Impact of New Laboratory Studies of N2O5 Hydrolysis on Global Model Budgets of Tropospheric Nitrogen Oxides, Ozone, and OH

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1029/2005GL022469

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3988779

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Impact of new laboratory studies of N$_2$O$_5$ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH

M. J. Evans1 and D. J. Jacob
Division of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA

Received 18 January 2005; revised 7 March 2005; accepted 8 April 2005; published 13 May 2005.

[1] We investigate the impact of new laboratory studies of N$_2$O$_5$ hydrolysis in aerosols on global model simulations of tropospheric chemistry. We use data from these new studies to parameterize the reaction probability (γ$_{N2O5}$) in the GEOS-CHEM global model as a function of local aerosol composition, temperature, and relative humidity. We find a much lower global mean γ$_{N2O5}$ (0.02) than commonly assumed in models (0.1). Relative to a model simulation assuming a uniform γ$_{N2O5}$ = 0.1, we find increases in mass-averaged tropospheric NO$_x$, O$_3$, and OH concentrations of 7%, 4%, and 8% respectively. The increases in NO$_x$ and O$_3$ concentrations bring the GEOS-CHEM simulation in better agreement with climatological observations. Citation: Evans, M. J., and D. J. Jacob (2005), Impact of new laboratory studies of N$_2$O$_5$ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, doi:10.1029/2005GL022469.

1. Introduction

[2] Reactive oxides of nitrogen (NO$_x$ ≡ NO + NO$_2$) play a defining role in the chemistry of the troposphere. They react catalytically to produce ozone (O$_3$) and OH, the main tropospheric oxidants. The dominant global source of NO$_x$ is the burning of fossil fuel (20–33 Tg N yr$^{-1}$) with minor contributions from biomass and biofuel burning (collectively 3–13 Tg N yr$^{-1}$), soils (4–7 Tg N yr$^{-1}$), and lightning (3–13 Tg N yr$^{-1}$) [Intergovernmental Panel on Climate Change (IPCC), 2001]. NO$_x$ is permanently removed from the atmosphere by conversion to nitric acid followed by deposition. During the day, this conversion occurs through the reaction of NO$_x$ with OH, and during the night by hydrolysis of N$_2$O$_5$ in aerosols. These mechanisms are globally comparable as sinks of NO$_x$ [Dentener and Crutzen, 1993]. Previous evaluations of the literature based upon work undertaken for stratospheric conditions [Jacob, 2000] gave a best estimate of 0.1 for the reaction probability of N$_2$O$_5$ (γ$_{N2O5}$), i.e. the probability that a N$_2$O$_5$ molecule impacting an aerosol surface undergoes reaction. This value has been the standard used in many tropospheric chemistry models [Dentener and Crutzen, 1993; Wang et al., 1998; Bey et al., 2001; Tie et al., 2001; Stroud et al., 2003]. A study by Tie et al. [2003] found that γ$_{N2O5}$ = 0.04 or less gave a better simulation of NO$_x$ concentrations observed during the TOPSE aircraft campaign over the North American Arctic. Photochemical model analyses of observed NO$_x$/HNO$_3$ ratios in the upper troposphere have also suggested that γ$_{N2O5}$ is much less than 0.1 [McKeen et al., 1997; Schultz et al., 2000]. Recent laboratory studies of N$_2$O$_5$ hydrolysis [Kane et al., 2001; Hallquist et al., 2003; Thornton et al., 2003] provide sufficient information to improve the representation of γ$_{N2O5}$ in global models as a function of local aerosol composition, relative humidity (R.H.), and temperature. We examine here the implications for model simulations of the global tropospheric budgets of NO$_x$, O$_3$, and OH.

2. Model Calculation of N$_2$O$_5$ Reaction Probability

[3] Our analysis uses the GEOS-CHEM chemical transport model (CTM) which has been used previously for a number of studies focused on tropospheric O$_3$-OH-NO$_x$ budgets [e.g., Bey et al., 2001; Martin et al., 2003a; Hudman et al., 2004]. We use GEOS-CHEM version 5-07-08 (http://www-as.harvard.edu/chemistry/trop/geos). This version of the model considers five different aerosol components: dust, sulfate, organic carbon, black carbon, and sea salt. The sulfate aerosol mass concentration is calculated within the model [Park et al., 2004] and the mass concentration of the other components are specified as 3-D monthly mean values from the GOCART model [Chin et al., 2000a, 2000b; Ginoux et al., 2001; Martin et al., 2003b]. Size distributions for all aerosol components are specified as described by [Martin et al., 2003b].

[4] Past applications of GEOS-CHEM have assumed γ$_{N2O5}$ = 0.1 for all aerosol types and conditions. In the present study we specify γ$_{N2O5}$ for different aerosol components and conditions on the basis of recent laboratory studies [Kane et al., 2001; Hallquist et al., 2003; Thornton et al., 2003]. Kane et al. [2001] investigated the effect of R.H. over the range 8–92% on γ$_{N2O5}$ for ammonium sulfate, ammonium bisulfate, and sulfuric acid aerosols. We assume here that atmospheric sulfate aerosol is mainly present as ammonium sulfate, a reasonable assumption at least over continental regions [Martin et al., 2004] where N$_2$O$_5$ hydrolysis is globally most important. Kane et al. [2001] found that γ$_{N2O5}$ increases smoothly from 9.4 × 10$^{-9}$ at 8% R.H. to 0.042 at 92%. Hallquist et al. [2003] investigated the effect of temperature and found that γ$_{N2O5}$ for ammonium sulfate had a roughly constant value of 0.03 up to 280 K with a rapid decrease to 0.003 at 308 K. For our study we have adopted the R.H. parameterization of Kane et al. [2001] and the temperature dependence of Hallquist et al. [2003]. Thornton et al. [2003] investigated N$_2$O$_5$ uptake by organic aerosols using malonic acid particles. They found γ$_{N2O5}$ on solid aerosol (R.H. between 0 and 50%) to be 0.001. For aqueous aerosols, γ$_{N2O5}$ increased from...
Table 1. GEOS-CHEM Representation of the Reaction Probability \(\gamma_{N2O5}\) for \(N2O5\) Hydrolysis on Aerosol Surfaces

<table>
<thead>
<tr>
<th>Aerosol Type</th>
<th>Reaction Probability</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfate(^b)</td>
<td>(\gamma = \alpha \times 10^\beta)</td>
<td>Kane et al. [2001]</td>
</tr>
<tr>
<td></td>
<td>(\alpha = 2.79 \times 10^{-4} + 1.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\times 10^{-4} \times RH + 3.43)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\times 10^{-4} \times RH^2 + 7.52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\times 10^{-4} \times RH^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\beta = 4 \times 10^{-2})</td>
<td>Hallquist et al. [2003](^c)</td>
</tr>
<tr>
<td></td>
<td>(\times (T-294)) ((T > 282K))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\beta = -0.48) ((T < 282K))</td>
<td></td>
</tr>
<tr>
<td>Organic carbon</td>
<td>(\gamma = RH \times 5.2)</td>
<td>Thornton et al. [2003](^d)</td>
</tr>
<tr>
<td></td>
<td>(\times 10^{-4}) ((RH < 57%))</td>
<td></td>
</tr>
<tr>
<td>Black carbon</td>
<td>(\gamma = 0.005)</td>
<td>Sander et al. [2003]</td>
</tr>
<tr>
<td>Sea salt</td>
<td>(\gamma = 0.005) ((RH < 62%))</td>
<td>Sander et al. [2003](^e)</td>
</tr>
<tr>
<td></td>
<td>(\gamma = 0.03) ((RH > 57%))</td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>(\gamma = 0.03)</td>
<td>Bauer et al. [2004](^f)</td>
</tr>
</tbody>
</table>

\(^a\)T is temperature (K), RH is relative humidity (%).
\(^b\)We assume a separable relationship between R.H. and temperature effects on \(\gamma_{N2O5}\), using the work by Kane et al. [2001] for the R.H. effect and Hallquist et al. [2003] for the temperature effect.
\(^c\)Logarithmic fit of data presented in Figure 11 of Hallquist et al. [2003].
\(^d\)Linear fit of data presented in Figure 6 of Thornton et al. [2003].
\(^e\)We use the work of Sander et al. [2003] for the reaction probability on dry and aqueous sea-salt aerosol, and assume that the aerosol is dry for RH < 62%, corresponding to the midpoint between deliquescence and efflorescence R.H. [Martin, 2000].
\(^f\)No value available from published literature. Bauer et al. [2004] quote a range from 0.003 to 0.02 from unpublished measurements by J. Crowley as part of the MINATROC EU Commission project EVK2-CT-1999-00003.

0.01 to 0.03 as R.H. increased from 20 to 50%, (between 20 and 50% R.H. a metastable state exists) with values remaining constant at around 0.03 for R.H. above this. It appears that for much of the atmosphere organic aerosols are aqueous [Bradan and Abbatt, 2004; Marcolli et al., 2004] so we assume here the aqueous range of values.

Table 1 describes the updated parameterization of \(\gamma_{N2O5}\) in GEOS-CHEM based on these and other data. We present here results from two one-year GEOS-CHEM simulations for 2001. The first simulation uses a uniform \(\gamma_{N2O5} = 0.1\) and the second uses the parameterization described in Table 1. Both simulations were initialized with a 12-month spin-up. The horizontal resolution used is \(4^\circ \times 5^\circ\) and there are 30 vertical layers from the surface to 50 hPa. Further details of the tropospheric chemistry simulations in GEOS-CHEM are presented, for example, by Bey et al. [2001] and Martin et al. [2003a].

Figure 1 shows the zonal mean \(\gamma_{N2O5}\) values for January and July as computed in GEOS-CHEM from the data in Table 1. \(\gamma_{N2O5}\) for each grid-box is calculated as the mean \(\gamma_{N2O5}\) over all aerosol components weighted by the relative contribution of each component to the total aerosol surface area of that grid-box. Much of the spatial and seasonal variability in Figure 1 reflects the temperature and R.H. dependences of \(\gamma_{N2O5}\) on sulfate aerosol. Values are highest in surface air at the summertime poles and at northern mid-latitudes in winter because of cold temperatures, high R.H., and a large contribution of sulfate to the total aerosol surface area. The general decrease of \(\gamma_{N2O5}\) with altitude is due to the decrease in R.H., leading to minima in the very low R.H. downward branches of the Hadley circulation. The global mean \(\gamma_{N2O5}\) is 0.02. During the spring months in the Arctic, \(\gamma_{N2O5}\) ranges from 0.01 to 0.04 which is within the range found by Tie et al. [2003] to match the TOPSE NO\(_x\) observations. The low values in the upper troposphere (~0.01) are consistent with HNO\(_3\)/NO\(_x\) concentration ratios measured from aircraft [McKeen et al., 1997; Schultz et al., 2000].

3. Impact on Global Model Budgets

Figure 2 shows the calculated zonal mean fractional change in the concentrations of NO\(_x\), O\(_3\), and OH for Dec–Feb and Jun–Aug with the new parameterization for \(\gamma_{N2O5}\).
as compared to the simulation with $\gamma_{N2O5} = 0.1$. The tropospheric NO$_x$ burden increases from 9.6 Gg N to 10.2 Gg N (7%). The largest increases (~50%) are found in winter in the downward branch of the Hadley circulation, consistent with the reduction in γ_{N2O5} associated with these dry warm conditions (Figure 1). On a global mass-weighted basis, N$_2$O$_5$ concentrations are 250% higher and NO$_3$ concentrations are 30% higher. Comparison of model results with a compilation of aircraft observations of NO$_3$ concentrations mapped onto a monthly 4° × 5° grid [Emmons et al., 2000] shows a reduction in the mass-weighted model bias from −14.0 pptv to −7.9 pptv with the new γ_{N2O5} parameterization. The mean ratio of simulated to observed NO$_3$ concentrations for that compilation increases from 0.77 to 0.86. The largest change is in the middle troposphere (3–10km) where the mean ratio increases from 0.79 to 0.91.

Simulation O$_3$ concentrations increase with the new N$_2$O$_5$ hydrolysis parameterization, responding to the increased NO$_2$ concentrations. The total burden of tropospheric O$_3$ increases by 4% from 249 Gg to 260 Gg. Comparison with the climatological compilation of tropospheric ozone data by [Logan, 1999] shows a reduction in the mass-weighted model bias from −2.9 ppbv to −1.4 ppbv. The mass-weighted model to measured concentration ratio improves from 0.94 to 0.99. The global O$_3$ (odd oxygen) chemical production increases within the troposphere by 7% from 3900 Tg O$_3$ yr$^{-1}$ to 4180 Tg O$_3$ yr$^{-1}$. An intercomparison between 10 global tropospheric chemistry models [IPCC, 2001] found a global mean O$_3$ production rate of 3365 ± 745 Tg O$_3$ yr$^{-1}$ across all the models. GEOS-CHEM is at the high end of this range, but we have argued that this could reflect biases in other models [Bey et al., 2001].

The combined effect of increasing the NO$_x$ and O$_3$ concentrations is an increase in the concentration of OH. The mass-weighted, global annual mean tropospheric OH concentration increases from 0.99 × 106 cm$^{-3}$ to 1.08 × 106 cm$^{-3}$ (an 8% increase). Both values are consistent with the current constraints on global mean OH concentrations based on methyl-chloroform observations: 1.07 (±0.09, ±0.17) × 106 cm$^{-3}$ [Krol et al., 1998], 1.16 ± 0.17 × 106 cm$^{-3}$ [Spivakovsky et al., 2000], and 0.94 ± 0.13 × 106 cm$^{-3}$ [Prinn et al., 2001].

The new parameterization for γ_{N2O5} described in Table 1 thus has significant impact on simulations of tropospheric composition and points to the need for further work to characterize N$_2$O$_5$ uptake by aerosols. There are to our knowledge no laboratory data for γ_{N2O5} on dust aerosols, which make a large contribution to total aerosol surface area. Uncertainties in organic aerosol phase, and in the mixing states between different aerosol types, are also major issues.

References

Dentener, F. J., and P. J. Crutzen (1993), Reaction of NO$_3$ on tropospheric aerosols: Impact on the global distribution of NO$_x$, O$_3$, and OH, J. Geo-

Jacob, D. J. (2000), Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2311–2159.

Kane, S. M., F. Caloz, and M. T. Leu (2001), Heterogenous uptake of gaseous N-oxls by (NH$_4$)$_2$SO$_4$, NH$_4$HSO$_4$, and H$_2$SO$_4$ aerosol, J. Phys. Chem., 105(26), 6465–6570.

Spivakovsky, C. M., et al. (2000), Three-dimensional climatological dis-
tribution of tropospheric OH: Update and evaluation, J. Geophys. Res.,
105, 8931–8980.
Stroud, C., et al. (2003), Photochemistry in the arctic free troposphere: NOX
budget and the role of odd nitrogen reservoir recycling, Atmos. Environ.,
37(24), 3351–3364.
Thornton, J. A., C. F. Braban, and J. P. D. Abbatt (2003), N2O5 hydro-
lysis on sub-micron organic aerosol: The effect of relative humidity,
particle phase and particle size, Phys. Chem. Chem. Phys., 5(20),
4593–4603.
Tie, X., G. Brasseur, L. Emmons, L. Horowitz, and D. Kinnison (2001),
Effects of aerosols on tropospheric oxidants: A global model study,
Tie, X., et al. (2003), Effect of sulfate aerosol on tropospheric NOx and
ozone budgets: Model simulations and TOPSE evidence, J. Geophys.
Wang, Y., D. J. Jacob, and J. A. Logan (1998), Global simulation of tropo-
sphere O3-NOx-hydrocarbon chemistry: 1. Model formulation, J. Geo-

M. J. Evans, Institute for Atmospheric Science, School of Earth and
Environment, University of Leeds, Leeds LS2 9JT, UK. (mat@env.leeds.
ac.uk)
D. J. Jacob, Division of Engineering and Applied Science, Harvard
University, Oxford Street, Cambridge, MA 02138, USA.