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Chapter 1: Introduction

1.1 Motivation

Networks are ubiquitous both as subjects of scientific study and as fixtures of everyday life.
From social networks like Facebook to webs of financial transactions, mobile phone call
records, and communications via email, rich network data constitutes a popular subject
for statistical inquiry in a broad range of disciplines. However, due to the interconnected
nature of the data, protecting the privacy of participants in a network while conducting
statistical analysis can be difficult. A number of recent examples highlight the challenges
of keeping network data private:

The Cambridge Analytica Case [RCC18]: In late March 2018, revelations emerged
that a political consulting firm, Cambridge Analytica, had harvested over 50 million user
profiles off Facebook allowing them to build psychological profiles of a vast portion of the
American electorate. Only 270, 000 users actually consented to give Cambridge Analytica
access to their profile information via an online survey. However, by leveraging users’
friend networks, it was possible for Cambridge Analytica to violate the privacy of a much
larger number of people.

“Gaydar” [JM09]: Consider an individual on Facebook who does not publicly disclose
their sexual orientation, presumably because they wish this data to be kept private. By
analyzing the proportion of this user’s friends who publicly reveal being gay, it is possible
to learn with high accuracy whether this user is gay or straight. In effect, then, a person’s
relationships along with publicly available data about their acquaintances, friends, and
coworkers implicitly disclose private information about the person.

The Structure of Intimate Relationships [BK14]: Even with no profile information
made public, it is possible to identify the romantic partner of a Facebook user with high
accuracy using only the structure of their friend network – an intimate relationship is
highly likely between individuals in the network who have many mutual friends, but
whose friends have few mutual friends, a phenomenon known as “dispersion.” Therefore,
suppressing identities of people in the network does not suffice to protect privacy, as the
links within the network alone may reveal potentially sensitive, private information like a
person’s romantic partner.

These examples highlight the fundamental difficulty of analyzing relational data while
respecting the privacy of data holders – network structure discloses an extensive amount
of ostensibly private information about both the identity of participants and the nature of
their relationships. Further, distinctive substructures of a network can make it relatively
easy to reconstruct a naively anonymized network given auxiliary information: a number
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of proposed attacks on networks have demonstrated that an attacker with relatively little
additional information may (with high probability) identify participants in any unlabeled
network ([BDK11],[NS09]). Thus, statistical analysis of network data, while popular, is
also problematic from a privacy standpoint. In response to this issue, a growing body
of work seeks to answer the question: is it possible to protect the privacy of individuals
included in a network dataset while enabling researchers to conduct useful analysis of
network structure?

1.1.1 Differential Privacy

A promising direction for answering this question involves employing a rigorous and
meaningful concept of privacy first proposed for analysis of tabular data: differential
privacy [DMNS06]. At a high level, differential privacy promises that the participation of
any single individual in a dataset will not noticeably alter the results of an analysis of the
dataset. The differential privacy guarantee holds even if an adversary is equipped with
arbitrary auxiliary information about the participants in a dataset. Indeed, differential
privacy promises that were an adversary to know the data of every other individual
in a dataset, she still could not discover the private information of the final unknown
participant in the dataset.

Differential privacy provides a quantifiable notion of privacy, as it is operationalized by
two small, non-negative parameters ε and δ. The parameter ε captures the amount of
privacy leaked by the analysis. As ε decreases, it becomes more difficult for an adversary to
discern the private information of an individual in the dataset. The parameter δ specifies
the probability of a potentially catastrophic privacy leakage. When δ = 0, we speak of
ε-differential privacy. For δ > 0, we provide (ε, δ)-differential privacy, which promises that
an algorithm is ε-differentially private with probability 1 − δ, but permits an arbitrarily
bad privacy leak with probability δ. We may be comfortable with this relaxed concept of
privacy if δ is vanishingly small (one in a million, for instance), so that the chance of a
privacy leak is low. The quantifiability of differential privacy allows for rigorous study of
the trade-off between privacy and utility in data analysis.

Differential privacy is a property of an algorithm – it promises privacy by process. Only
randomized algorithms meet the definition of differential privacy, suggesting that the
algorithm must introduce noise in some way, either by perturbing the inputted data, the
steps taken by the algorithm, or the output. One simple way to answer queries on a
dataset under differential privacy constraints is by adding statistical noise drawn from an
appropriately scaled Laplace distribution to the output of the query. This mechanism,
called the Laplace mechanism, gives a general way of providing differential privacy, but
requires one to compute the appropriate scale of Laplace noise to protect privacy for a
specific query. In this work, we will employ the Laplace mechanism to provide differential
privacy.

Protecting the privacy of individuals included in a network dataset requires identifying
what aspects of the network should be considered private. A network abstractly represents
relationships between various entities – the entities are referred to as nodes in the network
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(potentially with labels specifying nodal attributes) and the links between entities are
referred to as edges. As the examples of “Gaydar” and romantic relationships on Facebook
suggest, even if only node labels are considered private data, treating labels alone as
private may not in itself preserve privacy, as the edge structure can reveal sensitive
information about the labels. Furthermore, the goal may be to explicitly protect the
relationships in a network, not just identities of participants. For instance, in a network
of romantic partnerships the identity of participants may be public information, while the
relationships could be sensitive. Thus, meaningful notions of privacy should seek to also
protect the privacy of edges in a network.

In protecting the privacy of edges in a network there is ambiguity as to what granularity
of privacy to provide. Differential privacy specifies that the “participation” of any single
individual in a dataset should not alter the result of an analysis significantly. We could
take “participation” to mean the inclusion of a single edge in the network and guarantee
edge-level privacy by protecting the privacy of any sensitive relationship in the network.
Alternatively, we could protect the inclusion of a node and all edges incident to that node
in the network, providing a much stronger privacy guarantee known as node-level privacy.
While node-level privacy offers a strictly stronger privacy guarantee than edge-level privacy,
there may be cases where we are only concerned with protecting any single relationship in
a network, not all of an individual’s relationships. Further, node-level privacy may have
an extensive cost in utility. Therefore, we consider both the notions of edge-level privacy
and node-level privacy in our analysis.

1.1.2 Inference on Network Data

The goal of this work is to enable differentially private statistical inference for network data
using a general class of models known as exponential random graph models or ERGMs. In
contrast to simply computing statistics of a network – like degree distributions or clustering
coefficients – a statistical model posits an explicit probability distribution over the space of
possible networks, allowing researchers to study the distinctive structural properties of an
instantiated network and the processes that gave rise to such structure. ERGMs are among
the most commonly employed statistical models of network data, having been applied to a
broad range of problems, including analysis of corporate management structures at Enron
[UHH13], the demographics of high school friendships [GKM09], interactions between
proteins in the human body [RAS10], and networks of neurons in the brain as people age
[SDC+16].

ERGMs are described fully by a vector of “sufficient statistics” computed on the network,
which are generally aggregations of small substructures of the network like the number of
edges or the number of triangles (groups of three connected nodes.) The ERGM associates
a different parameter with each sufficient statistic, allowing researchers to understand the
relative importance of different substructures in a network. Then, the goal of inference
over an ERGM is to estimate parameters of the model that make sufficient statistics of
the real-world network likely in the modeled probability distribution.

There is a growing body of research on differentially private release of various statistics
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of networks, such as degree distributions ([HLMJ09], [DLL16]), clustering coefficients
[WWZX12], and counts of small subgraphs like triangles [KRSY14] among many others.
In comparison, there has been relatively little study of differentially private inference over
network data. Karwa and Slavkokvic propose a differentially private inference method for
a specific class of ERGM known as the β-model [KS16]. The β-model uses only the degree
distribution as a sufficient statistic. While Karwa and Slavkokvic provide an elegant
mathematical formulation of differentially private inference on this model, the β-model
is used relatively infrequently in actual analyses, as it cannot capture many structures
of interest in network data. For general ERGMs there exist two proposed methods. Lu
and Miklau [LM14] give an (ε, δ)-differentially private inference method based on adding
Laplace noise to sufficient statistics of an ERGM, while Karwa et. al [KKS17] propose an
ε-differentially private method based on flipping edges of the underlying network inputted
to inference. Both of these approaches work only for edge-level privacy with node labels
taken to be public. Additionally, they permit accurate inference only for large privacy
budgets (with ε taken to be greater than 3 or δ taken to be 0.5,) while in practice we want
smaller privacy budgets with ε less than 1 and δ taken to be very small (on the order of
one in a million, for instance) [NSW+17]. In short, existing approaches to differentially
private inference on network data only enable useful analysis for a weak privacy guarantee,
namely, for settings where we use relatively large privacy budgets in the edge-privacy
model with publicly known node labels.

1.2 Contributions

Motivated by the goal of performing useful inference on network data while providing
meaningful privacy guarantees, we propose a new framework for differentially private
inference on ERGMs. We prove the privacy of our methods and then empirically evaluate
their performance relative to alternative approaches and to non-private inference. There
are three primary features of our proposed methods that move us towards the goal of
practical differentially private inference for network data using ERGMs:

• We enable accurate inference under edge-level privacy at smaller, more realistic,
privacy budgets than current methods.

• Unlike previously proposed methods, we permit differentially private inference under
edge-level privacy with private node labels, rather than treating labels as public.

• We suggest the first (to our knowledge) method for differentially private inference
under the stronger notion of node-level privacy.

Our approach takes advantage of the recently proposed machinery of “restricted sensitivity”
([BBDS13], [KNRS13]) to perturb network data much less dramatically than existing
methods for guaranteeing differential privacy. Restricted sensitivity exploits the observa-
tion that many real world networks are sparse: individuals in the network tend to have
relatively few relationships compared to the size of the network. For instance, Facebook
has over 2 billion users, but users have no more than a few thousand friends. While
restricted sensitivity was initially proposed for edge-level and node-level differentially
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private release of statistics of networks, it has not been utilized for statistical inference over
networks. We propose employing restricted sensitivity to elegantly leverage the sparsity
common in real-world network data to perform useful private inference. In particular, we
use the framework of restricted sensitivity to add statistical noise to computed sufficient
statistics and then use these statistics to perform inference. Our inference method takes
into account the noise introduced to sufficient statistics by the privacy mechanism to infer
valid parameter estimates.

To evaluate the performance of our methods, we conduct extensive experimentation on
both synthetic network data and a real high school friendship network. Compared to prior
work in differentially private inference on network data, which tests on networks of under
150 nodes, we run inference experiments on larger networks of 200 − 300 nodes. This is
useful as current analyses using ERGMs increasingly look at larger networks, both because
larger network datasets are becoming available and because greater computational power
now enables inference on large networks. Further, by virtue of their size, larger networks
are easier to keep private than smaller networks: when there are few participants, any
one participant has a strong impact on an analysis, compared to a network with many
participants. Thus, our experiments use networks large enough to guarantee meaningful
levels of differential privacy while permitting useful inference.

Our experiments on synthetic networks offer evidence that for small privacy budgets of
ε = 1 or 2, our method estimates parameters more accurately than existing methods.
Then, we show in a case study on high school friend network data that our method allows
researchers to accurately estimate parameters and standard errors for a budget of ε = 2,
while existing approaches fail even for a larger budget of ε = 3. This suggests that our
approach enables researchers to reach reliable conclusions about the structure of real-world
network data under substantive privacy constraints. Finally, we demonstrate the viability
of our proposed methods for inference in the node-level privacy model by evaluating the
noise addition of our proposed methods under a variety of assumptions. In summary, our
experimental results suggest that our proposed restricted sensitivity-based methods allow
for accurate inference under strong privacy guarantees in many settings where current
methods do not, moving us closer to the goal of useful differentially private statistical
modeling of network data.

1.3 A Road Map

The remainder of this thesis is structured as follows:

In Chapter 2 we introduce the mathematical formulation of ERGMs. We define sufficient
statistics of these models commonly used to capture network structure and then describe
a standard non-private Bayesian inference method known as the Exchange Algorithm on
which our private inference method is based.

In Chapter 3 we give detailed background on differential privacy. We specify general
mechanisms that meet the definition of differential privacy and useful properties of
differential privacy and then describe the machinery of restricted sensitivity.
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In Chapter 4 we propose new methods for differentially private inference on ERGMs. In
particular, we prove bounds on the restricted sensitivity of the common sufficient statistics
of ERGMs introduced in Chapter 2 under both edge-level and node-level privacy, so that
using mechanisms introduced in Chapter 4, we can provably protect differential privacy
by adding statistical noise to sufficient statistics. We introduce a modified version of the
Exchange Algorithm for Bayesian inference on ERGMs, which takes into account the noise
of the privacy mechanism, thereby performing valid inference over the private posterior.
Finally, we compare our method to existing work, giving high-level motivation for why we
expect restricted sensitivity to outperform current methods.

In Chapter 5 we empirically evaluate the performance of our proposed methods against
current work in both the edge-level and node-level privacy models. We look at both the
level of noise addition to sufficient statistics and the accuracy of parameter estimation for
3 synthetic network models. In addition, we test inference on a friend network of high
school students.

In Chapter 6 we conclude with suggestions for future work.
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Chapter 2: Statistical Modeling of Networks

An increasingly popular approach in quantitative analysis of networks is to fit statistical
models to realized network data. Many of these models have generative interpretations,
allowing researchers to understand the relative importance of multiple endogenous processes
to the resulting structure of the network. The advantage of such an approach is best
illustrated in contrast to computing statistics – like degree distributions or clustering
coefficients – to describe the network structure, without an explicit model of the network.
While such metrics are useful in summarizing the structural properties of a given network,
they cannot tease out the underlying processes that may give rise to such structures.

For example, one of the distinguishing characteristics of many real-world social networks is
the tendency to have more triangles (sets of three connected nodes) than would be expected
by drawing random edges of a graph [GKM09]. There are a number of different processes
in the formation of a friend network that could give rise to this outcome. One potential
explanation is the notion of “triangle closure,” or the tendency for people to become
friends with friends-of-friends, since they are easier to meet. Another subtly different
explanation is that triangles arise out of “assortative matching,” the propensity for people
with the same attributes to become friends with one another, leading to clustering in the
network. Finally, a high number of triangles in a social network could arise for reasons of
“sociality,” the presence of only a few highly social individuals in the network, who are
mutual friends to many people. In order to consider what global or local processes best
explain particular structures of a network, a statistical model of network data posits a
probability distribution over the space of possible networks. The goal of inference is to
tune parameters of the distribution, such that the realized network is likely to be observed
under the probability distribution.

A simple example of such a model is the Erdös-Rényi Random Graph Model, known as
the G(n, p) model, which proposes that edges are drawn independently with probability p
between any two nodes of a network with n nodes. While this model has been studied in
great depth by graph theorists, it does not capture many important features of real world
networks, like the tendency for clustering or the power-law distribution of degrees. In
order to model such structures in networks, a more general class of random graph models
are Exponential Random Graph Models.

In this chapter, we give the mathematical foundations for exponential random graph
models. In Section 2.1, we introduce the formulation of the general class of models. In
Section 2.2, we provide definitions and intuition for some of the most commonly used
sufficient statistics in ERGMS. We introduce both statistics that capture substructure
of the network like triangles or stars and statistics that account for labeled nodes in the
network. Lastly, in Section 2.3 we describe a standard method used for Bayesian inference
on ERGMs called the Exchange Algorithm.
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2.1 Exponential Random Graph Models (ERGMs)

Formally, a graph G = (V,E) is defined by a set of nodes (or vertices) V , with |V | = n
and edges E, representing the presence or absence of relationships between nodes. We will
use the “adjacency matrix” representation of a graph, which we denote x, where xij = 1 if
an edge exists between nodes i and j and xij = 0 otherwise. The models we consider are
defined over undirected graphs, where all the edges are bidirectional, and the adjacency
matrix is therefore symmetric. We refer to the number of edges adjacent to node i as
the degree of node i so di =

∑n
j=1 xij . Then, the degree distribution is D = (D0, ..., Dn−1)

where Dk = |{i ∈ V : di = k}|.
Definition 2.1 (Exponential Random Graph [WP96]). A probability distribution over
graphs of n vertices belongs to the family of exponential random graph models (henceforth
referred to as ERGMs) if it takes the form:

Pr(x|θ) = exp
{
θTu(x)− ψ(θ)

}
where θ is a vector of parameters of the model, u(x) is a vector of sufficient statistics
computed on graph x, and ψ(θ) is a normalization constant needed to ensure a valid
probability distribution so:

ψ(θ) = log
∑
x′

exp
{
θTu(x′)

}

ERGMs describe a broad class of random graphs, with varying conditional dependence
relationships between edges. For instance, the G(n, p) graph can be viewed as an ERGM:

Example 2.1 (G(n, p) graphs). We can represent the Erdös-Rényi Random Graph
(G(n, p)) model as an ERGM, by taking

u(x) = |E|, θ = log
p

1− p

ψ(θ) = −
(
n

2

)
log(1− p) = −

(
n

2

)
log

e−θ

1 + e−θ

Then,

Pr(x|θ) = exp

{
|E| log

p

1− p
+

(
n

2

)
log(1− p)

}
= p|E|(1− p)(

n
2)−|E|

=
∏
i<j

pxij(1− p)1−xij

so each possible edge is included independently with probability p as specified by the
Erdös-Rényi Model.

In order to model more complex structures in a network, researchers have proposed higher
order sufficient statistics of ERGMs that imply more general conditional independence
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assumptions than the Erdös-Rényi Model. For instance, “Markov” graphs, allow the
probabilities of any two possible edges in a graph to be conditionally dependent if the
edges share a common endpoint. This dependency allows for node level effects on edge
formation. In fact, Markov dependencies are captured by ERGMs of the following form:

Example 2.2 (Markov graphs [FS86]). Any undirected Markov graph has probability
distribution:

Pr(x|θ, τ) = exp

{
n−1∑
k=1

θkSk(x) + τT (x)− ψ(θ, τ)

}
where the sufficient statistics are

number of edges: S1(x) =
∑

1≤i<j≤n

xij = |E|

number of k-stars (k ≥ 2) : Sk(x) =
n−1∑
i=1

(
i

k

)
Di(x)

number of triangles: T (x) =
∑

1≤h<i<j<≤n

xhixijxhj

and the parameters are {θk}nk=1 and τ .1

2.2 Sufficient Statistics of ERGMs

In practice, due to its simplicity, the G(n, p) model is used only as a starting point in
inference over real-world data, while the full Markov graph model is infrequently used
as it suffers from poor statistical properties. In particular, the Markov graph model is
degenerate for many parameter configurations, representing only distributions that put
all of their probability mass on either nearly-complete graphs (graphs with all edges
present) or on G(n, p) graphs [Jon99]. In response to these problems of degeneracy with
Markov graphs, more robust “alternating” sufficient statistics are generally used in ERGMs
to capture structural properties of networks. We will first provide definitions of these
statistics and then expand on the mathematical motivation behind them.

2.2.1 Alternating Sufficient Statistics

Definition 2.2 (Alternating k-star statistic [SPRH06]). The alternating k-star statistic
on graph x with weighting parameter λ ≥ 1 is defined as

u
(s)
λ (x) = S2 −

S3

λ
+
S4

λ2
− · · ·+ (−1)n−2

Sn−1
λn−3

=
n−1∑
k=2

Sk
λk−2

1Note that setting θ2 = ... = θk = τ = 0 in the Markov model, we recover the G(n, p) model, which is an
instance of a Markov graph since any two edges are conditionally independent in the G(n, p) model.
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. . .

k-star (Sk)

. . .

k-triangle (Tk)

. . .

k-two-path (Uk)

Figure 2.1: Subgraphs used in sufficient statistics of ERGMs.

We introduce the notion of “shared partners” of two nodes – the number of common
neighbors that two nodes share – which give a clean way to count k-triangles and k-two-
paths.

Definition 2.3 (Shared partners). We denote the shared partner count of nodes i and j:

Pij(x) =
∑
`∈V

xi`xj` (2.1)

We define k-triangles analogously to k-stars, so that a k-triangle consists of k triangles
that all share an edge. We can count the total number of k-triangles in a graph using the
number of shared partners:

Tk(x) =
∑

1≤i<j≤n

xij

(
Pij
k

)
for (k ≥ 2), and T1 =

1

3

∑
1≤i<j≤n

xijPij (2.2)

where T1 has an extra factor of 1
3

in front because of the symmetry of a 1-triangle for all
three edges included in the triangle.

Definition 2.4 (Alternating k-triangle statistic [SPRH06]). The alternating k-triangle
statistic on graph x with weighting parameter γ ≥ 1 is defined as

u(t)γ (x) = 3T1 −
T2
γ

+
T3
γ2
− · · ·+ (−1)n−3

Tn−2
γn−3

= 3T1 +
n−2∑
k=2

(
−1

γ

)k−1
Tk

with a factor of 3 in front of T1 so that each k-triangle is counted once for each edge that
is a base of the k-triangle.

We define an independent k-two-path as a pair of nodes (possibly connected or unconnected)
with k paths of length 2 connecting them. We can think of a k-two-path as a precondition
for a k-triangle, since every k-triangle must contain an independent k-two-path. In terms
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of shared partners, independent k-two-paths can be represented as:

Uk(x) =
∑

1≤i<j≤n

(
Pij
k

)
for k 6= 2 and U2(x) =

1

2

∑
1≤i<j≤n

(
Pij
2

)
(2.3)

where U2 is preceded by a factor of 1
2
, because a k-two-path with k = 2 is a 4-cycle and

hence is symmetric with respect to the two pairs of non-adjacent nodes making up the
cycle.

Definition 2.5 (Alternating k-two-path statistic [SPRH06]). The alternating k-two-path
statistic on graph x with weighting parameter γ ≥ 1 is defined as

u(p)γ (x) = U1 −
2U2

γ
+
U3

γ2
− · · ·+ (−1)n−3

Un−2
γn−3

= U1 −
2U2

γ
+

n−2∑
k=3

(
−1

γ

)k−1
Uk

Now, having defined the “alternating” sufficient statistics, the proposed model has the
form

Pr(x|θ) = exp
{
θ1E(x) + θ2u

(s)
λ (x) + θ3u

(t)
γ (x) + θ4u

(p)
γ (x)− ψ(θ)

}
(2.4)

where E(x) is the number of edges in graph x, the alternating k-two-path and k-triangle
statistics generally use the same weighting parameter γ. In practice, a subset of the
sufficient statistics can be used in the model, depending on what properties of a graph
are pertinent to model for a given network.

The overarching motivation behind introducing “alternating” sufficient statistics of the
ERGMs is that these statistics are robust to addition or removal of an edge adjacent to
an individual node, alleviating degeneracies in the Markov graph model. For instance,
consider adding an edge to a high degree node with degree k. This new edges contributes
one (k + 1)-star,

(
k
k−1

)
k-stars,

(
k
k−2

)
(k − 1)-stars and so on. Therefore, the total number

of additional stars in the graph resulting from adding this edge is
∑k

i=0

(
k
i

)
= 2k. For

Markov graphs including all stars with arbitrary associated parameters, this could lead to
a large increase (or decrease) in the likelihood of the graph making the model degenerate
as it places almost all of its probability on either near-complete or near-empty graphs.
However, by imposing constraints on the parameters θk, namely by alternating the signs
of the k-star statistics, the additional (k − 1)-stars and k-stars balance each-other out.
The same general reasoning applies to the use of alternating statistics for k-triangles and
k-two-paths – alternation prevents the probability distribution from putting all of its mass
on graphs with many high degree nodes, preventing degeneracy of the model.

This interpretation of alternating statics as limiting the sensitivity of the likelihood to
addition or removal of edges to high degree nodes can be understood by looking at an
alternative representation of the statistics in terms of the degree distribution and the
number of shared partners for nodes. Below, we present these equivalent representations
of the statistics, which will also be helpful in proofs of privacy in Chapter 4.
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Alternating k-star

Note that using the relationship between k-stars and degrees given in Example 2.2 along
with the binomial theorem we can rewrite the alternating k-star statistic as:

u
(s)
λ (x) =

n−1∑
i=1

Di(x)
n−1∑
k=2

(
−1

λ

)k−2(
i

k

)

= λ2
n−1∑
i=0

(
λ− 1

λ

)i
Di + 2λ|E| − nλ2 (2.5)

The alternating k-star statistic is thus made up of the number of edges as well as a
linear combination of the degree sequence where lower degree nodes are up-weighted
exponentially compared to higher degree nodes, reflecting the tendency towards a power
law degree distribution. Since a term representing the number of edges in the network is
generally included along with this statistic, the model is mathematically equivalent to
a model using a geometrically weighted average of the degree sequence. Sociologically,
the coefficient of the k-star statistic can thus be interpreted as the propensity for high
degree nodes in the network. If the coefficient of the statistic is positive, then networks
with a few high degree “hubs” are observed, while if it is negative, high degree nodes are
discouraged and the network consists of mostly low-degree nodes [SPRH06].

Alternating k-triangle

Similarly, for the alternating k-triangle statistic, we can gain insight by rewriting in terms
of the number of shared partners for pairs of nodes. By using this representation of
k-triangles from Equation (2.2) along with the binomial theorem, we can rewrite the
alternating k-triangle statistic as:

u(t)γ (x) =
∑

1≤i<j≤n

xij

n−2∑
k=1

(
−1

γ

)k−1(
Pij
k

)

= γ
∑

1≤i<j≤n

xij

(
1−

(
γ − 1

γ

)Pij)

= γ|E| − γ
∑

1≤i<j≤n

xij

(
γ − 1

γ

)Pij
(2.6)

Note, then, that any edge that does not participate in a triangle (so xij = 1 but Pij = 0)
does not contribute to the the alternating k-triangle statistic. On the other hand, as we
add additional shared partners to an edge, the second term in (2.6) falls exponentially
so the statistic increases, but by less for higher order k-triangles than for lower-order
triangles. Sociologically, this term can be interpreted as the importance of triangle closure
in the generation of the graph [GKM09]. In contrast to directly including the number of
triangles in the graph, the alternating k-triangles statistic is more stable, preventing the
model degeneracies discussed above.
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Alternating k-two-path

Using the representation of k-two-paths in terms of shared partners from Equation (2.3)
and the binomial theorem, we can rewrite the alternating k-two-path statistic as:

u(p)γ (x) =
∑

1≤i<j≤n

n−2∑
k=1

(
−1

γ

)k−1(
Pij
k

)

= γ
∑

1≤i<j≤n

(
1−

(
γ − 1

γ

)Pij)

= γ

(
n

2

)
− γ

∑
1≤i<j≤n

(
γ − 1

γ

)Pij
(2.7)

Thus, the alternating k-two-path has an interpretation similar to that of the alternating
k-triangle. As shared partners are added for any two nodes, the second term of the
statistic increases, but the increase falls exponentially with additional partners. This term
is generally only included in conjunction with the k-triangle statistic to try to separate
out the effects of two-paths forming between unconnected nodes and mutual connections
forming between already connected nodes.

2.2.2 Sufficient Statistics for Labeled Nodes

The alternating statistics over k-stars, k-triangles and k-two-paths capture structural
properties of network data. Frequently, however, there are labels associated with nodes in
the network, which are important to model. ERGMs can take into consideration both
the structure of the network and the labels associated with nodes, by including sufficient
statistics based off of the labels, allowing researchers to capture properties like homophily,
the tendency for similar actors to build relationships with one another within a network.
Generally, labels are taken to be fixed and exogenous to the edges, so that attributes of
the nodes may affect the formation of the network, whereas relationships in the network
are not thought of as impacting attributes. This is generally a reasonable assumption,
as labels often represent the identity of an individual, containing characteristics like
gender, race, or age. As there are many potential ways to incorporate labeled data into
an ERGM, we will focus here on three of the most commonly used statistics for discrete
nodal attributes, “homophily”, “popularity” and “mixing.”2

In particular, letting zi be a discrete attribute of node i (gender, for instance) we introduce
the following sufficient statistics to represent different processes of social selection [LKR12]:

2These have fairly straightforward analogues for continuous nodal attributes, but we focus on the discrete
case, as this is applicable to the dataset analyzed.
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Table 2.1: Common sufficient statistics for discrete nodal attributes.

Parameter Statistic

Homophily (Uniform)
∑
i<j

xijI(zi = zj)

Homophily (Differential)
∑
i<j

xijI(zi = zj = a)

Popularity
∑
i<j

xij (I(zi = a) + I(zj = a))

Mixing
∑
i<j

xijI(zi = a)I(zj = b)

Uniform homophily captures the tendency for nodes with the same attribute to share
an edge, while differential homophily captures this phenomenon for a specific attribute,
which may be useful if, for instance, we thought that men and women have different
propensities to become friends with people of the same gender. The popularity parameter
is fairly self-explanatory as it measures the number of edges that have nodes with a given
attribute as an endpoint and can be thought of as the overall sociability of a group with a
specific attribute. Finally, the mixing parameter represents the number of edges between
nodes with two different, specific attributes. Including such nodal attribute statistics
in conjunction with the alternating sufficient statistics discussed in Section 2.2 allows
for specification of ERGMs that separate out social selection effects like homophily from
structural effects like triangle closure, making ERGMs a powerful modeling tool.

2.3 Bayesian Inference on ERGMs

Having provided an ERGM specification that captures the characteristics of interest in
a network, the goal of inference is to find parameters θ that describe the realized data
well. In the framework of maximum likelihood estimation, this means finding a θ that
maximizes the probability of drawing observed network xobs from the distribution p(X|θ).
In the Bayesian paradigm, an analyst specifies a prior distribution over θ and then wishes
to compute a posterior distribution of θ given the observed network. Bayesian inference is
more general than maximum likelihood inference in the sense that if an analyst chooses
a flat prior on θ (a uniform prior over the parameter space) and takes the maximum of
the posterior as a point estimate, then Bayesian inference reduces to maximum likelihood
inference.

In general, exact inference is not feasible for ERGMs due to the presence of the intractable
normalizing constant ψ(θ) in the likelihood (Definition 2.1), which is a sum over the

space of possible graphs on n nodes of size 2(n2). Therefore, a number of approximate
MCMC approaches have been proposed to perform inference. In this work, we focus on
Bayesian inference over ERGMs, because it constitutes the state-of-the-art in non-private
inference methods and has been shown to be more stable than MCMC-MLE approaches
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[CF11]. Additionally, the noise from differentially private mechanisms can be incorporated
quite naturally into the Bayesian framework. The non-private Bayesian inference method
proposed by Caimo and Friel is based on the Exchange Algorithm[MGM12] and is fairly
simple to describe:

Algorithm 1 Non-Private Bayesian Inference for ERGMs (Exchange Algorithm) [CF11]

Input: ERGM distribution π(X|θ), prior p(θ), observed graph xobs, number of burn-in
draws r, symmetric proposal distribution h(·|θ).
Output: sequence of draws θ(r), ...θ(T ) from posterior distribution p(θ|xobs).

For t = 1, ..., T :

1. Draw parameter vector θ∗ ∼ h(·|θ(t−1))

2. Sample graph x∗ ∼ π(·|θ∗)

3. Accept the proposed move with probability min {1, α}. If the move is accepted, set
θ(t) = θ∗. Otherwise, set θ(t) = θ(t−1)

where

α =
p(θ∗)

p(θ(t−1))
exp

{(
θ∗ − θ(t−1)

)T
(u(xobs)− u(x∗))

}

The algorithm can be justified by considering sampling from an augmented distribution
with two auxiliary variables x∗, θ∗:

p(x∗, θ∗, θ|xobs) ∝ π(xobs|θ)p(θ)h(θ∗|θ)π(x∗|θ∗)

where π refers to the ERGM probability distribution. Marginalizing out θ∗ and x from
the augmented distribution gives the posterior distribution p(θ|xobs) of interest. Steps 1
and 2 are Gibbs updates of θ∗ and x∗, while step 3 can be justified as the appropriate
Metropolis-Hastings acceptance ratio:

α =
π(xobs|θ∗)p(θ∗)h(θ(t−1)|θ∗)π(x∗|θ(t−1))
π(xobs|θ(t−1))p(θ)h(θ∗|θ(t−1))π(x∗|θ∗)

=
p(θ∗)

p(θ)

π(xobs|θ∗)π(x∗|θ(t−1))
π(xobs|θ(t−1))π(x∗|θ∗)

where we drop the h transition probabilities by symmetry and the intractable normalizing
constants for θ∗ and θ(t−1) cancel, allowing easy computation of α. Thus, by standard
MCMC theory, the draws θ(t) come asymptotically from the desired posterior distribution.

In practice, Caimo and Friel advocate the use of a population-MCMC variant of their
basic algorithm, in which multiple Markov chains are run in parallel, with the state space
defined over the θ’s of these multiple chains, as this population MCMC approach tends to
converge faster and lead to less temporal dependence in draws from the Markov chain. We
use this method, known as Parallel Adaptive Direction Sampling, in our private inference
methods and explain it in detail in Appendix A along with a Metropolis-Hastings sampler
to simulate networks from an ERGM with specified parameters.
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Chapter 3: Differential Privacy for Networks

We employ the framework of differential privacy to protect individuals’ personal data while
analyzing networks. First, in Section 3.1 we provide the basic definitions of differential
privacy and mechanisms that meet this definition. We also explain specific challenges that
arise in applying these general definitions to network data. Then, in Section 3.2 we detail
the machinery of “restricted sensitivity” which we propose to use for differentially private
inference over ERGMs.

3.1 Basics of Differential Privacy

Definitions

Let D denote the space of all possible datasets. Then:

Definition 3.1. Two datasets x, x′ ∈ D are adjacent, written as x ∼ x′, if they differ in
the record of one individual. For tabular data, this means that the datasets differ in a
single row.

Definition 3.2. The distance between two datasets x, x′ ∈ D, denoted d(x, x′) is the
minimum length of the sequence of datasets beginning with x and ending with x′ such
that every two consecutive datasets on the path are adjacent. So, two datasets are clearly
adjacent, or neighboring, if d(x, x′) = 1.

Definition 3.3 (ε-differential privacy [DMNS06]). Let A be an algorithm over datasets
in D. Then A is ε-differentially private if for all S ⊆ Range(A) and for every pair of
neighboring datasets x, x′ ∈ D,

Pr[A(x) ∈ S] ≤ eε Pr[A(x′) ∈ S]

Intuitively, differential privacy promises that the participation of any individual in a
dataset does not significantly change the outcome of an analysis run on the dataset,
limiting the potential harm (or benefit) to a data provider due to the inclusion of her data.
Smaller values of ε correspond to stronger guarantees of privacy where ε = 0 suggests that
the algorithm does not learn anything from the data and therefore the algorithm is useless.
Additionally, it is clear that no non-trivial deterministic algorithm satisfies ε-differential
privacy for any value of ε. If A is deterministic and its output differs on at least two
datasets, then there must be neighboring datasets such that the probability of a specific
output is 0 on one dataset and 1 on the other, preventing the ratio between probabilities
on this response from being bounded as required. Therefore, mechanisms that provide
differential privacy will have to introduce some randomness, or noise, into their answers.
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We can relax the definition of ε-differential privacy to allow for a small probability of
potentially catastrophic privacy leakage:

Definition 3.4 ((ε, δ)-differential privacy [DMNS06]). A is (ε, δ)-differentially private if
for all S ⊆ Range(A) and for every pair of neighboring datasets x, x′ ∈ D,

Pr[A(x) ∈ S] ≤ eε Pr[A(x′) ∈ S] + δ

It is immediate from the definition that (ε, δ)-differential privacy is equivalent to ε-
differential privacy when δ = 0. For δ > 0, however, (ε, δ) guarantees that the mechanism
is ε-differentially private with probability 1 − δ, but makes no promises about the privacy
loss that occurs with probability δ. Therefore, if δ is on the order of 1

n
where n is the size

of the dataset, it is possible to satisfy (ε, δ)-DP by releasing a row of the data. Further, a
mechanism that sometimes releases the entire dataset still satisfies (ε, δ)-DP.

Example 3.1. An algorithm that selects at random one record in the dataset and exactly
releases this record is (ε, 1

n
)-differentially private for any value of ε.

Example 3.2. An algorithm that releases the entire dataset with probability δ and a
constant value with probability 1− δ is (ε, δ)-differentially private for any value of ε.

As these examples demonstrate, (ε, δ)-differential privacy only provides meaningful privacy
for values of δ much smaller than 1

n
. In particular, ε should be taken to be “cryptographi-

cally small” (e.g. take δ = 1
1,000,000

for networks over a few 100 nodes.)

Properties

One of the desirable properties of differential privacy is its immunity to post-processing –
armed with the output of a differentially private mechanism, an analyst cannot degrade
privacy any further without additional information about the private dataset. In the
context of inference over ERGMs, this property suggests that after computing sufficient
statistics of a model in a differentially private manner, inference using these sufficient
statistics can be thought of as a post-processing step that does not further degrade privacy.
Formally:

Property 1 (Post-processing [DMNS06]). If A is an (ε, δ)-differentially private algorithm,
then for an arbitrary mapping f , f ◦ A is also (ε, δ)-differentially private.

A second useful property of differential privacy is that multiple differentially private
algorithms compose, so applying many differentially private algorithms to the same
dataset still provides privacy, albeit with higher privacy loss. This allows for basic DP
algorithms to be used as building blocks in more complicated algorithms and in particular
to split a privacy budget across multiple private computations on the data. Specifically,
basic composition states that the privacy loss incurred by running multiple DP algorithms
on a dataset grows linearly:
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Property 2 (Basic Composition [DMNS06]). Let Ai be an (εi, δi)-differentially private
algorithm for i ∈ [k]. Then, the algorithm releasing the result of running all k algorithms

on the dataset A[k](x) = (A1(x), ..., Ak(x)) is
(∑k

i=1 εi,
∑k

i=1 δi

)
-DP.

Mechanisms

We now describe two simple mechanisms that satisfy differential privacy. First, we describe
the Laplace Mechanism, which answers queries on a dataset in a differentially private
manner by adding Laplace noise to queries. Then, we introduce Randomized Response,
which provides privacy by randomly perturbing the underlying dataset.

Laplace Mechanism

We define a query to be a function mapping the dataset to a vector of real numbers,
f : D → Rm. Then the local sensitivity of a query on a dataset x is the maximum `1-norm
of the difference in the query over neighbors of dataset x.

Definition 3.5 (Local sensitivity). The local sensitivity of a query f on a dataset x is

LSf (x) = max
x′∼x
||f(x)− f(x′)||1

The global sensitivity is the worst-case local sensitivity over all possible datasets:

Definition 3.6 (Global sensitivity). The global sensitivity of a query f is

GSf = max
x∈D

LSf (x)

A basic result in differential privacy is that adding Laplace noise scaled to the global
sensitivity provides differential privacy:

Theorem 3.1 (Laplace mechanism [DMNS06]). Let f be a query on dataset x with global
sensitivity GSf and let Lap denote the zero-mean Laplace distribution1. Then, the Laplace
mechanism AL that outputs

AL(x, f, ε) = f(x) + (Y1, ..., Ym)

where Yi
i.i.d.∼ Lap

(
GSf
ε

)
is ε-differentially private.

Note that the Laplace mechanism scales noise to the global sensitivity. While it is tempting
to calibrate noise to local sensitivity, this does not protect privacy, because the noise
level may disclose information about the underlying dataset. However, we can add noise
scaled to a smooth upper bound on the local sensitivity, namely a function S that is larger

1The Laplace distribution centered at 0 with scale parameter b has probability density function p(x|b) =
1
2be
−|x|/b and the variance of the distribution is σ2 = 2b2.
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than the local sensitivity for all datasets and for which ln(S(·)) is not too sensitive. The
smoothness is parameterized by β, where β depends on ε and δ:

Theorem 3.2 (Calibrating Noise to β-Smooth Upper Bound on Local Sensitivity [NRS07]).
A β-smooth upper bound on the local sensitivity of query f is a function Sf,β that satisfies:

(i) Sf,β(x) ≥ LSf (x) ∀x ∈ D

(ii) Sf,β(x) ≤ exp {−βd(x, x′)}Sf,β(x′) ∀x, x′ ∈ D

It is possible to satisfy (ε, δ)-differential privacy by adding Laplace noise scaled to
2Sf,β(x)

ε

where β = − ε
2 ln(δ)

and Sf,β is a β-smooth upper bound on LSf (x). It is possible to satisfy

ε-differential privacy by adding Cauchy noise2 scaled to
√

2Sf,β(x) where β = ε/
√

2.

Then, global sensitivity trivially satisfies the definition of a β-smooth upper bound on
local sensitivity, but it is a very conservative bound. The smallest function S to satisfy
the definition of a β-smooth upper bound is known as the smooth sensitivity :

Definition 3.7 (Smooth Sensitivity [NRS07]). For query f and dataset x, define the
local sensitivity at distance of t to be

LS
(t)
f (x) = max

x′∈D:
d(x,x′)≤t|

LSf (x
′)

Then the smooth sensitivity is

S∗f,β(D) = max
t
e−tβLS(t)(D)

The smooth sensitivity is the smallest β-smooth upper bound on the local sensitivity in
the sense that for any other β-smooth upper bound S, S∗f,β(D) ≤ S(D) for all datasets D.
Thus, if we can compute the smooth sensitivity efficiently, then we can potentially add
much less noise by calibrating to smooth rather than global sensitivity.

Randomized Response

In contrast to the Laplace Mechanism, which perturbs the output of a query on a dataset,
randomized response perturbs the underlying dataset by randomly introducing spurious
data. A typical version of randomized response over binary data proceeds as follows:

For each bit in a dataset consisting of {0, 1} values:

1. Flip a biased coin with probability p1 of heads.

2. If tails, then record the bit truthfully.

2The Cauchy distribution with median 0 and scale parameter b has probability density function p(x|b) =
1/(bπ(1 + (x/b)2)). Roughly, the Cauchy distribution can provide ε-DP because it has fatter tails than
the Laplace distribution.
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3. If heads, then flip a second biased coin with probability p2 of heads and record 1 if
heads, 0 if tails.

A benefit of randomized response is that it can be employed while collecting data, by
using the coin-flipping procedure to collect responses in a study. The method provides
plausible deniability for respondents, so it may incentivize participation in surveys for
sensitive information. It is easy to verify that taking p1 = 2p and p2 = 1

2
yields the

following simpler description:

Theorem 3.3 (Binary Randomized Response [War65],[KKS17]). Let D = {0, 1}n so
x ∈ D consists of binary data. Then, randomized response flips each bit of x with probability
p ∈ (0, 1

2
) and releases the resulting noisy bits. This process provides ε-differential privacy

taking p ≥ 1
eε+1

.

3.1.1 Edge-Level vs. Node-Level Adjacency

We now turn to the question of how to define “adjacency” for graphs, as opposed to
tabular data. We will define graphs abstractly in terms of vertex sets and edge sets, rather
than as adjacency matrices in this section, as it makes the definitions easier to specify and
more intuitive. There are two reasonable and widely used definitions of adjacency, which
provide privacy at very different granularities and thus may be appropriate in different
circumstances:

Definition 3.8 (Edge-level adjacency). We define two graphs G1 = (V1, E1) and G2 =
(V2, E2) to be edge-adjacent if they have the same vertex set (V1 = V2) and they differ in
only one edge (|E14E2| = 1).

Differential privacy with respect to edge-adjacency protects the privacy of individual
relationships between nodes. Thus, edge-level privacy could protect a Facebook friendship
with a controversial political leader. However, privacy at the edge-level could not promise
to prevent an adversary from discerning whether an individual has mostly Republican
or Democratic friends on Facebook. Such concerns motivate a stronger definition of
neighboring graphs:

Definition 3.9 (Node-level adjacency). We define two graphs G1 = (V1, E1) and G2 =
(V2, E2) to be node-adjacent if G1 − vi = G2 − vi for some vertex vi, where G− vi means
deleting edges adjacent to node vi.

An additional consideration in defining adjacent graphs is how to account for labeled
nodes. In the node-level case, labels are protected since removing a vertex and replacing
it with a different vertex suggests changing the labeling on that vertex. For edge-level
privacy, labels could be taken to be either public or private information. There may be
cases where the only sensitive information is the edges in the graph, not the identities of
nodes (for instance, in a public social network, where people’s identities may be readily
searchable online, while their friendships are kept private.) However, in many settings,
it seems preferable to protect the labels in addition to the relationships. Thus, letting
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there be some labeling function associated with a network that specifies a vector of nodal
attributes for each node ` : V → Rm, we define edge-level adjacency for labeled networks
as follows:

Definition 3.10 (Edge-level adjacency with private labels). We define two graphs G1 =
(V1, E1) and G2 = (V2, E2) with labeling functions `1 and `2 to be edge-adjacent with
private labels if they have the same vertex set (V1 = V2) and either they differ in only one
edge (|E14E2| = 1) or differ in one label (`1(v) 6= `2(v) for exactly one vertex v.)

3.2 Restricted Sensitivity

Node-level privacy constitutes a strictly stronger guarantee than edge-level privacy, but it
is often much more difficult to perform accurate analysis under node-level privacy. For
instance, consider computing the degree distribution on an n-node graph. The global
sensitivity under edge-level adjacency is only 2, since the degree of two nodes will change
by 1 due to the addition or removal of an edge. However, under node-level adjacency,
removing or adding all edges to a node of degree n− 1 would affect n entries of the degree
distribution, so the global sensitivity is n and naive application of the Laplace mechanism
would completely destroy the counts of the degree distribution. Furthermore, even under
edge-level adjacency many statistics computed on networks have high global sensitivity.
For instance, the count of triangles in a graph (which is used in the alternating k-triangle
sufficient statistic in ERGMs) has global sensitivity O(n) in the edge-level case, since a
single edge could be the base of a triangle with each other node in the graph.

The high global sensitivity of many graph statistics is particularly problematic for sparse
graphs, where the noise completely overwhelms the true statistics. This is especially
troubling, because sparsity is a characteristic of many real world networks. For instance,
Facebook has billions of users, but users tend to have on the order of 1000 friends or
fewer. We can formalize the hypothesis that a graph is sparse by considering the degree
of the graph, the maximum degree of any of its nodes. If we hypothesize that all the
graphs under consideration have limited degree, then the global sensitivity might be much
lower over these limited-degree graphs than over all graphs on n nodes. For example,
considering the space of graphs with degree of at most k << n, the triangle count would
have a much lower global sensitivity of O(k) rather than O(n) over the space of all graphs
on n nodes.

If we were certain that the graphs under consideration always had limited degree, we
could scale noise to the sensitivity over limited degree graphs. However, our hypothesis
might be false, so adding noise assuming that the graph has limited degree would not
protect privacy for an arbitrary graph. Therefore, it is necessary to first project the graph
into the space of limited degree graphs. If the limited degree hypothesis is true then the
projection will not alter the graph at all, so the analysis is accurate up to the distortion
of the noise-adding procedure. We formally define the limited degree hypothesis :

Definition 3.11 (Limited Degree Hypothesis). Let Gn be the space of graphs on n nodes.
Then, a graph G ∈ Gn satisfies the limited degree hypothesis if it belongs to the class Hk
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where Hk is the set of graphs:

Hk = {G = (V,E) ∈ Gn : deg(v) ≤ k, ∀v ∈ V }

Then, the restricted sensitivity is the global sensitivity of the query restricted to limited
degree graphs:

Definition 3.12 (Restricted sensitivity [BBDS13]). For a given notion of adjacency
(either edge or node), we define the restricted sensitivity of query f over hypothesis
Hk ∈ Gn as

RSf (H) = max
G,G′∈Hk:
G∼G′

||f(G− f(G′)||1

To protect privacy over arbitrary graphs, while calibrating noise to the restricted sensitivity
rather than the global sensitivity, we require a projection µ : G → Hk. We can define
the sensitivity of the projection in terms of how much it changes the distance by a
multiplicative factor between any two adjacent graphs. In particular:

Definition 3.13 (Local sensitivity of projection µ [KNRS13]). Define the local sensitivity
of projection µ : Gn → Hk on graph G ∈ Gn to be:

LSµ(G) = max
G′∼G

d(µ(G), µ(G′))

Then, the global sensitivity and smooth sensitivity can be defined as before. Now, if we
can find a projection µ, where it is possible to bound the global sensitivity by a small
constant, so ∀G ∈ Gn : LSµ(G) ≤ c, then for any two neighboring graphs the effect of first
projecting a graph to Hk before answering a query only increases global sensitivity by a
multiplicative factor of c:

Lemma 3.1 (Global Sensitivity on Composed Functions). For projection µ : Gn → Hk

and query f : Gn → Rm, define fHk = f ◦µ to be the query applied to the projection. Then
GSfHk ≤ GSµ ·RSf (Hk).

In particular, this suggests that if we find a projection to Hk with low global sensitivity c,
then using ε-differentially private mechanisms like the Laplace mechanism that calibrate
noise to c ·RSf (H) can give significant accuracy gains over global sensitivity. Blocki et al.
give such a projection for the edge-adjacency model with GSµ = 3 that is also efficient
(linear in the number of edges in the graph.) We give the details of this projection in
Appendix B.

In the node level-adjacency model an efficient projection with low global sensitivity is
not known [KNRS13]. However, it can be shown that if we use the smooth sensitivity of
µ, then multiplying this β-smooth upper bound by the restricted sensitivity of f gives a
β-smooth bound on the local sensitivity of the composition fHk as above:

Lemma 3.2 (β-Smooth Bound on Composed Functions). Let Sµ(G) be a β-smooth upper
bound on the local sensitivity of µ on graph G ∈ Gn. Then SfHk = Sµ(G) ·RSf(Hk) is a
β-smooth bound on the local sensitivity of fHk = f ◦ µ.
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We detail two possible projections for the node-adjacency model in in Appendix B
([KNRS13], [BBDS13]). The first, which we refer to as µtrunc simply removes nodes of
high degree and the other, µLP solves a linear program. It is possible to give β-smooth
upper bounds on the local sensitivity for each of these projections. Roughly speaking, the
benefits of node truncation are that it is more efficient than the LP and has low smooth
sensitivity when there are few nodes with degree close to the cutoff k, which is often
applicable since degree distributions frequently follow a power law. However, the smooth
sensitivity of µtrunc could be high for graphs in Hk if the graph does in fact have many
nodes with degree close to the cutoff k. On the other hand, the smooth sensitivity of
µLP is always relatively low when the hypothesis Hk is true, but the LP is not strictly a
projection in that it is guaranteed to project graphs in Hk to themselves, but its image
is H2k not Hk. Therefore, we must calibrate noise to the restricted sensitivity over H2k

when using the LP. Thus, we expect µtrunc to have low smooth sensitivity in practice and
to give a lower bound on restricted sensitivity than µLP (since node truncation requires
calibrating noise to restricted sensitivity over Hk rather than H2k.) For these reasons, in
addition to the greater efficiency of µtrunc, we propose using node truncation as a smooth
projection for the node-adjacency model.

Then, taking advantage of restricted sensitivity over Hk and the appropriate projections,
we can perform inference over ERGMs while adding relatively low noise to sufficient
statistics that have high global sensitivity. Our primary focus in proving privacy will
be bounding the restricted sensitivity of the queries of interest over Hk in order to take
advantage of this machinery of restricted sensitivity.
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Chapter 4: Private Inference on ERGMs

In this chapter, we propose new methods for differentially private inference over ERGMs
with the alternating and nodal attribute sufficient statistics defined in Section 2.2. We
propose perturbing the sufficient statistics, taking advantage of restricted sensitivity to
limit the amount of noise needed to protect privacy. Then, since the restricted sensitivity
is public, it is possible to perform Bayesian inference while accounting for the level of
noise addition. So we propose a principled inference method that converges asymptotically
(in the number of iterations of the MCMC procedure) to the posterior distribution
incorporating the randomness of the privacy mechanism. Incorporating the noise of the
privacy mechanism in inference has been shown to lead to more reliable results in many
cases (see [FGWC16], [KS16], [KKS17], [LM14] for instance.)

Our primary contribution is the proposal to use the machinery of restricted sensitivity in
adding noise to sufficient statistics. The advantages of employing restricted sensitivity for
inference over ERGMs are threefold:

• Calibrating noise to restricted sensitivity enables lower noise in the edge-adjacency
model than current methods, permitting accurate inference at smaller privacy
budgets.

• Restricted sensitivity permits private release of sufficient statistics under edge-level
privacy with private labels, whereas prior work has treated labels as public.

• By using restricted sensitivity, we suggest the first (to our knowledge) method that
performs differentially private inference under the node-adjacency model, a strictly
stronger notion of privacy than the edge-adjacency model.

Restricted sensitivity relies on the hypothesis that the graph under analysis is sparse,
namely that its max degree node has degree less than k. There are a number of reasons to
believe that the limited degree hypothesis Hk is a reasonable assumption when modeling
real social network data with ERGMs. First, previous empirical analyses of ERGMs
have demonstrated that for reasonable parameter values, the distribution tends to put
low probability mass on high-degree graphs [SPRH06]. Thus, given that we assume that
an observed network is roughly drawn from the probability distribution specified by an
ERGM, we believe with high probability that the graph has relatively low degree. Second,
many real-world social networks are fairly sparse and have bounded degree. Therefore,
an analyst is likely to believe that a network dataset under analysis represents a sparse
graph and could reasonably choose a degree cutoff based on similar public datasets or
domain knowledge.
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4.1 Releasing Private Sufficient Statistics

In this section, we bound the restricted sensitivity under Hk of a number of the most
commonly used sufficient statistics in ERGMs. As the following summary shows, in the
edge-adjacency case, restricted sensitivity is much lower than global sensitivity for alt-k-
triangle and alt-k-two path, assuming k << n. In the node-level case, adding noise scaled
to the global sensitivity overwhelms the computed statistics in most cases, motivating the
need for restricted sensitivity. For labeled networks, the global sensitivity is very low if
labels are considered public and only edges are taken to be private. However, if labels are
private, then the restricted sensitivity is much lower than the global sensitivity.

Table 4.1: Restricted Sensitivity on Hk for Common Structural Statistics

Edge-Level Node-Level
RSf (Hk) GSf RSf (Hk) GSf

Edges 1 1 k n− 1

Alt k-star (u
(s)
λ ) 2λ 2λ 3λk O(n)

Alt k-triangle (u
(t)
γ ) 2(k − 1) + γ O(n) k2 + (γ − 1)k O(n2)

Alt k-two-path (u
(p)
γ ) 2(k − 1) O(n) k2 O(n2)

Table 4.2: Restricted Sensitivity on Hk for Common Statistics of Labeled Networks

Public Labels Private Labels
GSf RSf (Hk) GSf

Homophily 1 k n− 1
Popularity 2 2k 2n
Mixing 1 k n− 1

Below, we derive the restricted sensitivity of the alternating sufficient statistics of an
ERGM under edge level privacy and node level privacy respectively. The “weighting
parameters” of the alternating statistics γ and λ are generally set to be small constants
between roughly 1 and 5 (most empirical work seems to find that values between 1 and 2
suffice) so the choice of this parameter has a fairly minor effect on the level of noise.

4.1.1 Edge Level Privacy

For the alternating k-star statistic under edge-level privacy, restricted sensitivity does not
give any advantage over using global sensitivity, as the global sensitivity of this statistic
is quite low:

Claim 4.1.1 (Global sensitivity of alternating k-star under edge-level privacy). The global
sensitivity of the alternating k-star statistic is less than 2λ.
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Proof. We use the alternative formulation of the statistic given in Equation (2.5):

u
(s)
λ (x) = λ2

n−1∑
i=0

(
λ− 1

λ

)i
Di + 2λ|E| − nλ2

Then, consider adjacent graphs x, x′ differing in one edge where x has the additional edge.
Then, the first term of the alternating k-statistic is larger for x′ than for x and by at
most 2λ and at least 0, while the second term is larger for x than for x′ by 2λ. Hence,
the difference between the alternating k-star statistic computed on x and x′ is at most
|2λ− 0| = 2λ.

Claim 4.1.2 (Restricted sensitivity of alternating k-triangle under edge-level privacy).
The restricted sensitivity of the alternating k-triangle statistic under Hk is less than
2(k − 1) + γ.

Proof. Consider two adjacent graphs x, x′ ∈ Hk differing in exactly one edge, so that
xij = 1 and x′ij = 0. Now, note that for nodes i and j, the number of shared partners
is the same in x and x′ since all edges are the same except for the edge between i and
j. Then, let Pij = P ′ij = m ≤ k − 1 by the limited degree hypothesis. Note that there
are 2m edges for which P ′e = Pe − 1, since there are two other edges in each triangle.
Then, recalling the definition of the alternating k-triangle statistic in terms of the shared
partners of i and j given in Equation (2.6):

u(t)γ (x) = γ|E| − γ
∑

1≤i<j≤n

xij

(
γ − 1

γ

)Pij
we have that

|u(t)γ (x)− u(t)γ (x′)| =

∣∣∣∣∣γ − γ
(
γ − 1

γ

)m
+ γ

2m∑
e=1

[(
γ − 1

γ

)Pe−1
−
(
γ − 1

γ

)Pe]∣∣∣∣∣
=

∣∣∣∣∣γ − γ
(
γ − 1

γ

)m
+

2m∑
e=1

(
γ − 1

γ

)Pe−1∣∣∣∣∣
≤ 2m+ γ

≤ 2(k − 1) + γ

Note the usefulness of restricted sensitivity here, in contrast to global sensitivity. The
global sensitivity of this statistic is O(n), since in the worst case there could be a graph
with an (n− 1)-triangle where removing the base of the triangle leads to the removal of
O(n) triangles. However, if we restrict degrees, we add much less noise.

Claim 4.1.3 (Restricted sensitivity of alternating k-two-path under edge-level privacy).
The restricted sensitivity of the alternating k-two-path statistic under Hk is less than
2(k − 1).
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Proof. The proof will proceed in roughly the same way as for k-triangles. Define x and x′

in the same way and recall the definition of the alternating k-two-path statistic in terms
of shared partners as given in Equation (2.7):

u(p)γ (x) = γ

(
n

2

)
− γ

∑
1≤i<j≤n

(
γ − 1

γ

)Pij
Then, the change between the statistic on x and x′ is equal to

|u(p)γ (x)− u(p)γ (x′)| =
2m∑
e=1

(
γ − 1

γ

)Pe−1
≤ 2m ≤ 2(k − 1)

4.1.2 Node Level Privacy

Claim 4.1.4 (Restricted sensitivity of alternating k-star under node-level privacy). The
restricted sensitivity with hypothesis Hk of alternating k-star under node-level differential
privacy is less than 3λk.

Proof. We will again use the formulation of the alternating k-star statistic in terms of
degree distribution from Equation (2.5). Now, consider two graphs x, x′ ∈ Hk differing in
one node i of degree m ≤ k, with all of its incident edges removed in x′. Then, the degree
of node i is m in x and 0 in x′, while the degrees of m other nodes are 1 lower in x′ than
in x, so:

|u(s)λ (x)− u(s)λ (x′)| =

∣∣∣∣∣∣2λm+ λ2
((

λ− 1

λ

)m
− 1

)
+
∑

j:xij=1

λ

(
λ− 1

λ

)dj−1∣∣∣∣∣∣
≤
∣∣∣∣3λm+ λ2

((
λ− 1

λ

)m
− 1

)∣∣∣∣
and note that 0 ≤

(
λ−1
λ

)m ≤ 1 and that |λ2| ≤ 3λm for reasonable choices of k and λ
(since generally we choose 1 < λ < 5, so in order to have the λ2 term dominate the 3λk
term we would have to restrict k to 1, which would not be interesting or realistic). Thus,
because m ≤ k, the sensitivity is bounded by 3λk.

Claim 4.1.5 (Restricted sensitivity of alternating k-triangle under node-level privacy).
The restricted sensitivity with hypothesis Hk of the alternating k-triangle statistic under
node-level differential privacy is less than k2 + (γ − 1)k.

Proof. Consider two adjacent graphs x, x′ ∈ Hk differing in one node i of degree m. Now,
since each of the m edges incident to node i is removed this changes m edges xij = 1 to
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x′ij = 0, so E(x)− E(x′) = m and for each of these m edges

xij

(
γ − 1

γ

)Pij
− x′ij

(
γ − 1

γ

)P ′ij
=

(
γ − 1

γ

)Pij
so the direct effect of removing the xij is that u

(t)
γ (x′)− u(t)γ (x′) ≤ mγ − 0 (ignoring the

effect on the shared partners of edges not adjacent to i.)

Now, we consider edges e such that the endpoints of e have i as a shared partner. Note
that there are

(
m
2

)
= m2 −m such edges, because we can choose any 2 edges of i and the

endpoints of these edges have i as a shared partner. Now, each of these edges still exists
in x′ij but has its number of shared partners decrease by 1. Then, we have

|u(t)γ (x)− u(t)γ (x′)| =

∣∣∣∣∣∣γm− γ
∑

j:xij=1

(
γ − 1

γ

)Pij
+

m2−m∑
e=1

(
γ − 1

γ

)Pe−1∣∣∣∣∣∣
≤ |γm+ (m2 −m)|
≤ k2 + (γ − 1)k

Claim 4.1.6 (Restricted sensitivity of alternating k-two-path under node-level privacy).
The restricted sensitivity with hypothesis Hk of the alternating k-two-path statistic under
node-level differential privacy is less than k2.

Proof. As for k-triangles, consider two adjacent graphs x, x′ ∈ Hk differing in node i of
degree m. Then, the removal of these m edges impacts the shared partners of m2 edges,
the m incident to i and the

(
m
2

)
= m2−m that have i as a shared partner and the decrease

in shared partners for each of these edges can change the statistic by at most 1 so the
overall change is at most m2 ≤ k2.

4.1.3 Private Labels

If labels are considered public, then the global sensitivity of the sufficient statistics using
discrete attributes of nodes given in Table 2.1 have low global sensitivity in the edge-
adjacency model, since they are effectively counts of edges for nodes with certain attributes,
and adjacent graphs have only a single edge changed and all labels kept the same. However,
if labels are considered private then the change in a single label could change the count
for all edges incident to that node, leading to very high global sensitivity of O(n). By
using restricted sensitivity, we can bound the sensitivity to be O(k). Additionally, note
that differential homphily and popularity are vectors of queries, with dimension the size
of the number of attributes under consideration. However, these queries are structurally
disjoint as a change in one attribute can only change the counts of two entries of the
vector, making it easy to bound the `1-sensitivity of the entire vector. We give the proof
for homophily, while the proofs for popularity and mixing follow from the same argument:
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Claim 4.1.7 (Restricted sensitivity of homophily with private labels.). Both differential
and uniform homophily have `1-restricted sensitivity k.

Proof. Recall that for attributes a1, ..., am differential homophily is given by(∑
i<j

xijI(zi = zj = a1), ...,
∑
i<j

xijI(zi = zj = am)

)

Then, changing nodal attribute zi from a to b changes the endpoint of at most k edges. If
both endpoints of an edge had endpoint a, then this reduces the count of entry a in the
vector by 1, while if the endpoints of the edge were a and b to start with, this increases
the count in entry b by 1. These cases are disjoint so the largest `1 difference in the vector
is k. For uniform homophily, it is easy to see that changing one label could change at
most k edges and each edge is counted only once in uniform homophily, so the global
sensitivity is 1.

4.2 Inference Using Noisy Sufficient Statistics

Now, by projecting a network into Hk using the projections specified in Appendix B
and then applying the Laplace mechanism (3.1), we can release the sufficient statistics
of the ERGM in a differentially private manner by calibrating the noise of the Laplace
mechanism to the restricted sensitivity. We could now release these sufficient statistics to
analysts who wish to study the network, since the likelihood of the ERGM depends on
the data only through the sufficient statistics. Using noisy statistics directly for standard
inference techniques has been shown to lead to biased estimates, however, as the sufficient
statistics may not even be graphical. Therefore, in the framework of Bayesian inference we
want to compute the posterior over both the observed network and the privacy mechanism.
In particular, letting ỹ be the “noisy network” defined by the application of our privacy
mechanism to the true network we wish to compute the posterior:

p(θ|ỹ) ∝ p(ỹ|θ)p(θ) =
∑
x

p(ỹ|x)p(x|θ)p(θ) (4.1)

where p(ỹ|x) is the privacy distribution defined by our mechanism, p(x|θ) is the ERGM
distribution and p(θ) is the prior on θ which is specified by the analyst. Then, along the
lines of [LM14], it is simple to modify the Exchange Algorithm for non-private inference to
draw from the posterior that incorporates the privacy distribution, as shown in Algorithm
2.

As in the non-private case, Algorithm 2 draws samples from the true posterior of interest
as T →∞ by MCMC theory. Steps 1 and 2 can be justified as Gibbs updating steps as in
the non-private case, while steps 3 and 4 are component-wise Metropolis-Hastings updates,
where we update the variables separately rather than in a block, because this tends to lead
to higher acceptance ratios and thus faster convergence [GL06], [LM14]. Intuitively, x∗

can be thought of as our best guess of the true underlying network. Then, θ∗ is replaced
in step 3 if it explains this best guess of the network well, while x∗ is updated if the
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Algorithm 2 Bayesian Inference for ERGMs with Differentially Private Network Data

Input: ERGM distribution π(X|θ), prior p(θ), noisy network ỹ, privacy distribution
πp(ỹ|y), number of burn-in draws r, symmetric proposal distribution h(·|θ).
Output: sequence of draws θ(r), ...θ(T ) from posterior distribution p(θ|ỹ).

For t = 1, ..., T :

1. Draw parameter vector θ∗ ∼ h(·|θ(t−1))

2. Sample graph x∗ ∼ π(·|θ∗)

3. Replace θ(t−1) with θ∗ with probability min {1, α1}.

4. Replace x(t−1) with x∗ with probability min {1, α2}.

where

α1 =
p(θ∗)

p(θ(t−1))
exp

{(
θ∗ − θ(t−1)

)T (
u(x(t−1))− u(x∗)

)}
α2 =

πp(ỹ|x∗)
πp(ỹ|x(t−1))

exp
{(
θ∗ − θ(t−1)

)T (
u(x(t−1))− u(x∗)

)}

new network is likely to be the true network over the noise of the privacy mechanism.
Additionally, we propose using the population MCMC version of the exchange algorithm,
as this leads to better convergence in practice and still converges to the correct posterior.

Note that α1 does not depend on the choice of privacy mechanism, while α2 is simple to
compute under the addition of Laplace noise. In particular, if we add Laplace noise scaled
to L (for instance, L = 3 ·RSf (Hk) in the edge-adjacency case) to the sufficient statistics
of the network then:

log
πp(ỹ|x∗)

πp(ỹ|x(t−1))
= log (Lap (ỹ − x∗|L))− log

(
Lap

(
ỹ − x(t−1)|L

))
(4.2)

=
|ỹ − x(t−1)|

L
− |ỹ − x

∗|
L

In the edge-adjacency model, the restricted sensitivity is public, so we can easily compute
the ratio in eq. (4.2) using L = 3RSf(Hk) where the factor of 3 comes from the global
sensitivity of the projection. In the node-level case, we compute smooth sensitivity of the
projection which cannot be publicly released, but we can release the value of the smooth
sensitivity assuming the graph belongs to Hk as explained in Appendix B, so inference is
still valid when the analyst’s assumptions about the degree of the graph are met.

In general, we assume that the number of nodes in a graph is known and public. For the
case where labels are public, sampling a graph in step 2 is straightforward as we sample
a graph from the space of all possible graphs with the n labeled nodes of the original
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graph. However, if labels are private, then these labels must be privatized as well. This
is straightforward to do by releasing a noisy histogram of the labels, which has global
sensitivity of 1 and therefore is high accuracy assuming that there are a limited number
of types of labels [DMNS06]. Then, the noisy histogram can be used as the node-set over
which graphs are sampled in step 2 of the algorithm.

The Full Workflow

Putting together bounds on restricted sensitivity and the inferential procedure, the work-
flow for differentially private inference looks as follows. Given hypothesis Hk, privacy
budget ε and network data y:

1. Split privacy budget between sufficient statistics under consideration.

2. Project y to Hk using smooth projections µ specified for edge and node level privacy
respectively in Appendix B.

3. Compute and release restricted sensitivity of sufficient statistics.

4. If labels are considered private, then release noisy histogram of node labels.

5. Draw noise scaled to restricted sensitivity. Add this noise to sufficient statistics and
release these noisy sufficient statistics.

6. Using the noisy sufficient statistics from step 4 and the restricted sensitivity levels
from step 3, perform inference using Algorithm 2.

Then, privacy follows by applying composition in step 1, restricted sensitivity with
the Laplace Mechanism in steps 2-5 and post-processing in step 6. Post-processing is
particularly useful here, because MCMC methods frequently require tuning of the inference,
whereby we run the inferential procedure multiple times and run diagnostics to make sure
it converges (for instance, by checking that every 100 samples from the posterior are not
highly correlated.) By post-processing, we can run step 6 an arbitrary number of times to
tune the inferential procedure because differential privacy is provided by steps 1 to 5.

4.3 Related Work

Our work builds on two proposed methods, both of which only consider the edge-adjacency
privacy model with labels taken to be public. The method most closely related to our
work is that of Lu and Miklau [LM14] who also suggest adding noise to sufficient statistics
and then performing Bayesian inference. In order to avoid adding noise scaled to the
high global sensitivity of these statistics, they calibrate noise to a private bound on
the local sensitivity of the network. In particular, they use an approach suggested in
[KRSY14] to compute a differentially private over-estimate of the local sensitivity and
scale noise to this estimate of local sensitivity. This provides (ε, δ)-differential privacy and
introduces significantly less noise than calibrating to the global sensitivity. In particular
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the expected scale of Laplace noise added when calibrating to private local sensitivity is
2LSf (G)

ε
+

4GSLSf ln(1/δ)

ε2
whereas we add noise scaled to 3RSf (Hk)/ε to sufficient statistics1.

For reasonable choice of k, the restricted sensitivity is close to the local sensitivity on
graph G, while the second term in the private local sensitivity can be quite large for small
privacy budgets in ε and δ. Miklau and Lu test their approach with δ = 0.1, which is an
unreasonable choice of this parameter in practice, since a method that released the entire
dataset one tenth of the time would satisfy (ε, δ)-DP with this parameter (Example 3.2).
We find through a battery of tests that our proposed method (which takes δ = 0) adds
much less noise than the private local sensitivity approach (which we test with δ = 10−6

in order to give a privacy guarantee that is more comparable to pure ε-DP) especially for
small privacy budgets in ε. This difference in the magnitude of noise makes a significant
difference in the accuracy of inference, as our method can perform accurate inference for
realistic, small privacy budgets.

The primary drawback of our approach is that it requires a reasonable estimate of the
the maximum degree of the network, while the private bounding of local sensitivity can
calibrate noise to the sparsity of the graph without assumptions on the part of the analyst.
However, given the availability of many public network datasets and domain knowledge,
it is often feasible for an analyst to give a reasonable assumption on the degree of a
private network. Further, we show empirically that even if the max degree assumption is
a fairly large over-estimate or under-estimate of the true degree of the network, restricted
sensitivity tends to introduce less error to sufficient statistics than private local sensitivity.

Additionally, the local sensitivity approach does not apply well in the node-level privacy
model as local sensitivity of a statistic for a network in this model can be much higher
than restricted sensitivity [BBDS13]. In particular, under node-level adjacency, any graph
is neighbors with a graph in which a node has all edges removed or all edges added. Thus
local sensitivity for the statistics used in ERGMs tends to be scaled to a function of n. In
contrast, due to the projection of the restricted sensitivity framework we only consider
neighbors to be other graphs with degree less than k, so noise is scaled to a function of k.

Another approach suggested by Karwa et. al. [KKS17] uses randomized response on
edges of the network, where the network is thought of as a binary dataset of 0s and
1s indicating the presence or absence of an edge between any two nodes. Then, they
employ maximum likelihood estimation on this perturbed network taking into account the
flipping of edges.2 The main benefit of this method is that it potentially permits greater
flexibility as the perturbed network can be released for public use and researchers can use
any sufficient statistics they like. Our method requires a commitment to use a specific
set of sufficient statistics, although we bound restricted sensitivity for a broad range of
commonly used sufficient statistics in ERGMs. The primary drawback of the randomized
response approach is that for small privacy budgets, it leads to extensive distortion of
the underlying network. For instance, taking ε = 1 suggests a probability of flipping each
edge of around 25%, which for a sparse network in which tends to completely overwhelm
network structure. Thus, Karwa et al. only demonstrate the utility of their method for ε
taken to be 3.5 or larger.

1In private local sensitivity, GSLSf
is 2 for alternating k-triangle and k-two-path statistics [LM14].

2We test randomized response using Bayesian inference, as it is straightforward to account for this
perturbation in the Bayesian inferential framework.
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Chapter 5: Empirical Evaluation of Private
Inference

It is typical in the literature on inference for ERGMs to evaluate performance empirically
through experiments ([HH06], [LM14], [HG10]). This is because there are no general
theoretical results on the utility of non-private inference. In this chapter, we conduct a
series of experiments, both on synthetic graphs drawn from a variety of ERGMs and on a
high school friend network dataset collected by sociologists. For the edge-level privacy
model, we compare the accuracy in releasing differentially private sufficient statistics using
our proposed method of calibrating noise to restricted sensitivity against the private local
sensitivity. Next, we compare the quality of parameter estimation using our proposed
inference method with restricted sensitivity, private bounding of local sensitivity and
randomized response used to perturb the network data. Finally, we evaluate the noise
addition of our method under node-level privacy. We give a brief summary of our main
findings in this chapter in Section 5.4.

5.1 Experimental Setup

Data

We test our proposed methods on networks drawn from three different ERGM specifications
using the alternating structural sufficient statistics introduced in Section 2.2, so the
probability distribution has the form:

Pr(x|θ) ∝ exp
{
θ1E(x) + θ2u

(s)
λ (x) + θ3u

(t)
γ (x) + θ4u

(p)
γ (x)

}
with the following parameters for each model:

Model θ1 (Edges) θ2 (k-Stars) θ3 (k-Triangles) θ4 (k-Two-Paths)
1 -4.6 0.0 1.0 0.0
2 -4.6 0.0 2.0 -0.1
3 -4.6 2.0 2.0 -0.5

Table 5.1: Parameters of synthetic networks

We fix the edge parameter at −4.6, because in the absence of any other sufficient statistics
this corresponds to a G(n, p) model with p = 1%, leading to sparse networks. Then,
the other parameters are chosen based on typical values from analyses of real network
data, with Model 1 constituting a simple model introducing only the alternating k-
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triangle parameter in addition to edges and Model 3 representing the most complex model,
including all four structural parameters. In Model 2, we incorporate a two-path parameter
in addition to the triangle parameter, because the small negative parameter encourages
sparsity while still leading to a large number of triangles in the network. In all three
models we use a positive parameter for triangles, because triangulation is one of the most
distinctive structures of networks captured by ERGMs that other stochastic models of
networks frequently have difficulty capturing. Additionally, triangle count is one of the
most difficult statistics to compute privately as it has high sensitivity relative to the scale
of the statistic.

We simulate networks using the sampling method detailed in Appendix A.1 for graphs on
n nodes with n ranging from 100 to 1000 in order to study networks with a range of sizes.
Current standard inference methods for ERGMs are generally computationally feasible
only for networks of around 1000 nodes at most, hence our choice of this upper limit on
the size of the networks.1 For each n and each model we draw 50 networks. Looking at
the structure of the simulated networks in Figure 5.1 indicates that the 3 models put
most of their probability mass on distinctive networks. On average, networks drawn from
Model 1 have edge density (proportion of possible edges present) of 6%, networks from
Model 2 have average density of 1%, and networks from Model 3 average 0.5%. Further,
the max degree and triangle counts of the networks vary highly between the three models.

Figure 5.1: Degree of simulated networks (with shading indicating max and min over
the 50 samples and dashed line showing median degree) along with the mean triangle
count for simulated networks.

Networks drawn from Model 1 have the highest degree and triangle count, while networks
simulated from Model 2 have approximately three times as many triangles as networks
from Model 3. Additionally, all three models capture more complex structure in networks
than the basic G(n, p) model with p = 1%, for which simulated networks tend to have
only one tenth the number of triangles as Model 3 despite having higher edge density.

1Indeed, current work ([LM14], [KKS17]) only evaluates differentially private inference on networks of
under 150 nodes, which are too small to perform accurate private inference on under strong privacy
constraints.
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In addition to the simulated networks, we test our methods on a dataset known as the
“Faux Mesa High School Network”, which is a publicly available social network released
by sociologists who studied high schools in the Southwestern United States. These
researchers surveyed the entire student body of a high school and formulated a social
network with 205 nodes corresponding to students (labeled with attributes like Race and
Sex) and 203 undirected edges representing reported mutual friendships between students
[HHB+08]. The publicly available network on which we test inference was generated by
researchers by fitting an ERGM to the dataset and then releasing a network sampled from
this distribution. This suggests that privacy was a concern for the underlying network
data. Therefore, the synthetic network maintains the interesting structural properties
of the underlying dataset. Performing inference over this dataset allows us to evaluate
whether researchers would reach similar conclusions using our proposed differentially
private inference methods as using standard non-private inference.

Implementation

Below, we give a number of important implementation details that apply to all conducted
tests:

• Code is written in the R programming language, with the procedure for sampling
networks used for inference built on top of the packages ergm [HHB+08] and Bergm

[CF14], which support non-private inference over ERGMs.

• In order to explore a broad parameter space and compare a variety of approaches, the
experiments ran in parallel on Harvard’s Odyssey computing cluster. To speed up
individual experiments (which was particularly important during initial debugging),
the inference step exploited thread level parallelism on 32-core machines.

• Unless otherwise specified, we give overall privacy budget (in terms of ε and δ),
which is evenly split between sufficient statistics needed for inference, employing the
composition property of differential privacy. Throughout, when we guarantee the
relaxed notion of (ε, δ)-DP we set the privacy budget of δ to 10−6 in order to give a
meaningful privacy guarantee akin to that of pure ε-differential privacy.

• For all parameters, we specify an “uninformative” prior of N (0, 50) in inference.
Since parameter estimates are generally small compared to the variance of the prior,
this prior has little effect on the posterior parameter estimates. It may be possible
to improve performance by incorporating simple prior information, like the expected
signs of parameters, about which researchers often have beliefs, which may be an
interesting notion to investigate in future work.

• To obtain point estimates of fitted parameters, we take the mean of the posterior
distribution over parameters, which is standard practice for Bayesian inference on
ERGMs [CF11].
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5.2 Edge-Adjacency Model

Under edge-level privacy constraints, we compare our proposed method against two
alternative methods, the private bound on local sensitivity approach suggested by Lu
and Miklau [LM14] and the randomized response method of Karwa et al. [KKS17], both
detailed in Section 4.3. Since the private local sensitivity method also adds noise to
sufficient statistics and then performs inference just as our restricted sensitivity-based
method does, we first compare the noise addition step between these methods. We find
that restricted sensitivity allows for much lower noise addition, measured in terms of
root-mean-square error, especially at small values of ε.

Then, we evaluate how difference in perturbation of the network data impacts quality of
inference. We compare the performance of differentially private inference between the
three methods by looking at how close parameter estimates are to the “ground-truth”
parameters. For the three synthetic networks, we take ground-truth to be the true
parameters of the ERGMs from which we drew synthetic data (specified in Table 5.1)
while for the Mesa high school data we learn parameters non-privately and take these to
be a best guess of true parameters.

5.2.1 Noise Addition Comparison

Setup

For noise addition comparisons, we test the error introduced by perturbing sufficient
statistics for the three synthetic network models and all values of n. We compare noise
addition under restricted sensitivity with various max degree cutoffs and private local
sensitivity. For each of the 50 networks of size n drawn from a model, we draw noise
50 times for each noise addition method, resulting in 2500 simulated noise draws for
each n. We compute the four sufficient statistics (edges, alt-k-star, alt-k-triangle, and
alt-k-two-path) with privacy levels per-statistic of ε = 0.025, 0.125, and 0.25 (so by the
composition property of differential privacy, overall privacy budgets using the 4 statistics
0.1, 0.5, and 1 respectively) and display results below for the largest per-statistic budget of
ε = 0.25. For the private bounding of local sensitivity, which can only guarantee (ε, δ)-DP,
we use an overall budget of δ = 10−6 so that the privacy guarantee is comparable to that
of pure ε-differential privacy.

Further, we test varying degree cutoffs k of the restricted degree hypothesis. Lower (more
aggressive) setting of k allows for less Laplace noise to be added since the restricted
sensitivity is smaller. However, if k is lower than the true degree of the network, then the
projection to the space of networks of degree k requires removing edges from the network,
introducing bias into the released sufficient statistics. Since mean square error is variance
plus squared bias, using RMSE captures both the error from projection bias and from
Laplace noise addition. Specifically, we test three choices of k:

1. Take k equal to the minimum degree over the 50 networks drawn from a given model,
which may allow for low Laplace noise, but at the expense of potentially high bias
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induced by removing many edges.

2. Take k to be the median degree over the 50 networks, allowing relatively low scale
of Laplace noise, while also introducing limited bias since the edge-level projection
requires removing edges from nodes that have degree higher than k of which we
expect there to be relatively few.

3. Take k to be a conservative estimate of 1.5 times the maximum degree of the 50
networks drawn from a given model, which guarantees that we never under-estimate
the degree of a network.

In the plots that follow, we refer to these settings of k as ‘min’, ‘median’ and ‘conservative’
respectively.

Results

As comparison of noise in Figure 5.2 demonstrates, for ε = 0.25 per statistic, our proposal
of scaling noise to restricted sensitivity introduces much lower error into sufficient statistics
than the private bounding of local sensitivity described in Section 4.3. The difference
in noise addition is larger for the sparser networks drawn from Models 2 and 3, than
for networks drawn from Model 1 because the degree of these networks is lower, giving
a restricted sensitivity bound closer to the local sensitivity of the statistics. Further,
the scale of noise added in the private bound on local sensitivity (as discussed in 4.3) is

O
(
LS
ε

+ log(1/δ)
ε2

)
, whereas restricted sensitivity adds noise scaled to O

(
RS
ε

)
. Therefore,

as ε gets smaller, the 1
ε2

term grows faster than the 1
ε

term leading to even higher noise
addition for private bounding of local sensitivity. Consistent with this observation, for tests
run with smaller ε of 0.025 and 0.125-per statistic, we observed that restricted sensitivity
outperforms private local sensitivity in the amount of noise added by an even larger margin.
This suggests that for smaller overall privacy budgets than ε = 1 or for cases where we
introduce more sufficient statistics (for instance, when we want terms incorporating nodal
attributes) so that we must split the privacy budget between additional terms, restricted
sensitivity will dominate private local sensitivity by an even larger factor.

Comparing the RMSE of statistics to the true values, we observe that restricted sensitivity
may permit inference in settings where the noise added by private local sensitivity would
overwhelm the true statistic value. For instance, looking at the lower left subplot in
Figure 5.2, for networks with 300 nodes drawn from Model 3, the RMSE of the k-triangle
statistic is over three times the value of the true statistic when noise is scaled to private
local sensitivity, while restricted sensitivity adds noise under half the true statistic value.
Further, we observe that as networks grow larger the error relative to the size of the
network decreases, since the degree of the network remains low, while the magnitude of the
sufficient statistics increases, allowing for lower noise addition relative to the magnitude
of the statistics.

Comparison of the different thresholds for the degree cutoff k suggests that even a
conservative cutoff outperforms private local sensitivity. However, choosing a more
aggressive cutoff leads to much lower error, indicating that the lowered variance induced
by Laplace noise addition has a larger impact on error than the bias introduced by
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Figure 5.2: Comparison of Relative RMSE of edge-DP sufficient statistics released at a
privacy level of ε = 0.25-per statistic. Laplace noise is scaled to either a private bound on
local sensitivity or to restricted sensitivity with 3 settings of degree cutoff k.

(a) Model 1

(b) Model 2

(c) Model 3
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removing edges from high-degree nodes in networks of degree larger than k. In fact, for
the alternating k-triangle and the alternating k-two-path statistics, using the min k cutoff,
such that the degree of all simulated networks is beneath the cutoff, slightly outperforms
restricted median. However, this aggressive setting of the cutoff introduced more bias into
the edges and alt k-star terms. While the median cutoff leads to the removal of less than
0.05% of edges in the network for all n, the min cutoff leads to the removal of around
0.3% of edges. Additional testing with a highly aggressive cutoff of 0.75(min degree) led
to the removal of 7− 8% of edges, making the RMSE of released private statistics higher
for this setting than for the conservative cutoff. The ability to use cutoffs slightly below
the actual degree of networks, while introducing low bias to computed statistics, most
likely arises because ERGMs tend to capture power laws of degree distributions, such that
there are relatively few nodes with degree close to the max degree. Therefore, choosing a
cutoff below the max degree leads to the removal of only a few edges incident to these
few nodes, skewing the structure of the network very little. Our comparison indicates
that setting k equal to the median of all max degrees for simulated networks constitutes a
good choice of k, so we use this setting of k in our inference tests.

Overall, our tests suggest that for reasonable choices of privacy budget ε, restricted
sensitivity introduces much lower error to sufficient statistics than privately bounding
local sensitivity. Further, aggressively setting the degree cutoff k to be beneath the max
degree of actual networks can decrease the overall error in privatizing network statistics.

5.2.2 Inference Comparison on Synthetic Networks

Next, we test how the differing approaches to perturbing the network data impact
the quality of inference. We find that for small privacy budgets our proposed method
outperforms randomized response and for either small privacy budgets or the use of many
sufficient statistics our method outperforms private bounding of local sensitivity.

Setup

We test the performance of private inference on networks drawn from of each of the
three models with overall privacy budgets of ε = 1 and ε = 3. Specifically, for N = 25
tests of inference, we randomly choose one of the 50 networks on 300 nodes drawn from
a model and run inference on this network to learn the parameters of the model from
which the network was drawn. This implies that Model 1 has the largest privacy budget
per-statistics, since we split the fixed privacy budget over only the 2 statistics for Model 1,
3 statistics for Model 2, and 4 statistics for Model 3. We test inference on networks of 300
nodes because private inference is expected to have higher utility on larger networks (as
the amount of added noise is lower compared to the value of true statistics as shown in
Figure 5.2) but running a relatively large number of tests on networks with more than 300
nodes was computationally infeasible within the scope of this work. For the small privacy
budget of ε = 1, the inference method using randomized response fails to converge (which
is unsurprising, because this corresponds to a probability of over 25% of flipping each
edge in the network, so the posterior distribution spreads probability mass over a very
large range of possible networks.) Therefore, for ε = 1 we only report results for private
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local sensitivity and restricted sensitivity, while for ε = 3 (corresponding to a flipping
probability of 5.6% in randomized response), we report results for all three methods.
We display the distribution of parameter estimates using boxplots (which denote min,
max, quantiles and median parameter estimates) against the ground truth parameters
shown as dashed black lines. Additionally, we display the results of running non-private
inference 25 times, which represents the best possible performance we could expect from
differentially private inference. Non-private inference tends to be have low variance in
parameter estimates across tests, as we fit networks using the models from which synthetic
networks were drawn, thereby controlling for inference error caused by mis-specification
of the model.

Results

Figure 5.3: Differentially private parameter estimates for 300-node synthetic networks
drawn from Model 1 . The dashed black line denotes ground-truth parameter values. We
abbreviate randomized response as “rr”.

Model 1 uses only two sufficient statistics, allowing for high values of ε per statistic,
since the privacy budget is split between few statistics. Additionally, only the k-triangle
statistic has high sensitivity, as edges have a global sensitivity of 1 (Table 4.1). For the
privacy budget of ε = 1, restricted sensitivity slightly outperforms private local sensitivity
in the accuracy of parameter estimation as shown in Figure 5.3. This is because restricted
sensitivity has added slightly less noise to the alternating k-triangle statistic than private
local sensitivity: restricted introduces a relative RMSE of 0.3 to the statistic, while
private local introduces a relative RMSE of 0.35. Our inference tests demonstrate that
using noisy sufficient statistics with error at this level still allows for highly accurate
parameter estimates. Thus, extrapolating to larger networks where even less noise can be
added relative to the magnitude of sufficient statistics, we expect to be able to accurately
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Figure 5.4: Parameter estimates for 300-node synthetic networks drawn from Model 2 .

estimate parameters with smaller privacy budgets. In contrast to adding noise to sufficient
statistics, randomized response performs poorly even at the privacy budget of ε = 3, for
which each edge is flipped with probability 4.7%. This perturbation of edges heavily
distorts network structure, leading the network to resemble a denser G(n, p) network, as
randomized response underestimates the k-triangle parameter and overestimates the edge
parameter.

Model 2 introduces a third sufficient statistic, requiring the privacy budget to be split
between 3 statistics instead of 2 as in Model 1. This leads private local sensitivity to
perform poorly at ε = 1, as adding noise to the alt-k-triangle statistic overwhelms the
value of the statistic, which leads parameter estimates to vary wildly as shown in Figure
5.4. For ε = 1, restricted sensitivity gives better estimates of the edge and alt-k-two-path
parameters than private local does. Using restricted sensitivity, we consistently estimate
the alternating k-triangle statistic to be much larger than 0 and the alternating k-two-path
statistic to be slightly negative, suggesting that researchers could accurately discern the
importance of these network structures using differentially private inference. Also, we
observe that even non-private inference produces biased parameter estimates compared to
ground-truth, which points to underlying stochasticity in parameter estimation inherent
in the specification of the synthetic network model. Relative to the error of non-private
inference, private inference using restricted sensitivity performs approximately two times
worse in estimating parameters at ε = 3. Finally, we observe for Model 2 as for Model 1
that randomized response lead to parameter estimates that describe a G(n, p) graph, with
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Figure 5.5: Parameter estimates for 300-node synthetic networks drawn from Model 3 .

two-path and triangle parameters close to 0, indicating the loss of important substructure
in the perturbed network when applying randomized response.

As we see in Figure 5.5, for Model 3, which uses all 4 sufficient statistics, private local
sensitivity does not enable useful inference even for ε = 3, as the average bias of parameter
estimates is over 2 times the value of the parameters. However, restricted sensitivity gives
reasonable parameter estimates that would permit a researcher to understand the relative
importance of the various alternating sufficient statistics in describing network structure.
In contrast, private local sensitivity gives highly biased estimates of the two-path and
edges parameters and has much higher variance for alt k-star and alt k-triangle, confirming
that as more parameters are added, so that the privacy budget needs to be split between
multiple statistics, restricted sensitivity increasingly outperforms private local sensitivity.

5.2.3 Inference Comparison on Mesa High School Data

To understand how differential privacy impacts analysis of network data in practice, we
provide a case study of differentially private inference on a high school friend network
where nodes are labeled by race and sex. In line with demographers analyses of high
school friend networks in [GKM09], we study various processes of social network formation
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including homophily by race and sex and triangulation. Because the network is relatively
small with 203 nodes, we are not able to provide useful inference while taking labels as
private, for this case it may be reasonable to assume that Race and Sex of nodes are
public information and treat labels as public.

Setup

We apply the three private inference approaches – restricted sensitivity, private local
sensitivity, and randomized response – to the Mesa High School Friend Network. We run
25 tests of inference for each method and ε ∈ {1, 3}. For the restricted degree cutoff we
take k = 15, whereas the real network has max degree 13. We choose degree 15, as a
realistic estimate of the max degree of the network based on similar published datasets
collected by sociologists at high schools [HHB+08], as students administered surveys tend
to not list more than 15 friends. Based on models used to study high school friendship
networks in the published literature on the subject [GKM09] as well as the models used
for non-private inference on this particular network [HHB+08] we fit the a model to the
data incorporating ‘Sex’ and ‘Race’ labels on nodes. Race can take on one of five values –
Black, Hispanic, Native American, White, and Other – while sex is either Male or Female.
We use the k-triangle statistic as well as measures of overall homophily by race, homophily
among men, and homophily among women. We perform non-private inference using 25
tests and find that it gives consistent parameter estimates across test runs, suggesting
that our model is well-specified. Thus, we take mean parameter estimates across all 25
tests as ground truth parameters.

Results

Compared to both adding noise scaled to private bound local sensitivity and randomized
response, our proposed method using restricted sensitivity allows for accurate parameter
estimation at lower privacy budgets. As we show in Table 5.2, restricted sensitivity
with ε = 1 gives estimates of edges and alternating k-triangle that are unbiased overall,
although with fairly high error. For ε = 2, restricted sensitivity gives consistently accurate
parameter estimates for all parameters except Male homophily. However, the non-private
estimate for this parameter in 5.3 is not statistically significant, so it is unsurprising that
perturbing the statistics leads to differing estimates of this parameter. In contrast, private
local sensitivity even with overall privacy budget of ε = 3 is highly unstable returning
parameter estimates with wildly varying values as evidenced by the high MSE and MAE
of the parameter estimate. This is due to the splitting of the privacy budget between
parameters, which leads to high noise addition to the k-triangle statistic when calibrating
noise to private local sensitivity. Randomized response with ε = 3 overwhelms interesting
structure of the network, leading all parameter estimates to be close to 0 except for edges.

As shown in Table 5.3, for private inference with ε = 1 there is a large increase in
standard errors, demonstrating that inference over the private posterior distribution
captures the uncertainty in true sufficient statistics introduced by the privacy mechanism.
This increased uncertainty means that parameter estimates are no longer significant for
ε = 1. However, for ε = 2, homophily by race, homophily among women, the edges
parameter and the k-triangles parameter all remain statistically significant and close to
the original parameters. This suggests that, in the typical case, a researcher performing
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Table 5.2: Average differentially private parameter estimates, mean-square error, and
bias for 25 differentially private inference test runs on Mesa High School Friend Network.

Restricted (ε = 1) Restricted (ε = 2)

Parameter True Avg. MSE MAE Avg. MSE MAE

Edges -5.86 -6.30 1.36 0.84 -5.81 0.30 0.41
Homophily (Female) 0.59 0.72 0.48 0.52 0.39 0.28 0.37
Homophily (Male) 0.26 -0.22 3.20 1.01 -0.28 3.89 0.74
Homophily (Race) 0.44 0.32 2.31 0.85 0.59 0.34 0.32
Alt k-Triangle 1.39 1.56 1.96 0.93 1.43 0.44 0.50

Private Local (ε = 3) Rand. Response (ε = 3)

Parameter True Avg. MSE MAE Avg. MSE MAE

Edges -5.86 -6.13 28.56 3.75 -3.00 8.18 2.86
Homophily (Female) 0.59 -2.36 31.91 4.20 0.15 0.20 0.44
Homophily (Male) 0.26 -1.86 35.53 4.00 0.02 0.06 0.23
Homophily (Race) 0.44 -3.16 48.89 5.27 0.09 0.12 0.35
Alt k-Triangle 1.39 -3.25 50.75 4.93 0.06 1.76 1.33

differentially private using the restricted sensitivity approach with ε = 2 would reach
the same conclusions about network structure as under non-private inference – that
the network is sparse, that triangulation, or tendency for friends-of-friends to become
friends, constitutes an important process in network formation, and that homophily has a
significant impact on formation of friendship between people of the same race and between
women, but not for men.

Table 5.3: Typical parameter estimates and standard errors for differentially private
inference on Mesa Data.“Typical” estimates denote the test run with median overall error
in parameter estimates (normalized by magnitude of the parameters.)

Non-Private Restricted (ε = 1) Restricted (ε = 2)

Parameter Estimate SE Estimate SE Estimate. SE

Edges -5.86 0.15 -5.38 0.49 -5.83 0.20
Homophily (Female) 0.59 0.18 0.04 0.38 0.62 0.16
Homophily (Male) 0.26 0.23 -0.63 0.48 0.25 0.17
Homophily (Race) 0.44 0.17 0.41 0.50 0.52 0.17
Alt k-Triangle 1.39 0.06 1.38 1.02 1.85 0.19

Overall, the results from this case study suggest that, in contrast to current methods,
using restricted sensitivity to perturb sufficient statistics of a network enables researchers
to reach meaningful conclusions about the processes giving rise to network structure for
reasonable privacy budgets. For similar, even larger, sparse friend networks – which are
common in the sociology and demography literature – it should be feasible to perform
useful inference with even smaller privacy budgets as the magnitude of sufficient statistics
will be larger compared to the max degree of the network.
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5.3 Node-Adjacency Model

Finally, we assess the level of noise addition in releasing node-differentially private sufficient
statistics of ERGMs. We test the error introduced by calibrating noise to restricted
sensitivity for a range of different degree cutoffs and for the two different projections
detailed in Appendix B. Comparing the level of noise addition to that under edge-level
privacy suggests that for large, sparse networks it is feasible to perform differentially
private inference on network data under node-level privacy constraints.

Setup

We evaluate the error introduced to structural sufficient statistics for the three synthetic
network models with networks of up to 1000 nodes. To guarantee ε-differential privacy we
project the networks to the space of limited degree graphs and then add Cauchy noise
to sufficient statistics, scaled to the restricted sensitivity specified in Table 4.1 times a
β-smooth upper bound on the projection.2 Because the Cauchy distribution has fat tails,
summary statistics based on the mean and variance are not meaningful measures of noise
addition. Therefore, we use the median absolute error normalized by the scale of the
statistics to measure the level of distortion introduced to sufficient statistics by the privacy
mechanism. We test two possible projections to the space of limited degree networks,
one based on a linear program proposed in [BBDS13] and the other based on removing
edges incident to nodes of maximum degree proposed in [KNRS13], both of which are
described in detail in Appendix B. For the linear program we use the GLPK package to
find solutions. We hypothesize that the node truncation approach will work better than
the LP, because for max degree k, the LP requires adding noise scaled to the restricted
sensitivity on H2k, while node truncation scales noise to restricted sensitivity on Hk. We
test 4 different degree cutoffs: the min, median, max and a conservative estimate of 1.5
times the max degree over samples on n nodes.

Results

We display results for Model 1 in Figure 5.6 and results for Models 2 and 3 in Appendix C.
Using the node truncation projection, it is possible to perturb the sufficient statistics
relatively little. In general, star and edge statistics can be released with high accuracy, as
the restricted sensitivity is scaled to the degree cutoff k, while for triangles and two-paths
it is scaled to k2. The k-two-path statistic has low relative error, as the statistic value
tends to be high for networks with many triangles, so noise is unlikely to overwhelm the
statistic. However, the magnitude of the k-triangle statistic tends to be much lower than
the k-two-path statistic, hence the difficulty in releasing the k-triangle statistic under
privacy constraints.

For all three models, we show that it is possible using the node truncation projection on
large networks to add noise well below a relative error of 50% the size of the alternating

2While we also tested the addition of Laplace noise which gives an (ε, δ)-differentially private algorithm,
we found that for small δ, the scale of Laplace noise was almost a factor of 10 higher than Cauchy, as the
factors of δ led to very high smooth sensitivity of the projections. Since the Cauchy distribution gives
pure ε-DP and gives much better accuracy in the typical case, we present results using Cauchy noise.
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Figure 5.6: Comparison of Relative Median Absolute Error of node-DP sufficient
statistics released at a privacy level of ε = 0.5-per statistic for networks from Model 1 .
Cauchy noise is scaled to the restricted sensitivity times a β-smooth bound on the local
sensitivity of projection. Projection using an LP is shown on the left and using node
truncation is shown on the right
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k-triangle statistic. For instance, looking at the second subplot from the top on the right
side of Figure 5.6, we can see that for for Model 1, we introduce error of under 25% of the
magnitude of the k-triangle statistic for networks above 700 nodes (with either max or
median cutoff for k.) As we demonstrated for edge-level inference on 300-node networks
drawn from Model 1, introducing error of 30% of the magnitude of the k-triangle statistic
enabled highly accurate parameter estimation, so extrapolating to the larger networks, it
may be possible to perform accurate inference under node-level privacy.

However, the node-projection is much more sensitive to choice of degree cutoff than
projection for the edge-level privacy model. In particular, for edge-level privacy, the
projection has fixed global sensitivity of 3 so changing the degree cutoff has no effect
on noise addition, only on the value of sufficient statistics in the projected network.
In contrast, for the node-level projections, the β-smooth bound on local sensitivity of
the projection is affected by choice of cutoff. Relative to the LPs projection, the node-
truncation projection tends to perform well for conservative choices of the degree cutoff,
as choosing the cutoff close to the max degree can lead to high smooth sensitivity (which
is particularly true for Models 2 and 3 ). For the LP-projection, the opposite is true:
aggressive choice of the degree cutoff leads to better performance. This occurs because the
LP-projection is closer to optimal smoothness, so the smooth sensitivity of the projection
is not much worse for under-estimates of the degree than for over-estimates. However,
using the LP requires calibrating noise to the restricted sensitivity on H2k so this noise
addition dominates the noise added, especially for k-triangle and two-path where restricted
sensitivity is O(k2) meaning that the restricted sensitivity is worse by a factor of 4 for
the LP as compared to node truncation. We observe that noise addition using the LP
tends to be even worse than this factor, however, suggesting that for the sparse networks
under consideration, node truncation has low smooth sensitivity. Additionally, the node
truncation projection is much more computationally efficient than the LP in practice,
as for large networks of more than 700 nodes it tends to run about 100 times faster,
although some speed-up may be possible using more efficient LP solvers like CPLEX.
However, this computational gap is inherent to the two projections as the node truncation
projection runs in time O(n) while the LP projection requires solving a linear program
with O(n2) variables. In short, the node truncation projection seems better suited to the
setting of differentially private inference over sparse network data than the linear program
projection.

In summary, restricted sensitivity using Cauchy noise and the node truncation projection
allows for low noise addition for k-star, edge, and k-two-path sufficient statistics in the
strong node-level privacy model. For the k-triangle statistic, the error on large networks
with conservative estimates of the degree cutoff is comparable to that of edge-level privacy
for small networks, suggesting that even for this high sensitivity statistic it is feasible to
perform inference for large, sparse networks under the node-level privacy model.

47



5.4 Summary of Findings

The chapter concludes with a summary of experimental findings:

• Calibrating noise to restricted sensitivity leads to substantially lower noise addition
than private bounding of local sensitivity for sparse networks with privacy budgets
of ε = 0.25 or less per-sufficient statistic (Figure 5.2).

• Inference using restricted sensitivity gives more accurate parameter estimates than
using private local sensitivity on 300-node synthetic networks for small privacy
budgets of ε = 1 or for estimation of 3 or more parameters (Figures 5.4 and 5.5).

• Randomized response does not allow for useful inference on synthetic networks of
300 nodes even for large privacy budgets of ε = 3. In particular, it overwhelms
interesting features of network structure, causing estimated parameters to resemble
those of G(n, p) graphs (Figures5.3,5.4,5.5).

• Restricted sensitivity enables accurate private parameter estimation on real network
data, while existing methods do not. In particular, for restricted sensitivity calibrated
to ε = 2 we can estimate parameters on a 205-node high school friend network with
low error, while maintaining statistical significance of parameters as compared to
non-private inference (Table 5.3.) In contrast, private bounding of local sensitivity
and randomized response both give highly inaccurate parameter estimates for ε = 3
on this dataset (Table 5.2.)

• In the node-level privacy model, relatively low levels of noise can be added to networks
of 700 or more nodes using a node truncation projection with a conservative estimate
of the maximum degree of a network (Figure 5.6 and Appendix C.) Extrapolating
from the performance of edge-level private inference to the node-level case, suggests
that noise addition to sufficient statistics may be low enough for large networks to
permit node-level private inference.

48



Chapter 6: Conclusions

We have presented a novel framework for differentially private inference on network data
using ERGMs with a variety of sufficient statistics. By taking advantage of the sparsity
of many real world networks, our approach allows for inference in the edge-level privacy
model with smaller privacy budgets than previous work. Further, our work suggests a path
towards feasible differentially private inference under the stronger notion of node-level
privacy.

Our empirical testing demonstrates the utility of our methods for practical inference. In
particular, we showed for a variety of synthetic networks that our method outperforms
current methods for meaningful privacy budgets of ε = 1 and for realistic numbers of
sufficient statistics. We demonstrate through a differentially private analysis on a dataset
consisting of friendships among high school students that researchers could practically
apply our methods for inference on real network data and reach similar conclusions as
under non-private inference. Finally, we present evidence that for large networks our
approach makes it feasible to protect node-level privacy while estimating parameters
accurately. Thus, our proposed approach moves us toward the goal of providing meaningful
privacy guarantees to participants in network datasets while also allowing researchers to
perform accurate inference on the dataset.

We conclude with suggestions for future work. Running tests for node differentially-private
inference and for inference with private labels on large networks of over 700 nodes would
be useful follow-ups on our experiments. Our proposed framework could also be extended
in a number of ways:

• Drawing synthetic networks from privately fitted ERGMs. Currently, there
exist ad-hoc methods for releasing “anonymized” data to researchers for statistical
analysis. A common approach taken by statistical agencies is to fit an ERGM to a
sensitive network dataset and then release a network drawn from the fitted model
for use by researchers [HHB+08]. Since our proposed methods allow for accurate
parameter estimation, it may be possible to simulate networks from ERGMs using
differentially private parameter estimates to generate rigorously privatized networks.
Doing so requires understanding how variation in parameter estimates impacts the
probability distribution defined by these parameters. A measurement of distance
between distributions like KL-divergence could be helpful in understanding this
difference. However, it is only known how to approximate KL-divergence between
ERGMs for maximum-likelihood estimates of parameters [HG10], not Bayesian
posterior means. Establishing a useful framework for understanding the difference
in ERGM probability distributions defined by parameters inferred using Bayesian
inference may be a natural starting point.
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• Adapting more scalable inference methods for differentially private infer-
ence. Recently, more efficient inference methods for ERGMs have been proposed,
which can perform inference on networks of well over 1000 nodes in reasonable time
[BFM17]. A simple approach (since noise addition is very low for large networks)
would be to use these inference methods directly on noisy sufficient statistics without
accounting for noise introduced by the privacy mechanism at all. This could be
an interesting starting point for testing the usefulness of restricted sensitivity on
larger networks. Ideally, more scalable methods could be adapted to incorporate the
privacy mechanism and thus infer parameters of the private posterior distribution
as our method does.

• Privacy over directed networks. The sufficient statistics described in our work
can be defined analogously for networks with directed edges, which describe many
real world datasets [LKR12]. Proving differential privacy requires bounding the
restricted sensitivity of these new sufficient statistics. It may be possible to do so
using a similar approach to ours, namely by defining triangle and two-path statistics
in terms of an analog to shared partners on directed networks.

• Comparison of Maximum Likelihood Estimation and Bayesian Inference
In this thesis we considered Bayesian inference for ERGMs both because it constitutes
the state-of-the art in inference on ERGMs and because this allowed for simple and
intuitive incorporation of the noise of the privacy mechanism into the inferential
procedure. However, it is straightforward to incorporate the noise of our restricted
sensitivity mechanism into the maximum likelihood estimation method originally
proposed by Karwa et al. [KKS17] for inference using networks perturbed by
randomized response. Since maximum likelihood estimation constitutes the other
most common inference procedure in practice, it may be useful to develop both
maximum likelihood and Bayesian approaches for differentially private inference.
Further, comparing the choice of inference procedure on noisy data while fixing the
noise addition procedure could provide insight into the trade-offs between these two
inferential frameworks under differential privacy constraints.
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Appendix A: MCMC Methods for Bayesian
Inference over ERGMs

A.1 Simulating Networks from an ERGM

First, we describe a simple MCMC method for simulating networks from an ERGM given
parameters of the model. This method is used both to generate synthetic graphs in our
experiments and to draw samples needed for inference.

Algorithm 3 Metropolis-Hastings Sampler for ERGMs

Input: parameter vector θ, initial graph x(0), number of iterations T
Output: sequence of graphs x(1), ..., x(T ) such that x(T ) ∼ p(X|θ) as T →∞

For t = 1, ..., T :

1. Select nodes i and j at random

2. Propose graph x∗ which is the same as x(t−1) except that we “toggle” the edge
between i and j so x∗ij = 1− x(t−1)ij

3. Accept the proposed move with probability min
{

1, p(x∗|θ)
p(x(t−1)|θ)

}
. If the move is

accepted set x(t) = x∗. Otherwise, set x(t) = x(t−1)

The acceptance ratio (assuming all pairs of nodes are chosen with equal probability) is just
exp{θT (u(x∗) − u(x(t−1))). As the difference in sufficient statistics between two graphs
differing in an edge (known as the “change statistic”) is typically a simple function of the
nodes participating in that edge, this ratio is easy to compute (for instance, for the edges
sufficient statistic, it is always just 1 if adding an edge and −1 if removing).

If an ERGM specification puts most of its probability mass on relatively sparse graphs,
the sampler that proposes all pairs of nodes with equal probability in step 1 will reject
the addition of an edge in most steps, leading to slow convergence. Therefore, Tie-No-Tie
(TNT) sampling is generally used in step 1, where we first select either the set of edges or
the set of non-edges with equal probability and then pairs of nodes are selected uniformly
at random from within the chosen set, biasing step 1 to consider removing edges more
frequently than adding (and accounting for the non-uniform proposal distribution in the
acceptance ratio). Therefore, throughout this thesis we use TNT sampling to efficiently
draw samples from ERGMs. [LKR12]
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A.2 Population MCMC Version of the

Exchange Algorithm

The basic exchange algorithm for Bayesian inference over ERGMs can be easily modified
to take advantage of population MCMC methods, which tend to converge faster, since
using various chains reduces temporal dependency between time-steps in the Markov
Chain. In particular, Caimo and Friel propose using parallel ADS, which maintains a
collection of H chains that interact with one another.

Algorithm 4 Non-Private Bayesian Inference for ERGMs (Parallel ADS) [CF11]

Input: ERGM distribution π(X|θ), prior p(θ), observed graph xobs, number of chains to
use H, tuning parameter γ.
Output: sequence of draws (θ

(r)
1 , ...θ

(T )
1 ), ..., (θ

(r)
H , ...θ

(T )
H ) from posterior distributions

p(θh|xobs).

For t = 1, ..., T :

For each chain h = 1, ..., H:

1. Select at random two different chains h1 and h2 from {1, ..., H}\h

2. Propose θ∗h = θ
(t−1)
h + γ

(
θ
(t−1)
h1

− θ(t−1)h2

)
+ ε

where ε is random noise drawn from a symmetric distribution, such as a Normal.

3. Sample graph x∗h ∼ π(·|θ∗h)

4. Accept the proposed move with probability min {1, α}. If the move is accepted, set

θ
(t)
h = θ∗h. Otherwise, set θ

(t)
h = θ

(t−1)
h

where

α =
p(θ∗h)

p(θ
(t−1)
h )

exp

{(
θ∗h − θ

(t−1)
h

)T
(u(xobs)− u(x∗h))

}

The MH acceptance ratio reamins the same as in the single-site update, because the
proposal distribution is still symmetric – making the reverse jump from θ∗h to θ

(t−1)
h simply

requires reversing ε and the order of h1 and h2. The tuning parameter γ controls the
amount of interaction between chains and is generally taken to be in the range 0.5 and 1
(in this case we take γ = 0.5 throughout.) Additionally, the number of chains to use can
be tuned in inference, but we choose to use 3 chains throughout as this seems to lead to
fast convergence.
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Appendix B: Smooth Projections to Hk

B.1 Edge-Adjacency Model

Blocki et al. give an efficient projection to Hk in the edge-adjacency model with GSµ = 3
[BBDS13]:

Algorithm 5 3-smooth Projection to Hk for Edge-Adjacency Model

Input: graph G, cutoff k
Output: graph µ(G) with max degree k

1. Fix a canonical ordering over all possible edges in a graph on n vertices. Let ev1...e
v
t

denote the edges incident to vertex v in this canonical ordering.

2. Delete edge e = (u, v) if and only if:

(i) e = evj for j > k, or

(ii) e = euj for j > k

Intuitively, we keep only the first k edges in the canonical ordering for any node with
degree above k. It is clear, then, that this algorithm results in a graph of max degree k
and that any graph where all nodes have degree less than k are unchanged. The global
sensitivity follows fairly straightforwardly. Consider two graphs G1 and G2 that are
neighbors differing on a single edge e = (x, y) where wlog G1 contains e. Then, for every
vertex that is not x or y, exactly the same set of edges is deleted, since e does not appear
in any other nodes’ canonical ordering. If e is deleted, then µ(G1) = µ(G2). However, if e
is not deleted than there may be at most one edge incident to x and one edge incident
to y that were deleted from µ(G1) but not µ(G2), so the neighboring graphs differ in 3
edges. In practice, since this algorithm deletes edges from high degree nodes, it may not
bias results too extensively to aggressively estimate k for a graph, as this will only mark
edges for deletion on a few nodes that are above the cutoff. However, choosing a cutoff
that is too low may remove many edges from many high degree nodes, which will bias not
only the number of edges, but also many other sub-graph counts like triangles k-stars,
which we explore in our experimental results.
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B.2 Node-Adjacency Model

Naive Truncation

The naive truncation projection µtrunc : Gn → Hk proposed by Kasiviswanathan et. al.
simply removes all nodes from the graph with degree above the cutoff k [KNRS13]. It is
clear, then, that µtrunc maps any graph in Hk to itself and that its image is Hk. Moreover,
µtrunc is quite efficient, requiring O(n+

(
n
2

)
) time. It is also fairly simple to characterize

the smooth sensitivity of µtrunc. First, note that the local sensitivity of µtrunc on graph G
is 1 + Dk(G) + Dk+1(G) where Di is the number of nodes of degree i in graph G since
rewiring one node in the graph may affect whether all nodes of degree k or k + 1 are
truncated by µtrunc. We can characterize the smooth sensitivity as follows:

Proposition B.1 (Smooth Sensitivity of µtrunc [KNRS13]). Given graph G and hypothesis
Hk, let Nt(G) denote the number of nodes with degrees in the range [k − t, k + t+ 1] and
let Ct = 1 + t+Nt(G). Then:

1. The local sensitivity of µtrunc is C0(G).

2. The local sensitivity at distance t of µtrunc is Ct−1(G).

3. The β-smooth sensitivity of µtrunc is max
t≥0

e−βtCt(G).

4. If Nlnn/β(G) ≤ `, so there are at most ` nodes in G with degree in range k± (lnn/β),
then

S∗µ,β(G) ≤ 1 + `+
1

β

Thus, we can compute β-smooth sensitivity efficiently using either part 3 or 4 of the above
proposition. Notice that even if a graph is in Hk, it may have high smooth sensitivity if it
has many nodes with degree close to the cutoff k. However, part 4 gives a guideline for
choosing a conservative cutoff k. In particular, by choosing k to be lnn/β above what
is thought to be the max degree of the graph, then the smooth sensitivity would simply
be 1. This is not an unreasonable quantity to add to the cutoff, if the cutoff is itself
O(log n), which is often the case. Further, degree distributions are often thought to fall
exponentially, so that it is unlikely that there are very many nodes with degree near the
cutoff, especially if a conservative cutoff is chosen, suggesting that ` might be quite low,
even for cutoffs close to the believed cutoff k.

LP-Based Projection

Blocki et al. propose a projection using linear programming. Their method satisfies a
relaxed definition of a projection, where µLP : Gn → H2k and ∀G ∈ Hk, µ(G) = G, (but
graphs in Hk are not necessarily mapped to themselves). Because the image is H2k, their
method requires calibrating the restricted sensitivity to H2k. However, in contrast to
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naive truncation, their approach guarantees that graphs in Hk always have low smooth
sensitivity, because their algorithm outputs an estimator of the distance between a graph
and its projection, used to compute a β-smooth upper bound, where the distance estimator
is always 0 for graphs in Hk.

The algorithm is also less efficient than naive truncation as it requires solving a linear
program with n+

(
n
2

)
decision variables: a variable xu per node u representing whether

node u should be removed from the projected graph or not and a variable wu,v per edge
(u, v) representing whether the edge from u to v remains in the projected graph:

Algorithm 6 Projection and 4-Smooth Distance Estimator to H2k for Node-Adjacency
Model [BBDS13]

Input: graph G, cutoff k
Output: graph µLP (G) with max degree 2k, 4-smooth estimate of distance from graph to
its projection d̂(G)

1. Solve the following LP to get fractional solution (x̄∗, w̄∗). Let there be n decision
variables xu, one for each vertex, and

(
n
2

)
decision variables wu,v one for each potential

edge. Additionally, let auv = 1 if the edge {u, v} is in G and 0 otherwise. Then,
solve the following LP:

min
∑
v∈V

xv s.t.

(1) ∀v, xv ≥ 0

(2) ∀u, v, wu,v ≥ 0

(3) ∀u, v, auv ≥ wuv ≥ auv − xu − xv
(4) ∀u,

∑
v 6=u

wu,v ≤ k

2. Let µLP (G) be the graph resulting from removing every edge in G for which either
endpoint has weight greater than 1

4
, so either x∗u >

1
4

or x∗v >
1
4

for edge (u, v).

3. Define distance estimator to be d̂(G) = 4
∑

u x
∗
u.

It is clear that if G ∈ Hk, then the algorithm will return a distance estimator of 0 and
µLP (G) = G, since we can take all xv to be equal to 0, wuv = auv so that conditions 1 to
3 of the LP are met and condition 4 is met because all vertices have degree less than k.
Using the distance estimator gives a β-smooth upper bound on the local sensitivity of
µLP :

Proposition B.2 (Smooth Sensitivity of µLP [BBDS13]). The smooth sensitivity of µLP
can be bounded by

Sµ,β(G) ≤ exp
{
β
4
d̂(G)

}
· g
(
β
4

)
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where

g(x) =

{
2
x
e−1+

5
2
x, 0 ≤ x ≤ 2

5

5, x > 2
5

so Sµ,β(G)RSf(H2k) is a β-smooth upper bound on the local sensitivity of f ◦ µLP on
graph G.

Comparing the two proposed methods, it is preferable to use naive truncation in cases
where we believe k ≥ lnn/β, because then setting the cutoff to be k̂ = k + lnn/β, we
expect smooth sensitivity of µtrunc to be below 1 + 1

β
and the restricted sensitivity will be

lower than RSf (H2k). In general, since we believe the graphs under consideration to have
very few high degree nodes close to the cutoff, we expect naive truncation to perform
quite well, since the smooth sensitivity should be relatively low for the graphs considered,
while considering restricted sensitivity on H2k may introduce more noise.
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Appendix C: Additional Empirical Results

Figure C.1: Comparison of Relative Median Absolute Error of node-DP sufficient
statistics released with ε = 0.5-per statistic and Cauchy noise addition for networks from
Model 2 .
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Figure C.2: Comparison of Relative Median Absolute Error of node-DP sufficient
statistics released with ε = 0.5-per statistic and Cauchy noise addition for networks from
Model 3 .
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