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1 Introduction

Bitcoin is proving to be a global force: increasingly many people across the world are utilizing

the cryptocurrency as a medium of exchange, and governments are starting to acknowledge

its prevalence. Some argue that it has the ability to reshape economies and revolutionize how

people engage in transactions. Bitcoin is made unique by its stark difference from typical

currencies: it is a system that allows for the transfer of funds without the need for a physical

medium or a centralized authority. Created in 2008 by “Satoshi Nakamoto,” a founder who

remains anonymous, Bitcoin is essentially a solution to the well-known computer science

construct called the “Byzantine Generals Problem” [1].1 In short, this problem is based

on the issue of trying to reach an agreement across a large network that may not be fully

reliable and could contain malicious adversaries [1]. Combining well-established public key

cryptography methods, an incentivized verification system that simultaneously introduces

new currency into the system (mining), and a publicly accessible record of all transactions

(the blockchain), Bitcoin’s efficient solution to the Byzantine’s General Problem seems to

make it a feasible and reliable worldwide currency.

Bitcoin’s functionality as a secure currency is grounded in the efficacy of three major

pillars: cryptography, bitcoin mining, and blockchain technology.2 This paper will discuss

all three pillars in depth, but the latter two are of particular focus. The first, cryptography,

lays the foundation for safe transfer of funds and makes fraud extremely difficult. Public key

cryptography is based on the combination of multiple well-known and dependable algorithms

that make it nearly impossible to access another person’s funds by attempting to guess or

generate his/her “passwords” (private keys, to be precise) [2]. Cryptography is an area that

is always being improved upon, especially because it is used to protect sensitive, digitally-

stored information in almost any context or system. The second of our three pillars, bitcoin

mining, is a truly unique self-sustaining system that achieves two important goals at once:

verification of the validity of all transactions in the system and introduction of new currency

into the system. Both of these goals are made possible by the incentivization of miners with

1“Satoshi Nakamoto” is a pseudonym for the founder of Bitcoin. No one know his/her real name.
2We capitalize “Bitcoin” when referring to the network as a whole or the technology as a whole; we leave

it lowercase when referring to “bitcoin” as a unit of currency
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bitcoin rewards. Bitcoin miners are rewarded for every block of transactions (to be discussed

later in detail) they can verify, and every verified block injects a constant amount of currency

into the system. The destination of said verified blocks brings us to the final of our three

pillars: the blockchain. “Blockchain” is a general term for a chain of blocks of information

(hence the name!), which are connected via encoded alphanumeric references to each other

[1]. The blockchain is essentially a large version of the widely-used data structure, a linked

list. Of course, there are specific details about blockchain, and even more so Bitcoin’s

blockchain, that make it more specialized than a simple linked list (we will discuss these

very details later). Because a blockchain allows for efficient storage of large quantities

of information, it is possible for Bitcoin’s entire history of transactions, protocol changes,

forking, etc. to be encoded in this data structure. Finally, it is critical to note that the

blockchain is at the core of Bitcoin’s success: because the blockchain is publicly-accessible,

maintained locally on most Bitcoin software, and inherently difficult to manipulate, it is

very hard to damage or cheat the system without it being detected by many users.

As with any new technology, there are unexpected flaws that arise as it becomes

more widely used. The case is no different for Bitcoin: since its founding, there have been

frequent iterations on both the system protocol and the core Bitcoin software (called Bitcoin

Core) to improve upon inefficiencies and issues in the system architecture [1]. However, there

are some “flaws” that are more subtle and take longer to discover than others. One that

has drawn significant attention in the world of cryptocurrency-focused academicians is the

incentive compatibility of bitcoin mining. Bitcoin mining, which we discussed earlier to be

a verification and currency injection process, is supposed to be performed in a very specific

way, guided by a set of rules known as “protocol” [8]. Because bitcoin is decentralized and

no one body is “watching over” the actions of miners, it is impossible to force participants

in any capacity to follow protocol. Counterintuitively, this is actually what makes Bitcoin

special: the underlying technology creates a system in which breaking rules is generally

not beneficial and can often be negatively impactful to the transgressor. However, in the

case of mining, many scholars (beginning primarily in 2013) have found there to be potential

incentive in breaking the rules. Scholars have found that following certain decision processes
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can lead to higher expected revenues [4; 5; 6; 3].

This paper aims to investigate one of such exceptions to the incentive-compatibility

trait of the network. Specifically, we will expound upon the current literature focused

on a phenomenon coined as “Selfish Mining.” We will start by reviewing the status quo

protocol-following mining strategy, then do a detailed walk-through of the selfish mining

strategy, next build a model to predict the revenue of said miners, and finally simulate the

bitcoin network with many “selfish miners” to compare their actual revenues with those that

the revenue model would predict. The current literature focused on selfish mining assumes

there is one colluding group that engages in selfish mining as a team—my simulations aim to

investigate the more realistic case in which many miners separately engage in the subversive

strategy.

Before performing the above-described modeling and analysis, it is important to

discuss the technical details of the Bitcoin system. Because Bitcoin has so many unique

components not well-mirrored in traditional currencies, it is necessary to build a base of

knowledge before moving into the complexities of the models and simulations. Specifically,

because our investigation requires a strong understanding of how the blockchain works, one

must understand how bitcoin mining works; in order to understand how bitcoin mining

works, one must understand the how nodes operate in the bitcoin network and how trans-

actions are sent between them. Thus, we will start from the most fundamental aspect of

the system, transactions, and build up slowly to bitcoin mining and the blockchain.
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2 Bitcoin: A Technical Overview

2.1 Transactions and Ownership

We will begin our technical overview of the Bitcoin system by looking at transactions and

ownership, the most fundamental aspects of Bitcoin. The transaction story we start with

will set the stage for some of the more complicated details to follow.

2.1.1 A Simple Transaction

Let’s begin with a simple story of transaction between two people, Alice and Bob. Alice

wants to buy a $550 painting from Bob, but she does not have the $550 in cash with her to

make the purchase. Alice offers to pay Bob in bitcoin, but Bob does not own bitcoin nor

does he have a “virtual wallet” that can use to receive it. Bob goes ahead and downloads

one of many available virtual wallet apps on his phone. He could have also found a website

that hosts virtual wallets or downloaded a special wallet client software for his desktop

computer—for convenience sake, though, he chooses to use his phone for now. As soon as

Bob makes an account on the wallet (via email address, password, and potentially some

other personally-identifying information), he is ready to receive bitcoin. When he opens the

virtual wallet, he clicks on a button that says “receive bitcoin” which brings him to a screen

with a scannable QR code (essentially a square barcode) and underneath it, a 34-character

alphanumeric code. That code represents a “bitcoin address” associated with Bob. If he

gives that address to Alice, she can type it into the “send bitcoin” section of her virtual

wallet and indicate a number of bitcoin (or a US dollar amount that will get converted to

bitcoin at the current exchange rate) she wants to send to Bob.3 Once she hits “send,”

Bob’s virtual wallet will now “have” the funds Alice just sent him; similarly, Alice’s wallet

will now have “lost” the money she sent.4 Bob gives Alice the painting, and both sides of

the transaction are complete.

3Note that the QR code in Bob’s wallet also encodes that 34-character address. These QR codes make
it easy for someone to scan with their phone rather than having to type in 34 characters.

4We use quotation marks with specific intention because, as we will learn, bitcoin is not stored in the
same way we think of as cash or funds being stored in accounts.
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Now that we have laid out the overview of a Bitcoin transaction, let’s look at the

technical details of what is going on under the hood.

2.1.2 Keys, Addresses, and Cryptography

The 34-character alphanumeric code that Bob’s app displayed was not simply a randomly-

generated code. Rather, the virtual wallet software will generate a random number and

(in most cases) pass that number through the SHA-256 function, a particularly effective

hashing function [1]. A hashing function is a function that generates a unique output for

every input, but has an output such that there is no way to derive the input from seeing the

output. In simpler terms, it serves as a one-way function that can only be used to produce

outputs such that one can’t ever derive inputs from outputs [1].5 After passing the random

number through the SHA-256 function, the wallet software will store that resulting output

as a “private key.” A private key is the most critical component to anyone’s ownership of

bitcoin: it’s like a password in the sense that anyone who has it can gain ownership of that

person’s bitcoins, and if it’s lost, the owner can never access his/her bitcoin again. This is an

important point worth emphasizing: private keys are the only way one can access his/her

bitcoins, and anyone who obtains private keys has the rights to bitcoins associated with

those keys. We will return to private keys shortly. For every private key a wallet generates,

it also generates a “public key” using a special process called the Elliptic Curve Digital

Signature Algorithm (ECDSA), which essentially uses the geometry of an Ellpic Curve to

generate a corresponding string of alphanumeric characters that is uniquely associated with

the input private key [1; 7]. As with a hashing function, person A cannot “back out” a

private key that belongs to person B with just the public key of person B—the ECDSA is

one of the most secure algorithms in terms of concealing input information [7]. Now that

the wallet software has generated a corresponding pair of keys, a private key and a public

key, the software can generate a bitcoin address.

A bitcoin address is created by passing a public key into a few hashing functions (in

5This leads to an important consequence: it is simple and quick to verify that a certain input generates
an output that someone claims it does, but seeing the output alone in no way reveals the input. This fact
will become critical in our section on bitcoin mining.
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123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

Figure 1: This is the set of characters often referred to as “Base58,” which make up bitcoin
addresses . Note that the “l” (lower case L), “I” (upper case i), “O” (upper case o) and “0” (zero)
are left out of the character set to avoid potential confusion or mis-copying of addresses due to
similar-looking characters [1].

a similar way the private key was created via hashing a random number), and the output

will be a string between 26 and 35 characters [9]. Specifically, the output string with almost

always be in “Base58,” meaning each character comes from the set of characters shown in

Figure 1.

A bitcoin address can encode a few different pieces of information and serve multiple

purposes, but we will focus on its most fundamental and relevant use. All bitcoin transac-

tions involve at least two bitcoin addresses: an address of the sender and an address of the

receiver.6 These addresses associate transactions with an “owner” in the sense that only

someone with knowledge of the private key associated with a bitcoin address can affirm a

transaction involving that address. Furthermore, only holders of the private key associated

with a bitcoin addresses have ownership of the funds associated with that address. One

might ask: How can someone in the network confirm that a person claiming to be associ-

ated with a bitcoin address is truly in ownership of that address? Well, any bitcoin software

(be it a virtual wallet or otherwise) that has the ability to transact bitcoin also has the

ability to “check” if a private key and public key pair match a given bitcoin address [1].

We can refer to our to our earlier discussion of the transaction between Alice and Bob to

explain this point in detail.

In Bob’s transaction with Alice, when Alice hits “send” on her virtual wallet, the

virtual wallet is creating a transaction (which has a lot of other information in addition to

the amount of money being transacted, the address of Alice and that of Bob, and a time

stamp of the transaction) with a unique “signature” produced from a hashing of her private

key and her public key.7 A “signature,” also a string of characters, is something that can be

6The one exception to this is what’s called a “coinbase” transaction, which contains a receiving address
of a bitcoin miner but no sender address. This is the special transaction that awards bitcoin miners: we will
discuss the purpose and mechanism of rewarding miners in section 2.3.2.

7When we say “a hashing,” we refer to putting some input through a hashing function to get an encoded
result of the input.
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confirmed by anyone to be valid, but does not give away Alice’s private key [8; 9]. That is,

someone with Alice’s bitcoin address (which is a public piece of information) and a signature

from one of her transactions (which Alice’s software created by combining her private key

with her public key) can confirm that Alice in fact (or someone possessing her private key)

initiated that transaction. Someone trying to forge Alice’s identity without her private key

could attempt to create a fake transaction using her (public) bitcoin address, but anyone

could check with their software that the signature produced from the forged key and the

(public) bitcoin address is not valid [2]. It is this very idea of a non-forgeable signature

which makes fraud in bitcoin nearly impossible. The computer science principles behind

public key cryptography are constantly improving ahead of adversaries, and it is the very

component of the system that is likely to keep rampant fraud out of the bitcoin network [2].

2.1.3 Ownership

One of the most difficult concepts underlying bitcoin is what it means to “own” bitcoin.

Contrary to common belief, there is no such thing as an “account” in Bitcoin. Virtual wallets

are misleading, because they convey the idea that one’s money is “stored” in an account

of sorts. It turns out that Bitcoin is made unique by its lack of a traditional ownership

structure.

One’s ownership of bitcoin is defined by any transaction in Bitcoin’s history (which

is encoded in the blockchain, to be discussed in section 2.4) that involves a bitcoin address

to which someone has the corresponding private key [8]. So long as someone can use any

bitcoin software and provide a valid private key for one or more bitcoin addresses that have

been used in past transactions, he/she can then sign off on sending bitcoin earned in those

transactions to other bitcoin addresses [1] . Thus, ownership is as simple as that: having a

private key that produces a valid signature with a bitcoin address gives someone “ownership”

of all funds pledged in past transactions to that bitcoin address [1; 2; 9]. And thus, funds

are not stored in a virtual wallet or an account—rather, funds for a given user are found in

all blocks on the blockchain that contain transactions involving any of that user’s bitcoin

addresses. Furthermore, for some bitcoin owner A, gaining or losing funds is a function of
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transactions being added to the blockchain that either pledge bitcoin from another bitcoin

address to one of A’s bitcoin addresses or pledge bitcoin from one of A’s bitcoin addresses

to another bitcoin address.8

Another important question that might arise is: Where does the bitcoin come from

when someone “buys” their first bitcoin? If someone wants to purchase bitcoin with another

currency (US dollars), he/she has a few options. Note that all options, whether it is putting

a credit card number into an online virtual wallet to purchase bitcoin, giving cash to a

friend for bitcoin, or going to a specialized bitcoin ATM, all methods share the same trait:

all bitcoin are coming from other past transactions. So, when someone types a credit card

number into a virtual wallet online, the credit card company actually has ownership, via

one or more private keys, of bitcoin that it then transfers to the user in exchange for US

dollars or another standard currency. In the case of a bitcoin ATM, a user inserts cash into

a machine, and that machine also has private keys associated with bitcoin addresses, thus

creating a transaction to the user’s bitcoin address [1]. In all of these cases, bitcoin is never

being created out of thin air—it is always coming from another bitcoin address that has

been involved in past transactions [8]. 9

One final note about pairs of bitcoin addresses is that a user can create as many of

them as he/she would like. Because there are about 2160 possible bitcoin addresses, users can

utilize their software to create as many or as few as they’d like, each with a corresponding

private key [9]. Similarly, a user can decide to use more than one of his/her bitcoin addresses

in a single transaction (whether sending or receiving).

2.1.4 Transactions: Inputs and Outputs

In our final section on “Transactions and Ownership,” we look at the composition of a

transaction in more detail. All transactions have at least one input and one output, but

oftentimes have more than one input or output [1; 8]. Let’s use the Alice and Bob transaction

story as a starting point for this discussion.

8The process by which transactions get added to the blockchain is bitcoin mining, to be discussed in 2.3.
9As mentioned in an earlier footnote, the one exception to this rule is the “coinbase” transaction which

awards a bitcoin miner using bitcoin essentially created out of thin air.
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When Alice hits “send” on her virtual wallet, the software is “gathering” the nec-

essary funds for the transaction under the hood. Virtual wallets have varying levels of

sophistication, but they all have the ability, in some way or another, to obtain past trans-

actions associated with the bitcoin address(es) that Alice is using to pay Bob. The virtual

wallet must gather enough past transactions that involve that (those) bitcoin address(es)

such that the sum of receipts from those past transactions sum to at least $550 worth of

bitcoin (the amount that Bob is charging Alice for the painting). Let’s say the software

is able to gather three separate transactions that pledged $100, $200, and $300 (worth of

bitcoin), respectively, to one of Alice’s bitcoin addresses. The wallet will then construct a

transaction by using the outputs (the three amounts listed) of past transactions as inputs

into the transaction to Bob. These outputs from past transactions, which Alice has not yet

spent (but is about to), are often referred to as UTXOs, or “Unspent Transaction Outputs”

[1]. What one might notice, however, is that the sum of the inputs is $600, more than

the $550 required. Because bitcoin can never be “split” into fractions without the use of a

transaction to do so [8], the software will actually create two outputs in the transaction to

Bob: one will pledge $550 to Bob’s bitcoin address, and the other will pledge the remaining

excess $50 dollars (back) to Alice’s bitcoin address. This is how non-exact amounts from

past transactions feed into future transactions: unless there is an exact match between past

output amounts and the required input amount, there will always be an additional output

in a transaction that sends the remaining bitcoin back to the address of the sender.

There is one more key aspect of transactions that we have not discussed yet: outputs

can add up to less than the inputs. When this is the case, the leftover amount is an implied

transaction fee [1]. That is,

Transaction Fee = Inputs−Outputs. (1)

Transactions fees will become relevant later when we discuss bitcoin mining. A transaction

fee is essentially a “tip” for the miner who ends up mining a block that includes this

transaction [8; 1; 13]. In summary, inputs and outputs for a transaction can be thought of

12



Figure 2: All transactions have inputs that come from the outputs of previous transactions, as
depicted above. Because of the input-output structure of transactions, chains can extend to millions
of connected transactions.

like double-entry bookkeeping: every transaction has a number of inputs (debits) and a

number of outputs (credits), while the difference between them is the transaction fee [1].

Let’s end by visualizing what one link in a chain of transactions might look like. Using

the exchange rate at the time of this paper’s writing, we convert the earlier discussed dollar

amounts ($100, $200, and $300) into bitcoin, and we analyze the three past transactions

(pledging money to Alice) that feed into Alice’s transaction with Bob.10 We use Figure 2 to

visualize this situation. The three rectangles on the left are all transactions somewhere on

the publicly-available blockchain in which people sent bitcoin to Alice. The words “Carl,”

“Don,” “Henry,” and “Elle” are written in the inputs column only to illustrate that money

pledged in past transactions to Alice may have come from a variety of people— however,

these names actually represent entire past transactions associated with those people, in

which they earned the funds that they then paid to Alice. In the rectangle to the right, we

use the beginning of long alphanumeric codes (rather than names) in the inputs column to

reference the transaction IDs of the past transactions (namely, the three shown on the left)

that are feeding into Alice’s transaction with Bob. The outputs of the three transactions on

10This depiction contains many simplifications, but the overall structure gives a good base of how a
transaction appears under the hood.
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the left don’t add up to the inputs—as we discussed, this difference is implicitly a transaction

fee that will later get awarded to the miner who mines a block including this transaction.

One might ask how the virtual wallet chooses which past transactions to include

as funds for a new transaction—the answer is that each software does it differently, but

what’s important is that it is able to gather enough transactions of sufficient value to meet

the necessary input requirements of the new transaction (assuming the sender actually has

the required funds) [1]. As one can imagine, transactions can build up into huge chains,

each transaction referencing and being referenced by other transactions. These transaction

chains get bundled into blocks (which contain these longs transaction chains among other

information and metadata), and those blocks get chained into a long chain of blocks (called

the blockchain!).

Now that we have discussed transactions and ownership, we are ready to talk about

the Bitcoin peer-to-peer network.

2.2 A Peer-to-Peer Network of Nodes

One of the factors that allows the different components of the Bitcoin system to work so

well and so quickly across thousands of software clients is its peer-to-peer system (“P2P,”

as it is often called) [8]. One book about Bitcoin sums up peer-to-peer well: “Peer-to-peer,

or P2P, means that the computers that participate in the network are peers to each other,

that they are all equal, that there are no ‘special’ nodes, and that all nodes share the burden

of providing network services” [1].

2.2.1 Nodes

Earlier we discussed virtual wallets, which give users the ability to transact bitcoin, among

other capabilities. Virtual wallets turn out to be one of many forms of what are called

“nodes” on the bitcoin P2P network. In fact, throughout this paper, we will very often refer

to the term “Bitcoin network” (or “Bitcoin System”), which refers to all of the nodes in the

network that run the peer-to-peer bitcoin protocol [1]. On the most basic level, a “node” is

software the connects to the internet in some way, almost always communicating with other
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nodes [1]. In the case of Bitcoin, there are four major functions/traits a node tends to have:

wallet capabilities, storage of the entire blockchain, mining functionality, and connection to

other nodes in the network [1]. Nodes that exhibit these four capabilities are called “full

nodes” [1]. Back in 2008, when Satoshi Nakamoto created Bitcoin, he also created “Bitcoin

Core,” the original software that served as the first and only full node software. Since then,

other software applications have been created for specific purposes (i.e. consumer virtual

wallets, high-powered bitcoin mining software, etc.), but Nakamoto’s original software is the

base from which essentially all Bitcoin-related software stems. Some nodes (i.e. those of

a full-time bitcoin miner) may be better-equipped in one of the four categories and worse-

equipped in others. However, just about all nodes have some way of connecting to other

nodes, even if it’s not via the traditional P2P protocol: they may connect to other nodes

via the “stratum” protocol, for example, which is another connection mechanism that is

designed for more efficient bitcoin mining [1].

Furthermore, it should be noted that all transactions in Bitcoin that end up getting

recorded to the blockchain originate at some node—that is, anything that occurs involving

movement of bitcoin must occur via nodes in the P2P network. Any transactions agreed

upon offline or without the use of some software that connects to nodes via P2P protocol

are not official until they get into the P2P network.

2.2.2 Spread of Information

Nodes in the network, full or otherwise, are connected to some number of other nodes in the

network, chosen more-or-less randomly by each software [1]. The P2P protocol generally

determines which nodes a given node is connected to, but which nodes a node is connected

to turns out to be irrelevant: because all nodes have anywhere from a few to a few hundred

connections, a piece of information can spread from one node to any other node in a matter

of seconds. This mechanism of information spreading to thousands of nodes within a matter

of seconds is called “flooding” [1].

The speed at which information moves between nodes in the network, referred to

as “latency,” is a very important aspect of the Bitcoin P2P network. Fast propagation of
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information like transactions and recommended changes to the Bitcoin protocol are what

make the Bitcoin system efficient. Fast propagation also means that information is seen by

many different people in a short amount of time, making the system less susceptible to loss

or malfunction. For example, if someone’s virtual wallet permanently crashes, it is not as

if all of their transactions are gone: because of the movement of information to just about

every other node in the network, valid transactions can basically never be lost.

In our story of Alice and Bob, when Bob downloaded his virtual wallet, it was

building connections to nodes in the network over wi-fi under the hood, unbeknownst to

Bob. Furthermore, when Bob received confirmation of the transaction from Alice on his

wallet, that transaction notification may have come from another node that received Alice’s

transaction before Bob’s did. In other words, it’s not as if when Alice hit “send” on her

wallet, that it credited Bob’s wallet directly. Rather, a detailed transaction was created and

broadcasted by Alice’s wallet (which is ultimately just one of the many nodes in the P2P

network) to the rest of the network, and it quickly arrived at Bob’s wallet (also a node) via

flooding [1].

Armed with the intuition for transactions and the peer-to-peer network, we have the

tools necessary to discuss bitcoin mining.

2.3 Bitcoin Mining

Bitcoin mining is the process that allows transactions to be quickly processed and verified

in the Bitcoin system. Mining is the mechanism that ultimately keeps the Bitcoin system

running safely without the need for a centralized body; mining makes decentralization of a

currency possible.

2.3.1 Purpose of Mining

With the information we have reviewed so far, let’s explain why mining is a required function

of the system. With cryptographically secure transactions and a P2P network that shares

information about transactions, what else does the system need to work properly? Well,

one aspect that’s absent is an organized way to store all of the transactions that are being
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sent around. Similarly, there has to be some agreed-upon record of what transactions have

been confirmed and validated; otherwise, there could be disagreement about whether the

inputs to a certain transaction are fully valid. As soon as there is disagreement about one

input being valid, that can put a whole chain of transactions into question—as one can

guess, this problem gets out of hand quickly if not kept under control. When Bob gives his

painting to Alice, he is trusting that he now owns the rights to the money she has sent him

in bitcoin; but, unless his virtual wallet can tap into an agreed upon and publicly accessible

record of transactions quickly, he could never be sure he has actually been paid properly.

How can the network, with so many moving parts, reach a consensus and subsequently

distribute that consensus to all participants? This question brings us to the first problem

that mining solves: organization and verification of large volumes of transactions occurring

in the Bitcoin network.

The second problem that mining solves is directly related to the term “mining.” Like

valuable precious metals (i.e. Gold) that act as a store of value but cannot be printed like

money, bitcoin mirrors this type of commodity [1; 8]. Just as Gold is slowly mined over time

and is essentially finite, bitcoin is also mined over time and is definitely finite. One difference

between these two currencies is that bitcoin is mined in fixed intervals, with an already-set

timeline of creation; Gold, of course, can be discovered in spurts and it is never clear how

much more will be discovered. This means that bitcoin is what one might call a “deflationary

currency” [1; 10]. As the demand for bitcoin goes up, but the amount of currency in the

system does not increase at the same rate, each bitcoin becomes more valuable. This raises

the price, and thus, over time, more dollars (or another currency) are required to purchase

the same amount of bitcoin. We will discuss how exactly mining actually introduces new

bitcoin into the system—but, on a high level, mining acts as a steady introduction of fresh

currency into the network over time.

2.3.2 The Mining Process and Proof-of-Work

We know from our discussion of P2P that bitcoin transactions are constantly being sent

between nodes. Miners, who are part of the P2P network described earlier, will start the
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mining process by using their software to collect transactions that come in from other nodes.

A node’s software is able to go through each transaction and check whether the signatures

involved are valid—invalid transactions are immediately disregarded and don’t make it any

further in the mining process [1]. We have already built the intuition for how the software

can check transaction validity—it checks all of the signatures involved, making sure each

was created with a proper private key. Next, “the node verifies every transaction against

a long checklist of criteria” [1]. This process ensures that the integrity of all aspects of

each transaction is confirmed. Next, the node will collect these transactions into a pool

of transactions [1]. Once a miner is ready to begin the next step of mining, his node will

collect transactions from his transaction pool into a list of transactions (a block) such that

the maximum size of the block is no more than 1 megabyte: 1 megabyte happens to be the

current maximum block size in Bitcoin [1].11

Now that the miner has a “block” of transactions prepared, he/she will begin the

main step of the mining process. In this step, the miner has a task: he/she will try to to find

some number, called a “nonce,” which when passed through a hashing function (SHA-256,

the same as discussed earlier) with the header of the block, returns a value below a certain

threshold [1]. The header of a block is essentially a set of fields of information that encodes a

block’s metadata and the transactions in that block—it also contains an alphanumeric code

that represents a hash of the previous block on the blockchain upon which this new block

may follow.12 So, the miner will pass this header of information and a random number

(the nonce) through a hashing function, hoping that the output will represent a number

below a certain threshold [1]. The SHA-256 function has 2256 possible outputs, and each

possible output can be thought of as a number from 0 to 2256 [9]. In order for the miner

to successfully “mine” this block, he/she must find a random number (nonce) that, when

hashed with the block header, outputs a value that represents a very small range within the

11In this paper, references to a “node,” and a “node’s software” have equivalent meaning.
12In simple terms, a hash of a previous block in the blockchain is essentially all of the information of a

block passed through a hashing function (like SHA-256) such that a string of alphanumeric characters is
returned—this alphanumeric code is the block’s hash. As we will see, all mined blocks are “mined” on top
of a block that is already in the public blockchain—thus, every block must contain information (like a hash)
of the block that comes before it.
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interval [0, 2256).13 To give context to the size of this range, 2256 is just under the estimated

number of atoms in the observable universe [11]. Thus, the time it takes for a miner to

find a nonce that outputs a below-threshold value is a direct function of how fast his/her

software can generate and attempt different random values.

In order for a miner to even have a chance at successfully mining a block, he/she must

invest in specialized hardware that gives his/her software more power to generate numbers

more quickly. This power is called “hashing power.”14 When and if a miner successfully finds

a nonce that generates a hash value below a set threshold, he/she can now broadcast this

block to other nodes in the network, along with the nonce that he/she used to successfully

mine the block [8]. One might ask: How can another node tell that a block it is receiving is

valid? This is where the usefulness of hashing functions becomes relevant as it did earlier

in our discussion of cryptography: the correct nonce to mine a block is extremely time-

intensive to find, but confirming that a given nonce is correct takes a trivial amount of time

(i.e. a few milliseconds). Once nodes receive this miner’s block along with the nonce, they

can quickly check that the block was in fact successfully mined.15 The fact that the miner

provides the nonce serves as what is called “proof-of-work.” Because the only way to find a

correct nonce to mine a block requires copious amounts of hashing power and time, a correct

nonce is literally “proof” that the miner likely needed to perform an intensive amount of

“work” to successfully find a working nonce, hence the term “proof-of-work” [8].

If miners want to increase their rate of mining blocks, they have to increase their

hashing power—this costs money, of course, because more hashing power requires more hard-

ware and more energy. Thus, a miner must carefully consider his/her expected profitability

from mining when deciding how much money to invest into the process. This is where

the incentivization of bitcoin mining comes into play, mentioned briefly in the Introduction

section.

13The value (threshold) below which the miner must generate is often referred to as the “target” value.
14For every nonce a miner can generate, he/she can generate a hash of that nonce (together with the

block) using a hashing function. Thus, hashing power, also called “hashing rate,” is the number of hashes
that can be computed in one second. For example, 1 MH/s = 1, 000, 000 hashes computed per second.

15Once a miner successfully mines a block, he/she necessarily writes the nonce into one of the information
fields of the block, so that other miners receiving the block can confirm that the block was successfully
mined.
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Blocks provide two sources of revenue to a miner: 1) The block reward, and 2)

transaction fees [1; 8].16 The block reward is a fixed amount of bitcoin (currently at 12.5

BTC) that a miner can claim upon mining a block successfully [8].17 How a miner does

this is they create a special transaction, called a “coinbase” transaction, in the block that

they mine that awards 12.5 bitcoin to a bitcoin address of his/her choosing. Unlike every

other bitcoin transaction, block rewards do not have inputs from other transactions: this

is the new currency that is “mined,” as Gold is when a new supply is discovered. Thus,

when a block is mined, 12.5 BTC is not only rewarded to the miner, but there then exist

12.5 BTC in the system that was not there before. This block reward changes by a factor

of 1
2 approximately every two years: it started at 50 BTC when bitcoin was founded and is

slated to go to 0 in 2040 [1; 8]. This halving is intentional, so that the injection of currency

into the system is slower and slower over time, eventually going to zero.

We now transition to the other source of income for miners: transaction fees. As

discussed earlier, the difference between outputs and inputs in every transaction is a trans-

action fee. When a miner mines a block successfully, all of the transactions fees in each

transaction in that block will be pledged to a bitcoin address of the miner’s choosing.18

In summary, a miner is incentivized to invest in mining hardware because of the

block reward and transaction fees associated with every block he/she can mine. As bitcoin

becomes more popular (and demand rises), its price rises. When the price of bitcoin rises

in terms of, say, US Dollars, the block reward and transaction fees become more valuable.

This causes miners to invest in more hardware, which in turn means there is more hashing

power in the bitcoin system. More hashing power means the higher volume of transactions

from the higher bitcoin demand can be handled. It is this very cycle that causes bitcoin

mining to be self-sustaining—it is a well-designed system that serves both miners and users

of Bitcoin.

16See Equation 1 for a reminder about transaction fees.
17As we will discuss in subsequent sections, a mined block must end up on the main branch of the

blockchain in order for its miner to receive the block reward and transaction fees. Most mined blocks do
in fact end up on the main blockchain branch, but there are cases in which they don’t—it turns out this
concept is critical to this paper, as we will see in subsequent sections.

18One of the main reasons that a transactor would even include a “tip” for a miner as a transaction fee
has a complicated reason, outside the scope of this paper.
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2.3.3 Difficulty and Block Mining Rates

We mentioned the “threshold” or “target” value below which a miner has to hash a block

header and a nonce to successfully mine a block. Moving this target up or down would

change the difficulty of the task, and as it turns out, adjustments to the target are made

approximately every two weeks in the bitcoin network. “Difficulty,” the term often used to

formally describe the difficulty of hashing below the target, is readjusted so that the average

time between blocks being mined is 10 minutes [1]. Every 2016 blocks that are mined, nodes

on the network compare how long it took for those 2016 blocks to be discovered (using the

time stamps written in each block’s header) to the following value [1; 9]:

2016 blocks ∗ 10
minutes

block
= 20, 160 minutes. (2)

Thus, if the previous 2016 blocks were not found in 20, 160 minutes, then the target is

adjusted such that the expected time it takes for a block to be mined returns to 10

minutes—this also means the expected time for the discovery of the subsequent 2016

blocks is 20, 160 minutes.

Because Bitcoin was designed such that currency is introduced into the network at

a very steady and predictable rate, it was an intentional choice to force the block discovery

rate to be 1 block every 10 minutes. And because there are always new miners joining the

network, and some existing miners who are purchasing additional equipment to increase

their hashing power, the rate of discovery would rise over time without the aforementioned

adjustments.19 Because of the way that blocks are mined, via calculating many hashes,

each with an extremely low probability of being correct, a “Poisson process,” a well-know

stochastic process, can be used to model the timeline of block mining/discovery [12; 6; 5].

Because it plays an important role in the simulation portion of this paper paper,

we will overview the attributes of a Poisson process. In Figure 3 we can use a line to

represent a timeline, on which moving rightwards equates with moving forward in time;

moving leftwards represents moving backwards in time. The line in Figure 3 represents 1

19If more hashing power throughout the network is going towards the mining process, correct nonces
would be found faster, leading to more blocks discovered at a quicker rate.
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Figure 3: This represents a theoretical 1 hour in the bitcoin network, in which each X represents
the time at which a block was mined by someone in the network.

hour in time in which six blocks were mined—the “X”s on the line represent times at which

each of the six blocks were mined successfully by someone in the network. A Poisson process

has two particularly useful and special properties that are relevant in the context of bitcoin

mining and the growth of the blockchain over time. These properties will be of particular

importance when we arrive at the simulation portion of this paper.

Property 1: The number of blocks discovered over an interval of time, t, denoted

as Nt, in which blocks are discovered at a rate of λ, is distributed as follows20:

Nt ∼ Pois(λt) (3)

and the probability density function for some number of k blocks for a Pois(λt) random

variable is as follows [12]:

P (Nt = k) =
e−λt(λt)k

k!
(4)

Property 2: The time between the discovery of any two consecutive blocks is dis-

tributed exponentially, with parameter λ, the rate of block discovery via mining. Formally,

if we let Ti be the ith block mined, then we can assert that 21:

Ti+1 − Ti ∼ Expo(λ) (5)

where the probability density function for Ti+1 − Ti being equal to the some time interval

length, t, is given as:

P (Ti+1 − Ti = t) = λe−λt (6)

20Pois stands for the Poisson distribution
21Expo stands for the Exponential distribution
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Property 1 allows us to predict how many blocks will be mined, corresponding with

the “X”s in Figure 3, in a given interval of time in the bitcoin network. Property 2 allows

us to understand traits of the time intervals between each mined block, which correspond

with the spaces between each “X” in Figure 3. Furthermore, Property 2 has an important

implication which stems from the “memoryless” property of the exponential distribution:

even if it has been a long time since the last block was mined (i.e. well over 10 minutes), it

is no more or less likely that a new block will be mined soon [12].

When the nodes in network readjust the difficult of mining as discussed earlier, these

nodes are essentially using the known amount of hashing power in the network and a target

λ (and equivalently a target Nt), such that the the probability distribution function in both

equation 4 and 6 stay the same over time. In the same vein, because the target rate of block

discovery is 1 block every 10 minutes, the following expectation needs to stay constant over

time:22

E(Ti+1 − Ti = t) = 10 (7)

minutes between block discovery events.

And because the expectation of an exponentially distributed random variable is 1
λ ,

then we can say the rate, λ, in Equations 4 through 6 is 1/10, assuming that everything

is measured in the minutes [12]. Thus, we have shown that block mining in bitcoin can be

represented by a Poisson process with rate λ = 1/10. To be clear, this result is not new,

and I do not take credit for discovering it: in the academic bitcoin community, the Poisson

nature of block discovery is well-known [8; 6; 5; 4; 3]. This Poisson process information will

be very relevant to our simulation of the bitcoin network in Section 4.

22The notation E(X) is meant to represent the expectation of the random variable X
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2.4 The Blockchain

2.4.1 Appending the Blockchain

Once a miner mines a block successfully and broadcasts it to other nodes in the network,

what happens next? Most nodes maintain an electronic copy of a chain of valid, mined

blocks from the first ever mined block (called the genesis block, created in 2009)—this chain

is called the blockchain, and it gets appended with new blocks when miners mine blocks

[1; 8]. Currently, the blockchain has over 515, 000 blocks on its main chain, and it grows

with every newly-mined block. We use the phrase “main chain” because, like a tree, the

blockchain has many branches (typically called “forks”) which contain validly-mined blocks

[16; 3]. However, by the Bitcoin protocol, the only official chain of blocks is the one that is

the longest [1; 8]. This is called the main chain. “Height” is the term used to refer to the

number of blocks that were mined before any particular block on the main chain. Thus, in

the case of the current Bitcoin blockchain, there many more than 515, 000 total blocks in the

blockchain due to forks (branches), but there are only that many on the main chain—and

thus, we say that the height of the blockchain is currently around 515, 000.

When a node receives a block that has been broadcasted by a miner, after verifying

its proof-of-work, the node adds that block to its local copy of the blockchain [1; 9]. Nodes

receive blocks at different times, and thus nodes may have slightly different versions of the

blockchain at any given moment. These differences get resolved over time, however, because

nodes are constantly getting the most up-to-date blocks from other nodes in the network.

The P2P network, and its fast propagation of new information to all nodes in the network,

is designed to prevent long-term differences in the blockchain between nodes. To describe

why having an out-of-date version of the blockchain can hurt a miner, let’s use Figure 4.

In the Figure 4, we represent a small portion of the blockchain (we show just a

piece of the main chain) from the perspective of two different miners, miner A and miner

B. Miner B is well-connected to the P2P network and has the most up-to-date version of

the blockchain. Unbeknownst to Miner A, his node has been experiencing some internet

trouble, and he has thus not been able to receive blocks for the last twenty minutes from the
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Figure 4: Miner A has a copy of the blockchain that is behind that of miner B, which means that
if miner A mines a block at height r, it will not be of use to other miners like B, because miner B
already has a bock at height r and one at height r + 1.

nodes to which he is connected.23 Miner A continues to mine upon the block at height r−1,

hoping to successfully mine a block at height r. He does in fact get lucky, and he mines a

block at height r—he gets connected to the internet again, which allows him to broadcast

his block r to other nodes. However, when miner B receives this block, it is not of much

use to him/her: miner A’s block is only valid on top of the block at height r − 1. Miner B

cannot simply add the block he received from miner A on to the end of his chain (on top

of the block at height r + 1), because mined blocks are only valid for exactly one previous

block in the network—in this case, that previous block is the one at height r − 1. Now,

to be clear: forks in the blockchain are common, and technically any fork can become the

new “main” chain. However, because miner B (and most of the other nodes in the network

who didn’t lose internet or otherwise lose connection to the P2P network) is already 1 block

ahead of the block at height r he received, he knows that the block he received from miner

A is very unlikely to end up on the main chain.24 Thus, miner B disregards the block he

received, and continues to try to mine on top of the block at height r + 1 in hopes of being

23It’s not particularly realistic that a miner would fail to notice that he/she lost connection to the internet.
Nonetheless, we make this assumption to illustrate an important point about the blockchain.

24If we think back to the Poisson process discussion in the previous section, we realize that if a fork branch
is a few blocks ahead of another fork branch, the probability that new blocks are mined consecutively on the
shorter branch such that it outpaces the longer branch is extremely low. In fact, for every block that one
branch moves ahead of another by, it becomes exponentially more unlikely that the shorter branch will ever
catch up. Satoshi Nakamoto described this unique trait of blockchain in his original Bitcoin white paper [8].
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the miner who finds a valid block at height r + 2.

2.4.2 Blockchain as a “Distributed Consensus”

The blockchain acts as the “distributed consensus” in the network, in the sense that miners

who mine upon the most recent block in the their copy of the blockchain are implicitly

accepting the blockchain they have as valid [1]. Sure, a miner could start mining consistently

on a random fork off the main chain, but if other miners don’t accept that fork on their own

copies of the blockchain, the blocks the miner mined on that fork become worthless. Why

is this the case? This is the case because miners only receive block rewards and transaction

fees for blocks they mine if and only if those block ends up on the main chain [1]. Thus,

the incentive of bitcoin mining rewards forces miners to implicitly reach a consensus about

the state of the blockchain by mining upon the longest chain, the main chain.25 This

is one of the amazing aspects of bitcoin: because of the naturally-occurring distributed

consensus mechanisms described herein, the network can afford to lack a centralized overseer.

Ultimately, the technology and design of the system make a centralized body or rule enforcer

unnecessary.

Let’s discuss a situation in which a malicious miner wanted to alter the blockchain—it

turns out that such a move would be essentially impossible because of how the blockchain,

as a data structure, is designed. Each block in the chain encodes all of the information

about the previous block, meaning that changing information in one block subsequently

changes information it the next block (and this domino effect continues) [1]. That means

that if someone tried to alter, say, a previous transaction in a block at height r, the hash

of that block would change. Because the hash of block r would change, the header of the

block r + 1 would then not correspond with the altered hash of block r. Because Bitcoin

nodes in the P2P network have the ability to check the validity of a blockchain, the software

would immediately detect the inconsistency between the block r’s hash and the header of

the next block, block r + 1—thus, the software would deem block r, and thus the entire

altered chain of blocks, invalid. Nonetheless, even if someone could tamper with the content

25This paper will look at the situation in which miners try to go around this process and can actually be
profitable doing so.
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of the blockchain, because most nodes have their own copy of the blockchain, nodes would

be able to tell that the altered chain is different from the one stored on their node. Thus,

the integrity of the blockchain data structure is, by design, very reliable.

2.4.3 Forks

There are different types of forks in the blockchain, like soft forks and hard forks, but there

is one type particularly relevant to this paper [1; 6; 5; 3]. The fork in question is called

a bifurcation (or in rare cases, a trifurcation or a quadfurcation), and it occurs when two

blocks at the same height are broadcasted in the network almost simultaneously. In this

situation, some nodes will receive one of the blocks first; others will receive the other first.

Bitcoin protocol suggests that, when receiving two blocks at the same height, miners are

supposed to append their blockchain with whichever block reaches them first (and thus start

to attempt to mine the next block on that received block) [3; 6]. When a bifurcation occurs,

it is temporarily unclear which of the two blocks will become part of the main chain. When

a miner in the network mines and broadcasts a block on top of one of the two blocks in the

bifurcation, other miners will receive it and thus mine on top of it. This means that one of

the two forks in the bifurcation is now extended, making that extended fork likely to beat

out its counterpart in the long run [3; 6]. However, it should be noted that a valid block is

never out of the running for being in the main chain–however, for every block mined on top

of one prong in the fork, it becomes exponentially less likely for the other prong to “catch

up” and overtake the fork that is longer than it. This fact relates directly to Equation 4,

because the chance that a shorter chain will surpass the main chain becomes exponentially

less likely with every block added to the main chain, due to the Poisson nature of block

discovery.

2.4.4 51% Attacks

In our final section about blockchain, we briefly discuss something called a “51% attack” [1]

[13]. Earlier we mentioned that the distributed consensus aspect of the blockchain means

that a miner has little incentive to mine on a fork other than the main chain, because his/her

27



blocks on the fork are unlikely to be accepted by other miners. Thus, given that miners

want to receive the rewards for the blocks they mine, they will implicitly agree with the

rest of the network by simply mining on the main chain. This changes, though, if a group

in the network were to posses over 50% of the hashing power in the network [1; 13]. If this

were the case, such a mining group would be able to turn essentially any fork into the main

chain because it could reject blocks mined by the other 49% or fewer miners in the network

and fully control the blockchain. This concept is well described by a academic paper about

bitcoin: “Once a miner pool...reaches a majority, it controls the blockchain...a majority pool

can collect all the system’s revenue by following the prescribed Bitcoin protocol, and ignore

blocks generated outside the pool...At this point, the currency is not a decentralized currency

as originally envisioned.” [3; 4] This situation is theoretical and has not happened in the

bitcoin system. However, it is an important concept to understand, because it shows that the

distributed consensus and decentralized mechanisms that make bitcoin unique breakdown

if any one participant gains more than 50% of the hashing power in the network.

3 Model

3.1 Motivation

As we described in the previous section, the process of mining, on a high, non-technical level,

is reasonably simple. A miner collects transactions into a “block,” hashes the header of that

block with different random numbers (nonces) into a SHA-256 hashing function, and hopes

to generate an output from the hashing function that is below a certain threshold. When

and if a miner discovers a nonce that successfully hashes a value below that threshold, the

miner immediately broadcasts that “block” with the the proper proof-of-work to the rest

of the network. The above process is what the Bitcoin protocol, the agreed-upon “rules”

that miners are supposed to follow, instructs miners to do [1; 8]. Before “Selfish Mining”

was discovered as a viable strategy, it was thought that the above protocol-following mining

process was incentive compatible—in other words, there was thought to be no incentive

to “cheat” the system. As it turns out, however, selfish mining can potentially increase
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expected mining revenues.

A substantial amount of literature has assessed the feasibility and profitability of

engaging in subversive mining behavior—that is, scholars who study the behavior of cryp-

tocurrency blockchains have built varying models on how one can subvert the “protocol” of

a given blockchain and the results of such actions [3; 6; 5; 4]. In particular, there is a model

called “Selfish Mining” that defines a decision process that a miner can follow to increase

his/her relative revenue (selfish miner revenue as a fraction all revenue earned in the system)

[3]. Once a model of this behavior was released in a 2013 paper, other scholars complicated

the model by accounting for other variables in the system (i.e. block propagation rate, block

size, etc.) while some have tried to further optimize the selfish mining strategy [4; 3; 5]. This

paper aims to de-generalize a key assumption under which essentially all of these models

operate: the current models focus on the effects of one selfish miner in the network, whereas

my paper focuses on the effects of many selfish miners in the network.

In addition to mapping out the decision process for the selfish mining strategy via

an algorithm, the 2013 paper also uses a Markov chain model and its state probabilities

to determine the expected relative revenues of miners following this strategy [3]. In this

paper, I aim to see if those theoretical expected revenues hold up in the case that there are

many selfish miners acting individually—using a bitcoin network simulator, we will be able

to directly compare revenues of network participants to those that the theoretical model

would predict.

In order to go about this investigation, we have to start by clearly defining the selfish

mining strategy as it is traditionally modeled (and understand exactly how it differs from

the staus quo, protocol-based mining process). We will then go through the calculations of

expected revenues from this strategy using a Markov chain model and its state probabili-

ties.26 Finally, we will perform simulations of the bitcoin network to see how true mining

revenues relate to those that the Markov-chain-based revenue model would predict.

Discrete-Time Markov chains allow us to calculate theoretical revenues associated

with different mining strategies, because the blockchain takes on different states with dif-

26This Markov chain model, as mentioned earlier, was built by the authors of [1] and is also used widely
by other authors who discuss the selfish mining strategy.
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ferent probabilities due to the Poisson nature of block creation.27 While mining activities

and blockchain changes occur in continuous time, what really matters to a mining strategy

are the discrete events of block creation—thus, using a Markov chain that disregards the

continuous time nature of bitcoin mining is not an issue. In other words, in the context

of calculating miner revenues, the time in between mined blocks is much less important

than who mines each block and what he/she does with that block. In the first section of

model building, we will use a Markov chain to calculate theoretical revenues for a miner

who follows Bitcoin mining protocol, which we will call an “honest” miner.

3.2 Honest Mining and Expected Revenue Model

Before discussing the details of the selfish mining strategy decision process and subsequently

the expected revenues associated with that strategy, we must clearly review the honest

mining process and its associated expected revenues as a base for comparison. We will use

a Markov chain to convert what we already know about the protocol-following “honest”

miner into expected revenues for that miner.

Say we have an honest miner who possesses the fraction α of the hashing power in

the network. All other miners in the network combined make up the rest of the 1−α fraction

of hashing power. In Figure 5, let state 1 be the case in which this honest miner has just

successfully mined a block and starts the mining process all over again in hopes of finding

the next block.28 From state 1, the honest miner has probability α of mining the next block,

which corresponds with staying in state 1 again. This also means that the other miners in

the network have probability 1 − α of mining the next block (instead of the honest miner

mining the next block), which corresponds with the honest miner transitioning from state 1

to state 0. Now in state 0, the honest miner has probability α of mining the next block and

thus moving to state 1, etc. As we can see, the pattern is repetitive and simple: every time

a block is mined in the network, if it’s the honest miner in question who mined it, he/she

moves to state 1 from whichever state he/she was previously in; if it’s any other miner who

27Discussed in detail in Section 2.3.3.
28It is important to remember that our term of “honest” miner simply describes the mining process from

Section 2 of this paper. It is not new—we just give it a name to have a counterpart to “selfish” miner.
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Figure 5: This simple Markov chain can be used to formally define expected theoretical (relative)
revenues associated with honest mining. As defined by general Markov chain drawing conventions,
the 1 above an arrow is not required, but we use it for emphasis of the guaranteed transition from
state 1 to state 0.

0 1

α

1 - α

1 - α α

mined it, the honest miner in question moves to state 0 from whichever state he/she was

previously in.

We can use this Markov chain to solve for relative revenue of an honest miner, by

finding the state probabilities associated with this Markov chain and then assigning revenues

to those states. The ratio of time spent in either states combined with the revenues gained

in those states is a simple yet powerful way to understand overall revenue generation from

a stochastic process like this one. The results of these calculations will serve as the base

relative revenue to which we can later compare the expected revenues of selfish miners. We

can solve for the steady state of the Markov chain, where our steady state vector, s, satisfies

sQ = s, where Q is the transition matrix associated with the Markov chain in Figure 5.

sQ =

[
s0 s1

]1− α α

1− α α

 =

[
s0 s1

]
(8)

In the above matrix equation, we want to solve for the components of s, which give us the

long-term fraction of time that will be spent in each state. We have,

s0(1− α) + s1(1− α) = s0

s0α+ s1α = s1

And by definition of a steady state vector, all entries add up to 1, so we have

s0 + s1 = 1

Substituting s0 = 1− s1 into the equations above, we solve to to get
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s0 = 1− α

s1 = α

(9)

And finally to calculate expected relative revenue, we multiply the revenue (in terms of

number of blocks awarded in each state) associated with each state by the time spent in

that state. Thus, we arrive at:

E(rh,rel,model,α) = 0 · s0 + 1 · s1 = 1 · α = α (10)

This solution confirms a strikingly simple tenet of bitcoin mining: the number of blocks a

miner finds as a fraction of all blocks discovered in the network is equal to that miner’s

fraction of the network’s hashing power (in this case, α) [1; 8; 3; 6].29

Let’s briefly make clear the meaning of each subscript in Equation 10: h means that

this metric relates to honest miners (rather than selfish ones), rel denotes relative revenue,

model signifies that this result is from our mathematical model (not a simulation), and α

denotes a hashing power fraction.

We can now move on to discussing the selfish mining strategy. After understanding

the strategy, we will be able to perform a similar, but much more complex, expected revenue

calculation using a Markov chain model once again.

3.3 Selfish Mining Strategy

The selfish mining strategy, laid out by Eyal and Sirer in their 2013 paper, contradicted the

strongly-held belief that bitcoin mining protocols were fully incentive compatible [3]. While

I will approach my description and walk-through of the strategy slightly differently than the

aforementioned authors due, it is important to note that those authors deserve full credit

29Stale blocks, blocks that do not end up on the main chain, do not award miners revenue as we have
discussed. So, technically, a miner’s fraction of revenue is the number of blocks they have mined on the
main chain as a fraction of all blocks mined on the main chain. This metric, called “relative revenue” is the
one upon which we base our results throughout the rest of this paper.
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for the formulation of the selfish mining model [3]. We will also present the coded algorithm

that those authors use to explicitly define the steps of the strategy [3].

The core concept of the selfish mining strategy is that selfish miners attempt to

“waste” the hashing power of honest miners by causing those honest miners to create blocks

that will not end up on the main blockchain. As a result of this wasted hashing power, fewer

blocks will end up on the blockchain, meaning that difficulty will decrease (see Section 2.3.3),

leading to higher revenues for selfish miners. A key fact to remember in understanding this

strategy is that only validated blocks that end up on the main chain will “reward” their

miners with the block reward and transaction fees. There is a name for blocks that are valid

and successfully mined but don’t end up on the main blockchain—these are called ”stale

blocks” [4; 5; 3]. Every second a miner spends trying to hash a block and nonce below the

target associated with a block that is destined to become “stale,” the lower their expected

revenue will be. So, the aim of a selfish miner is to cause as many of its opponents’ (honest

miners’) blocks to become stale, all the while not compromising his own expected number

of blocks mined on the main chain. If a selfish miner can achieve this subversion in some

way, he/she has the chance to increase his/her long-term expected relative revenue: over

time his/her strategy (in some cases, as we will see) will lead to the same number of blocks

in the main chain all the while causing decreased difficulty due to wasted hashing power of

honest miners.

We will imagine there exists some miner (or group of miners working together) who

engages in the selfish mining strategy. For sake of later numerical analysis, we say that this

miner or group of miners has/have α fraction of the hashing power in the network. This

implies that everyone else in the network, which we will assume to be all mining honestly

and abiding by protocol, make up the rest of the 1 − α fraction of hashing power in the

network.

In order to understand the selfish mining strategy, we need to walk through different

mining events to see what actions the selfish miner would take. We will discuss these mining

events in the following sections.
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Figure 6: Status-quo of the main chain

3.3.1 Another Miner Mines a Block

First, we begin with the most common case of the strategy: a selfish miner will try to

mine a block on top of the most up-to-date main chain. This approach is no different than

that of an honest miner—the selfish miner needs to successfully mine a block before he/she

can even start to engage in the “selfish” part of the strategy. Representing this simple

situation graphically in Figure 6, we show the newest portion of the blockhain, with the rth

block representing the most recently published mined block on the main chain, which is at

height r. The dotted-box block at height r+ 1 is theoretical—it hasn’t been found yet, but

eventually it will be mined by some miner in the network. When that block is mined, the

process starts all over again, and miners will be mining upon the block at height r + 1 in

hopes of generating the a block at height r + 2. So long as honest miners continue to mine

and broadcast their mined blocks, the chain in Figure 6 will grow horizontally as shown.

However, if a selfish miner mines a block, the situation will change—we now use the next

section to analyze this case.

3.3.2 The Selfish Miner Mines a Block

Now we consider the case in which the selfish miner mines a block. Let’s say that the selfish

miner mines a new block upon the block at height r, but the miner keeps it to him/herself.

We will call this the (r + 1)′ th (with the intentional ′ symbol) block, because it has the

potential to be at height r + 1 (on the main chain, by definition of height), but we do not

yet know if that will be the case. Another equivalent way to describe this is that the block

is a valid next block after the block on the main chain at height r, but it has yet to be

broadcasted to any nodes in the network, and thus cannot yet be part of the main chain.

Therefore, the selfish miner now has a “private” chain of 1 block. We update the diagram

to account for this change—refer to Figure 7.
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Figure 7: The selfish miner has now mined a block that is even with height r + 1 in the main
chain, but the block’s fate is not yet determined.

Note that solid-bordered boxes represent blocks that have been mined successfully,

and solid-line arrows represent connections between blocks on the main chain. Dotted-

border boxes are blocks that haven’t been mined yet but will be by someone eventually, and

dotted arrows are connections between blocks that have not yet materialized on the main

chain, but may be eventually. Because the (r+ 1)′ th block is successfully mined but not on

the main chain, it has a solid-border but a dotted leading arrow.

Now at the (r + 1)′ th block, the selfish miner will take the following action: he/she

will immediately start to mine on top of the (r + 1)′ th block, hoping to extend his private

chain to the (r + 2)′ th block.

3.3.3 Another Miner Mines a Block, Initiates Bifurcation Race

Let’s analyze the case in which the public discovers a block at height r+ 1 before the selfish

miner can mine block (r + 2)′. An depiction of this situation is shown in Figure 8 in which

another miner in the network mined and broadcasted a block at height (r + 1). At this

point, the selfish miner will immediately broadcast his own block, creating a bifurcation in

the main chain: there are now two valid blocks on the main chain at height r. Figure 9

depicts this scenario.

When this happens, the protocol suggests that miners should mine upon whichever

of the two blocks arrives at their node first, as discussed earlier. As these two blocks at

height r+1 are mined upon, only one will prevail—once one of these two blocks is extended,

the new official main chain will contain whichever of the two blocks (r + 1 or (r + 1)′) is
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Figure 8: Some other miner in the network has mined and broadcasted a block at height r + 1
while the selfish miner has a private chain of length 1 at equivalent height

Figure 9: The selfish miner has now broadcasted his private chain of length 1, creating a bifurcation
in the main chain at height r + 1. A “toss-up” or “bifurcation race” will now begin as a result of
this bifurcation.

extended first, turning one of the two dotted lines into a solid line in the Figure 9. If the

selfish miner’s block is the one that gets extended, he/she is in luck: the block that he/she

originally withheld from the public is now included in the main chain, meaning he receives

the block reward and transaction fees from his block ( the (r + 1)th block). While this

outcome has the potential to be successful for the selfish miner, there is a chance that he

loses out: if the r + 1 block gets extended before the (r + 1)′th block, the selfish miner has

likely forever lost the revenue for his mined block that he would have received had he been

mining honestly.

3.3.4 The Selfish Miner Extends the Lead

Now let’s look at the case in which the selfish miner actually extends his/her private chain

to (r + 2)′ before the state of the main chain has even gotten to r + 1. This situation is

depicted in Figure 10.
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Figure 10: The selfish miner has now extended his/her private chain two blocks past the current
height of the main chain.

As could be guessed, the selfish miner will continue to mine on block (r+2)′ in hopes

of extending to a 3-block lead at the (r + 3)′th block. This process will stop as soon as a

block is mined on the main chain that reduces the lead of the the selfish miner’s private

chain over the main chain to 1, at which point the selfish miner will publish all of the blocks

he has on his private chain. Let’s show one example of this in Figure 11, in which the miner

sees his/her lead drop to 1 block and publishes his/her private chain of 2 blocks: this private

chain will get adopted onto the main chain, making the r + 1 block stale.

This will lead the public to adopt his newly-published branch, because it is longer,

by 1 block, than the previously-main chain. This is the case in which the selfish miner

has achieved his/her goal: he/she received the revenue associated with the blocks he/she

mined (as he would have if he/she were following the rules as an honest miner) but he/she

also hurt the profit of the other miners in the network: they all wasted time mining blocks

after the rth block that ended up getting replaced / overrode by the longer private chain

that the selfish miner broadcasted. Thus, the selfish miner’s strategy of withholding blocks

until a strategically-planned release time leads other miners to waste their hashing power on

blocks that will not end up rewarding revenue, which increases the selfish miner’s relative

revenue.30

Now that we have laid out the essential logic of the selfish mining strategy, we will

show the algorithm of the selfish mining strategy, as defined by Eyal and Sirer in their 2013

paper, to formalize and summarize our description of the strategy thus far [3]. In fact, this

30Additionally, the decreased difficulty that will arise due to the production of more stale blocks than
normal helps the selfish miner’s relative revenue.
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Figure 11: The selfish miner’s multi-block private chain lead over the public main chain has now
been reduced to a lead of 1 block. When this happens, the selfish miner broadcasts his/her private
chain which replaces the block at height r + 1, and thus because the selfish miner’s broadcasted
private chain extends upon the rth block to a greater height than r+ 1, the private chain becomes
part of the main chain.

algorithm will be used in our simulation later as a way to simulate the actions of selfish

miners in the bitcoin network. Figure 12 shows the algorithm.

3.4 Selfish Mining and Expected Revenue Model

In our Markov chain model for the selfish miner, we define each state as the number of blocks

the private chain is ahead of the public chain (with one exception to be discussed shortly).

Thus, we expect to see states 0, 1, 2, ... in the model. We must introduce an additional state,

however, to account for the bifurcation race that we discussed earlier. As Eyal and Sirer

do, along with other authors, we can call this state 0′ [3; 4; 5]. In the case of a bifurcation

race, the number 0 makes intuitive sense because a bifurcation in the blockchain means that

the previously private chain is at the same height of the main chain (making the length

differential between the main and private chain 0, hence state 0). The prime symbol (′)
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Figure 12: This algorithm, which appears in the 2013 paper by Eyal and Sirer, formalizes the
selfish mining strategy that we have discussed [3]

differentiates state 0′ from normal state 0 because state 0 accounts for cases in which the

blockchain only has one main chain and miners are simply mining on most recent block in

the main chain. Now we address the one exception mentioned earlier: technically when the

chain is in state 2 (meaning the private chain is 2 blocks ahead of the main chain) and a

miner in the network mines a block, the differential between the main chain and private

chain is briefly 1. This would technically imply the Markov chain transitions to state 1

briefly, but we do not model this nuance, because the case of a public block discovery when

in state 2 always results in the selfish miner broadcasting his/her private chain.31

Now armed with an understanding from the previous section of how the main chain

and private chain can diverge under the selfish mining strategy, we will use the Markov chain

to in Figure 13 to mirror all of the different possible states and transitions. In state 0, 1, 2....,

31And thus a return to the status quo of the blockchain (state 0).
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Figure 13: This Markov chain represents the number of blocks that the selfish miner’s private
chain is ahead of the main chain, with state 0′ representing the unique case of a bifurcation race.

the selfish miner has probability α of extending his/her private chain by one block, because

we know that one’s probability of discovering a block is equivalent to his/her fraction of

hashing power in the network.

When a selfish miner finds a block he/she will never move in one step back to state 0.

Rather, the selfish miner will stay in state 1, meaning he/she has successfully mined a block

not yet broadcasted to other nodes, and will try to continue to build upon his/her “private”

chain of length 1. If another miner in the network discovers a block, that other miner

will broadcast his/her block: this will cause the selfish miner to immediately broadcast his

1-block private chain, thus initiating a bifurcation race between two blocks. As we know,

this situation is represented by state 0′. In the case that chain reaches state 2, however,

all subsequent states, representing further leads of the selfish miner’s private chain, will be

transitioned to with probability α. Any state transition that occurs when someone other

than the selfish miner mining a new block has probability 1 − α.

3.4.1 Steady State Probabilities

Using the Markov chain in Figure 13, we can calculate its steady state probabilities—this

will eventually allow us to calculate the expected revenue of the selfish mining strategy by

combining the steady state probabilities with expected revenue at each state.

Because the Markov chain has an infinite tail, we have to be careful when calculating

steady state probabilities. Because the pattern for all states 3,4,... are identical, it will make

steady state calculation of the tail states feasible. To find the steady state probabilities, we
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use the same method used in the honest mining expected revenue calculations. We use the

fact that sQ = s for a steady state vector, s, and a transition matrix, Q, which encodes the

transition probabilities of the Markov chain.32

sQ =

[
s0′ s0 s1 s2 s3 . .

]



0 1 0 0 0 .

0 1 - α α 0 0 .

1 - α 0 0 α 0 .

0 1 - α 0 0 α .

0 0 0 1 - α 0 .

. . . . . .


=

[
s0′ s0 s1 s2 s3 . .

]
Multiplying out the sQ to generate a system of equations, we get the following

(1 - α)s1 = s0′

s0′ + (1− α)s0 + (1− α)s2 = s0

αs0 = s1

∀i ≥ 2 : αsi = (1− α)si+1

s0′ +

∞∑
i=0

si = 1

(11)

Where the final equation is true because all steady state vectors sum to 1 by definition.

Using the equations in (11) above, we substitute the first and third into the second such

that that the second will be in terms of s1 and s2. The substitutions lead to

(1− α)s1 + ( 1−α
α )s1 + (1− α)s2 = 1

αs1

Solving for s2 in terms of s1, we have

s2 = ( α
1−α )s1

32In the equations, dots indicate that the steady state vector and the transition matrix technically extend
infinitely.
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Using this expression for s2, we plug into the the fourth equation in (11) which allows us

to spot a pattern for expressing any si with i ≥ 2 in terms of s1. So we have,

si = ( α
1−α )i−1s1

Now, we make use of the fifth equation in (11). The right side of the equation is 1, and on

the left side, we can pull out all the si that can be replaced with expressions in terms of

s1. So we write the fifth equation in (11) as

s0′ + s0 +
∑∞
i=1 si = 1

and we can plug in for s0, s1, and for the general si in the sum.

s0′ + s0 +
∑∞
i=1 si = 1

and then we get

(1− α)s1 + 1
αs1 +

∑∞
i=2[( α

1−α )i−1si] = 1

Solving for s1 (see Appendix for details), we get the following

s1 = α−2α2

2α3−4α2+1

Finally, plugging this expression for s1 into equations first, second, and third equations of

(11), we obtain the rest of the steady state probabilities. We list them all together below:

s0′ =
α− 2α2

α(2α3 − 4α2 + 1)

s0 =
(1− α)(α− 2α2)

1− 4α2 + 2α3

s1 =
α− 2α2

2α3 − 4α2 + 1

∀i ≥ 2 : si =

(
α

1− α

)i−1
α− 2α2

α(2α3 − 4α2 + 1)

(12)
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3.4.2 The Calculation of Expected Revenue

Calculating expected revenue using the state probabilities was a relatively trivial task for the

case of the honest miner. For the selfish miner, however, we have to consider both the state

probabilities and the route via which a selfish miner arrives to a given state. For example,

moving to state 0 from state 0′ and state 2 award different revenues. Thus, we need to

go through all of the different cases involving movement among the markov chain states

in order to calculate the expected revenue associated with engaging in the selfish mining

strategy. Before going through the different cases, though, we need to add one more variable

to the model that is important in determining revenue. In the case of the bifurcation race,

we discussed the fact that miners will mine on whichever of the two blocks in the fork (see

Figure 9 as a reminder of this case). Instead of working under the assumption that ∼ 50%

of miners mine on one branch of the fork, and the other ∼ 50% mine on the other, we need

to define a variable for the fraction of miners who choose to mine on one prong of the fork

versus the other. This is important, because a lot of factors (such as network latency, to be

discussed in our simulation section at length, the exact time a block was broadcasted, etc.)

can make the ratio dramatically different than 50%. So, we let φ be the fraction of miners

who choose to mine on the block released by the selfish miner, while 1− φ is the fraction of

miners who decide to mine on the other block in the bifurcation race.

We can now define a set of cases, each associated with a different revenue amount (i.e.

number of blocks mined on the main chain), and then match each case’s associated revenue

with its corresponding state probability and transition frequency to that state (given by the

Markov chain and steady states in Figure 13 and the Equations in (12), respectively).

3.4.3 Cases and Their Revenues

In each case, we will discuss the qualitative nature of the scenario, then calculate the con-

tribution of that scenario to the expected revenue of a selfish miner and that of the honest

miners. We will organize the cases into three general categories: cases that involve a bifurca-

tion race, cases that involve selfish miners having a private chain that leads the main chain

by two or more blocks, and cases that do not fit into the aforementioned two categories. To
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avoid convoluted terminology, we will use the letter S to refer to the selfish mining group,

and H to refer generally to the honest miners in the network. We also refer to height r as

an arbitrary height in the blockchain.

1. Bifurcation of the Main Chain

(a) A bifurcation race has just commenced, and the result of the race is not yet

determined.

• This case represents the start of a bifurcation, meaning that the revenue of

S or H cannot yet be determined. It will soon be determined by one of the

following cases, (b)-(d).

(b) In a bifurcation race between a block from H and a block from S, S’s block wins.

The block that extended S’s block causing them to win happened to be mined

by H.

• S gains a revenue 1 because its block won in the bifurcation race. H also

receives a revenue of 1 block because it mined on top of S’s block.

(c) In a bifurcation race between a block from H and a block from S, S’s block wins.

The block that extended S’s block causing them to win happened to be mined

by S.

• S gains a revenue 2 blocks because its block won in the bifurcation race and

it mined the next block as well. H gains a revenue of 0 blocks because it lost

the bifurcation race and did not mine the subsequent block.

(d) In a bifurcation race between a block from H and a block from S, H’s block wins.

The block that extended H’s block causing them to win happened to be mined

by H.

• H gains a revenue 2 blocks because its block won in the bifurcation race and

it mined the next block as well. S gains a revenue of 0 blocks because it lost

the bifurcation race and did not mine the subsequent block.

2. Selfish Miner Leads by 2 or More Blocks
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(a) H mines a block on the main chain, which reduces the lead of S’s private chain

over the main chain to only 1 block. This causes S to immediately reveal its

private chain of 2 blocks.

• H gains a revenue of 0 blocks because its chain gets overridden by the chain

that S releases, thus causing H’s blocks to no longer be part of the main

chain meaning they do not reward any revenue. S gains a revenue of 2

blocks because it broadcasted its 2 block private chain, making that now

part of the main chain.

(b) H mines a block on the main chain, so S releases a block from its private chain.

Thus, the lead of S’s private chain over the main chain is reduced by 1 block.

However, S’s private chain still leads the main chain by at least 2 blocks.

• H gains a revenue of 0 blocks, because its temporary 1-block lead gets tied

by the 1 block that S releases. S still has blocks on its private chain, which it

will release later. Nonetheless, S gains a revenue of 1 block for now because

its 1 released block in this case is destined to stay on the main chain due to

the fact that S has more blocks for later release.33

3. Other Cases

(a) S does not have a private branch, and H mines a block on the main chain.34

• H gains a revenue of 1 block, and S gains a revenue of 0 blocks.

(b) S mines a block and thus extends its private chain by 1 block.

• H gains a revenue 0 because it did not mine a block. S also gains a revenue

of 0 blocks: even though S did just mine a block, the fate of the that block

is not yet determined. It could end up on the main chain, but it may not.

Thus, in this case, the revenue of S is 0 blocks.

33Having more blocks “stocked up” on its private chain means that S can stop H from getting ahead of S
in subsequent block mines. Thus, we consider the 1 block received by S to have a secure spot on the main
chain for the long term.

34Note that this is the status quo case. All miners in the network, H and S, are hoping to mine block,
and S has no private chain.
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3.4.4 Final Expected Revenue Results

We now have all of the information needed to build an expression for the expected revenue

of the selfish miner and the revenue of everyone else in the network (the honest miners), in

terms of α and φ. The expected revenue equations for both the selfish miners and the rest

of the network will consist of a weighted average of revenue associated with the cases above

and the probabilities of those cases (using the steady state probabilities found in Equations

(12)).

Let rself,abs,model,α and rh,abs,model,1−α be the number of blocks found by the selfish

miner and the rest of the network, respectively. Once again, we keep our subscript notation

consistent with Equation 10; in this case, abs indicates that these revenues are absolute,

not relative. Absolute means that we are simply counting the number of blocks mined in

the main chain, rather than dividing by the total number of blocks in the main chain as we

would to calculate relative revenue. Using the cases above, the Markov chain model, and the

steady state probabilities, we can generate both E(rself,abs,model,α) and E(rh,abs,model,1−α).

As shown in (13), we use the braces to denote which of the cases from Section 3.4.3 generates

that portion of the equation. All of the scenarios that generate revenue of 0 do not contribute

to the expectations of revenues, of course. That is the reason why not all of the cases from

Section 3.4.3 are referenced in the equations.

E(rself,abs,model,α) =

1(c)︷ ︸︸ ︷
2 · s0′α+

1(b)︷ ︸︸ ︷
1 · s0′φ(1− α) +

2(a)︷ ︸︸ ︷
2 · s2(1− α) +

2(b)︷ ︸︸ ︷
1 · P (i ≥ 2)(1− α)

E(rh,abs,model,1−α) = 1 · s0′φ(1− α)︸ ︷︷ ︸
1(b)

+ 2 · s0′(1− φ)(1− α)︸ ︷︷ ︸
1(d)

+ 1 · s0(1− α)︸ ︷︷ ︸
3(a)

(13)

So, if we let rself,rel,model,α be the relative revenue of the selfish miner, the equation for

the expectation of that variable is as follows:
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E(rself,rel,model,α) = E

(
rself,abs,model,α

rself,abs,model,α + rh,abs,model,1−α

)
=

E(rself,abs,model,α)

E(rself,abs,model,α) + E(rh,abs,model,1−α)

by linearity of expectation.

Finally, plugging in the expectations which we found earlier, we have: 35

E(rself,rel,model,α) =
α(4α+ φ− 2αφ)(1− α)2 − α3

1− α(1− α2 + 2α)
(14)

Where we use subscript notation corresponding with that of Equation 10 because this

(Equation 14) is the selfish-mining relative revenue counterpart to the honest-mining

relative revenue. Thus, in Equation 14, self denotes that this is relative revenue is

associated with a selfish miner, rel denotes relative revenue, model signifies that this result

is from our mathematical model (not a simulation), and α denotes a hashing power

fraction of the miner in question.

3.5 Honest Mining Revenue vs. Selfish Mining Revenue

We can now chart the relative revenues associated with honest and selfish mining, for dif-

ferent values of α and φ, depicted in Figure 14. The line in the graph representing honest

mining relative revenue comes from Equation 10 (found on page 32), whereas the curves as-

sociated with the selfish mining relative revenues (at different φ values) come from Equation

14.

Observation 1: The marginal returns to hashing power for a selfish miner (more

than linear) are greater than those for an honest miner (linear). Furthermore, the expected

relative revenue for a selfish miner is always higher than that of an honest miner when a

35We omit the copious algebra that brings us to this result, but it is simply solved for by plugging the

corresponding state probabilities into the
E(rself,true,model,α)

E(rself,true,model,α)+E(rh,abs,model,1−α)
equation. This result

matches that of Eyal and Sirer, serving as a check on the algebra. Serving as a second check, our graphs
are consistent with those in Eyal and Sirer.
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Figure 14: This plot shows the expected relative revenues of the selfish mining strategy at different
values of φ and α, along with the expected relative revenue of honest miners solved for in Equation
10.

selfish miner possesses 1
3 or more of network’s total hashing power, regaurdless of φ.

Observation 2: The fraction of miners the mine on the selfish miner’s block in the

case of a bifurcation block race (φ) can make a significant impact on the profitability of the

selfish mining strategy

Observation 3: The most important finding from all of the analysis in this section

is the condition under which selfish mining awards more relative revenue than is expected

from the hashing power of that miner. In terms of φ. we solve for the value for which

E(rself,rel,model,α) > E(rh,rel,model,1−α), which becomes
α(4α+ φ− 2αφ)(1− α)2 − α3

1− α(1− α2 + 2α)
>

α. We arrive at that condition36:

1− φ
3− 2φ

< α (15)

36Eyal and Sirer arrive at this exact bound. We omit the algebra that arrives at this inequality.
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where α < 1
2 .

Now that we have shown the profitability of the selfish mining strategy in theory,

how can we be sure it holds in practice? Well it turns out that these predicted relative rev-

enues do in fact hold in practice, when the network is operating under simple conditions..37

Specifically, Eyal and Sirer, along with other authors of papers revolved around this topic,

have run Bitcoin simulations confirming that the the simulated results closely match the

curves in the Figure 14 when there is one selfish miner, of hashing power α, and φ is artifi-

cially set at different levels [3]. However, what happens when network conditions are more

nuanced and many selfish miners are participating rather than just one? My paper aims to

answer that question. We seek to find out whether expected revenue results hold up in the

case in which there are multiple selfish miners in the network, and φ cannot be explicitly

controlled for. Additionally, we will see in the subsequent section why φ is a useful variable

for simple calculations of expected revenue, but that estimating φ in the Bitcoin network is

very complicated. Network latency, a proxy for φ, which we will denote as ω, turns out to

be a more realistically-estimable variable in the Bitcoin network.

Now armed will a thorough intuition on how selfish miners act and what results those

actions tend to warrant under simple conditions, we move to the main analysis of this paper.

4 Simulation and Results

4.1 De-Generalizing the Selfish Mining Strategy

The model described in the previous section serves as an excellent base for undertanding

the effects of colluding mining groups on the Bitcoin network. However, the assumptions

of said model cause it to be oversimplified compared to reality—we seek to answer whether

the results of the model hold under more realistic network conditions.

The key assumption that essentially all papers analyzing selfish mining operate under

is that there is a set of miners (likely as part of a mining pool) that work together to engage

37By simple network conditions, I refer to the fact of there being just one selfish miner in the network
and a φ value that is controlled directly by those running the simulator.
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in the selfish mining strategy—together these miners compose the fraction α of all hashing

power in the network. Then, the rest of the miners, who make up the other 1 − α fraction

of hashing power, are all honest (and it is irrelevant the distribution of hashing power of

miners within the honest fraction). To be clear, the colluding α fraction of the network

acts totally as one miner, such that all miners that compose that fraction work to build one

private chain and follow the selfish mining decision process as a team. These assumptions

allow for clean analysis of the viability of the selfish mining strategy, but such a model fails

to account for the more realistic possibility that there is not just one group, but rather many

groups, participating in selfish mining. This portion of the paper takes on the following three

questions: What are the effects on revenues of all participants in the network when many

parties engage individually in the selfish mining strategy? How do these effects change when

the number of selfish miners and/or their respective hashing powers are altered? Finally,

how do attributes of the P2P network, such as network latency, influence these effects?

In order to test how the model generated in the previous section holds up when there

are many selfish miners participating in the network is by simulating the actual Bitcoin

network. With a simulator capable of mimicking the bitcoin network over some set time

interval, we can record accrued revenues and other statistics to answer the questions posed

in this paper. We will now discuss the details of the Bitcoin network simulator used for this

analysis.

4.2 A Bitcoin Network Simulator

I began with a base of python code created by Rafael Brune in 2013 which utilizes a class-

based architecture and the Poisson nature of block creation to mimic the nodes of partici-

pants in the bitcoin network, connections between these nodes (the P2P network), network

latency, and the selfish mining strategy [14]. Due credit goes to Brune for creating a well-

written simulator that acted a solid base upon which to build [14]. However, there were

some errors in the code and limitations of its functionality that required significant alter-

ations to cater to the specifications of my tests, as would be expected in utilitizng any code

base. We will now discuss details of the simulator and all necessary alterations.
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4.2.1 Overview of the Simulator

The simulator code is composed primarily of classes and functions, which mimic the different

types of participants and state changes that can occur in the true Bitcoin network. To name

a few examples, there is class for an honest miner and one for a selfish miner, and there are

functions for mining and broadcasting blocks across the network. The algorithm used in the

selfish miner class is the same as the one referenced in my model section, but implemented

in Python. In other words, a selfish miner acting in this simulator follows the same decision

process as described in the section on the selfish mining strategy—this is obviously critical,

because in order to compare the simulation results to the expected revenue results in the

previous section, there must be an exact match between the strategy in the code and the

one described in this paper.

The code base contains a script that, combining the functionality of many classes

and functions, initializes a set of miners in the network, simulates their efforts to mine

blocks, and subsequently keeps track of the blockchain as it grows over time. The simulator

sets up random links between different miners in the network such that broadcasting of

blocks travels through the network in the same way it would in the actual bitcoin network—

namely, the simulator mimics the P2P network. In creating these random links between

nodes, latency values are assigned to each link, which indicate the number of milliseconds it

takes for a block to get sent from the miner at one end of the link to the miner at the other

end. It should be noted that this simulator does not mimic the process that true miners

go through in the proof-of-work process to mine a block. Rather, the code uses a random

generator to simulate block creation via a Poisson process, which mirrors the frequency

and spacing between block discovery in the true network.38 This mining process difference

between the true Bitcoin network and the simulator is certainly worth noting but does not

seem to have any impact on the statistics that I am outputting from the simulations.

This code base contained errors when I first obtained it, and it was not fully equipped

to handle the simulations necessary for investigating the questions this paper presents.

Thus, I altered the existing code to fix bugs, deleted code that was either unnecessary or

38Refer to Section 2.3.3 for a reminder on the details of this Poisson process.

51



problematic, and added code to fulfill the specifications required to answer the questions

posed in this paper. Most importantly, the code was configured to only simulate one selfish

miner—I restructured it to be able to handle different numbers of individually-acting selfish

miners, each with a specified hashing power. Additionally, I added logic to the code that

allowed me to extract additional information from the simulations like stale block rates and

group-specific revenues. Finally, I built a script that output a spreadsheet of simulation

statistics for later data analysis.

4.3 Defining Relevant Variables

Before discussing the simulations that were run, we need build a clear mapping between the

variables relevant to our simulations and the ones used in the Model section. Specifically,

we deal with α and φ in defining the profitability of the selfish mining strategy in the Model

section of the paper, so it is important to discuss how those variables will be incorporated

into (or controlled by) the simulator.

4.3.1 α and β

In modeling the selfish mining strategy, we defined α as the fraction of the network colluding

to engage in that strategy. This also meant that the rest of the network, composing 1 − α

fraction of hashing power in the network, were assumed to be honest miners. Now that

we are de-generalizing the model, such that there will be N selfish mining groups, rather

than just one, we need to define new variables. Namely, we will still use α to denote the

hashing power of each selfish mining group. However, all N of these selfish miners will in

total compose a total β fraction of the network hashing power, while the honest miners will

compose the remaining 1− β fraction. Formalizing that notion, we have

β =

N∑
i=1

αi = Nα (16)

Notice that in constructing the variable β, we assume that all of the N selfish miners

posses an identical α fraction of network hashing power. This is intentional: by
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partitioning the selfish miners into uniform-sized mining groups, we simplify later analysis.

Additionally, it allows us to isolate the effects of a certain number, N , of miners without

the confounding factor of varying-sized groups.

4.3.2 φ and ω

In modeling the selfish mining strategy, we defined φ to be the fraction of miners in the

network that mined on the block released by the selfish miner in the case of a bifurcation

race between two one-block chains at the same height in the main chain. In this simulator,

especially because there will be instances of multifurcation races (more than two blocks of

the same height, only one of which will prevail in the race) and complicated dynamics due to

the many selfiush miners in the network, it will be unfeasible to artificially set the parameter

φ within our simulator.39 What can be done instead is use network latency as a proxy for

φ.

Network latency is often defined as the number of milliseconds it takes for blocks to

move between nodes—high latency means that block propagation from one to another is

slow, whereas low latency means this propagation is fast. In the case of a bifurcation (or

trifurcation, quadfircation,...) race, miners will mine on the block that arrives at their node

first as we discussed earlier. Let’s say a particular selfish miner has a lot of low-latency

connections, meaning that his block will travel quickly throughout the P2P network. Let’s

also say a particular honest miner that broadcast the block which initiated the bifurcation

race with the selfish miner has a lot of high latency connections. In a bifurcation race

involving the two aforementioned theoretical miners (one honest and one selfish), the selfish

miner’s block would reach many nodes before that of the honest miner—and thus, more

miners would mine on top of the selfish miner’s block rather than that of the honest miner.

This example illustrates the fact that the fraction of miners who mine upon the selfish

miner’s block, defined as φ in the model section, is closely related to network latency. Thus,

we can use network latency of selfish miners (compared to that of honest miners) as a proxy

39As we will soon see, when there are many selfish miners in the network, “multifurcations” can occur,
which are races between more than two broadcasted blocks at the same height. And because φ is a variable
designed specifically for only two blocks at the same height, bifurcations, using φ in our model would not
even work nor make sense.
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for φ.

To formalize our proxy for φ, we will let ω represent the latency between two nodes.

The support of this variable is (0,∞), measured in seconds: near-zero latency means sending

a block from one node to another is nearly instantaneous, whereas as higher values means it

takes a long time for this send-and-receive to occur. Because each node in the true bitcoin

network has hundreds of connections (at varying latencies), and each of those nodes similarly

has many connections, building an exact relationship between φ and ω is nearly impossible.

We can, however, build a general relationship between the two variables. Specifically, this

relationship is an inverse one: lower values of latency between a selfish miner’s node and

its connections implies a higher value of φ, and higher values of latency between a selfish

miner’s node and its connections implies a lower value of φ. In our simulations, when we are

looking at the effects of latency, as a proxy for φ, on selfish miner revenues, we will vary the

ω for the connections of the selfish miners while keeping the (average) ω for the connections

of honest miners constant. As we will soon see, the differences between φ and ω turn out

to contribute to large differentials between the model results and the simulated results.

4.4 Conducting Simulations

The primary goal of our simulations is to analyze the effects of the number of selfish miners

in the Bitcoin network on the relative revenues of those miners (as well as the revenues of the

honest miners). To acheive this goal, we will run simulations in which we vary the β values

and N values of the sum shown in Equation 16. This will in turn allow us to vizualize how

N selfish mining groups of hashing power fraction α will impact the revenues of eachother.

By varying both β and N , we will be able to see the dynamics that occur when there

are a lot of particularly substantial selfish mining groups in the network (i.e. 3 mining groups,

each with over 20% of the hashing power of the network) and those that occur when there are

a lot of smaller selfish mining groups (i.e. 25 groups, each with 0.8% of the network hashing

power). Specifically, we will run simulations for β ∈ {0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1}

andN ∈ {1, 2, 3, 4, 5, 10, 25, 50}, and we will visualize and analyze all combinations of these β

and N . Each simulation will simulate two-and-a-half weeks of the Bitcoin network, meaning
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that on average 2520 blocks will be mined in each simulation run.40 Furthermore, we will

run three such simulations: each will vary ω, as a proxy for φ, to see how this factor affects

the results. Specifically, we will run one for ω = 0, another for ω = 15, and the other for

a ω value consistent with those assigned to honest miners. In the fist case, we are trying

to proxy φ ≈ 1, in the second case we are trying to proxy φ ≈ 0, and in the final case we

are trying to proxy φ ≈ 0.5. Note that in the code, we assign ω to each honest miner as a

uniformly-chosen random value on the interval [0.02, 0.22], which is an arbitrary choice but

one that mirrors feasible network latencies. Keep in mind that it is not very relevant the

particular ω value we assign to the connections of honest miners—it is just important that

the ω we choose for selfish miners compared to those we assign to honest miners proxies the

the value of φ we want for a given simulation run.

Now that we have discussed the parameters of the simulations we will be running,

we can discuss the outputs of the simulations. These outputs will require transformations

to allow us to answer the questions posed in this paper.

4.5 Transforming Simulation Output

Most of the raw output from our simulations on its own is not particularly meaningful to

the questions at hand—we need to transform it for a one-to-one comparison with the model

results. Specifically, we want to answer the following question: What is the difference in

relative revenue of a selfish miner with an α fraction of the network hashing power when

he/she is the only selfish miner in the network versus his/her revenue if there are other

selfish miners in the network. Essentially, we are testing the robustness of the selfish mining

model—with such simple assumptions (i.e. there exits only one colluding selfish mining

group in the network) how well can this model predict relative revenues of participants

when the network contains many adversaries?41 In order to perform this type of analysis

on the model using the simulation results, we need to transform the simulation output as

follows.

402.5 weeks = 25200 minutes ≈ 2520 blocks on average over a period of that length, because of the average
1 block mined per 10 minutes property.

41Whenever we refer to “adversaries” in this paper, we are simply referring to selfish miners. They are
adversaries in the sense that their strategy subverts the rules/protocol of the network.
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For any given β and N in the results of the simulations, let’s start by understanding

what the output on its own will represent. Let’s take β = 0.6 and N = 5 as an example. The

simulator output for these two values will be some fraction representing the the combined

relative revenues of all N = 5 selfish miners.42 Each of these N = 5 selfish miners wields

a β
N = 0.6

5 = α = 0.12 fraction of network hashing power. We are most interested in the

relative revenue of each selfish miner (on average), so we will divide the output relative

revenue by N . Thus, we will arrive at the average relative revenue of each selfish miner with

α fraction of the network hashing power. That is, we are interested in rself,rel,sim,α. We

utilize the same subscript scheme as with our previous definitions involving relative revenue,

like in Equation 10 and 14—we note that sim denotes a simulation result rather than model

result.

Now that we have defined rself,rel,sim,α, we can make a direct comparison to

E(rself,rel,model,α) from Equation 14. These two variables are the ones we want to compare

for the following reason: we want to see how a selfish miner with hashing power α performs

in a network with N−1 other selfish miners (each also with α hashing power, for simplicity)

compared to how the theoretical model would predict him/her to perform with none of the

other N − 1 selfish miners in the network. We will define one final variable to compare the

two quantities, rself,rel,sim,α and E(rself,rel,model,α): θα,N will be the percentage increase

of relative revenue with other selfish miners in the network for a given α and N , and thus

a β = Nα, over the expectation of relative revenue for a miner with α hashing power in

a network with no other selfish miners. Thus, θα,N = 75 would mean that a selfish miner

with β
N = α hashing power would have a relative revenue 75% greater in a network with

N − 1 other selfish miners than it would in a network where it’s the only selfish miner. We

formally define θα,N as follows:

θα,N =
rself,rel,sim,α − E(rself,rel,model,α)

E(rself,rel,model,α)
(17)

where E(rself,rel,model,α) is calculated for a given α and φ in Equation 14.

42As a reminder, relative revenue (over an interval of time) for a miner or mining group is the number of
its mined blocks that end up on the main chain as a fraction of the total number of blocks that were mined
on the main chain in that time interval.
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Graphing θα,N as a function of α and N , as well as performing regressions among

these variables, will allow us to tease out a relationship between relative revenues of selfish

miners in more realistic network dynamics/conditions compared to the results of the the-

oretical, one-selfish-miner model. We can also see how the relationships of these variables

change when network latency, ω, is altered—this will prove to be an important part of our

analysis.

Finally, we will perform a similar comparison for the effect on the relative revenue of

honest miners by comparing the case in which there are many selfish miners in the network

with the simple case of just one selfish miner in the network. We will do this by taking

the aggregate relative revenue for honest miners in the simulation and compare it to their

aggregate relative revenue in a network where all β hashing power is consumed by one large

selfish mining pool (rather than many individual selfish miners aggregating to a total of β).

It’s critical to note that this comparison is not exactly analogous to the one we are doing for

selfish miners. To be clear, in the selfish miner comparison case, we are comparing selfish

revenue of one selfish miner as predicted by the model compared to his/her revenue with

many other selfish miners in the network . In the case of the honest miners, we are comparing

how they are affected when there is one large miner with fraction β of the network hashing

power compared to the case where there are N selfish miners, each with its own α fraction

of hashing power. So, in the case of analyzing the honest mining revenue, we want to see

how they perform when there is a larger colluding selfish mining group compared to how

they perform when there are many smaller groups colluding separately. We can similarly

look at the honest miner results for different network latency values, ω.

Now that we have built a construct for interpreting simulation output and how to

transform it, we will discuss the results.

4.6 Results

We will analyze the relationship between the simulator results and the results that would

be expected based on the basic selfish mining model. In this section, we will divide our

explanation into three sections, one for each different value of network latency, ω. For each
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of the latency values, we will focus on three types of graphs: θα,N versus N , with differently-

colored lines representing each β value for all N , one for N ≤ 5 (to focus in on the case of a

few larger selfish mining groups), and finally θα,N versus α (purposely leaving N out of the

analysis for this last one).

4.6.1 Results for the Base ω Value

The following graph is the result of the simulation at the value of ω that proxies φ ≈ 0.5.

In order to proxy φ ≈ 0.5, we want to create a situation in which both selfish and honest

miners average the same ω, such that φ will fluctuate somewhere around 0.5. Thus, since we

assign honest miners ω = 0.02 + 0.2X, where X ∼ Unif(0, 1), we assign selfish miners the

same ω.43 We consider this the base model and most realistic in terms of representing the

reality of the true bitcoin network. In the true bitcoin network, with so many participants

of varying latency links, we can expect that φ would generally be equal to 0.5, and thus our

ω generation for each selfish miner is an apt way to proxy that value of φ.

The results of this simulation are shown in Figure 15, and we notice a few particularly

interesting trends worth discussing. At β values of 0.9 and 0.8, having more selfish miners

in the network can increase the relative revenue of any one of those N miners by up to

50% over what the selfish mining model would suggest. On the other hand, for values of β

less than 0.7, the selfish miners in the network generally hurt each other as N grows. This

implies that if there are a lot of individually-participating selfish miners in the network and

selfish miners as a whole compose 70% or less of the total network hashing power, selfish

miners will perform worse given their α than the selfish mining model would suggest. Selfish

mining is already a strategy that can be very risky when the miner doesn’t have a large α,

but this result is even more discouraging for prospective selfish miners: the participation

of selfish miners hurts the performance of eachother when they compose less than 70% of

the network. And in the true bitcoin network, there is no evidence to suggest that there

currently exists rampant selfish mining such that that over 70% of the network is engaged

in these strategies. Thus, for all intensive purposes, at mid-range ω and thus mid-range φ

43X is chosen randomly for each selfish (and honest) miner. Also, Unif denotes the Uniform distribution.
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Figure 15: For a base latency value, we that the simulation revenues generally are below those
that the theoretical model would predict.

values, selfish miners should understand that their relative revenue can be between a few

percentage points lower than the selfish mining model would suggest, and up to 80% lower

if the miners have particularly low α values.

Finally, we regress θα,N on N (disregarding β) to plot an Ordinary Least Squares

line on the graph. This line has a very low R-squared value (0.09), as would be expected due

to the highly-varying lines of data that compose the graph. However, this low R-squared

value is not a problem, because we are only using the line to provide a visual trend of θα,N

vs. N across β. Thus, we do not aim to use this line for formal prediction, but rather as a

visual summary of the data. 44

Now, let’s take a look at a specific portion of the graph in Figure 16, where N ≤ 5.

This is an important portion of the graph to look at for the following reason: one of the most

44In the subsequent sections for the other ω values, we will provide an Ordinary Least Squares regression
line as we did in Figure 15. The R-squared values for the OLS lines in the next two sections are 0.14 and
0.27, respectively. We will not explicitly discuss the regression lines again for the rest of the paper—again,
they serve as a visual trend rather than a prediction device.
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Figure 16: For a base latency value and N ≤ 5 selfish miners, relative revenues of selfish miners
tend to be higher than those that the model would predict.

critical results from the general selfish mining strategy is that, given a medium φ value, one

generally requires at least α ≥ 0.25 for the strategy to be profitable over the honest mining

strategy.45 Thus, by looking at the results for N ≤ 5, we can understand the dynamics of

fewer yet larger selfish miners. The graph in Figure 16 indicates that at low values of N ,

miners with α ≥∼ 0.1 can make between 10% and 30% more relative revenue when only a

few other selfish miners are participating in the network. This is telling result: in the current

bitcoin network, in which there are a few mining pools with α ≥ 0.1, this information is

useful. If these mining pools sense that other pools of similar size are engaging in the selfish

mining strategy, they can each expect greater relative revenues than the selfish mining model

would suggest for their α. This along with the other results of this section so far are starting

to tell a story: the selfish mining model does not seem to be robust enough on its own to

account for the complex effects of many selfish miners competing in the system.

45See section on selfish mining revenues
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Figure 17: For a base latency value, we see that the relative revenues from the simulations in
comparison to relative revenues that the model would predict are spread for low values of α but
converge to ∼ 0 as α increases

Let’s now analyze the final graph of this subsection, which can be seen in Figure

17. It is important to note that this graph is very different from the previous graphs in

a few ways: first of all, the x-axis is no longer N , but rather α. Also, we do not visually

differentiate between different N values in this graph. Rather, this graph gives us a general

trend: despite the exact number of other selfish miners in the network, we can see how alpha

values generally relate to the the model’s expected relative revenue when at least some other

selfish miners exist in the network. This graph conveys the idea that, at low values of α,

there can be wide variations in the increase (or decrease) in relative revenue over the selfish

mining model results—but, as α grows, the relative revenues approach the expected relative

revenue from the selfish mining model. Note that the dots near θα,N = 0, corresponding

with α ∈ {0.6, 0.7, 0.8, 0.9}, represent the results of β ∈ {0.6, 0.7, 0.8, 0.9} where N = 1. As

we described earlier in the paper, whenever a miner has control over 50% of the network,

selfish or otherwise, they essentially control the main blockchain and can take almost all of
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the revenue in the system.46 Thus, because the model and simulation both account for the

51% attack scenario, we see θα,N = 0 for all data points in which a miner possesses over

50% of the hashing power in the network.

In the Appendix, we present graphs for θα,N vs. α (rather than vs. θα,N vs. N vs.

β) for the ω value discussed in this section, and for the two ω values discussed in each of the

subsequent sections. These graphs represent the exact same data, but in a different form.

We will not discuss those graphs explicitly, but they ultimately encode the same information

that the θα,N vs. N vs. β graphs do, and can help to elucidate understanding of the general

trends of each variable.

4.6.2 Results for ω = 0

Let’s now look at how the results change when we alter the latency of the node connections

of selfish miners—specifically, we look at the case of ω = 0. The first graph used in this

section’s analysis can be found in Figure 18. Here we see a consistent pattern: low latency

among the selfish miners actually hurts the selfish miners as a whole. At first this may

seem counter-intuitive: when latency in the network is low, selfish miners are very likely to

win bifurcation races (φ ≈ 1), thus mining more blocks and having higher overall revenue.

However, when we refer back to the relationship between ω and φ, the appearance of this

graph becomes more understandable. Superficially, even setting ω = 0, the honest miners in

the network have varying latency connections as we discussed earlier, meaning that selfish

miners will not necessarily win every bifurcation race. In other words, just because ω = 0, it

is most likely not true that φ = 1. In fact, it could even correspond to much lower values of

φ because of the sheer size and randomness of the connections in the network. Thus, selfish

mining model for φ ≈ 1 will generally overestimate the relative revenues of selfish miners.

As shown by our graph, this difference is accentuated for lower values of β and higher values

of N , because there will be more multifurcation races with more selfiush miners, causing a

lot of lost potential revenue for selfish miners in these situations 47

46See the Section “51% Attacks.”
47“Multifurcations” are the generalized version of bifurcations. This means that rather than just two

blocks at the same height in the main chain fighting to prevail, there will be multiple. We save discussion
of this situation for the Discussion section.
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Figure 18: At low latency values, the simulation relative revenue results are generally well below
the relative revenues predicted by the selfish mining models.

Zooming in on the case for N ≤ 5 in Figure 19, we see a similar result as with

the zoomed-out graph–however, the simulation results are closer to those that the selfish

mining model would predict. This seems to make sense because at lower values of N , the

differential between ω and φ is less exaggerated. And thus, we can say that for low values

of N , θα,N is only slightly negative for most β. We finally take a look at the graph of α

vs. θα,N in Figure 20 for the current ω under investigation, ω = 0. We see that at low

values of α (which by definition correspond with high values of N , low values of β, or both),

relative revenues from the simulation fall well below those of the model. This corresponds

with our results from the earlier graphs in this subsection. However, we see that at higher

values of α, the simulator relative revenues converge to the revenues produced by the selfish

mining model. This is not unexpected because, even at low latencies, latency becomes less

important at higher α values (in both the selfish mining model and the simulations). When

a selfish miner has a high α, he/she can contribute significantly to φ, because that miner
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Figure 19: At low latency values, with N ≤ 5, we still see that the simulation relative revenue
results are generally below the relative revenues predicted by the selfish mining model.

can put all of his/her relatively large α towards his/her own block in a bifurcation race.

This is accounted for in the model and occurs naturally in the simulator, so we expect to

see the convergence that we do in the graph to θα,N = 0 for higher α.

4.6.3 Results for ω = 15

Finally, we look at the situation for a high value of ω. The results show that, in general,

the simulator indicates much higher relative revenues than the selfish mining model would

predict. These results align with intuition for the following reason: when selfish miners

have high latency connections, φ is likely to be very low, meaning that selfish miners will

almost always lose bifurcation races. But what the basic model doesn’t account for is

that, when there are many miners with high latency, there will be a lot of additional stale

blocks (created by the many mutifurcations that will occur in a network of many selfish

miners), meaning that the main chain ultimately contains fewer blocks over a given time
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Figure 20: This graph corresponds with the results from our other two graphs for low latency. At
low α, simulation relative revenues are well below those predicted by the selfish mining model—
however, as α approaches 1, θα,N approaches 0.

interval. Because relative revenue is the number of blocks found by a miner divided by the

total number of blocks in the main chain, a shorter main chain can mean a much higher

relative revenue. Thus, because the selfish mining model does not take into account the

many additional stale blocks created by N selfish miners, we expect the relative revenues

from the simulation results to be well above those expected from the model. With the

exception of some values of lower N and high β, we see the similar results when we zoom in

to N ≤ 5 as we do with the graph for all N values (see Figure 22). In a few cases, like for

β ∈ {0.9, 0.1} and N ∈ {2, 3}, we see θα,N drop below 0, but these results may not have an

easy explanation. Because these simulations contain many sources of randomness (Poisson

process block generation, random latency assignments for honest miners, etc.), there are

sure to be some results that are not easily explicable—this is one of such results. Finally,

we look at the α vs. θα,N graph in Figure 23 for the case of ω = 15. At low values of

α, we actually see both negative and positive values of θα,N , although the majority fall in
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Figure 21: At high latency values, the simulation relative revenues are sometimes greatly under-
estimated by the selfish mining model and other times slightly overestimated by the selfish mining
model. Specifically, at higher values of β, we spot the aforementioned underestimation by the selfish
mining model.

the positve territory. As with the corresponding graph for the other two ω values, we see a

smilar narrowing of the spread of θα,N as α grows, eventually converging to 0. At low α,

we see large spread and a skew towards positive θα,N , corresponding with our results from

the previous graphs for ω = 15. The convergence to near-zero values for high α reinforces

the point made in the previous subsection: when there are fewer and larger selfish miners,

the distortions in relative revenue from high numbers of stale blocks become less significant

when these miners can essentially override the effects of ω because of their sheet size (and

thus power) in the context of the network.

4.6.4 Effects on the Honest Miners

One of the core tenets of the original selfish mining models is that honest miners lose out at

the expense of selfish miners, depending heavily on the α of the selfish miner in the network.
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Figure 22: When we zoom in to N ≤ 5 for high latency, we see that the simulation relative
revenues are still almost always greater than what the selfish mining model would suggest.

In the case of many selfish miners rather than just one, an important question is as follows:

does having N selfish miners, each with hashing power α, affect the honest miners differently

than would having one selfish miner with β = Nα hashing power in the network? As it turns

out, we have already answered this question: in the results section thus far, for each of the

three ω, it holds true that the results of θα,N for selfish miners are in the opposite direction

for the case of honest miners. Because of the way we define relative revenue, this fact is true

by definition: honest miners will have 1 − S if S is the aggregate relative revenue fraction

for all selfish miners in the network. To make this more clear, let’s take the case of ω = 0

that we analyzed. We concluded in that section, based on the graphs and discussion, that

depending on the β and N values, the model often overestimated the results of the simulator

(corresponding to negative values of θα,N ), and sometimes underestimated the results of the

simulator (corresponding to positive values of θα,N ). This means that in a network of many

selfish miners, selfish miners tend to do worse than the model would predict due to the
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Figure 23: This graph generally corresponds with the results from our other two graphs for high
latency. At low α, simulation relative revenues are well above those predicted by the selfish mining
model—however, as α approaches 1, θα,N approaches 0

effects of the many selfish miners in the network. This in turn means that the opposite is

true for honest miners—they would generally perform better than the model would expect.

That is, honest miners do better than the model would suggest in some but not all cases,

because the many selfish miners essentially dilute each other’s relative revenue, leading to

higher relative revenues for the aggregate of honest miners. It should be noted, though, that

in the case of very high β values, honest miners actually do worse than the model would

suggest. The graph shown in Figure 24 presents these results.

Note that the graph is not an exactly inverted version of the corresponding graphs

for θα,N for the selfish miners. Looking at the formula for θα,N and the definition of

rrel,sim,α,honest, and E(rrel,model,α,honest), it becomes clear that the graphs for honest min-

ers encode opposite effects of those for selfish miners, but the exact relationship between

these graphs is not as simple as S and 1− S, for example.

It is not necessary to go through all of the ω cases and graphs for the θα,N cor-
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Figure 24: θα,N for honest miners at low latency shows that honest miners generally do better
than the model would suggest. However, this is not the case for the three highest beta values, in
which the effects of such a high density of selfish miners compared to honest miners changes is a
strong enough factor to lead to opposite directionality in θα,N .

responding with honest miner revenue. Rather, the results of the sections for the selfish

miners already encode the answers for the model’s representation of relative revenues for

honest miners versus that of the model: the effect for honest miners is necessarily in the

opposite direction the results for the selfish miners. And thus, for low values of latency,

the honest miners’ relative revenue tends to be underestimated by the model, and for high

values of the latency, the honest miner’s relative revenue tends to be overestimated by the

model. These results are logical, because in the case of low latency, selfish miners accrue less

relative revenue than the model would suggest due to the discrepancies between ω and φ,

meaning that the honest miners have greater relative revenues compared to the model—they

actually win bifurcation races more often than the model with φ = 1 would suggest. In the

case of the high latency, we know that miners in the simulation are causing so many stale

blocks that their relative revenue is higher than the model would suggest, and therefore the
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honest miners are left with a smaller fraction of the revenue.

4.7 Discussion

4.7.1 Meaning of the Results

The results of our simulations point to a reasonably clear conclusion: the selfish mining

revenue model that combines the effects of α and φ to determine expected relative revenues

of selfish miners is inadequate to account for more realistic cases in which more than one

selfish miner participate in the network. This is not to say that the model is not a very

useful—as we mentioned earlier, the model does an excellent job predicting relative revenues

under the one-selfish-miner scenario. However, our results reveal that the prevalence of

selfish miners tends to lead to situations in the blockchain construction process that cannot

be accounted for in the selfish miner model in its current state. Possibly the most crucial

example of a case that occurs often in a network of many selfish miners that would not

happen in the one-selfish-miner case (well, it would be very rare) is what we will call a

“multifurcation” race, which we mentioned briefly earlier. We will now discuss the details

a this multifurcation race and understand why they are so important.

Let’s say there are 4 selfish miners in a network who have each separately mined a

block at the same height. Each of them is following the selfish mining strategy: if a block is

broadcasted in the network by some other miner, each selfish miner will immediately release

his/her private chain of 1 block, initiating a race. However, as soon as this theoretical

miner broadcasts his/her block, there will be four (not just one!) selfish miners who nearly-

simultaneously broadcast their private chain block to the rest of the network. Now, instead

of having a bifurcation race between an honest miner’s block and a selfish miners block, we

have a pentfurcation race between an honest miner’s block and four selfish miners’ separate

blocks, meaning there will be five blocks, not just two, racing to become part of the main

chain. I call the effect of many selfish miners in the network “The cascade effect:” when

many selfish miners are present in the network, it is inevitable that many of them will

be simultaneously holding private chains, leading to a race of many blocks (hence the term
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“pent-” or more generally “multi-” furcation race) rather than the typical race of two blocks.

These multifurcations have competing effects on revenues for the selfish miners. On

one hand, each selfish miner is less likely to win with more competitors in the race. On the

other hand, the combination of many selfish miners makes it less likely for the one honest

miners to win the race, which helps the aggregate relative revenue of all selfish miners. Not

to mention, the meaning of φ from the selfish mining revenue model changes significantly

when there are more than one selfish miner involved in a race: each will have its own φ,

but that φ will greatly vary depending on how many blocks are involved in the block race.

Additionally, one selfish miner’s φ takes away from the φ of the other selfish miners involved

in the race. As we can see from this discussion, multifurcations bring a very interesting yet

complex and unpredictable aspect to networks involving many selfish mining groups. While

it is hard to definitively claim causality in the the simulations we’ve run, we can confidently

say that the multifurcation races that occur naturally as a result of many selfish miners

impacts the results in complex ways.

4.7.2 Comments on α and φ

We see some general trends from the results of the simulations that are worth summarizing.

The higher fraction of the network hashing power a selfish miner holds, α, the less beholden

they are to other variables that affect the network. For example, we saw in every case that

higher α values were associated with simulated relative revenues closely mirroring relative

revenues as predicted by the selfish mining model. This means that the simplicity of the

model becomes more sufficient for selfish miners possessing higher α values. This makes sense

because hashing power is ultimately the most important contributor to expected relative

revenue in the network: in the long run, higher α leads to more blocks discovered, which

subsequently implied higher (relative) revenue.

One of the results of the the selfish mining model, which can be easily arrived at

because of its simplicity, is that, for a given φ, there exists a threshold of α above which

the selfish mining strategy is more profitable than honest mining. Due of the complexity of

our simulations, and the nature of the results, defining such cutoffs is much more difficult.
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In other words, it would be very helpful if we could use the results of our simulation to

update the thresholds of α for a given φ when a network has N selfish miners. However,

it is important to keep in mind that our simulations were not performed with the goal of

finding these cutoffs: rather, our simulations were performed in an effort to see how the

theoretical model results hold up under more complex and realistic conditions.

As we saw, φ and its proxy, ω, played a signifcant role in our results. In general, as

the selfish mining revenue model emphasized and my simulation supports, the importance

of φ to profitability of the strategy cannot be denied. One of the defining situations of

the selfish mining strategy is the bifurcation race (or, as we now know, the multifurcation

race!)—subsequently, whether a selfish miner wins this race is critical to his/her relative

revenue. The problem, though, is that φ is a great variable in theory and helps build a clean

model. But, understanding φ values in a network is extremely difficult. As we have now

discussed in depth, while ω seems to be a reasonable proxy for φ, it often is mismatched

with φ. In fact, one of the most notable takeaways from our simulations is this very reality:

φ is ultimately a misleading variable for a model because it can be hard to understand in

the context of a complex network of miners. Hopefully in future models that assess the

profitability of subversive strategies in bitcoin mining, φ will be either strongly qualified or

replaced with other more-easily-understood (and more realistic) network variables, like ω.

4.7.3 Natural Next Steps

While it is beyond the scope of this paper, a natural next step would be to build an advanced

and robust model for selfish miner revenues that can appropriately account for both the

behaviours of other miners in the network and influential attributes like network latency.

Some papers in this space have expanded the model to account for network parameters

like latency, block size, bandwidth of nodes, etc. However, none explicitly account for the

game-theoretical nature of a network of strategic participants. In fact, a Markov Decision

Process could be used to build a model of such complexity, taking game theory and other

network factors into account. In short, Markov Decision Processes “provide a mathematical

framework for modeling decision making in situations where outcomes are partly random
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and partly under the control of a decision maker.” This type of model would allow us to

account for many more of the complexities the bitcoin network than does the current model

for selfish mining [15].

4.7.4 Qualifications of Results

As with any study, it is always important to point out potential flaws in the process or

results. Furthermore, it is important to point out the variables or circumstances a model

or simulation does not account for. In this subsection, we will discuss such potential flaws

and simplifications made in this paper.

Bandwidth, which represents the amount of information a link between nodes can

“fit”, and block size, the literal size in memory of a mined block, are two variables that would

affect (as shown by other papers in this space) the propagation of blocks across the network,

revenues of miners, and other simulation statistics. Based on the questions posed in this

paper, and because I wanted to make a direct comparison between the selfish mining revenue

model and the simulations, I left out the manipulations of these two additional network

“variables.” Thus, instead of manipulating block size and/or bandwidth, our simulations

held those variables constant, thus preventing any unexplained or unwanted effects on our

results

Another aspect of the study that could be improved upon is the simulator: the true

bitcoin network is infinitely complex, and any simulator always has room for improvement

in proxying the true network. For our study, I am confident that our simulator mimicked the

processes that are most relevant to my questions. Namely, the rate of mining (estimated via

Poisson process), the selfish mining algorithm, and the P2P network are all the key aspects

required to go about answering the questions posed in this paper. And in these areas, our

simulator does a good job at proxying the true bitcoin network.
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5 Conclusion

Bitcoin and other cryptocurrencies are constantly evolving—changes to the protocol of each

currency are common, and higher rates of use often cause developers to re-think aspects of

network design or rules. When bitcoin was created, the mining process was thought to be

incentive compatible—strategies other than following the protocol were not thought to be

profitable. If a miner has certain threshold of hashing power, and other network conditions

in his/her favor, it turned out that subversive strategies, specifically selfish mining, could be

profitable. As economic theory would suggest, rational actors in a market aim to maximize

their profitability, so it makes sense that mining pools began engaging in this strategy.[]

Thus, I sought to see how the well-established selfish mining revenue model would hold up

under complex and realistic network conditions.

And while building mathematical models, like the selfish mining revenue model, can

be particularly useful in understanding the way that these strategies unfold and return

profit, these mathematical models can only be so accurate for an often much-more-complex

true networks. This paper not only puts the theoretical model of selfish mining revenue to

the test, but it highlights a more important fact about cryptocurrency mining in general:

because of network complexities, it is important to simulate as many of the true dynamics

of a network as possible to understand the nuanced results that can alter the results of a

general mathematical model.

As cryptocurrencies become an integral medium of exchange in many countries, it

will be more and more important to understand how potentially adversarial participants in

these networks can affect other participants. Along with other papers that simulate various

cryptocurrency networks, I hope that this paper helps set a precedent for simulating network

conditions to better understand how these networks evolve over time under certain actions

of its participants.
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A1

We show the solution first for s1, and then for each other the other si. We notice that

the infinite series is a geometric series, so we can reduce it to
1

1− ( α
1−α )

in the subsequent

calculations.

s1 − αs1 +
1

α
s1 +

∞∑
i=2

[(
α

1− α

)i−1]
s1 = 1

= s1(1− α+
1

α
+

1

1−
(

α
1−α )

) = 1

So, s1 =
1

1− α+ 1
α +

1

1− ( α
1−α )

s1 =
α− 2α2

2α3 − 4α2 + 1

Using the fact that s0 = 1
αs1, we can say that:

s0 =
α− 2α2

α(2α3 − 4α2 + 1)

Using the fact that s0′ = (1− α)s1, we can say that:

s0′ =
(1− α)(α− 2α2)

2α3 − 4α2 + 1

And finally, we can easily generalize the steady state probability ∀i ≥ 2 by relating

si to s1:

∀i ≥ 2 : si =

(
α

1− α

)i−1
α− 2α2

2α3 − 4α2 + 1
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A2

Figure 25: This graph serves as another way to vizualize the trends for the base latency case
discussed in section 4.6.1.
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Figure 26: This graph serves as another way to vizualize the trends for the low latency case
discussed in section 4.6.2
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Figure 27: This graph serves as another way to vizualize the trends for the high latency case
discussed in section 4.6.3.
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