A Statistical Model for Multiparty Electoral Data

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.2307/2585758</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:3992146</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
A Statistical Model for Multiparty Electoral Data

JONATHAN N. KATZ University of Chicago
GARY KING Harvard University

We propose a comprehensive statistical model for analyzing multiparty, district-level elections. This model, which provides a tool for comparative politics research analogous to that which regression analysis provides in the American two-party context, can be used to explain or predict how geographic distributions of electoral results depend upon economic conditions, neighborhood ethnic compositions, campaign spending, and other features of the election campaign or aggregate areas. We also propose the use of graphical representations for data exploration, model evaluation, and substantive interpretation. We illustrate the use of this model by attempting to resolve a controversy over the size of and trend in the electoral advantage of incumbency in Britain. Contrary to previous analyses, all based on measures now known to be biased, we demonstrate that the advantage is small but meaningful, varies substantially across the parties, and is not growing. Finally, we show how to estimate the party from which each party’s advantage is predominantly drawn.

We propose the first internally consistent statistical model for analyzing multiparty, district-level aggregate election data. Our model can be applied directly to explain or predict how the geographic distribution of electoral results depends upon economic conditions, neighborhood ethnic compositions, campaign spending, or other features of the election campaign or characteristics of the aggregate areas. We also provide several new graphical representations for helping in data exploration, model evaluation, and substantive interpretation. Our general model is intended to address three serious lacunae in the study of comparative politics. First, most literatures focusing on non-American elections are dominated by survey data alone rather than also including studies of real election results. Survey research has enormous advantages for studying individual-level preferences, but as analyses of random selections of isolated individuals from unknown geographical locations, they necessarily miss much of electoral politics. As such, they are often best complemented with studies of aggregate electoral returns.

Second, with surprisingly few exceptions, electoral analyses in comparative politics based on real election returns use national rather than regional, district, or precinct-level data. This approach has the advantage of allowing more countries to be included in the analysis without much data collection effort, but it also has serious disadvantages. Aggregate national-level studies prevent researchers from learning where votes come from and why, and they generally result in studies based on small numbers of observations and little variation on many relevant dimensions. Studies of postwar OECD countries usually contain only about a dozen observations (see Paldam 1991, 18, Table 1), and analyses of former communist countries could include only three or four free elections. This is often insufficient information with which to parse out many of the interesting effects, and it ignores the substantial information content in the often vast differences across different regions of a country.

Finally, the vast majority of electoral studies in multiparty democracies dichotomize the electoral system into a pseudo-two-party contest. Researchers analyze the vote for the incumbent party versus all others grouped together, or the vote for a particular group, such as left-wing parties, versus the combination of all others. Such national-level studies have used data from France (Rosa and Amson 1976), Japan (Inoguchi 1980), England (Whiteley 1980), and Italy (Bellucci 1984); time-series of cross-sectional data from multiple countries (Host and Paldam 1990; Paldam 1986, 1991; Powell and Whitten 1993); and single cross-sections of multiple countries (Lewis-Beck 1988), among many others.

1. Such national-level studies have used data from France (Rosa and Amson 1976), Japan (Inoguchi 1980), England (Whiteley 1980), and Italy (Bellucci 1984); time-series of cross-sectional data from multiple countries (Host and Paldam 1990; Paldam 1986, 1991; Powell and Whitten 1993); and single cross-sections of multiple countries (Lewis-Beck 1988), among many others.

2. A few examples of the good survey analyses conducted in multiparty democracies include those in England (e.g., Goodhart and research has enormous advantages for studying individual-level preferences, but as analyses of random selections of isolated individuals from unknown geographical locations, they necessarily miss much of electoral politics. As such, they are often best complemented with studies of aggregate electoral returns.
the others. This procedure has the advantage of enabling the use of standard statistical methods, but since these methods are best applied to the study of two-party systems (largely in U.S. data), two serious problems result: bias and information loss. The procedure is biased whenever all parties do not field candidates in every election district. For example, even when the governing party contests every election, different numbers of parties composing the “other” category will generally have large effects on a variable such as the percentage of the vote for the governing party. Because the vote a party expects to receive will normally be related to whether it runs a candidate, the observed variable will systematically overstate the true underlying support for the governing party when its true support is highest. For example, when the governing party is expected to do so well that it scares off opposition parties from running their own candidates, the fraction of the vote actually received by the governing party will exceed its true support in the electorate. This, and other similar problems, can combine to induce severe bias in inferences based on such data. Moreover, even if partially contested elections happen to cause no bias in a particular case, important information, critical to comparative politics, is always lost by these methods. For example, when the economic pain caused by promarket reforms in postcommunist countries results in the reformers being thrown out of office (Przeworski 1991), or when the increasing salience of ethnic divisions upsets the political order (Horowitz 1985, 1993; Ofle 1992; Tucker 1996), which parties benefit? How do the electoral fortunes of each of the parties depend on the degree of economic hardship or ethnic divisions? Answering these questions about multiparty systems requires statistical models that permit multiparty outcomes. Shoehorning a complex multiparty democracy into a fake two-party system in order to perform an analysis that looks like those conducted in American politics takes the wrong lessons from that subfield. Making methodological decisions merely to accommodate the requirements of familiar statistical methods risks missing the most distinctive and interesting aspects of the electoral system under analysis. The bottom line is that multiparty systems require the development of multiparty statistical models. It would appear that much substantive knowledge can be gained, and bias reduced, by designing models of electoral systems with the special features of these systems in mind.

Although we intend our model to be applicable to a wide variety of multiparty electoral data, we apply it here to resolve one important scholarly controversy: the size of and trend in the electoral advantage of incumbency in the United Kingdom. For decades, the conventional wisdom has been that U.K. incumbency advantage is small to nonexistent and not increasing, but this conclusion has come under strong attack recently by researchers whose results seem to show that incumbency advantage is moderate to large and growing fast. Unfortunately, it turns out that all estimates given in the literature are based on measures now known to be biased. In partial agreement and disagreement with the substantive results from both sides, we demonstrate that the incumbency advantage is small but markedly different for each of Britain’s three major parties. Our methods also provide information that others have not attempted to estimate, such as the party from which each party’s incumbency advantage is primarily drawn. The study of incumbency advantage in the United States has been greatly enhanced by a quarter-century of scholarly work that has increased the precision and accuracy of estimates in this two-party system, and we hope a similar gain will result in electoral studies of multiparty democracies, such as the United Kingdom.

From a methodological perspective, analyses of aggregate electoral data fall into two fundamental categories that should be carefully distinguished—contextual effects and ecological inferences. Research questions about the relationships; among aggregate variables require a model of contextual effects, such as that offered here (or, e.g., Huckfeldt and Sprague 1993). In contrast, research questions about the characteristics of the individuals who make up aggregate electoral data require ecological inferences and the special models designed for this purpose (see King 1997). For example, a study of the effect on the vote for more liberal parties of having a college in town is a contextual effect, for which the model we propose is directly useful. In contrast, using aggregate electoral data to study whether college students are more likely than others to vote for liberal political parties requires an ecological inference. Our statistical model applies to questions at the district level, such as incumbency advantage estimates or predicting which candidate will win. Formal models of individual behavior may be of interest for some purposes, but they are not always necessary in cases like these. For much of our discussion, we make the common assumption that candidates are strategic and well informed. Our working (testable) assumption about voters is that, conditional on the candidates, their voting behavior follows regular patterns of some sort.

In the sections that follow, we briefly describe our motivating substantive problem, discuss the more general characteristics of multiparty electoral data, summarize the problems that need to be resolved in order to develop a general statistical model for these data, introduce a simple version of the model for cases in which all parties contest, introduce assumptions to deal with partially contested elections, and show how to estimate the model and compute quantities of interest from these estimates. We present substantive results as the model is developed.

INCUMBENCY ADVANTAGE IN GREAT BRITAIN

Until the 1980s, scholars generally agreed that British elections were decided by national and not local forces. The electoral advantage of incumbency was thought to
be essentially nonexistent in Britain. For example, Butler and Stokes (1969, 6) repeatedly emphasize "the importance of national political issues and events as opposed to more local influences on the choice of the individual elector." They even go so far as to conclude (p. 8) that "so important are the [national] parties in giving meaning to contests in the individual parliamentary constituencies in Britain that for many voters candidates have no identity other than their partisan one" (see also Butler and Kavanagh 1980, 292).

The few numerical estimates of incumbency advantage in Britain come from a newer literature that contradicts this conventional wisdom. For example, Curtice and Steed (1980, 1983) find the "sophomore surge" for Labour—the average difference in the vote for Labour in open seats it wins and the vote in the subsequent election for the now-incumbent Labour party candidate—was about 1,500 votes (about 3.8%) in the 1979 and 1983 elections. Norton and Wood (1990) modify sophomore surge by correcting for regional swings and find a surge of 1.6% for the Conservatives and a remarkable 7.8% for Labour. Finally, Wood and Norton (1992), along with the prominent survey-based analyses of Cain, Ferejohn, and Fiorina (1987), also strongly argue for the proposition that incumbency advantage is increasing.

Although the idea of sophomore surge, on which most measures are based, is very intuitive, Gelman and King (1990) prove that it gives biased estimates of the causal effect of incumbency. In fact, in Britain, the problem may actually be worse than in two-party systems: Because most British elections have very few sophomores (usually only about two dozen), the measure discards more than 95% of the district observations and is therefore exceptionally inefficient. Moreover, the measure is usually applied without controls and without any feature of the statistical model which recognizes that the system being analyzed has more than two parties.

Thus, we have on one side the conventional wisdom, based on many years of traditional analyses, that incumbents have no electoral advantage. On the other side, we have a growing systematic quantitative literature which argues that the incumbency advantage is moderate to large and steadily growing. We hope to resolve this scholarly dispute.

Our data for this article include constituency-level election results from England for 1959 to 1992. We also have more limited data from the 1955 elections, which we use whenever possible. Geographic districts in England are called "constituencies," but we use the two words interchangeably because our model applies to the Liberal Party and its alliance with the Social Democratic Party more simply as the Alliance.

CHARACTERISTICS OF MULTIPARTY DATA

We now identify the statistically important characteristics of multiparty electoral data. We first do so in simple algebraic terms and then translate the algebra into a useful graphic display.

Let \(V_{ij} \) denote the proportion of the vote (the underline denotes our mnemonic labeling convention) in district \(i \) (\(i = 1, \ldots, n \)) for party \(j \) (\(j = 1, \ldots, j \)). Two fundamental features of multiparty voting data are that each proportion falls within the unit interval

\[V_{ij} \in [0, 1] \text{ for all } i \text{ and } j, \quad (1) \]

and the set of vote proportions for all the parties in a district sum to one:

\[\sum_{j=1}^{J} V_{ij} = 1 \text{ for all } i. \quad (2) \]

Thus, an important criterion of a good (and logically possible) statistical model of multiparty voting data is that it satisfies the constraints in equations 1 and 2. Variables that meet these constraints fall in a region generally referred to as the simplex.

We now illustrate this simplex sample space graphically for the two- and then the three-party case. For each case, we apply a simple trick to reduce the number of dimensions required, making the graphical presentation more manageable and ultimately informative, without losing information. The graphic version of these relationships will also be useful for exploring the data and understanding the model fit.

For the two-party example, we use \(V_{ID} \) for the Democratic and \(V_{IR} \) for the Republican shares of the vote in district \(i \) for candidates for the U.S. House of Representatives. Obviously, we can easily represent both variables by just one, say, \(V_{ID} \), since the other is merely \(V_{IR} = 1 - V_{ID} \). Figure 1A plots \(V_{ID} \) by \(V_{IR} \). Because of the constraint in equation 2, all district vote fractions fall on a single line segment, and due to the constraint in equation 1, the line ends at the axes. Thus, all the points in the two-dimensional plane in Figure 1A fall on a simpler one-dimensional line segment. Presenting this line segment in Figure 1B reduces the problem from two to one dimension without losing any information.

Figure 2 provides analogous information for three parties. Figure 2A plots in three dimensions the three variables from the British electoral system, \(V_{IC} \), \(V_{IL} \), and \(V_{IA} \), for the Conservative, Labour, and Alliance vote proportions, respectively. The constraints in equa-

\footnote{The concept of the "personal vote" is used in Britain to include any local, candidate-specific effects, but for empirical analyses it is normally treated synonymously with incumbency advantage. In the United States the personal vote is considered to be the fraction of the incumbent's advantage attributable to the person rather than the party. For this article, we use only the total effect and refer to it as the "incumbency advantage," as is most common in the American political science literature (see Gelman and King 1990 for a formal definition).}

\footnote{We began with the data set "British General Elections, 1955–1992," (version 8, August 1993), constructed by D.F.L. Dorling of the University of Newcastle, extracted data from England only, updated it, and added information on incumbency status. The number of observations in our data for each election year are: 1955, 460; 1959, 460; 1964, 455; 1966, 488; 1970, 471; 1974 (Feb.), 463; 1974 (Oct.), 491; 1979, 467; 1983, 491; 1987, 522; and 1992, 521."}
A Statistical Model for Multiparty Electoral Data

March 1999

FIGURE 1. The Simplex for Two Parties

A. 2 Parties, 2 Dimensions

B. 2 Parties, 1 Dimension

Note: This figure explains graphically how to reduce two vote variables to one dimension. Graph A portrays the familiar relationship between the vote for the Republicans (V_{RR}) and Democrats (V_{DD}) in the U.S. two-party system; because of the constraints of equations 1 and 2, all points fall on a line segment and can be portrayed more simply as Graph B.

Equation 2 imply that valid points must fall on the plane cutting through the three-dimensional space. The constraints in equation 1 require this plane to end at each of the three axes. The resulting area that satisfies both constraints is the equilateral triangle shaded in A.

Because all the points in three dimensions fall in a two-dimensional area, we can save space by presenting the triangle alone in two dimensions, which we do in Figure 2B. This graph is a version of a ternary diagram (or trilinear, triaxial, or barycentric plot; see Upton 1989, 1994), to which we have added several new features. In this triangle, each dot fully characterizes a single constituency result from the 1979 British election. Roughly speaking, the closer a dot is to a vertex (with a party’s label, C, L, or A), the higher is the vote total for that party; more precisely, a vote total for a party equals the perpendicular distance from the side of the triangle opposite to the labeled vertex, as calibrated on the scales we have added. That is, the vertical positions of the dots in the figure indicate the values of V_{AC}, as indicated on the scale on the left. As a dot falls farther from the side opposite the L vertex, the larger is the V_{IL} variable (as can be seen by comparing the point to the scale at the top).

For example, in addition to the real data, we have added one (hypothetical) election result as a small box in the bottom left of Figure 2B. In order to clarify how to read the voting results in this district, we added dashed lines connecting this point to the three axes. In this district, the Conservatives received 25% of the vote, as can be seen by following the dashed line from the box to the left axis that calibrates V_{AC}. The dashed line traces the shortest distance from the axis to the point, that is, a line perpendicular to the axis. The same district also gave 25% of its vote to the Labour Party (see the dashed line that heads northward to the V_{IL} axis) and half its votes to the Alliance (as can be determined from the dashed line that heads down to the right to meet the V_{LA} axis). The electoral results for all the real districts, represented by dots, also can be read by tracing out perpendicular lines to each axis. With all this precision available when needed, it is still worth remembering the easier rough way to interpret this ternary diagram: The closer a point is to a vertex of the triangle, the more votes that district gave to the party whose label appears there.

We have removed most of the sides of the triangle in order to make visible districts with zero votes for one of the parties. For example, districts uncontested by the Alliance fall on the right side of the triangle, where the bottom axis reveals that $V_{LA} = 0$. Substantively, these partially contested districts appear to be generated by a different process than the mass of (fully contested) districts that fall inside the triangle. This can be seen since the distribution of points does not gradually get smaller (or larger) as it approaches the side of the triangle; instead, there appears to be an area without dots, indicating every party that merely appears on the ballot receives at least 15–20% of the vote.

We have also added lines that divide the triangle into thirds. We call these win lines, since they indicate which party wins, depending on the region in which a point falls. For example, if a point falls in the region at the top of the graph, the Conservatives win a plurality of the votes and (by the electoral rules) the seat for that constituency. Points that fall within the left region are wins for the Alliance, and those in the right go to the Labour Party. The same logic applies to multiparty elections with $J > 3$ parties, even though graphical displays become more unwieldy.

PROBLEMS TO RESOLVE

Standard regression-type models applied to multiparty electoral data usually generate nonsensical results. For
FIGURE 2. The Simplex for Three Parties

A. 3 Parties, 3 Dimensions

B. 3 Parties, 2 Dimensions

Note: In a manner analogous to Figure 1, this figure reduces three vote variables to two dimensions. Graph A portrays the relationship among the votes for the Conservative (V_C), Labour (V_L), and Alliance (V_{al}) parties; because of the constraints of equations 1 and 2, all points fall on an equilateral triangle that is the intersection of a plane with the three dimensional figure. Graph B portrays this more simply in two dimensions in a version of what is known as a "ternary diagram." Values of the three variables can be read by where the dots fall perpendicular to the three numbered axes. The little square point (with dotted lines referencing the axes) is the example discussed in the text.

example, one common approach is to use the vote for each party as a dependent variable (fraction for the Conservatives, fraction for the Labour Party, etc.) and to regress each on a set of explanatory variables. These J regressions are run separately, or via a "seemingly unrelated" system of equations. Since neither constraint from equations 1 and 2 is satisfied, this approach generally fails to give sensible results. That is, the results often imply that some parties will get fewer than zero votes, or that the sum of votes for all parties will be greater or less than 100%. Moreover, even when point predictions happen to fall within the constraints of the simplex, the full probabilistic implications of the model are virtually always logically impossible, as some of the predictive density always falls outside the simplex. Some of the few who recognize this problem transform V_{ij} to an unbounded scale (separately for each party j), such as with a logistic function, and then apply separate or seeming unrelated regressions, but this, too, is insufficient: The results will satisfy equation 1 but not equation 2. Similarly, running only $J - 1$ regressions and computing the predictions for V_{ij} from the others satisfies equation 2 but not equation 1. Various other ad hoc approaches can be taken to correct different parts of the problem, but especially because computing most quantities of interest requires the full probabilistic model, we decided to pursue a more general approach.

The model we develop can be considered a generalization of two independent lines of statistical research. The first line includes models for "compositional data" (Aitchison 1986), a term that describes data sets with multiple outcome variables that sum to unity for each observation. A few of the many examples of compositional data from other fields include soil samples in geology and pedology (with measurements of the fractions of sand, silt, and clay), rock samples in geochemistry (with fractions of alkali, Fe$_2$O$_3$, and MgO), and blood measurements in biology (proportions of white blood cell types measured for each patient). Compositional data are also common in political science and economics (as in multiparty voting data, the allocation of ministerial portfolios among political parties, trade flows or international conflict directed from each nation to several others, or proportions of budget expenditures in each of several categories), but researchers in these fields have not taken advantage of the connection to this more general statistical approach. That is unfortunate, because compositional data seem to be closely related to the raison d'etre of political science.
research: If politics is the authoritative allocation of resources, then fractions of resources received by each group are exactly compositional data.

The key contribution of this literature is statistical models that allow only possible outcomes to occur. That is, predictions or simulations from such a model satisfy equations 1 and 2 or, in other words, have positive density only over the simplex. The most influential models of compositional data are due primarily to Aitchison (1986), who criticized earlier models based on Dirichlet distributions (see citations in Aitchison 1986, 61–2), since those models require the ratios of “compositions” (votes for each party in our application) to be independent. Aitchison avoided this unrealistic assumption by applying the normal distribution to the log-ratios of the individual components. This procedure starts with the multivariate normal fit to the unconstrained real plane and then maps it into the simplex via the multivariate logistic transformation. This works in the same way as, for example, the log-normal maps the real number line onto the positive real numbers.

The second line of research that we generalize are models of votes and seats for two-party systems (Gelman and King 1991, 1994a, 1994b; King 1989a; King and Browning 1987; King and Gelman 1991) and for multiparty systems (King 1990). Like compositional models, some of these vote and seat models also transform votes (in different ways) using logistic transformations and then stochastically model the transformed variables. The resulting statistical models differ in a variety of ways, but they also constrain the result to the proper sample space so that equations 1 and 2 are satisfied.

Unfortunately, the models from neither line of research will work without modification for multiparty voting data. One problem is that our extensive evaluations of the assumptions of normality underlying the models proposed for compositional data (which we present below) indicate that they do not fit real election data. Another problem is that these models also do not capture a fundamental feature of voting data: the pattern of “missing data” that occurs when at least one party receives zero votes in a district, as when it presents no candidate for election in a district. Zero vote totals in electoral data constitute politically crucial information and therefore must be treated very differently from examples in which zeros entries are considered indicators of missing data, due to slight measurement error (as when instruments for measuring the compositions of soil samples miss the always-present traces of some elements). The models discussed above for analyses of seats and votes fit two-party systems well and (King 1990) they can fit multiparty data on seats given votes, and some of these include special features for uncontested districts, but they are not directly applicable to explaining or predicting multiparty electoral data.

Thus, a proper model of multiparty voting data must have the following special features. It must have positive density only over the simplex and must use a distribution more flexible than the multivariate normal, which does not fit real voting data. It also must allow covariates (explanatory variables). Below, we provide this basic model for fully contested district elections. The model also must provide special features to deal with uncontested and partially contested seats, which we do in the subsequent section. The complete likelihood function is then given.

Finally, a proper model must allow for estimates of precisely the quantities of scholarly interest, and these may differ across applications. That is, we should not have to teach readers to interpret the arcane results of statistical models; rather, the models should be modified to produce results in the form of most natural interest to substantively oriented political scientists. For example, the raw coefficients estimated by models of compositional data are not the quantities of interest for any political or, indeed, virtually any nonpolitical application. We use methods of simulation, described below, to compute estimates of a wide range of theoretically interesting quantities. These methods are critical to political science applications of this new model. We also believe the methods will enable those in other scholarly disciplines, who use somewhat related models for very different purposes, to compute numerical quantities of more interest to their research than the usual results of compositional data models.

THE BASIC MODEL FOR FULLY CONTESTED ELECTIONS

In this section, we only consider district elections in which all parties contest and every party gets at least one vote: \(V_{ij} \in (0, 1) \) for all \(i \) and \(j \). Because, in practice, no officially registered candidate who appears on the ballot ever gets fewer than 15–20% of the vote in our data, the only real assumption here is that all parties contest all district elections. We generalize this model to deal with partially contested elections in the next section.

Let \(V_i = (V_{i1}, \ldots, V_{i(J-1)}) \) be a \((J - 1) \times 1\) vector for each district \(i \) \((i = 1, \ldots, n)\). This vector contains all the information in the individual vote fractions, since the votes for party \(J \) can be computed deterministically from the others:

\[
V_J = 1 - \sum_{j=1}^{J-1} V_{ij}.
\]

The model we are about to propose is “symmetric” in the sense that changing the party labeled \(J \) does not affect anything of substantive importance.

Aitchison (1986) proposes that compositional data like \(V_i \) be modeled with his additive logistic normal distribution. This distribution can be formed as follows. First let \(Y_i \) be the vector of \(J - 1 \) log-ratios \(Y_{ij} = \ln(V_{ij}/V_{ij}) \), for party \(j = 1, \ldots, J - 1 \) relative to party \(J \). Then assume that the \((J - 1) \times 1\) vector \(Y_i = (Y_{i1}, \ldots, Y_{i(J-1)}) \) is multivariate normal with mean
vector μ and variance matrix Σ. To get to the observed
votes, use the multivariate logistic transformation:

$$V_j = \frac{\exp (Y_j)}{1 + \sum_{r=1}^{J-1} \exp (Y_r)}.$$ (4)

Although compositional data analysts have found
this specification to be useful for their applications, we
demonstrate below that it is inappropriate for multi-
party voting data. In our data, a majority of districts
tend to be more highly clustered, and a minority much
more widely dispersed, than the multivariate normal
implies.

Political scientists modeling seats and votes have
avoided this distributional problem by combining mix-
tures of independent normals and appropriately cho-
ned covariates, but these solutions are insufficient for a
general approach to multiparty voting data.

We now derive a new model that solves these
problems. We label the distribution the additive logistic
Student t (LT) distribution, which we demonstrate is
superior when used to fit political data to the additive
logistic normal, which it includes as a limiting special
case. To derive the LT distribution, first let Y_i be
multivariate Student t (Johnson and Kotz 1972) and
then apply the transformation in equation 4:

$$P(V_i|\mu, \Sigma, \nu) = LT(V_i|\mu, \Sigma, \nu)$$

$$= T[\ln(V_i/V_i^0)|\mu_i, \Sigma] \prod_{j=1}^{J-1} V_j$$

$$= \frac{\Gamma((\nu + J - 1)/2)}{\Gamma(\nu/2)}\nu^{(J-1)/2}\pi^{(J-1)/2} \left(\prod_{j=1}^{J-1} V_j \right)$$

$$\times \left(1 + \frac{1}{\nu} (Y_i - \mu_i)'\Sigma^{-1}(Y_i - \mu_i) \right)^{-(\nu+J-1)/2},$$ (5)

where the extra factor in the denominator is the
Jacobian of the transformation (required when creat-
ing a new distribution from an existing one through a
deterministic transformation), the expected value and
variance of Y_i are μ_i and $\Sigma \nu/\nu-2$, and ν ($\nu > 0$) is the
degrees of freedom parameter. The $(J-1) \times (J-1)$
parameter Σ is known as the scatter matrix. This
distribution happens to be equivalent to the predictive
distribution, under certain conditions, when using the
additive logistic normal (see Aitchison 1986, 174).

This model differs from the additive logistic normal
when $\nu < \infty$, and it differs more the smaller is ν. We
find in practice that our estimates of ν are fairly small,
and thus the LT distribution differs significantly from
the additive logistic normal. For example, Figure 3
gives two ternary diagrams with normal (for A) and t
(for B) confidence regions fit to real electoral data

*So that we consider only cases in which the moments exist on the
logistic scale, we impose the technical restriction that $\nu > 2$. This
assumption, while not necessary for our model or estimator (since
the moments of the additive logistic t are always finite), does make
estimation and simulation simpler. Given that our estimates of ν stay
far from the boundary (even when permitted to do otherwise), this
technical assumption is unambiguously supported by our data.

![FIGURE 3. The Fit of the Logistic Normal and Logistic t Distributions](image_url)

Note: Both graphs give a ternary diagram for 1970 British House of Commons electoral data, with uncontested districts deleted, and 50% and 95% confidence regions based on the additive logistic normal in (A) and additive logistic t in (B). The better fit to the t distribution is indicated by the approximately 50% and 95% of the constituencies that fall within the 50% and 95% confidence region, respectively, for the t distribution, but only 64% and 91% for the normal. Note also how the inner region is much narrower, and the outer region is wider, for the t than the normal.
(from 1970). For both, the inner loop is the 50% confidence region; if the model is appropriate, half the points should fall within it. In fact, 66.7% fall within the normal-based region, whereas 48.5% fall within the \(t \)-based region. A similar situation, but slightly less extreme, holds for the 95% confidence region, which is the outer loop in both graphs. (Because of the large number of constituencies, the figure is more useful for understanding the differences in how the two models fit these data and the nature of confidence regions on the simplex, rather than making it easy to count points within each region.) This demonstrates clearly the advantage of the \(t \) distribution for British electoral data.\(^7\)

When \(v \) is sufficiently large, the normal and \(t \) distributions are identical. This means that our generalization has great potential benefits, because it fits a much wider range of data more common in multiparty democracies, and it is also essentially costless (i.e., except for the trivial efficiency loss caused by estimating the extra degrees of freedom parameter). Given this risk profile, there seems little reason not to use this more general model.

The generalization that the additive logistic \(t \) provides would be traditionally described (by using the general textbook description for \(t \)-based distributions) as allowing for "fatter tails"—a smaller number of constituencies surprisingly (according to the normal) far from the center of the distribution. This description is accurate, but perhaps a more informative characterization is the other half of the story: When \(v \) is small, most of the constituencies are surprisingly (according to the normal) heavily clustered together (compare the inner confidence region in the two graphs in Figure 3). That is, what the traditional description of \(t \)-based distributions misses is that when \(v \) is small, a \(t \) distribution with the same variance as a normal has both fat tails and heavier cluster around the mode. The two features must exist simultaneously to counterbalance each other, in order that the result is a proper distribution. Our reason for also emphasizing the heavy cluster is that this describes more of the points than focusing on the relatively small number of outliers in the tails.

As can be seen by the counts of districts within the confidence regions in Figure 3, the additive logistic \(t \) model fits the data better than the additive logistic normal. The substantive reason is that most constituencies in England have vote fractions that are very similar to one another, but a smaller set of constituencies are quite far from this main cluster.

In Figure 4 we present summaries of the fit of the two distributions for all the elections in our data. It shows for each election year the percentage of districts that fall within the 50%, 80%, and 95% confidence regions. Figure 4A shows that for the additive logistic normal model, the actual fractions of points within each of these regions (indicated by solid lines) vary quite a distance from the theoretically correct (straight dotted lines). (For visual clarity, the solid lines connect the points at the elections, where the estimation was actually conducted.) In contrast, the actual and theoretical values are very close for the additive logistic \(t \), portrayed in Figure 4B. The normal seems to fit better for more recent elections than it once did, but there is no reason to think that this trend will continue.

For applications, we let the means of the log-ratios be linear functions of vectors of explanatory variables:

\[
\mu_{ij} = X_{ij}'\beta_j
\]

where \(X_{ij} \) is a \(p_j \times 1 \) vector of explanatory variables, and \(\beta_j \) are parameters to be estimated. For most applications the explanatory variables will be the same for all \(j \), but this is not required. The parameters \(\beta_j, \Sigma, \) and \(v \) are of little direct interest, but we show below how to compute quantities of interest from them.

ASSUMPTIONS FOR PARTLY CONTESTED DISTRICTS

We now introduce methods of generalizing the basic model to allow for districts in which some parties do not contest the outcome.

We follow King and Gelman (1991) by setting as the goal of estimation the effective vote—values of \(V_{ij} \) that we would observe if all \(J \) parties contested the election in district \(i \). In districts with all parties contesting, the effective vote is the observed vote. In partly contested districts, the effective vote for all parties is unobserved but can be estimated. (That is, in districts in which any party chooses not to contest, we lose information about the effective vote proportion for all parties, since those that contest might get different vote fractions if they were to face more competition.)

The effective vote concept covers all "national" political parties, even if they do not contest all elections. We distinguish regional parties and do not try to estimate strained counterfactuals, such as what would happen if the Scottish nationalists ran in English constituencies. Regional parties are easy to include in our model, but for expository purposes we omit this issue here.

In order to analyze the effective vote in districts not fully contested, some assumptions must be made. We introduce several designed for electoral systems in which the candidates and parties decide for themselves whether to contest a district election.\(^8\) A reasonable assumption under these circumstances is that a noncontesting party would not have won if it had nominated a candidate. After all, if they would have won, they probably would have nominated someone in the

\(^7\) The fit of the model could be closer to a normal after conditioning on explanatory variables, but our studies indicate that this is not usually the case with our multiparty data. We present the simple case in Figure 3, without covariates, for ease of presentation.

\(^8\) Other assumptions would be necessary when, for example, a progovernment election commission prevents opposition parties from entering a race because they might win, as occurs in some fledgling Eastern European democracies. Similarly, when a small party makes a deal with a larger party not to contest in certain areas (as in the recent New Zealand elections), these assumptions would not hold. Our model could be modified accordingly. In all cases, scholars should tune the model assumptions to what we know about the details of party politics.
FIGURE 4. Confidence Region Coverage

A. Coverage of Normal Confidence Regions

B. Coverage of t Confidence Regions

Note: These graphs summarize the fit of the additive logistic normal (A) and additive logistic t (B) distributions for all U.K. elections in our data set. For each election, the solid lines mark the percentage of coverage for the 50%, 80%, and 95% confidence regions (where dotted lines are drawn). The better fit of the t distribution is indicated by the actual number of constituencies within each region (indicated by the solid line) staying much closer to the dotted line for the t than for the normal.

first place. Even if this assumption is false, it is unlikely that any statistical analyst can devise a more realistic assumption than the noncontesting party is effectively able to do for us.

It also seems highly likely that the noncontesting party would have received fewer votes than the parties that did nominate candidates, and so we expand the assumption to this more encompassing version. We recognize that this broader assumption occasionally may not hold. In other words, it is conceivable that the noncontesting party, if it ran, might get more votes (and yet still lose) than one of the parties that chose to
run. Yet, even if this assumption were violated, the degree of violation would very rarely be large enough to make a substantive difference. Moreover, the alternative possible assumptions are more arbitrary and would be difficult to justify.

Other assumptions could be chosen, based on models of candidate entry and exit for different electoral systems or on different features of the British electoral system (such as the loss of a monetary deposit by candidates who do not receive a certain fraction of the vote). Our methods for deriving the model below under our chosen assumptions can be easily modified to handle these alternatives.

If covariates that predict which parties contest in each constituency are available, then they can be used in interactions with indicator variables that code for the patterns of uncontestedness in order to avoid assumptions about parameter equivalence between district elections that are fully and partly contested. In most cases, these variables will be useful but not necessary. An alternative is to develop full-blown models that predict which parties contest in each district as separate equations. Although future researchers may wish to consider this approach, we do not pursue it because it is unnecessary, would make the model less robust, and would require data that are very hard to obtain in most applications.

We make no assumption analogous to "independence of irrelevant alternatives," as is sometimes necessary for individual-level, survey-based statistical models of multiparty voter choice (see Alvarez and Nagler n.d.). That is, our assumptions, and the model built from them, allow the entry or exit of a party into a district election contest to affect the relative vote totals of the parties already in the race.

ESTIMATION

In this section, we propose methods of estimating the parameters of the model, $\beta = \{\beta_i\}$, Σ, and v. In the next section, we explain how to compute quantities of interest given these results.

If all districts are contested by all parties, we can estimate the parameters by maximum likelihood. That is, we would maximize the log of the additive logistic distribution in equation 5, summed over all observations, with respect to the parameters. Complications arise in partly contested districts, however. One attractive approach for missing data problems such as this is to use Markov Chain Monte Carlo (MCMC) methods (see Tanner 1997). For example, impute the missing data given a guess for the parameters; then estimate the parameters given these “completed” data via maximum likelihood; then use these better parameter estimates to impute more realistic values for the missing data; and so on, until (stochastic) convergence.

We implemented a version of the MCMC approach, but in our experience and with our three-party data, this procedure is relatively slow, primarily because each of the two steps in every iteration is itself iterative. We offer a direct likelihood approach that is approximately twenty times faster. Our studies indicate that this alternative is faster for smaller numbers of parties, but the MCMC approach may be more computationally efficient for larger numbers of parties.

Our description of the direct likelihood approach begins by denoting the set of parties contesting the election in district i as P_i, a set that can take on seven patterns: $\{1, 2, 3\}$, $\{2, 3\}$, $\{1, 3\}$, $\{1, 2\}$, $\{1\}$, $\{2\}$, and $\{3\}$.\footnote{Suppose they held an election and nobody ran? We ignore this amusing eighth possible pattern, despite its occasional appearance in some very low-visibility local U.S. elections. In general, the number of patterns of missing data is 2^p.}

When the effective vote is observed for all parties, the likelihood is the probability density of the observed variables. For simplicity, we write the likelihood as a function of Y_i rather than V_i, although the two give equivalent results. For districts with fully contested elections, the observed vote $(V_{i1}^*, V_{i2}^*, V_{i3}^*)$ equals the effective vote (V_{i1}, V_{i2}, V_{i3}). Thus, $Y_{i1} = \ln(V_{i1}/V_{i3})$ and $Y_{i2} = \ln(V_{i2}/V_{i3})$ are both observed, and the likelihood function is the bivariate t probability density:

$$L^{(123)} = \prod_{i=1}^{n} T(Y_{i1}, Y_{i2} | \psi), \quad (7)$$

with parameters

$$\psi = \{\mu_{i1}, \mu_{i2}, \sigma_{i1}, \sigma_{i2}, \rho, v\} \quad (8)$$

and where σ_{i1}, σ_{i2}, and ρ make up the scatter matrix. This density differs from the additive logistic t for V_i in equation 5 by a constant factor (the Jacobian of the transformation), which thus establishes the equivalence of writing the likelihood as a function of either V_i or Y_i.

When some of the effective votes are not observed (due to noncontesting parties), our assumptions designate a region in which the vote variable falls, in which case the likelihood is the area (or volume) under the probability density corresponding to this known region. The Appendix derives the likelihood function for these cases.

The complete likelihood function is the product of the likelihoods for the fully contested case in equation 7 as well as the partially contested cases derived in the Appendix and given in equations 12, 15, 16, 17, 18, and 19:

$$L(\psi | V) = L^{(123)}L^{(23)}L^{(12)}L^{(1)}L^{(2)}L^{(3)}, \quad (9)$$

where we define the product over a null set (when no district election of the type exists) as equaling unity. We also substitute $\mu_{i1} = X_{i1}\beta_1$ and $\mu_{i2} = X_{i2}\beta_2$ to introduce (overlapping, identical, or different sets of) covariates X_{i1} and X_{i2}. For our present application, we define X_{i1} and X_{i2} to include a lag of Y_{i1}, a lag of Y_{i2}, and three indicator variables to represent incumbency status for each party. We have conducted many other runs with demographics and other variables included, but, as is consistent with the results from analyses in the United States and other democracies, these tend to have only minor effects on our estimates of incumbency advantage. Since our goal is to estimate the total causal effect of incumbency status, we exclude covariates that
are consequences of this key causal variable (for the same reason that in estimating the effect of an individual’s unemployment on his or her vote, we would not wish to control for voting intentions five minutes before walking into the voting booth; see Cox and Katz 1996; Gelman and King 1990; and King, Keohane, and Verba 1994, 173–5).

To facilitate maximization, and to make the asymptotic normal approximations we use below feasible with fewer observations, it is helpful to reparameterize so that all parameters are unbounded (ranging between $-\infty$ and ∞), as β_1 and β_2 already are. Thus, the full set of transformations is:

\[
\begin{align*}
\mu_{i1} &= X_{i1} \beta_1, \\
\mu_{i2} &= X_{i2} \beta_2,
\end{align*}
\]

where the form of the equation for ϕ_3 is the inverse of Fisher’s Z transformation (keeping ρ between -1 and 1 no matter what value ϕ_3 takes) and that for ϕ_4 constrains ν to be greater than two in order to guarantee that the moments of the distribution on the logistic scale exist.

To summarize all our knowledge about and uncertainty in the parameter vector

\[
\phi = \{\beta_1, \beta_2, \phi_1, \phi_2, \phi_3, \phi_4\},
\]

we maximize the likelihood function. This gives us an asymptotic normal posterior distribution with the maximum likelihood point estimates as a mean vector and, as usual, the inverse of the negative of the Hessian as the variance matrix.\(^{10}\)

Because maximum likelihood is invariant to reparameterization (see King 1989b), the same point estimates are obtained whether we estimate ϕ and transform to get ψ or estimate ψ directly. We also use the standard empirical Bayes approach to specify normal priors (i.e., the hyperparameters are estimated from the means and variances of the maximum likelihood estimates across our ten election years). Our empirical results below are qualitatively the same as with straightforward maximum likelihood, but, as usual, empirical Bayes helps to reduce the random variability across and within years.

COMPUTING QUANTITIES OF INTEREST

Because the point of developing a model of voting in a multiparty democracy is to explain and predict election results, our model ought to be capable of computing quantities on the scale of reported votes. That is, the estimated ϕ parameters that result from maximizing the likelihood are important, but they are of little direct interest. For starters, they are reparameterized for estimation via equation 10. But even transforming back to the original ψ scale, by inverting these equations, is not very helpful since the estimation was done on the additive logistic scale rather than on the scale of substantive interest—the votes. The quantities of direct substantive interest are complicated functions of these parameters.

Computing some of these quantities of interest is possible analytically (through Taylor series approximations and the like), but it would be difficult. Computing many others is impossible. We simplify these problems by substituting computer time for human effort via an increasingly popular technique called random simulation (also called stochastic simulation, Monte Carlo simulation, etc.) (see Gelman et al. 1995; Jackman 1996; Tanner 1997). Because simulation can generate results with any desired degree of precision, the technique entails no compromises (given a sufficiently powerful computer). The methods for interpretation and presentation we use here are also applicable in the context of most other statistical models (see King, Tomz, and Wittenberg 1998).

We describe the calculation of three quantities of interest in this section, a predicted vote, an expected vote, and a causal effect. With each, we use a combination of classical and Bayesian techniques. We save the calculation of other quantities, such as bias and responsiveness, for a future article.

Predicted Vote

The quantity of interest here is the probability distribution describing the predicted allocation of votes in a district conditional on a fixed value for each of the explanatory variables. The prediction is therefore a probability distribution over the simplex.

Our first requirement is a method for drawing one random election result from the approximate posterior distribution given the estimated model, which we label (V_{p1}, V_{p2}, V_{p3}), where p is prediction and the tilde indicates that the values have been simulated. We draw this simulated district election result given a set of values for the explanatory variables X_{p1} and X_{p2} (each being row vectors). To accomplish this we follow this algorithm:

1. Maximize the likelihood function in equation 9 (with the empirical Bayes priors), and record the vector of maximum likelihood estimates, $\hat{\phi}$, and the variance matrix, $V(\hat{\phi})$.
2. Take one random draw of ϕ, which we designate as $\ddot{\phi}$, from a multivariate normal distribution with mean $\ddot{\phi}$ and variance $V(\ddot{\phi})$.
3. Reparameterize from ϕ to $\ddot{\psi}$ by using equation 10, where we use X_{p1} and X_{p2} in computing μ_{p1} and μ_{p2}.

\(^{10}\) We verified this asymptotic normal approximation by comparisons with the exact (i.e., finite sample) posterior distribution, thus avoiding the large-n assumption altogether. We did this with the technique of importance sampling, an iterative simulation method based on a probabilistic rejection algorithm (see Tanner 1997). Our experiments indicate that the point estimates we report below are correct, and the standard errors are if anything conservative (i.e., somewhat larger than they should be). Because importance sampling is very computationally intensive and hence would be more difficult for others to apply, and since we found that the two approaches did not suggest any real substantive differences in our data, the analyses below are based on the asymptotic normal approximation.
4. Draw y_{p1} and y_{p2} randomly from a bivariate t distribution with parameters Ψ.
5. Compute V_{p1}, V_{p2}, and V_{p3} deterministically from y_{p1} and y_{p2} by the multivariate logistic transformation in equation 4.

To compute the distribution of election results given X_p, we repeat steps 2–5 of this algorithm M times (we find that $M = 1,000$ is sufficient for most purposes). Then our approximate posterior distribution of V_{p1} is merely a histogram of the simulated values. A point estimate of the three-party vote results can be computed by taking the numerical average of the simulations for each party. A standard error can be computed by taking the standard deviation of the simulations for each party. Similarly, a (say) 80% confidence interval can be computed by sorting the values in numerical order and taking the values at the 10th and 90th percentiles. The full approximate posterior distribution may be calculated by a two-dimensional histogram over the simplex.

For an example of simulating predictive quantities of interest, we give an inference about a predicted value from a typical open seat. To be specific, we first estimated the model for 1987 with lags of Y_{i1} and Y_{i2} and two indicators for incumbency status. We included all variables in both equations. We then set the explanatory variables (X_{p1} and X_{p2}) such that no candidate standing for election is a member of the House of Commons, and the previous vote (i.e., in 1983) is equal to the average vote across constituencies ($V_{PC} = 0.46$, $V_{PL} = 0.28$, and $V_{PA} = 0.26$). We then applied the algorithm above to yield 500 simulations of the three vote vectors.

We use two graphical methods for portraying the results from this prediction, both shown in Figure 5. Figure 5A plots the 500 simulations in one ternary diagram. The simulations are all predictions for a single district and thus vary only due to uncertainty in the prediction; the collection of dots in this figure then portrays the full nature of the probabilistic prediction about where the point (given the values of the explanatory variables) is likely to be. That is, we have higher confidence that the actual district vote in the average open seat district will be where the heavy cluster of the dots falls, and the result will fall with smaller probability where there are fewer dots. Substantively, the result shows that this typical district is very likely to be won by the Conservatives, since most of the points fall into the upper third of the triangle. (The actual probability that this district will be won by the Conservatives equals the fraction of simulated dots that fall in this top region, defined by the win lines.)

Figure 5B gives density estimates (smooth versions of histograms) for each of the three vote variables. This graph helps emphasize the separate, but still obviously related, nature of the three variables. Each density estimate portrayed in the graph is an approximate posterior distribution of that quantity (i.e., it can be thought of as a pile of predictions or simulations), indicating where the future value of that vote is likely to be. Judging from the very little overlap in the distributions, it is highly likely that the Conservatives will out-poll the Labour and Alliance parties. The Labour Party will likely do better than the Alliance in this constituency, but because of the heavy overlap in these two distributions, this inference is less certain. Note that all information in B can also be found in A, although the images emphasize different aspects of the data.

In an application with a variety of explanatory vari-
variables, we would normally do many different computations such as this. That would enable the researcher to understand the many substantive implications of models like this. To do so, we would set the explanatory variables at many different sets of values (low income and heavily minority, high income and rural, etc.). In this situation, we may wish more parsimonious summaries of the simulations, such as point estimates, standard errors, and confidence intervals.

Expected Vote

Our knowledge of all real-world random processes is affected by both fundamental variability and estimation variability. The latter results from the limited number of observations collected (or the limited number of districts analyzed). If \(n \) were very large, then estimation variability would vanish. In contrast, even if we had an infinite number of observations, the fundamental variability in the real world would still prevent our vote predictions from being perfect. Estimation variability is introduced because of the investigators' "failings," whereas fundamental variability affects results because the world we study is intrinsically variable.

Our procedure for computing the predicted vote reflects both sources of variability. In the preceding algorithm, step 2 simulates estimation variability (by drawing \(\phi \) from its distribution), and step 4 simulates fundamental variability (by drawing the logit of the vote variables from a \(t \) distribution). Since we wished the simulations to reflect our knowledge of the distribution of votes, both sources of variability were essential.

Closely related to computing the predicted vote is estimating the expected vote in a district: \([E(V_{p1}), E(V_{p2}), E(V_{p3})]\). Like the predicted vote, the expected vote also is conditional on chosen values of the explanatory variables, \(X_p \). Although fundamental variability affects our estimate of the expected value, we need to average over it to produce the expectation. In other words, the expected vote is fixed, and only our estimation of it is imperfect: If \(n \) were sufficiently large, then the expected vote simulations would be constant. In practice, of course, our estimation procedure will produce uncertain estimates of the (fixed) expected vote.

To compute one simulation of the expected vote, which we denote \([\hat{E}(V_{p1}), \hat{E}(V_{p2}), \hat{E}(V_{p3})]\), we follow this algorithm.

1. Maximize the likelihood function in equation 9 (with the empirical Bayes priors), and keep the vector of maximum likelihood estimates, \(\hat{\phi} \), and the variance matrix, \(\hat{P}(\phi) \).
2. Take one random draw of \(\phi \), which we designate as \(\phi \), from a multivariate normal distribution with mean \(\hat{\phi} \) and variance \(\hat{P}(\phi) \).
3. Reparameterize from \(\phi \) to \(\psi \) by using equation 10, where we use \(X_{p1} \) and \(X_{p2} \) in computing \(\mu_{p1} \) and \(\mu_{p2} \), respectively.
4. Draw \(m \) values of \(\hat{Y}_{p1} \) and \(\hat{Y}_{p2} \) randomly from a bivariate \(t \) distribution with parameters \(\psi \). (\(m \) = 100 is usually sufficient.)
5. Compute \(m \) simulations of \(V_{p1} \) and \(V_{p2} \) deterministically from each of the \(m \) simulations of \(\hat{Y}_{p1} \) and \(\hat{Y}_{p2} \) by using the multivariate logistic transformation in equation 4.
6. Calculate the numerical average of the \(m \) simulations of \(V_{p1} \) and \(V_{p2} \) to yield one simulation of the expected votes, \(\hat{E}(V_{p1}) \) and \(\hat{E}(V_{p2}) \), respectively. Compute the simulation of the expected vote for party \(j = 3 \) by subtraction: \(\hat{E}(V_{p3}) = 1 - \hat{E}(V_{p1}) - \hat{E}(V_{p2}) \).

We repeat steps 2–6 of this algorithm \(M \) times to produce \(M \) simulations of the expected vote, the mean of which is our point estimate, the standard deviation is the standard error, and a histogram of each component is the full probability density (\(M = 1,000 \) is usually sufficient).

Causal Effects, Including Incumbency Advantage

A causal effect is the difference between two expected votes, given a change in the value of only one explanatory variable. For example, the incumbency advantage is the difference in the expected vote in a district with an incumbent running and the expected vote in the same district at the same time when the incumbent's party decides to nominate the best available nonincumbent willing to run (Gelman and King 1990). That is, under this thought experiment, everything is held constant up to the start of the general election campaign, at which point the incumbent either runs for reelection or does not.

The causal effect of incumbency status in multiparty democracies is, of course, somewhat more complicated than in two-party systems. The effect on the expected vote of, for example, a Conservative incumbent seeking reelection may be of a different magnitude than for an Alliance or Labour incumbent. Such a partisan differential also would seem more likely in legislatures with more parties. In multiparty democracies, we might estimate the incumbency advantage averaged over the parties, but we prefer to estimate each separately in order to highlight several interesting substantive differences in our data.

Computing a causal effect thus requires two sets of expected votes, one with an incumbent and the other without. To draw simulations of the causal effect of incumbency, we take the difference between a simulation of the expected vote when the incumbency status variable in \(X_p \) indicates (1) a particular party's incumbent is running for reelection and (2) an open seat, with all other variables held constant at (say) their means. That is, we maximize the likelihood and then run the expected value algorithm twice, with a change only in the incumbency status variable.

We estimated the advantage due to three types of
changes in incumbency status—open seat to a Conservative incumbent, an open seat to a Labour incumbent, and an open seat to an Alliance incumbent—in each of the ten election years from 1959 to 1992. The additional complication is that for one year, and for one type of incumbency effect, we need to record changes to all three vote variables. To display all this information succinctly, we have devised a new graphical display. Figure 6 presents the raw results for each year and type of effect. The top panel shows the effect of a Conservative incumbent, and each arrow in the large left portion of this graphic is the change from an open seat—which we construct so that it begins at the point on the line at the year indicated—to where the expected vote would be with a Conservative incumbent, as if each were part of a ternary diagram. Hence, the higher each arrow extends vertically (i.e., not the length of the arrow, although the two are obviously related), the larger is the incumbency advantage to the Conservatives. The left axis is in percentage points of incumbency advantage.

The direction each arrow leans indicates from which party the Conservatives draw votes when they run an incumbent versus running another candidate in an open contest, with the vertices of the implicit ternary diagram indicated around the standard errors at the right. (Note also that there is a standard error in each direction, indicated by the length of each of the standard error arrows at the right.) For example, the arrow for 1964 Alliance incumbents leans away from the bottom left, which means Alliance incumbents get electoral advantage by drawing votes disproportionately from Labour Party candidates (L in the standard error part of the graph on the right). (Arrows at angles between the extremes indicated on the standard error graph draw from a proportionate combination of the two other parties.) Thus, in the top panel, since all the arrows lean at least somewhat to the right, Conservative incumbents derive their advantage by drawing more from the Alliance than from the Labour Party. To our knowledge, this type of effect has not been estimated in the elections literature of any country.

The most striking observation about Figure 6 is the unambiguous positive effect of incumbency, for all ten

12 Because the Alliance receives many fewer votes on average than the other parties, the maximum range of votes that could be drawn from the Alliance to form an incumbency advantage for any other party's incumbent is quite small. As a result, the Alliance standard errors in figures 6 and 7 are smaller than for the Conservatives or Labour.
FIGURE 7. Average Incumbency Advantage

Conservative

![Graph showing average and standard error for Conservative incumbents.]

Labour

![Graph showing average and standard error for Labour incumbents.]

Alliance

![Graph showing average and standard error for Alliance incumbents.]

Note: This figure gives the incumbency advantage averaged over all the years portrayed in Figure 6, for which the interpretation is analogous. Note the scale for the Alliance graph, which is larger than the others.

elections and all three parties over half a century of British politics. This is indicated by all 30 arrows pointing above the zero line. Most of the individual effects in Figure 6 are larger than their standard errors. When pooled, the average effects for each party's incumbent are from two to five times their standard errors, and hence by any relevant statistical standard they are clearly greater than zero.

Figure 7 gives these average effects for each party. (As always, the standard error of an average is smaller than the standard error of its independent component parts.) The summary in Figure 7 indicates that the average incumbency effect is about half a percentage point for the Conservatives and twice that for Labour. In fact, in every one of the ten elections shown in Figure 6, the Labour incumbency effect is larger than the Conservative effect. Our interpretation of this disparity (which is necessarily more speculative than our results) is that Labour incumbents have a working-class constituency that benefits more from government services than Conservative voters. Incumbents have the discretion to influence the position of people on various types of lists for social services, such as to get into, or renovate, council housing. Conservative incumbents have fewer such opportunities to serve their relatively more wealthy constituents, so their incumbency advantage should not be as large.

Alliance incumbents receive an advantage of three percentage points (thrice the Labour advantage). This is less than the incumbency advantage of 8–9 percentage points in the U.S. House of Representatives (Gelman and King 1990), but it is only slightly smaller than the average advantage in the House in the mid-1960s or in most American state legislatures today (King 1991). This effect is in part because the counterfactual involved in an open seat versus an Alliance incumbent is much less likely in parts of Britain than the analogous counterfactual involved for estimating major party incumbency effects. An Alliance incumbent implies that the major party hold on the political system has been broken, and voters take this cue to reevaluate their votes. Expressed another way, the collective action problem of moderate voters who prefer the Alliance but do not want to waste their vote is solved with an Alliance incumbent in office. They have less reason to vote strategically ("tactically," as it is called in Britain) and instead cast their vote for their sincere preference. Much more than the major parties, the Alliance runs local, almost U.S.-style, candidate-centered campaigns (sometimes nominating well-known nonpolitical personalities), rather than national, party-oriented campaigns. The result, we believe, is the large Alliance incumbency advantage.

Taken together, our findings support the claims of the new quantitative literature on the existence of the incumbency effect in Britain, but the size of the effect for all three parties is substantially smaller than previous biased methods had indicated. That is, our method is not biased and is also sufficiently powerful to be able to distinguish a small (but politically meaningful) effect from none at all. Our method is also able to discern distinctly different incumbency effects across the three parties.

There appears to be a hint in the top panel of Figure 6 that the Conservative incumbency advantage may be growing slightly, but formal statistical tests clearly reject this possible trend. Moreover, Labour or Alliance incumbency effects display no such apparent pattern. Thus, we find no support for the other claim of the new quantitative literature, which argues, against the conventional wisdom, that the incumbency advantage has been dramatically increasing in recent years.

When the Conservatives run an incumbent (as com-
pared to no incumbent running), they pull most of their extra incumbency advantage from the Alliance. As explained, this can be seen because the arrow in the first panel of Figure 7 and all ten arrows in the first panel of Figure 6 lean to the right—away from the “A” in the standard error diagram. Our interpretation of this clear result is that the Alliance is a transitional option for voters on the way to supporting one of the major parties; only 20% of voters stick with the Alliance for more than one election (Butler and Stokes 1969, 315–38). Presumably because the Labour incumbency advantage stems more from constituency service than does the Conservatives’ advantage (and because there are usually as many Conservative voters who could benefit, Labour incumbents pull approximately equally from the Conservatives and the Alliance (see Cain, Ferejohn, and Fiorina, 1987).13

CONCLUDING REMARKS

Our results may help resolve an ongoing debate in the British elections literature. The conventional position is that incumbency has never been an advantage. In contrast, a newer literature holds that incumbency advantage is moderate to large and is growing. With our approach, we find that both sides are right to an extent. That is, the incumbency advantage in England is small but meaningfully above zero. There is no evidence, however, that it is trending in any direction. In addition, our model detects important differences among the parties, with the incumbency advantage for Labour being about twice that for the Conservatives, and the advantage for the Alliance triple that of Labour.

We have developed and presented our statistical model for three parties and applied it to the British electoral system. The model and estimation procedures are all directly applicable to electoral systems with any number of parties. Further research will be necessary to implement the more general version of our model. Our analytical approach, while much faster for three parties, does not scale up as well as a more general MCMC approach. Our experiments with MCMC applied to this problem convince us that it will scale fairly well. Priors may be needed, given the large number of parameters relative to a smaller number of districts, but there is substantial information in multiparty electoral systems that would be extraordinarily valuable to researchers in comparative politics, so this extension seems well worth the effort. Our graphical displays obviously do not generalize directly to more than four parties, but with judicious use of color, shading, and perspective, we have found it possible to display results for up to eight parties, depending on how complicated and empirically clear the relationships are in the data.

Many opportunities for future research remain, three of which we note here. First, we can easily extend the interpretation of the model to include other quantities of interest, such as bias and responsiveness of the electoral system, which are important and controversial issues in Britain and elsewhere. This can be done by clearly defining the quantity to be computed and then making slight modifications of the algorithms described above.

Second, some two-party models of seats and votes have in recent incarnations included random effects terms, which are more highly modeled versions of what our empirical Bayes approach accomplishes for the multiparty case. These terms help keep the estimates reasonable even if certain types of explanatory variables are not observed and included in the model. They are especially well suited to models of legislatures, since the structure of the random effects model can reflect the panel structure of the data.

Finally, electoral systems vary considerably across countries. All but two countries have districts of some kind, and most elect legislators to more than one seat in a district. Modifications to fit all the different types of electoral systems will require some detailed work, but these should be achievable by straightforward extensions of the model presented here.

APPENDIX: THE LIKELIHOOD FUNCTION FOR PARTIALLY CONTESTED DISTRICTS

Districts with Two of Three Parties Contesting

First consider elections in which the parties contesting in district \(i \) include \(P_1 = \{2, 3\} \). The effective votes for all three parties, \(V_{1i} \), \(V_{2i} \), and \(V_{3i} \), are unobserved. Nevertheless, our assumptions for less-than-fully contested elections introduced above imply that we have some information about these quantities. In particular, we know that \(V_{1i} \leq \min(V_{1i}, V_{2i}, V_{3i}) \) and therefore \(Y_{1i} < \min(0, Y_{1i}, Y_{2i}) \), or equivalently, \(Y_{1i} < 0 \) and \(Y_{2i} < Y_{3i} \). Thus, the likelihood function for this case is as follows:

\[L^{\text{23}} = \Pr(Y_{1i} < 0, Y_{2i} > Y_{3i} | \psi) \]

\[= \prod_{i \in \{2, 3\}} \int_{-\infty}^{0} \int_{-\infty}^{Y_{1i}} T(Y_{1i}, Y_{2i} | \psi) dY_{2i} dY_{1i} \]

\[= \prod_{i \in \{2, 3\}} \int_{-\infty}^{0} T(Y_{1i} | \mu_{1i}, \sigma_{1i}^2, \nu) \left[1 - F_T(Y_{1i} | \mu_{1i}, \sigma_{1i}^2, \nu + 1) \right] dY_{1i}, \]

(12)

where \(F_T \) is the cumulative distribution function of the (univariate) \(t \),

\[\mu_{1i} = \mu_{1i} + (\rho \sigma_{1i} \sigma_{1i} / \sigma_{1i}^2)(Y_{1i} - \mu_{1i}) \] (13)

is the conditional mean of \(Y_{1i} \) given \(Y_{1i} \), and

\[\sigma_{1i}^2 = \sigma_{1i}^2 (1 - \rho^2) \frac{(Y_{1i} - \mu_{1i})^2 / \sigma_{1i}^2}{\nu + 1} \] (14)

is the conditional variance. These conditional \(t \) distributions are analogous and mathematically similar to the more com-

13 The Alliance does not predictably draw more from either major party. There is one other feature of the last panel of Figure 6, however, that may reflect a systematic pattern: Alliance incumbency advantage was drawn almost exclusively from the Labour Party between 1959 and 1970, but this abruptly changed, and votes started to be drawn in different ways from Labour and the Conservatives over the subsequent six elections. Since this “pattern” is based on only four elections, further research is required before drawing firm substantive conclusions as to its cause.
monly known conditional normals (see Liu 1994). The function in equation 12 is easily calculated by one-dimensional numerical integration.

By a parallel logic, the likelihood function for district elections in which parties 1 and 3 contest is:

$$L^{13} = \prod_{p=(1,3)} \int_{-\infty}^{0} T(Y_{i|2} | \mu_{i|2}, \sigma_{2}, v) \times [1 - F_{r}(Y_{i|3} | \mu_{i|3}, \sigma_{i|3}, v + 1)] dY_{i|2},$$

(15)

When parties 1 and 2 contest, but party 3 is missing, a slight computational difference occurs because $V_{i|3}$ appears in the denominator of both $Y_{i|1}$ and $Y_{i|2}$. As a result, we know, by our assumption, that $V_{i|3} < \min (V_{i|1}, V_{i|2})$, which translates into $Y_{i|1} > 0$ and $Y_{i|2} > 0$. Hence:

$$L^{13} = \prod_{p=(1,3)} [1 - F_{r}(0, 0|\psi)],$$

(16)

where F_{r} is the cumulative distribution function of (in this context) the bivariate t. To compute this function, we follow the standard procedure of applying one-dimensional numerical integration after factoring the joint r distribution into a marginal and conditional—directly analogous to equation 12.

Districts with One of Three Parties Contesting

When only party 1 contests (and hence automatically wins), we have no information about $Y_{i|2}$, but we know that $Y_{i|1} > 0$. We use this information to form the likelihood function:

$$L^{1} = \prod_{p=(1)} \int_{-\infty}^{0} T(Y_{i|3}, Y_{i|2} | \psi) dY_{i|3} dY_{i|2}$$

$$= \prod_{p=(1)} [1 - F_{r}(0|\mu_{i|3}, \sigma_{i|3}, v)].$$

(17)

Similarly, the likelihood function for the remaining two cases is

$$L^{2} = \prod_{p=(2)} [1 - F_{r}(0|\mu_{i|2}, \sigma_{i|2}, v)],$$

(18)

and

$$L^{3} = \prod_{p=(3)} \int_{-\infty}^{0} \int_{-\infty}^{0} T(Y_{i|2}, Y_{i|3} | \psi) dY_{i|1} dY_{i|2}$$

$$= \prod_{p=(3)} F_{r}(0, 0|\psi).$$

(19)

REFERENCES

