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When the circadian clock cannot be set: An unstable singularity underlies 

stochastic phasing of the circadian clock in individual cyanobacterial cells	

 

Abstract  

The endogenous circadian clock synchronizes with environmental time by appropriately resetting 

its phase in response to external cues. Of note, some resetting stimuli induce attenuated oscillations 

of clock output, which has been observed at the population-level in several organisms and in 

studies of individual humans. To investigate what is happening in individual cellular clocks, we 

studied the unicellular cyanobacterium S. elongatus. By measuring its phase resetting responses to 

temperature changes, we found that population-level arrhythmicity occurs when certain 

perturbations cause stochastic phases of oscillations in individual cells. Combining modeling with 

experiments, we related stochastic phasing to the dynamical structure of the cyanobacterial clock 

as an oscillator, and explored the physiological relevance of the oscillator structure for accurately-

timed rhythmicity in changing environmental conditions. Our findings and approach can be 

applied to other biological oscillators.  
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Chapter 1  

Introduction 

 

The circadian clock (Dunlap et al., 2009) generates an internal representation of the time that 

enables an organism to anticipate daily changes in the environment and adapt its physiology. The 

clock can be entrained and synchronized with external diurnal (daily) cycles, which is achieved by 

resetting the phase of the clock in response to cues such as temperature or light/darkness (Fig. 1A, 

blue line to red line). Of special interest, certain resetting stimuli trigger a loss of robust circadian 

rhythms (i.e. zero amplitude; Fig. 1B, blue line to red line). First observed in the 1970s, this 

phenomenon 

 

Figure 1. Schematics of phase resetting responses – (A) typical phase shift and (B) induced loss 
of oscillations at a population level. The solid blue and red lines respectively represent dynamics 
of a clock output before and after a resetting signal (gray bar). The dashed blue line is extended 
from the solid blue line to assist the comparison of pre- and post-signal dynamics.  
 

phenomenon has been reported in many circadian systems by measuring population-averaged 

overt rhythms of physiology that are regulated by the clock (Engelmann et al., 1978; Grone et al., 

2011; Huang et al., 2006; Johnson and Kondo, 1992; Malinowski et al., 1985; Peterson, 1980; 

Saunders, 1978; Taylor et al., 1982; Winfree, 1970, 2010). The resetting-stimuli-induced 

interruption of robust rhythms has also been observed in other biological oscillators with periods 

that span a broad range of timescales, such as cardiac pacemaker cells (Meerwijk et al., 1984) and 
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the neural respiratory system (Paydarfar et al., 1986). Since circadian oscillations exist in 

individual cells (Bell-Pedersen et al., 2005; Deng et al., 2016; Mihalcescu et al., 2004; Nagoshi et 

al., 2004; Plautz et al., 1997; Yakir et al., 2011), attenuated oscillations of organismal clock output 

at the population level can thus be attributed to either suppression of circadian rhythms in 

individual cellular clocks or loss of synchrony among a population of initially synchronized clocks 

(Fig. 2; top vs. bottom) (Leloup and Goldbeter, 2000; Ukai et al., 2007). To distinguish between 

these 

 

Figure 2. Two models for the single-cell behavior underlying the phenomenon illustrated in Fig. 
1B – arrhythmicity (top) vs. loss of synchrony (bottom) among individual cellular clocks, whose 
dynamics are represented by colored traces.  
 

these two possibilities, two recent studies (Pulivarthy et al., 2007; Ukai et al., 2007) synthetically 

produced light responsiveness in cell culture systems with the mammalian cellular clock, but 

reached somewhat different conclusions regarding whether it is desynchronization alone (Ukai et 

al., 2007) or a combination of both desynchronization and suppression of cellular rhythms 

(Pulivarthy et al., 2007) that underlies the attenuated population-level oscillations in response to a 

critical light pulse. To further resolve the cellular behavior in an intact organismal clock, we 

studied the model system of the unicellular cyanobacterium S. elongatus PCC 7942, whose state 
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can be directly measured at the single-cell level (Chabot et al., 2007; Mihalcescu et al., 2004; Teng 

et al., 2013; Yang et al., 2010).  

 

The cyanobacterial circadian clock is well characterized and consists of three proteins (KaiA, 

KaiB, KaiC) that generate oscillations in the phosphorylation state of KaiC (Nishiwaki et al., 2007; 

Rust et al., 2007), which controls the activity of RpaA (Markson et al., 2013; Takai et al., 2006; 

Taniguchi et al., 2010). RpaA is the master transcription factor (Markson et al., 2013) that drives 

circadian gene expression, including circadian expression of genes encoding two clock 

components, kaiBC (Fig. 3). To monitor phase resetting responses, we expressed a fluorescent 

protein (YFP) under the control of the kaiBC promoter (Chabot et al., 2007; Teng et al., 2013; 

Yang et al., 2010), allowing us to continuously track the state of individual cellular clocks by live 

cell imaging (Fig. 3). We chose a low-temperature pulse, specifically a 25°C pulse in a 35°C 

background 

 

Figure 3. Diagram of the genetic circuits of the cyanobacterial circadian clock and the 
transcriptional reporter of clock state. KaiC has two phosphorylation sites and transits through four 
phosphorylated forms during the circadian cycle – unphosphorylated (U-KaiC, represented by ‘U’); 
phosphorylated only on T432 (T-KaiC, ‘T’); phosphorylated on both S431 and T432 (ST-KaiC, 
‘ST’); and phosphorylated only on S431 (S-KaiC, ‘S’). This cycling of KaiC phosphorylation state 
drives oscillations in the level of phosphorylated RpaA (Rpa~P), which directly regulates the 
transcriptional activity of the kaiBC promoter, and thereby the expression of KaiC. The clock-state 
reporter is built by expressing a fluorescent protein – YFP fusion under the control of the kaiBC 
promoter.  
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background, as a type of resetting signal that might induce attenuated oscillations at the population 

level. These conditions were selected to encompass a wide enough range of temperature to induce 

changes in the clock but still be within the range of normal clock function and cell growth (Kondo 

et al., 1993). We did not choose the most frequently used signal of a dark pulse in constant light 

because although the core clock keeps oscillating in the dark, the YFP reporter cannot track its 

state due to global inhibition of transcription that occurs in darkness (Ito et al., 2009). We identified 

low-temperature pulses that trigger desynchronization of a population of initially synchronized 

cells. By systematically measuring phase resetting responses and analyzing experimental data with 

limit cycle theory and modeling, we unraveled the mechanisms underlying stochastic phasing and 

loss of population-level oscillations. The mechanisms can be generalized beyond the signals 

devised for this study, and possibly applied to other biological oscillators. 
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Chapter 2  

Results 

 

2.1 Multiple critical perturbations induce stochastic phases, resulting in population-

averaged attenuation of oscillations  

To identify the critical 25°C-pulse perturbations that cause attenuation of oscillations at the 

population-averaged level, we scanned the phase resetting responses to a 25°C pulse by varying 

the pulse duration (𝜏) from 0 to 24 h with a 3 h step (Fig. 4, left), and the initial circadian phase 

(𝜑#$#) at the time the pulse was given from 0° to 360° (Fig. 4, right). In response to a resetting 

stimulus 

 

Figure 4. Two systematically scanned variables – the 25°C pulse duration (𝜏, left three panels, 
exemplified by three different widths of gray bars) and the initial phase at which the pulse is given 
(𝜑#$#, right panel, represented by black arrows).  
 

stimulus, the circadian clock will gradually modulate its trajectory. Thus, following a 25°C pulse, 

it takes a period of transient dynamics (Fig. 5, orange line) to establish a stable (termed ‘steady-

state’) phase shift. To quantify the steady-state resetting responses, we traced the new stabilized 

rhythms (Fig. 5, red line) backward to infer what the phase of the clock would be when the 25°C 

pulse was given, and then denote the new phase (𝜑#$#) by this extrapolated clock state at the onset 

of the pulse (Fig. 5, red arrow) (see Methods for the imaging protocol and analysis).  
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Figure 5. Schematic explaining how to quantify the phase shift (blue line to red line) in response 
to a 25°C pulse. The orange line denotes the transient dynamics it takes the clock to establish 
stabilized rhythms after the pulse (red line), while the dashed red line demonstrates tracing the 
stabilized rhythms back to the onset of the pulse. With 0° set to the peak of a cosine fit (and 180° 
to the trough), in this example plot, the 25°C pulse applied at 𝜑#$# = 0° (highlighted by blue arrow) 
resets the clock to 𝜑$12 = 180° (red arrow).  
 

By scanning the phase resetting responses, we found multiple critical perturbations that induce 

stochastic phases following a 25°C pulse, and thereby cause attenuation of circadian oscillations 

at the population-averaged level. A perturbation refers to a certain length of 25°C pulse applied at 

a particular initial phase – a unique combination of the two scanned variables (𝜏 , 𝜑#$# ). For 

example, when a 12 h shift to 25°C is applied at 𝜑#$#~186°, it triggers stochastic cellular responses 

– initially synchronized cells descended from the same mother cell become desynchronized after 

the pulse (Fig. 6A, top). Notably, when the same 12 h shift to 25°C is applied at other circadian 

phases, for example 𝜑#$#~75°, we observed deterministic phase resetting responses (Fig. 6A, 

bottom). The responses to a 12 h shift to 25°C can be summarized by plotting the new phase (𝜑$12) 

as a function of the initial phase (𝜑#$#) (Fig. 6B). For cells with an average 𝜑#$# = 75° at the time 

the pulse was given, the new phases are tightly distributed (Fig. 6B, red points), which indicates a 

one-to-one mapping from the initial phase to the new phase. For the cells with an average 𝜑#$# =

186°, the ~360° scattering of 𝜑$12 implies that the new phase is stochastic and unpredictable (Fig. 

6B, light blue points). The single-cell responses to a 12 h pulse given at different values of 𝜑#$# 

ranging from 0° to 360° can be summarized with a single-cell phase transition curve (PTC) 

(Johnson, 1999), which demonstrates stochastic responses as a divergence in 𝜑$12 at 𝜑#$#~186° 
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Figure 6. Stochastic vs. deterministic phase resetting responses to a 12 h 25°C pulse at 35°C. (A) 
Example YFP reporter traces of individual cellular clocks that illustrate stochastic (top, with an 
average 𝜑#$# = 186°) vs. deterministic (bottom, 𝜑#$# = 75°) responses to a 12 h shift to 25°C 
(represented by gray bar) applied at different initial phases. The reporter level is measured in 
arbitrary units (a.u.). Each diagram plots the automatically tracked daughter cells that are 
descended from the same mother cell at 𝑡 = −28	h at 35°C, with the shift to 25°C set to 𝑡 = 0. 
Because the clock runs independently of the cell cycle and its state is faithfully inherited at cell 
division (Yang et al., 2010), the clock dynamics can be continuously traced through cell lineages. 
(Top) The dashed black line shows the average of individual traces after the 25°C pulse. (B) 
Steady-state phase resetting responses plotted as 𝜑#$# vs. 𝜑$12 data points, in light blue and red 
respectively for cells in the top and bottom panels in (A).  
 

(Fig. 7, 12 h). In addition to phase shifts, we also observed a transient 𝜑#$#-dependent change in 

the oscillatory amplitude following the pulse (Fig. 8, see Methods for detailed analysis). In 

particular, some cells around 𝜑#$#~186° (~10% cells within the 186°±20° 𝜑#$# range, indicated 

with the yellow oval in Fig. 8B, with corresponding data points highlighted in yellow in Fig. 8A, 

C), where desynchronization is induced, exhibit an obvious amplitude reduction in the first day 

following transfer to 35°C, but then recover amplitude in the subsequent 26 h time window. 

Averaging the desynchronized YFP reporter traces would then generate attenuated oscillations 

following the 25°C pulse (exemplified by the colony in Fig. 6A, dashed black line). Therefore, for 

the cyanobacterial clock, the population-level damping of oscillations is not the result of 

suppression of circadian rhythms in individual clocks, but instead, of desynchronization among 

them. In addition to a 12 h shift to 25°C applied at 𝜑#$#~186°, the other critical perturbations 
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found to induce desynchronization are: a 15 h shift to 25°C applied at 𝜑#$#~166°, an 18 h shift to 

25°C applied at 𝜑#$#~122°, a 21 h shift to 25°C applied at 𝜑#$#~83°, and a 24 h shift to 25°C 

applied at 𝜑#$#~55° (Fig. 7). A 9 h shift to 25°C applied at 𝜑#$#~238° appears to be a threshold 

case, for it causes a steep shift in 𝜑$12 with minor divergence (Fig. 7). We observed deterministic 

behavior for all 3 h and 6 h shifts to 25°C at all 𝜑#$# (Fig. 7).  

 

 

Figure 7. PTCs of 3 h to 24 h 25°C pulses.  
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Figure 8. Analysis of the single-cell phases and amplitudes for one experiment of the 12 h 25°C 
pulse at 35°C. Two 26 h-long time windows – an earlier 6 h-32 h vs. later 22 h-48 h following the 
end of the pulse – were used to extract the post-pulse phases and amplitudes, respectively denoted 
by 𝜑$12 and 𝐴$12 vs. 𝜑$12;  and 𝐴$12; . The amplitude is measured in arbitrary units (a.u.). (A) The 
single-cell PTC of 𝜑#$#  vs. 𝜑$12  (blue circles) or 𝜑$12;  (red circles). (B) The single-cell 
dependence of 𝐴$12  (blue triangles) and 𝐴$12;  (red triangles) on 𝜑#$# . The critical 𝜑#$#  at 
stochastic phasing (i.e. spread of red and blue circles in (A)) is indicated by the dashed gray line. 
The individual cells with small 𝐴$12  values are identified with yellow ovals, with their 
corresponding 𝜑#$# vs. 𝜑$12;  and 𝐴$12 vs. 𝐴$12;  data points highlighted in yellow in (A) and (C). 
(C) 𝐴$12 vs. 𝐴$12;  of all individual cells. 
 

2.2 The clock state at the end of the perturbation determines whether the new phase is 

deterministic or stochastic  

Given that stochastic phases can be induced by different combinations of pulse duration and the 

time the pulse was applied, we went on to ask whether these critical perturbations share any 

common features. We discovered that the clock state upon returning to 35°C is the dominant 

predictor of whether the new phase at 35°C is deterministic or stochastic. First, in response to the 

critical perturbations, the individual clocks oscillate with synchronized, deterministic dynamics 

during the 25°C pulse, and only upon restoring the temperature to 35°C do they become 

desynchronized with a new stochastic phase (Fig. 9). Also, despite the different lengths of the 25°C 

pulse in these perturbations, the YFP reporter level always comes close to reaching its peak at the 

end of the pulse. Thus, the five critical perturbations all drive the clock to a similar state at the end 



	 10	

of the 25°C pulse, but through different deterministic trajectories during the pulse (Fig. 9).  

 

 

Figure 9. Example YFP reporter traces showing the stochastic phase resetting responses to various 
critical 25°C-pulse perturbations (𝜏 and average 𝜑#$# labeled in the diagram). The YFP reporter 
level at the end of a 25°C pulse is highlighted by black arrow.  
 

A 25°C pulse in a 35°C background is essentially two successive temperature shifts – first from 

35°C to 25°C and then from 25°C to 35°C. Therefore, the responses to 25°C pulses can be used to 

predict phase resetting by these two temperature shifts and suggest that: (1) shifting the 

temperature from 35°C to 25°C will result in slight deterministic modulation of the circadian phase 

independent of when the temperature shift occurs (see Methods); and (2) shifting the temperature 

from 25°C to 35°C can induce stochasticity in the phase of oscillations at 35°C, if the shift is 
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applied when the YFP reporter of the clock at 25°C reaches near its peak. To test these predictions, 

we measured the single-cell PTC for a 35°C-to-25°C temperature step-down, and for a 25°C-to-

35°C temperature step-up. To quantify the steady-state responses to a temperature shift, the before-

shift and after-shift phases (𝜑%& and 𝜑'&) of the clock are measured by identifying the phases of 

stable circadian oscillations before and after the temperature shift, referenced to the state of the 

clock at the time of shift – the actual clock state for 𝜑%&, and the extrapolated state for 𝜑'& (Fig. 

10, blue and red arrows, respectively). The single-cell PTC of the 35°C-to-25°C shift displays a 

tight 

 

Figure 10 Schematic of the quantification of a clock’s phase before and after a temperature shift 
(𝜑%& and 𝜑'&). The dashed red line denotes tracing the post-shift rhythms that are stabilized after a 
period of transient dynamics (red line following orange line) back to the time of temperature shift. 
In this example plot, the clock is reset from 𝜑%& = 0° (blue line at its peak) to 𝜑'& = 180° (dashed 
red line at its trough).  
 

tight distribution close to the line of 𝜑%& = 𝜑'& (Fig. 11A; diagonal dashed line), confirming the 

predicted 
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Figure 11 (Continued). PTCs plotting 𝜑%& vs. 𝜑'& relationship of individual cellular clocks being 
transferred (A) from 35°C to 25°C and (B) from 25°C to 35°C (double plotted to demonstrate the 
divergence in 𝜑'& at 𝜑%&~0°).  
 

predicted deterministic modulation of circadian phase. In response to the 25°C-to-35°C shift, the  

after-shift amplitude stabilizes following a transient change (Fig. 12), confirming the persistence 

of robust oscillations at 35°C; while the PTC’s scattering in 𝜑'& at 𝜑%&~0° (corresponding to the 

maximum YFP reporter level; Fig. 11B) demonstrates the induction of stochastic phases, if the 

clock running at 25°C is shifted to 35°C when the YFP reporter is close to its peak (example YFP 

reporter traces shown in Fig. 13). These observations provide additional support for the notion that 

the dominant predictor of stochastic phases at 35°C is bringing the clock to the single critical state 

upon returning to 35°C; the oscillatory trajectories taken to this state do not matter and can differ.  
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Figure 12 (Continued). The two sets of diagrams – (A) (B) (C) and (D) (E) (F) – present analysis 
of the single-cell phases and amplitudes for two individual experiments of the 25°C-to-35°C shift, 
which were combined to generate the PTC shown in Fig. 11B. The phases and amplitudes extracted 
from an earlier vs. later 26 h-long time window (6 h-32h vs. 22 h-48 h) after the temperature shift 
are respectively denoted by 𝜑'& and 𝐴'& vs. 𝜑'&;  and 𝐴'&; . Each set of diagrams are equivalent to 
those elaborated in Fig. 8, and thus not explained in further detail here. Consistently, cells that 
experience a transient reduction in their oscillatory amplitudes are highlighted in yellow.  
 

 

Figure 13. Example YFP reporter traces showing the induction of stochastic phases by shifting 
temperature from 25°C to 35°C when the YFP reporter comes close to its peak at 25°C, 
corresponding to 𝜑%&~0°.		
 

2.3 A limit cycle framework for interpreting phase resetting responses  

We reasoned that our understanding of the cyanobacterial clock as an oscillator (Strogatz, 2001; 

Winfree, 2010) and the proposed predictor of deterministic vs. stochastic phases should be 

sufficient to explain our experimental data, and turned to mathematical modeling to test this. 

Conceptually, given a clock running in constant environmental conditions (called ‘free-running’), 

circadian rhythms arise from the state of the clock cycling along a closed trajectory, called a ‘limit 

cycle’ (Fig. 14, black circle) (Strogatz, 2001), in the space characterized by clock proteins’ 

abundance and modifications. There exists at least one steady state inside this limit cycle; in 

addition, the clock system might have other periodic or steady-state solutions (Strogatz, 2001). For 

the cyanobacterial clock, the simplest and also most likely scenario consists of one unstable steady-

state point (termed a ‘singularity’; Fig. 14, black dot at the center) residing inside a globally stable 

limit cycle (Fig. 14, black circle), meaning that if transiently perturbed off the limit cycle to any 

state point except for the unstable singularity, the clock would restore its stable oscillations and 
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relax back into the limit cycle (Fig. 14, gray trajectories projecting from the yellow dot and the 

light blue dot; Methods) (Qin et al., 2010). In reality, the limit cycle of a clock system has many 

dimensions 

 

Figure 14. Diagram that illustrates modeling stable circadian oscillations as a two-dimensional 
circular limit cycle (black circle) centered at the unstable singularity (black dot at the center). For 
a clock starting to free-run from an off-limit-cycle state (e.g. yellow or light blue dot), the gray 
line represents the transient trajectory along which the clock is attracted into the limit cycle. The 
cluster of gray dots demonstrate the distribution of states that the clock at the yellow dot can be 
displaced to by random noise, and in this illustration, they were generated with the value 𝑘 = 0.3. 
They also mimic a group of approximately synchronized cells with minor cell-to-cell variation in 
their clock states. 
 

dimensions, because each protein state is one dimension. To build a concise conceptual model, 

however, we can continuously map the states in the multidimensional space onto a two-

dimensional plane (Hubbard and West, 1995), so that a free-running clock spirals into and along a 

circular limit cycle (Fig. 14, black circle) centered at the unstable singularity (black dot) with 

constant counterclockwise angular velocity. In other words, the dynamics of the clock system 

along the angular direction (𝜑) are uncoupled from the radial direction (𝑟); and then clocks running 

from state points along a radial axis (variable 𝑟 but same 𝜑; Fig. 14, e.g. yellow and light blue dots 

along black line) will eventually become synchronized after they have spiraled into the limit cycle, 

and thus share the same steady-state phase 𝜑 independent of 𝑟. Mathematically, this mapping is 
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called ‘homeomorphic transformation’ (Hubbard and West, 1995). Not yet considering stochastic 

phase resetting responses, the distribution of single-cell data points along a PTC trend line is 

indicative of variation in the clock states among synchronized cells (Chabot et al., 2007; 

Mihalcescu et al., 2004; Teng et al., 2013). To account for variation in simulating single-cell 

responses, to a given noise-free clock state (Fig. 14, yellow dot) we add a random displacement 

that is uniformly distributed within a small disk centered at the noise-free state (Fig. 14, gray dots 

around the yellow dot at the center); the radius of the small disk (𝑘 ∙ 𝑅 ) is assumed to be 

proportional to the limit cycle radius (𝑅) with ratio 𝑘	(Fig. 14).  

 

2.4 Temperature resets the clock by modulating the geometric structure of limit cycle 

Having set up the limit cycle framework, we then sought to model resetting behavior based on it, 

and as a first step, to recapitulate the responses to temperature shifts for they are the simplest, most 

reduced signal. As a system parameter of the clock, temperature affects circadian oscillations 

predominantly by modulating the asymptotic orbit, i.e. the limit cycle, towards which a free-

running clock relaxes (Gooch, 2007; Peterson, 1980b), as supported by the variable oscillatory 

trajectories of a free-running clock at 25°C vs. at 35°C (Fig. 15, Methods). In contrast, temperature 

only  

 

Figure 15. Variable circadian rhythms at 25°C vs. 35°C measured in a synchronized population 
by (1) the ratio of KaiC phosphorylation (KaiC~P%, including all three phosphoforms – T-KaiC, 
ST-KaiC, and S-KaiC), (2) the ratio of RpaA phosphorylation (RpaA~P%), and (3) the distribution 
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(Continued) of single-cell YFP reporter level which is presented as mean with standard deviation. 
The rhythms at 25°C vs. 35°C indicate that temperature modulates free-running oscillatory 
trajectories. 
 

only slightly alters the oscillatory period (e.g. 𝑇BC°D = 24.7	h, 𝑇FC°D = 25.2	h, Methods) (Kondo 

et al., 1993). Since a temperature signal is composed of change(s) in temperature, it resets the clock 

by switching the limit cycle it spirals into or around throughout the signal. For example, in response 

to a shift from temperature 1 to 2, if denoting the limit cycle characteristic of stable free-running 

oscillations at temperature 1 as ‘LC1’ and that at temperature 2 ‘LC2’ (Fig. 16; blue circle LC1 and 

red circle LC2, whose relative geometry is defined by the parameters 𝑑H,B, 𝑅H, 𝑅B, 𝛼HKB, 𝛼BKH as 

illustrated), the clock originally running along LC1 will, starting from certain state on it (yellow 

dot on blue circle LC1), spiral towards LC2 upon the shift. Equivalent to how we experimentally 

determined 

 

Figure 16. Generic representation of the geometric relationship between limit cycles of two 
temperatures (LC1 and LC2), and the quantification of 𝜑%& and 𝜑'& in shifting temperature from 1 
to 2. The parameters used to describe the relative geometry between LC1 and LC2 are: (1) the 
radius of LC1 (𝑅H) and that of LC2 (𝑅B), (2) the distance between the unstable singularities, i.e. 
centers of LC1 and LC2 (𝑑H,B ), (3) the angle from the 0° direction of LC1 to the singularity at 
temperature 2 (𝛼HKB), and that from the 0° direction of LC2 to the singularity at temperature 1 
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(Continued) (𝛼BKH ). The 0° direction of either limit cycle corresponds to the clock state 
experimentally defined as 0° by the peak of the YFP reporter.  
 

determined the steady-state phases from a YFP reporter trace, in our model, 𝜑%& and 𝜑'& should be 

the angular coordinates of the clock state at the time of temperature shift, respectively, in reference 

to LC1 and to LC2 (gray lines connecting the singularities and yellow dot); and the transition from 

𝜑%& and 𝜑'& arises from the displacement of singularity (𝑑H,B) relative to the limit cycle of before-

shift temperature LC1. Given this simple relationship, without considering noise, the dynamical 

question of computing steady-state phase resetting responses is amenable to trigonometric 

reasoning. We can thus analytically derive 𝜑'& as a function of 𝜑%& for the shift from temperature 

1 to 2, and similarly for the reverse shift from temperature 2 to 1 (equations in Methods). Fitting 

the derived 𝜑%&  vs. 𝜑'&  functions to the measured PTCs of 1-to-2 and 2-to-1 shifts can thus 

constrain the relative geometry between LC1 and LC2.  

 

Applying this analysis to the 25°C-to-35°C and 35°C-to-25°C data (Fig. 17, Methods) yielded 

LC25°C and LC35°C as graphically presented in Fig. 18 (blue circle LC25°C with its radius 𝑅BC°D 

arbitrarily set to 1, and red circle LC35°C scaled proportionally as described in Methods). Such 

geometric  

 

Figure 17. Fitting the single-cell PTCs (experimental data shown as blue circles) of temperature 
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(Continued) shifts between 25°C and 35°C. The black curve shows the analytically derived noise-
free PTC used to least-square-fit the deterministic part of single-cell PTCs. Red points indicate the 
single-cell responses simulated	with noise. These plotting symbols (blue circle, black curve, and 
red point) are kept consistent in all following figures.  
 

 

Figure 18. Fitted relative geometry between LC25°C (blue circle) and LC35°C (red circle). For each 
temperature, also plotted in matching color is a dot at the center representing the unstable 
singularity, and connected to it, a straight line marking the reference direction of 0° phase. 
Magnified details are shown in the box. 
 

geometric relationship dictates that the 5° phase point on LC25°C lies very close to the 35°C 

unstable singularity (Fig. 19A). Considering the noise term that describes cell-to-cell variation in 

clock states, for a group of synchronized cells with 𝜑%& = 5°, rather than locating exactly on the 

same point on LC25°C, their clock states form a small cluster around it, covering the 35°C unstable 

singularity and expanding the full range of angular coordinates in reference to LC35°C (Fig. 19A, 

light blue dots). Upon shifting temperature to 35°C, these states will then relax into LC35°C with 

divergent phases (Fig. 19A, orange dots). This explains our observation that releasing the clock 

into 35°C from a single critical state elicits stochastic phases, and suggests that this critical state is 

the unstable singularity of the clock at 35°C (Fig. 19A, red dot). In contrast, if the temperature is 

shifted from 25°C to 35°C at 𝜑%& = 90° for example (Fig. 19B, light blue dots), because the clock 

states are farther away from the 35°C singularity, the range of angular coordinates expanded by 
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the same size of cluster of clock states is much smaller, resulting in a tight distribution in 𝜑'& 

around a deterministic value (Fig. 19B, orange dots).  

 

 

Figure 19. Simulated single-cell responses to a 25°C-to-35°C shift applied at (A) 𝜑%& = 5° vs. (B) 
𝜑%& = 90°. For a group of individual cellular clocks (𝑛 = 50), light blue dots mark their states at 
the time of temperature shift, while orange dots denote, in one randomized simulation, where they 
arrive after running for one free-running period of time (25.2 h) at 35°C. (B) A gray line is also 
plotted to represent how the approximately synchronized clocks relax towards LC35°C throughout 
this period of time. 
 

2.5 Recapitulating phase resetting by 25°C pulses further confirms that the unstable 

singularity underlies stochastic responses 

With the limit cycle geometry constrained by the responses to temperature shifts, we then went on 

to model phase resetting by the more complicated signal of low-temperature pulses (composed of 

two successive temperature shifts). In response to a 25°C pulse at 35°C, clock oscillations will 

change from LC35°C before the pulse to LC25°C during the pulse, and then back to the original 

LC35°C after the pulse. Because this process involves spiraling towards LC25°C for different lengths 

of time in our experiments, to fit the data we need to describe the relaxation dynamics of the clock. 

For this, we chose the Poincaré oscillator (Beuter et al., 2003) which adopts the simplest form of 

differential equations that can also implement previous simplifications made to set up the model 
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(i.e. circular limit cycle and constant angular velocity) (see Methods for a detailed discussion of 

the assumptions and simplifications made in our model). In the frame of reference of either 

temperature, with the relaxation coefficient 𝜀 , the clock dynamics are described by NO
NP
=

−𝜀𝑟 𝑅 − 𝑟 , NQ
NP
= BR

S
. 𝑟 monotonically approaches 𝑅 with 𝑟 = H

T
UV
KTW 1XYWZ[TW

 (𝑟 = 𝑟\ at 𝑡 = 0). To 

determine 𝜀, for each pulse duration (3 h, 6 h, … 24 h), we simulated the phase resetting processes 

without adding any noise, quantified 𝜑#$#  and 𝜑$12  in a manner similar to that employed to 

analyze the experimental results, and thus obtained a series of theoretical PTCs of 25°C pulses. 

Least-square-fitting these PTCs to all deterministic phases resetting responses together gives a 

relaxation timescale, 𝜀 = 0.32	hKH (Fig. 20, Methods).  

 

To intuitively understand how pulse duration and initial phase at the pulse determine whether the 

new phase is stochastic or deterministic, we plotted trajectories of the clock state to visualize what 

happens throughout the phase resetting process. In relaxing towards LC25°C, multiple critical 

perturbations all have the appropriate combinations of pulse duration and initial phase at the pulse 

to bring the clock state close to the 35°C singularity at the end of the 25°C pulse (Fig. 21, gray 

lines converging on the red dot), while the other perturbations do not (one example shown in Fig. 

22A). The dynamical properties of the clock govern all phase resetting responses, but in our model, 

are constrained by fitting the deterministic responses. Therefore, simulation of these critical 

perturbations that were not used to constrain the relaxation timescale 𝜀 can corroborate the notion 

that a critical state – the 35°C unstable singularity – underlies the stochastic phasing at 35°C, while  

the trajectories taken to the 35°C unstable singularity do not matter. In addition, the PTCs of the 

pulses that clearly elicit stochastic phase resetting responses (12 h to 24 h) display a steep ~180° 
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shift in 𝜑$12 upon small variation in 𝜑#$# around the critical phase at stochastic response (Fig. 20). 

Taking the simulated critical perturbation of a 12 h pulse at 𝜑#$# = 	203°  (whose value is 

determined by where the slope of fitted PTC is steepest, black curve in Fig. 20) for example (Fig. 

22B, middle), if the pulse is applied at a slightly earlier phase 𝜑#$# = 183° (Fig. 22B, top) or at a 

determined 

 

Figure 20. Fitting the single-cell PTCs of 25°C pulses at 35°C. The yellow lines illustrate, in 
response to a particular 25°C pulse, the quantification of maximum spread of 𝜑$12 between cells 
with similar 𝜑#$# (Δ𝜑$12), which is used to plot Fig. 27B.  
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Figure 21. Simulated clock-state trajectories throughout the 25°C pulse (gray lines) in response to 
the critical perturbations that induce stochastic phases. The critical perturbations are: 12 h 25°C 
pulse at 𝜑#$# = 203°, 15 h at 𝜑#$# = 171°, 18 h at 𝜑#$# = 134°, 21 h at 𝜑#$# = 87°, and 24 h at 
𝜑#$# = 32°. Here, the value of 𝜑#$# is computed by where the slope of a fitted PTC is steepest 
(black curves in Fig. 20).  
 

later phase 𝜑#$# = 223° (Fig. 22B, bottom), though physically close to each other, the clock states 

at the end of the 25°C pulse (Fig. 22B, top center 𝜑#$# = 183°, bottom center 𝜑#$# = 223°; black 

dots close to red dot at the center) are located at two opposing radial axes across the singularity of 

the 35°C limit cycle (indicated by the dashed gray lines in the top center and bottom center 

diagrams), thus resulting in a ~180° difference in 𝜑$12 (Fig. 22B, top right 𝜑#$# = 183°, bottom 

right 𝜑#$# = 223°; black dots on red circle).  

 

To examine the threshold in pulse duration (~12 h) for inducing stochastic phases for a 25°C pulse, 

we plotted the end-of-25°C-pulse states for pulses applied at all initial phases (Fig. 23). As the ring 

of end-of-pulse state distribution converges towards the 25°C limit cycle with increasing pulse 

duration (Fig. 23), it passes through the singularity at 12 h and then remains close to it, meaning 

that there exists a particular initial phase at which any no-shorter-than-12 h pulse applied can bring  
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Figure 22. Simulated single-cell phase resetting processes in response to a 12 h pulse applied at 
(A) 𝜑#$# = 120° and (B) 𝜑#$# = 183° (top panel), 203° (middle), and 223° (bottom). Each panel 
is dissected into three sequential diagrams illustrating the clock originally free-running at 35°C, 
shifting to 25°C, and lastly, returning to 35°C: (left) a cluster of clock states (black dots) with 
certain average 𝜑#$# at the onset of 25°C pulse; (center) in relaxing towards LC25°C, the trajectory 
(gray line) that takes the clocks from these states to where they are at the end of the pulse (black 
dots at the end of gray line); (right) the trajectory (gray line) along which the clocks spiral back 
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(Continued) into LC35°C, and the states they traverse after one free-running period of time (25.2 h) 
at 35°C (black dots along LC35°C). In each diagram, only the limit cycle the clock should spiral 
into or around (left LC35°C, middle LC25°C, right LC35°C) is shown in solid line, and the other one 
is semi-transparent. (A) 𝜑$12;  is labeled as defined in Methods. (B) In the middle panel featuring 
the fitted critical perturbation of a 12 h pulse at 𝜑#$# = 203°, three clocks are color-coded to assist 
tracking them throughout the phase resetting process. In the left and center diagrams, the dashed 
gray line highlights the average radial axis on which certain cluster of clock states are located.  

 

 

Figure 23. Simulated single-cell distribution of end-of-pulse clock states for all lengths of pulses. 
Two perpendicular dashed red lines are plotted to indicate the position of the 35°C singularity at 
their intersection.  
 

clock state to the vicinity of the 35°C singularity at the end of it. Because this trend requires that 

LC25°C does not enclose but lies close to the 35°C singularity, the existence of pulses that can 

induce stochastic phases and this threshold effect of pulse duration is specific to the relative 

geometry between LC25°C and LC35°C. The threshold value also depends on the relaxation timescale 

– the faster the clock relaxes to LC25°C, the shorter time it takes to approach the 35°C singularity.  

 

Moreover, this model can explain the transient amplitude reduction that may occur with stochastic 

phasing (Fig. 8, 12). Specifically, although it is unclear how the oscillatory amplitude of the YFP 
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reporter corresponds to the radius (𝑟) of a clock state in our conceptual model, it is safe to assume 

that their values are positively correlated. Thus, the radial relaxation of a simulated clock state can 

be used to qualitatively infer the stabilization of the YFP reporter level. As the radial relaxation is 

described by 𝑟 = H
T
UV
KTW 1XYWZ[TW

 (𝑟 = 𝑟\ at 𝑡 = 0), if a clock starts oscillating from the vicinity of 

the unstable singularity (𝑟\~0), which underlies the stochastic phasing, the time (𝑡H) it takes to 

reach a certain radius (𝑟H , say 0.9𝑅 ) is: 𝑡H =
H
^_
ln OT

OV
⋅
HKUVW
HKUTW

	≈ H
^_
ln OT

OV
⋅ H
HKUTW

∝ − ln 𝑟\ . 𝑡H 

sharply increases as 𝑟\ approaches 0, meaning that if a clock happens to lie very close to the 35°C 

singularity at the end of a 25°C pulse, the stabilization of the oscillatory amplitude could be 

significantly delayed. 

 

2.6 The geometric relationship between limit cycles of pulse- and background-temperatures 

govern the existence of stochastic responses to pulse signals  

To generalize what we learned with the specific signal of 25°C pulses at 35°C and grasp the trend 

of temperature effects on circadian oscillations, we sampled additional temperatures (30°C – the 

midpoint between 25°C and 35°C, 𝑇F\°D = 25.0	h; and 37.5°C – the upper boundary of non-

stressful temperatures, 𝑇Fe.C°D = 24.9	h ). We measured phase resetting by temperature shifts 

between 25°C, and 30°C and 37.5°C, respectively (Fig. 24), and as we did for 35°C, used these 

results to fit the geometry of the 30°C and the 37.5°C limit cycles (‘LC30°C’ and ‘LC37.5°C’), each 

in reference to LC25°C (Fig. 25, 26, green circle LC30°C and yellow circle LC37.5°C; Methods). The 

higher-temperature singularity monotonically moves away with rising temperature, from inside 

(30°C, Fig. 25, small green circle) to outside (35°C, red dot; and 37.5°C, yellow dot) LC25°C (blue 

circle). Therefore, for 25°C pulses at higher temperatures, the pulse-temperature limit cycle, i.e. 
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LC25°C, can either enclose, pass through, or exclude a background-temperature singularity 

depending on what temperature it is. Because the induction of stochastic phases by pulse signals	

require 

 

Figure 24. Fitting the PTCs of temperature shifts between (A) 25°C and 30°, and between (B) 
25°C and 37.5°C, with ~28 h imaged before a shift.  
 

 

Figure 25. Diagram of LC30°C (green), LC35°C (red), and LC37.5°C (yellow), each defined relative to 
LC25°C (blue). The unstable singularity and 0° phase direction at each temperature are plotted in 
matching color.  
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Figure 26. Magnified details of the fitted relative geometry (A) between LC25°C and LC30°C, and 
that (B) between LC25°C and LC37.5°C. Plotting symbols are the same as those used in Fig. 18 (for 
demonstrating the relative geometry between LC25°C and LC35°C).  
 

require that the clock can reach the background-temperature singularity in spiraling towards the 

pulse-temperature limit cycle, we explored how the relative position of the pulse-temperature limit 

cycle and the background-temperature singularity influences the nature of phase resetting 

responses (e.g. Fig. 27A, from left to right; blue circle enclosing, passing through, or excluding 

red dot). As a simple theoretical demonstration, we allowed 𝑑BC°D,FC°D to vary from 0.1𝑅BC°D to 

1.9𝑅BC°D (𝑅BC°D = 1), and scanned the responses to 25°C pulses of various duration (𝜏) to probe 

whether stochastic phasing can occur. We simulated the single-cell PTC to the 25°C pulse for each 
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pair of 𝜏 and 𝑑BC°D,FC°D values, and quantified the maximum spread of 𝜑$12 between cells with 

similar 𝜑#$# (denoted by Δ𝜑$12) – a small Δ𝜑$12 indicates purely deterministic behavior (e.g. 3 

h, 

 

Figure 27. Exploring the possibility of inducing stochastic phases by pulse signals in general. (A) 
Plots of clock-state trajectories. The shaded blue ring neighboring LC25°C (blue circle) indicates 
the region where a clock stably running at 25°C can be distributed if considering the noise in clock 
state. The dashed gray lines denote potential trajectories along which the clock originally running 
along LC35°C (red circle) can spiral towards LC25°C. Among them, highlighted in solid gray are the 
ones that can take a clock to the 35°C singularity (red dot), from which the clock returned to 35°C 
would be reset to a stochastic new phase. When 𝑑BC°D,FC°D = 0.1, no trajectories take the clock to 
the 35°C singularity. When 𝑑BC°D,FC°D = 1, every trajectory brings the clock to the 35°C singularity 
after certain period of time at 25°C, whose length is determined by where the trajectory starts on 
LC35°C (i.e. 𝜑#$#). This is equivalent to the notion that for any 25°C pulse longer than a threshold 
value, there exists a corresponding 𝜑#$# so that the pulse applied at it can take the clock to the 35°C 
singularity at the end of the pulse. When 𝑑BC°D,FC°D = 1.9, only one trajectory passes through the 
35°C singularity at a specific point, yielding one critical combination of 𝜑#$# and 𝜏 that induces 
stochastic phases. (B) Heatmap showing how the possibility of triggering stochastic phases by a 
25°C pulse at 35°C (quantified by Δ𝜑$12 as illustrated in Fig. 20) depends on the pulse duration 
(𝜏) and where the 35°C singularity resides in relation to LC25°C (described by 𝑑BC°D,FC°D, with 𝑅BC°D 
set to 1). 𝜏 is scanned from 1 h to 30 h with 1 h step, and 𝑑BC°D,FC°D from 0.1 to 1.9 with 0.3 step.  
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h, yellow line), while a large Δ𝜑$12 suggests existence of stochastic phasing (e.g. Fig. 20, 12 h, 

yellow line). We presented the 𝜏 - and 𝑑BC°D,FC°D -dependent Δ𝜑$12  as a heatmap from blue 

(minimum level) to red (almost 360° spread in 𝜑$12 between synchronized cells) (Fig. 27B). For 

a small 𝑑BC°D,FC°D where LC25°C encloses the 35°C singularity, the overall small, 𝜏-independent 

Δ𝜑$12 (dark blue) indicates stochastic responses cannot be induced no matter how long the pulse 

is. Intuitively speaking, this is because no 25°C pulse can bring a clock state outside of LC25°C to 

the 35°C singularity that lies inside of it (Fig. 27A, left, dashed gray trajectories projecting from 

different phases along the red circle). As 𝑑BC°D,FC°D approaches and rises slightly above 𝑅BC°D (=

1), with the 35°C singularity lying on top or close to LC25°C, the sharp transition from blue at 𝜏 =

11	h  to red at 𝜏 = 12	h  (indicated by the vertical black arrow at 𝑑BC°D,FC°D = 1  in Fig. 26B) 

indicates that a 25°C pulse longer than the threshold 𝜏~11	h, if applied at an appropriate 𝜑#$#, can 

cause stochastic phasing (visualized in Fig. 27A, center; dark gray trajectories). If 𝑑BC°D,FC°D is 

increased further, excluding the 35°C singularity from LC25°C, the small range of 𝜏  in red 

(indicated by the two horizontal black arrows at 𝑑BC°D,FC°D = 1.9 in Fig. 27B) implies that only a 

particular length of pulse can induce stochastic new phases, as readily seen from the plot of clock-

state trajectories in Fig. 27A (right; among dashed gray trajectories, one dark gray trajectory 

traversing red dot).  
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Chapter 3 

Methods  

 

3.1 Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Rabbit polyclonal anti-KaiC serum Rust et al., 2007 (made by 
Cocalico Biologicals) 

N/A 

Rabbit polyclonal anti-RpaA serum  Gutu and O’Shea, 2013 
(made by Cocalico 
Biologicals) 

N/A 

Chemicals, Peptides, and Recombinant Proteins 
Phos-tagTM Acrylamide AAL-107  Wako Chemicals Cat#304-93521 
Experimental Models: Organisms/Strains 
S. elongatus Strain JRC35 Chabot et al., 2007 N/A 
S. elongatus PCC 7942 (wild type) ATCC Cat#33912 
Software and Algorithms 
Algorithm for phase retrieval Waller et al., 2010 N/A 
MATLAB® R2016a MathWorks https://www.mathworks.com

/ 
ImageJ National Institutes of 

Health  
https://imagej.nih.gov/ij/ 

Deposited Data 
Raw microscopy data This paper https://www.dropbox.com/sh

/3ibv70v5myx2nfg/AAA6sv
2ZS8eOzwJqX5MOwuNXa
?dl=0	

MATLAB codes for microscopy data 
analysis 

Time course data of free-running 
oscillations at 25°C and 35°C, related to 
Fig. 15 

This paper 
 

http://dx.doi.org/10.17632/4
pwgckvgjc.1 

Dataset of extracted phase resetting 
responses  
Key MATLAB codes for model fitting 
and simulations 
Arduino codes for automatic entrainment 
device 
Other 
FoilCover for Lab-Tek II chambered 
coverglass 

PeCon (ordered from Zeiss) Cat#4107912012000000 

RL1360 classic low power dark field 
ring light (white) 

Advanced Illumination Part#RL1360-WHI-C2 

 



	 31	

3.2 Experimental model and subject details  

3.2.1 Cyanobacteria strain 

Strain JRC35 (Chabot et al., 2007), which expresses the YFP-SsrA protein under the control of the 

kaiBC promoter and contains a kanamycin resistance cassette, was obtained from Alexander van 

Oudenaarden (Massachusetts Institute of Technology, currently at Hubrecht Institute).  

 

3.2.2 Cell culture  

Cells were grown in a shaking incubator (Innova 40, New Brunswick Scientific) in filtered BG-11 

medium (components listed below) supplemented with 10 µg/mL kanamycin and 10 mM HEPES-

NaOH Ph 7.5, and illuminated with cool-white fluorescent lights (two Phillips T9 circline bulbs – 

a 32 Watt, 12" diameter bulb encircling a 22 Watt, 8" diameter bulb). Growth temperature was set 

according to specific experiments (i.e. 25 °C, 30 °C, 35 °C, or 37.5 °C). BG-11 medium was sterile 

filtered to eliminate the precipitates formed after autoclaving, which affect imaging quality. 

Culture preparation for microscopy and western blotting time course experiments are described 

below in the method details section.  

BG-11 medium components Concentration (mg/L) 
Milli-Q H2O N.A. 
NaNO3 1.5×103	
K2HPO4 39 
MgSO4·7H2O 75 
Na2CO3 20 
CaCl2·2H2O 35.8 
EDTA 1 
FeNH4 citrate 12 

Trace 
metal 
mix 

H3BO3 2.86 
MnCl2·4H2O 1.81 
ZnSO4·7H2O 0.222 
Na2MoO4·2H2O 0.390 
CuSO4·5H2O 0.079 
Cu(NO3)2·6H2O 0.049 
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3.3 Method details  

3.3.1 Western blot analysis  

Western blotting was performed following previously established procedures (Gutu and O’Shea, 

2013; Rust et al., 2011) with modifications described below. Cells were collected by vacuum 

filtration on cellulous acetate filters (OE67, Whatman), placed into 500 µL screw-cap tubes 

containing 0.1 mm glass beads (BioSpec Products), flash-frozen in liquid nitrogen, and then stored 

at -80°C until lysis. Lysates were obtained by bead-beading at 4°C (6 times, 30 s each, with 1 min 

cooling on ice in between) in 250 µL ice-cold lysis buffer (7.5 M urea, 20 mM HEPES pH 8.0, 

1 mM β-mercaptoethanol, and 1x cOmpleteTM EDTA-free protease inhibitor tablet, Roche). The 

lysate was centrifuged for 10 min (16,000 x g, 4°C), after which the supernatant was transferred 

to a clean microcentrifuge tube. The total protein concentration of each sample was measured by 

the Bradford assay (Pierce) against a standard curve of bovine serum albumin (BSA, Bio-Rad) 

diluted in lysis buffer. For each SDS-PAGE gel, 12 µg of total protein lysate was loaded per lane.  

 

To detect the phosphorylation level of KaiC, lysates were heated at 99°C for 3 min, loaded to a 

10% Tris-HCl gel (acrylamide:bisacrylamide, 37.5:1, 16 cm×16 cm×1 mm), and then run at 35 

mA and 15°C for ~7 h using a HoeferTM SE600 electrophoresis system. After electrophoresis, the 

separated proteins were transferred to nitrocellulose membrane (0.45 µm pore size, Bio-Rad) at 

100 mA for 90 min using the Trans-Blot SD semi-dry transfer cell (Bio-Rad), followed by standard 

Western blotting procedures. The membrane was incubated with primary antibody (1:1000 

dilution of rabbit polyclonal anti-KaiC serum that was generated against full-length recombinant 

KaiC, Cocalico Biologicals) overnight at 4°C, and then with secondary antibody (1:1000 dilution 

of 10 µg/ml goat anti-rabbit HRP conjugate, Pierce) for 1 h at room temperature. The blot was 
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developed with SuperSignal West Femto maximum sensitivity substrate (Pierce), and imaged with 

an AlphaImager system (Alpha Innotech). KaiC was detected in multiple bands (see the data and 

software availability section for gel images) – the bottom two bands unambiguously correspond to 

unphosphorylated KaiC (U-KaiC), while the three phosphoforms (S-KaiC, T-KaiC, and ST-KaiC) 

cannot be clearly separated (Nishiwaki et al., 2004). Background-subtracted intensities of the 

multiple bands were quantified by densitometry using imageJ software (National Institutes of 

Health). The ratio of phosphorylated KaiC (KaiC~P%, Fig. 15) or unphosphorylated KaiC (1 - 

KaiC~P%) was determined by dividing the sum of the bottom two bands’ (U-KaiC) by the sum of 

all bands’ intensities.  

 

To measure the phosphorylation level of RpaA, lysates were run at 4°C and 130 V on a 7% 

polyacrylamide gel (acrylamide: bisacrylamide, 29:1) containing 50 µM Phos-tagTM Acrylamide 

AAL-107 (Wako Chemicals) and 100 µM MnCl2, until the bromophenol blue dye reached the 

bottom of the gel in ~2 h. Before transferring the proteins to nitrocellulose membrane, the gel was 

gently washed twice for 10 min each time in transfer buffer (40 mM glycine, 50 mM Tris, 0.063% 

SDS, 20% v/v methanol), with 1 mM EDTA added to the first wash to chelate Mn2+ ions. Also, 

the primary antibody used was 1:1000 dilution of rabbit polyclonal anti-RpaA serum that was 

generated against full-length recombinant RpaA (Cocalico Biologicals). Except for these, other 

procedures were the same as those used in detecting KaiC. RpaA appears in two bands (see the 

data and software availability section for gel images) – the upper band is phosphorylated 

(RpaA~P), and the lower unphosphorylated (U-RpaA). Background-subtracted intensities of the 

two bands were quantified, and then normalized to their sum to calculate the ratio of 

phosphorylated RpaA (RpaA~P%, Fig. 15) or unphosphorylated RpaA (1 - RpaA~P%).  
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3.3.2 Time-lapse microscopy and analysis  

Overview of experimental design 

Single-cell phase resetting responses to temperature changes were measured with live cell imaging 

time courses. An imaging time course lasts 3-4 days, during which certain resetting signal was 

applied by changing the ambient temperature of imaged cells. Although cyanobacterial cells divide 

faster than 24 h (e.g. with a doubling time of ~12 h at 35°C and ~16 h at 25°C under our 

experimental conditions), because the clock runs independent of the cell cycle and its state is 

faithfully inherited at cell division (Yang et al., 2010), the dynamics of the clock-state reporter can 

be continuously traced across generations (Chabot et al., 2007; Mihalcescu et al., 2004; Teng et 

al., 2013; Yang et al., 2010), and the clock’s phase before and after a signal can then be extracted. 

To increase the throughput of imaging, we loaded a mixed-phase population of cells for one 

imaging time course, so that a resetting signal applied during the time course was given to cells 

with different phases. Thus, summarizing the single-cell responses from one time course should 

theoretically suffice to generate the PTC of a given signal. When the pre-signal phases were, in 

reality, not uniformly sampled from 0° to 360° in a single time course experiment, the results from 

several experiments were combined to generate a PTC. Also, to avoid potential statistical bias due 

to variable sampling density of the pre-signal phases, we presented all results as single-cell data 

points. 

 

Culture preparation for microscopy 

700 µL per tube (BD Biosciences, 5ml polystyrene round-bottom tube) of liquid culture was 

inoculated at an initial OD750 of ~0.02, and grown with 140 rpm shaking to an OD750 between 0.2 

and 0.4 before imaging. The incubator temperature was set to what cells should first experience in 
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the imaging time course they were prepared for (e.g. 37.5°C for the 37.5°C-to-25°C shift or 35°C 

for 25°C pulses in a 35°C background). To prepare stably oscillating cells with a given circadian 

phase, a tube of culture was entrained by at least two cycles of 12 h light/12 h darkness, and then 

released into constant light to free run for ~24 h, with a measured light intensity of ~15 µE m-2 s-1 

maintained throughout the light periods. To obtain cells with a 360° spread of phases, we built an 

automatic device (Chabot et al., 2007) to simultaneously entrain twelve tubes of culture to different 

phases. The device comprises a platform that holds the tubes uniformly spaced around a circle 

(with 30° between two adjacent tubes), and, affixed to a programmed step motor, a half-circle 

shield that rotates 30° every 2 h, sequentially exposing each tube to cycles of 12 h light/12 h 

darkness (see the additional resources section for step motor tutorial, and the data and software 

availability section for detailed setup of the device).  

 

Microscopy experimental setup 

To set up one imaging time course, ~100 µL of cell culture was harvested from each of the twelve 

tubes. To guarantee equal sampling of cells with different phases, the exact volume of culture 

taken from each tube was adjusted to be inversely proportional to its OD750. The mixture of these 

twelve tubes of cells (~1200 µL) was gently vortexed, concentrated by centrifuge, and then 

resuspended in 1 mL sterile-filtered BG-11 medium (without kanamycin). 5 µL of the resuspended 

cells were loaded onto the center of a Lab-TekTM II chambered coverglass (Electron Microscopy 

Sciences), and overlaid by a pad of 1% agarose (2.5 cm×1.5 cm×6 mm). After a 3-4 days of the 

imaging time course, an individual cell in the first frame of image could grow into a colony of 

approximately 50~100 cells (Fig. 28A, D). To avoid crowding and overlapping of cells, the above 
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(Continued) 
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Figure 28 (Continued). Extracting steady-state phases from the YFP reporter dynamics. (A) (B) 
(C) and (D) (E) (F) display, in parallel, analysis of the two colonies of cells featured in the top vs. 
bottom panels in Fig. 6A. As (A), (B), (C) is each equivalent to (D), (E), (F), only the first set are 
explained in detail. (A) Snapshots of automatically segmented cells at 𝑡 = 12	h (at the end of the 
25°C pulse, left) and at 𝑡 = 60	h (48 h afterwards, right). Both time points are indicated by black 
arrows in (B). Cells that can be automatically tracked throughout the time course (to 𝑡 = 60	h) are 
outlined in white, and among them, the ones randomly chosen for quantifying phase resetting 
responses are labeled by a yellow star. Every segmented cell at 𝑡 = 60	h, and if analyzed, its YFP 
reporter trace in (B) and (C) are color-coded to match the ancestor cell it was divided from at 𝑡 =
12	h. (B) YFP reporter traces of all successfully tracked cells (white-outlined) in (A), organized 
into different diagrams according to their ancestor cell at 𝑡 = 12	h. The red trace in the bottom 
right diagram was removed from further analysis due to cell death. (C) Extracting phase 
information from the YFP reporter traces of selected cells (star-labeled) in (A), shown altogether 
in the first diagram and then demonstrated one by one. In the single-trace diagrams, the solid black 
lines denote fitting the two intervals of a YFP reporter trace to cosine functions with the period 
𝑇FC°D = 25.2	h – from 𝑡 = −26	h to 𝑡 = 0 for defining 𝜑#$#, and from 𝑡 = 18	h to 𝑡 = 44	h for 
extrapolating 𝜑$12. The dashed black lines are extended from these cosine fits into other time 
intervals at 35°C. 
 

culture volumes and agarose pad size were optimized to create a uniform sparse distribution of 

single cells to start with. To prevent the agarose pad from drying, the chambered coverglass was 

capped by a special foil cover (Pecon Products) that is permeable to air but not water, and a small 

drop of BG-11 medium (~100 µL) was placed at each end of the coverglass to increase the 

humidity inside the capped chamber. The foil has one hydrophobic and one hydrophilic side. To 

reduce moisture condensation on the foil which could form with a temperature drop (e.g. the 

37.5°C-to-25°C shift), the foil was assembled with its hydrophobic side facing the sample (or 

interior of the chambered coverglass). 

 

The sample was imaged with a Plan-Apochromat 100X/1.40 Oil Ph3 objective (Zeiss) in the Cell 

Observer system (Zeiss), equipped with Cascade II:512 camera (Photometrics) at 512×512 pixel 

resolution and a Lambda DG-4/DG-5 xenon arc lamp (Sutter Instrument) as the fluorescence 

source. Bright-field, YFP (Zeiss filter set 46 HE) and Cy3 (autofluorescence, Zeiss filter set 43 
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HE) images were taken at 16-20 designated positions every hour – at each position and time point, 

fluorescence images (YFP and Cy3) were taken in the best focal plane, and centered around it, 

bright-field images were acquired along a Z-stack of 9 planes with a step size of 0.2 µm. Definite 

Focus (Zeiss) was used to minimize the drift in Z-direction that may occur over time. Throughout 

the time course, the sample was illuminated at an intensity of ~8 µE m-2 s-1 by an external LED 

ring (Advanced Illumination), which was switched off only during image acquisition. The sample 

temperature was regulated by an InVivo Scientific incubator that encloses the entire microscope, 

and sequentially set to the values that constitute a temperature signal (e.g. 35°C then 25°C and 

then 35°C for the experiment of a 25°C pulse at 35°C). The incubator temperature is regulated by 

a built-in PID controller. Heating up the incubator (e.g. changing from 25°C to 35°C) takes ~30 

min, while cooling it down (e.g. changing from 35°C to 25°C) would take much longer that that if 

depending solely on the PID controller. To speed up the cooling process also to ~30 min, the heater 

of the incubator was manually switched off until the temperature drops close to the target value, 

and the incubator doors were also opened during this process to help dissipate heat. Considering 

the timescale of the circadian period (~24 h) and the signals employed in our study (e.g. the shortest 

25°C pulse was 3 h long), ~30 min is short enough for our needs; and we recorded the time at 

which a temperature signal was given by the starting point of this ~30 min stabilization process 

(i.e. the time of setting rather than reaching a new temperature). Also, since the foil cover could 

not completely seal the chamber in which the sample resides, to further prevent the sample from 

drying, several large beakers of water were placed inside the incubator to create a humidified 

environment around the chamber. Except for the incubator (whose temperature was manually 

adjusted), every other device involved was automated and coordinated by the MetaMorph 

software. 
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Image processing and data analysis 

To extract the single-cell clock dynamics and their phase information, a custom written MATLAB 

software (R2016a, MathWorks) was developed following the standard steps of image processing 

and analysis (Chabot et al., 2007; Mihalcescu et al., 2004; Yang et al., 2010) (see the data and 

software availability section for raw images and codes). The software first segments individual 

cells in each frame using a quantitative phase map constructed from the z-stack bright-field images 

(Waller et al., 2010), and overlays the segmented cells with YFP and Cy3 images to deduct 

background fluorescence and extract the clock-state reporter level. It then tracks cells from one 

frame to another to construct their lineages and thereby generates time series of the reporter 

expression. The time series were then fitted by a cosine function (Markson et al., 2013; Refinetti 

et al., 2007) to quantify the pre- vs. post-resetting-signal phases as how they were defined in the 

main text (i.e. 𝜑#$# vs. 𝜑$12 and 𝜑%& vs. 𝜑'& respectively for temperature pulse and shift). As our 

study involves a substantial volume of time-lapse imaging data, to be more time efficient, we 

designed the analysis procedures to be as automated as possible. Specifically, we coded stringent 

standards in mapping cells between frames to guarantee the correctness of automatic lineage 

tracking results. Since the cell segmentation and tracking was performed using bright-field images, 

whether a lineage could be successfully tracked is independent of the phase resetting responses to 

be extracted from its YFP reporter trace. Therefore, although not all lineages were automatically 

trackable, we could use an unbiased subset of the tracked lineages to quantify single-cell responses 

(for randomly selecting a subset of tracked lineages, see section below, Determining the time 

windows to use for extracting phase information with an example 12 h 25°C pulse experiment).  
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On top of the standard image processing steps, two details need to be clarified. First, as the intensity 

of Xenon arc lamp decays over time and the lamp bulb has been changed twice throughout data 

acquisition, we couldn’t well control excitation light intensity, and the absolute fluorescence level 

is not comparable among different time courses. This, however, does not affect building and 

constraining the model, since we used only the phase but not the amplitude information of single-

cell YFP reporter traces. To plot the traces though (Fig. 6A, 9, 13, 28B, C, E, F), for illustrative 

purposes, we normalized the level of traces collected in different experiments so that the average 

peak YFP level at 35˚C stays the same. Second, Cy3 images were taken and analyzed first to 

examine the viability of imaged cells over time, and second to estimate and subtract the bleed-

through from chlorophyll autofluorescence into the YFP channel, especially as the level of 

autofluorescence was observed to gradually increase through a time course. Regarding the first 

point, by the end of every single time course, ~1% cells formed aggregates foci in the Cy3 channel, 

indicative of cell stress or damage, and were excluded from further analysis. Regarding the second 

point, to assess and subtract the fraction of YFP fluorescence emitted from autofluorescence rather 

than the clock-state reporter, we imaged wild type cyanobacterial cells (containing no YFP 

reporter) over time at 35˚C to measure the ratio of its emission in the YFP channel to that in the 

Cy3 channel, and accordingly corrected the YFP images of the experimental strain (JRC35) using 

its Cy3 images (see the uploaded codes for details). Also, as with the time courses of phase 

resetting experiments, the wild type cells exhibited a slow steady increase in autofluoresncece over 

time, suggesting the increase is subject to our experimental conditions and not directly related to 

the responses to temperature changes. 
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Determining the time windows to use for extracting phase information with an example 12 h 25°C 

pulse experiment 

To efficiently measure steady-state phase resetting responses, we need to determine the amount of 

time to image before and after a signal, and the time windows to use for extracting the pre- and 

post-signal phases. To quantify the pre-signal phase, only one full cycle of oscillations needs to be 

recorded. However, to avoid any transient fluctuations that might occur with transferring the cells 

from liquid culture to under the microscope, we can extend the imaging time by several hours and 

not use the first few time points of data. Following a temperature signal, it takes the clock a period 

of transient dynamics to establish stable oscillations. Thus, to quantify the steady-state phase shift 

to a signal, the longer we wait, the more likely the clock dynamics have stabilized. However, with 

a longer time course, it would be more difficult to maintain stable growth conditions and to 

generate high-quality data that are easy to process. Regarding the later point, large lateral drifts of 

the imaged positions tend to occur with long-term imaging (usually starting at 80~90 h); and 

automatic cell tracking is error-prone when cells become crowded after multiple days of growing 

and dividing. To balance the above opposing requirements and optimize the duration of a time 

course, we need to identify, after a signal, the immediate time window of stabilized YFP reporter 

dynamics that can be used to extract a clock’s steady-state phase. 

 

We tested the above considerations with a 12 h 25°C pulse experiment, and illustrate, in Fig. 28, 

results of the two colonies featured in Fig. 6A, B – Fig. 28A, B, C for the colony with 𝜑#$#~186° 

at the onset of the pulse (top panel in Fig. 6A, blue dots in Fig. 6B), and an equivalent set of plots, 

Fig. 28D, E, F for the colony with 𝜑#$#~75° at the pulse (bottom panel in Fig. 6A, red dots in Fig. 

6B). Here, we will illustrate the analysis procedures using the first example colony where 
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stochastic phases were induced. In this test experiment, after pre-growing at 35°C and then being 

loaded under the microscope, cells were grown and imaged first at 35°C for ~28 h, then at 25°C 

for 12 h, and then again at 35°C for ~48 h. With the onset of the 12 h at 25°C pulse set to time 0, 

𝑡 = −28	h, 𝑡 = 12	h and 𝑡 = 60	h each corresponds to the beginning of the imaging time course, 

the end of the 25°C pulse, and the end of the time course. The colony was divided from a single 

cell at 𝑡 = −28	h, the beginning of the time course. Through segmenting and tracking cells in this 

colony over time, from 𝑡 = −28	h to 𝑡 = 60	h, we obtained the YFP reporter traces of some 

individual cell lineages (Fig. 28B). Fig. 28A demonstrates the segmentation of cells in the first 

frame of image after the 25°C pulse at 𝑡~12	h (exactly at 𝑡 = 12.15	h), and in the last frame of 

image at 𝑡~60	h (exactly 𝑡 = 60.15	h). Cells were color-coded so that progeny at 𝑡~60	h retain 

the same color as their ancestor cell at 𝑡~12	h, and the ones belonging to tracked cell lineages 

were outlined in white. Fig. 28B shows, in matching color, their YFP reporter traces organized 

into different diagrams according to their corresponding (ancestor) cell at 𝑡~12	h. Occasionally, 

cells might die during a time course like the red cell in Fig. 28A (with its YFP reporter trace plotted 

in the bottom right diagram in Fig. 28B), and would be removed from further analysis. In the other 

five diagrams of Fig. 28B, the tracked lineages of each cell at 𝑡~12	h stay fairly synchronized for 

48 h after the pulse, although the five progenies of cells are desynchronized from each other. This 

suggests that the stochastic new phase upon returning to 35°C is determined within a timescale 

shorter than the first cell division after the 25°C pulse, and stable oscillations persist afterwards. 

From all tracked lineages corresponding to certain cell at 𝑡~12	h in this colony, we then randomly 

selected one to quantify the steady-state phase resetting response as 𝜑#$# vs. 𝜑hij (Fig. 28C). In 

general, applying this selection method to all single colonies imaged in a time course ensured that, 

in response to a temperature signal (e.g. a 12 h 25°C pulse), all cells that experienced the last 
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change in temperature (e.g. shift from 25°C back to 35°C) were equally sampled, and their 

randomly picked individual lineages constituted an unbiased subset of data that could be used to 

generate the single-cell PTC of certain signal.  

 

To extract the phase information of randomly selected lineages, we fitted their YFP reporter traces 

within the following time windows (Fig. 28C, solid black lines) to obtain 𝜑#$#  and 𝜑hij  (see 

Results and Fig. 5 for their definitions) – the last 26 h before the 25°C pulse (from 𝑡 = −26	h to 

𝑡 = 0) was used to define 𝜑#$# as the phase of the fitted cosine function at 𝑡 = 0; and the first 26 

h after 6 h following the 25°C pulse (from 𝑡 = 18	h to 𝑡 = 44	h) was used to extrapolate 𝜑$12 by 

what phase the fitted cosine function should start running from at 𝑡 = 0. The period used to fit 

cosine functions should be the free-running period at 35°C, and was measured with a separate time 

course experiment (see section below, Measuring the free-running period at various temperatures). 

To evaluate whether the YFP reporter trace within the selected time window from 𝑡 = 18	h to 𝑡 =

44	h can represent stabilized oscillatory dynamics of the clock after the pulse, we extrapolated the 

fitted cosine functions (black lines) out to earlier and later times at 35°C (dashed black lines) to 

assist visual comparison of the fit with the data. Note the first 6 h right after the pulse – in the case 

(e.g. yellow and green traces) where the transient YFP reporter dynamics obviously differ from 

the extrapolated cosine function (dashed black lines from 𝑡 = 12	h to 𝑡 = 18	h), their difference 

diminishes within 6 h, suggesting fast establishment of the new phase as consistent with what was 

observed in Fig. 28B (i.e. the phase of a clock is determined within a timescale shorter than the 

first cell division after the 25°C pulse). The fact that the cosine functions extrapolated into later 

time (dashed black lines after 𝑡 = 44	h) overlap with the YFP reporter traces as well as the prior 

fitted functions (black lines) confirms the new phase remains stable for at least two days after the 
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pulse. All the above features of the YFP reporter dynamics supports using the 6 h-to-32 h time 

window after a temperature change as an immediate period of stabilized YFP reporter dynamics 

to extract the clock’s steady-state phase. To be consistent, in all phase resetting time course 

experiments, we imaged ~28 h before a temperature signal and at least 32 h afterwards, and used 

the last 26 h before the signal and the 6 h to 32 h after it to quantify steady-state responses (i.e. 

𝜑#$# vs. 𝜑$12 and 𝜑%& vs. 𝜑'& respectively for temperature pulse and shift).  

 

Examining the post-signal amplitude 

As mentioned above, due to technical constraints (see the section on Image processing and data 

analysis), the absolute values of YFP fluorescence measurements cannot be used for rigorous, 

quantitative characterization of the phase resetting responses. Nevertheless, to qualitatively 

confirm that, in response to a critical perturbation, the circadian oscillations of individual cells 

persist afterwards, we examined their single-cell post-signal amplitudes and how they evolve over 

time following a signal. Specifically, for several example time courses imaged to 48 h after a 

temperature signal (the 12 h 25°C pulse experiment illustrated in the above section, and two time 

course experiments of the 25°C-to-35°C shift), we analyzed the post-signal YFP reporter 

oscillations within two different 26 h-long time windows after the end of the signal – an earlier 6 

h-32 h window and a later 22 h-48 h window. As explained in the above section, the former was 

consistently used to extract the steady-state post-signal phases in all our experiments. The phase 

and amplitude during the earlier vs. later time windows are respectively denoted by 𝜑 and 𝐴, and 

𝜑; and 𝐴;. Comparing 𝜑 with 𝜑; and 𝐴 with 𝐴;, we reached the following conclusions. 1) The 

PTCs generated using the post-signal phases extracted from the earlier vs. later time window (𝜑#$# 

vs. 𝜑$12 /𝜑$12; , or 𝜑%&  vs. 𝜑'& /𝜑'&; , blue vs. red circles; Fig. 8A, 12A, D) are similar and 
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overlapping. This supports the idea that there is rapid establishment of post-signal phases, which 

motivates using the earlier 6 h-32 h time window for quantifying steady-state phase shifts. 2) The 

amplitude during the earlier time window, 𝐴 (Fig. 8B, 12B, E, blue triangles), varies with the pre-

signal phase (i.e. 𝜑#$# or 𝜑%&), and exhibits a reduction around the critical phase (indicated by 

dashed gray line) where stochastic post-signal phases are induced. In contrast, the amplitude during 

the later time window, 𝐴; (Fig. 8B, 12B, E, red triangles), is more uniform across different pre-

signal phases; and for cells around the critical perturbations, those with obviously smaller 

amplitudes during the earlier time window (𝐴; blue triangles circled out by yellow oval, Fig. 8B, 

12B, E) have recovered their amplitudes during the later time window (𝐴;; corresponding 𝐴 vs. 𝐴; 

data points highlighted in yellow in Fig. 8C, 12C, F). These observations confirm that the circadian 

oscillations of individual cells persist following a phase resetting signal, and that cellular 

arrhythmicity could not be detected. However, some cells might still be stabilizing their oscillatory 

amplitudes during the earlier 6 h-32 h time window that was used to quantify steady-state post-

signal phases; and specific to those around the critical perturbations, some would experience an 

obvious but transient reduction of the amplitude before recovering later. 

 

Limitations and potential improvements of our current microscopy setup  

As detailed in the above section, the slow recovery of oscillatory amplitude in some cells suggests 

that the 6 h-32 h time window used to extract 𝜑$12 and 𝜑'& is, strictly speaking, an experimentally 

constrained approximation of stabilized post-signal oscillations. This approximation can largely 

capture the phase resetting responses as summarized by PTCs, including the critical-perturbation-

induced stochastic phasing that manifests as a scattering in 𝜑$12 or 𝜑'&. However, the quantitative 

distribution of stochastic post-signal phases might not be exact due to the challenges in accurately 
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determining the phases for cells with much reduced amplitude during the earlier 6 h-32 h time 

window. Nevertheless, this does not affect our basic theoretical interpretation that the unstable 

singularity underlies stochastic phasing, as the limit cycle model we used to arrive at this 

interpretation was constrained primarily by the deterministic phase resetting responses, and did 

not use the exact values of stochastic phases (see section of Limit-cycle model of the 

cyanobacterial circadian clock). That being said, monitoring the full relaxation processes in 

establishing steady-state phase resetting responses, and based on it, a refined characterization of 

the responses around critical perturbations are two unresolved remaining directions. Study of these 

issues necessitates maintaining good-quality imaging with homeostatic growth conditions for a 

longer duration – to at least 48 h after the end of a phase resetting signal.  

 

3.3.3 Measuring the free-running period at various temperatures  

For each temperature condition (i.e. 25°C, 30°C, 35°C or 37.5°C), the clock period was determined 

by cosinor fitting (Markson et al., 2013; Refinetti et al., 2007) the YFP reporter traces from a free-

running time course. Specifically, cells were entrained and synchronized by two consecutive 12 h 

light/12 h darkness cycles – one in liquid culture and one under the microscope – before release 

into continuous light with bright-field, YFP, and Cy3 images taken for 48 h. Light/darkness 

conditions under the microscope were manually controlled by switching on or off the external LED 

ring; and during light periods, the LED intensity was kept constant at ~8 µE m-2 s-1, the same as 

that in phase resetting experiments. The prior synchronization by light/darkness cycles was not 

necessary for identifying the period of free-running oscillations, but it could generate naturally 

well-aligned clock-state reporter traces of individual cells and facilitate visual inspection of the 

experimental data. With the onset of the 48 h time course set to 𝑡 = 0, for all cell lineages (N >
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700) that could be tracked throughout the time course (to 𝑡 = 48	h), their YFP reporter traces from 

𝑡 = 12	h to 𝑡 = 48	h were individually least square fitted to cosine curves with certain period. The 

period value was scanned from 24 h to 26 h with 0.1 h step, and determined by minimizing the 

sum of squared deviations between each trace and its cosine fit. The above analysis yielded the 

results of 𝑇BC°D = 24.7	h, 𝑇F\°D = 25.0	h, 𝑇FC°D = 25.2	h, 𝑇Fe.C°D = 24.9	h, which were fixed at 

these values in quantifying the phases in phase resetting experiments.  

 

We are aware that 25°C is near the lower temperature boundary for robust circadian oscillations, 

and thus confirmed that all cells imaged in the above free-running experiment at 25°C exhibit 

robust oscillations. Specifically, previous bioluminescence measurements at the population level 

have shown that since being released to continuous light (40~50 µE m-2 s-1) after entrainment by 

light/darkness cycles, circadian oscillations start to damp after three days at 23°C (Xu et al., 2013) 

but persist at 25°C (Kondo et al., 1993). The lower temperature boundary for circadian oscillations 

must lie between 23°C and 25°C, while its exact value probably also depends on the other 

environmental conditions used (e.g. light intensity) (Xu et al., 2013). In our experiments of 

temperature shifts from 25°C (where cells were first grown and imaged at 25°C), the YFP reporter 

level of ~2% cells (which were excluded from analyzing phase resetting responses) appears 

arrhythmic for an initial or the whole (~28 h) period of time at 25°C. However, loss of robust 

oscillations was not observed during the 25°C periods in other phase resetting experiments (e.g. 

25°C pulses at 35°C, temperature shifts towards 25°C), and also not in the above experiment of 

free-running oscillations at 25°C following a light/darkness cycle under the microscope. Thus, in 

all our imaging experiments, arrhythmicity at 25°C was only observed when cells were loaded 

under the microscope at 25°C and then immediately imaged afterwards. These observations 
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strongly indicate that circadian oscillations persist at 25°C, but they can be perturbed, at a low 

frequency, by transferring cells from liquid culture to under the microscope, which involves ~20 

min of sample preparation at room temperature (18°C). Moreover, the fact that this phenomenon 

was not observed at any other temperatures (30°C, 35°C, or 37.5°C) suggests that the clock at 

25°C is more susceptible to perturbations, consistent with the speculation that 25°C is near the 

lower boundary for robust oscillations. 

 

3.3.4 Predicting the phase resetting by temperature shifts between 25°C and 35°C  

A 25°C pulse at 35°C comprises two successive temperature shifts – first from 35°C to 25°C, and 

then from 25°C to 35°C. If the 25°C pulse (e.g. 24 h) is long enough to allow the stabilization of 

oscillatory dynamics at 25°C, these dynamics can be extrapolated to infer the steady-state 

responses to a 35°C-to-25°C shift. We thus predicted that the 35°C-to-25°C shift applied at all 

phases results in deterministic modulation of the circadian phase, which is suggested by the fact 

that, in response to a 24 h pulse applied across different 𝜑#$#, the peaking time of the deterministic 

oscillations at 25°C is only slightly shifted comparing to previous oscillations at 35°C (Fig. 29, 

black lines). Moreover, for the clock that has stabilized its dynamics during a sufficiently long 

25°C pulse, its responses to the 25°C-to-35°C shift later should be independent of any pre-25°C 

conditions it was experiencing. Therefore, for a clock free-running at 25°C, although it has not 

experienced the 35°C-to-25°C shift in the first place, the 25°C-to-35°C shift should also cause 

stochastic new phases, if it is applied when the YFP reporter of the clock at 25°C reaches near its 

peak. The above predictions were verified by experiments (Fig. 11).  
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Figure 29. Shifting temperature from 35°C to 25°C is predicted to cause deterministic modulation 
of the circadian phase. YFP reporter traces exhibiting the phase resetting processes in response to 
a 24 h shift to 25°C applied at different phases at 35°C, with colonies of an average 𝜑#$#~0°, 60°, 
120°, 180°, 240°, and 300° shown as example. The black lines mark the time intervals between 
peaks (troughs) of the oscillations before and after the 35°C-to-25°C shift, which are ~24 h for all 
example 𝜑#$# shown.   
 

3.3.5 Limit-cycle model of the cyanobacterial circadian clock  

The basic logic and structure of the model were laid out in the main text. Here we summarize the 

supporting details for developing the model (see the data and software availability section for 

model fitting and simulation codes), and delineate its implicit assumptions and caveats that need 
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to be considered before applying the model to other biological oscillators.  

 

Dynamical structure of the cyanobacterial clock  

The simplest and also most likely dynamical structure of the cyanobacterial clock consists of one 

unstable singularity (Fig. 30A, black dot at the center) residing inside a globally stable limit cycle 

(black circle). The reasoning is as follows: first, for a biological dynamical system, its stable steady  

 

 

Figure 30. Schematics comparing cellular circadian clocks with a stable vs. unstable singularity. 
The singularity inside the stable limit cycle (solid red circle) characteristic of circadian oscillations 
can be (A) unstable (hollow red dot) or (B) stable (solid red dot). The gray trajectories indicate 
that (A) the stable limit cycle globally attracts any states other than the unstable singularity, and 
(B) the stable singularity and the stable limit cycle respectively attract states inside vs. outside the 
unstable limit cycle (dashed red circle). The black curve represents the critical perturbations that 
cause (A) stochastic phases or (B) arrhythmicity of individual clocks.  
 

state or closed orbit should directly and respectively correspond to experimentally observable 

dynamical behavior – stable steady state to equilibrium, and stable closed orbit to oscillations. 

Since, under the conditions used in our study, the cyanobacterial clock exhibits only robust self-

sustained circadian oscillations, their corresponding limit cycle should be the only stable solution 

of the clock system, and no other stable steady state or closed orbit should exist. Moreover, 

according to the Critical-point Criterion (simply put, a closed trajectory has a critical point in its 
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interior) (Strogatz, 2001), there should be at least one singularity (i.e. steady state) inside this stable 

limit cycle; and the singularity should be unstable since the clock system does not have stable 

steady states. Therefore, not considering any other unstable solutions (steady state or closed orbit) 

that theoretically could exist, the simplest dynamical structure of the cyanobacterial clock is a 

globally attractive limit cycle enclosing an unstable singularity. This scenario is also biologically 

most plausible, given the simple molecular network of the cyanobacterial clock (Rust et al., 2007). 

Lastly, it should be clarified that the dynamical structure of a system might vary with 

environmental conditions. For example, the cyanobacterial clock stops oscillating at 18°C (Xu et 

al., 2013), indicating that the stable limit cycle of circadian oscillations has collapsed into a stable 

steady state.  

 

Dynamical structure of the mammalian clock  

The same dynamical structure of a stable limit cycle enclosing an unstable singularity (Fig. 30B) 

can account for the critical-light-pulse-induced desynchronization among synthetically engineered 

mammalian cellular clocks in fibroblasts, which was reported by Pulivarthy et al. and Ukai et al. 

This phenomenon could be explained by the light pulse bringing the clock close to an unstable 

singularity at the end of the pulse. However, within this limit cycle framework, how can one 

reconcile the suppression of cellular rhythms (i.e. decrease of amplitude) observed by Pulivarthy 

et al.?  

 

Specifically, Pulivarthy et al. observed that, concurrent with the induction of stochastic phases, the 

bioluminescence reporter of some cells displayed oscillations of very small amplitude or barely 

discernable oscillations for up to five days after a critical light pulse (traces in Fig. 5E of 
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(Pulivarthy et al., 2007). These cells could be either truly arrhythmic or exceedingly slow in 

stabilizing the oscillatory expression of the reporter. These two possibilities are difficult to 

differentiate due to the large fluctuations masking low-level bioluminescence expression. If the 

reporter is slow to stabilize, the following variation of the basic structure of a stable limit cycle 

enclosing an unstable singularity can qualitatively capture the experimental observations. First, as 

shown in Results (i.e. 𝑡H ∝ − ln 𝑟\ , if 𝑟\ → 0 ), in our current model based on the Poincaré 

oscillator, the stabilization of circadian oscillations could be slow if the clock happens to lie very 

close to the unstable singularity at the end of a critical light pulse. In such a case, in relaxing 

towards the limit cycle, the clock would spiral near the singularity for a long period of time; and 

during this period, the cellular noise might perturb the clock state across and diffuse it around the 

singularity, and further delay the stabilization of circadian rhythms. This scenario could apply to 

the mammalian cellular clock, since compared to the cyanobacterial clock, it has larger amplitude 

variation and phase drift even under constant free-running conditions and thus is intrinsically less 

robust and more prone to cellular noise.  Second, the extended relaxation time could also be 

explained if the radial relaxation coefficient at a certain clock state (𝜀) positively correlates with 

its distance to the singularity (𝑟) (Jewett et al., 1999) – so that the closer a clock is to the singularity, 

the longer it takes to relax back towards the limit cycle and to restore stable oscillations. Lastly, in 

the real multi-dimensional clock-state space where the limit cycle resides, more complex 

dynamical behavior might emerge around the unstable singularity (e.g. with both stable and 

unstable manifolds). This could give rise to different relaxation dynamics depending on how the 

clock is brought close to the unstable singularity by certain critical stimuli (Sun et al., 2016). In all 

the above scenarios, if a group of cellular clocks are brought close to the unstable singularity at 

the end of a critical light pulse, in addition to resulting stochastic phases, the clocks could also 
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display reduced oscillatory amplitudes for a prolonged period and larger cell-to-cell variation in 

the amplitudes during this period. 

 

Alternatively, the dynamical structure of a stable singularity separated from a stable limit cycle by 

a minuscule unstable limit cycle surrounding the stable singularity (Fig. 30B) (Leloup and 

Goldbeter, 2001) could reconcile the seemingly differing findings of the two mammalian clock 

studies (Pulivarthy et al., 2007; Ukai et al., 2007). In such a case, the clocks brought to the interior 

of the minuscule unstable limit cycle (yellow region) would be attracted towards the stable 

singularity, resulting in damped small-amplitude oscillations. During this process, the clocks might 

also be perturbed by random noise to the outside of the minuscule unstable limit cycle (dashed 

circle), and then relax back into the stable limit cycle with stochastic phases. Compared to a stable 

limit cycle enclosing an unstable singularity, this explanation requires a more complicated 

dynamical structure and a strict constraint on the relative size of the unstable limit cycle. It is thus 

difficult to imagine that the mammalian clock network can satisfy all these proposed requirements, 

and we speculate that this scenario is less likely to hold true. 

 

Dependence of oscillatory trajectories on temperature 

As a system parameter of the clock, temperature was thought to affect the oscillatory trajectories 

(i.e. the limit cycle) of a free-running clock in our model (Fig. 16). To test this assumption, we 

measured, at both 25°C and 35°C, the circadian rhythms of a synchronized population in liquid 

culture by three clock outputs – the ratio of KaiC phosphorylation (KaiC~P%), the ratio of RpaA 

phosphorylation (RpaA~P%), and the average expression level of the YFP reporter (Fig. 15). 
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Although these measurements were not sufficient to fully delineate the differences between 

oscillatory trajectories at 25°C vs. 35°C, they did verify that temperature affects the trajectories. 

  

To measure the circadian rhythms at either temperature, a ~350 mL culture of cells was entrained 

by two light/darkness cycles, released into constant light for 24 h, and then sampled every 2 h for 

30 h. At every time point, 31 mL volume of cells were collected – two 15 mL aliquots were 

vacuum-filtered on cellulous acetate filters and frozen with liquid nitrogen for KaiC and RpaA 

immunoblotting, and 1 mL aliquot was concentrated by centrifugation and imaged immediately 

under the microscope. Images at every time point were analyzed like the individual frames in a 

time course (see the section of microscopy data analysis), and the average YFP reporter level 

(presented as mean ± standard deviation) was quantified using N~500 cells. Throughout the entire 

course, the culture was grown in a tissue culture flask in the Innova 40 chamber and appropriately 

diluted to maintain an OD750 between 0.2 and 0.4. During light periods, it was shaken at 100 rpm, 

bubbled with CO2-enriched air (1% v/v). In this experiment, the culture flask was placed closer to 

the fluorescent lights to reach a higher intensity of ~23 µE m-2 s-1, and in a tilted position to obtain 

more uniform illumination. This intensity was adjusted to attain a similar growth rate (a doubling 

time of ~12 h at 35°C and ~16 h at 25°C) with the cells grown under an agarose pad. Although the 

light intensity at the culture flask was measured to be ~23 µE m-2 s-1, the amount of light received 

by individual cells may be much lower than this value due to mutual cell shading in a large volume 

(~350 mL) of culture. In comparison, when pre-growing small volume (700 µL) of culture to 

prepare for imaging experiments, the measured ~15 µE m-2 s-1 intensity is probably closer to what 

individual cells in the culture were exposed to; and during imaging, the ~8 µE m-2 s-1 intensity at 
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the sample should well approximate what individual cells uniformly spread under an agarose pad 

were experiencing.  

 

Deriving the noise-free PTC of temperature shift 

To understand how the phase resetting by temperature shifts can be explained by modulation of 

the limit cycle geometry, we generically derived, not yet including noise, the PTC (i.e. 𝜑%& vs. 𝜑'& 

relationship) of temperature shift from 1 to 2. See Results and Fig. 16 for the schematic setup of 

the following derivation. Given this setup, for a clock traversing certain state (Fig. 16, represented 

by yellow dot on the blue circle of LC1) upon shifting temperature from 1 to 2, we first determined 

its 𝜑%& and 𝜑'& according to how they were experimentally defined. As 𝜑%& is defined by the state 

of the clock at the time of temperature shift (Fig. 10, blue arrow), it should be the angular 

coordinate of the yellow-dot state in reference to LC1 (Fig. 16). 𝜑'& is extrapolated by tracing the 

stabilized post-shift rhythms (Fig. 10, dashed red line extended from red line) back to the time of 

the shift (red arrow). Thanks to the property of constant angular rotation that renders clocks 

running from any states along a radial axis eventually synchronized (e.g. gray and yellow dots in 

reference to LC2 in Fig. 16), for the clock that relaxes towards LC2 (red circle) from the yellow-

dot state, tracing its stabilized rhythms (gray line that has spiraled into red circle) back (clockwise 

along LC2) to the time of the shift would arrive at the gray dot and obtain 𝜑'& as the same angular 

coordinate of the yellow and gray dots in reference to LC2. With the model representation of 𝜑%& 

and 𝜑'& determined, deriving the 𝜑%& vs. 𝜑'& relationship becomes a simple geometry problem.  

 

In a Cartesian frame centered at the temperature 1 singularity (Fig. 16, small blue circle) with the 

x-axis aligned to the 0° direction of LC1, the yellow-dot state is located at 𝑅Hcos𝜑%&, 𝑅Hsin𝜑%& , 
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and the temperature 2 singularity (red dot) is located at 𝑑H,B cos 𝛼HKB, 𝑑H,B sin 𝛼HKB . Thus, the 

vector from the temperature 2 singularity to the yellow-dot state is 

 𝑟 = 	 𝑅Hcos𝜑%& − 𝑑H,B cos 𝛼HKB , 𝑅Hsin𝜑%& −	𝑑H,B sin 𝛼HKB . 

In the same frame of reference, the unit vector of the 0° direction of LC2 is 

 𝑟\ = −cos 𝛼BKH − 𝛼HKB , sin 𝛼BKH − 𝛼HKB . 

Calculating 𝜑'& as the directed angle from 𝑟\ to 𝑟, we obtained 𝜑'& as a function of 𝜑%&, with the 

parameters 𝛼HKB, 𝛼BKH, and the ratio NT,r
_T

 (see Fig. 16 for their definitions).  

If sin 𝜑%& + 𝛼BKH − 𝛼HKB − NT,r
_T
sin 𝛼BKH ≥ 0, 

𝜑'& = 	 180° + cosKH
uvw Qxy[zrXTKzTXr K

{T,r
WT

uvwzrXT

H[
{T,r
WT

r
KB

{T,r
WT

uvw QxyKzTXr

, or else  

𝜑'& = 180° − cosKH
uvw Qxy[zrXTKzTXr K

{T,r
WT

uvwzrXT

H[
{T,r
WT

r
KB

{T,r
WT

uvw QxyKzTXr

.                                                              (1) 

This function holds except for one case where LC1 (blue circle) passes through the temperature 2 

singularity (red dot) (𝑑H,B = 𝑅H) at the state 𝑅H cos 𝛼HKB , 𝑅H sin 𝛼HKB , and the clock traverses 

this state at the time of temperature shift (𝜑%& = 𝛼HKB). In this case, the clock lies right on its 

singularity upon being transferred to temperature 2, and 𝜑'& is accordingly undefined. In reality, 

with the existence of noise that randomly perturbs the clock state off the singularity, it will relax 

into LC2 with an unpredictable phase. 

 

Plotting the above function with 𝜑%& and 𝜑'& respectively as the x- and y-axis gives the noise-free 

PTC. Qualitatively speaking, the values of 𝛼HKB and 𝛼BKH determine the position (i.e. x- and y-
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intercepts) of the curve, while the ratio NT,r
_T

 influences its shape as exemplified with the following 

limiting cases. When NT,r
_T

→ 0 signifying a minuscule shift of the singularity by temperature, 𝜑'& =

𝜑%& + 𝛼BKH − 𝛼HKB + 180°, and the 𝜑%& vs. 𝜑'& curve becomes a line with slope 1. When NT,r
_T

= 1 

which indicates that LC1 passes through temperature 2 singularity, except for at 𝜑%& = 𝛼HKB where 

𝜑'& is undefined, 𝜑'& =
H
B
𝜑%& + 𝛼BKH −

H
B
𝛼HKB + 90°, which is a line with slope 0.5. When NT,r

_T
→

∞ approximating a large shift of the singularity, 𝜑'& = 𝛼BKH as a constant.  

 

Interchanging the subscripts 1 and 2 in the above function, we immediately obtained the 𝜑%& vs. 

𝜑'& relationship of temperature shift from 2 to 1, which depends on the parameters 𝛼HKB, 𝛼BKH, 

and the ratio NT,r
_r

.  
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Simulating single-cell responses to temperature shifts 

Before delving into the simulation procedures, it should first be clarified that our model is 

fundamentally deterministic. To account for the variation in phase resetting responses among 
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approximately synchronized cells, we added a noise term (see Results and Fig. 14 for details) to 

simulate cellular clock states. However, we did not investigate what factors contribute to cellular 

noise, which requires stochastic modeling. We focused instead on how phase resetting processes, 

that can be approximated as deterministic, drive a similar degree of noise in clock state towards 

different consequences – stochastic vs. deterministic phases. We did not closely look into the noise 

term with our conceptual model because it is unclear how the distribution of two-dimensional state 

points biophysically correlates with variation in the steady-state phases extrapolated from the YFP 

reporter. Future mechanistic studies might enable a meaningful inspection of the noise term, but it 

requires comprehensive molecular measurements and clock-network-based simulations that are 

directly comparable with each other.  

 

Given the above rationale of the model, simulations of single-cell responses to temperature shift 

from 1 to 2 (Fig. 16), for example, were performed using the MATLAB software (R2016a, 

MathWorks) in following procedures. 

0) The random displacement to a clock state at temperature 1 (before the shift), ∆𝑥%&, ∆𝑦%& , is 

generated to be uniformly distributed within a disk of radius 𝑘 ∙ 𝑅H, and that at temperature 2 

(after the shift), ∆𝑥'&, ∆𝑦'& , within a disk of radius 𝑘 ∙ 𝑅B (see section below for determining 

parameter values). Also, the term ‘LC1 (or LC2) frame’ denotes the Cartesian frame centered 

at temperature 1 (2) singularity with the x-axis aligned to the 0° direction of LC1 (LC2). 

1) In LC1 frame, to a clock that, if without noise, traverses the state 𝑅H cos𝜑%&\ , 𝑅H sin𝜑%&\  at 

the time of temperature shift, we added ∆𝑥%&, ∆𝑦%&  to simulate the clock state as 

𝑅H cos𝜑%&\ + ∆𝑥%&, 𝑅H sin𝜑%&\ + ∆𝑦%&  at the time of the shift (Fig. 19, blue dots), and 

computed 𝜑%& as the angular coordinate of the clock state in LC1 frame. 



	 60	

2) After the temperature shift, the clock spirals into LC2 (Fig. 19B; gray line spiraling into red 

circle). Not yet considering noise, the after-shift phase 𝜑'&\  is the angular coordinate of the 

above clock state in reference to LC2, and was computed as the angle from the 0° direction of 

LC2, 𝑟\ = cos 𝛼BKH − 𝛼HKB , sin 𝛼BKH − 𝛼HKB , to the clock-state vector 𝑟 = 𝑅H cos𝜑%&\ +

∆𝑥%& − 𝑑H,B cos 𝛼HKB, 𝑅H sin𝜑%&\ + ∆𝑦%& − 𝑑H,B sin 𝛼HKB .  

3) Transforming to LC2 frame, to incorporate noise at temperature 2, we added ∆𝑥'&, ∆𝑦'&  to 

the noise-free state 𝑅Bcos𝜑'&\ 	, 𝑅Bsin𝜑'&\  extrapolated from tracing the stabilized rhythms at 

temperature 2 back to the time of the shift, and computed 𝜑'& as the angular coordinate of the 

state point 𝑅Bcos𝜑'&\ + ∆𝑥'&, 𝑅Bsin𝜑'&\ + ∆𝑦'&  in LC2 frame. The above state equivalently 

represents where the clock can possibly arrive after one free-running period (𝑇) of time since 

being transferred to temperature 2 (Fig. 19, orange dots). 

To scan the circadian phase at which the temperature shift was applied, we varied 𝜑H from 0° to 

360° with 1° step, and sampled 𝑛 times around each 𝜑H – for clear illustration, we chose 𝑛 = 20 

in simulating the single-cell PTCs (Fig. 18, 24), and 𝑛 = 50 in plotting the limit cycle diagrams 

(Fig. 19). 

 

As detailed above and also in simulating the responses to 25°C pulses later, although fluctuations 

exist throughout the entire phase resetting process, we summarized and approximated the influence 

of noise by perturbing the clock states upon shifts of temperature in a stepwise manner. This 

simplified approach suffices for the goal and nature of our model as clarified beforehand; and we 

will leave exact stochastic simulations like the Gillespie algorithm (Teng et al., 2013) to future 

mechanistic studies. Also, as in analytic derivation, simulating the steady-state responses to 

temperature shifts do not require modeling the relaxation dynamics of the clock system. The gray 
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relaxation trajectory in Fig. 19B was shown purely for illustrative purposes, and was computed 

with the relaxation coefficient 𝜀 constrained by fitting phase resetting responses to temperature 

pulses.  

 

Recapitulating the phase resetting responses to temperature shifts between 25°C, and 30°C, 35°C, 

37.5°C respectively 

Recapitulating the phase resetting responses to shifts between two temperatures – still generically 

referred to as 1 and 2 – requires optimizing the six parameters 𝑅H, 𝑅B, 𝑑H,B, 𝛼HKB, 𝛼BKH, and 𝑘. Not 

yet considering the occasionally induced stochastic responses exhibited as a scattering of 𝜑'& 

around a particular 𝜑%& (e.g. in shifting temperature from 25°C to 35°C at 𝜑%&~0°; Fig. 18A), the 

typically deterministic responses display a tight distribution of single-cell 𝜑%& vs. 𝜑'& data points 

along a clear trend line (Fig. 18, 24). The limit cycle geometry parameters (𝑅H, 𝑅B, 𝑑H,B, 𝛼HKB, and 

𝛼BKH) determine the shape and position of a noise-free PTC, which should approximate the trend 

line in a good fit to data. As explained before (see the section of deriving the noise-free PTC of 

temperature shift), the ratio NT,r
_T

 or NT,r
_r

 respectively regulates the shape of the PTC of temperature 

1-to-2 or 2-to-1 shift, while the values of 𝛼BKH and 𝛼BKH influence the position of the PTC in shifts 

of both directions. Thus, we could estimate the values of NT,r
_T

, NT,r
_r

, 𝛼BKH and 𝛼BKH by minimizing 

the least square differences between the noise-free PTCs derived from functions (1) and (2) and 

the single-cell data points of the deterministic responses to temperature shifts in both directions. 

The parameter 𝑘 captures the natural degree of cell-to-cell variation displayed in deterministic 

phase resetting responses, and was tuned to reproduce the spread of single-cell data points along a 

trend line. In the case where stochastic responses were also observed (e.g. in the shifts between 
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25°C to 35°C), we confirmed whether simulations using the parameter values estimated purely 

from deterministic responses can reproduce the induction of stochastic phases (and they do), and 

if necessary, slightly adjusted the values to guarantee quantitatively capturing the single-cell data 

point distribution across the full range of sampled 𝜑%&. 

 

The above procedures summarize how we recapitulated the responses to shifts between the three 

pairs of temperatures studied, i.e. 25°C, and 30°C, 35°C, or 37.5°C respectively. There are two 

additional details of our parameter choice. First, the three size-related parameters, 𝑅H, 𝑅B, and 𝑑H,B, 

enter the functions (1) and (2) as two ratios, NT,r
_T

 and NT,r
_r

. This means that the limit cycle geometry 

holds only in relative terms, and that practically, we can set one limit cycle as a unit circle (e.g. set 

𝑅H = 1), and scale and position the other accordingly (e.g. adjust the values of 𝑅B and 𝑑H,B). Since 

25°C is involved in each of the three pairs of temperatures, we set 𝑅BC°D	 = 1 for convenience. 

Also, since we assumed the noise in clock state (Fig. 14, radius of gray-dot disk) at any temperature 

to be proportional to the radius of its corresponding limit cycle, 𝑘 which denotes this proportion is 

temperature independent and technically, should be set by fitting the data of all temperature shifts 

together. However, as in conducting this research, we studied the responses to shifts between 25°C 

and 35°C earlier, the value of 𝑘 was constrained from these data and then kept fixed.  

 

All parameter values obtained are summarized in Table. 1 and graphically represented in Fig. 14 

showing 𝑘 = 0.3 and in Fig. 17, 25, 26 illustrating the relative limit cycle geometry. The phase 

resetting responses modeled using these parameter values is presented in Fig. 18 and 24, with black 

lines indicating the noise-free PTCs generated from functions (1) and (2), and red dots representing 

the single-cell simulations. Two points need to be clarified. First, the value of 𝑅F\°D (starred in 
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Table 1) cannot be well constrained. It should be derived from fitting the experimental data of the 

30°C-to-25°C shift (Fig. 24A, right), which is tightly distributed along a slope 1 line indicative of 

a small ratio of NrÄ°Å,ÇV°Å
_ÇV°Å

 and thus large value of 𝑅F\°D (note in the section of deriving the noise-

free PTC of temperature shift that, in the limiting case of NT,r
_T

→ 0, 𝜑'& = 𝜑%& + 𝛼BKH − 𝛼HKB +

180°, which is a line of slope 1), but the goodness of fit monotonically improves with decreasing 

NrÄ°Å,ÇV°Å
_ÇV°Å

 towards 0 (i.e. increasing 𝑅F\°D towards infinity). However, 𝑅F\°D cannot be infinity in 

reality, so we arbitrarily set it to the value of 𝑅FC°D. This, however, does not affect our ability to 

infer the position of the 30°C singularity with respect to LC25°C, which is determined by the ratio 

of NrÄ°Å,ÇV°Å
_rÄ°Å

 that can be constrained from the responses to temperature shift in the other direction – 

from 25°C to 30°C (Fig. 24A, left). Also, we plotted all limit cycles together in one diagram (Fig. 

25) to assist comparing the relative geometry between LC25°C, and LC30°C, LC35°C, or LC37.5°C 

respectively. However, the geometric relationship that LC30°C, LC35°C, and LC37.5°C appear to have 

in this diagram is not necessarily meaningful. Fundamentally, it remains to be tested whether our 

two-dimensional limit cycle framework can simultaneously model the clock dynamics at more 

than two temperatures. The last section of considerations for broadly applying our model provides 

a detailed discussion on this issue. 

 

Recapitulating the phase resetting responses to 25˚C pulses at 35˚C  

To recapitulate the responses to 25˚C pulses at 35˚C with the Poincaré oscillator (see Results for 

equations) that was used to approximate the clock dynamics, only one more parameter – the 

relaxation coefficient 𝜀 – can vary and be optimized. As with the experiments of temperature 

shifts, if not considering the stochastic phases induced by multiple critical perturbations, the 
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typically deterministic responses to various lengths of 25˚C pulses (3 h, 6 h, … 24 h) exhibit a 

tight distribution of 𝜑#$# vs. 𝜑$12 data points along clear trend lines in the single-cell PTC plots 

(Fig. 7). Given certain value of 𝜀, we can deterministically simulate the temporal evolution of the 

clock system and compute a 𝜑#$# vs. 𝜑$12 curve for each measured length of 25˚C pulse, which 

should approximate the PTC trend line in a good fit to data. Therefore, using the least square 

method, we optimized the value of 𝜀 to 0.32 h-1 (Table 1) by fitting the simulated 𝜑#$# vs. 𝜑$12 

curves (Fig. 20, black curves) of all 25˚C pulses to their corresponding single-cell data of 

deterministic phase resetting responses.  

 

Table 1. Model fitting and simulation parameters. See Methods for deriving the parameter values 
below, and Results and Fig. 16 for the definitions of limit cycle geometry parameters. 𝑅F\°D is 
starred (*) to indicate that its value cannot be well constrained and was arbitrarily chosen (see 
Methods).  
 
Limit cycle topology 𝑅BC°D	  1 

Between 25°C and 30°C Between 25°C and 35°C Between 25°C and 37.5°C 

𝑅F\°D	* 3.92 𝑅FC°D	  3.92 𝑅Fe.C°D	  1.96 

𝑑BC°D,F\°D  0.82 𝑑BC°D,FC°D  1.18 𝑑BC°D,Fe.C°D  1.54 

𝛼BC°DKF\°D  20° 𝛼BC°DKFC°D  5° 𝛼BC°DKFe.C°D  340° 

𝛼F\°DKBC°D  205° 𝛼FC°DKBC°D  199° 𝛼Fe.C°DKBC°D  172° 

Degree of noise 𝑘  0.3 

Relaxation coefficient  𝜀  0.32 h-1 
 

Specifically, if denoting a certain length of 25°C pulse applied at a particular initial phase as (𝜏, 

𝜑#$#), the multiple critical perturbations experimentally observed to cause stochastic phases are 

(12 h, ~186˚), (15 h, ~166˚), (18 h, ~122˚), (21 h, ~83˚), and (24 h, ~55˚) (Fig. 7). Thus, in 

estimating the value of 𝜀, among the single-cell 𝜑#$# vs. 𝜑$12 data points of 12 h to 24 h pulses, 
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we did not include the more scattered points that fall within a 40˚-wide window centered at the 

above 𝜑#$# values, which were defined by where the single-cell PTCs display maximum ~360˚ 

spread in 𝜑$12 . To test whether the model constrained from deterministic phase resetting 

responses can coherently account for the stochastic responses to the critical perturbations, we then 

performed single-cell simulations with the noise term added (Fig. 20, red points), and confirmed 

this by reproducing the spread of the single-cell data points that were not used to optimize 𝜀.  

 

To compute the 𝜑#$# vs. 𝜑$12 relationship of certain length (𝜏) of 25˚C pulse at 35˚C, we first used 

the MATLAB’s standard solver for ordinary differential equations (ODEs), ode45, to numerically 

simulate the trajectory the clock takes in traveling between LC25˚C and LC35˚C throughout a pulse 

signal (Fig. 22; gray lines), with the dynamics at either temperature governed by the Poincaré 

oscillator equations, and the relative geometry between LC25˚C and LC35˚C set as earlier (Table 1). 

Since the Poincaré oscillator has analytic solutions (see Results), rather than using the ode45 

function for numerical simulations, we could derive the clock state as a function of time, and then 

specify the values of 𝜏  and 𝜀  to obtain its trajectory. This method is however much more 

complicated and thus not adopted. After simulating the clock-state trajectory, we then quantified 

the values of 𝜑#$# and 𝜑$12 according to how they were experimentally defined (Fig. 5), which is 

illustrated here with the example of a 12 h pulse applied at 𝜑#$# = 120˚ in Fig. 22A. 𝜑#$#  is 

characterized by the clock state at the onset of the pulse (Fig. 5, blue arrow), and corresponds to 

the angular coordinate of this state with respect to LC35˚C (Fig. 22A, left). 𝜑$12 is referenced to 

the same time, but as the extrapolated state derived from tracing the stabilized rhythms after the 

pulse back to the onset of it (Fig. 5, red arrow). If tracing the rhythms back to the end of the pulse 

instead, thanks to the property of constant angular rotation of the clock in our model, the 
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extrapolated phase, as denoted by 𝜑$12; , should correlate to the angular coordinate of the end-of-

pulse clock state in reference to LC35˚C (Fig. 22A, middle). The reasoning is identical to that 

detailed in quantifying 𝜑'& in response to a temperature shift (see section above, Deriving the 

noise-free PTC of temperature shift). Tracing the rhythms further back from the end to the onset 

of the pulse, we thus arrived at 𝜑$12 = 𝜑$12; − FÑ\˚Ö
SÇÄ˚Å

. Note that in our model, to derive 𝜑$12 

requires simulating the transient clock-state trajectory during the 25˚C pulse but not that afterwards 

at 35˚C. It also implies that the relaxation coefficient 𝜀  was estimated only from the clock 

dynamics at 25˚C. For illustrative purposes, though, we still simulated and plotted how the clock 

relaxes back into LC35˚C using the same value of 𝜀 (Fig. 22A, B, right; gray line).   

 

To simulate the single-cell responses to 25˚C pulses, we tracked the temporal evolution of the 

clock system throughout the different stages constituting a pulse signal (i.e. first at 35˚C, and then 

25˚C, and then back to 35˚C), and at each stage, introduced noise by adding a random displacement 

to the deterministically computed clock state. This approach is consistent with how we simulated 

the responses to temperature shifts. The specific steps are as follows.  

0) The random displacement to a clock state at 25˚C (or 35˚C) is uniformly distributed within a 

disk of radius 𝑘 ∙ 𝑅BC˚D (or 𝑘 ∙ 𝑅FC˚D). Also, all following coordinates are referenced to the 35˚C 

singularity, and angles to the 0˚ direction of LC35°C (Fig. 22A, B, left; red line). 

1) To a clock at 35˚C that, if without noise, traverses the state 𝑅FC˚Dcos𝜑#$#\ , 𝑅FC˚Dsin𝜑#$#\  upon 

being transferred to 25˚C, we added the random displacement ∆𝑥#$#, ∆𝑦#$#  to simulate the 

clock state as 𝑅FC˚Dcos𝜑#$#\ + ∆𝑥#$#, 𝑅FC˚Dsin𝜑#$#\ + ∆𝑦#$#  at the onset of the pulse (Fig. 22A, 

B, left; black dots), and computed 𝜑#$# as the angular coordinate of this clock state.  
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2) This initial state was then evolved using the Poincaré oscillator equations, to derive where the 

clock arrives after relaxing towards LC25˚C for a period of 𝜏, as denoted by 𝑥1vÜ\ , 𝑦1vÜ\  with 

‘eop’ stranding for ‘end-of-pulse’. To account for the noise at 25˚C, we added the displacement 

∆𝑥1vÜ, ∆𝑦1vÜ  to approximate the actual end-of-pulse clock state as 𝑥1vÜ\ + ∆𝑥1vÜ, 𝑦1vÜ\ +

∆𝑦1vÜ  (Fig. 22A, B, middle; black dots), and calculated its angular coordinate 𝜑1vÜ.  

3) The clock returned to 35˚C would relax back into LC35˚C, and stabilize its oscillatory trajectory 

following a period of transient dynamics (Fig. 22A, B, right; gray line spiraling into red circle). 

If not considering the noise back at 35˚C, 𝜑1vÜ  is exactly the 𝜑$12;  as defined above. To 

include the effects of noise though, we added another random displacement ∆𝑥$12, ∆𝑦$12  to 

the state 𝑅FC˚Dcos𝜑1vÜ , 𝑅FC˚Dsin𝜑1vÜ  that was extrapolated from tracing the stabilized 

trajectory back to the onset of 35˚C (or end of the 25˚C pulse); and then computed 𝜑$12;  as the 

angular coordinate of the state 𝑅FC˚Dcos𝜑1vÜ +∆𝑥$12 , 𝑅FC˚Dsin𝜑1vÜ + ∆𝑦$12 , and derived 

𝜑$12 as 𝜑$12; − FÑ\˚Ö
SÇÄ˚Å

. The above noise-added state equivalently represents where the clock 

can possibly arrive after running for a period of 𝑇FC˚D since returned to 35˚C (Fig. 22A, B, 

right; black dots).  

 

Considerations for broadly applying our model  

To extend our model to a broader type and range of resetting signals or to other oscillatory systems, 

there are several considerations regarding how to simulate the dynamics of a system. First, the 

limit cycle of a free-running clock is typically determined by its current conditions, while in some 

rare cases, it depends also on the previous conditions the clock was experiencing. For example, 

due to the light-dependent circadian regulation of KaiABC stoichiometry, the asymptotic 
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trajectories (i.e. limit cycle) in darkness depend also on the phase of the clock at the transition from 

light to darkness (Hosokawa et al., 2013). 

 

The second point concerns the validity of the assumptions we made to simplify the model. With 

an appropriate homeomorphic transformation, we can map the multi-dimensional clock-state space 

onto a two-dimensional plane, so that the limit cycle at a given temperature forms a circle centered 

at its corresponding singularity, and the clock spirals into or along it with a constant angular 

velocity (Fig. 14). However, when modeling several distinct temperatures together, it is not 

guaranteed that there exists a transformation that, in mapping clock states onto a two-dimensional 

plane, can simultaneously preserve such features (i.e. circular limit cycle and constant angular 

velocity) for the clock dynamics at each temperature. We can nevertheless approximately assume 

that this is the case for two temperatures (Fig. 16), and this assumption is supported by the fact 

that our model explained the phase resetting by two-temperature signals (i.e. composed of 25°C 

and 30°C, 35°C, or 37.5°C respectively). It is uncertain, however, whether this assumption holds 

for any arbitrary number of temperatures. To test this assumption, we need to scan the responses 

to shifts between different combinations of before-and after-shift temperatures (e.g. by varying 

each from 22.5°C to 37.5°C with a 2.5°C step), and examine whether we can assume the above 

feature for each involved temperature, and then, by tuning the relative geometry among their 

circular limit cycles (i.e. LC22.5°C, LC25°C, … LC37.5°C), coherently recapitulate the steady-state 

responses to all scanned temperature shifts. If so, this approach can efficiently reveal the effects 

of temperature continuously across a wide range (i.e. 22.5°C to 37.5°C) and guide further 

mechanistic studies.  
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To further simplify our model in simulating the phase resetting by 25°C pulses, on top of the above 

assumption (i.e. circular limit cycle and constant angular velocity), we assumed a constant radial 

relaxation timescale, and used the simple Poincaré oscillator equations to incorporate these 

stringent assumptions. The Poincaré oscillator captures the cyanobacterial clock in relating its 

stochastic phasing to an unstable singularity. Although it does not affect this major inference, the 

fact that our systematically fitted model (with only six free parameters – _rÄ°Å
NrÄ°Å,ÇÄ°Å

, _ÇÄ°Å
NrÄ°Å,ÇÄ°Å

, 

𝛼BC°DKFC°D, 𝛼FC°DKBC°D, 𝑘, 𝜀) is unable to accurately reproduce some quantitative features in the 

data (e.g. the discrepancies between computed and measured PTCs of 9 h, 12 h, and 15 h 25°C 

pulses in Fig. 20) indicates that the Poincaré oscillator over-simplifies the cyanobacterial clock to 

some extent. Nevertheless, the simplicity of its mathematical descriptions is clearly advantageous 

in permitting convenient and intuitive analysis of the data.  

 

3.4 Data and software availability  

Raw microscopy data and codes for microscopy data analysis are accessible at Dataset: 

https://www.dropbox.com/sh/3ibv70v5myx2nfg/AAA6sv2ZS8eOzwJqX5MOwuNXa?dl=0. 

Setup of automatic entrainment device, dataset of extracted phase resetting responses, codes for 

model fitting and simulations, and western blot gel images are accessible at Dataset: 

http://dx.doi.org/10.17632/4pwgckvgjc.1.  

 

3.5 Additional resources  

Step motor tutorial: https://www.norwegiancreations.com/2014/12/arduino-tutorial-stepper-

motor-with-easydriver/ 
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Chapter 4 

Discussion 

 

For decades, it has been known that circadian systems exhibit resetting-stimuli-induced attenuation 

of oscillations (Engelmann et al., 1978; Grone et al., 2011; Huang et al., 2006; Johnson and Kondo, 

1992; Malinowski et al., 1985; Peterson, 1980a; Saunders, 1978; Taylor et al., 1982; Winfree, 

1970, 2010). However, the single-cell behavior (arrhythmicity vs. desynchronization, Fig. 2) 

underlying this phenomenon has remained obscure due to the experimental difficulty of perturbing 

and monitoring cellular clocks in many organisms. Here we explored the mechanistic basis of 

resetting-stimuli-induced attenuation of oscillations in the unicellular cyanobacterium S.elongatus. 

By scanning its responses to temperature changes, we found that population-level damping of 

oscillations occurs because critical perturbations elicit stochastic phases of oscillations (i.e. 

desynchronization) in individual cells. With an experimentally constrained model, we explained 

the measured phase shifts by the structure of the clock as an oscillatory dynamical system, and 

related the induction of stochastic phases to one unstable singularity inside the stable limit cycle 

characteristic of circadian oscillations.  

 

The current imaging setup could be further improved (see Methods) to let us analyze the full 

relaxation processes in establishing the phase shifts; and using the improved imaging setup, a 

refined mapping around the critical perturbations would permit a close examination of the local 

dynamical properties around the unstable singularity. Moreover, future mechanistic investigations 

are needed to link the dynamical properties to the underlying clockwork, to enable insight into the 

molecular nature of the singularity at a certain temperature and why it is unstable in terms of 
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molecular composition. The general insights into individual cellular clocks can also be built upon 

to study multicellular circadian systems (Liu et al., 2007, 1997), and to examine how cell-to-cell 

communication, either local or global, regulates a system’s collective susceptibility to interruption 

of accurately timed rhythmicity (An et al., 2013; Jewett et al., 1991; Roberts et al., 2015).  

 

Cellular circadian clocks are molecular oscillators (Bell-Pedersen et al., 2005). The molecular 

players of the clock machinery vary considerably across different taxa (e.g. bacteria, algae, plants, 

and animals) (Bell-Pedersen et al., 2005; Paranjpe and Sharma, 2005; Rosbash, 2009; Young and 

Kay, 2001), but they all constitute self-sustained oscillatory systems that possess the conserved 

properties (e.g. circadian periodicity, entrainment) of a circadian clock. In this study, as we do not 

yet understand the molecular mechanisms by which temperature affects the cyanobacterial clock, 

we built a conceptual rather than detailed molecular model by employing limit cycle theory to 

describe the clock as an oscillatory system (Strogatz, 2001; Winfree, 2010). Given the disparate 

molecular clockwork among different organisms, such abstraction was also employed to enable 

broadly comparing the cellular clocks in different organisms.  

 

Although generally falling into the category of self-sustained oscillatory systems, the cellular 

clocks in different organisms may have distinct dynamical structures that govern their responses 

to critical perturbations (desynchronization vs. arrhythmicity) and affect the clocks’ functioning. 

Specifically, as an oscillatory system, the clock must have a singularity inside the stable limit cycle 

characteristic of circadian oscillations, while this singularity could be either stable or unstable 

(Leloup and Goldbeter, 2000; Strogatz, 2001). The cyanobacterial clock has an unstable singularity 

(and so might the mammalian clock (see Methods for a detailed speculation)) and resetting stimuli 
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that bring the clock close to the unstable singularity will induce stochastic phases 

(desynchronization) (Fig. 30A; black curve towards dot at the center). The singularity, however, 

could be stable for cellular clocks in other organisms (Fig. 30B; solid dot) (Huang et al., 2006; 

Leloup and Goldbeter, 2001). In this case, there must be an unstable limit cycle (dashed circle) 

separating the two attractors – the stable singularity and the stable limit cycle – from each other. 

Given this dynamical structure, if brought to the interior of the unstable limit cycle by resetting 

stimuli (black curve projecting into shaded yellow region), the clock will be attracted into the 

stable singularity and become arrhythmic. Thus, as hypothesized previously (Leloup and 

Goldbeter, 2000), the stability of the singularity can explain the clock’s response to critical 

perturbations; clocks with a stable singularity will exhibit arrhythmicity, whereas those with an 

unstable singularity will exhibit desynchronization among individual cells. Moreover, the resetting 

stimuli resulting in arrhythmicity in the case of a stable singularity are much more abundant than 

those that elicit desynchronization with an unstable singularity (Fig. 30, comparing (B) entire 

shaded region vs. (A) proximity of small dot at the center). Given that the existence of a singularity 

is intrinsic to the clock as an oscillator, although both types of behavior are unavoidable 

interruptions to accurately-timed circadian rhythmicity, desynchronization in the case of an 

unstable singularity is far less likely to occur. Thus, in this regard, a cellular clock with an unstable 

singularity (e.g. the cyanobacterial clock) is more robust than one with a stable singularity (and an 

unstable limit cycle). 

 

Oscillations in general are a prevalent and significant phenomenon in biology (Kruse and Jülicher, 

2005). They are hard to interpret, however, because oscillations arise from a nonlinear system of 

interacting components, and the observable dynamical features of an oscillator (e.g. period, 
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amplitude, robustness) are not intuitively linked to the properties of its individual components 

(Friesen and Block, 1984). The systematic approach reflected in our work will be useful in 

organizing the rapidly growing mechanistic knowledge of various oscillatory systems, and 

suggesting future experiments and directions to address.  
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