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. INTRODUCTION generally reflects ASes’ business models. This is some of the
f%st evidence of the significance of the business competitiv

End-to-end packet _dehvery n _the Internet is ach|evq ndscape in determining the structure of the AS graph.
through a system of interconnections between the networ

domains of independent entities called Autonomous Systess Related Work

(ASes).. Inter-domain conn_ections are the resglt of a comple Previous economically-principled models [1], [7] have hee
dypam|c process of negotiated bu3|ne§s re""‘t',onsh'psem’“*t"vformuIated as game-theoretic models with static equdibri
pairs of ASes. We present an economically-principled gBney, hich makes it difficult to understand the graph’s evolution
tive model for Autonomous System graph connectivity. Whilg, o ime. Moreover, these models assume homogeneous or

there is already a large literature devoted to understandijentical ASes, that edges have uniform costs or capacities
Internet connectivity at the AS level, many of these modelg, 4 hinge on fixed demand models.

are either static or based on generalized stochastics. Chang et al’s [4] formulation of an AS's decision prob-
In a thoughtful critique of such models, Li, Alderson, Doylgem yses an empirically-motivated demand model previously
and Willinger [10] show that while many generative modelgtroduced in [3], which we also employ. Our model differs
reproduce certain statistical features of the AS graply, tai€  from theirs in that our utility function is explicit about éh
to capture the good performance of realistic networks [1Qdconomic tradeoffs at play and our model does not involve
In a study of the AS’s intra-domain graph, Li, Aldersongny randomization beyond the sampling of business models,
Willinger and Doyle [11] define performance instead in terMghich is tuned here to empirically-measured distributions
of network throughput and show that it is very unlikely thafyhile Chang et al.’s model also allows for the revision of
randomized generative models will yield graphs that haee thnks, each AS revises its links when a periodic “timer” goes
highly-optimized structure of real-world networks. Thea§o qff, Their method of link revision does not cascade througho

of this paper is to provide insight into the economic drivefihe network as ASes react to their neighbors’ link revisjons
that yield, over time, the rich and complex AS interconn&tti 55 js provided in our diffusion process.

patterns that constitute today’s Internet.

Notable features of our model include the assignment of AS
business models with an asymmetric gravity model of inter- Our model contains the following components: each node
domain traffic demand [3], an explicit representation of A% assigned @usiness modglraffic demands are computed
utility that incorporates benefits for traffic routed, costien using an asymmetric gravity model, a utility function that
costs, and payments between ASes, and a deterministicysrodecorporates benefits for traffic routed, congestion ccets],
for link revision that can cascade throughout the netwohis T payment transfers between ASes, and revision of links using
is the first attempt at AS graph modeling that incorporatesaaforest fire diffusion model.
diffusion process to capture how ASes respond to direct andn our model, AS nodes come into contact with other nodes
indirect externalities from changes in the network strestu and lay down links to maximize their economic benefits. Our
which brings it closer to an equilibrium model. model only considers customer-provider links and where the

We validate our model against other generative modefecision to establish a link is always initiated by the costq
To do this, we define the social planner’s problem whicwho pays the provider for the link and essentially for access
is parameterized by the business models of the graph dndthe rest of the network. The joint actions of customers
provide a method to compare earlier generative models withoosing their providers defines a directed graph reflectiag
our model by optimizing the placement of business modetsistomer-provider business relationships between ASils, w
on the network. We find that our model yields graphs that aeelges from customers to providers. While link payments are
better performing as compared to other dynamic generativge-sided, traffic flows in both directions since the custome
models. We also show that our model yields a structured plaggys for transit traffic to and from its providers.
ment of nodes endogenously, where this placement of nodesnter-domain traffic demand is tied to ASes’ respective

II. THE AS GRAPH FORMATION MODEL



customer bases. We capture this by a model given by Chang, o’

Jamin, Mao and Willinger [3], assigning each node a business .. X P,‘,““kk
model according to their distribution from empirical dateda 4 2 s o - i
defining traffic demands based on these. Generally speaking, ;j;;m

a customer AS’s utility for connecting to a provider AS’s g o

domain is a function of how that connection will affect itsrow ' ¢

customers’ traffic demand, the link’s impact on its links and LW N

network congestion, and finally on the balance of payments -

made and received by it for routing traffic along all of its S

adjacent customer-prowder connections. Fig. 1: Degree Distribution for our AS graph model compared to tfiahe preferential

A. Overview of the Dynamic Process atachment graph model

As nodes arrive in the network, they are given a business suggests that is an effective provider. We can think of
model that is chosen randomly from a joint distribution [3]the business model parametéts, 3;,v;) as representing an
A newly born node chooses to connect to the existing A8S’s utility for providing residential access, web hostiragd
inter-domain graph by picking the single AS provider that mybusiness access services, respectively. The businessl mode
opically maximizes its utility function. The dynamic prase coefficients(a;, 5;,7;) are chosen from the joint distribution
unfolds in discrete periods as follows. F(a,Y), wherea refers to the distribution ofy;, which is
currently drawn from an empirically-derived power law. &n
The Dynamic Process: business modell _coeﬁ|C|ents are .h|ghly correlgted in n@@,l—l
1) In periodt, a single AS node is born with business attributes we use an emp|r|cally-der|ve_d pairwise correlation maE'K_)
< ag, Biyvi > computer,; andg;. Once business models have been assigned,
2) The newly born AS proceeds to placesiagle link to maximize we compute traffic demands based on an asymmetric gravity
its utility, indicating who will be its provider del (f ch L3
3) The new node’s provider then has the occasion to revismls. mode ( rom ang et.a : [ ])
It can either lay down a single additional provider link, lese The traffic demand is represented by the mafBi¢G(s))
any number of it current provider links or delete providerks and entryb’“l(s) represents the total demand for traffic from
based on the action that maximizes its utility. h I ffic i d. Th . l
4) Ifthe new node's provider decides to make a change, themafa |~ 1O . We assume that all traffic is routed. The routing policy
its providers has the occasion to do the same. Likewise,ddne| ~determines the value of*!(s) for all e € E and all pairs
of these providers that make a change, each of their pravider of . | ¢ N. where xkl(s) is defined as the flow of traffic
have occasion to do the same also. This process burns thtioeigh L f, k é destined fof i | d
graph in a depth first search manner, backtracking whenioevis| originating from#k an estined fof traveling along edge
stops on a particular branch. and assume that no packets are dropped by ASes. We assume
that routing policy designates a single path from sourcénto s
along which to route traffic. We denofe,;(G(s)) as the path

In what fOI_IOWS’ letv dgnote the set of nodes with :n that the routing policy designates to send traffic fréno /.
|N|. The action of a nodeé € N is a vectors; € {0,1} Therefore, we have

indicating which nodes has chosen as its providers. We let

s=s; X -+ X s, be the joint action of all nodes. B (s) { WRU(s) if (i,5) € Pu(G(s)) (1)
CL‘L‘ S) = A
B. The Graph J 0 otherwise.
The joint action s defines a directed graplti(s) = The routing policy that we use is the “No Valley and Prefer

(N, E(s)). An edgee = (i,5) € E(s) is established if and Customer” Routing Algorithm [6], which is closer to the way
only if s;(j) = 1 and designates thatis a customer of traffic is routed on the real AS graph as opposed to shortest
4, which is to say that pays; for the link. Let ;(s;) = Path routing.

{(i,4)|si(j) = 1} be the set of nodés provider links, with  D. The Utility Function

E(s) = Ujen Ei(s;). Moreover, letE}(s) = {(i,7) : si(j) =

1Y U{(.d) : (i) = 1} refer toall edges adjacent to Given the set of nodesv, with corresponding business

models, the grapt¥(s) of inter-domain connections and traffic
C. AS Business Models demand matrix*!(s) € B(s), the utility of an AS node is

An AS’s business model reflects its utility for incoming"jls follows:
and outgoing traffic, as well as its disutility for routing

traffic through its domain. We follow the business model ,, (s) :Zb“(s)+ Zbﬁ(s) - Z Z M (s)

representation of Chang et al. [3]. Formally, each node JEN JEN c€Br(s) keN
i € N has a business model parameterized with coefficients

(e, Bi,vi) € (0,1]° where o; reflects ASi’s demand for - Z tij(s) + Z tji(s)
inbound traffic and3; reflects its demand for outbound traffic. J:(15)€E(s) J:(G1EE; (s)

The parametery; captures an AS’s relative capacity to be The third term represents the congestion cost associated
an effective inter-domain access provider. A high value of¥ith traffic routed through nodg while the last two terms rep-



resent transfers between A&nd its customers and providerslink given the current topology of the network, deleting any

Recall thatE’* (s) designates all edges adjacentt®ote that number of its provider links, or reconfiguring its currentiget

this is a costr; applied to all traffic flow through, capturing of provider links by repositioning or deleting its curreirtids

i's cost for routing inbound and outbound traffic as well aand adding up to a single additional link to its budget.

for all transit traffic. We can analogously define a revision process with limiting
ASes with lower transit routing costs in turn provide moreepthd, where the depth first search revision process termi-

affordable and more reliable service to customer domaimgtes on a branch either when a node does not make a revision

making them the preferred inter-domain access providdrs. Tor when the distance from the original node along the branch

price charged to a customer A%, by the provider ASj, is exceedsi.

modeled as a function of the congestion associated witficraf

being routed throughis servers and sub-domains as well as a

mark-up for the bilateral traffic flow along the purchasedlin A- Defining the Performance of a Graph

We assume that the mark-up on traffic from costs incurredQur main interest is in evaluating the relative performance
is separable from price of flow on a link. Thatshould pay of generated graphs against those of other generative model
for traffic in both directions is how most customer-providefjve use a measure of social welfare to compare the relative
arrangements are made, reflecting the fact jhat payingi performance. In this, we follow Li et al. [10] who notice
for access to the rest of the AS graph network. that rule-based and purely stochastic generative modeys ma
We stress that\; and p; are a function ofi's identity, reproduce certain statistical features of the graph, sich a
both terms relating ta's effectiveness as an access providepower-law degree distributions, but fail to capture impatt
and that they are customer-anonymous, i.e. independentsgfictural features related to the performance of the giaph
J. In practice, j's traffic demand along the proposed linkquestion.
does matter in these per-unit charges. Our assumption holdgve define the performance of a graph as the social welfare
particularly well for small customers linking to much largefunction W (@) = S ien ui(G). Notice that all the payments
providers and for the rare cases where large customersdinkchncel out, so this objective function is just the total decha

relatively small providers. met by the network discounted by the congestion cost experi-
An AS i's costs for routing inter-domain traffic are tiedenced by all nodes.

to how its network is provisioned. Two important factors
affecting an AS’s transit costs are the length of inter-doma , ,
links and the inter-domain bandwidth capacity. Lower tians W(G) = Z (Z b + Z o — ;- Z Z ngz) 3)
costs are associated with topologies with greater geograph €N leN keN e€E} kleN
coverage and topologies that are optimized for larger traffi Thjs is a reasonable model of social welfare for a network
volumes. In our model, the effectiveness iohs an access of ytility-maximizing ASes.
provider is captured by the coefficientof its business model.
With this in mind, we choose parameters \; and p; to
vary super-linearly iny; to reflect the large variability among We compare graphs generated by our generative model
ASes’ prices (and presumably costs) for customer traffic [{ASGM) against a number of graph topologies: preferential
Precisely, forr, A\, u > 0 as model parameters, we have thatattachment (PA) graphs [2], copying model (CM) graphs [8],
and graphs derived from the generalized random graph (GRG)
Tg=T-€ 1, Ag=X-e 71, pg=p-e . (2) model [5]. In the preferential attachment generative model
nodes are born one at a time. In each time step, with probabil-
ity p, the new node connects to a node already in the network
Once a node lays down a link to its provider, this providarniformly at random. With probability — p, the new node
is given the opportunity to revise its links and this procesnnects to a node already in the network in proportion to
continues recursively until no providers make a changes This total degree. In the copying model, we have an out-degree
process propagates upstream from customers to provid@aameterk and a probabilityp. Much like the preferential
Customers may add a link to a new provider, replace attachment model, nodes are born one at a time. In each time
delete links to existing providers, but a provider may nad,adstep, the newly born nodeformsd outlinks. In each time step,
replace, or delete customer links. In order to make our i@vis a prototype vertex, is chosen uniformly at random from the
process tractable and ensure that our revision processndbesset of nodes already in the graph. Nadéhen formsd outlinks
cycle, we perform a depth first search where branches die astfollows. With probabilityp, nodev’s i*" outlink is chosen
once a provider decides not to make a change. The revisigmformly at random from nodes already in the graph. With
of links process in our model is much like the Forest Firprobability 1 — p, nodev’s i outlink is chosen to be node
model of Leskovec et al. [9] although our revision process is’s i'" outlink. The GRG model generates random graphs
deterministic rather than randomized. with a given expected degree sequetize= {d;, ds, ...,d, }.
At each node in the depth first search, a node compulesthe GRG model, a link is formed between nodeand j
its best response function for either adding a single pevidwith probability proportional tai;d;.

IIl. SIMULATION METHODOLOGY

B. Comparing Network Performance

E. Revision of Links
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Flg. 2. The (a) social welfare of our AS graphs is compared to copymuglel (CM), preferential attachment (PA) and generalizztiom graphs (GRG) as a function of the
size N of these graphs. Our model graphs with business models alptimllocated are also shown (OPT(ASG)). We also exploeesihace of connected network graphs having
the the same power law degree sequence in (b). The power lgreeldistribution against which all networks are compasetthé average distribution achieved endogenously over
50 runs of our model. A pairwise rewiring procedure (desaliin [10]) is used to fit 50 individual instances of each typ@etwork to this degree distribution, while preserving a
simple, connected graph. Welfare values for all networlessfmown, along with average performance of the original odtsvagainst the average s-metric of the rewired networks
(see bold values). (c) Business Model Coefficient vs. Betmess Centrality (d) Social Welfare and Diameter as a fanatf Burn Depth. Social welfarél’ (G) and the s-metric
value S(G) as a function of the variance of transit provider typesRecall that the s-metric value is a measure of a graph’sivelékelihood against a background set of graphs
with the same degree distribution. Since the degree disiib obtained endogenously by our model varies with th&idigion of business models, each s-metric value in (b) is
normalized against the maximal s-metric graph for a givesiriass model type distribution.

In Section IV, we compare graphs generated by our AS
graph model to other graphs in terms of social welfare. We S(G) = E d;d;
measure a graph’s performance in terms of a traffic demand- (i,j)€E
based social welfare function and the computation of traffic ... . .
; . . : . Since the use of the s-metric requires the same degree
demands is predicated on business models, which requires_ us . L e
: : . . sequence, we use a randomized rewiring process as in Li et
to assign business models to preferential attachment,rgpy

and GRG random graphs. We do so optimally. We ensure tk?a!‘{t [10]. The s-metric also gives the likelihood of a graph,

the graphs are of the same size and that Ahenodes that in that given a fixed degree sequence, high&t:) values

comprise all graphs are made up of exactly the same Setc&;’[‘respond to graphs that more more likely and lowee;)

business models. Given a set of business models and a gré’p ges correspond to graphs that are less likely [10].
we assign a business model to each node in the graph to IV. SIMULATION RESULTS
optimize the graph’s particular objective function (i.eslfare, In this section, we show a number of properties that our

demand, congestion), in the spirit of presenting all conspar gy namically grown graphs satisfy. In particular, we shoatth
graphs in the best possible light. The traffic demand modgl: model can be parameterized so as to endogenously form
makes this a non-linear assignment problem which we sol\giyorks with a power law node degree distribution. Signif-
by adaptive simulated annealing. icantly, in stark contrast to other randomized and ruleedas
topology generators, we find that power law graphs generated
We also compare the structural features of the graphgour model bear the hallmarks of good engineering design in
yielded by these generative models in Section IV. We do thisrms of good congestion, throughput, and total node weelfar
by way of thes-metricintroduced by Li et al. [10]. Thes- properties. We investigate the sensitivity of our resulis t
metric measures the extent to which high-degree nodes dreterogeneity in the type space, showing that the emgdyical
connected to other high-degree nodes. A useful property mbtivated choice of: yields graphs that have particulgood
the s-metric is that it can distinguish between graphs thet h features and performance. We restrict our business model
the same degree sequence: distribution parametrization, in our choice efand %, as per
empirical measurements in [3].

Definition 1ll.1. For any graphG = (V,E) with degree A. Power Law Networks

sequenceD = {di,ds,...,d,} the s-metric is defined as With the traffic demand parameterized as per [3], we ob-
follows: serve that our generated AS graphs satisfy power law degree



distributions (as we would expect [10]), shown by approxthe dominant business model coefficient of nodes against the
mately linear behavior on a log-log scale. Though power laetweenness centrality. It compares results for graphseter
degree distributions are not unusual, they are still a keysst from our AS graph model with link revisions to our AS
cal property that AS graphs satisfy. Any valid AS model mugfraph model without link revisions. The plot suggests that
generate graphs with power law degree distributions, hewewur model endogenously achieves an optimizing placement
they should not be the only metric by which to judge AS grapdf business models in the graph. For our model-generated
generative models [10]. We observe that the customer degggaphs, as the dominant coefficient grows, business access
distribution, the provider degree distribution and theralle providers move toward the center of the graph quickest of all
degree distribution of our dynamically generated graptisfga whereas residential access providers are much more likely t
a power law degree distribution. In Figure 1, we compare the located on the fringes of the graph. The relative seitgitiv
degree distribution of graphs from our AS graph model witbf the allocation of business models in our model to the size
the degree distribution of graphs generated with prefakentof the transit provider coefficient is illustrated by the gden
attachment model, appropriately parameterized to yieldsec correlation coefficient between betweenness centralitytha
fit to the total degree distribution of our model-generatetiree business model coefficients for all nodes in the graph.
graphs, as well as to the degree distribution of preferent@onsidering over 50 network instances, we obtain corigiati
attachment graphs that have been randomly rewired so a®t®.33, 0.41, and0.67 for residential access, web hosting,
yield an even more precise fit to the degree distributiordgeél and business provider coefficients, respectively.
by our model. We observe that the exponent of the customeWe also consider the role of the link revision process in
degree distribution is smaller (i.e. more negative) thaa tlrigure 2(d). We plot social welfare as a function of the degith
exponent of the overall degree distribution, which is innturforest fire link revision. The results of Figure 2(d) are toldf
smaller than the exponent of the provider degree distabuti in that link revision is crucial to obtaining graphs with hig
which is what is found in practice [4]. social welfare and that link revision is not necessary beyon
small depths. This is exactly what one would expect since the
AS graph is known to have a small diameter (between 5-7).
In Figure 2(a), we find that our AS graph generative modgb reinforce this point, we have also shown the diameter of
yields graphs with higher social welfare than graphs geedrathe network as a function of the link revision depth. For all
by the preferential attachment and copying model. Note thalues of link revision depth, the diameter is fairly smalit
this is even though business model placement is endogenpusntinues to decrease as we increase link revision depth.
in our graphs.

The results in Figure 2(b) yield similar results to [10], rat . -
graphs with highS(G) values tend to have low performance We thank seminar participants at Harvard, NYU Stern, 2007
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