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Coding BetteR: Assessing and Improving the
Reproducibility of R-Based Research with containR

Abstract

Reproducibility is the cornerstone of science, and we are in the midst of a

reproducibility crisis. Simply sharing the code and data used for obtaining results

is often insufficient for reproducibility; in fact, we show that 85.6% of the

thousands of R programs published on Dataverse 1 since 2015 cannot be run.

Moreover, our finding that the failure rate of these published R programs holds

constant regardless of their age implies that errors are caused by code

incorrectness, not age-related incompatibility. We contribute to the

reproducibility of R-based research by building tools to both automatically

correct common errors found in published code/data archives and package the

archives to guarantee future reproducibility. We motivate developing these tools

with analyses showing that only three types of mistakes caused more than 70% of

all the errors we observed, and that automatically correcting these mistakes

frequently revealed a more fundamental error: many datasets were simply

missing the data used for analysis, highlighting the need for a better system of

documenting and including research-code dependencies. We provide an example

of such a system by building containR, a web application which combines our

automatic error-correcting code and existing dependency detection tools to

create easily-executable and platform-agnostic archives of R-based research.

1a web platform specifically designed for the open sharing of data and code used for result gen-
eration in published research
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1
Introduction

1.1 Motivation

Experimental results of scientific research must be repeatable, not merely
available. Thus, the well-documented reproducibility crisis facing data-driven
scientific research [1] more than hinders scientific progress: it threatens the
legitimacy of the entire scientific process. However, scientists are not unarmed in
combating this crisis; data provenance has emerged as a promising tool to aid
them in the fight. Introducing data provenance, Pasquier et al. wrote:

Provenance was originally a formal set of documents to describe the
origin and ownership history of a work of art. These documents are
used to guide the assessment of the authenticity and quality of the
item. In a computing context, data provenance represents, in a
formal manner, the relationships between data items (entities),
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transformations applied to that data (activities), and persons or
organizations associated with the data and transformations
(agents). It can be understood as the record of the origin and
transformations of data within a system. [2]

More concretely, data provenance describes computational procedures using
graphs, with nodes representing data items, data-transforming activities, or
people and organizations, and edges representing the temporal and causal
relationships between nodes. By encoding research programs’ dependencies and
logic in a formal, well-ordered manner, these graphs legitimize research results
and facilitate their regeneration. However, since data-driven analyses have a
tendency to heavily leverage computational resources, manually creating
provenance graphs for even a short body of research code would be extremely
impractical, if not impossible. Therefore, there have been significant efforts [2–8]
to create tools for automatically generating data provenance. These tools
minimize required effort from the researcher by capturing provenance data at
execution time and storing it for posterity using a standardized provenance data
model created by the World Wide Web Consortium.1 A number of tools have
focused specifically on native provenance capture for the R programming
language [3–5].

Because of its extensive modeling and data visualization functionality and its
interpretive environment which allows users to interact with previously executed
commands [9], R enjoys extensive use in data-driven scientific research spanning
numerous fields outside its original area of application for statistics, and based on
web-traffic statistics from the popular online debugging forum, Stack Overflow,
R’s popularity is rapidly increasing compared to that of other languages (see
Fig. 1.1.1).2 However, the very same interpretive environment which makes R so
popular for research causes further problems for repeating said research. Pasquier
et al. explained:

1https://www.w .org/TR/prov-dm/
2https://stackoverflow.blog/ / / /impressive-growth-r/
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Figure 1.1.1: R has demonstrated impressive levels of growth in the
past year. Taken from https://stackoverflow.blog/ / / /
impressive-growth-r/

[R and other scripting languages] have [in addition to facilitating
data-driven approaches] also enabled scientists to produce code of
relatively mediocre quality, as their goal is the production of
scientific insight via statistical results and graphics, not robust code.
There are few incentives for a researcher to take the time to properly
structure, annotate, and then curate the code to improve its
legibility. Thus, data and code are prevalent, but much of it is either
no longer usable or unintelligible. [4]

3
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The tendency for R-using researchers to write non-robust code combined with
R’s increasing popularity make R the perfect candidate for applying automatic
provenance capture tools. Existing tools, including encapsulator [4],
RDataTracker [3], and ProvR [5], all try to impose minimal overhead for the
scientist writing the R code. However, since they capture provenance at the time
of code execution, these tools inherently assume that the researchers’ R scripts
will run error-free until completion, and fail to capture provenance when this
assumption is false. Given the aforementioned concerns about researchers
lacking the incentives and training to write robust R programs [4], this
assumption may prevent automated provenance collection in R from working in
its most-needed cases. In order to further improve the reproducibility of R-based
research, we must therefore investigate the common causes of errors in
researchers’ R programs, and supplement existing tools that capture and apply
data provenance with tools to preemptively address these errors. Since
investigating common error sources necessitates running a large volume of R
code, our investigative process also involves a case study of reproducibility in
R-based research.

1.2 RelatedWork

To motivate our attempts to improve the reproducibility of computational
research, we cite a recent study by Stodden et al. which demonstrates the sore
need for this improvement. Stodden et al. assessed the reproducibility of results
from a random sample of 204 scientific papers published in the journal Science
after February 2011, when the journal implemented a policy designed to improve
reproducibility by requiring researchers to fulfill all reasonable requests for the
data and code needed to generate their results [1]. Despite this policy, Stodden et
al. were only able to obtain data and code for 89 articles in their sample of 204
(about 44%), and of those 89 that provided data and code, deemed that results
could only be potentially reproduced for 56 articles (about 27%). Their
methodology for determining potential reproducibility allowed for significant
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effort on the part of the result-verifying researcher:

We noted where documentation on installing and running available
codes was missing from both the paper and the location of the
software, and continued with our best attempts at reproduction. We
noted the cases where scripts and parameter files were missing. If
the missing files could be recreated with some reasonable amount
of effort (<100 lines of code) based on the information provided in
the compendia, this was attempted. [1]

As such, their 27% finding can be thought of as a generous upper bound of the
actual rate of computational reproducibility. The generosity of this upper bound
only increases if we consider how Science had already implemented a policy
specifically designed to address this issue. The small sample size of article results
they actually attempted to replicate (only 22) and the generous use of researcher
time in attempting replication leave room for a more strictly-defined case study of
computational reproducibility. In addition to finding the reproducibility rate,
Stodden et al. also noted that the ”lack of standards for documentation and
metadata for data, code, and workflows” seriously hindered their reproducibility
efforts, suggesting the need for a more formalized metadata system for
computational research such as that provided by data provenance [1].

Even the most motivated research cannot progress without the correct tools,
and ours depends heavily on existing projects to capture data provenance natively
in R. The RDataTracker project represents the first attempt to do so [3]. As a
native R package (installable and runnable from within R), RDataTracker
dramatically improved the convenience of provenance collection for R users by
allowing them to control provenance capture from within a standard R session,
whereas earlier non-native tools like Vistrails [8], Kepler [6], and Taverna [7]
forced researchers to substantially alter their workflows. RDataTracker also
improves on earlier, completely automatic tools by allowing users more control
over the specific provenance collected; while automatic tools capture provenance
for all aspects of the user’s current R session, RDataTracker allows users to
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specify start and end points with more granularity from within an R session, thus
simultaneously reducing the volume and increasing the relevance of the collected
data. ProvR is a simplified fork, or alternative version, of RDataTracker, which
keeps RDataTracker’s provenance capturing functionality while presenting
users with a cleaner interface of functions for controlling the capture process [5].

While provenance collection provides a formal record of computation, one
would probably have difficulty finding a researcher pedantic enough to manually
inspect the provenance graph for each script they write or use. The actual data
provided by data provenance may therefore appear pointless at first glance.
encapsulator and Rclean prove otherwise by leveraging native R provenance
capture through RDataTracker to implement additional functionality for
researchers: respectively, the creation of downloadable ”capsules” containing all
the code and data dependencies necessary to reproduce a research result [4] and
the cleaning of originally-messy user-provided R source code files based on
isolating code for producing specific outputs [10].

These tools for capturing provenance in R and using captured provenance to
provide additional functionality for researchers are indisputably innovative. But,
because they have not yet seen widespread usage in the R community, their
robustness and performance while ingesting actual research code was untested.
Additionally, even though these packages can be run with a few commands, all of
them inevitably require interested researchers to make a concerted effort to
install the packages’ dependencies and learn package-specific syntax, imposing
additional overhead which may dissuade researchers from voluntarily adopting
these packages into their workflows.

1.3 OurContributions

Our research had two high-level aims: (1) To perform a comprehensive
assessment of the state of computational reproducibility in R, including
stress-testing existing provenance capture tools; (2) To further improve the
reproducibility of R-based research by modifying or creating provenance-based
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tools in response to the results from our first aim.
When considering data sources to complete our assessment, we found

Harvard University’s installation of Dataverse [11] to be the most convenient and
relevant option. Dataverse is a web application self-described as:

an open source web application to share, preserve, cite, explore, and
analyze research data. It facilitates making data available to others,
and allows you to replicate others’ work more easily. Researchers,
data authors, publishers, data distributors, and affiliated institutions
all receive academic credit and web visibility. [11]

To collect our data, we used Python to interface with the Dataverse API 3 and
downloaded the datasets (consisting of both code and data) for 810 different
R-based studies. We used a combination of scripts written in R and bash to
attempt the execution of researchers’ R programs, capturing provenance if the
research programs successfully ran to completion and capturing the first line of
error output if they failed. To complete this analysis in a timely fashion, we
harnessed the computing power of Harvard University’s Odyssey Computing
Cluster 4 to parallelize our workflow by running the code files for each study
simultaneously in a separate job, or scheduled computational task. We then
aggregated the execution data for all the downloaded studies in order to analyze
overall error occurrences across the R-based datasets.

Using the results of our reproducibility assessment, we wrote functions in
Python to identify and correct the most commonly-observed errors in the R
programs by directly parsing and editing their source code. With containR, we
integrated our R-code correction functionality, automatic provenance collection
with ProvR, and Docker5 (a platform which allows an application to run
efficiently on all major operating systems) into a simple web application to
expedite the reproducibility of R-based research with minimal overhead for
researchers.

3http://guides.dataverse.org/en/latest/api/index.html
4https://www.rc.fas.harvard.edu/odyssey/
5https://www.docker.com/get-docker
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1.4 Outline

In Chapter 2 we detail the process of collecting R-code-containing datasets from
Dataverse and the pre-processing we performed on the data. The process of
downloading the datasets using Odyssey required three nested layers of
Dataverse API calls, and did not work on Odyssey until a few weeks before the
time of writing because of networking errors. We designed our analysis scripts to
fully exploit the parallel computing capacity of Odyssey.

In Chapter 3, we describe and analyze the results from running the
researchers’ code. We describe the most common errors we obtained, our
interpretation of the errors, and the relationships between error occurrences and
the year and subject of the datasets. We also describe the approaches we took to
automatically fix the most common errors and the results of attempting to
execute the R scripts after we applied our fixes as a pre-processing step.

In Chapter 4, we discuss the functionality and implementation-level details of
the containR web application. We initially intended on building a web interface
for encapsulator, but after some testing, concluded that it would be unwieldy
to run encapsulator simultaneously for multiple users in a web setting.
Instead, we implemented encapsulator-like functionality using Python,
ProvR, and Docker. We then walk through the features of containR. For each
feature, we provide an example of its correct functionality followed by a
more-detailed description of the methods and dependencies used for its
implementation.

8



2
Data Collection and Preprocessing

2.1 DownloadingDatasets fromDataverse

Before we could examine the reproducibility of R-based research, we needed to
secure a large collection of R scripts used for research along with their
corresponding data dependencies. We first considered reaching out to
researchers over email and asking for their code and data, similar to Stodden et al.
[1], but quickly decided against it over scalability and human fallibility concerns.
With over 50,000 datasets, and a mission to encourage research data visibility and
reproducibility, Dataverse1 seemed the ideal source for legitimate, published
datasets. However, despite the large number of datasets overall, it was unclear
what proportion of datasets contained R-based analyses. Using the Python

1https://dataverse.org/
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requests module and file-type query syntax,2 we queried the Harvard
Dataverse Search API3 for the metadata of all published R programs, then parsed
the metadata using the Python json and re (regular expression) modules to
compile a list of DOIs (persistent digital object identifiers for intellectual
property guaranteed to be unique to each dataset). Upon finding that this
resultant list contained 729 unique DOIs, we decided that this data collection
option was worth pursuing further. At the time of writing, this number has
increased to 846 unique DOIs, whose datasets contain 3,407 unique R scripts.

For downloading files, Dataverse provides the Data Access API. 4 However,
there was no way to programmatically download entire datasets from Dataverse.5

Thus, to download each dataset DOI, we used the Python requests module to
query the Dataverse Native API 6 for IDs of all files in the DOI’s dataset, then
used this DOI-to-file-ID mapping to query the Data Access API for each
individual files within each dataset (see Figure 2.1.1).

We used Harvard University’s Odyssey Cluster to parallelize each dataset
download in a separate job with near-complete lack of concern for storage
capacity (each research group on Odyssey receives a shared storage volume with
a 50 terabyte limit.7) Initially, making any Dataverse API requests from Odyssey
resulted in connection errors. This was caused by configuration errors of the
internal routing between Odyssey and Dataverse, which were both hosted on
Harvard University’s servers. This behavior was fixed when Dataverse migrated
its API hosting to Amazon Web Services servers from Harvard-internal servers.8

At the time of writing, this method resulted in the complete download of 810 of
846 unique datasets, where the remaining 36 were unable to be downloaded
because DOI-specific metadata was unavailable via the Datavers Native API.

2https://github.com/IQSS/dataverse/issues/
3http://guides.dataverse.org/en/latest/api/search.html
4http://guides.dataverse.org/en/latest/api/dataaccess.html
5https://github.com/IQSS/dataverse/issues/
6http://guides.dataverse.org/en/latest/api/native-api.html
7https://www.rc.fas.harvard.edu/resources/odyssey-storage/
8https://github.com/IQSS/dataverse-client-python/issues/
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Dataverse  
Search API

Python Set of all DOIs

Dataverse 
Native API

Dataverse 
Access API

Python

DOI to File ID 
mappings

Python

Downloaded 
Datasets

For each DOI, on Odyssey

Figure 2.1.1: We queried 3 APIs to download all R-file-containing datasets
from Dataverse
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2.2 Pre-processing File Encodings

Before running our analyses, we ensured that all downloaded R programs used
the same encoding, which refers to the system a computer uses to convert
between human-readable characters and sequences of machine-readable binary.
Encodings vary across operating systems; MacOS uses the most popular
encoding, UTF-8, while Windows allows users to select alternative encodings.9

Since R can be run on many different operating systems, including Windows, and
can also be encoded in multiple formats,10 two R files containing code which
appears the same to humans may have different binary representations. To ensure
that differences in encoding would not cause strange errors during execution, we
used the Python codecs module to convert each R code file from any
non-UTF-8 encoding (detected using the Python chardet module, which
guesses the most likely encoding based on reading files’ binary strings) to UTF-8.

2.3 Running Files onOdyssey

With roughly 3,000 R programs downloaded, sequentially recording the
execution behavior of each program using a personal computer would have been
infeasible. With the datasets already divided into separate directories from the
downloading step, we decided to run the analysis for each dataset in its own job
on Odyssey.

The first step we took to program this behavior was writing an R script to run
every R program within in a specified directory using R’s built-in tryCatch
function (which allows users to control how the program should respond to
errors while executing code instead of automatically halting the program
execution) in conjunction with the source function (which runs in its entirety
any R file passed as an argument). Our script recorded ”success” when a research
program successfully ran, and the first line of error output when a program failed,

9https://docs.python.org/ . /howto/unicode.html
10https://support.rstudio.com/hc/en-us/articles/

-Character-Encoding
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Bash R

For each dataset, in its own 
Odyssey job

Dataset

Execution logs, 
provenance

Python
All Execution   

Data

Figure 2.3.1: Workflow for collecting execution for all the R scripts (per-
formed once for original files and once for pre-processed files)

in a file which it placed inside a self-created sub-directory of the dataset (called
”prov_data”). After attempting to run each file, the script tried to collect
provenance on each file using ProvR.

After performing reproducibility analysis for each downloaded dataset, we ran
a Python script to correct the most common errors we observed in researchers’ R
programs. For easy identification of pre-processed files, we added the suffix
”__preproc__” to the name of each R script before its ”.R” file extension (e.g.,
”mycode.R” would become ”mycode__preproc__.R”; see §3.2 for more details
about the pre-processing methodology for specific errors).

We then ran the reproducibility analysis for the pre-processed files. To allow
the R script to run for both researchers’ original code files and those we
pre-processed for common errors, the script accepts a command line argument
specifying which type of file (original or pre-processed) to perform and record
analyses for.
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We deployed reproducibility analysis for every dataset in its own job on
Odyssey with 8 cores and a 1-hour run time. Separate jobs were used for
analyzing the original and pre-processed versions of the researchers’ code. These
parameters were chosen to simulate the patience and computational resources
available to the typical researcher attempting to replicate another researcher’s
results. This script structure helped to organize the desired functionality into
modular components, and enabled the collection of execution data for nearly
3,000 R files, which would ordinarily take hours if not days to complete
sequentially, to finish running in within a few hours.

After all jobs either completed or reached the time limit, we used the pandas
module in Python to iterate through the dataset directories and aggregate the
recorded execution log for each file, enabling us to analyze reproducibility across
all datasets.
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3
Results

3.1 ErrorOccurrences by Individual Program

3.1.1 Error Occurrences for Original Source Code

After removing the execution results for datasets which did not finish running
within allotted hour, we found the overall success rate of the researchers’ R

Execution Result Count Percentage (rounded)
Success 408 14.4%
Error 2431 85.6%
Total 2839

Table 3.1.1: The vast majority of original R scripts failed to execute com-
pletely
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Error Type Count Percentage (rounded)
Library 363 14.9%
Working Directory 696 28.6%
Missing File 802 33.0%
Other 569 23.4%
Total 2431

Table 3.1.2: 3 errors are responsible for the majority of code execution fail-
ures

scripts, which, at 14.4%, was extraordinarily low (see Table 3.1.1)

3.1.2 Common Errors and their Causes

While such a high error rate may have been discouraging from a reproducibility
standpoint, it also provided us with a good opportunity to examine the most
common error causes. To identify the most common errors, we visually
inspected the dataset for error strings which appeared often, and used the Python
pandas module’s built-in filtering options to filter the dataset for their
occurrences. Using this method, we were able to identify three types of coding
mistakes which accounted for approximately 76.5% of all errors we encountered:
library errors, working directory errors, and file errors (see Table 3.1.2).

Library errors involve the library function, and usually resemble:

Error in library(QMSS) : there is no package called ‘QMSS’

This error commonly occurs when attempting to run R code written on a
different computer, and indicates that the package the user tried to load (in the
example case, QMSS) has not yet been installed.

Working directory errors are errors involving the setwd function:

'Error in setwd(/Users/janedoe/Dropbox/Replication files/) :
cannot change working directory'

The setwd function1 changes the directory the R interpreter uses to read, write,
1http://stat.ethz.ch/R-manual/R-devel/library/base/html/getwd.html
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and search for files. This command makes writing the rest of the script slightly
more convenient if all of the script’s data dependencies are located in the same
directory; the researcher can simply specify files to read in with just their file
names and R will look for them in the specified working directory. However, as
argued in a blog post by Jennifer Bryan the University of British Columbia,2

using setwd with very specific paths eliminates the possibility of the command
executing properly on someone else’s computer because different computers
almost always have different directory names.

File errors include errors such as:

Error in file(file, rt) : cannot open the connection
Error in readChar(con, 5L, useBytes = TRUE) : cannot open ...
Error in read.dta(my_data.dta) :

unable to open file: 'No such file or directory'

Though these error messages are different, they are all caused by trying to import
data from an invalid file name or location.

The remaining errors, classified under ”Other”, were somewhat more difficult
to identify, and usually involved specific syntax mistakes in the R source code
files. However, the fact that only three types of errors account for approximately
76.5% of all the errors we observed suggests that reproducibility of R-based
research can be dramatically improved if researchers make just slight changes to
their coding habits. For example, the setwd function can often be omitted
entirely from the R script. Instead, if data files are located in the same directories
as analysis scripts, researchers just need to call setwd once for the relevant
directory from the R console prior to running their analyses. Even if we could fix
all occurrences of these three mistakes, we most likely cannot fix all 76.5% of
errors because these basic errors could be masking more pernicious ones. To
investigate this further, we attempted to fix these basic errors automatically (see
§3.2) and analyzed the execution results after doing so (see §3.1.3).

2https://www.tidyverse.org/articles/ / /workflow-vs-script/
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Error Type Count Percentage (rounded)
Library 8 0.3%
Working Directory 12 0.5%
Missing File 1400 60.1%
Success 62 2.6%
Other 847 36.4%
Total 2329

Table 3.1.3: Most of the programs originally containing library and working
directory errors also contained other errors, with the vast majority attempting
to import data from missing files

3.1.3 Error Occurrences for Pre-Processed Source Code

After applying our procedure for automatically correcting library, working
directory, and file errors, we ran the reproducibility analysis for all pre-processed
scripts. Because there was some variability in the number of files which ran to
completion within the 1-hour time limit, especially if pre-processing a program
allowed it to execute longer than its corresponding original (which may have
failed nearly instantly), we only have data on 2,329 of the pre-processed
counterparts to the 2,431 original files which produced errors (See Table 3.1.3).

Our pre-processing methods fixed 62 of the 2,329 files which originally
contained errors. Though we were initially disappointed by this result, we found
that it was due mostly to the egregiously large number of missing files and the
masking of other errors by the three originally-most-common types.

Our pre-processing reduced the total number of library and working directory
errors from over 1,000 to 20. All of the remaining library and working directory
errors took these respective forms:

Error in library(rstan, lib.loc = ~/R/win-library/3.2) :
no library trees found in 'lib.loc'

Error in setwd(paste(mywd, /Data, sep = )) :
cannot change working directory
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Because these were complex cases which occurred very infrequently, we did not
think these results were a cause for concern.3

The most striking result was the large increase in the number of missing file
errors, from 696 to 1,400. To confirm that these were due to missing files, we
added some functionality in our Python file error correction function to log
whenever it failed to find a path for a file loading command while parsing an R
program. With our fairly naive string parsing and file searching approach (see
§3.2.3), we confirmed that above 86% of the scripts which produced file errors
referenced files which were simply missing from the dataset (and probably failed
to confirm the remaining 14% because our list of data-importing functions was
not completely exhaustive). This result emphasizes that even syntactically correct
code will not generate reproducible results in the absence of the necessary
dependencies. We suspect that researchers often simply forgot to upload all these
dependencies, which would be quite easy to do if their scripts have many data
inputs. Provenance-aware tools which detect these errors and report them back
to the researcher before they publish their datasets would be extremely useful in
these cases. For instance, such a feature could be integrated into the data upload
form for Dataverse to prevent these errors from occurring in the future.

3.1.4 Failure Rates over Time

To examine how R’s exploding popularity over time relates the reproducibility of
R-based research, we used Python’s requests module to query the Dataverse
Native API for release time of the dataset’s latest version, then Python’s pandas
module to extract the year of release and combine the release time and execution
data for simultaneous analysis. After summing up the total file count and error
count for each year to calculate the error rate, we observe a surprising result:
though the number of R files published to Dataverse has demonstrated steady

3It was difficult to use Python string processing to capture all the parameters of these function
calls. Because our error correction procedure is meant to be used as a last resort and only corrects
a handful of errors in the first place, we chose not correct these corner cases for the purposes of this
analysis.
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Year Total Files Total Error Files Error Rate (Rounded)
2015 282 253 89.7%
2016 927 786 84.8%
2017 1416 1204 85.0%
2018 212 186 87.8%

Table 3.1.4: The yearly error rate of R files published to Dataverse has re-
mained stable despite large increases in yearly R files published

growth, the proportion of files which fail to run has stayed remarkably stable
between 85-90% (See Table 3.1.4). The small numbers for 2018 are likely due to
the timing of our analysis of writing in March, 2018.

Visualizing this data with Python’s seaborn module, we can observe just how
well the proportion of files which error has kept pace with the increases in R files
published. This finding shows that while the popularity of R-based research in
the Harvard Dataverse has increased substantially, the reproducibility of said
research has remained consistently poor (see Figure 3.1.1). This finding lends
particular urgency to improving the reproducibility of R-based research, because
it implies that the body of difficult-to-reproduce research is growing at an
increasing rate. It also demonstrates that the errors we found in the R programs
were more-likely the result of coding mistakes than code deprecation; if the
errors were the result of aging code, we would expect the error rates of the R
programs to decline for code published more recently, which was not the case.
Thus, the R programs did not decline in reproducibility as they aged. They were
never reproducible in the first place.

3.1.5 Failure Rates by Subject

The Dataverse Native API also provided metadata for the subject of the dataset’s
corresponding article. Dataverse was originally focused on sharing data from the
social sciences,4 the R-program-containing datasets on Dataverse cover a

4https://dataverse.org/about
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Figure 3.1.1: Increases in the yearly quantity of R code published were ac-
companied by increases in the number of files which fail to execute

multitude of additional subjects, including: Computer and Information Science,
Medicine, Health and Life Sciences, Physics, Engineering, Business and
Management, Mathematical Sciences, Arts and Humanities, Agricultural
Sciences, Law, and Earth and Environmental Sciences. Even though the
dataset-to-subject relationship is one-to-many, since each dataset can cover
multiple subjects, we still thought the relationship was worth investigating to see
if certain subjects had substantially lower error rates. Using the Python pandas
module, we encoded binary variables for each subject and combined the data
with our execution data. We then calculated the within-subject script count and
failure rate (see Table 3.1.5, Figure 3.1.2)

In alignment with expectations, the Social Sciences label was the most
popular, with over 2,600 associated R scripts and an error rate very representative
of the overall error rate at 88.3%. The amazingly low error rate for Engineering is
likely because the of the small sample size of Engineering-labelled R scripts, as
shown by its large error bar and standard error of 17.9%. On the other extreme,
the 100.0% error rates of Physics and Business and Management may appear
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Subject Error Rate (Rounded) Std. Error (Rounded) Program Count
Social Sciences 87.2% 0.6% 2677
Computer and Information Science 95.2% 3.3% 42
Medicine, Health and Life Sciences 54.7% 4.8% 106
Physics 100.0% 0.0% 22
Engineering 20.0% 17.9% 5
Other 60.7% 9.2% 28
Business and Management 100.0% 0.0% 14
Mathematical Sciences 42.6% 6.0% 68
Arts and Humanities 90.0% 6.7% 20
Agricultural Sciences 81.3% 9.8% 16
Law 77.2% 5.6% 57
Earth and Environmental Sciences 54.6% 4.8% 108

Table 3.1.5: Different subjects had dramatically different error rates
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Figure 3.1.2: There are striking differences in error rate by subject, but be-
cause Social Sciences are disproportionately represented on Dataverse, this
may not be a generalizable effect
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alarming, especially coupled their 0% standard errors and lack of error bars.
However, we do not think the results for these two subjects are significant
enough to interpret because both also had a relatively low number of associated R
programs (22 and 14, respectively), and their 0% standard error values and lack of
error bars were simply a property of the formula for calculating the standard error
of binomial proportions.5 We thought the most interesting trends were the
significantly lower error rates of scripts labeled with Mathematical Sciences;
Medicine, Health and Life Sciences; and Earth and Environmental Sciences, with
respective error rates of 42.6%, 54.7%, and 54.6% and relatively narrow error bars.
We cannot be certain whether different coding and data integrity practices exist
within these subjects or whether these findings were purely incidental, however,
we think this effect is significant enough to motivate further investigation.

3.1.6 Robustness of ProvR

We found that executing the file with ProvR succeeded in 92.6% of the cases
where the file successfully executed with just the source call (375 of 405 files).
Because ProvR had never been tested with such a large volume of code before, its
performance can be considered decent. However, a tool designed to facilitate
reproducibility should never introduce errors, suggesting that more work is still
needed to make ProvR more robust.

3.2 Pre-processing toCorrect Common Errors

3.2.1 Library Errors

To automatically correct library errors, we used string processing in Python to
replace all calls to package-loading the package loading functions, library and

5a proportion calculated from a collection of independent random binary outcomes
(Bernoulli-distributed), where each member of the collection has the same assumed probability
of either outcome; the standard error of the estimated proportion will be 0 if one of the two two
possible binary values (in our case, these values were script execution success/failure) was never
observed
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Figure 3.2.1: A more robust function for loading packages.

require (which yields a warning instead of an error like library if package
loading fails), and the package installing function, install.packages with a
function we wrote, install_and_load, loosely based on a series of Stack
Overflow answers (see Figure 3.2.1).6

In order to improve the likelihood that their code will run on other computers,
some researchers call install.packages on every package they use in their R
scripts. This method is effective but inefficient, as R will re-install already-present
packages. In contrast, install_and_load only installs packages if they are not
already installed. To avoid introducing new errors with pre-processing (which
would be definitionally counter-productive towards our goal of improving
reproducibility) Python script inserts the function definition for
install_and_load at the beginning of the R file and anytime the script calls
the rm function, which clears the user’s functions and variables from memory.
While not the most elegant solution, this approach ensured that
install_and_load would always defined when called.

6https://stackoverflow.com/questions/ /
check-for-installed-packages-before-running-install-packages
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3.2.2 Working Directory Errors

We attempted to correct incorrect paths passed to the setwd command using
Python string processing combined with the os module. Our pre-processing
function first searches the researchers’ datasets for any directories resembling the
path they specified, correcting the path if one is found. For example, for the
command setwd("path/specific/to/own/computer"), our function
first searches for the inner-most, ”computer”, directory, and if that directory does
exist, searches for ”own/computer”, then ”to/own/computer” and so on until the
search path matches the entire original path. If none of these searches succeed,
the function performs a search of the entire dataset’s directory structure
(including any nested directories) for the most specific path (”computer” in our
example), before omitting the command entirely from the source code file — a
solution which often works if the dataset contains no nested directories and the
data and source code therefore live in the same directory.

3.2.3 File Errors

File errors were the most difficult to correct because anyR function for importing
data could potentially cause a file error. Over-generalizing and attempting to
correct all strings in the R file would be inefficient because of the many uses of
strings in R, and prone to false positives, for example, a string passed to a
function as a parameter could be interpreted as a potential file name, and
attempting to fix it could introduce new errors.

Our approach, therefore, was to build a list of the most common sub-strings
that appear in the names of R data importing functions based on a
comprehensive web-based guide to importing data in R. 7 These sub-strings
include: read, load, fromJSON, import, and scan. We used Python string
processing to search each line of code for these sub-strings and the re regular
expression module to capture the first string parameter or the file argument of

7https://www.datacamp.com/community/tutorials/
r-data-import-tutorial
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any subsequent function calls if the regular expression returned a match. We then
used the search method described in above §3.2.2 with the minor change that the
target of the search was a file instead of a directory. In keeping with our
conservative philosophy that we should avoid introducing new errors at all costs,
the Python function makes no modifications to a line of code if no file matching
the original file name was found.

We did not attempt to correct improper output file paths. Even though the
output file itself need not be present for an output path to be correct (since the
output function would just create the file), incorrect intermediate directories in
the output file would certainly cause an error. For example, ”output.csv” would
always be a valid output path, while
”unreproducible/code/directory/output.csv” would only be valid if all the
intermediate directories were present. A method similar to the one we used to
detect importing functions could be used to detect output functions and amend
(or delete) any intermediate directories, but we considered the risk of
introducing new errors too high to implement a more proactive path replacement
policy, and changing the output directory may break the script in other,
harder-to-detect ways (for example, if the code later attempts to import data from
a file outputted earlier in the same script).
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4
containR

4.1 Original Implementation Plan

Packages like encapsulator [4] which collect and use provenance data have
not seen widespread adoption despite their indisputable usefulness, likely
because of the non-trivial effort required to install them and learn their associated
sytaxes. To ameliorate both of these inconveniences, we sought to produce a
web-based application with a user friendly graphical interface with
encapsulator-like functionality that includes the error pre-processing
methods we developed for assessing reproducibility.

We originally thought the most straightforward way to achieve
encapsulator-like functionality was to use encapsulator itself — why
reinvent the wheel? encapsulator offers powerful functionality, including
built-in provenance collection, code-cleaning options, the automatic
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downloading and installation of code dependencies based on captured
provenance, and automatic generation of a Linux virtual machine with the code
inside, runnable on nearly all personal computers with the addition of popular
hyper-visor software. However, upon installing encapsulator using the
instructions provided in the paper [4], this software designed to improve code
reproducibility became unresponsive while running its own example code.1

Additionally, after getting encapsulator running, the process of assembling a
virtual machine with the necessary dependencies using Vagrant 2 took several
minutes and required the virtual machine itself to be opened in the process.
While virtual machines offer both power and security, allowing a web server to
open at least one for each concurrent user seemed a recipe for latency.
Additionally, encapsulator was built using Ruby, a language with which the
author has no experience and which would have caused awkward interfacing with
Python web framework.

With these concerns in mind, we implemented a web application which
provides similar functionality to encapsulator natively in Python, save for the
provenance collection component, for which we used ProvR [5]. We also
replaced automatic virtual machine generation with the automatic generation of a
Docker image. Docker ”containers” offer virtual-machine-like functionality for
most applications at a fraction of the resource cost. The Docker website explains :

A container runs natively on Linux and shares the kernel of the host
machine with other containers. It runs a discrete process, taking no
more memory than any other executable, making it lightweight.

By contrast, a virtual machine (VM) runs a full-blown “guest”
operating system with virtual access to host resources through a
hypervisor. In general, VMs provide an environment with more
resources than most applications need.3

1https://github.com/ProvTools/encapsulator/issues/
2https://www.vagrantup.com/intro/index.html
3https://docs.docker.com/get-started/#images-and-containers
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Docker images are immutable files containing the file dependencies needed for
producing a container, the actual executable that runs the contents of an image.
Our web application’s core functionality is the automatic generation of Docker
images that bundle researchers’ code and data, RStudio server, 4 all package
dependencies, and provenance data. These images are generated based on
Dockerfiles, text files specifying how the Docker image should be built which we
modify to include instructions to download and install the required pacakges.
Docker images take seconds, as opposed to several minutes (as was the case with
virtual machines) to generate, and are easily uploadable to the Docker Hub, a
platform for storing and sharing Docker images analogous to Github for code
repositories, 5 for easy sharing (see Figure 4.2.6).

Switching to Docker provided some additional benefits as well, including the
existence of open-source, curated Docker images specifically built to run RStudio
Server with the core R packages pre-installed, 6 and the Docker Native Python
client 7 which interfaced elegantly with the Python back-end of the website. With
the prominent role played by Docker containers in our application’s workflow, it
was only fitting to name the application containR.

4.2 FunctionalityOverview

4.2.1 Registration and Login

Example

After registering and logging in (see Figures 4.2.1, 4.2.2), users are taken to their
home page, which lists all the Docker images they have created in chronological
order. The ”Docker Images” section of the home page is empty when our
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Figure 4.1.1: containR’s process for generating a Docker image based on a
user-provided dataset
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Figure 4.2.1: containR Registration
Page Figure 4.2.2: containR Login Page

Figure 4.2.3: containR Home Page

example user signs in for the first time (see Figure 4.2.3).

Implementation Details

The boilerplate code, including the user database, user registration and login
management, and basic front-end were implemented using code from Miguel
Grinberg’s Flask tutorial. 8 To manage each user’s personal data and created

4https://www.rstudio.com/products/rstudio/
5https://hub.docker.com/
6https://github.com/rocker-org/rocker
7https://docker-py.readthedocs.io/en/stable/
8https://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-i-hello-world
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Docker images, containR interfaces with a sqlite9 database using
Flask-SQLAlchemy, 10 which allowed us to create and manage database
relationships using Python objects instead of raw SQL, thereby significantly
increasing the interpretability and cohesiveness of the back-end code base.

4.2.2 Loading Data and Selecting Pre-Processing Options

Example

To interact with containR’s core functionality, logged-in users select the ”Build
Image” option on the website’s navigation bar, which takes them to a form for
loading a dataset into containR (see Figure 4.2.4). The form provides users
with two options for loading in the dataset: (1) providing the Harvard Dataverse
DOI, or (2) providing a .zip file containing the data and code. Here, we
demonstrate the ”DOI” option by entering in ”doi:10.7910/DVN/U1GGGQ”,
the unique identifier of a dataset hosted on Harvard’s Dataverse from Banda et al.
which explores how negative advertising affects citizens’ perceptions of political
candidates [12].11 We also select the options for automatically cleaning the code
and fixing code errors (see §3.2). After we click the ”Build Docker Image” button,
containR will download the dataset based on the DOI we entered, perform the
pre-processing we requested, and update our home page with a link to our
newly-created data archive (Docker Image).

Implementation Details

The dataset upload form was built using the Python Flask extension,
Flask-WTF,12 which provides streamlined tools both for generating form fields
and verifying form responses. We used Flask-WTF to create all of the fields in

9https://www.sqlite.org/index.html
10http://flask-sqlalchemy.pocoo.org/ . /
11https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
. /DVN/U GGGQ
12https://flask-wtf.readthedocs.io/en/stable/
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Figure 4.2.4: Build containR form, with options for correcting and cleaning
the code

our form, including the file-upload field. After receiving the form data from the
user and performing form validation using Flask-WTF, containR undergoes a
five-step process:

1. Obtain the dataset either from the user-uploaded .zip file or by
downloading it from Dataverse through the Data Access API

2. Perform user-requested pre-processing, including error correction and
cleaning 13

3. Collect provenance data on the code using ProvR

4. Parse the provenance to create a Dockerfile specifying the R package
dependencies to install and the location of the user’s dataset

5. Create a Docker image and upload the image to Docker Hub using the
Python Docker Client

13At the time of writing, the code correction functionality had been incorporated into the web-
site, butRcleanwas still being actively developed, so the code cleaning fieldwas just a placeholder
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This process may take several minutes to complete because ProvR collects
provenance on R programs while they are executing. Thus, if the R programs
have long execution times, collecting provenance will take just as long. To avoid
freezing the front-end of the website during this potentially-lengthy process, all of
the code analysis and Docker-image building are performed in a new thread
created using Python’s threading module. We intend to migrate this
functionality to use the celery 14 task queue system instead, which provides a
lightweight and efficient way to run tasks in the background while
communicating status updates to the front-end, which would allow us to provide
containR users with intermediate status updates during the Docker-image build
process.

4.2.3 Docker Hub and Running the Docker Image

Example

After containR finishes generating and uploading the Docker image containing
our dataset, our home page will be updated with a link to the dataset on Docker
Hub (see Figure 4.2.5).

The URL for the newly-created entry on the home page takes us to the Docker
image’s page on Docker Hub. Our image’s Docker Hub page (see Figure 4.2.6)
shows basic information about our image as well as the command to pull the
image onto a personal computer.

The images containR creates on Docker Hub are completely public, allowing
total transparency and accessibility for our example analysis of negative political
advertising. The name for our example image is ”containr/containr-test-uptxs”,
and was randomly generated during the image building process. Our political
advertising dataset, including all the code, code dependencies, and data, are now
available for download by anyone with Docker installed.

14http://flask.pocoo.org/docs/ . /patterns/celery/
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Figure 4.2.5: After containR finishes building a Docker image, the user’s
homepage is updated with a link to the image on Docker Hub

Figure 4.2.6: The user’s image on Docker Hub can be shared with anyone
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Figure 4.2.7: Users log in to their local RStudio Server with username and
password ”rstudio”

If we wanted to retrieve the data at a later time or if we were playing the role of
a researcher trying to verify the results, we can download the Docker image by
running the following command in our terminal:

docker pull containr/containr-test-uptxs

After the image download has completed, we directly launch a container from the
image we just downloaded with the following command:

docker run -p 8787:8787 containr/containr-test-uptxs

Within seconds of executing docker run, we can visit localhost:8787 in
our preferred web-browser, which brings us to the RStudio Server login page.
After we log in with the username and password ”rstudio” (see Figure 4.2.7), we
are immediately greeted with the familiar RStudio user interface. The dataset
from our political advertising data appearing in the files pane in the bottom-right
of the screen (see Figure 4.2.8).
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Figure 4.2.8: The RStudio Server instance comes pre-loaded in the image
with the researcher’s code, data, and package dependencies

If we look closely at the code in Figure 4.2.8, we observe that the code calls the
library function to load the R package dependency gplots. If we had just
downloaded the code and data for Banda et al.’s experiment from Dataverse, we
would likely have to install this library ourselves (assuming we had never used it
before) in order for the code to execute correctly. However, since containR
pre-loaded all the package dependencies while generating the Docker image, we
can immediately run all the code contained in Banda et al.’s dataset (after
ensuring that we are in the correct working directory), and regenerate the results
the dataset was designed to reproduce (see Figure 4.2.9).

By taking about a minute to fill out the ”Build Image” form for containR and
turning our dataset into a Docker image, we have guaranteed the future
reproducibility of Banda et al.’s work and made their work far more accessible for
researchers to reproduce in the future; a researcher interested in Banda et al.’s
analysis can re-run and extend the analysis within minutes with only Docker and
their favorite web-browser.
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Figure 4.2.9: Once the Docker image is successfully built, the research code
inside can be run on any computer with Docker and a web browser installed

Implementation

Most of the functionality described in the example above are attributable either
to Docker (image creation, publishing to Docker Hub, and running an image as a
container) or Rocker15 (pre-installing RStudio Server inside Docker images).
However, we would like to note that multiple Docker containers can be run
simultaneously on a user’s computer with different port numbers.16 Thus,
researchers can simultaneously interact with multiple datasets from different
sources and with completely different code and data dependencies using different
images pulled from Docker Hub. We believe this ability to execute multiple
researchers’ R programs at once will also facilitate the process of reproducibility.

15https://github.com/rocker-org/rocker
16https://github.com/rocker-org/rocker/issues/
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5
Conclusion

With our analysis of nearly 3,000 R scripts from published datasets in Harvard
University’s Dataverse, we found that between 85% and 90% of the R code
published each year does not execute on the first attempt. While researchers
attempting to reproduce results may be willing to correct these errors themselves,
the time it costs them to do so would certainly be more-productively spent
advancing their respective fields. Our finding that the rapid increase in R code
published to Harvard’s Dataverse each year since 2015 has left the yearly error
rates unaffected suggests that the problem is with the R programs themselves and
not the age-influenced breakage of code dependencies. The overwhelming
prevalence of errors caused by missing data files in the datasets we analyzed
suggests that better care must also be taken on the producing researcher’s side to
be rigorous and diligent when publishing their datasets.

The additional effort required for researchers to improve their research’s
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reproducibility can be reduced with tools like containR, a web application
which checks their code for executability and guarantees future executability
with the use of Docker images. With its web-based user interface, minimal
dependency requirements (only Docker and a web browser), and automatic code
correction and cleaning, containR is likely the most straightforward
data-provenance-leveraging tool yet built, but convincing people to change their
workflow always requires incentives. To provide these incentives, journals and
online data repositories like Dataverse could require, for example, that a link to an
image on Docker Hub be included with article submissions. Our finding that R
code from datasets in certain subjects (like Earth and Environmental Sciences
and Mathematical Sciences) were more likely to execute completely than code
taken from others, suggesting that it may be beneficial for researchers in different
disciplines to educate each other on a set of best coding practices in R and hold
each other accountable for following it.

By expounding on the poor reproducibility of the large growing volume of R
code in the Harvard Dataverse, we do not mean to imply ill will towards the
dataset-producing researchers or comment on the quality of the undoubtedly
innovative research they conduct. Rather, our finding that over 70% of errors in
the R code we examined can be attributed to just 3 common coding errors shows
that with slightly more mindfulness, researchers can dramatically improve the
accessibility of their code and accelerate scientific progress for all. The code we
used for our reproducibility analysis1 is publicly available on Github, and the
code for containR will soon follow.

5.1 FutureWork

While our analysis of reproducibility was limited to the R code in the Harvard
installation of Dataverse, our pipeline for obtaining data using the Dataverse API
could be leveraged for performing similar reproducibility analyses for other
coding languages and Dataverse installations.

1https://github.com/cscn/thesis
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Another extension on our research could involve finding more applications for
provenance data. As a consequence of running ProvR on many of the datasets
we downloaded, we now have a large collection of provenance JSON files, labeled
by DOI, along with metadata for the code that generated the data and a pipeline
for accessing more metadata by querying the Dataverse Native API. We are
excited to see if and how this data provenance dataset can be used to advance
provenance-aware research.

As part of the error analysis and build process for containR, we produced a
small library of helper functions for pre-processing R files for common errors.
With a little bit of work, these functions could be implemented natively in R for
real-time code correction. Alternatively, the R package reticulate2 may be
promising for this purpose because it allows users to interact with Python objects
from within a running R session.

At the time of writing, containR was not yet ready for production
deployment. Our goal is to have containR hosted on Amazon Web Services so
researchers can begin experimenting with it within the next few months. Some
additional functionality which needs to be implemented is securing the
execution of user-provided code to prevent malicious or badly written code from
damaging the web server, reporting code execution errors back to users, and
support for code cleaning using Rclean.

2https://cran.r-project.org/web/packages/reticulate/index.html
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