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1 INTRODUCTION 

College campuses provide ideal breeding grounds for infectious disease. Students live in close 

quarters, pack into dry lecture halls, share food and drinks in the dining areas, and engage in 

intimate contact. The dense social environment is coupled with the daily stress and lack of sleep 

of the average college student, weakening the immune system and enhancing disease transmission. 

Thus, infectious disease outbreaks at universities pose a unique public health challenge because of 

the intense rapidity with which they spread. Indeed, in March 2014, meningitis quickly infiltrated 

Princeton University, eventually claiming the life of one student. The Centers for Disease Control 

and Prevention (CDC) later reported the attack rate of the disease on Princeton’s campus to be 134 

per 100,000 students – 1400 times greater than the national average [1]. 

The most recent string of outbreaks on college campuses involves mumps, once a common 

childhood viral disease. For instance, in 2016, colleges in Iowa, Indiana, Ohio, and Wisconsin all 

experienced a spike in this disease. Meanwhile, in the Greater Boston area, 210 confirmed mumps 

cases were identified between January 1 and August 31, 2016, with most occurring at Harvard 

University [2]. As a highly contagious disease, mumps has the potential to travel quickly and 

pervasively on a crowded college campus. But, whereas mumps spread rapidly at Ohio State 

University in 2014 and the University of Iowa in 2006 and 2016, Harvard employed careful 

precautions and interventions that mitigated excessive spread of the disease and contained it over 

just a few months [3]. The CDC is currently investigating the techniques with which Harvard so 

effectively contained mumps on its campus, with the hope that Harvard’s approach can be 

generalized to future university outbreaks.  

 Thus, to aid the CDC in this task, this paper constructs a mathematical model to simulate 

the dynamics of mumps on a college campus and quantify the impact of various interventions. 
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Most epidemiological models have at least one of three flaws: (i) inability to handle small 

populations, (ii) inability to handle missing or unobserved data, or (iii) inability to evaluate the 

effects of interventions. The modified stochastic susceptible-exposed-infectious-recovered (SEIR) 

model presented in this paper addresses these three issues. We fit this model on case data for 

Harvard’s 2016 mumps outbreak provided by the Massachusetts Department of Public Health 

(MDPH), and find that the three primary interventions implemented by the university were crucial 

in reducing the size and duration of the outbreak. In particular, Harvard’s policies drastically 

increased the reporting rate of infection and shortened the time a person remains infectious in a 

susceptible population, relative to the baseline. As a result, one mumps case at Harvard infected 

an average of one susceptible individual, compared to a case at a school like Ohio State University, 

which infected an average of three susceptible individuals. Universities that adopt similar 

strategies can better contain and abate future infectious disease outbreaks. 

 We divide our analysis in this paper into four stages. We begin by exploring and 

understanding the Harvard outbreak to determine which interventions were most important. The 

three interventions that Harvard University Health Services (HUHS) invested the most time and 

resources in were (i) an email awareness campaign, (ii) more aggressive diagnoses, and (iii) formal 

isolation of infectious cases.  

Because basic epidemiological models are incompatible with characteristics of most 

campus outbreaks, we next develop a model that accounts for a time-varying infection rate, random 

fluctuations in a small population like Harvard’s, and the possibility of unobserved or overlooked 

cases. This is accomplished by fitting a modified stochastic SEIR model, that allows for control 

interventions, within the framework of a Partially Observed Markov Process (POMP) model. 

While the SEIR model represents the unseen true process that calculates the changing numbers of 
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cases each day, a measurement model that overlays the SEIR model determines the number of 

cases actually reported publicly.  

We then apply the Harvard case data to the model and estimate its parameters using Monte 

Carlo techniques, and discover that the vigilance on campus was unmatched. Approximately 99% 

of cases were reported to Harvard’s health services, compared to the 4% of cases reported in the 

overall US population. Additionally, despite a highly contagious disease, HUHS measures 

suppressed both the average number of secondary infections that a single case could cause and the 

length of time an infectious person interacted with susceptible persons. Lastly, the impact of new 

interventions immensely lowered the mumps transmission rate, which soon led to the end of the 

outbreak.  

Although the combination of the three interventions produced these impressive results, in 

the final stage of this paper, we perform two types of comparative analyses to speculate the 

individual effects of each intervention. First, we strive to understand the impact of the email 

awareness campaign and change in diagnostic procedures, which occurred at a specific time point 

during the outbreak. The outbreak size is three times larger without these two interventions, 

according to the model. The second comparative analysis contrasts the model parameters of 

Harvard’s outbreak, which had formal isolation policies, with the model parameters of Ohio State 

University’s outbreak, which did not. We find the time an infectious person spreads their 

symptoms to be substantially lower at Harvard than at Ohio State, leading to a shorter outbreak.  

The conclusions from this paper are relevant in guiding future responses to infectious 

disease outbreaks on college campuses. Without effective measures in place, diseases like mumps 

and meningitis penetrate these congested environments at much faster rates than in the overall 

population and can lead to serious health complications. Simple interventions that ensure most 
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cases are detected, treated, and separated from susceptibles make a significant difference, as 

Harvard’s outbreak and response prove. 
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2. THE HARVARD OUTBREAK 

2.1 Biological Background of Mumps 

Mumps is an infectious viral disease, spread through respiratory tract secretions. Standing within 

three to six feet of an infected person when she coughs or sneezes or having direct contact with 

infected secretions facilitates contraction of mumps. Once infected, the incubation period can 

range from 12 to 25 days (with an average of 17 days); generally, one does not show symptoms 

during this period and cannot infect others [4]. Then, approximately two days before symptoms 

arise, a person becomes contagious. The most common symptom that occurs in a mumps patient 

is parotitis, i.e. swelling of the salivary glands. It is recommended that those suspected of mumps 

be isolated until five days after the onset of parotid swelling, at which point they are no longer 

considered infectious. Non-specific symptoms of mumps that may precede parotitis include low-

grade fever, headache, anorexia, and malaise. Because these symptoms are generic, a correct 

diagnosis can be delayed, allowing an infectious person to continue transmitting the disease, 

especially in crowded settings like dormitories [2].  

In the pre-vaccine era, over 90% of US-born children had experienced mumps by age 20. 

Incidence significantly declined with the licensure of a live attenuated vaccine, known as the Jeryl 

Lynn strain, in 1967. In 1977, it became routine to include the Jeryl Lynn strain in the measles-

mumps-rubella (MMR) vaccine administered to infants. After a series of outbreaks in children in 

middle school and high school in the late 1980s, children were recommended to receive a second 

MMR dose between ages 4 and 6. After the introduction of the two-dose vaccination program in 

1989, the count of mumps cases in the US plummeted further, reducing disease rates by 99% by 

2005. The CDC reports that two doses of the vaccine are 88% effective at protecting against 

mumps while one dose is 78% effective [3].  



 9 

Figure 1: The frequency of fever, orchitis, and parotitis in mumps patients 
across Boston in 2016. While orchitis was rare in most cases, fever was seen in 
nearly half the patients, and parotitis was identified in the majority of 
individuals. 

Nevertheless, despite a rising vaccinated population, there has been a recent resurgence of 

mumps, particularly on college campuses, with a steep jump from 229 cases in 2012 to 5833 cases 

in 2016 [2]. These statistics are troubling for two reasons. Firstly, although a typically mild disease 

in children, up to 10% of mumps infections acquired after puberty can cause severe complications, 

including orchitis, meningitis, and deafness. Of those who develop orchitis, which is inflammation 

of one or both testicles, 13% may later suffer impaired fertility [5]. In the mumps outbreak in 

Boston, 8.5% of infected males developed orchitis, as seen in Figure 1. Secondly, a majority of 

recent mumps cases have occurred in young adults who had received the recommended two 

vaccine doses. This suggests that vaccine-derived immunity wanes over time, unlike natural 

immunity – protection acquired from contracting the disease – which is permanent. Indeed, 

Lewnard and Grad (2018) estimate that 33.8% of young adults (ages 20 to 24) were susceptible to 

mumps in 1990, in contrast to the 52.8% susceptible in 2006, as vaccinations have replaced 

contraction as the source of immunity [6].  
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The realization that vaccine-derived immunity wanes has propelled a new body of research 

(see Section 3) aimed at understanding whether administration of a third MMR dose could prevent 

future mumps outbreaks [6, 7]. This paper, however, shifts the focus from prevention to 

intervention. Even if the use of a booster vaccination is proven theoretically, it is unlikely that 

universities with limited resources will proactively invest in a third dose. A rough cost analysis 

conducted by HUHS showed that, while the total mumps care expenses for Harvard was 

approximately $75,000, the cost of providing a third MMR dose to every member of the Harvard 

community (at $83 per vaccination) was $1.7 million [8]. Therefore, at least in the short term, a 

third MMR dose cannot be the only answer to handling mumps outbreaks; we must explore more 

immediate solutions and interventions.  

 

2.2 Outbreak Summary  

2.2.1 Number of Cases 

The mumps outbreak at Harvard officially began in February 2016, when six students reported 

onset of parotitis to HUHS. For the next three months, the number of cases continued to rise, until 

finally plateauing in late May and early June, when summer break began; thus, this paper focuses 

its analysis of the outbreak between mid-February and late June. The number of cases each day 

during this time period is shown in Figure 2.  

From Figure 2, we also see there are two waves of the outbreak – one occurring in the 

month of March and a larger one occurring in mid-April – totaling 189 cases. While a majority of 

these cases were undergraduate students, some involved employees and members of Harvard Law 

School, Harvard Business School, or the Graduate School of Arts and Sciences [9].  
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At Harvard, 99.4% of undergraduate students and 98% of graduate students and employees 

have been vaccinated. Unlike many other universities, which verify mumps immunizations 

through a questionnaire, Harvard requires documentation of one’s vaccine status [10]. Yet, despite 

these extensive precautions, Harvard could not prevent disease transmission, for close contact on 

a college campus is inevitable. In fact, most cases seen in Figure 2 had received the recommended 

number of MMR doses. 

2.2.2 Interventions 

Although Harvard’s prevention efforts through requiring vaccination failed, their intervention 

efforts were effective in mitigating the spread of mumps. The university employed three tactics 

that we center our analysis on: (i) an email awareness campaign, (ii) more aggressive diagnoses, 

and (iii) formal isolation of infectious persons. 

 First, the Harvard community was kept well-informed of the spread of mumps. Between 

February and May 2016, Paul J. Barreira, Director of HUHS, sent six different emails to Harvard 

Figure 2: The daily number of new mumps cases (probable or confirmed) at Harvard 
between February and June 2016. Both probable and confirmed cases display clinical 
symptoms of mumps, but only confirmed cases have a positive PCR result. 
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students, employees, and colleagues with information on the gravity of the outbreak, 

recommendations on how to prevent transmission, and instructions on how to identify mumps. 

These emails served as consistent reminders to stay alert on campus and receive care at the first 

sign of symptoms. Particularly at the peak of the outbreak, roommates, resident deans, and athletic 

coaches all played essential roles in reporting potential cases of mumps, so that few cases likely 

went undetected and untreated by HUHS [11, 12]. 

 Second, Harvard acted aggressively to treat and isolate anyone suspected of mumps. At the 

beginning of the outbreak, HUHS personnel struggled to diagnose mumps because its symptoms 

can be non-specific and its manifestation is less extreme in vaccinated people. Thus, they used 

PCR tests to determine if one had mumps virus. Later, upon recommendations from the MDPH, 

HUHS stopped automatically ruling out those with negative PCR results, given that false negatives 

were quite frequent in vaccinated individuals and individuals who reported their infection to the 

clinic belatedly (see Appendix for details on negative PCR tests) [13]. Policies were improved so 

that anyone who entered HUHS displaying clinical symptoms of mumps was now deemed infected 

and infectious. Therefore, Figure 2 includes both confirmed and probable cases of mumps. 

Confirmed cases are those with a positive laboratory test for mumps virus. Probable cases are those 

who either tested positive for the anti-mumps IgM antibody or had an epidemiologic linkage to 

another probable or confirmed case [11, 12].   

 Third and perhaps most notably, Harvard isolated most confirmed or probable cases of 

mumps. While many universities simply suggest self-isolation in one’s room or dormitory (which 

leaves roommates and friends highly susceptible to the disease), Harvard removed anyone with 

clinical symptoms from the population. Of the 230 total cases at Harvard between February 2016 

and November 2017, 96 were isolated in alternate housing on campus while 110 were isolated off-
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site. Although a person remains infectious with mumps for five days, Harvard isolated patients for 

six days out of caution [11].   

 For the purposes of this paper, we study these three interventions, but Harvard used a 

variety of smaller techniques to contain the disease. For instance, water fountains with a weak 

upward flow were repaired in late March when it became apparent that students were directly 

touching the fountain with their water bottles or mouths [12].  

Figure 3 shows a timeline of the interventions used by HUHS as well as periods when the 

population was fluctuating (such as during spring and summer break). The orange lines represent 

when HUHS emails were sent out to the community to raise awareness, the purple lines delineate 

vacation times, and the blue line marks when the MDPH recommended that HUHS more carefully 

assess those with negative PCR results. Because isolation of infectious cases occurred 

continuously throughout the entire outbreak, this control intervention is not included in Figure 3. 

 

 

 

 

  

 

 

 

  

 
Figure 3: The timeline of school vacations and control interventions employed by HUHS (apart 
from its isolation policy). HUHS sent multiple emails over the course of the outbreak, raising 
awareness about the spread of mumps. Additionally, in mid-April, HUHS began more carefully 
diagnosing mumps, rather than automatically ruling out those with negative PCR tests.  
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Visually, Figure 3 shows a spike in cases a few weeks after spring break, which is 

consistent with the fact that the mumps incubation period lasts approximately three weeks. 

Furthermore, the interventions in April seem to have had a lasting effect. Shortly after HUHS 

improved its criteria for diagnosis and sent an urgent email regarding the recent increase in cases 

(in late April), there was a steep decline in the number of new cases. We quantify the effects of 

these actions further in the modeling section of this paper.  

 

2.3 Harvard Data  

2.3.1 Data Description 

For the remainder of this paper, we use data provided by the Massachusetts Department of Public 

Health, which documented every mumps case between 2015 and 2017 at schools across 

Massachusetts [14]. Though our analysis is primarily centered on Harvard’s outbreak, an 

understanding of outbreaks at other schools can provide further insight into Harvard’s unique 

response. Each row of data consists of the following:  

• Background information about the patient, including their gender, age, county, and 

institution 

• Details about their symptoms and vaccination status  

• The date they reported their symptoms and the date of symptom onset 

• Lag time, a column we have constructed to track the number of days between the date of 

symptom onset and admission to a medical clinic  

2.3.2 Cluster Analysis 

Before designing a formal model, we first test our hypothesis that Harvard’s response to the mumps 

outbreak truly was distinct compared to other schools through cluster analysis. 
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 Cluster analysis involves grouping a set of points in such a way that the objects in the same 

group (or cluster) are more similar to each other than objects in other clusters. If our hypothesis is 

correct, we should expect to see a few different clusters, with one cluster solely composed of 

Harvard data points. Alternatively, to determine if there are any unique qualities about Harvard’s 

outbreak, we could also compare Harvard cases to cases at every other institution. Because there 

are 23 different institutions in the MDPH data, however, this strategy is too laborious.  

We perform k-medoids clustering using the PAM algorithm to group the data based on four 

features – age of patient, date of symptom onset, institution affiliation, and lag time. PAM stands 

for “partition around medoids” and is a more robust version of the K-means algorithm. The goal 

of PAM is to search for 𝐾 representative observations that are to be the medoids of the 𝐾 clusters. 

These observations are chosen in such a way that they minimize the dissimilarities or distances of 

the remaining data points to their closest representative observation. In this scenario, we minimize 

Gower distances (as opposed to the more commonly-calculated Manhattan or Euclidean 

distances), which is a useful approach when trying to calculate distances between observations 

with both quantitative features (like age) and categorical features (like institution affiliation). See 

Appendix for a more detailed explanation of Gower distances.  

To find the optimal number of clusters 𝐾, we use the elbow method. This procedure 

involves calculating 𝑊 𝐶$ , the sum of squared Gower distances between all pairs of points in 

cluster k, and then totaling 𝑊 𝐶$  over all the different clusters in a particular clustering:  

𝑇& = 	 𝑊(𝐶$)
&

$+,

 

We can then let 𝐾 vary over a range of values, such as between 1 and 10, and compute the total 

intra-cluster variation, 𝑇&, for each 𝐾. See Appendix for a figure plotting 𝑇& against K. To balance 
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goodness-of-fit with dimensionality, we look for a sharp change in the gradient of 𝑇& in the plot, 

known as the bend or “elbow.” This elbow occurs at 𝐾 = 3, thus giving us the optimal number of 

clusters.  

After running PAM on our dataset and defining 𝐾 as 3, we see that our hypothesis was 

indeed confirmed. While two of the clusters consist of observations affiliated with numerous 

different institutions, Cluster 1 is solely made up of Harvard observations. Other institutions are 

in fact more similar to each other than they are to Harvard. Refer to the Appendix for a 

visualization and summary statistics of the different clusters. 

 

 

 

 

 

 

 

Figure 4 gives some insight into the distinctive characteristics of Harvard’s outbreak, such 

as how it occurred in a concentrated manner (4B). Importantly, the mean lag time for Cluster 1 is 

1.568 days, compared to 1.677 days for Cluster 2 and 2.357 days for Cluster 3 (4A). Since we 

define lag time as the time between the onset and the reporting of symptoms, having a lower lag 

time means that one is infectious in the population for a shorter amount of time and diagnoses their 

symptoms earlier. It is likely no coincidence that Harvard’s lag time is slightly shorter than that of 

other institutions, given HUHS’s email awareness campaign. Therefore, the cluster analysis does 

indeed justify our treatment of Harvard as different from other schools.  

Figure 4: Density plots that compare the different features of each cluster. (a) Distribution of lag times in the 
three clusters. Cluster 1 (with Harvard data points) has the most right-skewed distribution. (b) Distribution of 
the days that cases occurred. The outbreak for Cluster 1 occurs in the most concentrated manner. 

A B 
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3. LITERATURE REVIEW 

With the resurgence of mumps outbreaks across the United States, numerous papers have been 

released in the past year on the prevention of mumps through additional vaccination. A new study 

(2018) published by researchers at the Harvard School of Public Health found that vaccine-derived 

immunity lasts, on average, 27 years after the last dose. To sustain protection in adulthood, they 

recommend a third dose at age 18 or booster shoots [6]. Similarly, Shah et al. (2018) conduct a 

vaccine campaign during a mumps outbreak at the University of Iowa in 2016 and find statistically 

significant results supporting the efficacy of an additional MMR dose. While 25% of the cases 

occurred five months after this vaccine intervention, 75% of the cases occurred five months before 

the intervention [7].  

However, literature addressing and analyzing the importance of alternative, more 

immediate interventions during a mumps outbreak is sparse. A recent paper by Li et al. (2017) 

models mumps transmission dynamics and the impact of control interventions in mainland China 

[5]. It concludes that, apart from increasing vaccine coverage, the most effective measures for the 

control and prevention of mumps are (i) cutting off transmission routes of the disease by increasing 

awareness and promoting good personal hygiene habits and (ii) reducing the length of the 

infectious period through earlier treatment and isolation of contagious persons. Although these 

findings are relevant to our research, the model by Li et al. does not translate well to college 

campuses because it was built to handle large populations like mainland China.  

Models that are more applicable to our data are found in papers by He et al. (2009) and 

Lekone and Finkenstadt (2006) [15, 16]. He et al. successfully simulate the dynamics of measles 

in both large and small populations by relying on a stochastic model that can handle random 

fluctuations in the population. Moreover, unlike most models, which assume that all cases are 
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reported, He et al. account for partially observed data. One important element missing from their 

model, however, is a parameter that can measure the effect of control interventions. The epidemic 

model designed by Lekone and Finkenstadt to model the spread of Ebola addresses this issue. 

Rather than fixing the transmission rate to a constant, they introduce a transmission rate function 

that varies temporally in response to new interventions. We leverage the strengths of the two 

models introduced in these papers to construct our own model. This is described further in the 

following section.   
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4. MODEL FOUNDATIONS 

In this section, we develop the foundations for our model by integrating components of 

compartmental models with Partially Observed Markov Process (POMP) models. Compartmental 

models simplify the mathematical modeling of infectious disease by splitting the population into 

non-intersecting classes or “compartments” that reflect characteristics of the disease. However, 

these models often fail to address the problem of missing or unobserved data, and so we rely on 

POMP models to address such limitations.  

4.1 Compartmental Models  

To develop a compartmental model that aptly describes the spread of disease on a college campus, 

we use a basic epidemiological model as a baseline and subsequently address its assumptions that 

are not compatible with the Harvard outbreak.  

4.1.1 SIR Model 

Proposed in 1927, the Kermack-McKendrick model was one of the first epidemic models in the 

field. This model is known as SIR because the population is divided into three compartments:  

• The first class of individuals, known as susceptibles, are those that are healthy but may 

contract the disease. The size of this compartment is denoted by S.  

• The second class of individuals, known as the infectious, are those who have contracted 

the disease and can spread it to those that are susceptible. The size of this compartment 

is denoted by I.  

• The third class of individuals, known as the removed, are those who have been 

removed from the population or recovered from the disease and cannot contract the 
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disease again; in other words, they are now immune and cannot re-enter the susceptible 

population. The size of this compartment is denoted by R.  

 The Kermack-McKendrick model describes the rate of movement between compartments 

as the derivative of the sizes of the classes with respect to time. The parameters 𝛽, the transmission 

rate, and 𝛼, the removal rate, partially control how quickly people change compartments. We can 

mathematically express the model as a system of ordinary differential equations:  

𝑑𝑆
𝑑𝑡 = 	−𝛽𝐼𝑆 

𝑑𝐼
𝑑𝑡 = 	𝛽𝐼𝑆 − 	𝛼𝐼 

𝑑𝑅
𝑑𝑡 = 𝛼𝐼 

𝑁 = 𝑆 + 𝐼 + 𝑅 

In Equation 1, members of the susceptible population become infected at a rate proportional to the 

number of infectious people, 𝛽𝐼. Meanwhile, the size of the infectious population changes as 

susceptibles become infected at a rate of 𝛽𝐼 and removals from the population occur at a rate of 𝛼. 

Finally, the size of the removed population increases as infectious people recover (or are removed) 

at a rate of 𝛼. Because the population is closed, the sum of the susceptible, infectious, and removed 

populations should equal 𝑁, the total size of the population, at all times [17].  

4.1.2 Assumptions of SIR Model 

The SIR model simplifies the world in which disease spreads and thus relies on many assumptions 

that we should consider. Below we determine which assumptions are consistent with the dynamics 

of mumps on a college campus, and suggest ways in which our own model will either emulate or 

deviate from the baseline model:  

 
(1) 
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1. The population is fixed. This assumption does not necessarily fit with mumps transmission 

on a college campus, as it is not guaranteed that the population on a college campus will 

remain fixed throughout the year. Interviewing season, spring break, and summer vacation 

are all examples in which the population is in flux. We can account for these fluctuations 

by including demographic stochasticity in our model. Demographic stochasticity refers to 

chance independent events that cause random fluctuations in the population. 

2. The population is completely homogeneous – there is no inherent age, spatial, or social 

structure and thus every individual in the population interacts the same as another. This is 

reasonable because the majority of the population is in the same age range. Furthermore, 

all students interact similarly, in that they attend classes, live in packed dormitories, and 

eat in common areas.  

3. All persons who are not either infected or recovered are equally susceptible to the disease. 

Given that approximately 99% of Harvard’s campus has received the recommended 

number of doses, we can assume all persons are equally susceptible. On the other hand, in 

large, heterogeneous populations, this assumption would not translate well. Some 

individuals have received no vaccinations, some have received one MMR dose, and some 

have received two doses, leading to varying amounts of susceptibility.  

4. The incubation period of the infectious agent is instantaneous. In other words, a person 

immediately becomes infectious once exposed to the disease, and so there is no 

intermediate compartment between S and I. This assumption is not consistent with the 

course of mumps. The incubation period for mumps ranges from 12 to 25 days. Hence, in 

our model we must also include a compartment between S and I that accounts for this 

period in which a person has been exposed to the virus but cannot yet transmit it. In related 
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literature, a model that includes this compartment is known as a SEIR model, because in 

addition to S, I, and R, there is a class for exposed (E) individuals.    

5. The disease confers immunity, preventing reinfection and reentry into the susceptible class; 

instead, a recovered person moves into a new compartment R. This assumption is realistic 

because contracting mumps confers permanent immunity. An infected person can never 

again be susceptible to mumps.   

6. The rates of transfer between compartments is constant. Because this paper aims to 

determine the effect of interventions on the length and size of the outbreak, this assumption 

will not be viable in our own model. After an intervention is employed, we expect the rates 

of transfer between certain compartments to fall instantaneously, and thus will allow for 

rate changes in our model.  

7. The epidemic process is deterministic. A model based on this assumption is reasonable in 

large populations, but in small populations, there can be significant fluctuations in 

incidence and prevalence of infection that occur merely by chance. Stochastic models, a 

complement to deterministic models, are particularly useful when compartment sizes are 

small, as they are in this Harvard example. These models possess inherent randomness and 

thus the same set of parameter values and initial conditions leads to different outputs each 

time. Nevertheless, it is important to keep in mind that although stochastic models are a 

better representation of the natural world, they are also more complicated than 

deterministic models.  

We conclude this analysis of assumptions by settling on using a SEIR model that accounts for 

demographic stochasticity and changing rates of transfer between compartments. Further, we 

consider the merits of stochastic processes over deterministic processes, given the size of our 
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population. These alterations should make our model more accurate and applicable to the 

transmission of mumps on college campuses.  

  

4.2 POMP Models 

Although we have addressed some issues with the basic compartmental model, it is important to 

note that these models assume access to fully observed disease data. In reality, not all mumps cases 

are reported and latent mumps carriers exhibit no symptoms at all. The exact number of cases per 

day is more difficult to estimate than compartmental models make it seem.    

 Thus, throughout this paper we will assume that we only have partially observed mumps 

data by building a Partially Observed Markov Process model [18]. POMP models combine the 

interpretable elements of the compartmental model approach to modeling disease transmission 

with a probabilistic model for the unobserved data.  

POMP models (see Figure 5) represent data 𝑦,∗, … , 𝑦<∗  collected at times 𝑡, < ⋯ < 𝑡< as 

noisy, incomplete observations or measurements of an unobserved Markov process {𝑋 𝑡 , 𝑡 ≥ 𝑡B}. 

{𝑋 𝑡 } is Markovian if only its current value, and not its history, inform the future of the process. 

Disease transmission, represented by compartmental models as we saw above, is indeed a Markov 

process because the number of infectious people at time 𝑡 is solely determined by the number of 

infectious people at time 𝑡 − 𝛿. 

A POMP model is characterized by the transition density and measurement density of its 

stochastic processes. The one-step transition density is represented by 𝑓FG|FGIJ 𝑥L 	𝑥LM,; 𝜃), since 

{𝑋 𝑡 } is Markovian and only relies on the previous state. Meanwhile, the measurement density 

depends on only the state of the Markov process at that time and so is represented by 
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𝑓PG|FG 𝑦L 	𝑥L; 𝜃), where 𝑌L is a random variable modeling the observation at time 𝑡L [18]. Hence, 

the entire joint density for a POMP model, including the initial density 𝑓FR(𝑥B; 𝜃), is  

𝑓FR:TPJ:T 𝑥B:<, 𝑦,:<; 𝜃 = 𝑓FR 𝑥B; 𝜃 𝑓FG|FGIJ 𝑥L 	𝑥LM,; 𝜃)𝑓PG|FG 𝑦L 	𝑥L; 𝜃)
<
L+, ,  

 and the marginal density for the sequence of measurements, 𝑌,:<, evaluated at the data, 𝑦,:<∗ , is 

𝑓PJ:T 𝑦,:<∗ ; 𝜃 = ∫ 𝑓FR:TPJ:T 𝑥B:<, 𝑦,:<; 𝜃 	𝑑𝑥B:<. 

 Now that we have a basic understanding of POMP models and compartmental models, we 

can create a model of mumps dynamics on college campuses.  

 

  
Figure 5: POMP model schematic, with the unobserved process model underlying the measurement 
model, which then generates the observations [19]. 
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5. METHODOLOGY 

5.1 Model Setup  

To simulate mumps transmission at Harvard, we construct both the process model (which is 

unobserved) and the measurement model, the two components of a POMP model. The process 

model, which we define as a SEIR model, provides the change in true incidence of mumps at every 

time point, while the measurement model incorporates the fact that not all cases are observed or 

reported. 

5.1.1 Process Model 

We first develop the Markovian process model, which counts the true number of cases. As 

discussed in Section 4.1.2, the underlying dynamics of mumps can be aptly captured by a stochastic 

SEIR compartmental model. Compartmental models are intrinsically Markovian because the 

future state of each compartment is based on only the present state of the process. As with the basic 

SIR model, many of the assumptions are still the same with our stochastic SEIR model. The 

population is considered closed and homogeneous because we are analyzing students on a college 

campus. However, we add parameters that induce random fluctuations into the population and 

change the compartments’ rates of transfer in response to interventions.   

 The primary difference between the basic SIR and this stochastic SEIR is that we now use 

probabilistic densities for the transition of state variables. Moreover, although disease dynamics 

are technically a continuous Markov process, this is computationally complex and inefficient to 

model, and so we make discretized approximations by updating the state variables after a time 

step, 𝛿. We set 𝛿 to a small value, such as one day for the Harvard outbreak. The system of 

discretized equations are shown in Equation 2 below, where 𝐵 𝑡  is the number of susceptible 
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individuals who become exposed to mumps, 𝐶 𝑡  is the number of newly infectious cases, and 

𝐷 𝑡  is the number of cases that are removed from the population: 

𝑆 𝑡 + 𝛿 = 	𝑆 𝑡 − 	𝐵(𝑡) 

𝐸 𝑡 + 𝛿 = 	𝐸 𝑡 + 	𝐵 𝑡 − 	𝐶(𝑡) 

𝐼 𝑡 + 𝛿 = 	𝐼 𝑡 + 	𝐶 𝑡 − 	𝐷(𝑡) 

𝑅 𝑡 + 𝛿 = 	𝑅 𝑡 + 𝐷(𝑡) 

𝑆 𝑡 + 	𝐸 𝑡 + 	𝐼 𝑡 + 	𝑅 𝑡 = 	𝑁 

Equation 2 depicts how the sizes of the four compartments (susceptible, exposed, 

infectious, and removed) change between (𝑡, 𝑡 + 𝛿). The susceptible population decreases by the 

number of susceptibles that become exposed to mumps at time 𝑡. Meanwhile, the exposed class 

increases by the number of newly-exposed people and decreases by the number of newly-

infectious people at time 𝑡. The infectious population increases by those who are now contagious 

and decreases by those who have been removed from the population at time 𝑡. Finally, the removed 

compartment increases by the number of infectious people who have recovered or been removed 

from the population at time 𝑡 and thus can no longer spread their infection. The model further 

assumes that the population size 𝑁 remains constant at every time point.  

We add inherent randomness to our model by setting 𝐵 𝑡 , 𝐶 𝑡 , and 𝐷 𝑡  as binomials. 

If we assume that the length of time an individual spends in a compartment is exponentially 

distributed with some compartment-specific rate 𝑥 𝑡 , then the probability of remaining in that 

compartment for an additional day is exp(−𝑥 𝑡 ) and the probability of leaving that compartment 

is 1 − 	exp	(−𝑥 𝑡 ): 

 

 

 
(2) 
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𝐵 𝑡 ~Bin(𝑆 𝑡 , 1 − exp(−𝜆(𝑡)), where 𝜆 𝑡 = 	𝛽 𝑡 c d
<

 

𝐶 𝑡 ~Bin(𝐸 𝑡 , 1 − exp(−𝜎)) 

𝐷 𝑡 ~Bin(𝐼 𝑡 , 1 − exp(−𝛾)) 

 The force of infection, λ(t), is the transition rate between the susceptible and exposed 

classes, and should increase as the fraction of the population infected increases. Thus, the formula 

for 𝜆(𝑡) is 𝛽 𝑡 c d
<

, where 𝛽(𝑡) represents the transmission rate of the disease. We denote 𝛽 𝑡  as 

a step function in order to account for potential control interventions added at time 𝜏: 

𝛽 𝑡 = 	 	
𝛽	, 𝑡 < 𝜏

𝛽𝑒Mk(dMl), 𝑡 ≥ 𝜏 

Importantly, once the intervention occurs, 𝛽 𝑡  does not immediately change to a different 

constant. Instead, 𝑞 > 0	is the rate that 𝛽 𝑡  decays for  𝑡 ≥ 𝜏, since the transmission rate should 

gradually decrease as the intervention affects more and more people [15]. 

Furthermore, in Equation 3, 𝜎 is the transition rate between the exposed and infectious 

classes, and 𝛾 is the transition rate between the infectious and removed compartments. 𝜎M, 

represents the mean length of time a person stays in the latent stage and  𝛾M, represents the mean 

length of time a person is infectious before being removed from the population (either because of 

intervention efforts or natural recovery). Unlike λ(t), we would generally expect these two 

parameters to be constant over the course of the epidemic.  

Finally, in evaluating epidemics, it is essential to estimate the basic reproduction number, 

𝑅0, which equals the expected number of secondary cases produced by an infectious person in a 

completely susceptible population [20]. 𝑅0 measures the initial growth rate of an outbreak and so, 

if it is less than 1, then the infection will die out and there will be no epidemic. For our stochastic 

SEIR model, this constant can be expressed as 𝑅0 = p
q
 [17]. Meanwhile, the time-dependent 

 
(3) 

 
(4) 
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effective reproduction number is defined as 𝑅r 𝑡 = p d
q
∗ s(d)

<
, but because 𝑆(𝑡) ≈ 𝑁, we can 

simplify this expression to 𝑅r(𝑡) ≈
p(d)
q

. Both the basic and effective reproduction numbers allow 

us to understand the strength of an outbreak.  

Now consider the measurement model, which maps this stochastic process model to the 

real data.  

5.1.2 Measurement Model 

Although it is impossible to directly record the number of people that are susceptible, exposed, 

infectious, and removed directly, the MDPH data tells us the number of observed cases per day. 

We expect the mean number of observed cases per day to be the true number of cases multiplied 

by the reporting rate 𝜌 (𝜌 < 1). However, rather than simply denoting the observed number of 

cases as a binomial distribution, we should account for greater variability in the measurements 

than a binomial distribution expects, since the Harvard population is small and prone to 

randomness [16]. Thus, the number of observed cases, 𝑦d, given the number of true cases,	𝐶 𝑡 , 

can be best modelled by an overdispersed binomial distribution defined as a Normal random 

variable (discretized because case counts must be integer values):   

𝑦d	|	𝐶 𝑡 	~	Normal(𝜌𝐶 𝑡 , 𝜌 1 − 𝜌 𝐶 𝑡 + 𝜓𝜌𝐶 𝑡 }) 

For example, the probability that 𝑦d = 𝑦 is: 

ℙ 𝑦d = 𝑦	 	𝐶 𝑡 = 	𝐶] = 

𝜙 𝑦 + 0.5; 𝜌𝐶, 𝜌 1 − 𝜌 𝐶 + 𝜓𝜌𝐶 } − 	𝜙(𝑦 − 0.5; 𝜌𝐶, 𝜌 1 − 𝜌 𝐶 + 𝜓𝜌𝐶 }) 

In Equation 5 and 6, the parameter 𝜓 handles the increased variability intrinsic in a small 

population. If 𝜓 = 0, the variance in our measurement model simplifies to the variance for a 

binomial distribution.  

 
(5) 

 
(6) 
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5.1.3 Final POMP Model 

We have now formulated expressions for both our process model and measurement model. For 

each time point, the process model generates the number of new cases based on binomially 

distributed counts. The measurement model then estimates the observed number of cases based on 

the true number of cases and reporting rate.  

 Parameters that will be particularly important to estimate in this model are: (i) 𝑞, which 

measures the effect of an intervention after its introduction at time 𝜏, (ii) 𝛾, which determines the 

length of the infectious period before removal from the population, (iii) 𝑅0, the initial growth rate 

of an outbreak, (iv) 𝜌, the reporting rate, and (v) 𝜓, the additional variability in a population.  

 

5.2 Parameter Estimation 

In this section, we devise a methodology to estimate parameters that maximize the likelihood of 

the model, by relying on sequential Monte Carlo (SMC) techniques.  

5.2.1 Likelihood  

In order to estimate the optimal parameters and diagnose the fit of the model, we first must 

understand how to calculate the likelihood for POMP models. The likelihood function is the 

density function evaluated with data at a candidate set of parameter values. It is computationally 

simpler to work with the log likelihood, 𝑙 𝜃 = log 𝑓 𝑦,:<; 𝜃 , so that we can deal with sums 

instead of products.  

Usually, for complex statistical models, it is difficult to analytically solve or even 

determine the density function. Nevertheless, we can take advantage of a simulation-based 

approach, in which we simulate the random variable 𝑌,:<, which implicitly defines the density 

function. Thus, likelihood evaluation via sequential Monte Carlo is one standard method to obtain 
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the log likelihood for POMP models, because it simulates sample paths rather than requiring 

explicit forms of the transition probabilities [18]. 

 In order to understand how SMC calculates the likelihood of the model, let us first derive 

a new expression for the likelihood of a POMP model by factorizing it as the product of conditional 

likelihoods: 

𝐿 𝜃 = 𝐿L|,:LM, 𝜃
<

L+,

 

where 𝐿L|,:LM, 𝜃 = ℙ 𝑦L∗ 𝑦,:LM,∗ ; 𝜃  and there are 𝑁 time points. The structure of a POMP model 

then implies the representation of 𝐿L|,:LM, 𝜃  as 

𝐿L|,:LM, 𝜃 = ℙ 𝑦L∗ 𝑥L; 𝜃 ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃 	𝑑𝑥L 

so that the final expression for the likelihood is:  

ℙ 𝑦L∗ 𝑥L; 𝜃 ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃 	𝑑𝑥L

<

L+,

 

In Equation 9, although ℙ 𝑦L∗ 𝑥L; 𝜃  is simple to calculate (using Equation 6), ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃  is 

more difficult to evaluate. We can use the Markov property to determine an expression for this 

probability, known as the prediction formula:  

ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃 = ℙ 𝑥L 𝑥LM,; 𝜃 	ℙ 𝑥LM, 𝑦,:LM,∗ ; 𝜃 	𝑑𝑥LM,	 

We can then use Bayes’ Theorem to determine an expression for ℙ 𝑥LM, 𝑦,:LM,∗ ; 𝜃  (in Equation 

10), known as the filtering formula:  

ℙ 𝑥L 𝑦,:L∗ ; 𝜃 = ℙ 𝑥L 𝑦L∗, 𝑦,:LM,∗ ; 𝜃 =
ℙ 𝑦L∗ 𝑥L; 𝜃 	ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃
ℙ 𝑦L∗ 𝑥L; 𝜃 ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃 	𝑑𝑥L

 

 

 

 
(7) 

 
(9) 

 
(10) 

 
(11) 

 
(8) 
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The prediction and filtering formulas give us a recursion. Specifically, the prediction 

formula calculates the prediction distribution, 𝑓FG|PJ:GIJ(𝑥L|𝑦,:LM,
∗ ), at time 𝑡L by using the 

filtering distribution, 𝑓FG|PJ:G(𝑥L|𝑦,:L
∗ ), at time 𝑡LM,. Meanwhile, the filtering formula gives us the 

filtering distribution at time 𝑡L using the prediction distribution at time 𝑡L.  

In SMC, we use Monte Carlo techniques to sequentially estimate the integrals in the 

prediction and filtering recursions, which in turn allows us to estimate ℙ 𝑥L 𝑦,:LM,∗ ; 𝜃 . Although 

a more in-depth algorithm for SMC is shown in the Appendix, here we present its basic steps [19]: 

1. We generate 𝐽 points or particles, {𝑥LM,,Üá }, that are drawn from the filtering distribution 

at time 𝑡LM,.  

2. We then obtain a sample of points, {𝑥L,Üà }, at time 𝑡L, drawn from the prediction 

distribution by simulating the process model that we defined in Section 5.1.1.  

3. Once we have a sample of points from the prediction distribution at the next time step, 

we can find the conditional likelihood (defined in Equation 8). Using the Monte Carlo 

principle, we can approximate the conditional likelihood to be 

𝐿L|,:LM, 𝜃 =
1
𝐽 ℙ 𝑦L∗ 𝑥L,Üà ; 𝜃

Ü

 

because {𝑥L,Üà } is drawn from the prediction distribution, 𝑓FG|PJ:GIJ(𝑥L|𝑦,:LM,
∗ ). 

4. Finally, we resample from {𝑥L,Üà } with weights proportional to ℙ 𝑦L∗ 𝑥L; 𝜃 . The 

resampled points represent particles drawn from the filtering distribution at time 𝑡L.  

5. We repeat steps 1 through 4 for each time point, and then multiply the final vector of 

estimated conditional likelihoods (Equation 12) to obtain an unbiased estimate of the 

likelihood. Alternatively, we can take the log of each conditional likelihood and then 

sum them to retrieve the log likelihood.  

 
(12) 
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SMC is commonly known as the particle filter because the Monte Carlo sample is described as a 

swarm of 𝐽 particles that are propagated forward based on the process model and then filtered and 

altered to more closely fit the next data point [18].  

 Now that we have determined how to estimate the log likelihood for our model, we outline 

how we will maximize it to find the optimal 𝜃.  

5.2.2 Maximum Likelihood through Iterated Filtering  

Iterated filtering is a maximum-likelihood approach devised by King et al. (2016) that depends on 

SMC [18]. The Appendix provides a more detailed algorithm for iterated filtering, but we provide 

an overview of the technique below. 

We begin by defining a set of values for our parameter vector 𝜃 and a fixed number of 

iterations, 𝑀. For every iteration, we apply a basic particle filter (defined in Section 5.2.1) to the 

model and add stochastic perturbations to the parameters so that they take a random walk through 

time. At the end of the time series, we recycle the set of parameters as starting parameters for the 

next iteration but with a smaller random walk variance than the previous iteration. After 

completing the 𝑀 iterations, we obtain the Monte Carlo maximum likelihood estimate, 𝜃ä, and its 

corresponding log likelihood. Theoretically, if we correctly define the random walk intensity and 

its cooling schedule (which dictates how quickly the perturbations decrease), this procedure should 

converge to the region in the parameter space that maximizes the log likelihood. Although the ideal 

cooling rate cannot be determined beforehand, we can empirically test different cooling schedules 

and check for which values convergence occurs.  

Importantly, we should repeat this entire process a number of times with randomized 

starting values for the parameters, so that we ensure we do not obtain to a local maximum, but a 
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global maximum. If many of our starting values converge to the same region in the parameter 

space, we can be more certain of our results.   
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6. EMPIRICAL RESULTS 

In this section, we apply our model to the Harvard data and use iterated filtering to determine the 

maximum likelihood estimates (MLE). These estimates provide insight into the key characteristics 

of Harvard’s outbreak which made it unique. Notably, we find that the reporting rate, 𝜌, is 

significantly higher than expected and that the length of the infectious period, 𝛾M,, is lower than 

the population average.  

6.1 Optimal Parameters 

6.1.1 Fixed Primitives 

We first consider the parameters that we will fix in the model, rather than estimating through 

iterated filtering. A summary of these parameters are displayed in Table 1. 

Symbol Description Value Units Source 
𝜏 Date of intervention 75 — Harvard records on interventions [12]  
𝜎 Per-capita rate of transition from E to I 1

17
 

day-1 Lewnard and Grad (2018) [6] 

𝑁 Total population 20,000 — Harvard records on population size [9] 

 

 In Table 1, we set 𝜏 = 75 because approximately around the 75th day, two interventions 

are employed by HUHS. The first intervention involves more aggressive diagnoses after receiving 

an email from the MDPH regarding negative PCR tests. The second involves an email to Harvard’s 

campus raising awareness about a recent spike in mumps. Although interventions are administered 

at numerous points during the outbreak, the ones around Day 75 are particularly pertinent because 

(i) the incidence of mumps was highest at this point and (ii) these were the last interventions that 

occurred before the end of the outbreak. 

Table 1: List of fixed parameters used in mumps transmission model for Harvard 
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Meanwhile, we set the flow rate between the exposed and infectious classes to 𝜎 = ,
,ç

 

because, according to past literature, the average latent period lasts 𝜎M, = 17 days. While we fix 

the rate between the exposed and infectious compartments, we choose to estimate 𝛾, the rate 

between the infectious and removed compartments. Unlike 𝜎, we expect the rate of removal from 

a population to have some dependence on interventions. Specifically, if Harvard’s email campaign 

and isolation strategy were effective, we should see people reporting their symptoms earlier to 

HUHS and being removed from the population immediately after. 

Finally, we set 𝑁 ≈ 20,000 people based on records of Harvard’s enrollment and 

employment. 

6.1.2 Maximum Likelihood Estimates 

Once we have our fixed parameters defined, we run global likelihood maximization with 20 

different, randomized starting points, using the method defined in Section 5.2.2. Each of the 20 

starting points should converge to comparable values of the log likelihood as well as similar 

regions in the parameter space, as this suggests we have found a global, not local, optimum. Indeed, 

we find that the final log likelihoods for all 20 iterations stabilize in the same interval. To 

demonstrate the stability of our iterated filtering algorithm, Figure 6 displays convergence 

diagnostic plots for one randomized starting point.  

 Given that the global likelihood maximization technique successfully converges, we pull 

the maximum likelihood estimates for the nine parameters from the optimization round with the 

highest likelihood, −233.7943, and log likelihood standard error of 0.2582. The results are shown 

in Table 2. 
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Symbol Description Value Units Source 
𝑅0 Basic reproduction number 0.8710  Estimated in Section 6.1.2 
𝛽(𝑡) Transmission rate  Time-dependent day-1 Calculated:  

𝛽 𝑡 = 	 	
𝑅B𝛾	, 𝑡 < 𝜏

𝑅B𝛾𝑒Mk(dMl), 𝑡 ≥ 𝜏 

𝑞 Effect of intervention  0.9422 — Estimated in Section 6.1.2 
𝜆 𝑡  Force of infection: rate at which 

susceptibles acquire disease 
 Time-dependent day-1 Calculated: 𝜆 𝑡 = 	𝛽 𝑡 c d

<
 

𝛾 Per-capita rate of transition from I to R 0.9641 day-1 Estimated in Section 6.1.2 
𝜌 Proportion of infections reported 0.9698 — Estimated in Section 6.1.2 
𝜓 Overdispersion parameter 0.5093 — Estimated in Section 6.1.2 
𝑆B Initial proportion of susceptible persons 0.9995 — Estimated in Section 6.1.2 
𝐸B Initial proportion of exposed persons 0.0004 — Estimated in Section 6.1.2 
𝐼B Initial proportion of infectious persons 0.0001 — Estimated in Section 6.1.2 
𝑅B Initial proportion of recovered persons 0 — Estimated in Section 6.1.2 

 

 

 

Table 2: List of parameters used in mumps transmission model that are estimated via 
iterated filtering or calculated using the estimated parameters. The values of these 
parameters help us understand certain characteristics of the Harvard outbreak. 

Figure 6: Convergence plots for a single starting point. We apply ten particle filters to the model 
with the same starting set of parameters and find that the algorithm converges to similar values of 
log likelihood. This suggests that our maximization algorithm is stable. 
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We also construct 95% confidence intervals via profile likelihoods for these parameters in 

order to determine how sensitive the conclusions in Table 2 are. The profile likelihood function 

for a parameter involves varying that parameter over a range of values and then maximizing the 

likelihood over the remaining parameters. For instance, as seen in Figure 7, we let 𝜌 take on all 

values between (0,1) and then, with one fewer parameter to optimize, find the new maximized 

likelihood estimates and associated log likelihood. We then compare the profile log likelihoods for 

𝜌, expressed as 𝑙íìîïñóò(𝜌), to the log likelihood for the original MLEs, expressed as 𝑙(𝜃). The 

approximate 95% confidence interval is derived by checking which values of 𝜌 satisfy the 

following inequality:  

{	𝜌:	𝑙(𝜃) - 𝑙íìîïñóò(𝜌) } < (ôJ
ö

}
 = õ.úù

}
 =1.92), 

where 1.92 is the cutoff determined using Wilks’ Theorem [21]. We repeat this method for all 

other estimated parameters (other than the initial conditions: 𝑆B, 𝐸B, 𝐼B, 𝑅B) listed in Table 2.   

 

 
Figure 7: 95% confidence interval (denoted by dotted red lines) constructed via the profile likelihood 
method for 𝜌. Thus, we are 95% confident that the true value for 𝜌 lies between (0.735, 1.000).  

 
(13) 
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6.2 Parameter Interpretation 

The maximum likelihood estimates give us insight into the different characteristics of Harvard’s 

outbreak. In this section, we analyze the implications of the estimates for the initial conditions, 

basic reproduction number, intervention parameter, rate of removal, reporting rate, and 

overdispersion parameter. 

6.2.1 Initial Conditions 

We first begin with the estimated initial conditions, which represent the fraction of the total 

population in each compartment: 

20000 ∗ 0.9995 = 19990 susceptibles at 𝑡B 

20000 ∗ 0.0004 = 8 exposed at 𝑡B 

20000 ∗ 0.0001 = 2 infectious at 𝑡B 

20000 ∗ 0 = 0 removals at 𝑡B 

These results are consistent with the data, given that on the first official day of the outbreak at 

Harvard, two mumps cases had been reported.  

6.2.2 Reproduction Number 

The basic reproduction number is 0.8710, with a 95% confidence interval of (0.7241, 1.2408). 

As a reminder, the basic reproduction number is defined as the average number of secondary 

infections caused by an infectious individual when the entire population is susceptible. In other 

words, 𝑅0 is the growth rate of the disease at 𝑡B and thus if 𝑅0 ≥ 1, an outbreak will occur. 

Although the MLE for 𝑅0 is below 1, the 95% confidence interval includes 1, and hence our results 

are indeed compatible with what happened on Harvard’s campus.  
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6.2.3 Intervention Parameter 

The parameter, 𝑞, evaluates the effect of an intervention on the outbreak. The transmission rate, 

𝛽 𝑡 = 	𝑅B𝛾𝑒Mk(dMçû), decreases faster over time for larger values of 𝑞. As seen in Table 2, the 

estimate for 𝑞 is 0.9422, with a 95% confidence interval of	(0.4715, 1.000). The wide interval 

implies that, given the data and small sample size, it is difficult to precisely estimate the impact of 

the interventions administered around Day 75. Nevertheless, because the confidence interval does 

not include 0, we can reject our null hypothesis that the interventions had no effect. We shall 

analyze these effects further in Section 7.   

6.2.4     Rate of Removal 

In Section 6.1.1, we hypothesized that 𝛾M, – the number of days an infectious person remains in 

the population – would be smaller at Harvard than the average period of infectiousness for mumps 

because of Harvard’s isolation strategy and email awareness campaign.  

 Indeed, while the expected duration of infectiousness is five days, the maximum likelihood 

estimate reports that a Harvard case is removed after ,
B.ü†ù,

= 1.0372 days of infectiousness. The 

confidence interval for 𝛾 is (0.3213, 1.000), implying that infectiousness can last anywhere from 

1 to 3.1124 days. These results are consistent with what we found in the section on clustering, 

because the mean lag time (between experiencing symptoms and getting treated and isolated) for 

the Harvard cluster was 1.568 days.  

6.2.5 Reporting Rate 

The fraction of cases that were actually reported and accounted for, represented by 𝜌, is 0.9698, 

with a narrow 95% confidence interval of (0.735, 1.000). Lewnard and Grad (2018) estimate that 

approximately 4.0% of all mumps cases are reported in the US, and thus, the reporting rate at 
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Harvard, even if slightly inflated, is truly exceptional [6]. There are likely two reasons for such a 

high reporting rate. First, the email awareness campaign by HUHS encouraged people to visit 

health services at the first sign of symptoms and keep an eye on their surroundings. A network of 

people – from resident deans to athletic coaches – were crucial in reporting students and employees 

who seemed at-risk for mumps. Second, more aggressive diagnoses by HUHS, particularly 

towards the end of the outbreak, ensured that more cases were detected than usual. 

6.2.6 Overdispersion Parameter 

Finally, our overdispersion parameter, 𝜓, is 0.5093, implying that the actual data has more 

variability than expected under the assumed distribution. As a reminder, had 𝜓 been approximately 

0, the variance in our measurement model would have simplified to the variance for a binomial 

distribution. However, because the 95% confidence interval for 𝜓 is (0.5065, 0.8569) and thus 

does not include 0, we justify the modelling decision of representing the number of cases as an 

overdispersed binomial.  

 We can hypothesize reasons for the overdispersion. Demographic and environmental 

stochasticity can vary the number of reported cases. A student in the midst of midterm season may 

be less likely to report symptoms, afraid that it will prevent him from studying for an exam. 

Alternatively, overdispersion can be the result of interventions. After an email was sent out about 

the increasing spread of mumps, vigilance and reporting likely increased temporarily before 

returning to the average.  

 

6.3 Simulations at the MLE 

In order to visually check the fit of our model to the data, we run stochastic simulations of 

Harvard’s outbreak using the parameter values from Table 2.  
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Figure 8 proves that our data is similar in size and pattern to many of our simulations, such 

as Simulation 1, 2, and 4. Additionally, shortly after day 75 (the time of the primary intervention, 

as explained in Section 6.1.1), we consistently see a decrease in the number of observed cases.  

The variability in the simulations (such as Simulation 2 versus Simulation 8) can partly be 

attributed to the randomness inherent in a stochastic model as well as the overdispersion parameter. 

However, variability also exists because the maximum likelihood estimate for the basic 

reproduction number is slightly below 1, which implies that sometimes, no outbreak will occur. 

The number of cases will remain around 0, thus explaining Simulation 8.  

  
Figure 8: Nine simulations of the final model evaluated at the maximum likelihood estimates. 
Comparisons to the actual data show that many of the simulations (particularly Simulation 1, 2, and 4) 
have similar patterns.  
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7. INTERVENTION ANALYSIS 

We now analyze the effects of the three interventions – the email campaign, more aggressive 

diagnoses, and isolation of infectious persons – on outbreak duration and size. We determine that 

the first two techniques, in combination, decrease the size of the outbreak by approximately two-

thirds. Meanwhile, by comparing the Harvard outbreak to an outbreak at Ohio State University 

(OSU) in 2014, we find that the isolation policy seems to lead to a smaller average infectious 

period for Harvard patients, which in turn shortens the length of the outbreak.  

7.1 Effect of Vigilance 

The vigilance at Harvard University was unparalleled during the mumps outbreak. Anecdotally, 

students and faculty alike were careful of both catching and spreading symptoms. The model 

confirms this with the high reporting rate at Harvard (𝜌 = 0.9698) and low period of 

infectiousness (𝛾 = 0.9641). The most obvious reason for this can be attributed to the HUHS 

email campaign as well as the constant dialogue around mumps at Harvard, from newspapers like 

The Crimson and Boston Globe to national news coverage on NBC News [22, 23]. Additionally, 

the criteria that HUHS used to diagnose and isolate potentially infectious people became 

increasingly more expansive as their understanding of the disease and the shortcomings of the PCR 

tests improved. This ensured that infectious people who normally may not have been detected were 

still being removed from the population.  

 In order to understand to what extent these interventions made a difference on the trajectory 

of the outbreak, we can perform detailed analysis of the parameter 𝑞, which quantifies the effect 

of the two interventions occurring around Day 75.  
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7.1.1 Outbreak Size 

To determine the effect of these vigilance-increasing interventions on outbreak size, we perform a 

comparative analysis of a scenario with the interventions versus a scenario without the 

interventions.  

Controlling for all other parameters, we run two sets of simulations at the maximum 

likelihood estimates. The first set of simulations fixes 𝑞 at 0.9422 (value obtained from Table 2) 

while the second set of simulations sets 𝑞 to 0, assuming that no interventions occurred around 

Day 75. We then choose the simulation from each set with the median outbreak size and compare 

their cumulative number of cases over time (see Figure 9).  

 

 

 

 

Figure 9: Comparison of the cumulative number of cases over time for the true Harvard data, the 
simulation with interventions, and the simulation without interventions. Dotted line represents the timing 
of the interventions, Day 75. The outbreak size is approximately three times as large without the 
interventions administered around Day 75. 
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Figure 9 demonstrates how, by the final day of the outbreak (Day 130), the simulation 

without the interventions is approximately three times the size of Harvard’s actual outbreak. These 

results also indicate that the outbreak would have lasted much longer, if not for these vigilance-

increasing strategies.  

 Because interventions seem to have drastically affected outbreak size, we perform 

additional analysis to determine if administering them earlier could have further reduced the 

number of mumps cases. We alter the day of the intervention (recall that we had earlier fixed 𝜏 to 

75) to take on values between 1 and 74. Subsequently, we run numerous simulations for each of 

these 74 cases, pull the final outbreak size from the median simulation, and calculate the reduction 

in outbreak size. 

 

 

 

Figure 10: The percentage we expect outbreak size to decrease by if the date of intervention is 
moved up. There is a significant linear relationship between the predictor and response variable.  
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The linear regression in Figure 10 determines the exact relationship between the day the 

intervention is administered and the reduction of the outbreak: 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	% = 	𝛽B + 𝛽, ∗ 𝑑𝑎𝑦ñLdòì®òLdñîL 

We obtain statistically significant results for this regression, in which the intercept, 𝛽B, is 

100.0677, and the coefficient for the intervention date, 𝛽,, is −1.3558, with p-values well below 

the significance level of 0.05. For every day we delay the interventions, outbreak size increases 

by 1.3558	percentage points, a non-trivial amount. So, for example, if we arbitrarily decide that 

the interventions had been administered on Day 40 instead, then Harvard would have seen 

approximately 90 fewer cases.   

7.1.2 Limitations 

There are, however, limitations in this analysis. Without conducting a randomized control trial, it 

is infeasible to understand the true effects of interventions on outbreak size. Part of the reason 𝑞 

may have such a large value is not because of the interventions, but rather because of confounding 

factors that we cannot control for in this analysis. For instance, Day 75 falls in late April, shortly 

before students finish the semester and leave campus, which would naturally decrease the number 

of potential infections. Moreover, with graduation approaching and Harvard commencement at 

risk because of the outbreak, both HUHS and students probably began taking extra precautions to 

prevent the spread of mumps.  

 An additional limitation in this analysis is the difficulty in differentiating between the 

effects of the two vigilance-increasing interventions – the formal change in HUHS procedures, 

which occurred on Day 60, and the email that was sent on Day 75. Intuitively, we can assume that 

the revised HUHS procedures would have a greater effect, but there is also mathematical reasoning 

 
(14) 
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to back this assumption. Given that the incubation period for mumps ranges between two to three 

weeks, we should expect 𝑞 to be relatively small if we estimate it directly after an intervention 

(since the number of newly infectious cases are still a result of the “old” behavior). Only after a 

few weeks should we begin seeing the impact of the “new” behavior induced by the intervention. 

However, on Day 75 itself, 𝑞 is relatively large (at 0.9422). This could either mean that the HUHS 

email had an immediate and drastic effect on the campus or that 𝑞 mainly measures the effect of 

the intervention from Day 60. Given that the previous five emails from HUHS did not immensely 

impact the size of the outbreak (although they did improve reporting rates), it is unlikely that the 

final email could have, on its own, changed the trajectory of the outbreak. Hence, we conclude that 

the new HUHS procedures primarily explain the magnitude of 𝑞.  

 

7.2 Effect of Isolation  

Arguably the most critical intervention utilized by HUHS was its isolation requirement. Infectious 

people were physically removed from the population and placed in separate Harvard housing. Most 

schools require that students remain in their rooms for the course of the infectious period, but there 

is no reliable way to ensure that patients actually adhere to these rules. It is likely that they still 

engage in some contact with roommates or close friends.    

Because the isolation requirement was implemented throughout the course of the outbreak, 

it is difficult to perform a before and after comparison as we do in Section 7.1.1 in order to 

understand the impact of this intervention. One alternative, however, is to evaluate the 

characteristics of the Harvard mumps outbreak against that of another college campus, like Ohio 

State University, where mumps cases were not formally isolated.  
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7.2.1 Outbreak at Ohio State University  

7.2.1.1     Data 

In 2014, a massive outbreak of mumps occurred in central Ohio, with the majority of cases linked 

to Ohio State University in Columbus. The outbreak began at OSU in February 2014, and by March 

21st, health authorities had reported 63 mumps cases, with 45 tied to the university [24].  

Although most universities do not release case data to the public, they do need to report 

the numbers to the CDC. The CDC then publishes weekly reports of mumps cases across each 

state. We thus access the CDC’s Morbidity and Mortality Weekly Report from 2014 and filter the 

dataset for cases originating in Ohio [25]. One drawback of this dataset is that, unlike the Harvard 

dataset, we only know the number of cases per week, which will make our analysis and parameter 

estimations less precise. Furthermore, we cannot guarantee that all the cases in this dataset are 

linked to the university itself. Fortunately, we know from news reports that most cases in Ohio 

occurred on campus during the first half of 2014 [24].  

7.2.1.2     Characteristics of Outbreak 

The outbreak at the university commenced in February 2014 and peaked in early April with 96 

cases in one week. By summer and early fall, the number of cases had dramatically dropped and 

stabilized. We therefore restrict our analysis of the outbreak to the time between Week 1 and Week 

40 of 2014, in which there were a total of 528 cases (see Figure 11).  

Because we were unable to speak to public health officials at the university, the exact 

timeline and range of interventions administered over this period are not known. Like at Harvard, 

advisories were published by the university, notifying students of the issue and how to prevent its 

spread; these probably had a similar effect of increasing vigilance on campus. However, OSU did 

not formally isolate infectious persons. One notice published by OSU’s medical center reads: “Stay 
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at home for five days after symptoms (salivary gland swelling) begins (required by Ohio law OAC 

3701-3-13, (P)); avoid school, work, social gatherings, and other public settings” [26]. 

 

 

7.2.1.3     Model and Results  

To simulate the OSU outbreak and infer the underlying parameters, we use the same POMP model 

structure – with a stochastic compartmental model as the process and an overdispersed binomial 

as the measurement – that we did for Harvard. There are, however, a few significant differences.  

 First, because no publicly available knowledge exists of unique measures that OSU took 

to mitigate the spread of mumps, we do not include an intervention effect parameter, 𝑞, in the 

model. This also suggests that the transmission rate, 𝛽, no longer changes over time.  

 Second, recall that the unit for time is in weeks, rather than days. In Section 5.1.1, we 

discussed that, although stochastic compartmental models are technically continuous, we simplify 

the computation by making discretized approximations, with a small value for the time step 𝛿. 

However, if we fix 𝛿 to 1, as we do for the Harvard model, then the transition rates and 

Figure 11: Number of weekly mumps cases in Ohio (particularly Ohio State University) 
between January and September 2014. There were a total of 528 cases during this time period. 
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compartment sizes will be held constant over an entire week before being updated. This is 

unrealistic, and thus we now fix 𝛿 to ,
ç
, so that the time step occurs each day.  

 Finally, we change the fixed parameters to reflect the qualities of this dataset. 𝑁, the total 

population, becomes 60,000, to represent the size of the OSU campus. Meanwhile, because 𝜎M, 

equals the length of the latent period in days, we must change the units for 𝜎: 

𝜎 =
1

17	𝑑𝑎𝑦𝑠 ∗ 	
7	𝑑𝑎𝑦𝑠
1	𝑤𝑒𝑒𝑘 = 	

7
17 

 With these adjustments, we finalize our model and apply iterated filtering to it to find the 

optimal parameters. We find that the maximized log likelihood is −128.5178, with a standard 

error of 0.1159. The MLEs are shown in Table 3:   

Symbol Description Value Units Source 
𝑅0 Basic reproduction number 3.3307  Estimated in Section 7.2.1.3 
𝛽 Transmission rate 0.5399 day-1 Calculated: 𝛽 = 𝑅B𝛾	 
𝜆 𝑡  Force of infection: rate at which 

susceptibles acquire disease 
Time-dependent day-1 Calculated: 𝜆 𝑡 = 	𝛽 c d

<
 

𝛾 Per-capita rate of transition from I to R 0.1621 day-1 Estimated in Section 7.2.1.3 
𝜌 Proportion of infections reported 0.0148 — Estimated in Section 7.2.1.3 
𝜓 Overdispersion parameter 0.7410 — Estimated in Section 7.2.1.3 
𝑆B Initial proportion of susceptible persons 0.9998 — Estimated in Section 7.2.1.3 
𝐸B Initial proportion of exposed persons 0.00019 — Estimated in Section 7.2.1.3 
𝐼B Initial proportion of infectious persons 0.00001 — Estimated in Section 7.2.1.3 
𝑅B Initial proportion of recovered persons 0 — Estimated in Section 7.2.1.3 

 

 

We run stochastic simulations of the model evaluated at the MLEs in order to visually determine 

its fit to the OSU data (see Figure 12). While Simulations 1 and 2 seem to emulate the patterns of 

the data quite well, Simulation 3 greatly overestimates the outbreak size. The variance in results is 

a natural side effect of using a stochastic model. Moreover, we see that the infectious curve for the 

Table 3: Maximum likelihood estimates obtained using iterated filtering techniques for 
the Ohio outbreak. These estimated parameters help us understand the characteristics of 
this outbreak. 
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data is smoother than the jagged simulations; this can be attributed to the high value of 𝜓, which 

increases the variability in the number of weekly observed cases.  

 

 

7.2.2 Comparison of Harvard and OSU Parameters  

The maximum likelihood estimates for Harvard and OSU are different on multiple accounts. In 

this section, we explore the three parameters (basic reproduction number, reporting rate, and rate 

of transition from the infectious to removed class) that are most dissimilar between the two schools, 

and propose potential explanations for their differences.  

Firstly, OSU’s basic reproduction number, which indicates the initial growth rate of the 

outbreak, is over three times that of Harvard. Although wide, its confidence interval, 

(2.068, 7.000), does not overlap with the confidence interval for Harvard’s 𝑅0, confirming this 

difference. Harvard’s isolation policy best explains this difference because it physically prevents 

infectious persons from causing multiple secondary infections, thus suppressing the growth of the 

outbreak. 

Figure 12: Three simulations of the final OSU model evaluated at the maximum likelihood estimates. 
Simulation 1 and 2, in particular, have similar patterns as the data. Note that the variability in weekly 
observed cases is due to a high value of the overdispersion parameter, 𝜓. 
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 Secondly, OSU’s reporting rate is extremely low, at approximately 1.5%, compared to 

Harvard’s 98%. In fact, the reporting rate at OSU is closer to population-wide estimates of this 

parameter (4.0%, according to Lewnard and Grad) [6]. Although 𝜌’s 95% confidence interval of 

(0, 0.7143), constructed via profile likelihoods, is quite large, the difference in Harvard and 

OSU’s values is still statistically significant, with non-overlapping confidence intervals. We do 

not have access to OSU’s diagnostic procedures nor do we know the extent of their email 

awareness campaign, but we hypothesize that a lack of one or both of these may explain at least a 

portion of the dissimilarity in the two schools’ reporting rates.  

 Finally, the rate of recovery, 𝛾, is 0.1621, so that the period of infectiousness is ,
B.,†},

=

6.169 days, approximately six times as large as Harvard’s period of infectiousness. 𝛾 is by far the 

most critical parameter in evaluating the effectiveness of isolation. Without a formal isolation 

policy, an infectious person cannot enter the removed class until fully recovered, which happens 

between five and seven days after the onset of symptoms. With an isolation policy, on the other 

hand, an infectious person enters the removed class the moment they have been isolated because 

they can no longer spread their infection to anyone else in the population.  

 With a much shorter period of infectiousness, it is no surprise, then, that Harvard’s outbreak 

duration is less than OSU’s. While Harvard’s lasted 18 weeks, the OSU outbreak lasted over 25 

weeks. Moreover, Harvard’s isolation strategy allowed, for the most part, containment of the 

disease on campus. In contrast, infectious students at Ohio State University could still interact with 

the greater Columbus population if they chose not to self-isolate, which likely led to the rapid 

spread of the disease throughout both campus and central Ohio.  
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7.2.3 Limitations  

Although there are clear differences in the OSU and Harvard parameters, we must be cautious in 

taking the OSU estimates at face value.  

 Given that the OSU data consists of weekly reports rather than daily reports of cases, we 

should expect the estimates for the parameters to be less accurate. Indeed, this explains the wide 

confidence intervals for estimates of 𝜌 and 𝑅0 in the OSU model.   

 Furthermore, as covered in our discussion of the dataset, the cases are not solely linked to 

the university. Numerous cases in the data occurred in the greater Columbus area, suggesting that 

the parameter estimates do not only account for the dynamics of mumps on campus. They also 

incorporate the dynamics of mumps across a much less-structured area. So, for instance, even if 

awareness and reporting of mumps on campus are high, an unsuspecting person in Columbus may 

not know to report his symptoms; this would lead to a lower estimated reporting rate than expected.  

 Lastly, OSU’s population size, 𝑁, is three times that of Harvard. Because the force of 

infection is a function of raw population size (as we see from the equation for 𝜆(𝑡) in Table 3), 

interventions used at Harvard simply may not have worked as well at OSU. To more accurately 

quantify the efficacy of interventions like isolation, we would need to conduct a comparative 

analysis between Harvard and a school of similar size. Moreover, we would have to understand 

how such a policy scales with population size.  

 Thus, while this investigation is useful in gaining a broad idea of the characteristics of other 

universities’ outbreaks, we should be careful not to over-generalize and overestimate the impact 

of Harvard’s isolation efforts. As discussed in Section 7.1.2, the most promising method to 

determine the exact effect of isolation strategies is through a randomized control trial.  
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8. CONCLUSION 

8.1 Summary 

Throughout this paper, we construct and estimate a mathematical model for the transmission of 

mumps on college campuses. Unlike most models of infectious disease, which opt for deterministic 

representations, the stochastic model that we build is adaptable to small populations and accounts 

for the noisiness and incompleteness of data in its structure. Moreover, it incorporates a parameter 

that measures the effect of interventions added after time 𝜏. Importantly, while most literature 

today focuses on mumps prevention – such as administering third MMR doses to college-age 

students – this paper provides quantitative backing for more immediate and less costly approaches 

to mitigating the spread of mumps. Future work should pursue understanding the precise effects 

of each control intervention in isolation. 

 

8.2 Recommendations 

We conclude with a set of recommendations that are highly effective, at least in combination with 

one another, in reducing outbreak size and duration.  

We determine that, although the HUHS email awareness campaign increased the reporting 

rate of symptoms, it alone could not have ended the outbreak. Nevertheless, universities should 

not undervalue the importance of raising awareness and vigilance and should consider sending 

weekly updates on the spread of disease across campus.  

We also find that more informed HUHS diagnoses, beginning Day 60, helped decrease 

outbreak size by one third and seemed to most directly lead to the end of the outbreak. Therefore, 

the CDC should provide more detailed instructions regarding the diagnosis of mumps in vaccinated 
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persons and the shortcomings of PCR tests. For each passing day that medical centers did not have 

this information, we estimate that outbreak size increased by approximately one percentage point.   

Finally, although difficult to quantify the impact of HUHS isolation policies, Harvard’s 

period of infectiousness was approximately ,
†

d¨
 that of other universities, leading to a shorter and 

more contained outbreak. Universities with less resources to formally isolate infectious cases 

should consider devising stricter guidelines for what self-isolation looks like for students. 

Additionally, to ease this process of self-isolation, they should consider setting up a system of meal 

delivery to the infectious person’s room and providing moral and emotional support through daily 

phone check-ins [11].  

Ultimately, although infectious disease outbreaks at universities pose a unique public 

health problem because of the increased transmission rates, the Harvard mumps outbreak provides 

insight into the power of straightforward interventions. Perhaps this public health challenge is 

more manageable than it appears. Simple awareness and understanding can make all the difference.  
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APPENDIX A: Diagnostic Procedures for Mumps 

A.1 PCR Test 

The Massachusetts Department of Public Health recommends the PCR test as the gold-standard 

diagnostic for mumps. But, while the positive PCR test indicates the presence of mumps virus 

RNA, negative PCR tests do not necessarily rule out mumps as a diagnosis. In particular, 

vaccinated individuals shed smaller amounts of virus for a shorter period of time. Thus, in 

outbreaks among two-dose vaccine recipients, mumps virus was only detected in samples from 

approximately 30-35% of case patients if the samples were collected within the first three days 

following onset of parotitis.  

A.2 Harvard Diagnoses 

At the beginning of the outbreak, Harvard struggled to diagnose mumps. Many nurses and 

clinicians were witnessing mumps for the first time and struggled to identify it, especially in 

vaccinated individuals. Occasionally, they took improper samples from infectious individuals, 

leading to negative PCR tests. Moreover, certain cases that came into the clinic too late often no 

longer had mumps in their upper respiratory tracts, also leading to negative results.  

Harvard did not have a clear policy regarding negative PCR tests at the beginning of the 

outbreak. Many cases that were infectious were likely still ruled out and released back into the 

susceptible population simply because of their test results. However, upon recommendations from 

the MDPH mid-outbreak, HUHS developed stricter guidelines on how to handle negative PCR 

results and diagnoses of students.   
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APPENDIX B: Cluster Analysis 

B.1 Gower Distances  

Gower distances is a popular measure for proximity between mixed data types (such as continuous, 

binary, nominal, and ordinal). It computes the dissimilarity value between individuals by each 

variable, taking the variable type into account, and then averages the similarity values across all 

columns [27].  

B.2 Elbow Plot 

 

 

  

Figure 1: An elbow plot demonstrating that 𝑘 = 3 is the optimal number of clusters 
to group the MDPH data. At 𝑘 > 3, the gradient of the total intra-cluster variation, 
𝑇&, noticeably changes. After that point, the increase in dimensionality only 
minimally improves the accuracy of our clustering. 
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B.3 Cluster Visualization 

 

 

  

Figure 2: A visualization of the results of PAM clustering, in which Cluster 1 consists 
of Harvard-only data points. The clusters are graphically represented by the two 
dimensions that explain the most variance between the three groups.  
 
Cluster 1 has the lowest within-cluster variance, given that its sum of squared distances 
between all pairs of points in the cluster are lower than that of Cluster 2 and 3. This 
suggests that there are unique features about Harvard’s outbreak. 
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B.4 Cluster Summary Statistics 

  Age Lag Time Time of Cases 

 Cluster 1 

Min 18.00 0.000 233.0 

1st Quartile 19.00 1.000 263.8 

Median 20.00 1.000 294.5 

Mean 21.16 1.568 302.6 

3rd Quartile 22.00 2.000 310.0 

Max 29.00 10.000 517.0 

    

   Cluster 2  

Min 15.00 0.000 0.0 

1st Quartile 19.00 1.000 285.5 

Median 20.00 1.000 486.5 

Mean 22.53 1.677 450.2 

3rd Quartile 21.00 2.000 613.5 

Max 69.00 12.000 719.0 

    

 Cluster 3 

Min 14.00 0.000 71.0 

1st Quartile 23.00 1.000 331.8 

Median 27.00 2.000 550.0 

Mean 30.14 2.357 506.1 

3rd Quartile 35.00 3.000 698.5 

Max 57.00 9.000 725.0 

 

 

  

Table 1: Summary statistics of each cluster, providing insight into the distinctive 
characteristics of Harvard’s outbreak.   
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APPENDIX C: Model Algorithms 

C.1 Likelihood Estimation via Sequential Monte Carlo 

Algorithm 1: Sequential Monte Carlo [18] 

Input: simulator for 𝑓FG|FGIJ(𝑥L|𝑥LM,; 𝜃), the process model; evaluator for 𝑓PG|FG(𝑦L|𝑥L; 𝜃), the 

measurement model; simulator for 𝑓FR(𝑥B; 𝜃); parameter, 𝜃; data, 𝑦,:<∗ ; number of particles, 𝐽. 

1 Initialize filter particles: simulate 𝑋B,Üá ~𝑓FR(	∙	; 𝜃) for 𝑗 in 1: 𝐽. 

2 for 𝑛 in 1: 𝑁 do 

3       Simulate for prediction: 𝑋L,Üà ~𝑓FG|FGIJ(	∙ |𝑋LM,,Ü
á ; 𝜃) for 𝑗 in 1: 𝐽. 

4       Evaluate weights: 𝑤 𝑛, 𝑗 = 𝑓PG|FG(𝑦L
∗|𝑋L,Üà ; 𝜃) for 𝑗 in 1: 𝐽. 

5       Normalize weights:  𝑤 𝑛, 𝑗 = 	𝑤(𝑛, 𝑗)/ 𝑤(𝑛,𝑚)±
≤+, . 

6       Apply Algorithm 2 to select indices 𝑘,:± with ℙ 𝑘Ü = 𝑚 = 𝑤 𝑛,𝑚 . 

7       Resample: set 𝑋L,Üá = 𝑋L,$≥
à  for 𝑗 in 1: 𝐽. 

8       Compute conditional log likelihood: 𝑙L|,:LM, = log	(𝐽M, 𝑤 𝑛,𝑚±
≤+, ). 

9 end 

Output: Log likelihood estimate, 𝑙 𝜃 = 𝑙L|,:LM,<
L+, ; filter sample, 𝑋L,,:±á , for 𝑛 in 1: 𝑁. 

 
Algorithm 2: Systematic resampling (Line 6 of Algorithm 1, Line 11 of Algorithm 3) [18] 

Input: Weights, 𝑤,:±, normalized so that 𝑤Ü = 1±
Ü+, . 

1 Construct cumulative sum: 𝑐Ü = 𝑤≤
Ü
≤+, , for 𝑗 in 1: 𝐽. 

2 Draw a uniform initial sampling point: 𝑈,~Uniform(0, 𝐽M,). 

3 Construct evenly spaced sampling points: 𝑈Ü = 𝑈, + 𝑗 − 1 𝐽M,, for 𝑗 in 2: 𝐽. 

4 Initialize: set 𝑝 = 1. 

5 for 𝑗 in 1: 𝐽 do 

6       while 𝑈Ü > 𝑐í do 

7             Step to the next resampling index: set 𝑝 = 𝑝 + 1. 

8       end 

9       Assign resampling index: set 𝑘Ü = 𝑝. 

10 end 

Output: Resampling indices, 𝑘,:±. 
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C.2 Iterated Filtering 

Algorithm 3: Iterated filtering [18] 

Input: starting parameter 𝜃B; simulator for 𝑓FR(𝑥B; 𝜃); simulator for 𝑓FG|FGIJ(𝑥L|𝑥LM,; 𝜃); evaluator for 

𝑓PG|FG(𝑦L|𝑥L; 𝜃); data, 𝑦,:<∗ ; number of particles, 𝐽; number of iterations, 𝑀; length of parameter vector, 

𝑝; cooling rate, 0 < 𝑎 < 1; perturbation scales, 𝜎,:í; initial scale multiplier, 𝐶 > 0. 

1 for 𝑚 in 1:𝑀 do 

2       Initialize parameters: 𝛩B,Üá ñ
~	𝑁𝑜𝑟𝑚𝑎𝑙( 𝜃≤M, ñ, 𝐶𝑎≤M,𝜎ñ }) for 𝑖 in 1: 𝑝, 𝑗 in 1: 𝐽. 

3       Initialize states: simulate 𝑋B,Üá ~𝑓FR(	∙	; 𝛩B,Ü
á ) for 𝑗 in 1: 𝐽. 

4       Initialize filter mean for parameters:  𝜃B = 𝜃≤M,. 

5       Define 𝑉, ñ = 𝐶} + 1 𝑎≤M,𝜎ñ }. 

6       for 𝑛 in 1: 𝑁 do 

7             Perturb parameters: 𝛩L,Üà ñ
~	𝑁𝑜𝑟𝑚𝑎𝑙( 𝛩LM,,Üá

ñ
, 𝑎≤M,𝜎ñ }) for 𝑖 in 1: 𝑝, for 𝑗 in 1: 𝐽. 

8             Simulate prediction particles: 𝑋L,Üà ~𝑓FG|FGIJ(	∙ |𝑋LM,,Ü
á ; 𝛩L,Üà ) for 𝑗 in 1: 𝐽. 

9             Evaluate weights: 𝑤 𝑛, 𝑗 = 𝑓PG|FG(𝑦L
∗|𝑋L,Üà ; 𝛩L,Üà ) for 𝑗 in 1: 𝐽. 

10             Normalize weights:  𝑤 𝑛, 𝑗 = 	𝑤(𝑛, 𝑗)/ 𝑤(𝑛, 𝑢)±
ª+, . 

11             Apply Algorithm 2 to select indices 𝑘,:± with ℙ 𝑘Ü = 𝑢 = 𝑤 𝑛, 𝑢 . 

12             Resample particles: 𝑋L,Üá = 𝑋L,$≥
à  and 𝛩L,Üá = 𝛩L,$≥

à  for 𝑗 in 1: 𝐽. 

13             Filter mean: 𝜃L ñ = 𝑤 𝑛, 𝑗 𝛩L,Üà ñ
±
Ü+,  for 𝑖 in 1: 𝑝. 

14             Prediction variance: 𝑉Lº, ñ = 𝑎≤M,𝜎ñ } + 𝑤 𝑛, 𝑗 (Ü 𝛩L,Üà ñ
− 𝜃L ñ)}	 for 𝑖 in 1: 𝑝. 

15       end 

16       𝜃≤ ñ = 𝜃≤M, ñ + 𝑉, ñ 𝑉L ñ
M,( 𝜃L ñ

<
L+, − 𝜃LM, ñ) for 𝑖 in 1: 𝑝. 

17 end 

Output: Monte Carlo maximum likelihood estimate, 𝜃ä. 

 

 

 

 


