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Abstract

The expression of genes is the product of a complex regulatory process, whose

complete nature remains elusive. In order to better understand gene regulation,

this work seeks to improve on efforts to model the locations of regulatory

elements of the human genome directly from raw sequences of nucleotides. Past

work on building this model has focused on incorporating only small amounts of

DNA for this prediction task, making it difficult to model the complex long-term

dependencies that arise from DNA’s 3-dimensional conformation.

In this work, we model these long-term dependencies using dilated

convolutional neural networks, which offer the scaling properties of convolutions

while modeling long-term dependencies with the performance of recurrent

neural networks (RNNs). We show that this architecture is effective at modeling

the locations of transcription factor binding sites, histone modifications, and

DNAse hypersensitivity sites. We develop and release a novel dataset for this

larger-context modeling task, and show that dilated convolutions perform better

than standard deep convolutional neural networks and RNN-based architectures

at modeling the locations of regulatory markers in the human genome.
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1
Introduction

The past decade has seen an explosion of structured genomic data through the
advent of massively parallel genome sequencing techniques. These tools have
allowed researchers to construct nearly complete genomes of several species,
ranging from yeast to human. These serve as the basis of experiments to better
understand how DNA encodes information in genes that is necessary to power
the incredible diversity of life. Inherent in the process of gene expression is an
elusive regulatory machine that determines how and when certain genes are
expressed in cells. This work seeks to extend the understanding of these
regulatory mechanisms by using state of the art techniques from machine
learning.

Before we can discuss regulation, we first consider the basic flow of
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Figure 1.0.1: A visualization of the central dogma of molecular biology. The
DNA sequence consists of two strands of nucleotides, where a gene is labeled
in red. During the translation phase, RNA polymerase encodes the top strand
as a single strand of RNA. Note that in RNA, Uracil (U) is used in place of
Thymine (T), though we use T in the above diagram for consistency between
the strands. Then, in RNA processing, the non-exon regions of the RNA are
removed, and the processing RNA sequence is sent to a ribosome for transla-
tion. At the ribosome, every tuple of three RNA nucleotides codes for a par-
ticular amino acid, forming an amino acid polypeptide, in this case of length
3. This is also called a protein.

information from DNA in a cell, known as the central dogma of molecular
biology (Crick et al., 1970) and visualized in Figure 1.0.1. DNA is a nucleic acid
that consists of pairs of nucleotide bases attached in a sequence. This DNA is
used to create RNA, a single-stranded nucleic acid, which is in turn used to create
proteins, the workhorses of cells. However, this view of the relationship between
DNA, RNA, and proteins is simplistic, and decades of genetics research have
uncovered a complex array of interactions between these molecules. In particular,
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many proteins and even several types of RNA interact with DNA to regulate
transcription and RNA processing (Perkins et al., 2005).

These factors are elements of a vast regulatory regime that determines gene
expression. Understanding regulation is thus critical to elucidating the wide
range of complex interactions that determines the transcription of genes, a
process central to cellular function and disfunction. One way to study regulation
is to determine the locations of regulatory markers, such as binding sites for
proteins, and thus learn how a change to the DNA can change regulatory
behavior. In particular, this is done by modeling the mapping from a sequence of
DNA to the locations of regulatory markers in that sequence.

However, the structure of DNA makes this task complicated. Because of
DNA’s three-dimensional conformation, nucleotides that are far apart in the
1-dimensional DNA sequence may actually be close in its 3- dimensional
conformation, and thus able to interact. This makes it important to incorporate
information about DNA regions that are far away in 1-D space when modeling
regulatory markers. However, past models have used relatively small amounts of
DNA context, and naively scaling up those techniques to incorporate more
context would introduce substantial modeling complexity.

This gives rise to two fundamental questions that we answer through this work:

1. To what extent can we model the locations of regulatory markers from raw
DNA sequences directly?

2. How much does increased context size improve the predictive accuracy of
these models?

This work addresses the need to model large contexts by using dilated
convolutional neural networks to predict the locations of regulatory markers.
Dilated convolutions capture both local and distal context without needing
additional parameters, allowing them to scale to large context sizes. We compare
dilated convolutions to other modeling methods from deep learning, and show
that they present advancements over existing models. We show that this enables
them to be effective for predicting the locations of regulatory markers.
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2
Biological Background

Before precisely describing the modeling task we tackle in this work, we begin by
describing the relevant background material from biology that is needed to
understand the task, datasets, and modeling constraints. While this is by no
means an exhaustive summary of modern molecular biology research, it offers
sufficient background to gain the intuitions needed for this task.

It is first prudent to understand the process by which DNA encodes
information for gene regulation. Genes are the fundamental unit of function in
DNA, as they are discrete regions that encode for functional protein molecules.
Gene expression involves two high-level stages, known as transcription and
translation, and is visualized in Figure 1.0.1. First, a protein such as RNA
polymerase binds to DNA, and transcribes a substring of the DNA into a related
molecule called RNA. Then, a number of post-transcriptional modifications
occur to the RNA, wherein the string of RNA is potentially spliced to form a
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Figure 2.0.1: A visualization of gene regulation, from Wang et al. (2012).
The DNA sequence is the yellow strand. Here, we see several aspects of the
regulatory code. Transcription begins at the labeled region at bottom-right of
the figure. On the left side, DNA is tightly coiled around nucleosomes, which
are clusters of histones. Chemical modifications to these, known as histone
modifications, can reduce how tightly coiled the DNA is around them. Ad-
ditionally, on the top and bottom of the figure, there are enhancer and pro-
moter regions respectively. At these areas, DNA is less tightly coiled around
histones, and thus these sites are known as DNAse hypersensitivity sites. Ad-
ditionally, transcription factors can bind on the enhancer or promoter region.
A transcription factor that binds at the enhancer is spatially close to the tran-
scriptionally start site, even though is the far in terms of the DNA sequence.

shorter sequence. This modified RNA strand then travels to a ribosome, where
other molecules translate it to form amino acid chains, also known as proteins.
These proteins are the workhorses of the cell, and so understanding how changes
to DNA (or to any post-transcriptional modifications) can change how proteins
are formed is critical for a variety of scientific and medical challenges.

However, this is not a complete picture. There is an enormous multitude of
other factors, known as regulatory factors, that contribute to this translational
process, as visualized in Figure 2.0.1. For example, DNA has a complex
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three-dimensional structure which is regulated by a variety of molecules, such as
histones, that DNA coils around. As a result, parts of DNA are more accessible to
binding proteins than others, and so DNA accessibility is considered to be a
regulatory factor. Also, modifications to the histones can affect the conformation
of DNA, so histone modifications are also regulatory factors. Furthermore,
proteins that bind to DNA and promote or repress transcriptional activity in a
nearby region are called transcription factors, which are also regulatory factors.
Sometimes, the activity that they affect can be thousands (or millions) or base
pairs away, in part because distal elements of the DNA can appear adjacent in the
3-D conformation. We can see this in Figure 2.0.1, because a transcription factor
that binds to the site labeled “Nucleosome-free enhancer region” is physically
close to the site labeled “Transcription” even though these sites may be
thousands of base pairs apart.

As such, understanding the nature of this regulatory machine is critical to
uncovering the complex interplay of factors that determines gene expression, and
ultimately cellular function. To do this, researchers use high-throughput
sequencing technologies called Chip-Seq and DNAse-seq. We discuss these
technologies in detail in Appendix A. At a high-level, Chip-Seq combines
chromatin immunoprecipitation (ChiP) and massively-parallel sequencing (seq)
to find where targeted proteins bind to DNA (Johnson et al., 2007). DNAse-seq
is very similar, but it instead finds regions of DNA that can be cleaved by DNAse,
which correspond to regions that are highly accessible to binding proteins, where
we expect regulatory behavior to occur. The regions of DNA these techniques
find, called “reads”, are then aligned to a reference genome, giving the locations of
the regulatory marker across the entire genome.

Armed with these technologies, we can formulate questions that we can study
using machine learning. We can use the sequencing technologies to determine
the locations of markers in the genome, particularly transcription factors,
accessible regions, and histone modifications. Then, we can use machine learning
to train models that can learn the locations of these sites given DNA sequences,
and a trained model can be used to predict how the locations of these sites may
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change if the DNA changes. In this work, we build a model from a DNA
sequence to the locations of all of the markers in that sequence, and in Chapters 3
and 4, we describe machine learning methods to do so.
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3
Machine Learning Background

In this chapter, we give a background of classic machine learning models for
discriminative classification. This chapter will offer the tools to understand the
key deep learning architectures that we discuss in Chapter 4, which will be central
to our models for regulatory marker prediction.

3.1 Logistic Regression

We are working on one of a broad class of machine learning problems known as
binary classification, in which we are trying to predict whether or not an input is
part of a class. We first describe binary logistic regression, a widely used and
effective model for discriminative probabilistic classification.

Let the output y be a binary label, meaning y ∈ {0, 1}, and the input x ∈ RD.
Logistic regression is a discriminative classifier, meaning that we seek to directly
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model p(y|x), rather than build a generative model of the data. In particular,
Logistic Regression uses a linear model and sigmoid activation to represent the
probabilities of the outputs. So, we let

p(y = 1|x;w) = σ(wTx+ w0) (3.1)

p(y = 0|x;w) = 1 − σ(wTx+ w0) (3.2)

where σ(x) is the sigmoid activation function:

σ(x) =
1

1 + e−x (3.3)

which ensures that the output is a valid probability. As we mentioned earlier, this
is a probabilistic classification model, and thus we can fit this via maximum
likelihood estimation (MLE). In other words, we want to find the parameters
w,w0 that maximize the probability of the outputs. To do this optimization, we
define the loss function L(w, {xi}, {yi}) to be the negative log-likelihood of the
data, and then find the parameters that minimize that loss. For notational
simplicity, let h = wTx+ w0.

L(w, {xi}, {yi}) = −
N∑

n=1

ln p(yi|xi,w) (3.4)

= −
N∑

n=1

ln
(
σ(h)yi(1 − σ(h))1−yi

)
(3.5)

In order to find the optimal parameters, we calculate the gradient of the loss
with respect to the parameters. Then, we use gradient descent (see Chapter 3.2)
to update the parameters until convergence. Thus, we get that the gradient of the
loss with respect to w is

9



∂

∂w
L(w, {xi}, {yi}) =

N∑
i=1

yi

(
−xi

exp−h
1 + exp(−h)

)
+ (1 − yi)

(
xi

exp h
1 + exp(h)

)
(3.6)

=
N∑
i=1

−yixip(yi = 0|xi) + (1 − yi)xip(yi = 1|xi) (3.7)

Similarly, we get

∂

∂w0
L(w, {xi}, {yi}) =

N∑
i=1

−yip(yi = 0|xi) + (1 − yi)p(yi = 1|xi) (3.8)

With these gradients, we can use gradient descent, as explained in Chapter 3.2, to
optimize the parameters for the model.

3.2 GradientDescent

Usually, the loss functions we seek to optimize will not have gradients that have
closed-form solutions. As a result, we will need to use an iterative optimization
algorithm to find a local minimum of our loss function. In particular, we use the
fact that if a function F(x) is differentiable in a neighborhood of point a, then F
decreases fastest in the direction of

−∂F(x)
∂x

∣∣∣
x=a

= −F′(a) (3.9)

In other words, in the opposite direction of the gradient. Thus, to update a set
of weights w of a loss function L(w)with gradient dL

dw , we generally write the
update operation on the ith iteration as

w(i) = w(i−1) − η
dL
dw

(3.10)
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where η is the learning rate hyperparameter. We then repeat this iterative process
until convergence.

In Equation 3.7, we see that the gradient of the loss can be calculated by
summing the contribution to the gradient with respect to each of the N points in
the training data. However, doing a single pass over the entire dataset can be slow.
To ameliorate this, we can use minibatch stochastic gradient descent, in which
rather than summing over the dataset, we look at a minibatch of inputs, in our
case ranging up to 256 inputs at a time, and calculate the gradient with respect to
just that minibatch. In other words, to calculate the gradient, we sum up the
contributions to the true gradient of just that minibatch of inputs.

These stochastic gradients form a estimate of the true gradient, in which we
tradeoff some precision for being able to make more updates to our inputs. In
practice, this is how discriminative classifiers like logistic regression and neural
networks are trained efficiently (Bottou and Bousquet, 2008).

3.3 Multilabel Logistic Regression

There is one small adaptation of the binary logistic regression model that we use
in our work. Binary logistic regression, as posed so far, is meant to predict a single
binary label. In this work, we are generally more interested in predicting multiple
binary labels, as we aim to predict whether every possible regulatory marker
occurs at a particular location, rather than just one marker. Let there be M binary
labels to predict. Thus, we make a small adaptation to the above model by
replacing the vector w ∈ RD with a matrixW ∈ RD×M. The rest of the model
works the same way, with the sigmoids applied element-wise, and the gradients
being analogous to the single-label version. Note that this is different from
multiclass logistic regression, because more than one of these binary labels can be
1 for any input. Essentially, each column inW represents an independent binary
logistic regression problem, and combined it is considered to be multilabel
binary logistic regression.

The loss function for multi-label logistic regression is the natural extension of
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the standard logistic regression loss. In particular, for each of the M output labels,
we calculate the loss we derived from maximum likelihood estimation in
Equation 3.5, also known as the binary cross entropy loss, where if xm ∈ [0, 1] is
the prediction value and zm ∈ {0, 1} is the true label

L(xm, zm) = −zm log(xm)− (1 − zm) log(1 − xm) (3.11)

This is equivalent to Equation 3.5 and is minimized when xm = zm. This gives us
a non-negative loss associated with each of the M predictions. To minimize the
total loss over all M predictions, we define our loss to be the mean of the
pointwise cross-entropy losses. Thus, we get that the overall loss is

L({xm}M, {zm}M) =
1
M

M∑
i=1

L(xi, zi) (3.12)

This is the loss we will use in our modeling task.

3.4 Multilayer Perceptron

A multilayer perceptron is an extension of logistic regression that is intended for
developing adaptive features by repeatedly passing inputs through linear
transformations and nonlinearities. In particular, a multilayer perceptron with k
hidden layers is the function

p(y|x;w, {W (i)}k
i=1) = σ(fk(fk−1(....(f1(x))))w+ w0) (3.13)

where

fi(x) = h(xW (i)) (3.14)

12



and h is a non-linear activation function. We commonly use the ReLU activation,
which is defined as

ReLU(x) = max{0, x} (3.15)

The final layer of a multilayer perceptron should be thought of as simply
logistic regression. The k hidden layers learn features that produce linearly
separable inputs in the space of the final logistic regression layer. The
nonlinearities between each linear transformation allow the model to learn
nonlinear decisions boundaries in the original input space. To train a multilayer
perceptron, we jointly learn both the parameters to the hidden layers and to the
logistic regression layer. We calculate the gradient with respect to each of the
parametersW (i), along with w and w0, using the chain rule of calculus and update
the parameters using gradient descent. In practice, these gradients can be
efficiently calculated using backpropagation.

3.5 Backpropagation

Backpropagation is the central algorithm used to calculate the gradient with
respect to each of the parameters in a neural network. In order to implement
backpropagation, it is assumed that each neural network layer (fi) is able to
calculate fi(x) and the gradients ∂

∂W(i) fi(x) and ∂
∂x fi(x), with the latter gradient

often shortened as fi ′(x).
Say there are two hidden layers, and we want to calculate the gradients with

respect to the parameters in each of those. Then, by the chain rule, the gradients
are

∂

∂W (1)L(w, {xi}, {yi}) = σ ′(f2(f1(x))w+ w0) · w · f2 ′(f1(x))
∂f1(x)
∂W (1) (3.16)

∂

∂W (2)L(w, {xi}, {yi}) = σ ′(f2(f1(x))w+ w0) · w · ∂f2(f1(x))
∂W (2) (3.17)

This same process extends for any number of layers and parameters using the
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chain rule of calculus. However, the first two multiplications in each of these
parameter calculations are shared. The backpropagation algorithm accounts for
this by sequentially calculating gradients from the output nodes of the network to
the input nodes. Thus, the gradients for all of the parameters can be calculated
sequentially without any repeated calculations. Thus, backpropagation can be
thought of as an example of dynamic programming, where calculating gradients
in a particular order prevents repeated calculation. This allows for the efficient
calculation of the gradients with respect to the parameters of very large models.

3.6 Dropout

Dropout (Srivastava et al., 2014) is a form of regularization that prevents
overfitting by randomly zeroing a subset of units during each forward
propagation of training and zeroing gradients to them during backpropagation.
This is analogous to learning an exponential number of sparser networks. At test
time, the dropout is set to zero and inputs are scaled, and thus each test-time
forward propagation forms an approximate average over the sparse networks. We
use this technique to prevent overfitting to the training data.

3.7 BatchNormalization

Addtionally, we use batch normalization (Ioffe and Szegedy, 2015) to accelerate
training and add additional regularization. In deep neural networks, the
distribution of the inputs of each layer changes during training, and is not
consistent across layers. As of result of this, lower learning rates are required and
parameter initialization can significantly affect the result. Batch normalization
normalizes the input to each layer for each minibatch, allowing for the use of
higher learning rates. Additionally, as described in Ioffe and Szegedy (2015), this
technique serves as a regularizer, which reduces overfitting by the model. As a
result, we can use higher learning rates while reducing generalization error.
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4
Neural Architectures

4.1 Convolutions

In the multilayer perceptron, we generally applied a linear transformation to an
entire input. This is known as a linear layer or a fully-connected layer. One
drawback of this approach is it introduces a large number of parameters that need
to be fitted. For example, given an input of size 25000, as is the case in Task 2 of
this work, the first dimension ofW (1) would be 25000, and the second dimension
would be the size of the hidden layer. This alone could introduce a million
parameters into our model with a hidden layer of as small as 40. In practice, such
a model could easily have tens of millions of parameters, making it prone to
overfitting.

Furthermore, the fully-connected hidden layers learn a feature representation
over the entire set of inputs. However, in a variety of tasks, including image
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recognition, natural language processing, and genetic modeling, we may be first
interested in uncovering some local structure in the inputs. For example, in
images, we may be interested in capturing clusters of pixels that have similar
patterns in different places of the image, or in genetic modeling, learning genetic
motifs that may repeat themselves across the genome.

To learn these features with many fewer parameters, we use a convolution
(LeCun et al., 1995). Convolutional neural networks (CNNs) apply an affine
transformationW to a window of inputs. These are a shared set of weights for the
layer. In this work, we are focused on sequential data which require
1-dimensional convolutions, as opposed to images which require 2-dimensional
convolutions.

In a 1-dimensional convolution, the input X ∈ RN×D haswidthN and depth
D. We can concretely define the 1-dimensional convolution layer with kernel
width k, f output filters, andW ∈ RkD×f as

Conv(X;W) =



x0:kW
x1:k+1W
x2:k+2W

...
xn−k:nW


(4.1)

where xi:j is the concatenation of vectors xi through xj in X:

xi:j =
[
xi xi+1 · · · xj

]
(4.2)

Note that to keep the first dimension of Conv(X) the same size as the first
dimension of X, we pad both sides of the input with zeros such that the
convolved data has the same length as the input. Several layers of convolutions
with nonlinearities in between form a deep convolutional neural network. This is
analogous to the formulation of a multilayer perceptron, except that the
connections between layers are local along the width, rather than being
fully-connected. Thus, analogous with the notation in Equations 3.13 and 3.14,
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we can express a convolutional neural network as

p(y|X;w, {W (i)}k
i=1) = σ(fk(fk−1(....(f1(X))))w+ w0) (4.3)

where

fi(X) = h(Conv(X,W (i))) (4.4)

and h is a non-linear activation function, such as a ReLU.
Because of the locally connectivity in the convolutional neural network, each

element of the kth convolutional layer is only influenced by a subset of the
elements in the input X. The receptive field of the pth output of fk is the subset
R of elements {xi} of the original input X that modify its value (Yu and Koltun,
2015). This is best understood visually: the receptive field for an output node in
an example three-layer CNN with kernel width 3 is visualized in Figure 4.1.1 as
the nodes in bold.

Figure 4.1.1: Here we see the receptive field of a three-layer convolutional
neural network with kernel width 3. The input nodes that comprise the recep-
tive field are the elements of the bottom layer in bold. Note that the size of
the receptive field is linear in the number of layers and the kernel width.

Furthermore, note that in Equation 4.1, each of the windows were 1 input
apart. This is denoted as a stride of 1, and can be tuned. In general, with a stride
of s, the above convolution becomes
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Conv(x;W) =



x0:kW
xs:k+sW
x2s:k+2sW

...
xn−k:nW


(4.5)

If k = s, and the input width w is divisible by s, then the output’s width will be w
s .

As such, strided convolutions can be used for downsampling, which makes a long
sequence become a shorter one for the next layer of the network. However, if the
final output needs to be the same length as the original input, then there needs to
also be an upsampling operation. To do this, we can use a deconvolution, or
transpose convolution. A deconvolution is defined as the gradient of a
convolution. For example, a deconvolution with a stride of 10 and kernel width of
10 would upsample the input by a factor of 10.

Lastly, along with convolutions, we can add max-pooling in between
convolutional layers of a neural network. A max-pool is conceptually similar to a
convolution, but rather than applying a linear transformation to a window of
inputs, it calculates the maximum value of each input in the window along the
width axis. This can be used to smooth the activations of a convolutional layer.

However, CNNs have a key problem: the size of the receptive field is linear in
the number of layers and the kernel width. This means that in order to have a
large receptive field for each output, there must be a proportionally large number
of layers or kernel width, and thus many more parameters, which can cause
overfitting. With genetic data, it may be useful to incorporate a large amount of
DNA for every regulatory marker prediction, so being able to scale the receptive
field is crucial. To ameliorate this issue, we discuss two alternative architectures
in the next two sections which address this issue in different ways.
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4.2 RecurrentNeuralNetworks

In order to get a larger receptive field, one way is to use a Recurrent Neural
Network (RNN), which is an architecture oriented for sequential data analysis.
These models have been successfully employed in a variety of sequential
modeling tasks, particularly in Natural Language Processing, which we discuss in
Chapter 5.

An RNN with a hidden state of size M processes a sequence of inputs {xi}N,
where xi ∈ RD, by updating an internal state vector ci ∈ RM such that

ci+1 = R(ci, xi), where R : RM+D → RM (4.6)

This sequence of outputs {ci}N can then be used analagously to the outputs of
a convolutional layer. However, we note that ci is conditioned on x1, x2, · · · , xi,
meaning all of the inputs to the left of a particular output are part of its receptive
field. This is known as a forward RNN. In a reverse RNN, we do the same
process, except we first reverse the order of the input sequence. This means that
in a reverse RNN, ci is conditioned on xi, xi+1, · · · , xN. When we concatenate
the results of a forward RNN and a reverse RNN, we get a Bidirectional RNN, in
which each output is conditioned on the entire input. This means that the
receptive field for each output node contains all of the inputs, as we can see in
Figure 4.2.1.

On first glance, this would seem to accomplish our goal. We are now able to
condition every output on the entirety of a long input sequence, and we can do
this with many fewer parameters than a fully-connected layer. However, a
drawback occurs during backpropagation. Since, in the forward propagation step,
we process the entire input sequentially (in each direction), during the
backpropagation step, gradients are propagated back through the entire set of
inputs. This is useful for learning long-term dependencies in sequential tasks.
However, when the input sequences are very long, as is the case in genetic data,
backpropagating through all of the inputs can lead to vanishing gradients, since
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Figure 4.2.1: A Bidirectional LSTM. The first layer is the forward RNN, and
the second is the reverse RNN. The outputs of these are concatenated. As
a result, the receptive field of each output node consists of the entire set of
inputs, which are labeled in bold. This is in contrast with the standard con-
volution in Figure 4.1.1, where only a small number of inputs affect each out-
put. However, as a result of this structure, errors need to be backpropagated
through O(N) nodes for some of the inputs. This can lead to vanishing gradi-
ents.

the gradients are being multiplied at each step via the chain rule. To partially deal
with this, we use a Long Short-Term Memory (LSTM) gate (Hochreiter and
Schmidhuber, 1997), which is a particular transformation function R with which
gradients can be propagated through longer sequences than other RNNs without
them quickly vanishing.

However, due to the significantly longer length of the input sequences in this
task compared to most NLP tasks, we may still suffer from the vanishing gradient
problem due to long backpropagations, and we face computational overhead
from these long sequences too.

4.3 Dilated Convolutions

So far, we see that standard convolutions offer beneficial short backpropagations
but small receptive fields, while RNNs offer large receptive fields but long
backpropagations that are susceptible to vanishing gradients. To address these
issues, we consider dilated convolutions, which offer wide receptive fields with
short backpropagations.
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In a standard convolution, each window of elements consists of adjacent
elements of the sequence. Dilation allows for control over this, by allowing for
the selection of windows of elements that are not necessarily adjacent. With
dilation factor d = 1, this is just a normal convolution as defined above. With
d > 1, the window starting at location i of size k is[

xi xi+d xi+2d · · · xi+(k−1)·d

]
(4.7)

Yu and Koltun (2015) show that by stacking these convolutions with increasingly
large d, one can expand the size of the receptive field of each output exponentially
with respect to the number of layers. In particular, by having stacked dilated
convolutions with dilation rate d doubling at each layer, the output layer has a
receptive field size proportional to 2l, where l is the number of layers. This allows
them to have large receptive fields, but still short backpropagations.

To see this, consider Figure 4.3.1, which shows the three models we have
discussed: convolution (4.3.1a), RNN (4.3.1b), and dilated convolution
(4.3.1c). In this diagram, we can visualize the length of the backpropagation in
each model by counting the number of bold lines or arrows along the path
between an output node and an input. Here we can see that the standard
convolution has short backpropagations to all of the inputs in the receptive field,
but has a small receptive field for each output. The RNN has a large receptive
field, but has long backpropagations to the inputs that are far from the output
along the width. The dilated convolution combines the best of both, with short
backpropagations to all of the inputs in a large receptive field.

While the more localized structure of a standard CNN may be effective for
tasks like image classification in which local information is most important, in
genetic data, there are important long-term dependencies across the genome,
some spanning several thousand or million base pairs. As a result, this dilated
structure allows the model to learn dependencies across an exponentially large
number of inputs for each output, while having the same number of parameters
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(a) Convolution

(b) Bidirectional RNN

(c) Dilated Convolution

Figure 4.3.1: A comparison of the three models. The inputs to all of these
models is a sequence of nucleotides. The standard convolution has short back-
propagations to all of the inputs in the receptive field, but has a small recep-
tive field. The RNN has a large receptive field, but has long backpropagations
to much of it. The dilated convolution has both needed properties, with short
backpropagations to all of the inputs in a large receptive field.

and short backpropagation as a similarly deep CNN. We take advantage of this
structure when modeling genetic regulation.
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5
RelatedWork

Convolutions have been successful in a variety of computer vision and natural
language tasks. In particular, multilayer convolutions have been used for image
classification, such as on the ImageNet task (Krizhevsky et al., 2012). Networks
of this form have been applied to a other tasks too, including video classification
(Karpathy et al., 2014) and object detection (Girshick et al., 2014). Furthermore,
Yu and Koltun (2015) show that using dilated convolutions, the network can
learn multi-scale context, allowing it make pixel-level predictions for image
segmentation with both local and global information.

In natural language, early work by Bengio et al. (2003) established the basis for
using neural networks for language prediction, and Collobert and Weston (2008)
showed how a unified convolutional neural network architecture could be used
for a variety of language tasks, including part of speech tagging (POS), semantic
role prediction, and named-entity recognition (NER). These techniques
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demonstrated that convolutions could work to jointly learn hierarchical features
and make predictions in sequential tasks. More recently, recurrent neural
network architectures have become popular for several sequential analysis tasks,
especially those based on the LSTM gate (Hochreiter, 1998). For example,
Huang et al. (2015) use a Bidirectional-LSTM model with a Conditional
Random Field (CRF) layer to achieve state of the art accuracy on the NER task,
and Klein et al. (2017) use LSTMs for machine translation.

We seek to apply the techniques that have been effective in the domains of
computer vision and natural language processing to a novel dense prediction task
in biology. To do this, we can treat genetic data in which we are making a
prediction at every nucleotide location as a subclass of any sequential tagging
problem from computer vision or natural language processing. This is analogous
to assigning a label at every pixel in an image or a class to every word or character
in a corpus. However, there are several reasons why the techniques from these
fields do not directly transfer. For one, biological sequences are often longer than
analogous images or sentences. This makes RNN architectures less effective or
slow to train. Moreover, there are are complex long-term dependencies, which
make traditional convolutional architectures less effective as well, which are
better-suited for capturing local structure. We build on work applying dilated
convolutions to images (Yu and Koltun, 2015) and natural language (Strubell
et al., 2017) by showing their efficacy in modeling regulatory markers.

There have been several approaches to modeling regulatory markers. While
deep learning allows researchers jointly learn both a feature representation from
the raw nucleotide inputs and a classifier on those features, early methods for
DNA regulation analysis separated these two approaches. In particular, a
common early approach was to use position-weight matrices (PWM) for the
feature representation (Stormo, 2000; Kel et al., 2003). These matrices reflected
the frequencies of nucleotides in a region of interest, such as binding sites, and
performing an element-wise multiplication of the PWM with a one-hot encoded
input sequence gave a score that could be used for classification with techniques
like logistic regression.

24



One of the early approaches that involved deep learning was a single-layer
CNN which conducted binary classification on a DNA sequence represented in
one-hot format (Alipanahi et al., 2015). This model was not used for the task we
work on, but instead to predict the binding affinity of a DNA sequence, which is
useful for studying regulation. However, it was one of the first works to use deep
learning to make predictions about gene regulation.

Zhou and Troyanskaya (2015) introduce a novel dataset and method for
regulatory marker prediction, and we reimplement and extend their results in
Task 1 of this work. They focus on the classification of short sequences of DNA.
In particular, they were interested in training a model that could predict, given a
short sequence of DNA, whether each of a set of regulatory markers was present
anywhere in that region. Their model uses a simple 3 layer convolution on this
task, and we discuss this in more depth in Chapter 7.1. A more recent approach
by Quang and Xie (2016) used a Bidirectional LSTM atop a single-layer CNN,
and achieved improvement above the purely convolutional model.
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6
Approach

The existing work presents an issue. These methods are only incorporating a
small number of nucleotides as input to a neural network, meaning they do not
allow the classifier to incorporate signal from regions of the genome that are far
from the prediction location in terms of number of nucleotides, but that may be
physically close in 3-D space. This is problematic, since incorporating signal from
these farther regions may be useful in being able to better model what is
occurring at particular genomic location. In other words, we would like to
increase the size of the receptive field of the architecture.

In this work, we will reimplement and extend methods for regulatory
modeling using the existing labeled dataset that was developed by Zhou and
Troyanskaya (2015). Then, we develop a new dataset using the same sources as
Zhou and Troyanskaya (2015) that allows for the modeling of much longer-term
dependencies in the input space, and nucleotide-level resolution in the outputs.
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In general, the models trained on these datasets will involve taking, as input, a
DNA sequence represented as a vector of nucleotides, and outputting binary
predictions about the presence of regulatory markers in that sequence. For each
of these datasets, we compare the performance of models based on dilated
convolutions with those based on LSTMs and standard convolutions, as well as
simpler baseline models like multilayer percetrons. The goal is to determine how
these architectures perform with both small and large amounts of context.

We split this investigation into two tasks. In Task 1, we determine whether
dilated convolutions can match the performance of the state of the art
LSTM-based architecture on an existing regulatory marker prediction task. In
this task, we are given a short sequence of N = 1000 nucleotides, and are simply
trying to predict whether each of K = 919 regulatory markers is present
anywhere in that sequence. This task investigates whether dilated convolutions
can capture the long-term dependencies that make LSTMs effective on this
short-sequence prediction task. It also offers intuitions about the types of
regulatory markers that dilated convolutions are effective at predicting, and about
the scaling properties of each of the architectures. We formally define this task
and discuss our findings in Chapter 7.

In Task 2, we use what we learned from Task 1 to train models on our novel
dataset. In particular, this dataset has much larger context sizes, with N = 25000
for each prediction. So, this task investigates whether dilated convolutions can
take advantage of this additional available context to make better predictions. We
measure how the performance of dilated convolutional models compares to
LSTMs, which have similarly large receptive fields but suffer from longer
backpropagations, and standard convolutions, which have much smaller
receptive fields, but can learn the dependencies in that smaller field effectively
because of their smaller backpropagations. Fundamentally, this task studies
whether increased context size improves the predictive success of this model, and
then compares the three ways of incorporating more context: more
convolutional layers, using an LSTM, or using dilated convolutions. We formally
define this task and discuss our findings in Chapter 8.
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In both of these tasks, the architectures output a vector of probabilities, each
one corresponding to the probability of the regulatory marker being present at
the given location. Given these outputs, we use ROC AUC and PR AUC scores
to measure the predictive accuracy of the models. These refer to the area under
the Receiver Operating Characteristic curve and the Precision-Recall curve.
Zhou and Troyanskaya (2015) and Alipanahi et al. (2015) use ROC AUC as
their metric, so we report that score for consistency and reproducibility.
However, in cases with highly imbalanced class distributions, PR AUC gives a
more meaningful distinction between models, as was suggested by Quang and
Xie (2016), so we report that score and use it for our analysis. Furthermore, we
break down the relative success of these models at predicting the three types of
regulatory markers: transcription factor binding sites (TFBSs), histone
modifications, and DNAse hypersensitivity sites. We report the mean AUC
scores for each of these subsets. For additional information on these metrics, in
Appendix B, we formally define ROC AUC and PR AUC, explain the primary
differences between the two, and use that to elucidate why the PR AUC statistic
is more meaningful for this task.
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7
Task 1: Match LSTMPerformance on a

Prediction Task with Small Context

7.1 Description andDataset

In this task, we train a model that can predict the presence of regulatory markers
in a DNA sequence given a relatively small number of input nucleotides, meaning
a small context size. First, we give a high-level overview of the dataset that Zhou
and Troyanskaya (2015) developed, which has since been used for regulatory
modeling and which we use for this task. For full details, please refer to the
original work directly.

Each element of an input sequence comes from a vocabulary
V = {A,C,T,G}, which refers to the four nucleotides that comprise DNA. An
input is a vector x ∈ Vd, where d is the length of the sequence. In this task, the
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authors divide up the genome into non-overlapping 200 base-pair (bp) regions of
DNA. Each of these 200bp regions then has 400bp of the adjacent DNA
appended on each side, so that each input is a window of length d = 1000. For
every input x, there is corresponding binary output vector y, which indicates
whether each of the k = 919 regulatory markers is present anywhere in the
middle 200bp of x. These binary markers are not mutually exclusive. The dataset
is thus n pairs of input and output sequences {(x, y)}n

x ∈ Vd (7.1)

y ∈ {0, 1}k (7.2)

where n = 4400000. The task is to thus to model p(y|x). To get this data, the
authors use publicly available regulatory marker data from ENCODE
(Consortium et al., 2012), which contains the location of each of the k regulatory
markers on the human genome, including the locations of transcription factor
binding sites, histone modifications, and DNAse hypersensitivity sites. Note that
the task is not to predictwhere in the given DNA sequence the regulatory markers
are present - only to predict whether they are present anywhere in it.

7.2 Models

We summarize the high-level architecture that we use for this task in Figure 7.2.1
with an example with two convolutional layers, and summarize the models we
implement for this task in Table 7.2.1. All of the models have the same input
representation, and have fully-connected layers at the end. The differences
between the models exists between the Input and Flatten layers of Figure 7.2.1, as
each model uses a different type of convolutional layer and one uses a
Bidirectional LSTM. Note that in the logistic regression and multilayer
perceptron baselines, we directly flatten the inputs and use fully-connected layers,
rather than first applying convolutions. We describe the models in Table 7.2.1.
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Figure 7.2.1: An overview of the architecture we use in Task 1. The input
(bottom) is a sequence of N nucleotides of DNA, represented as one-hot en-
coded vectors. The shape of the tensor at each layer is listed on the right.
This example shows 2 convolutions, each followed by a pooling layer, and fi-
nally two fully-connected layers. Note that there are more convolutions and
pooling in some of our models, and we also use dilated convolutions, as ex-
plained in Chapter 4.3. Additionally, we use a Bidirectional LSTM in be-
tween the Input and Flatten layers for one of the baseline models. The fully
connected layers apply to the flattened input. This means that there are
dout = 919 outputs for each sequence of N = 1000 inputs.
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Model Layers Layer Type Parameters

Baseline: Logistic Regression 0 N/A 3,676,919
Baseline: MLP 1 Fully-Connected 4,551,919
Baseline: Conv3 3 Convolution 60,472,479
Baseline: LSTM 2 LSTM 46,926,479
Dilated3 3 Dilated Convolution 22,284,639
Dilated6 6 Dilated Convolution 8,043,759
Deep-Dilated 15 Dilated Convolution 2,073,943

Table 7.2.1: Models for Task 1. Note that the first four models are the
baseline models that we compare our results to, with Baseline:Conv3 being
the model from Zhou and Troyanskaya (2015), and Baseline:LSTM the model
from Quang and Xie (2016). Note that all of our new models, despite having
more layers, use fewer parameters than existing models, since they use fewer
filters per convolutional layer. To see a more thorough description of each
model, including the dilation rates for each layer, see Appendix E.

7.3 Hyperparameters

We modified several sets of hyperparameters for each of the above models. For
the above architectures, we tested the following configurations:

Hyperparameter Options

Learning Rate Between .0001 and .1
Batch Norm Decay Rate {.9, .99}

Dropout {.1, .01}

Table 7.3.1: Hyperparameters tested in experiment 1.

Note that the dropout was between every layer, and could be low since we also
used batch normalization as a regularizer.
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7.4 Results

We report the mean ROC and PR AUC scores for each of the categories of
predictions in Table 7.4.1.

Model ROC AUC PR AUC
TFBS Hist DNAse TFBS Hist DNAse

Baseline: LR 0.716 0.670 0.674 0.042 0.143 0.097
Baseline: FF 0.737 0.693 0.690 0.046 0.181 0.106
Baseline: Conv3 0.869 0.782 0.860 0.205 0.273 0.319
Baseline: LSTM 0.935 0.833 0.904 0.305 0.340 0.407
Dilated3 0.864 0.779 0.852 0.190 0.271 0.299
Dilated6 0.923 0.813 0.895 0.273 0.320 0.390
Deep-Dilated 0.881 0.771 0.873 0.233 0.271 0.350

Table 7.4.1: Results of baseline models and dilated convolution models
trained on the dataset from Zhou and Troyanskaya (2015). We show that
the dilated convolution models allow for significant improvements in both the
ROC AUC and PR AUC scores relative to Conv3 from Zhou and Troyanskaya
(2015). Note that all of these data are from reimplementations of the exist-
ing and new models in order to have a fair comparison between the results.
Here, we note that the Dilated6 model performs better than the standard con-
volutions on both metrics on all three types of predictions, and similar to the
LSTM-based model, though not quite as well. The results on the validation
set are in Appendix C and are similar.

Here, we see several important results. First, we note that the dilated
convolutional models are able to perform better with both the ROC AUC and
PR AUC metrics than both the logistic regression baseline and the Conv3 model
from Zhou and Troyanskaya (2015). This suggests that dilated convolutions can
incorporate more information than the shallower convolutional models.
Moreover, note that the dilated convolutional models had significantly fewer
parameters than the Conv3 model, with Dilated6 using 8,043,759 parameters and
Conv3 using 60,472,479. Thus, we see that the dilated convolutional model is
able to capture the underlying features of the input better than the Conv3 model,
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and can do so with an order of magnitude fewer parameters. This is important, as
having fewer parameters increases training speed and reduces the amount of
overfitting that the model may be susceptible to.

Additionally, Dilated6 is able to achieve close to the performance of the
LSTM-based model. However, as noted before, Dilated6 has substantially fewer
parameters than the LSTM-based model. This suggests that the dilated
convolution is able to similarly model the long-term dependencies that the
LSTM is able to capture, despite having many fewer parameters. Because the
sequences that the LSTM operates over are relatively short in this task, it makes
sense that the LSTM would be the most effective model.

This suggests that dilated convolutions are able to capture meaningful
properties of genetic data with few parameters. With this proof of concept, we
next test whether the dilated convolutions are able to perform effectively on a
more complex task, with both a longer set of inputs (25,000 vs 1,000), and with
more outputs (making one set of 919 predictions per nucleotide, rather than per
sequence of nucleotides). In particular, since dilated convolutions scale much
better in terms of backpropagation distances than LSTMs, we will test to see
whether dilated convolutions are able to keep their high level of performance
relative to the other models.
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8
Task 2: ScaleModels to IncorporateMore

Context

8.1 Description andDataset

In this section, we describe the process of developing our novel dataset, which
allows for the modeling of regulatory markers at nucleotide scale with larger
contexts. In particular, we introduce a dataset with two major differences from
the previously analyzed data: (1) the size of the input sequences is much larger,
with each a d = 25000 bp sequence, and (2) the outputs annotate the sequence
at nucleotide-resolution. The task is to predict the presence of all regulatory
markers at each nucleotide, rather than per 200bp as in Task 1, thus annotating
the locations of regulatory markers along the sequence at a finer resolution. Also,
we choose not to represent our inputs in one-hot format, and instead as unique
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integers to be used as indices in order to train embeddings, or
vector-representations, for each of the nucleotides. To construct this dataset, we
use the hg19 reference genome to extract sequences, just like Zhou and
Troyanskaya (2015), and k = 919 regulatory markers from the same ENCODE
database. Thus we get a set of n pairs of input and output sequences {(x, y)}

x ∈ Vd (8.1)

y ∈ {0, 1}d×k (8.2)

Note that the outputs y have a different shape than in Task 1, because of the
nucleotide-resolution we use.

Given these changes to the dataset, we have a few different processing steps.
First, our raw data consists of a genome with vocabulary V = {N,A,C,T,G},
where the N character represents nucleotides for which the uncertainty in the
sequencing process was too high to have a definitive tag. Zhou and Troyanskaya
(2015) screen out sequences with that tag in the dataset we used in Task 1.
Because we seek to model long-term dependencies, we find it acceptable to have
a small number of unknown nucleotides in a long input sequence. To make sure
that we do not train or test on sequences with a high percentage of unknown
elements, we only keep sequences with at most 10% of the nucleotides as the
letter N. Furthermore, there are regions of the DNA where a read from a
sequencer would align to several genomic positions, which can impact the
accuracy of the training data. As such, we wish to exclude data from these
multi-mapped regions, so we also remove sequences with more than 10% of the
sequence labeled as part of a multi-mapped sequence. After doing this, there
were n = 93880 sequences that were d = 25000 in length, comprising
approximately 2.3 billion nucleotides. These sequences are non-overlapping.

Of the 919 regulatory markers, 690 are transcription factor binding sites
(TFBSs), 104 are histone modifications, and 125 are DNAse hypersensitivity
sites. All of these data are publicly available through ENCODE (Consortium
et al., 2012) in narrowPeak format, and we align the peaks to the human genome.
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These are the same factors used by Zhou and Troyanskaya (2015) in the dataset
from Task 1.

8.2 Models

We summarize the models we implement for this task in Table 8.2.1, and
summarize the high-level architecture of this task in Figure 8.2.1. The differences
between the models we implement for this task exists between the Embedding
and first linear (fully-connected) layer of Figure 8.2.1. In contrast with Task 1, we
are now making dense predictions, meaning one set of predictions for every
nucleotide in the input sequence, which leads to a different model structure. This
is because in Task 1, y ∈ {0, 1}k, but in this task, y ∈ {0, 1}d×k.

Model Layers Conv Layer Type Parameters

Conv1 1 Convolution 136,935
Conv3 3 Convolution 554,675
Conv7 7 Convolution 654,875
Dilated 6 Dilated Convolution 629,825
Bi-LSTM 4 Convolution, LSTM 397,155
ID-CNN 15 Iterated Dilated Convolution 632,487

Table 8.2.1: Models for Task 2. To see a more thorough description of each
model, including the dilation rates for each layer, see Appendix E.

Each of these models varies in the amount and type of convolutional layers it
has. After the convolutional layers, these models all have two fully-connected
layers that are applied element-wise, meaning they are fully connected across the
activations of each individual nucleotide. This is visualized in Figure 8.2.1. In
models that have a strided first convolutional layer, we use a deconvolution as the
final convolutional layer. For the LSTM-based model, we first have one strided
convolutional layer, then the LSTM layers, and then the deconvolution. We
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Figure 8.2.1: An overview of the convolutional architecture of Task 2. The
input (bottom) is a sequence of N nucleotides. The shape of the tensor at
each layer is listed on the right. The first layer embeds each element into a
higher-dimensional vector space. After that, there are k convolutions (or di-
lated convolutions) with ReLU activations. Furthermore, pooling layers with a
stride of 1 can be added in between convolutional layers. In the LSTM model,
the convolutions are replaced with a bidirectional LSTM. Finally, the last two
linear layers do not connect elements that are horizontally separated in the
above diagram, but only those within the activations for a particular element.
So, they apply a linear map to each of the activations zi ∈ Rdconvk . In other
words, the first linear layer has weights which are W (1) ∈ Rdconvk×dhidden , and the
second has weights which are W (2) ∈ Rdhidden×dout . In practice, N = 25000, and
dout = 919. 38



summarize the models in Table 8.2.1, and give the full set of details including the
strides, dilations, filters in Appendix E.

8.3 Hyperparameters

We modified several sets of hyperparameters for each of the above models and
list them in Table 8.3.1. For the convolutions, we adjusted the number of filters in
each convolutional layer, represented by the variables {f1, f2, f3}. f1 and f2 are the
number of filters in the first and second convolutional layers, respectively. f3 is the
number of filters in the third and beyond layers of the model, as the Conv7 and
Dilated models both had more than 3 convolutions. For the LSTM, f1 referred to
the number of filters in the strided convolution, f2 referred to the state size of each
LSTM, and f3 referred to the number of filters in the deconvolution. Additionally,
for the LSTM, we adjusted the stride for the first convolution and deconvolution
as a hyperparameter. Each model had one hidden layer after the convolutions,
with dhidden units. Note that the dropout was between every layer, and could be
low since we also used batch normalization as a regularizer. We break down the
hyperparameters we test for the convolution-based models and for the LSTM
model separately.

Hyperparameter Convolution Options LSTM Options

Learning Rate Between .001 and .1 Between .001 and .1
Batch Norm Decay {.9, .99} {.9, .99}

Dropout {.1, .01} {.1, .01}
f1 { 64, 128 } 128
f2 {120, 240} {20, 40, 80}
f3 {50, 128} {50, 128}

Stride 10 {10, 20, 50, 100}
dhidden {125, 200} {64, 125, 200}

Table 8.3.1: Hyperparameters tested in experiment 2.
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8.4 Results

For the second, larger dataset, we again measure the ROC AUC and PR AUC
scores for each of the above models. We report the PR AUC scores in Table 8.4.1,
and the ROC AUC scores in Appendix C.

Model Validation PR AUC Test PR AUC
TFBS Hist DNAse TFBS Hist DNAse

Conv1 0.013 0.053 0.035 - - -
Conv3 0.059 0.115 0.100 - - -
Conv7 0.167 0.154 0.160 0.167 0.152 0.171
Dilated 0.274 0.279 0.167 0.274 0.270 0.163
Bi-LSTM 0.065 0.238 0.089 0.070 0.216 0.086
ID-CNN 0.166 0.247 0.147 - - -

Table 8.4.1: Validation and Test set Precision-Recall Area Under Curve (PR
AUC) scores for the models. Note that these are the best validation results
across all hyperparameter configurations. For the test set scores, in this table
we only report the scores for the best performing standard convolution, dilated
convolution, and LSTM models, which we wish to compare to one another.
The full results are in Appendix C with both ROC and PR AUC Scores. Here
we note that we see substantially higher performance using dilated convolu-
tions on predicting transcription factor binding sites and histone modifictions.
However, we see no improvement using dilated convolutions on predicting
DNAse hypersensitivity sites.

We report models that performed best for each architecture across all of the
potential hyperparameters. The scores show that dilated convolutional models
get the best results on both TFBS and histone modification prediction, and do
only marginally worse than the best non-dilated models on predicting DNAse
hypersensitivity sites. While the LSTM-based model performed better than
some of the shallower models like Conv3, it did worse than the deep
convolutions and dilated convolutions across the board. This is consistent with
our expectations about this model not being able to scale as well as the dilated
convolutions due to vanishing gradients with long sequences.
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There are two major points to focus on here. First, even though the LSTM
models were successful in Task 1, where the sequence lengths were shorter, they
were not able to scale to larger context sizes. Second, the models that
incorporated very small receptive fields, such as Conv1 and Conv3, performed
much worse than ones with larger receptive fields. This suggests that future
regulatory prediction work should consider datasets that incorporate wider
contexts than existing work. Also, we seemajor differences in the performance on
the different regulatory markers, with dilated convolutions helping substantially
for TFBS and histone modification prediction, but Conv7 actually marginally
outperforming it on DNAse hypersensitivity site prediction. This suggests that
increasing the amount of context has different levels of value for the different
markers, with it being particularly useful for TFBS and histone modification
prediction, but not helpful for DNAse hypersensitivity site prediction.

8.5 Visualization

We also performed experiments to show whether the various models were
picking up on features that were from sites far from the targets. The fundamental
hypothesis behind using dilated convolutions was that they would be able to
capture genetic motifs in locations that are relatively far from the actual
prediction locations while being less susceptible to overfitting than deep CNNs.
Thus, we now sought to visualize the model that was learned, and understand
what inputs it was capturing in making predictions.

To do this, we use backpropagation to generate visualizations of the receptive
fields. In particular, we randomly sample an input sequence from the validation
set, and backpropagate an error of 1 from every positive output in that sequence
for a randomly selected regulatory marker. In Figure 8.5.1, we then plot both the
locations of the outputs (in blue), and the norm of the error backpropagated to
the inputs (in black), which shows us the impact that the various parts of the
input had on making the output predictions. We have additional plots in
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(a) Conv7 (b) Dilated (c) Bi-LSTM

Figure 8.5.1: To generate each of these figures, we backpropagate an error
of 1 from each of the outputs where a randomly-selected regulatory marker is
present. The location of the regulatory marker is labeled by the blue bars in
the top half of each of these graphs. We then visualize the norm of the gra-
dient with respect to the inputs at every location in the input, and that norm
is visualized by the black bar graph in the bottom half of each subplot. This
black bar graph gives an indication about the actual receptive field that was
used to make a decision at the outputs. Figure 8.5.1a shows the norm of the
gradient with respect to the inputs of the best Conv7 model. Figures 8.5.1b
and 8.5.1c do the same for the Dilated and Bi-LSTM models respectively.

Appendix D.
As expected, the standard convolutions have a narrow receptive field, while the

dilated convolutional models have errors that propagate across the input more
widely. Moreover, looking specifically at Figure 8.5.1b, we can see that the
Dilated model is using a significant amount of the input far from the location of
the regulatory marker (which is labeled in blue). We can see this because the
norm of the gradient is very high for a large amount of the input in that figure.
That is in contrast to the LSTM-based model in Figure 8.5.1c, where we can see
that there is a small amount of gradient backpropagated to much of the input, but
the norm of that gradient is very low for most of the input space.

In other words, it does not appear that the LSTM models are able to learn the
long-term dependencies that the Dilated model is picking up on more
significantly. However, we do note that there are smaller bumps in the LSTM
image at several locations that are far from the output locations, which are not
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present in the Conv7 model in Figure 8.5.1a, or in the shallower convolutional
models in Appendix D. As such, it is possible that the LSTM is actually modeling
some aspects of the inputs that are farther away, but isn’t able to capture enough
of that faraway information to do as well as the dilated convolution models.
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9
Discussion

From these results, we can draw several conclusions. First, on Task 1, where there
are smaller context sizes, dilated convolutions present an improvement over the
standard convolutional models, but perform similarly to LSTM-based
techniques. This suggests that when sequence lengths are relatively small, the
LSTM-based models are still able to backpropagate effectively enough to not
have issues with vanishing gradients. However, the improvement of the dilated
convolution model over the standard convolutional models suggests that the
ability to model wider contexts through convolutions is important to the
prediction task. Furthermore, we draw attention to the fact that our dilated
convolutional models have approximately an order of magnitude fewer
parameters than the existing convolutional or LSTM-based models, suggesting
that the dilated structure is able to account for the reduced complexity of the
model. Note that in this task, there are fully-connected layers as the final two
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layers of the neural network for every model. As a result, the receptive field of
every output is the entire input sequence (unlike in Task 2). The difference
between the models is thus not the size of the receptive field, but the degree to
which the different layers before the fully-connected ones are able to capture
meaningful relationships between values in the input, such that the final binary
logistic regression layer performs well. We thus find that using dilated
convolutions matched or improved this modeling ability with many fewer
parameters relative to standard convolutions, and performed similarly to LSTMs.
This suggests that they would scale well to larger context sizes, which we tested in
Task 2.

In Task 2, our task was one of dense predictions, where we were trying to
predict the precise locations of the markers in the input sequence, rather than
whether the marker was simply present anywhere in the input, as in Task 1. We
also used much larger input sequences. For Task 2, we see that dilated
convolutions appear to work substantially better at predicting histone
modifications and transcription factor binding sites than all other models, and
only marginally worse on predicting DNA accessibility. Interestingly, the best
model for DNA accessibility was not the LSTM-based model, but instead the
standard deep convolutional model, suggesting that large context may not be
necessary for predicting DNA accessibility. Moreover, the dilated convolutional
models work substantially better than the LSTM-based model, likely because the
much larger sequence length means that the LSTM is much more susceptible to
vanishing gradients during backpropagation. This is despite the fact that the
LSTM models also have large receptive fields, like the dilated convolution. This
suggests that the multi-scale context aggregation that stacked dilated
convolutions offer allows the network to learn longer-term dependencies in the
network without having the vanishing gradient problem that LSTMs and other
recurrent neural networks have. It also suggests that past work that focused on
short sequences for inputs, as in Task 1, is not capturing sufficient information
from the underlying DNA that is available to understand the locations of the
various regulatory markers.
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Furthermore, our visualizations in Chapter 8.5 for Task 2 correspond with the
performance metrics we measured. In particular, we find that the standard
convolutions have a very narrow receptive field, with a relatively small number of
inputs being involved for the prediction of every output. On the other hand, the
dilated convolutional models are able to scale the size of the receptive field
exponentially with the number of layers, and can thus capture complex
dependencies across the wide inputs. In contrast, the LSTM models pick up
non-zero but limited signal from distal regions of the input sequence, which is
attributable to the inability to backpropagate errors across long distances, and
thus the inability to learn relationships between faraway inputs. In other words,
while LSTMs do technically have large receptive fields, they appear to be less
successful at actually getting signal from far away, because of the difficulty of
actually learning patterns through that model when the input sequences are long.

With this work, we thus show that dilated convolutions present an
improvement over state of the art techniques for modeling the locations of
TFBSs and histone modifications. This work shows that the ability of dilated
convolutions to incorporate larger input contexts for every prediction without
dramatically growing the number of parameters in the model allows them to be
useful for the dense prediction of marker locations.

One of the notable observations we had was that for DNAse hypersensitivity
sites, there was a small drop in the predictive accuracy of the dilated
convolutional model compared to the standard convolutional one. This may arise
from some of the underlying biological properties of this data. For example, the
area immediately surrounding histones is tightly coiled and thus likely does not
contain accessible regions of DNA. As such, it makes sense that being able to
look several thousand base pairs away, which dilated convolutions enable, allows
for an improvement in predicting histone modifications since we may be able to
find patterns that match regulatory regions there. On the other hand, DNAse
hypersensitivity sites are inherently areas that are accessible, meaning they likely
have recurring motifs such as binding sites or coding regions in that accessible
area. This may mean that the relatively small context that standard convolutional
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neural networks capture is sufficient for making the predictions, and hence why
the dilated convolution does not help.

This suggests that using dilated convolutions, we are able to advance the state
of the art in modeling the regulatory code of human DNA, particularly in the
prediction of the locations of transcription factor binding sites and histone
modifications. This improved accuracy is important for understanding the nature
of the relationship between the genome itself and the regulatory factors that
interact with it. In particular, armed with this more accurate model of the
mapping from DNA sequence to the regulatory factors that interact with it, we
can build useful predictive models. For example, we can study how changes to
DNA can impact regulation, and seek patterns in the genome that are associated
with regulation. We discuss these possibilities in Chapter 10.
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10
Conclusion and FutureDirections

As a whole, this work shows that dilated convolutions can be used to effectively
model the locations of regulatory factors in DNA. This model offers substantial
improvements over both standard convolutions and LSTMs, particularly in
predicting the locations of histone modifications and transcription factor binding
sites. This work establishes a proof of concept on an existing prediction task, and
introduces a novel dataset and task that allows for the further exploration of large
receptive fields. With this work, we hope to extend the understanding of the
complex regulatory machine that enables gene expression, enabling more precise
study of the regulatory code, and thus a better set of tools to understand cellular
function and disease. With that said, there are several future directions to explore
in this work, and we conclude with a summary of them.
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10.1 FurtherDataset Development

There are a few opportunities for further dataset development in this task. In the
dataset that we release with this work, we analyze a set of 919 regulatory markers
that are available via ENCODE. Furthermore, we process this data in several
ways, by removing sequences that have a large number of unknown nucleotides,
and removing multimapped regions, where the alignment of parallel sequencing
methods may have produced faulty results. In the future, wemay look to augment
this dataset with more regulatory markers, information from newer assemblies of
the human genome (notably hg38 as opposed to hg19), and the genomes of
species other than humans. While we are often interesting in human genomes for
the purposes of disease modeling, many of these genetic effects should be
conserved across species, and training a model that jointly learns this behavior for
several species could produce improved results.

10.2 Mutation Impact Analysis

Additionally, with a model that is trained to map regions of DNA to the locations
of regulatory markers in that region, we can begin to study the impact of
mutations. In particular, it would be useful to determine whether small
mutations, like changes in single nucleotides called “single nucleotide
polymorphisms” (SNPs), can produce changes in the predicted locations of
regulatory markers. Then, we can generate random SNPs in an existing region of
interest, and determine what impact, if any, each of these have on the predictions.
A SNP that does have an impact may be part of a genetic motif, or sequence, that
is meaningful for understanding gene regulation. As a result, we can use a trained
model to start to make predictions about how changes to DNA can impact
regulatory events, such as transcription factor binding. This can serve as a useful
tool for geneticists that may be looking for promising candidates to test in a
physical experiment.
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10.3 Incorporating 3-DConformational Information

One of the central issues that this work attempts to address is the fact that
elements that are distal in the 1-D representation of a DNA strand may be
physically close in its 3-D conformation. As a result, modeling longer-term
dependencies between regions of DNA is important to being able to build
predictive models for the regulatory code. However, there are new experimental
methods that have sought to build a better picture of the interactions between
regions of DNA. One particularly promising technology is called Hi-C (Belton
et al., 2012). This technique uses high-throughput sequencing to measure the
pairwise distances between all regions in the genome. In short, the technique
involves cutting DNA into fragments, and then ligating the fragments. In the
ligation step, fragments that are close to one another will be more likely to ligate
together, and then the resulting ligated fragments can be sequenced and aligned
to a reference genome. Ultimately, this technique gives a picture of the relative
distances between regions of the genome, and thus this additional data could be
used to augment the existing dataset. For example, having an additional feature
that measures the distance between the ends of an input sequence can give an
indication as to how coiled DNA may be in a particular region, and thus improve
the model’s ability to predict markers such as DNA accessibility.

10.4 Incorporating TFBS Sequential Information

In this work, we were focused on learning the locations of a particular set of
regulatory markers. The bottom layers of our models jointly learned parameters
that were shared across all of the markers, and the final layer was always a simple
logistic regression, where we were training one logistic regression per marker. As
a result, though the bottom layers of our models did learn shared properties of
regulatory markers as a whole, our model cannot generalize as-is to new
regulatory markers.

For example, our data included 690 transcription factors. If a researcher
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wished to use our trained model to get insight about a new transcription factor
that was not in our training set, however, she would not be able to do so without
first running the full ChIP-seq experiment to target that new transcription factor
and generating a genome worth of data like that which we downloaded from
ENCODE, and then retraining the model. As such, another potential future
direction that is specific to transcription factor binding site prediction is to
incorporate additional information about the protein itself, such as the
polypeptide sequence. For example, one way to structure the task could be: given
a protein (as its amino acid sequence) and a DNA sequence, does that protein
bind on the DNA? Alternatively, given a protein (as its amino acid sequence) and
a DNA sequence that it is known to bind to, where precisely on the DNA does
the protein bind? This model could use convolutional or recurrent neural
networks, similar to this work, for these tasks, and may be able to use the bottom
layers of our models to pre-train the new network. With a model that is trained to
perform one of these tasks, a researcher could extend the model’s benefits to new
transcription factors. All she would need is the amino acid sequence of the new
transcription factor, which is relatively easy to get, and it can be a valid input to
the model.

10.5 NewArchitectures

There is also substantial room for modeling improvements. In this work, we
focus on dilated convolutions, and compare them to standard convolutions.
Additionally, we compare them to LSTMs to determine their relative ability to
model long-term dependencies. However, there are additional convolutional and
LSTM-based architectures that are worth exploring. With LSTMs, there are
stacked LSTM architectures, with several layers of bidirectional LSTMs placed
one atop another. These may be able to capture more complex long-term
dependencies. Additionally, we could seek to conduct a more significant
dimensionality reduction of the input sequence. In our work, we generally first
have a strided convolution with stride 10 and kernel width 10, which shortens the
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length of the sequence by a factor of 10. Then, the final layer serves as an
upsampling operation. However, this technique still leaves a relatively long
sequence (2,500 in length) that the LSTMs have to operate over, which leads to
issues with vanishing gradients. We can try additional methods to learn
lower-dimensional representations of the inputs, perhaps through many layers of
strided convolutions, and then have LSTMs operate on the shorter sequences.
This will come with a tradeoff, since having more reduction in the input sequence
will require having more substantial upsampling in the upper layers of the
network.

10.6 ArchitectureOptimization

One of the issues that Chapter 10.5 sheds light on is the fact that while we use
sound methods for learning the optimal weights of a given architecture, our
decisions about what architecture to use are based largely on intuitions. In
particular, the architecture of the network refers to hyperparameters like those
that define the number of layers, the stride, kernel width, and dilation of each
layer, and the type of layer to use (convolution, pooling, recurrent, etc.). Recent
work has suggested that these architectures can themselves be learned (Cortes
et al., 2016). In that work, the authors learn the architecture and the optimal
weights for a particular image classification task. This approach is more generally
applicable too, and can be used to improve the architectural search for this
regulatory marker prediction task as well.
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Appendices
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A
Sequencing Technologies

There are two major technologies that are used to generate the data used in this
work: ChIP-seq and DNAse-Seq. ChIP-seq combines chromatin
immunoprecipitation (ChIP) with massively-parallel sequencing (seq) to find
where targeted proteins bind to DNA (Johnson et al., 2007). At a high level, this
technique works by identifying regions of the genome that are bound to a
particular targeted protein, and then sequencing all of those regions and aligning
them to a reference genome. To do this, proteins are cross-linked to DNA using a
formaldehyde treatment and then the DNA is cut into small segments. An
antibody specific to a protein of interest is used to select DNA regions that are
bound to that protein. The result of this immunoprecipitation is a large quantity
of short DNA fragments from across the genome that are bound to the protein of
interest. Any regions of DNA not bound to the protein of interest are washed
away. Then, the protein is unlinked, and the previously-bound DNA can be
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sequenced and the resultant sequences can be aligned to a reference genome.
This will then give a measure of where the targeted protein was bound across the
genome.

DNAse-seq is very similar, except it amplifies regions where DNA is more
sensitive to being cleaved by DNAse, and these correspond to regions of the
genome that are more accessible to proteins, where we may expect regulatory
behavior to occur (Song and Crawford, 2010). After amplification, the
sequencing step is analogous to ChIP-seq.

Additionally, histones can be modified by a cell in a variety of ways, largely due
to the addition or removal of certain chemical groups from the protein. Just like
discussed before, these histone modifications can be tightly targeted by
antibodies, and thus the sites of histone modifications can be sequenced using
ChIP-seq.
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B
Discussion of ROCAUC and PRAUC

Metrics

Precision, Recall, True Positive Rate, False Positive Rate In binary
classification tasks, the classic metrics used to determine the success of a model
involve determining the ratios of true positives (TP), false negatives (FN), true
negatives (TN), and false positives (FP). These values determine the
correspondence between the predicted values and the true values for a set of
binary labels. “Positive” refers to a predicted label of “1”, and the true/false refers
to a match between the prediction and the actual value. From these, we derive
precision and recall, which are defined as

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(B.1)
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Additionally, we define the following ratios: True Positive Rate (TPR) and
False Positive Rate (FPR).

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(B.2)

Note that the TPR and recall are the same.

ROC AUC Score While the above precision, recall, TPR, and FPR values give
useful measures of the predictive accuracy of a classifier, they have one
fundamental issue - they require an apriori threshold value. In other words, since
binary classifiers generally output a single floating-point number between 0 and 1
as their prediction, those values have to be thresholded into the two classes in
order to determine the value of each of those metrics. Unfortunately,
determining a threshold is not always obvious. For example, consider a classifier
that outputs a prediction of 0.8 for every true class, and 0.7 for every false class.
In this case, with a threshold of 0.75, it would have a precision and recall of 1.
However, with a threshold of 0.5, it would have a precision of 0.5 (assuming an
even number of true and false classes).

However, a classifier that always outputs a higher prediction for the true class
than the false class is still considered a good classifier. To reflect this, we use an
multiple-threshold formulation by calculating the Receiver Operating
Characteristic (ROC) curve. To graph the ROC curve, we have a 2-dimensional
plot where the x-axis is the FPR, and the y-axis is the TPR. Each point on the
plot is determined by the TPR and FPR values when thresholded at a particular
threshold, and we create the plot by choosing increasing thresholds between 0
and 1 (for example: 0, .01, .02, .03, . . . , .99, 1).

Then, we calculate the area under this curve (AUC). The higher this area, the
less we trade off the false positive rate for improvements in the true positive rate.
We want this to be as high as possible.
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PR AUC Score To calculate the PR AUC Score, we follow a very similar
process as the ROC AUC Score, except we instead make the precision-recall
curve. On this curve, we plot the recall values on the x-axis, and precision values
on the y-axis for different thresholds. Then, we calculate the area under the curve,
and again we want this to be as large as possible.

Using PR AUC vs ROC AUC One of the central issues that have been raised
about past approaches to tasks similar to this is the validity of each of these
metrics under very imbalanced class ratios. Quang and Xie (2016) suggest that
using the PR AUC may be better suited to this task than ROC AUC. In particular,
in cases where the positive class is much rarer than the negative class, it is thought
that the PR AUC score is more meaningful. To explain this further, consider the
following setup. Let Ŷ represent the classification predicted by the model, and let
Y represent the true classification. Then, we can summarize the definitions from
above as

Precision = P(Y = 1|Ŷ = 1) (B.3)

Recall and TPR = P(Ŷ = 1|Y = 1) (B.4)

FPR = P(Ŷ = 1|Y = 0) (B.5)

Precision asks the question: Given a positive class prediction, what is the
probability this prediction is correct? The others condition on the true class, rather
than the predicted class, and this can cause problems for the ROCAUC in certain
cases. Note that we generally want to have high precision, high recall, high TPR,
and low FPR. We will now construct an example that has both low FPR and low
precision, in the presence of imbalanced classes. We will do this using Bayes Rule:

Precision = P(Y = 1|Ŷ = 1) =
P(Ŷ = 1|Y = 1)P(Y = 1)

P(Ŷ = 1|Y = 1)P(Y = 1) + P(Ŷ = 1|Y = 0)P(Y = 0)
(B.6)
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Now, let the true class frequency be very low, meaning we can approximate
P(Y = 1) ≈ 0. Then, the numerator goes to 0, and therefore the precision goes to
0. The second term in the denominator contains the FPR. Thus, even if we have a
low FPR, we can have a low precision. In other words, even though our model
very rarely predicts a false positive class, we can still end up with a situation
where most of our positive class predictions are wrong. This makes sense in
situations with huge class imbalances, because if there are 100 times the number
of negative class data as positive class data, then even a rare negative class error
could produce a ton of false positives, relative to the number of true positives.

As such, it is generally thought that PR curves serve as a more meaningful
metric when dealing with highly imbalanced class distributions. For this work,
we generally report both ROC AUC and PR AUC values for comparison with
past work, but do our comparative analysis based on the PR AUC values.
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C
Additional Data Tables

Here, we report the full data tables for each of the classes of models described in
this work. In the main body of this report, we included the central findings from
these tables. Here, we include them in full. Note that we primarily used PR AUC
scores for our analysis. That said, for comparison with existing work that uses
ROC AUC scores, we include the results with that metric as well.

C.1 Task 1

Here, we report the AUC ROC and PR AUC scores for the models in Task 1.
Note that we report the best performing results across all of the hyperparameter
configurations for a model.
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Model Validation ROC AUC Test ROC AUC
TFBS Hist DNAse TFBS Hist DNAse

Baseline: LR 0.735 0.656 0.686 0.716 0.670 0.674
Baseline: FF 0.745 0.684 0.705 0.737 0.693 0.690
Baseline: Conv3 0.880 0.780 0.870 0.869 0.782 0.860
Baseline: LSTM 0.947 0.835 0.910 0.935 0.833 0.904
Dilated3 0.877 0.783 0.866 0.864 0.779 0.852
Dilated6 0.939 0.823 0.903 0.923 0.813 0.895
Deep-Dilated 0.895 0.788 0.880 0.881 0.771 0.873

Table C.1.1: Full Validation and Test set ROC Area Under Curve (ROC
AUC) scores for the models in Task 1. Note that these are the best results
across all hyperparameter configurations.

Model Validation PR AUC Test PR AUC
TFBS Hist DNAse TFBS Hist DNAse

Baseline: LR 0.079 0.139 0.066 0.042 0.143 0.097
Baseline: FF 0.076 0.194 0.114 0.046 0.181 0.106
Baseline: Conv3 0.250 0.285 0.373 0.205 0.273 0.319
Baseline: LSTM 0.365 0.350 0.437 0.305 0.340 0.407
Dilated3 0.264 0.294 0.352 0.190 0.271 0.299
Dilated6 0.332 0.329 0.429 0.273 0.320 0.390
Deep-Dilated 0.285 0.278 0.386 0.233 0.271 0.350

Table C.1.2: Full Validation and Test set Precision-Recall Area Under Curve
(PR AUC) scores for the models in Task 1. Note that these are the best re-
sults across all hyperparameter configurations.

C.2 Task 2

Here, we report the AUC ROC and PR AUC scores for the models in Task 2.
Note that we report the best performing results across all of the hyperparameter
configurations for a model.
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Model Validation ROC AUC Test ROC AUC
TFBS Hist DNAse TFBS Hist DNAse

Conv1 0.712 0.644 0.688 0.726 0.649 0.693
Conv3 0.840 0.747 0.824 0.850 0.753 0.829
Conv7 0.905 0.787 0.874 0.911 0.789 0.878
Dilated 0.895 0.863 0.863 0.898 0.861 0.861
Bi-LSTM 0.854 0.840 0.816 0.864 0.833 0.818
ID-CNN 0.888 0.840 0.857 0.892 0.834 0.857

Table C.2.1: Full Validation and Test set ROC Area Under Curve (ROC
AUC) scores for the models in Task 2. Note that these are the best results
across all hyperparameter configurations.

Model Validation PR AUC Test PR AUC
TFBS Hist DNAse TFBS Hist DNAse

Conv1 0.013 0.053 0.035 0.014 0.055 0.035
Conv3 0.059 0.115 0.100 0.059 0.116 0.098
Conv7 0.167 0.154 0.160 0.167 0.152 0.171
Dilated 0.274 0.279 0.167 0.274 0.270 0.163
Bi-LSTM 0.065 0.238 0.089 0.070 0.216 0.086
ID-CNN 0.166 0.247 0.147 0.171 0.236 0.142

Table C.2.2: Full Validation and Test set Precision-Recall Area Under Curve
(PR AUC) scores for the models in Task 2. Note that these are the best re-
sults across all hyperparameter configurations.
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D
Additional Visualizations

63



(a) Conv1 (b) Conv3 (c) Conv7

(d) Dilated (e) Bi-LSTM

Figure D.0.1: This shows the receptive field for all the major architectures
that we study. In blue is the location of a regulatory marker. In black, we plot
a histogram indicating the gradient backpropagated to the input sequence,
which gives a measure of the size of the receptive field. Here, we note that
increasing the number of convolutional layers from 1 to 7 does not substan-
tially increase the size of the receptive field, as we expected. However, using
a Dilated model leads to a big receptive field. The Bidirectional LSTM has a
large receptive field, but has very little gradient backpropagated to most of it,
meaning that it may not be getting as much signal from faraway regions as
the Dilated model.
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E
PreciseModel Descriptions

E.1 Task 1

• Baseline: Logistic Regression (LR): This is a baseline logistic regression
model that consists of reshaping the input into a single (4000, ) vector, and
then having a single fully-connected layer and sigmoid. This model serves
as a baseline to the more complex convolutional models we discuss later.
There are a total of 3,676,919 trainable parameters.

• Baseline: Multilayer Perceptron (MLP): This is a baseline multilayer
perceptronmodel that consists of reshaping the input into a single (4000, )
vector, and then having a fully-connected layer with 925 units, a ReLU
activation, and another fully-connected layer and sigmoid. This model
serves as a baseline to the more complex convolutional models we discuss
later. There are a total of 4,551,919 trainable parameters.
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• Baseline: 3-Layer Convolution (Conv3): This is a reimplementation of
the model made in Zhou and Troyanskaya (2015). Though that model was
originally written in Torch, we re-implemented it in Tensorflow along with
the rest of our models. This model consists of three convolutions with
kernel width 8, with the first two followed by max pooling with stride 4
and kernel width 4. After these three convolutional layers, there are two
fully-connected layers to make the 919 final predictions. This model has a
total of 60,472,479 trainable parameters.

• Baseline: Convolution and Bidirectional LSTM (LSTM): In this
model, we reimplement the work from Quang and Xie (2016). The model
consists of a single convolution with kernel width 26 and 320 filters,
followed by a max pooling layer with a stride of 13 and kernel width of 13.
Then, there is a Bidirectional LSTM, and two fully-connected layers. In
total, there are 46,926,479 trainable parameters.

• 3-Layer Dilated Convolution (Dilated3): This is an extension of the
Conv3 model above that first replaces each of the convolutions with a
dilated convolution. The dilation increases by a factor of 3 for each layer.
Additionally, the number of filters used in this model is much smaller, as
the dilated convolutions are able to capture more complex behavior. Thus,
the total number of parameters is 22,284,639.

• 6-Layer Dilated Convolution (Dilated6): This is an extension of the
Dilated3 model above. The primary difference is that it adds 3 additional
dilated convolutional layers, before adding the fully-connected layers. In
order to account for the increased parameters introduced by the higher
number of convolutions, we reduce the number of filters in each
convolution. The total number of parameters is 8,043,759.

• DeepDilated Convolution (Deep-Dilated): In this model, we use a
large number of convolutional layers, with only a very small fully
connected layer at the end. In particular, we have 15 dilated convolutional
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layers, divided into 3 groups of 5 convolutions. Each of these groups has
dilated convolutions with dilation rate 1, 2, 4, 8, 16, and each group is
followed by a max pooling with kernel width 4 and stride 2. Each of the 15
convolutions has 32 filters (much less than the others models), and there is
only a single fully connected layer at the end. As a result, despite the
substantial depth of this model, there are only 2,073,943 parameters.

E.2 Task 2

• 1 layer Convolution (Conv1): This model begins by embedding the
nucleotide in 4 dimensions. Then, it runs a convolution with kernel width
of 10 over the sequence with 128 filters, padded to maintain the original
width. Finally, it uses a simple multilayer perceptron with 1 hidden layer at
each nucleotide to predict all 919 outputs. This model tests whether a
simple convolution is able to capture the genetic motifs effectively enough
to not need a more complex model. There are a total of 136,935 trainable
parameters.

• 3 layer Convolution resizing (Conv3): The model is similar to Conv1,
except it uses 3 convolutional layers with dropout between consecutive
layers. The number of filters in each respective layer is 128, 240, and 50. In
an alternate version of this model, we have the first convolution as strided,
with a stride of 10, which downsamples the inputs. The second layer is a
standard convolution which operates over a sequence that is 1/10th the
length of the input layer. The third layer is a deconvolution. This means
that the middle convolutional layer goes over a sequence that is 1/10th the
size of the original, and so the receptive field of each output neuron is
larger. The basis of this downsampling is to pick up on the fact that because
of the small vocabulary size of our inputs, doing a strided convolution
would allow the middle layers to work in an input space that has learned
meaningful motifs from the underlying dataset. There are a total of
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554,675 trainable parameters.

• 7 layer Convolution (Conv7): This model is similar to Conv3, except
there are more convolutional layers in between the strided convolution
and deconvolution. This model has approximately the same number of
parameters as the dilated convolution below. There are a total of 654,875
trainable parameters.

• Dilated Convolution (Dilated): In this model, there is first a strided
convolution, as in Conv7. After that, there are 4 dilated convolutional
layers, with dilation rates of 3, 9, 27, and 81 respectively. Lastly, there is a
deconvolutional layer like in Conv7. Note that the dilated convolutions all
occur over sequences that are 1/10th of the original length because of the
first layer being a strided convolution. We have two adaptations of this
model. In one, we add max-pooling with a stride of 1 between several of
the layers. This max-pooling smoothes the activations. Since the stride is 1,
this does not change the dimensions of the tensor. In the second
adaptation, we use dilated max-pooling, which is the same as max-pooling
except over a dilated window. We add these dilated max-pooling layers
after the third and fourth dilated convolutions. This follows a similar
intuition as the standard max-pooling setup. However, having dilated max
pooling allows each node to perform an OR operation over activations
that are separated by the given dilation rate, allowing each node to learn
activations from a wider set of inputs. There are a total of 629,825 trainable
parameters.

• Bidirectional LSTM (Bi-LSTM): This model consists of a strided 1-layer
convolution with kernel width 10, followed by a Bidirectional LSTM, and
a deconvolution. This is similar to the bottom layers of the model from
Quang and Xie (2016). This model is meant primarily to compare the
dilated convolutional models with recurrent neural networks. While
RNNs are commonly used for sequential modeling tasks, the vanishing
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gradient problem becomes more problematic for them when inputs are
very long. Thus, this model serves as a point of comparison with the
convolutional techniques. There are a total of 397,155 trainable
parameters in this model.

• IteratedDilated CNN (ID-CNN): In this model introduced by Strubell
et al. (2017), there are 3 blocks of 5 dilated convolutions. These blocks
share parameters, so even though there are more layers than the other
models, the total number of parameters remains small. This model uses a
state of the art dilated convolution model that can learn complex mappings
of inputs with few parameters. We compare this approach to the more
standard dilated convolutional models as well. There are 632,487 trainable
parameters in this model.
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