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GAMES OF THREATS

ELON KOHLBERG∗ AND ABRAHAM NEYMAN+

Abstract. A game of threats on a finite set of players, N , is a function d that assigns
a real number to any coalition, S ⊆ N , such that d(S) = −d(N \S). A game of threats
is not necessarily a coalitional game as it may fail to satisfy the condition d(∅) = 0. We
show that analogs of the classic Shapley axioms for coalitional games determine a unique
value for games of threats. This value assigns to each player an average of d(S) across all
the coalitions that include the player. Games of threats arise naturally in value theory
for strategic games, and may have applications in other branches of game theory.

1. Introduction

The Shapley value is the most widely studied solution concept of cooperative game
theory. It is defined on coalitional games, which are the standard objects of the theory.

A coalitional game on a finite set of players, N , is a function v that assigns a real
number to any subset (“coalition”), S ⊆ N , such that v(∅) = 0. The amount v(S) may
be interpreted as the worth of S, i.e., what the players belonging to S can jointly get by
coordinating their efforts.

A value is a function that assigns to each coalitional game a vector of payoffs, one for
each player, that reflects the a priori evaluation of each player’s position in the game. In
his celebrated paper [4] Shapley proposed four desirable properties (“axioms”) and proved
the remarkable result that there exists a unique function satisfying these properties. This
function, the Shapley value, can be described as follows. The value of player i is an average
of the marginal contributions, v(S ∪ i)− v(S), of player i, where the average is taken over
all the orderings of N , with S denoting the subset of players that precede i in the ordering.

A game of threats is a function d that assigns a real number to any coalition, S ⊆ N ,
such that d(S) = −d(N \S). The amount d(S) may be interpreted as the threat power
of the coalition S, i.e., the maximal difference between the total amounts that the players
belonging to S and the players belonging to N\S receive, when the players in S coordinate
their efforts to maximize this difference and the players in N \S coordinate their efforts
to minimize it. Games of threats arise naturally in value theory for strategic games [2].
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There, the condition d(S) = −d(N \S) is a consequence of the minmax theorem; see the
Appendix.

Now, games of threats need not be coalitional games, as they may fail to satisfy the
condition d(∅) = 0. Thus, if we wish to obtain an a priori evaluation for games of threats
then we must develop a value theory for such games. This paper does that. We show that
there is a unique function, from games of threats to n-dimensional payoff vectors, that
satisfies the analogs of Shapley’s four axioms; and that this function can be described as
follows. The value of a player is the average of the threat powers, d(S), of the coalitions
that include the player. Specifically, if di,k denotes the average of d(S) over all k-player
coalitions that include i, then the value of player i is the average of di,k over k = 1, 2, . . . , n.

We take three approaches: a derivation of the results from classic Shapley value theory
for coalitional games, a direct derivation based on the formula, and a direct derivation
based on the random-order approach. This last derivation establishes a formula for the
Shapley value of games of threats that is analogous to the formula for coalitional games:
the value of player i is the average of d(S ∪ i), where the average is taken over all the
orderings of N , with S denoting the subset of players that precede i in the ordering.

We end this introduction by noting that the existence and uniqueness of the Shapley
value for games of threats is an essential component of the proof of the existence and
uniqueness of a value for strategic games [2].

2. Games of Threats - Definition

A coalitional game of threats is a pair (N, d), where

• N = {1, . . . , n} is a finite set of players.
• d : 2N → R is a function such that d(S) = −d(N\S) for all S ⊆ N .

Example:
N = {1, 2, 3}.

d(∅) = −1, d(1) = d(2) = −1, d(3) = 0, d(1, 2) = 0, d(1, 3) = d(2, 3) = 1, d(1, 2, 3) = 1.

Denote by D(N) the set of all coalitional games of threats. By choosing, for every
S ⊆ N , either S or N\S, we can describe any d ∈ D(N) by means of 2n−1 numbers,

thereby identifying D(N) with R
2n−1

. One convenient choice is (d(S))S�1.
With this choice, the above example is described as follows.

d(1) = −1, d(1, 2) = 0, d(1, 3) = 1, d(1, 2, 3) = 1.

3. The Shapley Value

Let ψ : D(N) → R
n be a map that associates with each game of threats an allocation of

payoffs to the players. Following Shapley [4], we consider the following axioms.

For all games of threats (N, d), (N, e), for all players i, j, and for all real numbers α, β
(and using the notation ψid for ψ(d)(i)), the following properties hold:



GAMES OF THREATS 3

• Efficiency
∑

i∈N ψid = d(N).

• Linearity ψ(αd+ βe) = αψd+ βψe.

• Symmetry ψi(d) = ψj(d) if i and j are interchangeable1 in d (i.e., if d(S ∪ i) =
d(S ∪ j) ∀S ⊆ N\{i, j}).

• Null player ψid = 0 if i is a null player in d (i.e., if d(S ∪ i) = d(S) ∀S ⊆ N).

Definition 1. A map ψ : D(N) → R
n satisfying the above axioms is called a value.

Theorem 1. There exists a unique value for games of threats. It may be described as
follows:

(1) ψid =
1

n

n∑
k=1

di,k,

where di,k denotes the average of d(S) over all k-player coalitions that include i.

In the example, ψ1 = ψ2 =
1
3×(−1)+ 1

3× 1+0
2 + 1

3×1 = 1
6 , ψ3 =

1
3×0+ 1

3×1+ 1
3×1 = 2

3 .

Note: Formula (1) allocates to each player a weighted average of the d(S) over the
coalitions S that include that player. The weight is the same for all coalitions of the same
size but different for coalitions of a different size. Specifically, for each k = 1, . . . , n, the
total weight of 1

n is divided among the
(
n−1
k−1

)
coalitions of size k that include i:

(2) ψid =
1

n

n∑
k=1

1(
n−1
k−1

) ∑
S:i∈S
|S|=k

d(S) =
1

n

∑
S:i∈S

1(
n−1
|S|−1

)d(S).

Note: Henceforth we shall refer to the map of equation 1 as the Shapley value for games
of threats.

4. Derivation from classic Shapley value theory

Let V(N) := {v : 2N → R, v(∅) = 0} be the set of standard coalitional games on N . It
can be identified with a subspace of R2n of dimension 2n − 1.

Let K : V(N) → D(N) and L : D(N) → V(N) be defined by

(Kv)(S) = v(S)− v(N\S)
and

(Ld)(S) =
1

2
d(S) +

1

2
d(N).

1In the Shapley-value literature, such players are called substitutes rather than interchangeable. We
adopt the latter term in order to avoid potential confusions that may arise from the standard meaning of
the term ”substitutes” in economics.
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Note that the map L is linear, efficient (i.e., L(d)(N) = d(N)), symmetric (i.e., if i
and j are interchangeable in d ∈ D(N) then i and j are interchangeable in Ld ∈ V(N)),
and preserves null players (i.e., if i is a null player in d ∈ D(N) then i is a null player in
Ld ∈ V(N)).

Thus, if ϕ is a value on V(N), then ϕ ◦ L is a value on D(N).

Note that K ◦ L is the identity on D(N); therefore – in particular – K is surjective. It
follows that, if ψ1 and ψ2 are two different values on D(N), then ψ1 ◦ K and ψ2 ◦ K are
two different values on V(N).

Thus if the value on V(N) is unique then the value on D(N) is unique. As the Shapley
value ϕ is the unique value on V(N), ϕ ◦ L is the unique value on D(N).

This completes the proof of the existence and uniqueness of a value on D(N).

In order to show that the map ψ of Theorem 1 is, in fact, the Shapley value on D(N),
it suffices to show that ψ = ϕ ◦ L.

Recall that the Shapley value ϕ on V(N) is defined as follows. If v ∈ V(N) then

(3) ϕiv :=
1

n!

∑
R

(v(PR
i ∪ i)− v(PR

i )),

where the summation is over the n! orderings of the set N and where PR
i denotes the

subset of those j ∈ N that precede i in the ordering R. Let d be a game of threats.

Then, (Ld)(PR
i ∪ i) − (Ld)(PR

i ) = 1
2d(P

R
i ∪ i) − 1

2d(P
R
i ). The complement of PR

i is

PR∗
i ∪ i, where R∗ denotes the reverse ordering of R. As d is a game of threats, we have

−1
2d(P

R
i ) = 1

2d(P
R∗
i ∪ i). Therefore,

ϕi(Ld) =
1

n!

∑
R

(
1

2
d(PR

i ∪ i) +
1

2
d(PR∗

i ∪ i)).

Since the set of reverse orderings is the same as the set of orderings,

ϕi(Ld) =
1

n!

∑
R

d(PR
i ∪ i).

But

(4)
1

n!

∑
R

d(PR
i ∪ i) =

1

n

n∑
k=1

1

(n− 1)!

∑
R:|PR

i |=k−1

d(PR
i ∪ i) =

1

n

n∑
k=1

di,k.

Thus

ϕi(Ld) =
1

n

n∑
k=1

di,k,

which completes the proof that ψ = ϕ ◦ L.
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Remark: The map K is linear, efficient, symmetric, and preserves null players. Thus,
if ψ is a value on D(N) then ψ ◦K is a value on V(N). In particular, the existence of a
value on D(N) implies the existence of a value on V(N)).

Young [6] showed that the existence and uniqueness theorem for the Shapley value in
V(N) remains valid when the axioms of linearity and null player are replaced by an axiom
of marginality, which requires that the value of a player i in a game v depend only on the
player’s marginal contributions, v(S ∪ i) − v(S). Now, the map L preserves marginality
(i.e., if the marginal contributions of player i are the same in two games d1, d2 ∈ D(N)
then the marginal contributions are the same in Ld1, Ld2 ∈ V(N)); therefore the same
argument as above implies the following.

Corollary 1. The Shapley value is the unique mapping ψ : D(N) → R
n satisfying the

axioms of efficiency, symmetry, and marginality.

Remark: The map K also satisfies marginality. Thus the existence of a value satisfying
Young’s axioms on D(N) implies the existence of such a value on V(N)).

We end this section by noting that the results for games of threats are also valid for
constant-sum games.

Let C(N) := {v : 2N → R, v(S) + v(N\S) = v(N) for all S ⊆ N} be the set of
constant-sum coalitional games on N . It can be viewed as a subspace of R2n of dimension
2n−1.

Let K ′ : V(N) → C(N) and L′ : C(N) → V(N) be defined by

(K ′v)(S) =
1

2
(v(S)− v(N\S) + v(N))

and

(L′c)(S) = c(S).

Then both L′ and K ′ are linear, efficient, symmetric, preserve null players, and preserve
marginality, and K ′ ◦L′ is the identity on C(N). This implies the existence and uniqueness
of a value on C(N) in exactly the same way that the parallel statement for D(N) implied
the existence and uniqueness of a value on D(N).

Corollary 2. The Shapley value is the unique mapping ψ : C(N) → R
n satisfying the ax-

ioms of linearity, efficiency, symmetry, and null player, as well as the unique such mapping
satisfying the axioms of efficiency, symmetry, and marginality.

5. Direct derivation from the formula of Theorem 1

Definition 2. Let T ⊆ N , T 	= ∅. The unanimity game, uT ∈ D(N), is defined by
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uT (S) =

⎧⎨
⎩

|T | if S ⊇ T ,
−|T | if S ⊆ N\T ,
0 otherwise.

Proposition 2. The unanimity games span D(N).

Proof. It is sufficient to show that the 2n−1 games (uT )T�1 are linearly independent. Sup-
pose, then, that

∑
ajuTj = 0, where Ti 	= Tj for i 	= j and not all the aj are zero.

Since, for i 	= j, Ti 	= Tj and Ti ∩ Tj ⊇ {1} 	= ∅, neither set is contained in the other’s
complement and therefore

(5) uTj (Ti) =

{ |Tj | if Ti ⊇ Tj ,
0 otherwise.

Among the Tj for which the coefficient aj is non-zero choose one, say T1, with a minimum
number of players. Then for any j > 1, T1 	⊇ Tj and therefore, by (5), uTj (T1) = 0. Thus
0 =

∑
ajuTj (T1) = a1uT1(T1) = a1|T1| 	= 0, a contradiction. �

Proof of Theorem 1. In the unanimity game uT , all i /∈ T are null players and all i ∈ T are
interchangeable. It follows that any map that satisfies the efficiency, symmetry, and null
player axioms, is uniquely determined on uT :

(6) ψiuT =

{
1 for i ∈ T ,
0 for i 	∈ T .

If the map also satisfies linearity then – by Proposition 2 – it is determined on all of D(N).
This establishes uniqueness.

It is easy to verify that the map ψ defined in (1) satisfies linearity and symmetry. To
verify that it satisfies the null player axiom, proceed as follows. Consider the basic condition
d(S) = −d(N \S). As S ranges over all sets of size k that include i, N\S ranges over all
sets of size n− k that do not include i. Averaging over all these sets, we have

(7) di,k = −di,n−k ,

where di,k denotes the average of d(S) over all k-player sets that do not include i.

Now, if i is a null player then d(S) = d(S ∪ i) for any set S that does not include i.
Taking the average over all such sets S of size n − k, we have di,n−k = di,n−k+1, which –
combined with (7) – yields

di,k = −di,n−k+1.

Summing over k = 1, . . . , n and dividing by n yields ψid = −ψid. Thus ψid = 0.

It remains to prove efficiency, namely, that

(8)

n∑
i=1

ψid = d(N).
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Let Dk denote the average of the d(S) over all k-player coalitions. Since di,k is the
average of all the d(S) with i ∈ S and |S| = k, it follows by symmetry that the average of
di,k over i = 1, . . . , n is Dk. Thus

n∑
i=1

ψid =
n∑

i=1

1

n

n∑
k=1

di,k =
n∑

k=1

1

n

n∑
i=1

di,k =
n∑

k=1

Dk.

Note that there is just one n-player coalition, namely, N , so dN = d(N). Thus, to prove
(8), we must show that

n−1∑
k=1

Dk = 0.

But this follows from the fact that

Dk = −Dn−k for k = 1, . . . , n− 1,

which in turn follows from the basic condition d(S) = −d(N\S), as seen by noting that as
we take an average of the left side over all the sets of size k, the right side is averaged over
all the sets of size n− k. �

Note: The theorem remains valid when the axiom of linearity is replaced by the weaker
axiom of additivity. The proof is the same, with the additional observation that efficiency,
symmetry, and the null player axioms determine the value not only on the unanimity games
but also on any multiple, cuT , of such games.

6. Direct derivation by the Random Order Approach

In this section we provide an alternative formulation of Theorem 1 that is analogous to
Shapley’s classic formulation.

Proposition 3. There is a unique value for games of threats. It may be described as
follows:

(9) ψid =
1

n!

∑
R

d(PR
i ∪ i),

where the summation is over the n! possible orderings of the set N and where PR
i denotes

the subset of those j ∈ N that precede i in the ordering R.

Proof. Equation (4) establishes that 1
n!

∑
R d(PR

i ∪ i) = 1
n

∑n
k=1 di,k. Therefore, by Theo-

rem 1, the map ψ defined in (9) is the unique Shapley value for games of threats. �

In the rest of this section we present a direct proof of the proposition, without relying
on Theorem 1.

The proof of uniqueness is the same as before. First, observe that the unanimity games
span all games of threats and that the axioms uniquely determine the value for the una-
nimity games; then apply linearity.
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Next, we must prove that the map ψ of equation (9) satisfies Shapley’s four axioms.
Linearity and symmetry are easy to verify. To prove efficiency, proceed as follows. Let SR

j

be the set of the first j elements in the ordering R. Then, for every j, 1
n!

∑
R d(SR

j ) = Dj .
As shown earlier, Dj +Dn−j = 0 for 1 ≤ j < n. Therefore,

n∑
i=1

ψid =
n∑

i=1

1

n!

∑
R

d(PR
i ∪ i) =

1

n!

∑
R

n∑
i=1

d(PR
i ∪ i)

=
1

n!

∑
R

n∑
j=1

d(SR
j ) =

n∑
j=1

Dj = Dn = d(N).

Next, we must prove that the map ψ of equation (9) satisfies Shapley’s four axioms.
Linearity and symmetry are easy to verify. To prove efficiency, proceed as follows. Let SR

j

be the set of the first j elements in the ordering R. Then, for every j, 1
n!

∑
R d(SR

j ) = Dj .
As shown earlier, Dj +Dn−j = 0 for 1 ≤ j < n. Therefore,

n∑
i=1

ψid =

n∑
i=1

1

n!

∑
R

d(PR
i ∪ i) =

1

n!

∑
R

n∑
i=1

d(PR
i ∪ i)(10)

=
1

n!

∑
R

n∑
j=1

d(SR
j ) =

n∑
j=1

Dj = Dn = d(N).(11)

It remains to verify the null player axiom. If i is a null player then d(PR
i ∪i) = −d(PR∗

i ) =

−d(PR∗
i ∪ i). As R ranges over all the orderings, so does R∗. Therefore,

ψid =
1

n!

∑
R

d(PR
i ∪ i) = − 1

n!

∑
R∗

d(PR∗
i ∪ i) = −ψid,

which implies that ψid = 0.

Appendix A. The value of strategic games

A strategic game is a triple G = (N,A, g), where

• N = {1, . . . , n} is a finite set of players,
• Ai is the finite set of player i’s pure strategies, and
• g = (gi)i∈N , where gi :

∏
i∈S Ai → R is player i’s payoff function.

Denote by XS the probability distributions on
∏

i∈S Ai; these are the correlated strate-
gies of the players in S.

Let G ∈ G(N). Define the threat power of coalition S as follows:2

(12) (δG)(S) := max
x∈XS

min
y∈XN\S

⎛
⎝∑

i∈S
gi(x, y)−

∑
i�∈S

gi(x, y)

⎞
⎠ .

2Expressions of the form max or min over the empty set are ignored.
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By the minmax theorem, (δG)(S) = −(δG)(N\S) for any S ⊆ N . Thus δG is a game
of threats.

We define the value, γG, of the strategic game G by taking the Shapley value of the
game of threats δG.

In [2] it is proved that γ is the unique function that satisfies five properties that are
desirable in a map providing an a priori evaluation of the position of each player in a
strategic game. Four of these properties are analogs of the Shapley axioms for the value of
cooperative games.

Formula (1) then implies the following: the value of a player in an n-person strategic
game G is an average of the threat powers, (δG)(S), of the subsets of which the player is
a member. Specifically, if δi,k denotes the average of (δG)(S) over all k-player coalitions
that include i, then the value of player i is the average of δi,k over k = 1, 2, . . . , n.

Remark: The game of threats associated with a strategic game G, as defined in (12), is
different from von Neumann and Morgenstern’s original coalitional game, which is defined
as follows:

(vG)(S) := max
x∈XS

min
y∈XN\S

∑
i∈S

gi(x, y).

As was pointed out by von Neumann and Morgenstern [5], Shapley [3], Harsanyi [1], and
others, this definition has some deficiencies. In the context of the Shapley value, the shift to
definition (12), which was first proposed by Harsanyi [1], has proven successful in address-
ing these deficiencies. We wonder whether, in the context of other cooperative solution
concepts, e.g., the stable set or the core, the deficiencies could similarly be addressed by a
shift to games of threats or to other variants of the von Neumann–Morgenstern coalitional
game.
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