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Chapter 1

Introduction

The role of social networks in influencing public opinion is a contentious issue not only

among politicians but concerns the role of social media companies such as Twitter,

Facebook, and Reddit in regulating and protecting free speech. In the spring of 2017,

German and British parliamentary committees strongly criticized social media com-

panies for failing to take action quickly to curb hate speech, and Germany threatened

to fine the social media companies up to 50 million euros per year if they do not act

on hateful postings (Thomasson 2017). On the contrary, the United States Supreme

Court cites the First Amendment in unanimously agreeing to protect hate speech

as free speech (Volokh 2017). The “Unite the Right” rally by self-identified white

nationalists in Charlottesville, Virginia from August 11-12th, 2017, re-incited the

discussion around hate speech by demonstrating how racist, anti-Semitic, and other

noxious messages can lead to violence, class divides, and death. Twitter is one of

the first major companies to take a stance on hate speech, launching a “hate speech

crackdown” in December of 2017, which led to the suspension of several accounts

associated with white nationalism (Neidig 2017).

With companies now cracking down on hate speech and governments banning

hate speech from online platforms, proper identification of hate speech is a pressing
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concern for all companies and organizations that allow user-generated content on

their platforms. Many websites still use manual moderation, which causes potentially

harmful content to be seen by the site’s users or cause delays in publishing user

content. This process requires labor-intensive review by the platform staff and can

miss hate speech or infringe on freedom of expression. The high volume of content

being generated on online platforms necessitates an accurate and automatic hate

speech detection tool.

Building on Collobert et al. (2011)’s work, deep neural networks have been ef-

fective in numerous natural language processing tasks, including entity recognition,

part-of-speech, and sentiment analysis. Applying these techniques to natural lan-

guages has become more common in the recent decade, replacing previous techniques

such as linear regression and support vector machines (SVMs) trained on sparse

features with high dimensionality. These models often perform better than linear

classification models with relatively little training. The success of these techniques

relies on recent developments in word embeddings and more advanced deep learning

methods (Mikolov et al. 2013; Joulin et al. 2016).

Deep neural networks, specifically convolutional neural networks (CNN), can be

applied to the problem of hate speech classification given their success in extracting

higher-level features from sentences. Applied to hate speech, CNNs are able to recog-

nize hateful vocabulary at a phrase-level, then classify each sentence as hate speech or

not hate speech. Recently, a newer classification technique called fastText that relies

solely on word embeddings to form document embeddings has been shown to perfor-

mance on par with deep neural networks. We also apply fastText text classification

techniques to our hate speech classification task.
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1.1 Original Contribution

In this paper, we aim to develop a state-of-the-art classification method for detecting

hate speech on Twitter, explore how metadata from tweets affects classification accu-

racy, and develop a method to capture semantics of code words used in hate speech.

Specifically, this paper has the following contributions:

1. We build on work by Y. Kim (2014) to develop convolutional neural networks,

long short-term memory networks, and fastText models for supervised hate

speech classification. We employ additional features found in tweets such as

number of likes, retweets, and user information to outperform previous ap-

proaches (Badjatiya et al. 2017; Pitsilis et al. 2018). The additional features

improve the hate speech classification task by approximately 2%.

2. Borrowing the idea of hidden layer visualizations from image classification, we

construct saliency maps for each sequence to qualitatively analyze high-level

features that contribute strongly to hate speech classification.

3. We train our own task-specific word embeddings, due to the extensive use of

code words by the alt-right community and others that engage in hate speech.

These word embeddings improve the hate speech classification task by approx-

imately an additional 2%.

1.2 Related Work

The task of identifying abusive language such as hate speech in online content has been

an important research topic for the past twenty years. Seminal work by Spertus (1997)

created a decision-tree based classifier named “Smokey” that used 47 hand-designed

syntactic and semantic features. “Smokey” performed well on non-inflammatory mes-

sages and found 64% of abusive messages. Since then, a number of techniques have
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sprung up for classifying inflammatory and abusive text, including rule-based classi-

fication methods and pattern finding (Mahmud et al. 2008; Gianfortoni et al. 2011).

Recently, a number of machine learning techniques have been employed for hate

speech detection, including Naive Bayes classifiers to detect racism (Kwok and Wang

2013), support vector machines to detect anti-Semitic comments in Yahoo news

(Warner and Hirschberg 2012), and topic models combined with lexical features to

detect profanity-related offensive content on Twitter (Xiang et al. 2012). Bag-of-

words approaches tend to have high recall, but they also lead to high rates of false

positives given that the presence of offensive words can lead to misclassification of

texts as hate speech. These techniques rely on bootstrapping the training algorithm

or semi-supervised labeling of data with a hate speech lexicon, which results in low

precision given the lack of distinction between potential hate words appearing in hate

speech versus non-hate speech contexts.

Davidson et al. (2017) begins to address this issue through first differentiating hate

speech from a broader category of offensive speech by clearly defining hate speech as

language that is used to expresses hatred towards a targeted group or is intended to be

derogatory, to humiliate, or to insult the members of the group. Burnap and Williams

(2016) introduced the concept of othering language, referring to the idea of “us”

versus “them” rhetoric as a feature for hate speech identification. These discussions

point to a crucial idea that hate speech is not limited to the presence of words in a

fixed lexicon, but rather relies on the context in which it appears. These word-based

approaches not only fail to correctly identify hate-speech, but they also infringe on

freedom of speech and expression.

Several researchers have focused on extracting additional features from text, in-

cluding n-gram based, syntactic, and distributional semantic features at the charac-

ter uni-gram and bi-gram level (Nobata et al. 2016). Nobata employs a supervised

learning model, but unsupervised learning methods that exploit the lexical syntac-
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tic features of sentences have become increasingly common for detecting hate speech

(Warner and Hirschberg 2012).

While unsupervised methods are important to investigate in creating practical

applications of text classification models to large datasets, we focus on a supervised

text classification method based on neural networks. Waseem (2016) makes avail-

able a dataset of annotated tweets that classify tweets into four categories, racism,

sexism, neither, or both. We employ this dataset in our work, treating “neither” as

“not hate speech,” and combining “racist” and “sexist” tweets into a second “hate

speech” category. Badjatiya et al. (2017)’s work, which was published during the

writing of this thesis, also used Waseem’s dataset and achieved a higher classification

performance than any prior method. They used an ensemble of an LSTM model,

features extracted by character n-grams, and Gradient Boosted Decision Trees.

Our research proposes expanding on Badjatiya et al. (2017)’s work in using neural

networks for hate speech classification and incorporates out-of-text features such as

the posting patterns and characteristics of the users. Chen et al. (2012) took into

account writing styles of users such as imperative sentences or increased use of offen-

sive words. More recent work by Papegnies et al. (2017) also incorporated contextual

features such as number of respondents to particular messages and the number of

friends of these users. Most recently, work by Pitsilis et al. (2018) combined the

neural network approach and contextual user features, and they claim to have have

scored higher on hate speech classification than Badjatiya et al. (2017)’s performance

on the same Twitter dataset. Their approach employed multiple LSTM classifiers

and user behaviors such as tendency towards racism or sexism. Our line of research

is similar to Pitsilis et al. (2018)’s but will not be employing ensembled models. We

demonstrate in our work that simple user features and task-specific word embeddings

can increase classification accuracy.
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Chapter 2

Background

In this chapter, we first present a definition of hate speech that we will use throughout

our analysis. We put hate speech classification in context of social networks and for-

mally define the problem statement. Then, we define several classification techniques

in Section 2.4 that will provide the framework for hate speech classification.

2.1 Definition of Hate Speech

What is considered hate speech has no formal, legal definition, but there is consensus

that hate speech is speech that carries expressions of hatred toward specific groups on

the basis of characteristics like race, gender, religion, sexual orientation, or disability.

In the United States, hate speech is protected under the First Amendment, unlike

other types of speech such as “fighting words,” which are face-to-face personal insults

addressed to a specific person, of the sort that are likely to start an immediate fight

(Volokh 2015).

Some example of hate speech, drawn from our dataset, include:

1. “To Muslims a woman walking down the street is a giant vagina demanding to

be raped if she is not covered by a tent.”
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2. “Yes, Muslim bigots are murdering Christians all over Africa and have been for

decades.”

3. “Just want to slap the stupid out of these bimbos!”

4. “Yes, you put in the wrong way. Cue dumb blonde jokes.”

Davidson et al. (2017) defines hate speech as language that is used to express hatred

towards a targeted group or is intended to be derogatory, to humiliate, or to insult the

members of the group. This definition does not include all instances of offensive

language because people could use highly offensive words such as b*tch, n*gga, and

f*g when in non-offensive contexts, such as quoting rap lyrics or as slang on gaming

platforms. The dataset that we use from Waseem and Hovy (2016) proposes a list

of criteria for categorizing hate speech. Some items in this list include “uses a sexist

or racial slur,” “attacks a minority,” and “blatantly misrepresents truth or seeks to

distort views on a minority with unfounded claims.”

Defining what counts and does not count as hate speech is highly subjective

as perceived by people of different identities, so from hereafter, we will follow the

definition in Waseem and Hovy (2016) as an objective definition of hate speech in this

paper. We choose this definition because our hate speech dataset has been annotated

following this definition. While perpetrators of hate speech may not consider their

words to be hateful, we must analyze each text instance objectively with the criteria

defined above. Hate speech is defined solely by the text and its effects on the victims,

without consideration for the beliefs or objectives of the author of the speech.

Our discussion hereafter will also not pertain to philosophical or psychological

arguments for how to categorize hate speech. We recognize the contentious debate

surrounding whether hate speech should be regulated under John Stewart Mill’s Harm

Principle, as well as acknowledge the psychological harm victims suffer from hate

speech. Given the subjectivity of these lines of research, we will judge text to be hate

speech or not on the basis of the words alone.
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2.2 Online Social Networks

The proliferation of online social networks (OSNs) has created a need for monitoring

and detecting user-generated content on these platforms. OSNs are largely centered

around users, who publish a profile, create content, and form relationships with other

users on the platform. The social network provides a platform for finding users with

particular characteristics or interests and forming relationships in the form of links

between users. Sociologists have long studied the properties of social networks, such

as the small-world effect (de Sola Pool and Kochen 1978), which states that neighbors

of any given node are likely to be neighbors with each other. In a social network, this

means that one person’s friends are often friends with each other. An influential paper

by Granovetter (1977) argues that a social network can be partitioned into “strong”

and “weak” ties, and the “strong” ties are tightly clustered. The characteristics

observed in social networks are readily observed online as well, as shown by the

tendency for users to form tight-knit groups (Girvan and Newman 2002), and the

decreased distance between users in the growth of large social networks (Kumar et

al. 2010). By forming relationships with users who are similar to themselves, these

user-groups may form polarized opinions in viewing content posted by similar users.

User-groups with homogeneous characteristics have been shown to increase social

polarization, which is a leading contributor towards hate speech.

Our research focuses on Twitter, which allows users to post “tweets,” which are

posts less than 140 characters to express themselves. A user can follow any user, but

the second user does not need to follow back, creating direct edges between users.

Users may tag other users in their tweets using mentions (@ symbols), tag topics using

hashtags (#), and retweet another user’s tweet using the phrase RT . This well-defined

markup vocabulary combined with the limit of 140-character tweets results in brevity

of expression. Our decision to study Twitter data stemmed from the abundance of

hate speech content on the platform, the relative ease of crawling the user-graph
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compared to other social networks like Facebook, and the user-graph structure of

direct edges and meta-information such as likes and retweets on individual tweets.

2.3 Classification Problem Definition

We formally define the problem of text classification as follows:

Let xi ∈ Rk be the k−dimensional word vector that corresponds to the ith word

in a sentence. A sentence of length n, padded where necessary (if window size is

bigger than n), is represented by

x1:n = x1 ⊕ x2 ⊕ . . .⊕ xn−1 ⊕ xn

where ⊕ is the concatenation operator for strings. V is the vocabulary, which consists

of all of the words in all observed sentences.

For a sentence xj1:n representing the jth observation, we want to predict its label,

denoted yj ∈ {1, 2} by taking the argmax over the log probabilities of each label.

We test the accuracy of our model on our validation set and record the number of

correctly classified sentences compared to the labeled data.

2.4 Text Classification Methods

This section introduces baseline methods of classification such as bag-of-words, naive

Bayes models, and support vector machines. Then, we describe the structure of a

basic neuron and discuss the relevant models such as convolutional neural networks,

recurrent neural networks, and a word-embedding network called fastText.
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2.4.1 Previous Classification Methods

Prior to the popularity of neural networks, researchers have performed text classifi-

cation using a number of machine learning techniques, including tweet features such

as punctuation, URLs, part-of-speech tagging, n-grams, bag-of-words (BoW) (Kwok

and Wang 2013), and lexical features that rely on lists of offensive words (Gitari et al.

2015). They also extract user-based features such as a user’s number of friends and

followers, biography information, and membership duration (Chen et al. 2012). These

features are used in regression models (Nobata et al. 2016), support vector machines

(Magu et al. 2017), decision trees (Dumais et al. 1998), and naive Bayes classifiers

(S.-B. Kim et al. 2006).

Bag of Words

The bag of words model is one of the most popular techniques for text classification.

Intuitively, we create “bags of words,” or corpuses, that correspond to each category,

then match new text against these corpuses to identify which category the text most

likely came from.

Definition 2.4.1 (Bag of Words). A text T is a sequence of individual word tokens

t1, t2, . . . , tn. The bag of words model maps T to a vector MT of dimension |V |, where

V is the set of all tokens in the training data. MT contains the term frequency of

each token in V that occurs in T .

In most languages, some words tend to appear more often than others, such

as “the,” “a,” and “is.” We can employ a method called term frequency-inverse

document frequency (TF-IDF) that replaces word frequencies with a metric called

relevancy. Relevancy is measured by

ri,j = tf i,j × log(
N

dfi
)
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where tf i,j is the number of occurrences of token i in document j, dfi is the number

of documents containing token i, and N is the total number of documents. In this

paper, we treat each tweet as a document and search for words that are distinct in

documents and occur frequently in its category.

While the bag-of-words technique has seen great success in text classification

tasks, it suffers some shortcomings, such as ignoring the context of the words as

well as word ordering. Word representations can also be sparse, resulting in limited

information to match on for the validation and test sets.

Support Vector Machines

Definition 2.4.2 (Support Vector Machine). A support vector machine is a clas-

sification technique that constructs a hyperplane which separates data by a maximal

margin.

Forgoing a formal definition, the intuition behind support vector machines is that

the data points in a finite dimensional space may not be linearly separable, so they

are mapped into a higher dimensional space through a kernel function. We maximize

the maximal margin when finding a hyperplane, which is the distance between the

separating decision hyperplane and the closest data points orthogonal to the hyper-

plane.

A decision hyperplane is defined by an intercept b and a weight vector w which

is perpendicular to the hyperplane. All points on the hyperplane satisfy wTx = −b.

Given a set of training data points {x, y} where each vector input x has a class y,

the linear classifier is

f(x) = sign(wTx + b)

where a value of −1 indicates one class and 1 indicates the other class. We aim to

minimize |w|/2 subject to y(wTx + b) ≥ 1 to find the decision hyperplane.
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2.4.2 Neural Networks

In recent years, artificial neural networks have surpassed previous machine learning

methods with relatively little manual tuning of parameters or feature extraction.

Artificial neural networks (ANNs) were originally inspired by the biological structure

of brains, in which cells called neurons form connections that strengthen or diminish

based on the environmental inputs that it receives. An insight introduced by Donald

Hebb in his book The Organization of Behavior in 1949 famously states, “neurons

that fire together wire together” (Hebb 2005). This insight, called Hebbian theory,

states that neurons that fire one after the other in response to environmental stimuli

are strongly correlated. In ANNs, Hebb’s principle can be applied to the process of

adjusting the weights between the model’s neurons, which will be explained in further

detail below.

Basic Definitions and Notation

The basic unit of computation in an ANN is the neuron, also referred to as a node

or unit. It receives input from other nodes or from an external source and computes

an output, which is usually a number that summarizes its inputs by passing these

inputs through a non-linear function. There is a weight associated with each input

that represents the importance of that input to this neuron. The neuron contains

non-linear function f that is applied to the weighted sum of its inputs.
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Figure 2.1: Neuron in neural model that takes inputs x1, x2, and a bias b, multiples
times by the weights, applies an activation function f , and returns output y.

In Figure 2.1, the neuron takes inputs x1 and x2, associated respectively with

weights w1 and w2. An additional input, b called bias, is also associated with the

neuron. The potential function, ε, is the sum of the dot products between the

weights and input neuron values. The neuron computes output y from applying

function f , the activation function, on the potential function. If two neurons are

not connected, then the weight between them is 0.

Definition 2.4.3 (Neural Network). A neural network is defined as a sorted tuple

(N, V, w, b) where N is the set of neurons associated with this network, and V is a set

{(i, j)|i, j ∈ N} whose elements are the connections between neuron i and neuron

j. w : V → R defines the weights, where wij is the weight between neurons i and j.

The bias bij for each pair of connected neurons is a measure of how easy it is

for the neuron to reach a state of activation. It shifts the output of the neuron by

a constant for the aggregated inputs that the neuron receives. The weights can be

implemented in a weight matrix, where the row indices are the input neurons, and

the column vectors are the output neurons.
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As an example, consider a neuron j with inputs xj = x1j, x2j, . . . , xnj, weights

w1j, w2j, . . . wnj, and bias bj. The potential function and output of the neuron is

εj = (Σjwijxij) + bj

yj = f(εj) = f((Σjwijxij) + bj)

If an ANN contains m neurons in the output layers, we obtain the output network

y = y1, y2, . . . , ym.

The purpose of activation function f is to introduce non-linearities into the neural

network. Because real-world data is non-linear, our neural networks should be able

to model these non-linearities. A number of common activation functions are shown

in Figure 2.2.

Figure 2.2: Various activation functions used in neural networks.

The activation function depends on the specific task. The rectified linear unit

(ReLU), whose formula is f(x) = max(0, x), is currently popular in deep learning re-
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search. The tanh function, whose formula is φ(x) = ex−e−x

ex+e−x , is popular in feedforward

and recurrent neural networks. For multiclass classification with K labels, which is

the the task we are interested in, we perform a softmax nonlinearity

ŷk =
exk

Σk′=1exk′
for k = 1 to k = K

where ŷk is a probability between 0 and 1, and xk is the input to the softmax

function. The softmax function normalizes the terms so that the outputs of the

classification probabilities sum to 1.

Feedforward Neural Networks

The feedforward neural network consists of many layers of neurons arranged in layers:

one input layer, n hidden layers, and one output layer. In a feedforward network,

each neuron in one layer only has directed connections to the neurons in the next

adjacent layer. The input x is represented by setting values in the input layer, which

then feed these values to the first hidden layer. Values for neurons in each network

are successively computed, until an output ŷ is generated at the output layer. The

neural network learns by iteratively updating the weights between the neurons by

minimizing a loss function L(y, ŷ).

Training Process

The most common method to train neural networks is backpropagation (Rumelhart

et al. 1985), which uses the chain rule to calculate the derivative of the loss function

L with respect to each parameter in the network.

The network weights are adjusted by gradient descent. Most networks are trained

through stochastic gradient descent, in which weights are updated according to

W ← W − η∇WFi
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where η is the learning rate and ∇WFi is the gradient of the objective function

with respect to the parameters W as calculated on a single example. Many popular

heuristics of gradient descent exist, including AdaGrad, AdaDelta, and Adam.

For output ŷ and true value y, a loss function L(ŷk, yk) is calculated for each

output node k in the output layer. We calculate

δk =
δL(ŷk, yk)

δŷk
· f ′k(εk)

For each node in the hidden layer immediately before the output layer, we calcu-

late

δj = f ′(εj)Σkδk · wkj

This calculation is performed successively for each hidden layer, and each δj value

represents the derivative δL/δεj of the total loss function with respect to the node’s

incoming activation. Given values yj calculated from the forward pass and δj calcu-

lated from the backward pass, the loss L with respect to parameter wjj′ is

δL
δwjj′

= δjwjj′

2.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) were originally designed to recognize features

in two-dimensional image data. CNNs were first inspired by the biological research of

Hubel and Wiesel (1968) in neurobiological image processing in the cat cortex. They

have been adapted to not only perform image recognition in machine learning, but also

have been used in scene labeling, face recognition, and speech recognition. Collobert

et al. (2011) has shown CNN uses in NLP tasks, such as part-of-speech tagging,

chunking, named entity recognition, and semantic role labeling. Most recently, CNNs

have been used in text classification (Y. Kim 2014).
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Architecture of CNNs

Figure 2.3: Y. Kim (2014) Convolutional Neural Networks for Sentence Classification

In sentence classification, the input is sentence s and the output is a class y ∈ 0, 1

which represent two different classes for sentence s. Four types of layers form a

convolutional neural network.

Embedding Layer

Instead of image pixels, the input to an CNN for NLP tasks is a matrix-representation

of sentences or documents. A CNN first processes the sentence through an embedding

layer that turns words into word embeddings, also called word vectors. Each matrix

row corresponds to one token, typically a word. The matrix dimension used for CNNs

in this case is sentence length times word embedding dimension.

Convolutional Layer

Then, the CNN passes the embeddings through convolutional layers to extract salient

n-gram features from the input sentence to create latent semantic representations of

the sentence.

A convolution operation involves a filter W ∈ Rhk, which applies to a window

of h words to produce a feature. The window operations generate a new feature. A
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filter ci is generated from a window of words xi:i+h−1 by

ci = f(W · xi:i+h−1 + b)

The filter applies to every possible window of words in the sentence {x1:h,x2:h+1,

. . . ,xn−h+1:n} to produce a feature map

c = [c1, c2, . . . , cn−h+1]

Pooling Layer

Then, the pooling layer, also called a subsampling layer, reduces the spatial size of the

representation by applying an operation, such as max, sum, average, or L2-norm. Two

main reasons motivate pooling: to turn a variable size input into a fixed size output

matrix typically necessary for classification and to reduce the output dimensionality

while keeping the most salient information about the input sentence.

Given feature map c, a max-over-time pooling operation takes the maximum value

ĉ = max{c} as the value that corresponds to this particular feature. This captures

the most important feature (the one with the highest value) for each feature map.

The pooling layer has one additional benefit when working with natural languages

in that it automatically standardizes variable sentence lengths.

Fully-connected layer

In a fully-connected layer, neurons have connections to all activations in the previous

layer, compared to a convolutional layer, which is connected only to a local region in

the input. The output values are similarly computed by a matrix multiplication with

a bias offset.
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Multi-channel CNNs

Y. Kim (2014) describes a CNN model variation with multichannels, where each set

of word embeddings is treated as a “channel,” similar to separating RGB layers in

an image. Filters are applied over all channels, while gradients are backpropagated

over only one of these channels. Kim’s model fine-tunes one set of vectors while

keeping the other static. This multi-channel architecture can be extended to other

applications, including using multiple word embeddings.

2.4.4 Recurrent Neural Networks

Another type of neural network is the recurrent neural network (RNN), which per-

forms the same task for every element in the sequence, with the output dependent on

previous computations. An RNN is more powerful than a CNN in time-dependent or

sequential tasks because it maps from the entire history of previous inputs to each

output. These recurrent connections allow the nodes to have “memory” of previous

inputs which influences the network output.
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Figure 2.4: An RNN architecture. The network receives input xt at time t, and a
hidden state st−1 from the previous time step. st−1 is the memory of the network.
At the current time step, we calculate a new st = f(Uxt + Wsr−1), where f is an
activation function such as tanh or ReLU. Output ot is derived from softmax(V st)

At time t, a node receives input from the current data point x and values ht−1

from the network’s previous state. The output ŷt is calculated from the hidden node

values ht. The following two equations specify the all calculations during the forward

pass for a specific timestep t:

ht = f(Whxxt +Whhht−1 + bh)

ŷt = softmax(Wyhht + by)

where Whx is the matrix of convolutional weights between the input and hidden

layer and Whh is the matrix of recurrent weights between the hidden layer and itself

at adjacent time steps. The vectors bh and by are bias parameters that allow each

node to learn an offset.

The RNN can be thought of as a deep neural network with one layer for each

time step and shared weights across time steps. This process of discretizing the neural
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Figure 2.5: The LSTM is made of four neural network layers instead of one, consisting
of a forget gate f , an input gate it, Ct, and a sigmoid gate σi.

network by time steps is called unfolding. Then, it is clear that the same training and

backpropagation algorithms can be applied to this neural net as described earlier.

Long Short-Term Memory Networks

The long short-term memory network (LSTM) was introduced by Hochreiter and

Schmidhuber (1997) to tackle a problem found in RNNs called vanishing gradients.

During backpropagation, information passes through many stages of multiplication,

which causes them to grow at exponential rates or reach zero. When the gradients get

large and are suppressed by a non-linear activation function, they lose information

that is crucial in training the neural network.

The LSTM model resembles a standard RNN model, but each node is replaced

by a memory cell. The memory cell is composed of an input gate, an output gate,

a forget gate, and a neuron that connects back to itself. Let clt ∈ Rn represent a

memory cell in layer l and time step t. Let hl
t ∈ Rn be a hidden state at time t and

layer l. hl−1
t and hl

t−1 predicts hl
t, and xt denotes new input at time t.

The forget gate layer decides what information does not need to be kept from the

cell state, performing a sigmoid operation on an affine transform, with Wf and bf as

its weight and bias.

ft = σ(Wf [̇ht−1,xt] + bf )
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The next step decides what information to store in the cell state, in which we

have a sigmoid layer that decides which values to update, it, and a tanh layer that

creates a vector of new candidate values, gt.

it = σ(Wi [̇ht−1,xt] + bi)

gt = tanh (Wg [̇ht−1,xt] + bg)

We update the old cell ct−1 into a new cell ct through

ct = ft × ct−1 + it × gt

Intuitively, LSTMs allow the network to decide what information to forget from

the previous state in the forget gate, decide what information to store in the cell state

through the input gate and and tanh layer, and finally, how to update the cell state.

In the last step, we multiple the old state ct−1 by ft, then add the new values scaled

by how much we decided to update each value it × gt.

Finally, we decide what to output, in which we run a sigmoid over the previous

hidden state and current input then a tanh over the values we decide to output.

ot = σ(Wo [̇ht−1,xt] + bo)

ht = ot × tanh (ct)

2.4.5 Word Embeddings

Word embeddings refer to various techniques that map words or phrases to dense vec-

tor representations that allow for computation of semantic similarities of words. Word

embeddings were first popularized by Bengio et al. (2003) and have been increasingly

22



used in natural language processing tasks. Words can be approximately modeled in

an N -dimensional space that is sufficient to encode the semantics of each particular

language. Each dimension encodes some meaning in the word, such as tense (past,

present, future), count (singular, plural), and gender (masculine, feminine, neutral).

Recent techniques to construct word embeddings have been based on neural network

language models (NNLMs) (Mikolov et al. 2013), which take into account the word’s

neighboring words as context for the word’s meaning. Cosine similarity is the typical

measure for vector similarity.

Definition 2.4.4 (Word Embedding). A word embedding W : words → Rn is a

parametrized function mapping words in a language to low-dimensional vectors.

Let us start with an example: “The puppy jumped onto the sofa.”

One approach is the continuous bag-of-words (CBOW) model, which treats [

“The”, “puppy”, “onto”, “the”, “sofa”] as context to predict the word “jump.” The

context word vectors predict the current word vector, then a loss is calculated between

the predicted word vector and the actual word vector and adjusted using gradient

descent.

p(w|C) =
eh

ᵀ
Cvw

ΣK
k=1e

hᵀCvk

where hC is the feature for context C and vw is the classifier for word w.

Another approach is the skip-gram model, which takes the center word, “jump,”

and predicts or generates the surrounding words “The,” “puppy,” “onto,” “the,” and

“sofa.” The training process is similar to the CBOW model, but now in reverse.

p(c|w) =
ex

ᵀ
wtvc

ΣK
k=1e

xᵀwtvk

where xw is the word vector for word w and vc is the classifier for word c.

These word vectors are trained through minimizing log likelihood:
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Figure 2.6: The CBOW architecture predicts the current word based on the context,
and skip-gram predicts surrounding words given the current word.

min
x,v
−ΣT

t=1Σc∈Ctlog
ex

ᵀ
wtvc

ΣK
k=1e

xᵀwtvk

Word vectors are extremely powerful representations of semantic relationships

between words. For example, there is a constant male-to-female difference vector:

W (“woman′′)−W (“man′′) ' W (“queen′′)−W (“king′′)

Other relationships are encoded similarly, including cities to countries (Paris -

France, Tokyo - Japan, San Francisco - California), comparative words (big - bigger -

biggest, small - smaller - smallest, cold - colder - coldest), and companies to products

(Microsoft - Windows, Google - Android, Apple - iPhone).

While word embeddings have become an essential part of natural language pro-

cessing and are used widely in neural networks and other models, they can fall short

when modeling terms that have multiple definitions. One such example is in online
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extremest groups which reappropriate words such as “Google” or “Skype” to have

alternate hate speech definitions. They are able to go undetected by online hate

speech detection algorithms, given the difficulty in differentiating between mentions

of “google” or “skype” as technology companies and as derogatory labels for black

and Jewish populations. Previously, extremest groups put parentheses around Jewish

surnames to target Jews for offensive slurs, similar to forced wearing of the Yellow

Star during the Holocaust. Their methods are now more sophisticated and cannot

be easily detected by online spam filters. Therefore, we need better methods for hate

speech detection by creating word mappings that relate the semantic similarities of

code words with known derogatory words.

Code Word Meaning

Skype Jew

Google Black person

Butterfly Gay man

Durden Transgender

Car salesmen Liberals

Reagans Conservatives

Fishbucket Lesbian

Skittle Muslim

Bing Chinese

Yahoo Mexican

Table 2.1: Hate speech code words and their corresponding meanings.

By understanding the relationships between words and their semantic represen-

tations, natural language processing tasks such as classification can much better cat-

egorize sentences and documents.
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2.4.6 fastText

fastText is a method developed by Facebook in 2016 that builds on theoretical ideas

in word embeddings for text classification. Instead of modeling the probability of a

target word given the context or the context given the target word, fastText models

the probability of a label given a paragraph.

p(l|P) =
eh

T
Pvl

ΣK
k=1e

hTPvk

where hP is a feature for paragraph P and vl is a classifier for label l. Each

paragraph feature hP is the sum of its word representations.

hP = Σw∈Pxw

Figure 2.7: fastText architecture, which is a bag of words classifier with a hidden linear
layer. Word vectors for all words in the document are averaged into one document
vector representation.
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A bag of n-grams can better represent phrase-level features, which are stored

efficiently in memory through a hashed dictionary.

fastText can also be used to generate word embeddings. The difference between

fastText and other methods such as word2vec and GloVe is that it represents words

as the sum of its character n-grams. The benefits of using character n-grams is

that compound nouns are easy to model, and in languages with declensions, these

variations will be represented with the same root word instead of many distinct entries.

This model is beneficial for identifying code words in hate speech that are misspellings

or variations of other words, as well as identifying compound words that take on

separate meanings than the stem words.
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Chapter 3

Methodology

In this chapter, we begin by defining the hate speech classification problem. We

show how our research uses the text classification methods described in Chapter 2 to

classify hate speech. We also present our methods to engineer tweet-level and user-

level features as well as hate-speech specific word embeddings. Finally, we describe

the experimental settings used for Chapter 5.

3.1 Problem Statement

The central research question we address in this section is the following:

Given a new tweet and information about the author’s Twitter account, how ef-

fectively can we classify this tweet as hate speech or not hate speech?

We use a two-pronged approach to answer this question:

1. Develop a new neural network architecture that improves state-of-the-art prob-

abilities that a tweet is classified correctly.

2. Investigate whether incorporating additional information from the social net-

work, such as tweet metadata or user profile information improves classification

accuracy.
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3.2 Classification Methods

We train a variety of CNN, LSTM, and fastText models on our dataset to classify

hate speech. We use grid search to tune the hyperparameters of thees models and

early stopping to prevent overfitting. We append tweet and user-level features to

our dataset when running CNN and LSTM models to investigate the performance of

additional features on model performance. We also try different word embeddings for

each of the three models.

3.3 Datasets

Waseem and Hovy 2016 make available a dataset containing 16,914 annotated tweets,

of which 5,355 tweets are labeled as either sexist or racist. These tweets belong to

a group of 614 Twitter users. The dataset is constructed by performing a manual

search of common slurs and terms related to hate speech, then sampling the public

Twitter search API to collect tweets with the selected words. This ensured that

the dataset contained potentially offensive words used in non-offensive contexts, such

as “you are right there are issues but banning Muslims from entering doesn’t solve

anything”. The dataset was manually annotated by the authors and reviewed by a

non-activist feminist woman studying gender studies to mitigate bias. They achieved

an inter-annotator agreement of κ = 0.84 1.

3.3.1 Data Preprocessing

We processed each tweet using the tweet-preprocessor2 Python package to replace

any URLs with “url,” user mentions with “mention,” and reserved words such as

1κ is calculated as Cohen’s kappa, which measures inter-rater agreement for qualitative (categorical)
items κ = p0−pe

1−pe
where p0 is the agreement among raters, and pe is the hypothetical probability of

chance agreement
2https://pypi.python.org/pypi/tweet-preprocessor/0.4.0
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“RT” and “FAV” with “reserved.” Doing so helped decrease vocabulary size and

remove one-off words or URLs that do not exist in the English dictionary. While the

URLs and user mentions contain valuable information such as links to hate speech

websites or images promoting hate speech, we limit our study to only the textual

content of a tweet. We lowercase our tweets and remove all punctuation.

Because we are only interested in predicting for hate speech or not hate speech,

we group tweets labeled with “sexism,” “racism,” and “both” into the same “hate

speech” category.

3.3.2 User Features

To augment our text-based data, we also construct features from the tweet’s contex-

tual information. Our features consist of the number of likes and retweets for the

individual tweet, as well as the number of followers and number of friends (people

the user follows) of the tweet’s author. The choice of constructing features from likes

and retweets stems from our hypothesis that tweets expressing stronger sentiments

will incite stronger reactions from a user’s followers, resulting in likes or retweets. We

also hypothesize that users who are following fewer people are exposed to less diverse

information than users who are following many other accounts, so their views may be

more polarized than someone who receives a diversity of tweet information.

We take the square root of each user feature to ensure that the numbers were not

off by an order of thousands, given that the following statistics:

retweets favorites user following num user follower num

45083 830 50543 299362

Table 3.1: Maximum numbers for each of the four features. Because the numbers
varied on the order of thousands, we take the square root of each of these numbers.

The four features that we are using, the number of retweets, likes, user follower
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count, and user following count are appended to the hidden representation of the

input immediately prior to the last fully-connected layer. We choose to append these

features to the second-to-last layer to dissociate these features from being grouped

into n-grams in CNNs or affecting the sequential processing in RNNs.

3.4 Word Embeddings

For word embeddings, we experimented with using pre-trained embeddings and train-

ing our own embeddings on hate speech datasets. For pre-trained embeddings, we

use fastText pre-trained word embeddings (English, 300 dimensions) (Bojanowski et

al. 2016). While many pre-trained embeddings exist online as published by Google

(Mikolov et al. 2013), Facebook (Bojanowski et al. 2016), and Stanford (Pennington

et al. 2014), training our own word embeddings better capture the semantic similari-

ties of a particular domain of words.

We improve upon existing techniques for hate speech classification by training

our word embeddings on a known hate-speech dataset instead of using pre-trained

word embeddings. We use a dataset developed by Taylor et al. (2017), which con-

sists of articles from DailyStormer3 and tweets from Twitter accounts of identified

white-supremacists that the authors created by measuring user centrality on Twitter.

Tweets were selected from the users with the highest centrality. DailyStormer articles

are more typically written by white supremacists.

We train fastText and word2vec models that combined DailyStormer and tweet

data to create a word embedding that reflects the semantic similarities of words in

domains with a high concentration of hate speech. Using words from Hatebase 4, an

open-source repository of structured, multilingual, usage-based hate speech, we found

the top 30 most common words for each word in Hatebase. Many words in Hatebase

3https://www.dailystormer.com/
4https://www.hatebase.org/
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were not found in our vocabulary. This may be because words only need to have one

sighting to be recorded on Hatebase, and Hatebase’s validity is difficult to measure

given that it is crowd sourced. We compare the top 30 words from the model trained

on hate speech and compare it to a pre-trained embedding to identify words that are

in the hate speech model that could be hate-related code words.

We implement Y. Kim (2014)’s model of multichannel convolutional networks,

and instead of backpropagating through one embedding and keeping another word

embedding static, we use two different word embeddings which are concatenated be-

fore the convolutional step. Yin and Schutze (2015) found multiple embeddings to

improve performance because the meta-embeddings contain more information than

each component embedding. We align these word embeddings so that vectors are

aligned to the same axes (Hamilton et al. 2016). This allows us to compare the same

word across different embeddings and simplifies the weight updates procedure. Align-

ing word embeddings uses orthogonal Procrustes. Defining W 1,W 2 ∈ Rd×|V| as our

two word embeddings, we align word embeddings while preserving cosine similarity

by optimizing R2 = arg minQᵀQ=I‖QW 2 −W 1‖F where R2 ∈ Rd×d and ‖·‖F is the

Frobenius norm.
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the googles skypes jew muslim

in niqqers cocksuckers christ-killer [bomb emoji] muslim

of chars jidf kike musl / mosl

which yahoos trogs baby-killer moslem

and bants googles jewgle gang-rapists

a ferals britcucks ratlike child-raping

that dindonuffin shitposters jew-over gang-sex

however nig-nogs wogs jonestein muzrats

also ray-cyst kikes jewdar tray-trays

only jigaboos 1488ers lolcow muzzies

an baboon lap dog kikebart mudslimes

Table 3.2: Words from top 30 most similar words in the DailyStormer embedding
that were not found in the word2vec top 30 embeddings, with the exception of “the”
which is used as an example for comparison.

the googles skypes jew muslim

this google.com skyping jews muslims

in google yahoo SKYPE jewish Muslim

that wikipedia Gtalk rahm islamic

ofthe googled MSN messenger mhux Moslem

another googling gmail yid christian

Table 3.3: Words from the top 10 most similar words in word2vec. If a word had two
different capitalizations, only one is shown on this list.
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3.5 Experimental Settings

We implement all of our models in PyTorch 5, a framework for Python based around

Torch 6, which is a library for deep learning. To produce results in a comparable

setup with compared to Badjatiya et al. (2017), we perform 10-fold cross validation

and calculate precision, recall and F1-scores for each model. We split the training

and test sets into 90% training and 10% validation and evaluated performance by

averaging the precision, recall, and F1-scores across the 10 folds. Our batch size is

set to 128. We use categorical cross-entropy as the learning objective and ADAM as

our optimizer (Kingma and Ba 2014).

Our model runs for 20 epochs for every fold in the convolutional models, 30

epochs for every fold in the recurrent models, and 40 epochs for every fold in the

fastText models to avoid overfitting. We employ early stopping to maximize validation

accuracy. After experimentation, the optimal epoch generally occurrs between 18-23

epochs for CNNs, 28-33 epochs for RNNs, and 39-44 for fastText.

We perform paired t-test analysis on pairs of classifiers to determine their sta-

tistical significance and set the p-value at α = 0.05. However, given that we are

performing paired t-tests on a large number of pairs, we apply Bonferroni correction7

and divide p by the number of comparisons, m. We only treat results with p < α
m

as

significant.

5http://pytorch.org/
6http://torch.ch/
7A method to counteract the multiple comparisons problem, in which the larger the number of
inferences, the more likely erroneous inferences will occur. Approximately every 1 of 20 times, a
non-statistically significant inference will have value p < 0.05.
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Chapter 4

Feature Visualizations

4.1 Visualization Methods for Neural Networks

One of the biggest criticisms of deep neural networks is the lack of interpretability of

the mechanisms. Historically, neural networks have been thought of as “black boxes,”

but recently visualization techniques have been able to shed light on how the inputs

influence the final output. Graphing the magnitude of the weights in each of the

neural layers allows us to better interpret which inputs are contributing highly to the

result, and which inputs are being ignored.

4.2 Saliency Maps

Originally inspired by neural network applications to vision, we apply work from

Simonyan et al. (2013) and Li et al. (2015) to measure how much each input word in

the tweet contributes to the final classification.
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4.2.1 Theory

Formally, an input X is associated with a class label c. In our experiment, we label

c0 as not hate speech and c1 as hate speech. Given embedding ei ∈ E for word

xi ∈ X, the model that we train associates each word embedding ei with a class label

∈ {c0, c1} to derive a score Sc(ei). In visualization, we want to determine which word

embeddings contribute the most to Sc(E).

In deep neural networks, calculation of Sc(E) is a non-linear function. We ap-

proximate Sc(E) by computing a first-order Taylor expansion

Sc(e) ≈ w(e)T e+ b

where w(e) is the derivative of Sc with respect to word embedding e.

w(e) =
δ(Sc)

δe
|e

The absolute value of derivative w(e) indicates the final class score’s sensitivity

to changes in the input word. The saliency of input word wi is given by

S(ei) = |w(ei)|

4.2.2 Implementation

To implement this technique on a convolutional neural network, we compute the

gradients of the network’s prediction with respect to the input, holding the weights

between the network layers constant. This allows us to determine which inputs affect

the prediction the most. We perform guided backpropagation (Springenberg et al.

2014), which is a modified version of using the gradient as a proxy for the importance

of each input. In guided backpropagation, we only backpropagate the error to every

36



positive input, and only backpropagate positive error signals. Intuitively, we are

only interested in what features the neuron detects, and not what it does not detect.

Guided backpropagation has been shown to produce cleaner visualizations than other

methods such as deconvnet and simple backpropagation, which is why we chose guided

backpropagation to visualize the convolutional layers. Examples of our visualized

convolutional layers are below:
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Figure 4.1: Visualizations of the guided backpropagation on the first convolutional
layer in the CNN model. Each row corresponds to saliency scores for the correspon-
dent word representation, with each grid in the row representing a unit in the hidden
layer. Hidden layers have 256 units. All examples are labeled in the dataset as hate
speech.

In all of the examples in Figure 4.1, the convolutional net assigns higher weights to
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words that are more indicative of hate speech, including “terrorism,” “islamofascists,”

“genocidal criminals,” and “exterminated.” Because the models span windows of sizes

3, 4, and 5, the models pick up on groups n-grams together, as evidenced by the higher

weights that are clustered together in groups of approximately length 3. The words

surrounding the highest weighted words also received higher weights.

Figure 4.2: Visualizations of the guided backpropagation on the first convolutional
layer in the CNN model for tweets that were incorrectly classified. Each row corre-
sponds to saliency scores for the correspondent word representation, with each grid
in the row representing a unit in the hidden layer. Hidden layers have 256 units.

Visualizing the convolutional layers also allows us to analyze sources for discrep-

ancies between the predicted label and the actual label. Some incorrectly classified
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tweets are in Figure 4.2. The model seems to place a large emphasis on numerical

values, such as “28” and “3000.” While we do not have clear explanations for why

convolutional neural models assign larger weights to phrases such as “sincethey have

skipped” or “cleric sun revolves,” these visualizations are valuable tools to gain in-

sight into hate speech features that may be missed when conducting qualitative or

human-annotated classification.
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Chapter 5

Experimental Results

5.1 Results and Analysis

To measure our performance, we use weighted precision, recall, and F1-score as stan-

dard measures of classification accuracy. Precision is defined as the ratio of the true

positives over the total number of positive predictions, or in this case, the number

of tweets correctly classified over the total number of tweets that were classified in a

specific class. Recall is defined as the ratio of true positives over the total number of

results that are actually in that class, or in this case, the number of tweets correctly

classified over the total number of tweets in that class. The F1-score is the harmonic

mean of precision and recall, expressed as F = 2·P ·R
P+R

.

We present our baseline method results in Table 5.1, experiments with CNNs and

LSTMs in Table 5.2, and experiments with the fastText model in Table 5.3.
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Method Precision Recall F1

BOW + Multinomial Classifier 0.826 0.825 0.825

TF-IDF + Multinomial Classifier 0.820 0.819 0.816

TF-IDF (ngram=2) + Multinomial Classifier 0.857 0.857 0.856

BOW + Balanced SVM 0.832 0.831 0.828

TF-IDF + Balanced SVM 0.849 0.848 0.848

TF-IDF (ngram=2) + Balanced SVM 0.879 0.877 0.878

Table 5.1: Baseline methods for text classification. Multinomial parameters (α =
1× 10−3). SVM parameters (loss=hinge, penalty=L2, α = 1× 10−5, iterations=5)

To compare our results against baseline methods, we implement bag-of-words

models with multinomial naive Bayes classifiers and SVMs. For all tasks, we see a

predictable trend of increased precision, recall, and F1 from increasing the n-gram

count from 1 to 2. Of the two different classification methods, balanced SVMs out-

perform multinomial naive Bayes classifiers in all tasks, which is unsurprising because

balanced SVMs are discriminative models, while naive Bayes models are generative

models, and discriminative models do better than generative models on large datasets

(Ng and Jordan 2002). The TF-IDF with 2-grams and balanced SVM score the high-

est on all metrics. Our baseline results are better than other papers performing text

classification on the same dataset. Badjatiya et al. (2017) reports the highest baseline

F1-score as 0.816 with TF-IDF and Balanced SVMs. Our results may be significantly

higher because we run an extensive grid search over the model parameters.
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Method Precision Recall F1

Baselines

CNN 0.822 0.770 0.746

CNN with user features 0.826 0.782 0.762

CNN (multi, pretrained embedding) 0.819 0.768 0.744

CNN (multi, random embedding) 0.825 0.784 0.765

LSTM (random embedding) 0.813 0.779 0.761

Embeddings

CNN (word2vec+dstormer unaligned) 0.827 0.790 0.774

CNN (word2vec+dstormer aligned) 0.825 0.794 0.780

CNN (word2vec+tweets unaligned) 0.820 0.782 0.764

CNN (word2vec+tweets aligned) 0.825 0.794 0.780

LSTM (dstormer aligned) 0.811 0.771 0.750

LSTM (tweets unaligned) 0.818 0.786 0.770

User Features
+Embeddings

CNN (word2vec+dstormer unaligned) 0.834 0.803 0.790

CNN (word2vec+dstormer aligned) 0.837 0.811 0.800

CNN (word2vec+tweets unaligned) 0.837 0.811 0.799

CNN (word2vec+tweets aligned) 0.837 0.811 0.799

LSTM (dstormer aligned) 0.815 0.769 0.742

LSTM (tweets unaligned) 0.822 0.793 0.778

Badjatiya
(2017)

CNN (random embedding) 0.813 0.816 0.814

CNN (GloVe embedding) 0.839 0.840 0.839

LSTM (random embedding) 0.805 0.804 0.804

LSTM (GloVe embedding) 0.807 0.809 0.808

Table 5.2: Comparison of various methods for hate speech classification. “multi”
refers to using 2 different channels for the CNN models, “dstormer” refers to using
word embeddings trained on the DailyStormer and tweets by users with high centrality
on Twitter, and “tweets” refers to word embeddings that were trained on the Waseem
and Hovy (2016) dataset. For number of epochs, CNN is trained with 20, LSTMs with
30, and fastText with 40. All models were trained with the Adam optimizer (learning
rate = 0.001), categorical cross entropy, batch size 128. CNNs have hidden dimension
100, dropout of 0.25 after embeddings and 0.5 after the convolutions. LSTMs have
hidden dimension 100, 4 layers, and are bidirectional. Pair-wise significance tests are
in Appendix 7.3.

The CNN and LSTM models are below state-of-the-art results, which are most

recently reported by Pitsilis et al. (2018) to have a precision of 0.931, recall of 0.933,

and F1 of 0.932. However, we find problems with Pitsilis et al. (2018)’s method of
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appending additional user-level features. Their features tNa, tRa, tSa are constructed

from taking the set of tweets by a specific user, ma, and finding subsets of those

tweets that have been labeled as neutral, racist, and sexist. Their features are cal-

culated as tNa =
|mN,a|
|ma| , tRa =

|mR,a|
|ma| , tSa =

|mS,a|
|ma| . For any particular tweet, they use

information about the user’s other tweets that have been human-labeled, which could

have been sequentially posted after the tweet being classified. In addition, real-life

text classification systems are unlikely to store a history of labeled user tweets, unless

tweets manually reported by other users on the platform as hate speech. Our results

for CNN and LSTM models are slightly lower than results reported by Badjatiya

et al. (2017) in recall, while on par in precision. Our models are more conservative in

labeling tweets as negative compared to other models, which may be due to the lack

of time to specifically tune hyperparameters of each of our models.

With regards to experiments involving multiple word embeddings, dstormer refers

to a word embedding model trained on articles from DailyStormer and tweets from

influential white supremacists. tweets refers to a word embedding model trained on

our Waseem and Hovy (2016) dataset. The aligned dstormer embedding performs

better than the unaligned embedding, even though the vocabulary size for aligned

dstormer is smaller than the unaligned embedding. Despite the smaller vocabulary

size, this is unsurprising given that by aligning these context-specific word embeddings

to word2vec, the backpropagation models are able to update these vectors in similar

ways, and model weights more accurately characterize semantic differences between

words. Aligned embeddings for dstormer and tweets perform similarly, possibly due

to the smaller vocabulary size of each of these compared to the unaligned tweets.

The unaligned word embeddings trained on the Waseem and Hovy (2016) dataset

also perform better than the dstormer dataset, which is unsurprising because we are

applying these word embeddings to the Waseem and Hovy (2016) dataset.

LSTMs perform worse than CNNs, likely due to the brevity of the tweets in the
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dataset. LSTM models generally perform better when trained on longer sentences

or data points, given their strength in referring back to the encoded memory from

earlier training data. On the other hand, CNNs perform well on feature extraction,

which may better suit hate speech classification given that perpetrators often use

short phrases to express hate speech. The performance of LSTMs compared to CNNs

on tweet-based text classification may be over-exaggerated in some papers, and the

performance of different classification models for different types of text classification

tasks should be further explored.

Our CNN models also perform better after appending the four user and tweet

features. CNN with user features has a 0.016 (p < 0.001) increase in F1-score com-

pared to the baseline CNN model. The F1-score for each of our models improves

by approximately 0.02, with approximately equal gains across precision and recall.

Even with word embeddings, appending the features continued to have significant

gains. The F1-score increases by 0.035 (p < 0.001) in CNN multichannel models with

features, compared to models without, both embedded with word2vec and the un-

aligned tweets. F1 scores also increased for CNN models with word2vec and dstormer

(p < 0.001). However, our LSTM model did not improve after appending features

before the hidden to label layer. While we are unsure of why CNN models out-

perform LSTM models with additional features, we hypothesize that because all of

the information is encoded in the last LSTM hidden vector prior to appending the

four features, the fully-connected layer may be overestimating the importance of the

features relative to the hidden encoding.
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Method Precision Recall F1

fastText (random embeds) 0.850 0.849 0.848

fastText (dstormer + hate tweets) 0.855 0.851 0.852

fastText (random embeds, ngrams=2) 0.889 0.888 0.888

fastText (dstormer + hate tweets, ngrams=2) 0.888 0.888 0.888

fastText (dstormer + hate tweets, ngrams=3) 0.890 0.890 0.890

Badjatiya et al. (2017)’s fastText (GloVe) 0.828 0.831 0.829

Badjatiya et al. (2017)’s fastText (random embeds) 0.824 0.827 0.825

Table 5.3: Variations in the fastText model with different embeddings. Training used
40 epochs, learning rate of 0.1, and hidden dimension of 100. Pair-wise significance
tests are in Appendix 7.3.

We also implement the fastText method used by Badjatiya et al. (2017) for text

classification, since our CNN and LSTM models did not perform as well as the exper-

iments reported by Badjatiya et al. (2017)’s paper. fastText creates sentence repre-

sentations from the word vectors by averaging word embeddings and has been shown

to outperform both convolutional and recurrent neural models. In Badjatiya’s paper,

changing from a CNN model to a fastText classification model improved F1-scores

by 0.015. The results of our experiments using fastText are in Table 5.3. We did not

append user features to the fastText models, given that the architecture of fastText

depends on taking an average over the word embeddings in the sentence and creating

a new paragraph embedding. The fastText architecture did not provide a feasible

way to append additional features. We see significant gains in precision, recall and

F1 scores when using fastText over our other neural network models, similar to the

results reported by Joulin et al. (2016). The F1-score increases to 0.890 when using

3-grams, improving over our baseline fastText model by 0.042 (p < 0.001). There is

no statistical differnece between using random embeddings and dstormer and tweets.

Not only does fastText perform better than other neural network models, but it is

also faster to train.
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Chapter 6

Discussion and Conclusion

We show improvements in hate speech classification that result from using hate-

speech specific word embeddings and user features. Our work builds upon a wealth

of previous research on quantitative approaches to text classification, including work

with word embeddings (Mikolov et al. 2013; Bojanowski et al. 2016; Pennington et al.

2014), neural networks for text classification (Y. Kim 2014), and simpler models for

classification that outperform neural models (Joulin et al. 2016). We also build on

qualitative work by researchers focused on the specifics of hate-speech classification

and their findings regarding using task-specific word embeddings to capture code

words in hate speech (Taylor et al. 2017; Magu et al. 2017). We extend these lines

of work by comparing the above methods and introducing user features as additional

data for hate speech classification, as well as being the first paper to apply task-specific

hate speech embeddings to text classification.

6.1 Hate Speech Word Embeddings

Our results show that using word embeddings trained on the DailyStormer articles

and tweets by white supremacist Twitter accounts identified by their centrality out-

perform models that used pre-trained word embeddings such as fastText and GloVe.
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Models trained with hate speech-specific word embeddings also outperform random

embeddings, so we can conclude that the increased F1 scores for hate speech-specific

word embeddings did not come from randomly seeding the embeddings for vocabulary

words that did not appear in the hate speech-specific embeddings, but rather from

the better semantic representations of the words.

Use of hate speech-specific embeddings play a significant role in hate speech clas-

sification compared to other classification tasks such as sentiment analysis due to the

number of code words developed by the hate speech community as offensive racial

slurs. Pre-trained word embeddings are unable to capture the hate community’s as-

cribed meaning to words such as “Googles,” “Skittles,” or “Skypes,” which refer to

black people, Muslims, and Jews, respectively. By training our own word-embeddings,

we can better represent code words semantically in a hate-speech context.

6.2 User Features

The addition of four user features also improves our F1 scores by 2% across all CNN

models. Characteristics of the users themselves may be indicative of whether their

tweet is hate speech or not. While we did not explicitly attempt to calculate a measure

of how likely a user would engage in hate speech, we decide to take as features the

popularity of the tweet, the user’s own influence (as measured by the number of

followers), and the likelihood the user is exposed to varying opinions (as measured by

the number of people they follow). When text classification algorithms are applied

to platforms such as Twitter, these private companies might have better metrics to

measure a user’s likelihood to engage in hate speech than the public data available

to us.
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6.3 Future Work

Near the end of the research process, we discovered a framework similar to fast-

Text that multiplies each word embeddings by a weighted average and modifies them

through PCA (Arora et al. 2016). This model is highly reminiscent of TF-IDF. Ac-

cording to the researchers, the model beats deep neural networks such as CNNs and

RNNs. Given the success of our fastText model over deep neural models, we hy-

pothesize that Arora’s model maybe able to outperform the state-of-the-art neural

networks.

We would also conduct a more thorough comparative analysis of CNN and RNN

architectures. A study by Yin, Kann, et al. (2017) tests the performance of CNNs,

LSTMs, and GRUs, Gated Recurrent Units, (which have a simpler architecture than

LSTMs and belong to the RNN class) on the Stanford Sentiment Treebank, and found

that GRUs performed better than the other two architectures on longer sentences and

had comparable performance with CNNs on shorter lengths of text. They generalize

this finding to state that selection of a neural network architecture depends on how

often the comprehension of global or long-range semantics is required. Given our

application of neural networks to tweets, we want to test the performance of GRUs

against our CNN architectures.

Additionally, we would extract more tweet-level and user-level features to further

test the performance of appending additional features to the models. Due to privacy

restrictions on Twitter, we only extract numerical values for each tweet and user.

However, additional information could be gained from the user-generated biography,

the tweet cascade patterns, and image analysis for tweets with images attached.

In addition, we have collected a dataset of 50K Twitter accounts with ties to

self-identified white supremacists, each with up to 2,000 of their most recent tweets.

Given more time, we would label these tweets through MTurk or CrowdFlower to

conduct further hate speech classification on these tweets. There may be social net-
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work features such as centrality, clustering, and small-world effects that improve hate

speech classification because these accounts are retrieved using breadth-first search

on a graph structure.

Finally, the effectiveness of task-specific word embeddings on hate speech clas-

sification tasks could be further explored. Because hate speech culprits adapt to

disguise their speech from online spam and offensive language detection algorithms,

automated detection systems are necessary to capture the semantics of these newly

appropriated code words. We would also want to study if using hate-speech specific

word embeddings causes more false positives on a set of clean tweets and how this

effect can be mitigated.

6.4 Conclusion

In this work, we investigate the classification accuracy of various deep learning mod-

els against strong baseline techniques. We find that, contrary to previous papers’

results, a new baseline technique that only averages word embeddings called fastText

outperforms deep neural network techniques such as CNNs and LSTMs. We also en-

gineer new features from tweet-level and user-level metadata, significantly improving

classification accuracy on our neural models. Finally, we train task-specific word em-

beddings on known hate speech datasets to better correlate offensive code words with

targeted groups. We show that a combination of feature engineering from metadata

and using hate-speech specific word embeddings can have significant improvement in

hate speech classification accuracy.
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Chapter 7

Appendix

7.1 Saliency Maps

Additional visualizations of the weights of the first convolutional layer in determining

the output of the classification.
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Figure 7.1: Additional Visualizations of Saliency Maps
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7.2 Word Embeddings

Figure 7.2: t-SNE plot of word embeddings showing the most common words to
“kike” in (a) and “nigger” in (b).

7.3 Significance Tests

We conduct paired t-tests on each of the folds of the cross-validation to test whether

two models were statistically significant. We choose the paired t-test over other

statistical methods because we use the same train-test split in our folds every time,
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and the models are trained on the same folds. The data from each of our folds across

many different iterations also follows a Gaussian distribution, which allows us to apply

the paired t-test.

We set a an α of 0.05, but because we are conducting mutliple pairwise compar-

isons on the same dataset, we divide α by m, the number of tests. For the first set of

p-values, we look for a value of p < α
m

where m = 78, so p < 0.0006. For the second

set of comparisons, we look for a value p < α
0.005

.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 XXX 0.0001 0.3063 0.0399 0.0003 0.0000 0.0000 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000

2 XXX 0.0002 0.3726 0.0016 0.0005 0.0000 0.3411 0.0000 0.0000 0.0000 0.0000 0.0000

3 XXX 0.0362 0.0002 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

4 XXX 0.0000 0.2137 0.0547 0.4439 0.0698 0.0006 0.0006 0.0079 0.0048

5 XXX 0.0168 0.0511 0.0018 0.0623 0.3049 0.3049 0.2754 0.3311

6 XXX 0.0080 0.0418 0.0449 0.0001 0.0001 0.0001 0.0002

7 XXX 0.0006 0.4665 0.0000 0.0000 0.0003 0.0007

8 XXX 0.0011 0.0000 0.0000 0.0000 0.0000

9 XXX 0.0004 0.0004 0.0073 0.0034

10 XXX XXX 0.0070 0.4236

11 XXX 0.0070 0.4236

12 XXX 0.0359

13 XXX

Table 7.1: P-values of comparing pairwise CNN models. Highlighted values are p <
0.0006.

Corresponding model numbers with model descriptions.

1. CNN

2. CNNFeatures

3. CNNMulti (fastText embeds)

4. CNNMulti (random embeds)

5. CNNMultiFeatures

6. CNNMulti with Embeddings (Google + DStormer)

7. CNNMulti with Embeddings (Google + DStormer Aligned)

8. CNNMulti with Embeddings (Google + My Unaligned)

9. CNNMulti with Embeddings (Google + MyAligned)
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10. CNNMultiFeature with Embeddings(Google, MyAligned)

11. CNNMultiFeature with Embeddings(Google, My Unaligned)

12. CNNMultiFeature with Embeddings(Google, DStormer)

13. CNNMultiFeature with Embeddings(Google, DStormer Aligned)

1 2 3 4 5

1 XXX 0.2159 0.0000 0.0000 0.0000

2 XXX 0.0000 0.0000 0.0000

3 XXX 0.3651 0.1899

4 XXX 0.1037

5 XXX

Table 7.2: P-values comparing fastText models pairwise. Highlighted values were
p < 0.005.

Corresponding fastText model numbers with descriptions.

1. fastText (random embedding)

2. fastText (dstormer + hate speech users)

3. fastText random embeddings, ngram=2)

4. fastText (dstormer + hate speech users, ngrams=2)

5. fastText (dstormer + hate speech users, ngrams=3)
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