61 0.87
Degree 10 × 2 0.60 0.85
Followers 100 ✓ 3 0.84 0.91
Followers-Followees 100 ✓ 4 0.81 0.93
Account Age 100 ✓ 3 0.79 0.92
Account Age 1,000 ✓ 4 0.77 0.90

the hypothesis that subtree methods will both perform and scale well when applied

to Twitter networks, since they do not require long paths to differentiate between

networks. Because average paths are short in these networks, however, graph ker-

nels based on random walks or shortest paths are expected to underperform subtree

kernels.

For the VER task, the choice of initial labels for the WL kernel was vital to the

performance of the model. Table 4.3 describes performances for informative and un-

informative labeling schemes on test data, alongwith their corresponding bucket sizes.

The unique label baseline2 performs at-chance since it does not encode any topologi-

cal information, while the degree labels perform slightly better than at-chance, since

they begin to incorporate information about the structure of the network. Indeed, la-

bels serve to divide tweets into “types” such that the kernel can associate patterns of
2This uninformative labeling scheme assigned a different label to each node in the dataset, effectively

erasing all topological information.

51

interactions between tweets of different types with the networks that surround real

and fake stories. For example, the uninformative degree labels roughly correspond to

the importance of particular tweets in terms of their propensity for being retweeted.

Once a kernel takes in such information as a tweeting user’s number of followers or

the age of their Twitter account, however, it performs far better than both the uninfor-

mative kernels and the network feature baselines. The optimal value for the number

of kernel iterations was 3 or 4, depending on the labeling scheme. With the VER net-

works fully uncompressed, the kernels were able to discern topologically meaningful

patterns across paths of several edges, in contrast with the result that one iteration

was optimal for the other tasks. The highest accuracy for the balanced VER task was

obtained by using the Followers labeling scheme with a bucket size of 100, while for

the unbalanced task it was Followers-Followees with a bucket size of 100. The rel-

atively small difference in performance between these two parameter sets indicates

that they hold similar predictive power, not that the class distribution of the test set

affects the optimal labeling.

Tuning the bucket sizes required methodical experimentation. Figure 4.1 illustrates

the results of applying a variety of bucket sizes to the four best-performing labeling

schemes. The F1 score is relatively low when buckets are both small (since this im-

poses artificial distinctions between truly similar users) and large (since this erases

52

Figure 4.1: VER-U F1 Score by labeling scheme and bucket size. Predictive power peaks some-
where in the middle of the bucket size range for each label, indicating that neither overspecifying
nor overgeneralizing user types is helpful for classification.

53

differences between users, treating them all uniformly). As such, grid search found

that choosing bucket sizes around 100 led to optimal performance. This result is also

significant because it demonstrates that an ideal model does not “cheat” within the

content-blind domain by simply trying to identify individual users by their character-

istics. Instead, the kernel makes a bona fide effort to learn the latent types of users in

the network, performing best when the space of users is neither too granular nor too

coarse.

One challenge inherent to any labeling scheme is that the labels induced are dis-

crete. As such, there is no easy way to interpolate between labels or to combine them

meaningfully. Because several labeling schemes have good predictive performance,

further work may involve ensemble models that train a separate kernel for each set of

kernel parameters and make predictions based on a majority vote across the members

of the ensemble.

4.3 Interpretation

To analyze the network features that were most predictive for the highest-performing

baseline model (RF), we calculate the Gini importance (Breiman et al., 1984) for each

component of the network feature vector. This coefficient roughly corresponds to

the decrease in prediction error associated with the inclusion of the feature, averaged

54

Table 4.4: Random Forest Gini Coefficient, Ranked By Feature Per Task

Rank POL BIAS VER
1 Max O-D Cen. 0.196 Mean Cl. Cen. 0.163 Mean O-D Cen. 0.081
2 Assort. 0.100 Std. Cl. Cen. 0.132 Mean Cl. Cen. 0.078
3 Mean O-D Cen. 0.088 Std. O-D Cen. 0.100 Assort. 0.059
4 Density 0.083 Assort. 0.082 Std. O-D Cen. 0.056
5 Mean Cl. Cen. 0.072 Mean O-D Cen. 0.064 Density 0.054

across all the trees in the random forest ensemble. With full results reported in Table

4.4, the most important feature for the POL task was the max out-degree centrality,

while the mean closeness centrality was most predictive for the BIAS task. In tradi-

tional terms, this indicates that the subject matter of an article most affects network

features associated with the behavior of high-influence users, while the political lean-

ing of an article affects those features associated with the behavior of average users.

Mean out-degree centrality and closeness centrality ranked highest by Gini impor-

tance for the VER task and were approximately equal in value, though neither was

particularly predictive. The baseline performance results indicate that while there is

some signal in basic network statistics, kernel methods that integrate full topology

are more powerful. Indeed, Figure 4.2 demonstrates that baseline models had trouble

separating networks by their tags.

A similar feature importance analysis for the kernel model is much more difficult

due to the dimensionality of the feature vectors associated with the model. While the

baseline models took in 14-dimensional feature vectors for each network, the graph

55

kernel regularly computed representations of networks with over 100,000 dimensions.

Moreover, because the kernelized learning method does not operate over singular fea-

tures, isolating specific topological motifs that are highly predictive is intractable. As

such, deducing the particular subgraphs that are most associated with each tag is a

topic for future work.

To visualize the contrast between the network feature baselines and the kernelized

methods, two flavors of principal component analysis (PCA) can be used to compute a

dimensionality reduction from the feature space and from the kernel space. First, PCA

based on singular value decomposition (SVD) may be used to visualize the feature vec-

tors in two dimensions (Jolliffe, 1986). This method diagonalizes the covariance matrix

of the demeaned data to extract a low-dimensional representation of the network fea-

tures. Next, kernel PCA (Scholkopf et al., 1998) can be used for the WL models. This

variation on standard PCA performs the linear operations associated with PCA in the

Hilbert space of the kernel. The results of this operation on the test sets are shown for

the balanced version of each task in Figure 4.2. The success of the topological models

are evident in this dimensionality reduction, with Kernel PCA resulting in a visually

interpretable linear boundary between classes for all three problems.

Because of the amount of training data available, theWL kernel model did not reach

peak performance on any of the tasks. By varying the size of our training sets, perfor-

56

Figure 4.2: PCA and Kernel PCA for POL, BIAS, and VER demonstrate that the topological
kernel is able to compute an interpretable linear boundary between networks with different tags
(right), while the feature models struggle to extract predictive information from the networks
(left).

57

Figure 4.3: Model Convergence: BIAS

mance is observed to increase as the model consumes more training data, but not yet

converge. However, a similar experiment demonstrates that it is less obvious that the

baseline models have not converged, especially for the VER task. This finding further

confirms the superiority of the WL graph kernel in the Twitter network domain and

bodes well for future work involving larger datasets. Figures 4.3, 4.4, and 4.5 demon-

strate the disparity between WL kernel and network feature model convergence for

the BIAS and POL tasks, respectively.

4.4 Timing Results

One of the major criticisms of graph kernels is that they do not scale; the graph iso-

morphism problem at the heart of many kernel algorithms has no known polynomial

58

Figure 4.4: Model Convergence: POL

Figure 4.5: Model Convergence: VER

59

time algorithm (Garey & Johnson, 1990). Thus, many state-of-the-art graph kernels

have runtimes that are cubic or worse (Vishwanathan et al., 2010). However, the do-

main of online content tagging is a good fit for graph kernels since the networks are

significantly smaller than those in traditional graph kernel applications like biochem-

istry, in which networks may have hundreds of millions of nodes (Hall et al., 2017).

To test the runtime of the network feature baseline, the feature extraction routine was

run ten times for each (unbalanced) dataset and averaged. Timing the graph kernel

was done by recording the time taken to complete one iteration of the WL kernel ten

times after having assigned initial labels (a trivial operation). Table 4.5 presents run-

time results for the model algorithms, showing that the optimized implementation of

theWL kernel is significantly faster than the network feature extraction routine. Even

when considering that the optimal WL parameters call for three or four iterations, the

kernel routine takes much less time than the baseline model. Times for the VER task

are higher than times for POL or BIAS because VER networks were larger and denser

on average. One reason for the difference in runtime between the kernel and baseline

models is that the closeness centrality features in the baseline require the computa-

tion of the all-pairs shortest path matrix for a network, an expensive operation that

is at least quadratic3 in n. In contrast, the WL kernel is linear in both n and m, as
3Since there are n2 pairs of nodes, finding the shortest path between all of the pairs (even if finding

a shortest path were a constant time operation) is Ω(n2).

60

Table 4.5: Runtime: Total seconds, seconds per network, and seconds per edge to compute net-
work features and one iteration of WL graph kernel. All experiments are performed on a Micosoft
Azure NC6 cloud machine running Linux Ubuntu 16.04 with 6 CPUs, 1 NVIDIA Tesla K80 GPU,
and 56GB RAM.

task model total per network per edge (×10−5)

POL Network Features 120.8 0.046 3.61
WL Kernel 19.4 0.007 0.58

BIAS Network Features 100.8 0.019 3.53
WL Kernel 15.1 0.003 0.53

VER Network Features 205 0.167 17.1
WL Kernel 34.7 0.028 2.87

demonstrated in Section 3.2.2.

4.5 Adversarial Robustness

An important feature of the content-blind domain is that models that abide by its rules

are immediately resistant to tampering by malicious actors intent on inducing them

to mislabel news stories. Consider an arbitrarily complex natural language model for

fake news classification that is not content-blind. By definition, such amodel is trained

on the language of historical news, analyzing the veracity of a new article by feeding

the text of the article through the model to make a prediction. Due to the nature of the

model, a producer of content has sole control over the factors that will influence the

model to describe the content as real or fake. Simply put, the writer of news produces

the full breadth of the information that the model can use to determine the veracity

of the story. This puts the burden on the model to be resilient enough to perform well

61

in the face of adversarial reverse-engineering.

This dynamic is reminiscent of the battle between producers of spam and the email

providers trying to filter it. Early email providers frequently released complex spam

classifier systems that relied on advanced natural language processing techniques.

Spam producers in turn quickly learned how to fool each one by adjusting the lan-

guage of their emails in careful ways to generate their profits before the next classifier

appeared. Each classifier had a short lifespan because spamwriters were in full control

of the input to the model, allowing them to write emails whose contents were mali-

cious but that seemed harmless to the classifier (Blanzieri & Bryl, 2008). For spam and

social network classification alike, no matter how complicated or precise a content-

aware system may be, its fundamental nature pits the strength of the model squarely

against the cleverness of the one intent on beating it.

However, a content-blind system for veracity classification deftly sidesteps this is-

sue. Drawing its predictive power from network topology rather than from news text,

such a system is muchmore difficult to disrupt. The shape of a cascade surrounding an

article is a loose proxy for the overarching behavior of the crowd as it interacts with

the content. As such, an adversary that would be able to arbitrarily alter the input to a

content-aware model immediately faces a series of challenges when confronted with

a content-blind model. Most important among them is that the adversary would have

62

to orchestrate a coordinated attack in which a critical mass of network participants

changes its behavior such that the model mis-classifies the article. This is clearly a

much harder task than rewriting the article craftily to fool a content-aware model,

instead requiring significant organizational influence within the network.

The success of such models is evident in the spam detection space: modern solu-

tions for spam classification depend on models that operate in a domain tangential

to content-blindness. Looking at network relationships between email senders in ad-

dition to linguistic content, these systems have more success and longevity (Tseng

& Chen, 2009) than their predecessors. This is because the input to such models is

not only the text of an email but also a network of relationships involving the sender,

which is much more challenging to falsify. Spam senders’ networks are topologically

different from those of non-spam senders – even if the spam is written carefully to

fool a language model – due to the fundamental nature of the spammer’s email usage.

Spam detection systems that rely on non-content input break the coevolution cycle be-

tween classifiers and spam writers, catalyzing the success of spam detection systems

in use today (Bhowmick & Hazarika, 2016).

Fake news writers face a similar predicament when faced with a topological model.

Recall that the kernels that had themost success in the VER task ran for three or four it-

erations, meaning that the networkmotifs most predictive of the various tags involved

63

subgraphs containing at least as many tweets. With the kernels taking into consider-

ation |V | such subgraphs for each network and there being exponentially many con-

figurations of subgraphs, the model ingests topological information at the granularity

of thousands of tweets, making these patterns extremely challenging to forge. The

content-blind domain thus shifts the advantage from the adversary to the classifier,

forcing a malevolent agent to solve a much more difficult problem than rewriting a

fake article in a clever way to avoid detection.

64

Truth is powerful and it prevails.

Sojourner Truth

5
Conclusion

This work introduced a novel set of tasks and methods at the intersection of machine

learning, news classification, and network science. Specifically, the content-blind do-

main contextualized the techniques available for identifying attributes of online arti-

cles using nothing but the topologies of the networks that surround them. Construct-

ing two novel real-world datasets of Twitter news networks and performing the first

65

machine learning work on an important third dataset, this research used both net-

work feature models as baseline performance indicators and a fast implementation of

the Weisfeiler-Lehman graph kernel to classify news articles across three important

dimensions. Tested on both class-balanced and class-unbalanced datasets, the WL

kernel outperforms the baseline in accuracy in the POL and BIAS tasks by up to 31%

and in runtime efficiency by up to 108%. Most strikingly, the topology of Twitter net-

works, combined with some basic information about the users involved, was enough

to accurately discriminate between real and fake news at 84% accuracy, a score that

meets or beats previous work that relies on much richer content-aware training data.

These results were then interpreted topologically by reasoning that analyzing Twitter

networks at the node-neighborhood granularity is important for content-blind classi-

fication and by demonstrating mathematically that the WL kernel does exactly that.

Last, the model’s robustness to adversarial agents attempting to fool the system was

established by way of arguing that the problem such an agent would have to solve

becomes intractable within the content-blind domain.

These findings demonstrate that information encoded in the shape of the network

surrounding an article is rich enough to inform prediction as to the article’s topic,

political leaning, and veracity. These findings raise important questions at the heart

of online discourse: how might these models be deployed on social media platforms,

66

and what rates of false negatives and positives would be reasonable with respect to

a user-facing fake news classification system? Are false negatives worse than false

positives? Can we predict other latent factors of news articles, such as sentiment, hate

content, or extremism, strictly by their topologies? How hard is it really to coordinate

the behavior of thousands of Twitter users to trick a content-blind model?

This work is not meant to suggest that the methodology presented could be used

“straight out of the box” in production to boost or diminish the influence of certain

articles– or more extremely, to regulate their publishing outright. Obviously, use

in the real world would require careful consideration of error and confidence toler-

ances, failure modalities, and mechanisms of communicating predictions to end users.

However, topology does clearly hold significant predictive power and could play an

important role in fake news prediction systems in the real world, especially given the

advantages inherent in the content-blind formulation. One type of hybrid model that

may hold promise would combine elements of content-blindness with sophisticated

natural language processing techniques to leverage the advantages and successes of

each.

Other future work might include testing other types of graph kernels against the

baseline set by WL; while the standard kernels based on random walks and shortest

paths should be a starting point, more exotic kernels that involve deep neural net-

67

works (Nikolentzos et al., 2017; Yanardag & Vishwanathan, 2015) might be explored.

Because of our findings regarding model convergence, we believe that the WL kernel

may perform even better if given more training data. Further experimentation is nec-

essary with even larger datasets: one candidate is Facebook, a platform with nearly

ten times as many users as Twitter. Development of additional prediction tasks is

another important avenue of research; a multi-class topic classification problem that

extends our POL task is one possibility. Yet another area of future work is to introduce

a notion of time; truncating edges based on when they formed can simulate perform-

ing the classification tasks in real time, allowing insight into how prediction accuracy

improves with the evolution of the network.

Yet even a perfect fake news detector is useless without a list of candidate stories

and an effective way of communicating predictions. Put otherwise, early detection

of false content is useless if there is no way to gather candidate articles for consider-

ation, and what good is the knowledge that a story is real or fake if a user will not

believe it when told?. The former issue is part of a larger open question about how to

identify stories poised to go viral before they reach critical mass, while the latter is a

problem tangential to the domain of human behavior. Cheng et al. (2014) find success

when trying to predict the future virality of news stories, while Zhao et al. (2015) are

able to identify trending unsubstantiated rumors that have not yet been fact-checked.

68

A combination of those models with the methods developed here may be useful in

constructing a successful end-to-end system for real-world deployment. The issue of

communicating model predictions to a user is thornier. An individual’s implicit biases,

political leanings, and demographic profile all affect the ways in which they can be

convinced that a model’s output is correct. Recent research by Pennycook & Rand

(2017) demonstrates that simply telling a user that an article’s factuality is disputed

results in a negligible decrease in the user’s belief in the story. As such, more work

is necessary to uncover the underlying motivations of news consumers, including the

mechanisms by which people change their opinions and shift from belief to disbelief

with respect to a news story.

Despite these challenges, the result that fake news may be discoverable through the

topology of its surrounding networks is heartening. It is certainly an academically

novel result, linking crowd behavior with network structures that may be disentan-

gled and translated via machine learning. But perhaps more important is its potential

for use in slowing the perpetuation of fake news–with the high stakes of truth, democ-

racy and our civic fabric, a small step forward towards a more accurate information

ecosystem is truly newsworthy indeed.

69

References

Allcott, H. & Gentzkow, M. (2017). Social media and fake news in the 2016 election.
Journal of Economic Perspectives, 31(2), 211–36.

Bailey, N. T. et al. (1975). The mathematical theory of infectious diseases and its appli-
cations. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks
HP13 6LE.

Bakshy, E., Rosenn, I., Marlow, C., & Adamic, L. (2012). The Role of Social Networks
in Information Diffusion. arXiv:1201.4145 [physics]. arXiv: 1201.4145.

Bhowmick, A. & Hazarika, S. M. (2016). Machine learning for e-mail spam filtering:
Review, techniques and trends. arXiv preprint arXiv:1606.01042.

Blanzieri, E. & Bryl, A. (2008). A survey of learning-based techniques of email spam
filtering. Artificial Intelligence Review, 29(1), 63–92.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J., &
Kriegel, H.-P. (2005). Protein function prediction via graph kernels. Bioinformatics,
21(suppl_1), i47–i56.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks.

Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter.
In Proceedings of the 20th international conference on World wide web (pp. 675–684).:
ACM.

Cheng, J., Adamic, L., Dow, P. A., Kleinberg, J. M., & Leskovec, J. (2014). Can cascades
be predicted? In Proceedings of the 23rd International Conference on World Wide Web,
WWW ’14 (pp. 925–936). New York, NY, USA: ACM.

70

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3),
273–297.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research, 9, 1871–
1874.

Feragen, A. (2013). Robust geometric graph kernels for bioimaging applications.

Friggeri, A., Adamic, L., Eckles, D., & Cheng, J. (2014). Rumor cascades.

Gabielkov, M., Ramachandran, A., Chaintreau, A., & Legout, A. (2016). Social clicks:
What and who gets read on twitter. (pp. 179–192).

Garey, M. R. & Johnson, D. S. (1990). Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.

Goel, S., Watts, D. J., & Goldstein, D. G. (2012). The structure of online diffusion
networks. In Proceedings of the 13th ACM conference on electronic commerce (pp. 623–
638).: ACM.

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure,
dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science
Conference (SciPy2008) (pp. 11–15). Pasadena, CA USA.

Hall, R. J., Murray, C. W., & Verdonk, M. L. (2017). The fragment network: A chem-
istry recommendation engine built using a graph database. Journal of Medicinal
Chemistry, 60(14), 6440–6450. PMID: 28712298.

Horváth, T., Gärtner, T., & Wrobel, S. (2004). Cyclic pattern kernels for predictive
graph mining. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’04 (pp. 158–167). New York, NY, USA:
ACM.

Isaac, M. & Ember, S. (2016). For election day influence, twitter ruled social media.

Jolliffe, I. T. (1986). Principal Component Analysis. Berlin; New York: Springer-Verlag.

71

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between labeled
graphs. In Proceedings of the 20th international conference on machine learning (ICML-
03) (pp. 321–328).

Kemp, S. (2017). Number of social media users passes 3 billion with no signs of
slowing.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Kriege, N. & Mutzel, P. (2012). Subgraph matching kernels for attributed graphs.
arXiv preprint arXiv:1206.6483.

Le, Q. & Mikolov, T. (2014). Distributed representations of sentences and documents.
In International Conference on Machine Learning (pp. 1188–1196).

Liu, X., Nourbakhsh, A., Li, Q., Fang, R., & Shah, S. (2015). Real-time rumor debunking
on twitter. In Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management (pp. 1867–1870).: ACM.

Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K.-F., & Cha, M. (2016).
Detecting rumors from microblogs with recurrent neural networks. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence (pp. 3818–
3824).: AAAI Press.

MacKay, D. J. (1997). Gaussian processes-a replacement for supervised neural net-
works?

Maroco, J., Silva, D., Rodrigues, A., Guerreiro, M., Santana, I., & de Mendonça, A.
(2011). Data mining methods in the prediction of dementia: A real-data comparison
of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic re-
gression, neural networks, support vector machines, classification trees and random
forests. BMC Research Notes, 4(1), 299.

Mitchell, A., Gottfried, J., Kiley, J., & Matsa, K. E. (2014). Political polarization and
media habits.

72

Molina, B. (2017). Twitter overcounted active users since 2014, shares surge on profit
hopes.

Newman, M. E. (2003). Mixing patterns in networks. Physical Review E, 67(2), 026126.

Nikolentzos, G., Meladianos, P., Tixier, A. J.-P., Skianis, K., & Vazirgiannis, M. (2017).
Kernel graph convolutional neural networks. arXiv preprint arXiv:1710.10689.

Parkinson, H. J. (2016). Click and elect: how fake news helped donald trump win a
real election.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., & Lerer, A. (2017). Automatic differentiation in pytorch. In NIPS-W.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pennycook, G. & Rand, D. G. (2017). Assessing the effect of “disputed” warnings and
source salience on perceptions of fake news accuracy.

Rainie, H., Anderson, J. Q., & Albright, J. (2017). The future of free speech, trolls,
anonymity and fake news online. Pew Research Center Washington, DC.

Ramon, J. & Gärtner, T. (2003). Expressivity versus efficiency of graph kernels. In
Proceedings of the first international workshop on mining graphs, trees and sequences
(pp. 65–74).

Read, M. (2016). Donald trump won because of facebook.

Ruchansky, N., Seo, S., & Liu, Y. (2017). Csi: A hybrid deep model for fake news.
arXiv preprint arXiv:1703.06959.

Scholkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5), 1299–1319.

73

Scholkopf, B. & Smola, A. J. (2001). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press.

Shearer, E. & Gottfried, J. (2017). News use across social media platforms 2017.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v., Mehlhorn, K., & Borgwardt, K. M.
(2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning Research,
12(Sep), 2539–2561.

Sugiyama, M., Ghisu, M. E., Llinares-López, F., & Borgwardt, K. (2017). Graphkernels:
R and Python packages for graph comparison. Bioinformatics, (pp. btx602).

Tacchini, E., Ballarin, G., Della Vedova, M. L., Moret, S., & de Alfaro, L. (2017). Some
Like it Hoax: Automated Fake News Detection in Social Networks. arXiv:1704.07506
[cs]. arXiv: 1704.07506.

Tseng, C.-Y. & Chen, M.-S. (2009). Incremental svm model for spam detection on dy-
namic email social networks. In Computational Science and Engineering, 2009. CSE’09.
International Conference on, volume 4 (pp. 128–135).: IEEE.

Varol, O., Ferrara, E., Davis, C. A., Menczer, F., & Flammini, A. (2017). Online human-
bot interactions: Detection, estimation, and characterization. CoRR, abs/1703.03107.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010).
Graph kernels. J. Mach. Learn. Res., 11, 1201–1242.

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online.
Science, 359(6380), 1146–1151.

Vosoughi, S., Vijayaraghavan, P., & Roy, D. (2016). Tweet2vec: Learning tweet em-
beddings using character-level cnn-lstm encoder-decoder. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information Re-
trieval (pp. 1041–1044).: ACM.

Yanardag, P. & Vishwanathan, S. (2015). Deep graph kernels. In Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(pp. 1365–1374).: ACM.

74

Yao, D., van der Hoorn, P., & Litvak, N. (2017). Average nearest neighbor degrees in
scale-free networks. arXiv preprint arXiv:1704.05707.

Yu, F., Liu, Q., Wu, S., Wang, L., & Tan, T. (2017). A convolutional approach for mis-
information identification. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence (pp. 3901–3907).: AAAI Press.

Zhao, Z., Resnick, P., &Mei, Q. (2015). Enquiring minds: Early detection of rumors in
social media from enquiry posts. In Proceedings of the 24th International Conference
on World Wide Web, WWW ’15 (pp. 1395–1405). Republic and Canton of Geneva,
Switzerland: International World Wide Web Conferences Steering Committee.

75

