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Designing singularities in electronic dispersions

Abstract

This dissertation is devoted to the study of singularities in electronic dispersions and their

implications for electronic systems.

First, we consider two-dimensional interacting electrons at a monkey saddle with

dispersion ∝ p3
x − 3px p2

y. Such dispersion naturally arises as a singularity when three van

Hove saddles merge in an elliptical umbilic elementary catastrophe and can be interpreted

as a multicritical Lifshitz point. It can be realized in biased bilayer graphene and can be

identified by its signature Landau level behavior Em ∝ (Bm)3/2 and related oscillations in

thermodynamic and transport properties, such as Shubnikov-de Haas oscillations, whose

period triples as the system crosses the singularity. We show, in the case of a single monkey

saddle, that the non-interacting electron fixed point is unstable to interactions under the

renormalization group flow, developing either a superconducting instability or non-Fermi

liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles

at the K and K′ points, exhibits an interplay of competing many-body instabilities, namely

s−wave superconductivity, ferromagnetism, and spin- and charge-density wave.

Next, we show that electronic bands in silicon have nontrivial topological structures

that are captured by a network of Berry flux lines. These flux lines link at points of high

symmetry in the Brillouin zone, forming singular ice-nodal points where fluxes satisfy ice

rules, making silicon a "nodal-chain insulator". This complex Berry-flux network implies

a topologically stable two-fold degeneracy along the X-W direction in all of silicon bands.

Similarly to nodal-chain semimetals, we find drumhead-like states in the regions that are

delimited by the projections of the bulk Berry flux network on the surface Brillouin zone.
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Finally, we discuss Meissner effect in a nonequilibrium superconducting state. By

carefully tuning the system so as to match electron and hole velocities, a singularity in the

effective density of states can be achieved leading to a strong non-BCS pairing. We calculate

the superfluid density for such a nonequilibrium paired state, and find it to be positive

for repulsive interactions and interband pairing. The positivity of the superfluid density

implies the stability of the photo-induced superconducting state as well as the existence of

the Meissner effect.
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Introduction

Generally, as we vary a single parameter of the system such as temperature or pressure,

we expect to encounter only a simple phase transition between two phases of matter. Only

when we start controlling at least two parameters we can hope to find special points, where

more than two phases coexist together. A bright illustration can be given by water. A first

set of examples of phase transitions, known to humanity from the dawn of times for at least

several million years [1], long before the creation of foundations of thermodynamics or the

conception of the idea of phase transition itself, are melting of ice and freezing of water.

Both are observed as seasons change and during travels across different climatic regions. A

second set of examples is ubiquitous in the life of a modern human and is a boiling of water

and condensation of water vapor. It is safe to assume this phase transition of water didn’t

become pervasive until the advent of sophisticated cooking, at least 50000 years ago [2, 3].

Finally, it is not until year 1873 that J. Thomson predicted existence of triple points, where

solid, liquid and gaseous states coexist [4].

Similarly to controlling temperature and pressure in water, having control over several

experimental “knobs” allows to achieve novel exotic electronic dispersions and properties.

As we explain in the abstract, we study three systems: bilayer graphene, silicon and optically-

pumped semiconductor, each exhibiting singularity of their own kind: monkey saddle, ice

nodal points of crossing Berry flux lines, and an effectively flat dispersion. In the end of the

first chapter we also discuss layered perovskite metal Sr3Ru2O7 with a singularity of the X9

type. Beside the systems discussed in the present text, a bright recent example was dubbed

“twistronics” [5]: instead of controlling interlayer voltage bias in bilayer graphene, as we

1



suggest in the first chapter, one can control the angle between two sheets of graphene [6].

Certain “magic” angles result into formation of intrinsic unconventional superconductivity

with a rather high transition temperature.

Scientific progress in recent years enabled incredible control over the properties of

materials. Material engineering allows for atom-by-atom construction of electronic quantum

devices [7], while cold atomic systems allow precise engineering of not only the underlying

optical lattice, but also of inter-atomic interactions through the Feshbach resonance [8, 9].

We believe that ideas presented in this thesis can be generalized to other systems, perhaps

by designing a layered system with higher order singularities in electronic dispersions.

After all, the monkey saddle realized in bilayer graphene is a D−
4 elementary catastrophe, a

simplest example of a cubic singularity!

2



Chapter 1

Monkey saddle in bilayer graphene

1.1 Introduction

Systems of two-dimensional (2D) electrons close to van Hove (vH) singularities [10, 11, 12,

13, 14, 15, 16, 17, 18] are of interest because of their displayed logarithmic enhancement

of the electron density of states (DoS), which translates into a propensity to many-body

instabilities[10]. Among many exciting possibilities opened by proximity to vH singulari-

ties is that unconventional d + id chiral superconductivity could occur in strongly doped

graphene monolayer [19].

The transition of the Fermi level through a vH singularity can be interpreted essentially

as a Lifshitz transition of a neck-narrowing type [20], wherein two disconnected regions of

the Fermi surface (FS) merge together. Alternatively, if the touching occurs at the edge of

the Brillouin zone, as it happens for the square lattice, it may be interpreted as a FS turning

inside out (from electron-like to hole-like). A multicritical Lifshitz point (MLP) arises as

both a crossing of several Lifshitz transition lines, and as a singularity in the electronic

dispersion ξ(p). MLPs of bosonic type have been analyzed and classified in the context

of phase transitions, where terms in the free-energy-density functional with higher-order

derivatives of an order parameter, say the magnetization, need to be kept at special points

in the phase diagram [21, 22, 23]. Yet, MLPs of fermionic type, with a singularity in the

3



Figure 1.1: Pictorial representation of Fermi surface families in a biased bilayer graphene system for three
different values of the interlayer voltage bias δ. Three van Hove saddles with dispersions ∝ (p2

x − p2
y) are

shown with black dots (δ ≠ δc) while arrows indicate their displacement upon increasing the value of δ. At the
critical value of the bias δc they merge into a monkey saddle ∝ (p3

x − 3px p2
y) that closes into a trifolium-shaped

Fermi surface.

fermionic dispersion ξ(p), have been largely unexplored, only in a scenario involving

Majorana fermions and spin liquids [24].

In this chapter we study fermionic MLPs, using biased bilayer graphene (BLG) as a

concrete example of a physical realization. In the case of BLG, three vH saddles merge

into a monkey saddle at critical value of the interlayer voltage bias (see Fig. 1.1 and Fig. 1.2

on page 7). Mathematically, the monkey saddle is a genuine mathematical singularity

with a degenerate quadratic form as opposed to vH saddle, which is not a true singularity

in a mathematical sense, having a non-degenerate quadratic form of the (+−) signature,

4



∝ p2
x − p2

y. Physically, we identify key differences between the case of a MLP and that

of the usual vH singularity. First, the monkey-saddle-like dispersion ∝ p3
x − 3px p2

y at the

MLP exhibits a stronger, power-law divergence in the DoS and thus leads to even stronger

many-body instabilities, with higher transition temperatures as a result. These stronger

DoS divergences greatly simplify the renormalization group (RG) analysis of the problem,

yielding a super-renormalizable theory. We find that the non-interacting electron fixed point

is unstable to interactions, developing either a superconducting instability or non-Fermi

liquid behavior. In the case of BLG, which has two non-nested monkey saddles at the K and

K′ points, interactions lead to instabilities to s-wave superconducting state, ferromagnetism,

spin-, and charge density wave, depending on the nature of interactions. Second, the monkey

saddle possesses a signature Landau level (LL) structure with energy levels Em ∝ (Bm)3/2.

In addition, oscillations in different thermodynamic and transport properties, such as de

Haas-van Alphen and Shubnikov de Haas oscillations, for example, are sensitive to the

presence of the multicritical point. The monkey saddle can be identified by the scaling of

the period of these oscillations with the Fermi energy as ∆(1/B)∝ E2/3
F and with an abrupt

tripling of the period as Fermi level goes from below to above the saddle, due to a change

of the FS topology.

The presentation of the results in this chapter is organized as follows. In Sec. 1.2 we

present how the monkey saddle arises in voltage-biased BLG. We show how four different

FS topologies can be attained by varying the bias voltage and the chemical potential, and

identify the MLP in the phase diagram as the location where these four different phases

meet at a point. There we also discuss the nature of the divergence in the density of states

for the monkey saddle dispersion. In Sec. 1.3 we obtain the energies of the quantized

Landau orbits within a quasiclassical approximation, and present arguments for the period

tripling of the magnetic oscillations as the system undergoes a FS topology change; these

features may serve as clear experimental telltales of the MLP in BLG. In Sec. 1.4 we give a

lightning-quick introduction to imaginary path integral formalism and define an electron

polarization operator. In Sec. 1.5 we present an RG analysis of the case when interactions
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are present in a system with an isolated monkey saddle, where we show that the system is

either unstable to superconductivity or flows to a non-Fermi liquid, depending on the sign

of the interactions. The RG analysis for the case of BLG with two monkey saddles at the K

and K′ points is studied in Sec. 1.6, where we discuss the possible instabilities of the system.

In Sec. 1.7 we discuss a another material,layered perovskite metal Sr3Ru2O7, and argue

that some of its unusual thermodynamic properties can be explained by the singularity in

electronic dispersion. We close the chapter by summarizing the results and discussing open

problem in Sec. 1.8.

1.2 Hamiltonian and dispersion

Here we explicitly show how the monkey saddle arises in BLG. We consider AB-type

stacked BLG, with the layers labeled by 1 and 2, and the two sublattices within each layer

labeled by A and B. The spinor representing the electronic amplitudes is chosen in the order

(A1, B1, A2, B2). We consider an extended tight-binding model that includes next-nearest

neighbor hopping, where the Hamiltonian of the system linearized near the K point is [25]

Ȟ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
2 V vp− 0 v3 p+

vp+ 1
2 V γ1 0

0 γ1 − 1
2 V vp−

v3 p− 0 vp+ − 1
2 V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.1)

Here v is the band velocity of monolayer graphene, γ1 = 0.4 eV is an interlayer coupling

constant and v3 ≈ 0.1v describes trigonal warping that arises as a result of the next-nearest-

neighbor hopping. V is an interlayer voltage bias and p± = px ± ipy is the momentum. BLG

has four energy bands and in this thesis we are focused solely on the lowest upper band

with an electron dispersion [26]

ξ2(p) = V2

4
(1− 2

v2 p2

γ2
1

)
2

+ v2
3 p2 + 2

v3v2

γ1
p3 cos 3φ +

v4 p4

γ2
1

. (1.2)
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Figure 1.2: There are four phases with different Fermi surface topologies in biased bilayer graphene. They are
separated by two lines of phase transitions, one of a band-edge type (dash-dotted) and the other of the van Hove
or equivalently a neck-narrowing type (solid). The multicritical Lifshitz point is located at the crossing of these
two lines. In the gray area the Fermi level lies within the gap with no FS. Note different scales for the voltage δ
and the Fermi energy EF.
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For voltage biases V of the order of the trigonal warping energy scale γ1 the ∝ p4 contribu-

tion arising from the first term can be safely neglected. It is convenient to introduce dimen-

sionless variables, redefining energies as ξ → (v3γ1/v)ξ and momenta as p → (v3γ1/v2)p,

ξ2(p) = (δ/2)2 + u2
3 [(1− δ2)p2 + 2p3 cos 3φ + p4] , (1.3)

where u3 ≡ v3/v ≈ 0.1 is a dimensionless measure of the warping strength and δ ≡ V/(v3γ1/v).

The dispersion near the K′ point can be obtained from the one near the K point by inversion,

p → −p.

Unlike in the case of a monolayer graphene, where the warping merely distorts the Dirac

cone with low-energy dispersion unaffected, BLG behaves in a very different way. In the

absence of interlayer voltage bias, the trigonal warping destroys the parabolic dispersion,

breaking it down into four Dirac cones. A non-zero interlayer voltage V gaps out these

Dirac cones while also gradually inverting the central electron pocket into a hole-like pocket

at the critical value of the bias Vc = (v3/v)γ1 (δc = 1 in dimensionless units introduced above).

This critical value of the bias marks a singularity in the electronic dispersion ξ(p).

At the subcritical interlayer voltage bias δ < 1 the electronic dispersion ξ(p) has seven

extremal points, four electronic pockets and three vH saddle points. While the three outer

electronic pockets are robust and are present at all voltage biases, the central extremum and

three vH saddle points merge at the critical voltage falling apart again into three saddles

and a hole-like pocket at the supercritical bias δ > 1, see Fig. 1.1.

1.2.1 Monkey saddle as a D−4 singularity

In the vicinity of the singular point, the behavior of the electronic dispersion is governed by

the lowest powers of the momentum:

ξ(p)∝ (1− δ2)p2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pert(2,1)

+ p3 cos 3φ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CG(2)

. (1.4)

This momentum behavior corresponds exactly to the symmetry-restricted elliptic umbilic

elementary catastrophe (D−
4 within ADE classification) [27]. From the point of view of the
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catastrophe theory the cubic term p3 cos 3φ ≡ CG(2) is a catastrophe germ defining the nature

of the singularity in ξ(p) function, while the quadratic term (1− δ2)p2 ≡ Pert(2,1) is a lattice-

symmetry restricted perturbation, with one parameter δ, which regularizes the singularity.

Qualitatively the behavior of the system can be viewed as a bifurcation of a monkey saddle

p3 cos 3φ ≡ p3
x − 3px p2

y into three vH(ordinary) saddles and a maximum/minimum:

p3
x − 3px p2

y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

monkey saddle

←→ 3× (p2
x − p2

y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vH saddle

+1× p2

®
e/h pocket

. (1.5)

1.2.2 Fermi surface topology phase diagram

The electron FS at a given Fermi energy is defined as a cross-section of the electron dispersion

ξ(p, δ) = EF. There are four distinct Fermi surface topology phases within the (δ, EF) plane

(see Fig. 1.2). All of them have the same three-fold symmetry but can be discerned by

their topological invariants, the number of connected components and the number of holes.

Namely, in our case the four phases can be labeled uniquely by the first two Betti numbers

of their FS (b0, b1) as (1,0), (4,0), (3,0), and (1,1).

These four phases are separated by two lines of topological phase transitions. One of

the lines is of a weaker, band-edge transition type, while another is of a stronger vH type

(the former has a jump in the DoS while the latter has a log-divergence). The multicritical

Lifshitz point lies at the intersection of these two lines.

1.2.3 Divergent density of states

The monkey saddle leads to a strong IR divergence in the DoS. While the vH saddle has

a logarithmic DoS, any generic higher order saddle ξ(p, n) = apn cos nφ has a power-law

divergence in the DoS. To obtain the DoS for a higher order saddle, it is convenient to

work on generalized hyperbolic coordinates (ξ, η) = a(pn cos nφ, pn sin nφ) (where n = 1, 2

correspond to polar and hyperbolic coordinates, respectively). The dispersion of the saddle

is given by the ξ variable, while η plays the role of the hyperbolic angle, parametrizing
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displacements along the FS. The density of states is given by

ν(ξ, n) = ∮
FS

(dp)
dξ

= a−2/n

(2π)2n ∫
+∞

−∞

dη

(ξ2 + η2)
n−1

n

= a−2/n

4nπ3/2

Γ ( 1
2 −

1
n)

Γ (1− 1
n)

ξ−
n−2

n ,

(1.6)

where the (dp) ≡ d2 p/(2π)2, and we set Planck’s constant to unit (h̄ = 1). The case of the

monkey saddle in BLG is n = 3, while in Sec 1.7 we discuss layered perovskite Sr3Ru2O7

that hosts n = 4 saddle.

1.3 Magnetic oscillations at the monkey saddle

Within a quasiclassical approximation, the LLs can be obtained by quantization of the area

enclosed by quasiparticle orbit in momentum space,

∫ (dp) ≃ m
2πl2

B
, (1.7)

where lB =
√

c/eB is a magnetic length and m is the LL index. For a system tuned exactly

to the monkey saddle (or any higher order saddle), the behavior is dominated by the

singularity itself, so that

∫
Em

0
ν(ξ)dξ = 1

8π1/2

Γ ( 1
2 −

1
n)

Γ (1− 1
n)

(Em

a
)

2
n

Ô⇒ Em = α( a
ln
B
)mn/2 ∝ (Bm)n/2

(1.8)

with a numerical coefficient

α =
⎛
⎝

4
√

π
Γ (1− 1

n)
Γ ( 1

2 −
1
n)

⎞
⎠

n
2

=
(n=3)

2.27. (1.9)

As is often the case, LLs imply oscillations of various transport and thermodynamic

properties in an applied magnetic field, since such oscillations happen as LLs cross the Fermi

level of the system. At the critical voltage bias δc = 1 but with a small positive detuning from

the energy of the saddle point, i.e., EF slightly higher than δc/2, we can see from Eq. (1.8)
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δ = δc

Em < 0

Em > 0

Figure 1.3: Quasiclassical LL orbits in momentum space for energies slightly below and slightly above the
monkey saddle (and critical voltage bias). The number of connected FS components changes from three to one
as the Fermi level crosses zero.

that we have a periodicity in inverse magnetic field with a period

∆ ( 1
B
) = eh̄

c
(EF

αa
)

2/n
, (1.10)

where we reinserted Planck’s constant h̄.

Eqs. (1.8, 1.10) are given for positive LL energies, when EF is slightly higher than δc/2,

and the FS consists of one connected component, see Figs. 1.1, 1.2. The situation is different

for negative energies, when EF is slightly lower than δc/2 and the Fermi surface has three

disconnected components. In this case the LLs are triply degenerate (on top of the valley

degeneracy), and are three times as sparse,

E−m = −αal−n
B (3m)n/2, (1.11)

and oscillations period in inverse magnetic field is three times smaller as well. (All equations

above are for spinless electrons: in a real system Zeeman splitting should be taken into
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account as well.)

The tripling of the periodicity of oscillation is a telltale of the Fermi surface topology

change, and can be viewed physically as follows. The area of the Fermi surface is not very

different slightly before or slightly after it undergoes the topology change. At the critical

point, the area that fits just one electron orbit is brought inside the Fermi surface upon

insertion of a flux quantum. When there is a single surface, one can indeed fit a physical

electron within that orbit. However, when the Fermi surface contains the three pockets, the

additional area brought inside each pocket due to a single flux quantum insertion is only

1/3 of what is needed to fit one electron. If there were quasiparticles with charge 1/3, then

they could fill separately the area in the three pockets; but there are no such particles in the

system. Hence, the flux periodicity is tripled when the Fermi surfaces are disconnected, as

one can only add a full electron at each pocket, requiring the addition of three flux quanta.

This is the physical origin of the period tripling.

1.3.1 Cyclotron frequency

Since we deal with strongly non-parabolic dispersion, it is useful to calculate cyclotron

frequency. Within quasiclassical approximation, electron orbits along the contours of

constant energy ξ(p) = const. The evolution of momentum in magnetic field is driven by

the Lorentz force

ṗ = −ev × B. (1.12)

In terms of components of momentum that are perpendicular and parallel to the surface of

constant energy p⊥, p∥ we have

ṗ∥ = ev⊥B Ô⇒ dp∥ = ev⊥Bdt (1.13)

and hence the corresponding frequency of the orbital motion

ωc(µ) = 2π [∮
FS

dt]
−1

= 2πeB [∮
FS

dp∥
v⊥

]
−1

. (1.14)
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The quantity in the square brackets above is nothing else but the density of states:

∮
FS

dp∥
v⊥

= ∮
FS

dp∥
∂ξ/∂p⊥

= ∮
FS

dp
dξ

= (2π)2ν(µ), (1.15)

since ∂ξ/∂p∥ ≡ 0 by virtue of parallel component being tangent to the Fermi surface. The

statement is valid only for µ > 0 where the Fermi surface is composed of a single sheet. For

µ < 0 only a third of the integral is relevant for an electron along one of the three petals of

the Fermi surface and thus

ωc(µ) = eB
2πν(µ)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 µ > 0

3 µ < 0
. (1.16)

in full compliance with speculations in the previous subsection.

1.3.2 Effects of disorder

Magnetic oscillations can only be observed if the following conditions are satisfied:

• Low temperature

T < ωc (1.17)

• Low scattering

ωcτ > 1 (1.18)

• Low magnetic field

ωc < ε∗ (1.19)

The most restricting is the low scattering condition, since in the absence of impurities τ =∞

satisfying the other two conditions is not an issue. This restriction is especially problematic

in the case of the monkey saddle, since scattering rate is inversely proportional to the density

of states [28]

τ(µ)∝ ν(µ)−1 ∝ ∣µ − µc∣1/3. (1.20)
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Let us consider the worst possible situation to observe magnetic oscillations:

ωc ∼ ε∗, ωcτ ∼ 1 Ô⇒ τ ∼ ε−1
∗ . (1.21)

Given that the energy scale of the singularity is ε∗ ∼ u3
3γ1 = 0.4 meV, this corresponds to

times τ > 0.1 ps. In order to compare with available experimental data for unbiased BLG

away from the charge neutrality, we have to account for the density of states difference:

ν(ε∗) ∼ u−3
3 ν0, (1.22)

as it follows from Eq. 1.3. Here ν0 is the density of states of unbiased BLG, implying that

τ0 ∼ u−3
3 τ ∼ 100 ps. Achieving such scattering times may be challenging even in high-mobility

BLG sheets [29], but magnetic oscillations can still observed in the regime ωcτ > 1, albeit

with a much fainter magnitude.

1.4 Imaginary time path integral

In subsequent sections we will be analyzing RG flow of a monkey saddle at finite tempera-

ture. In order to handle this task, we need to introduce imaginary time path integral.

The essence of the imaginary time path integral approach to the description of quantum

systems at finite temperature lies in an analogy between the time evolution operator over

time t

U(t) = exp(iHt), (1.23)

and the density matrix of the canonical ensemble at the temperature T

ρ(β) = exp(−βH), β = 1/T. (1.24)

It can be readily inferred that the latter looks like a former taken at imaginary time t = iβ:

ρ(β) = U(iβ). (1.25)

This simple but powerful connection allows to extend zero temperature field theory methods
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Figure 1.4: Core idea behind imaginary time approach is the correspondence between the time evolution
operator U and the density matrix ρ in the complex plane t + iτ.

to conquer the realm of finite temperatures. A pedagogical introduction can be found in

Refs. [28, 30] and here we outline the prescription on how to deal with the formalism to

extract quantities of interest for the present chapter.

1.4.1 Action

If we have a quantum system with Hamiltonian

∫ drψ̄[Ĥ(t, r)]ψ, (1.26)

then the real time action can be constructed as

S0[ψ̄, ψ] = ∫ dt∫ drψ̄[i∂t − Ĥ(t, r)]ψ (real time), (1.27)

where t, r are time and coordinate and ψ̄, ψ are Grassmann anticommuting electron fields.

Performing analytical continuation to imaginary times t → iτ, τ ∈ (0, β) we get imaginary

time action

S0[ψ̄, ψ] = ∫
β

0
dτ∫ drψ̄[∂τ − Ĥ(iτ, r)]ψ (imaginary time), (1.28)

and the missing “i” from the integration over time is absorbed into the definition of partition

function (see below).
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Electron Green’s function can be interpreted as a propagator of Grassmann fields ψ, ψ̄:

G0(τ1 − τ2, r1 − r2) = − ⟨ψ(τ1, r1)ψ̄(τ2, r2)⟩0

≡ ∫ (Dψ̄Dψ)(ψτ1,r2 ψ̄τ2,r2) exp (−S0[ψ̄, ψ])

= [∂τ − Ĥ(iτ, r)]−1∣
τ=τ1−τ2

,

(1.29)

where “0” in ⟨. . .⟩0 means integrating out electron fields using free action weight exp(−S0).

We assume time and space translation invariance, i.e. equilibrium and spatial homogeneity.

The latter is not obvious per se, even in absence of disorder in the system spatial homogeneity

may be spontaneously broken with a system undergoing a transition into phases such as

charge-/spin-density wave or Fulde-Ferrel-Larkin-Ovchinnikov superconductivity. However,

all such effects arise only as a consequence of electron-electron interactions.

Integration measure Dψ̄Dψ implies simply integrating out all electron fields. If we

discretize space and time, it becomes

Dψ̄Dψ =∏
τ,r

dψ̄τ,rdψτ,r. (1.30)

In contrast with real-time approach, now the theory lives at a finite interval in imaginary

time (0, β) and hence we cannot work with continuous energy variables. Rather, we have to

introduce half-integer Matsubara frequencies

ε l = 2πT(l + 1/2), l ∈ Z, (1.31)

such that the Green’s function can be written in terms of it’s Fourier components

G(τ, r) = T
+∞

∑
l=−∞

G(iε l , r), (1.32)

G(iε l , r) = ∫
β

0
dτG(τ, r) exp (iε lτ) . (1.33)

(Both τ and ε l are imaginary versions of time and energy, hence the Fourier exponent is still

complex.) The 1/2 term in the definition of the Matsubara frequency ε l has to do with the

fermionic nature of the fields ψ̄, ψ [28]. If we look at a bosonic quantity, the right Matsubara
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frequencies are integer,

ωn = 2πn, n ∈ Z. (1.34)

1.4.2 Polarization operator

Polarization operator, an important quantity for this chapter, is an example of a bosonic

case. Let us consider a simple single band electron system with dispersion ξ(p):

S0[ψ̄, ψ] = T⨋
l
drψ̄[iε l − ξ(−i∇r)+ µ]ψ, (1.35)

where p ∼ −i∇r ≡ −i∂/∂r is electron momentum. Free electron propagator in terms of

Matsubara frequency ε l and momentum p is

G(iε l , p) = 1
iε l − ξ(p)+ µ

. (1.36)

Let us now add an external scalar potential V(t, r)

S0[ψ̄, ψ, V] = T⨋
l
dpψ̄[iε l − ξ(p)+ µ −V]ψ, (1.37)

and introduce partition function

Z[V] = ∫ (Dψ̄Dψ) exp(−S0[ψ̄, ψ, V]). (1.38)

Polarization operator describes density susceptibility to external scalar potential V and

also determines its self-energy if we treat it as a scalar bosonic field. It is given by

Π(τ1 − τ2, r1 − r2) =
δ2 lnZ[V]

δV(τ1, r1)δV(τ2, r2)
∣
V=0

= ⟨ψ̄(τ1, r1)ψ(τ1, r1)ψ̄(τ2, r2)ψ(τ2, r2)⟩0

= −G(τ1 − τ2, r1 − r2)G(τ2 − τ1, r2 − r1).

(1.39)

Transforming to Matsubara frequency and momentum domains, we obtain

Π(iωn, q) = −T
+∞

∑
l=−∞

∫ dpG(iε l , p)G(iε l+n, p + q)

= −T
+∞

∑
l=−∞

∫ dp
1

(iε l − ξp)(iε l+n − ξp+q)
.

(1.40)
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In the static limit of almost uniform scalar potential (first we take the limit ωm → 0, then

q → 0) we should reproduce static compressibility of the system. This is indeed the case.

Π(0, q) = −T
+∞

∑
l=−∞

∫ dp
1

(iε l − ξp)(iε l − ξp+q)

= −∫ dp
T

ξp+q − ξp

+∞

∑
l=−∞

[ 1
iε l − ξp+q

− 1
iε l − ξp

] = 1
2 ∫

dp
f (ξp+q)− f (ξp)

ξp+q − ξp
.

(1.41)

To proceed we note that [28]

T
+∞

∑
l=−∞

1
iε l − ξp

≡ T
+∞

∑
l=−∞

1
2iπT(l + 1/2)− ξp

= −1
2

f (ξp), (1.42)

where

f (x) = tanh
x

2T
(1.43)

is nothing else but the equilibrium distribution function. Taking the uniform limit q → 0,

lim
q→0

Π(0, q) = 1
2 ∫

dp
∂ f (ξp)

∂ξp
= 1

2 ∫
(

dp
dξ

)dξ
∂ f (ξ)

∂ξ
≡ 1

2 ∫
(ν(ξ)dξ)

∂ f (ξ)
∂ξ

, (1.44)

where we switched to integration over the energy variable ξ and introduced the density of

states ν(ξ). For the case of slowly varying density of states we have limq→0 Π(0, q) ≃ ν(0).

(This is not applicable to the monkey saddle, where the density of states has a strong energy

dependence.)

The polarization operator serves as an important building block for the RG flow in the

following sections. Due to a more sophisticated dispersion in BLG that has several electron

flavors (different spins ↑↓ and valleys K/K′), we will have more than one type of polarization

operator. Now we are ready to set up RG.
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Λ2

Λ1 Υ

Figure 1.5: Left: A Fermi surface near a van Hove saddle calls for a two-cutoff RG scheme. The grey area
represents occupied electron states. The hatched region of the phase space corresponds to a step dξ in electron
energy. Normally, one cutoff dΛ1 ∼ dξ is sufficient, but here we see that the logarithmic DoS at the van Hove
saddle together with an open hyperbolic Fermi surface lead to tails of the hatched region that reach out to the
rest of the Fermi surface away from the van Hove saddle. The purpose of the second cutoff Λ2 is to cut these
tails and isolate van Hove saddle. Right: No second cutoff is needed at the monkey saddle.

1.5 RG flow at the single monkey saddle

Here we analyze a single monkey saddle within a one-loop RG framework. Assuming

short-range interaction, an electron action is given by

S = ∫ (dτdr) [ψ†[∂τ − ξ(−i∇)+ µ]ψ −
g
2
(ψ†ψ)2] (1.45)

with interaction
g
2
(ψ†ψ)2 = g(ψ†

↑ψ
†
↓ψ↓ψ↑). (1.46)

We focus on the system tuned exactly to the monkey saddle, so that the dispersion is

determined by the catastrophe germ ξ(p) = p3 cos 3φ and the non-singular part of FS is

irrelevant (see Fig. 1.5). Tree-level RG involves rescaling of frequency and momenta as

ω → s−1ω, p → s−1/3 p, ψ → s−1/3ψ, (1.47)
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and results in the interaction constant scaling as

g → gs+1/3, (1.48)

entailing super-renormalizability of the theory.

Super-renormalizability brings crucial simplifications with respect to the case of the

ordinary vH saddle: while the separation of the saddle from the non-singular part of the

FS requires two cut-offs in the case of vH singularities (n = 2), it requires only one cut-off

for higher order singularities (n > 2), see Fig. 1.5. This difference can be traced back to

the behavior of DoS obtained in Eq.(1.6). In the case of the vH saddle (n = 2), the integral

over the angle-like variable η diverges logarithmically, requiring an additional cut-off in the

problem that is interpreted as a Fermi velocity cut-off in Refs. [20, 18]. In contrast, for any

higher-order saddle with n > 2, the DoS at a given energy is well-defined and is determined

solely by the saddle and does not require a large momentum cut-off. This means that for

n > 2 the theory is free of UV divergences and contains only (meaningful) IR divergences

that are regularized by temperature T and chemical potential µ.

We introduce a dimensionless coupling constant in a natural way as

λ(Υ) = ν(Υ)g(Υ), (1.49)

with a smooth infrared cutoff Υ that we take to be either µ or T.

1.5.1 Beta function

The RG flow equation for the dimensionless interaction λ constant is connected to renormal-

ization of the dimensional coupling constant g as

dλ

d ln ν
=

d(νg)
d ln ν

= λ + ν2 dg
dν

. (1.50)

The one-loop renormalization of g is given by two diagrams shown in Fig. 1.6 and yield

δg = −g2Πpp(µ, T)+ g2Πph(µ, T). (1.51)
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Figure 1.6: One-loop contribution to renormalization of the interaction constant for an isolated monkey saddle.

Combining Eqs. (1.50) and (1.51) we obtain the RG equation for λ,

dλ

d ln ν(Υ)
= λ − cλ2, (1.52)

where c is a non-negative coefficient

c =
dΠpp

dν(Υ)
−

dΠph

dν(Υ)
≥ 0. (1.53)

The polarization operators are defined as

Πph(q, µ, T) =− T⨋
l,p

G(iε l , p + q)G(iε l , p), (1.54)

Πpp(q, µ, T) =T⨋
l,p

G(iε l , p + q)G(−iε l ,−p), (1.55)

and the particle-hole polarization operator can be evaluated to be

Πph =− T∫
p
∑

l

1
iε l − ξp+q + µ

1
iε l − ξp + µ

(1.56)

= 1
2 ∫p

f (ξp+q − µ)− f (ξp − µ)
ξp+q − ξp

(1.57)

=
q→0

1
2 ∫

ν(ξ) f ′(ξ − µ) dξ , (1.58)

where f (ξ) = tanh ξ/2T.
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Similarly, the particle-particle polarization operator is

Πpp =
1
2 ∫p

f (ξp − µ)+ f (ξ−p − µ)
ξp + ξ−p − 2µ

(1.59)

=1
2 ∫

ν(ξ)
f (ξ + µ)− f (ξ − µ)

2µ
dξ . (1.60)

The difference of polarization operators that drives RG flow has the following asymptotic

behavior:

Πpp −Πph =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 µ = 0, T ≠ 0

1
2

ν(µ) T = 0, µ ≠ 0
, (1.61)

where the cancellation at µ = 0 in fact holds for any external frequency and momentum.

The chemical potential also has a correction due to a Hartree-type diagram,

δµ = g⨋
l,p

G(iε l , p), (1.62)

corresponding to the shift in the monkey saddle’s Fermi energy. (This contribution is the

equivalent of the fluctuational renormalization of the critical temperature in thermodynamic

phase transitions.)

Finally, we point out that the cancellation of the one-loop contribution at µ = 0 is a

feature specific to odd saddles. For an n-th order saddle with a dispersion ξ = pn cos nφ the

DoS behaves as ν(ε)∝ ε−(n−2)/n, while the polarization operators behave as

Πpp −Πph =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1+(−1)n

n Cnν(µ) µ = 0, T ≠ 0

n−2
2 ν(µ) T = 0, µ ≠ 0

, (1.63)

with a (positive) numerical constant

Cn =∫
∞

0
dx x−(n−2)/n(2 cosh2(x/2))−1 = 2(22/n − 1)Γ (2− 2

n
) [−ζ (1− 2

n
)] . (1.64)

As we mentioned previously in the text, this difference leads to non-Fermi-liquid and

marginal Fermi liquid behavior for odd and even saddles, respectively.
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1.5.2 Analysis of the RG flow

Now let’s analyze the obtained beta function (1.52). The scaling behavior of the system

strongly resembles that of 1D interacting electrons. Namely, exactly at the monkey saddle

at µ = 0 the one-loop contribution to beta function vanishes, leaving a critical theory with

tree-level scaling only
dλ

d ln ν(T)
= λ (µ = 0,∀T). (1.65)

This behavior is linked to an additional symmetry [18] that arises exactly at the monkey

saddle, and is a combination of time-reversal transformation (ε, p) → (−ε,−p) plus a

particle-hole transformation ψ† ⇌ ψ. This symmetry is present only for odd saddles with

ξ(−p) = −ξ(p) and is absent for even saddles that have a dispersion that is invariant under

spatial inversion.

At the same time, away from the monkey saddle

dλ

d ln ν(µ)
= λ − 1

2
λ2 (T ≪ ∣µ∣ ≠ 0), (1.66)

and the system either flows to a non-trivial fixed point λ = 2 for any positive initial coupling

constant λ0 > 0 or develops a superconducting instability with λ diverging as (for λ0 < 0)

λ(µ) =
ν(µ)g0

1+ 2g0[ν(µ)− ν0]
≃

3µc

2(µc − µ)
. (1.67)

Here ν0 and g0 are the DoS and coupling constant at the initial energy scale, while µc marks

the energy scale corresponding to the instability. This leads to a non-BCS type of behavior

for the critical energy scale

µc, Tc ∝ g
n

n−2
0 =

(n=3)
g3

0. (1.68)

In fact, the one-loop RG equations can be integrated out for any µ, T and the solution is

equivalent to resummation of a leading diagrammatic series in the language of Feynman

diagrams. The resulting expression for a dimensional coupling constant g reads as

g−1∣(µ,T) = (Πpp −Πph) ∣(µ,T) + g−1
0 , (1.69)
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Figure 1.7: Phase diagram (blue solid line) for an isolated monkey saddle and attractive coupling constant.
Critical chemical potential is determined by the equation ∣g0∣ ν(µc) = 2 and the plot is given in units of µc for
both temperature and chemical potential. Any odd saddle (n = 3, 5, . . . ) has qualitatively same phase diagram,
but the situation is different for even saddles (n = 2, 4, . . . ). Even case is illustrated with red dashed line for
n = 4.

Thus, within a one-loop approximation, the phase transition line for attractive interaction

g < 0 is determined by the equation

g0 (Πpp −Πph) ∣(µ,T) + 1 = 0 (1.70)

and the resulting phase diagram is given in Fig.1.7.

1.5.3 Quasiparticle decay rate

In this subsection we analyze the scaling of the quasiparticle decay rate. It is connected to

the imaginary part of electron self-energy

Γ = i
2

∆Σ(0, 0)∣
µ=0

. (1.71)

Despite the equilibrium nature of the problem, it is convenient to break causality and use

the real-time Keldysh technique that we introduce later in chapter (3). There are no one-loop

contributions to the imaginary part of the electron self-energy:

Γ = 0 (one loop). (1.72)

The simplest diagram that gives a nontrivial contribution to the quasiparticle width is
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Figure 1.8: Two-loop contribution to the quasiparticle decay rate.

shown on Fig. (1.8). Using Keldysh technique it can be written as

∆Σ(ε, p) =−∫
ω,q

[B(ω)+ f (ε −ω)]∆G(ε −ω, p − q)∆L(ω, q)

=− i∫
q
[B(ε − ξp−q)+ f (ξp−q)]∆L(ε − ξp−q, q),

(1.73)

where B(x) = coth(x/2T) and f (x) = tanh(x/2T) are bosonic and fermionic distribution

functions, L is an interaction propagator, and ∆(. . . ) = (. . . )R − (. . . )A stands for the differ-

ence between retarded and advanced components. The interaction propagator within the

one-loop approximation is essentially

∆Σ(ε, p) =− ig2∫
k,q

δ(ε + ξk+q−p − ξq − ξk)×

× ( f (ξq)[ f (ξk)− f (ξk + ξq − ε)]+ 1− f (ξk) f (ξk + ξq − ε)),
(1.74)

where we made use of the relation between equilibrium distribution functions

[ f (x + y)− f (x)]B(y) = 1− f (x + y) f (x), (1.75)

and redefined integration variables k, q. In principle, diagrammatic technique isn’t needed

for this result, since it is essentially a statement of Fermi’s golden rule.

Rescaling momenta as (k, q) → T1/3(k, q) we see that the quasiparticle width at the

monkey saddle for zero chemical potential and zero external frequency and momenta

behaves as

Γ = i
2

∆Σ(0, 0)∣
µ=0

∼ [ν(T)g
´¹¹¹¹¸¹¹¹¹¹¶

λ(T)

]2T ∝ T1/3, (1.76)
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Figure 1.9: Three possible interaction channels between the two monkey saddles in bilayer graphene, as
introduced in Eq. (1.78).

since exactly at the monkey saddle µ = 0 one-loop contribution to the beta function vanishes

and interaction constant λ(T) = g ν(T) ∝ T−1/3 has only tree level scaling. Our analysis

breaks down at energy scales T∗ ∼ Γ(T∗), or equivalently when dimensionless coupling

constant λ(T∗) ≳ 1 becomes too large.

On the other hand, for non-zero chemical potential we find regular Fermi-liquid-like

behavior [31],

Γ ∼ λ2(µ) ε2

µ
ln

µ

ε
, T ≪ ε ≪ ∣µ∣ . (1.77)

The situation is the same for any odd saddle, n = 3, 5, . . . , but is very different for even

saddles. For even saddles there is no cancellation of the one-loop contribution, so that c ≠ 0

at µ = 0 and the dimensionless coupling constant flows to a fixed point λ = 1/c yielding

marginal Fermi liquid behavior with decay rate Γ ∼ T. While this implies a dimensionless

coupling constant of order one, the existence of this fixed point could be justified within

1/N expansion techniques.
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1.6 RG flow for bilayer graphene

1.6.1 RG flow equations

In BLG there are two copies of the monkey saddle at the K and K′ points, which are related

by time-reversal symmetry, with dispersions ξ±(p) = ±ξ(p). The four-fermion interaction

now has three coupling constants:

g
2
(ψ†ψ)2 = g1(ψ†

+iψ
†
−jψ+jψ−i)+ g2(ψ†

+iψ
†
−jψ−jψ+i)

+(((((((((hhhhhhhhhg3(ψ†
+iψ

†
+jψ−jψ−i)+ g4(ψ†

α↑ψ
†
α↓ψα↓ψα↑), (1.78)

where i, j =↑↓ indices stand for spin and α = ± corresponds to K/K′ valley isospin, respectively.

Our notation for coupling constants is the same as in Refs. [10, 19]. The Umklapp g3 coupling

is forbidden because the K and K′ points are inequivalent in the sense of momentum

conservation modulo reciprocal lattice vector, Q = 2pKK′ /≃ 0.

In addition to polarization operators (1.54) and (1.55), BLG has two new polarization

operators at a finite momentum transfer Q:

Πph(Q, µ, T) =− T⨋
l,p

G(iε l , p)G(iε l , Q + p), (1.79)

Πpp(Q, µ, T) =T⨋
l,p

G(iε l , p)G(−iε l , Q − p). (1.80)

Once calculated, they yield

Πph(Q) =1
2 ∫

ν(ξ)
f (ξ − µ)− f (−ξ − µ)

2ξ
dξ, (1.81)

Πpp(Q) =1
2 ∫

ν(ξ)
f (ξ + µ)

ξ + µ
dξ. (1.82)

In this chapter we focus on the case when the system is tuned exactly into the monkey

saddle, µ = 0, where

Πph(0) = Πpp(0) = C3 ν(T), (µ = 0) (1.83)

Πph(Q) = Πpp(Q) = 3C3 ν(T), (1.84)
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with numerical constant

C3 = ∫
∞

0
dx x−1/3 1

2 cosh2(x/2)
= 1.14. (1.85)

Polarization operators (1.83, 1.84) serve as building blocks of the RG flow. The RG flow

equations for a square lattice with two hot spots were derived in Ref. [10]. These equations

are very general and in their infinitesimal form, after an elementary RG step, they give

δg1 =2g1(g2 − g1)δΠph(Q)+ 2g1g4δΠph(0)− 2g1g2δΠpp(Q),

δg2 =(g2
2 + g2

3)δΠph(Q)+ 2(g1 − g2)g4δΠph(0)− (g2
1 + g2

2)δΠpp(Q),

δg3 =− 2g3g4δΠpp(0)+ 2(2g2 − g1)g3δΠph(Q)

δg4 =− (g2
3 + g2

4)δΠpp(0)+ (g2
1 + 2g1g2 − 2g2

2 + g2
4)δΠph(0).

(1.86)

We re-derive these equations for our case of two monkey saddles in BLG by calculating

the Feynman diagrams listed on the Fig. 1.10. As we have mentioned above, in the case of

BLG there is no Umklapp scattering between K and K′ points, and thus we have g3 ≡ 0. The

resulting corrections to interaction constants are

δg1 =2g1(g2 − g1)δΠph(Q)+ 2g1g4δΠph(0)− 2g1g2δΠpp(Q),

δg2 =g2
2δΠph(Q)+ 2(g1 − g2)g4δΠph(0)− (g2

1 + g2
2)δΠpp(Q),

δg4 =− g2
4δΠpp(0)+ (g2

1 + 2g1g2 − 2g2
2 + g2

4)δΠph(0).

(1.87)

The coupling constants gi are dimensionful, but we introduce dimensionless coupling

constants as follows. Since each polarization operator is proportional to the density of states

Πpp(0)∝ ν (see Eqs. 1.83, 1.84), it is appropriate and convenient to define the dimensionless

constants as λi = Πpp(0)gi, and take d ln Πpp(0) for RG time ds:

λ̇1 =λ1 + 2d1λ1(λ2 − λ1)+ 2d2λ1λ4 − 2d3λ1λ2,

λ̇2 =λ2 + d1λ2
2 + 2d2(λ1 − λ2)λ4 − d3(λ2

1 + λ2
2),

λ̇4 =λ4 − d0λ2
4 + d2(λ2

1 + 2λ1λ2 − 2λ2
2 + λ2

4),

(1.88)
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Figure 1.10: One-loop Feynman diagrams contributing to the renormalization of the interaction constants
introduced in Eq. (1.78). Black solid lines represent electron propagators around K valley and dashed lines
show propagators around K′ valley.
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where parameters di are defined as

d0 ≡
dΠpp(Q)
dΠpp(Q)

, d2 ≡
dΠph(0)
dΠpp(Q)

, (1.89)

d1 ≡
dΠph(Q)
dΠpp(Q)

, d3 ≡
dΠpp(0)
dΠpp(Q)

, (1.90)

and d0 ≡ 1 is introduced for the sake of generality and ease of comparison with Ref. [10].

We focus on BLG tuned exactly at the monkey saddle with both critical voltage bias δ = 1

and chemical potential µ = 0, where these parameters are equal to

d0 ≡ 1, d1 = 3, d2 = 1, d3 = 3. (1.91)

The RG flow equations for dimensionless coupling constants now become

λ̇1 =λ1 − 6λ2
1 + 2λ1λ4, (1.92)

λ̇2 =λ2 + 2(λ1 − λ2)λ4 − 3λ2
1, (1.93)

λ̇4 =λ4 + λ2
1 + 2λ1λ2 − 2λ2

2. (1.94)

At the brink of a many-body instability the coupling constants diverge as

λi =
λ
(0)
i

sc − s
, (1.95)

where sc is a critical RG time corresponding to the instability. Before proceeding to identi-

fying diverging solutions, we need to find a way to interpret physical nature of diverging

solutions. This can be achieved by calculating susceptibilities to different order parame-

ters [10, 11, 32].

1.6.2 Susceptibilities

When coupling constants diverge as λj ∝ (sc − s)−1, susceptibilities to different order

parameters also diverge as χj ∝ (sc − s)αj , so the leading instability is the one with the most

negative value of αj.

Susceptibilities can be calculated by studying renormalization of test vertices [19]. The
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first group of instabilities correspond to uniform densities with a test Lagrangian density

δL = ∑
i=↑↓
∑

α=+−

niαψ†
iαψiα, (1.96)

where renormalization of test vertices niα within one-loop approximation is given by

equation

d
ds

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n+↑

n+↓

n−↑

n−↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= d2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 −λ4 λ1 − λ2 −λ2

−λ4 0 −λ2 λ1 − λ2

λ1 − λ2 −λ2 0 −λ4

−λ2 λ1 − λ2 −λ4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n+↑

n+↓

n−↑

n−↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(1.97)

and susceptibilities are equal to α = −2γ, where γ is an eigenvalue of (1.97). Solving for

eigensystem of (1.97) we find four instabilities with susceptibilities

αspin =− 2(λ0
1 + λ0

4), (1.98)

αcharge =2(−λ0
1 + 2λ0

2 + λ0
4), (1.99)

αvalley =2(λ0
1 − 2λ0

2 + λ0
4), (1.100)

αspin-valley =2(λ0
1 − λ0

4). (1.101)

The second group of instabilities is a charge- and spin-density waves,

δL = ∑
i=↑↓

nQiψ
†
−iψ+i +h.c. (1.102)

d
ds

⎛
⎜⎜
⎝

nQ↑

nQ↓

⎞
⎟⎟
⎠
= d1

⎛
⎜⎜
⎝

λ2 − λ1 −λ1

−λ1 λ2 − λ1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

nQ↑

nQ↓

⎞
⎟⎟
⎠

, (1.103)

αCDW =6(2λ0
1 − λ0

2), (1.104)

αSDW =− 6λ0
2. (1.105)
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The third group represents superconducting s- and s±-wave instabilities,

δL = ∆1ψ†
+↑ψ

†
−↓ +∆2ψ†

−↑ψ
†
+↓ +h.c., (1.106)

d
ds

⎛
⎜⎜
⎝

∆1

∆2

⎞
⎟⎟
⎠
= d3

⎛
⎜⎜
⎝

−λ2 −λ1

−λ1 −λ2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

∆1

∆2

⎞
⎟⎟
⎠

, (1.107)

αsP =6(λ0
2 + λ0

1), (1.108)

αs±P =6(λ0
2 − λ0

1). (1.109)

Finally, the last group corresponds to finite momentum superconductivities,

δL = ∆sQ+ψ†
+↑ψ

†
+↓ +∆sQ−ψ†

−↑ψ
†
−↓ +h.c., (1.110)

d
ds

⎛
⎜⎜
⎝

∆s1

∆s2

⎞
⎟⎟
⎠
= d0

⎛
⎜⎜
⎝

−λ4 0

0 −λ4

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

∆s1

∆s2

⎞
⎟⎟
⎠

, (1.111)

αsPQ =λ4, (1.112)

αs±PQ =λ4. (1.113)

Summing up all the susceptibilities above:

αsPQ =2λ0
4, (1.114)

αs±PQ =2λ0
4, (1.115)

αCDW =6(2λ0
1 − λ0

2), (1.116)

αSDW =− 6λ0
2, (1.117)

αspin =− 2(λ0
1 + λ0

4), (1.118)

αcharge =2(−λ0
1 + 2λ0

2 + λ0
4), (1.119)

αsP =6(−λ0
1 + λ0

2), (1.120)
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for finite momentum s-wave and s±-wave superconducting, charge density wave, spin

density wave, ferromagnetic (uniform spin), uniform charge (κ), and s-wave superconducting

instabilities respectively.

1.6.3 RG flow analysis

Going back to the analysis of RG flow (1.92), since λ1 cannot change sign (RHS for λ̇1

is equal to zero when λ1 = 0), it is convenient to analyze the RG flow in y2 = λ2/λ1 vs.

y4 = λ4/λ1 coordinates,

ẏ2 =λ1 (−3+ 6y2 + 2y4 − 4y2y4) , (1.121)

ẏ4 =λ1 (1+ 2y2 + 6y4 − 2(y2
2 + y2

4)) . (1.122)

We can then reparametrize the RG flow eliminating λ1 to get a system of equations

y′2 =− 3+ 6y2 + 2y4 − 4y2y4, (1.123)

y′4 =1+ 2y2 + 6y4 − 2(y2
2 + y2

4), (1.124)

that can be solved exactly in the coordinates y±,

y± = (y4 − 3/2)± (y2 − 1/2) ∶ y′± = 6− y2
±. (1.125)

This allows us to identify all phases and phase boundaries on the y2y4 plane. Thus, the

plot in λ2/λ1 vs. λ4/λ1 coordinates explicitly shows the fate of the system for different

initial coupling constants. Fig. 1.11 (left) shows the phase diagram of RG flow for λ1 >

0. Ferromagnetic (FM), superconducting (SC) and competing spin/charge-density-wave

([S/C]DW) instabilities are possible with phase boundaries

λ2 − λ1/2 = 0, (SC/SDW) (1.126)

λ2 + λ4 − (2−
√

3)λ1 = 0, (FM/SC) (1.127)

λ2 − λ4 − (
√

3− 1)λ1 = 0, (FM/[S/C]DW) (1.128)
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Figure 1.11: RG phase diagram showing a leading instability as a function of initial coupling constants. The
figure on the left shows the case of positive λ1 > 0, while the one on the right corresponds to λ1 < 0. (λ1 never
changes sign under the RG flow.) There are four possible instabilities: SC superconducting, ferromagnetic
(FM), charge-density wave (CDW) and a competing spin/charge-density-wave (SDW/CDW). The Hubbard
model initial conditions λ1 = λ2 = λ4 > 0 lead to the development of FM instability.

and the lines cross at the point

λ1 ∶ λ2 ∶ λ4 = 2 ∶ 1 ∶ (3−
√

12). (1.129)

For negative values λ1 < 0 we get options of SC, CDW, and [S/C]DW and Fig. 1.11 (right).

The phase boundaries are now

λ2 + ∣λ1∣ /2 = 0, (SC/[S/C]DW) (1.130)

λ2 + λ4 − (2−
√

3) ∣λ1∣ = 0, (SC/CDW) (1.131)

λ2 − λ4 − (
√

3− 1) ∣λ1∣ = 0, (CDW/[S/C]DW) (1.132)

crossing at the point

∣λ1∣ ∶ λ2 ∶ λ4 = 2 ∶ 1 ∶ (3−
√

12). (1.133)

The crucial difference with the case of a single monkey saddle is that the solution

λ1 = λ2 = 0 describing two decoupled saddles is now always unstable. The analysis of the
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RG flow presented above shows that there are four possible many-body instabilities, s-wave

superconducting (SC), ferromagnetic (FM), charge-density-wave (CDW) and a competing

spin/charge-density-wave (SDW/CDW). However, only three instabilities, SC, FM, and

SDW/CDW are possible for initially repulsive interactions, as is shown in a Fig. 1.11. For

Hubbard model the initial conditions correspond to all interaction constants being equal

and positive, λi = (λ)0 > 0, and lead to FM phase.
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1.7 X9 singularity in Sr3Ru2O7

Before closing this chapter, in this section we discuss Sr3Ru2O7, another candidate material

for a higher-order saddle in its electronic dispersion. Unlike BLG where the rotational

symmetry C3 leads to a third order monkey saddle, a C4 rotational symmetry in Sr3Ru2O7

leads to a fourth order saddle. This material has attracted a lot of attention due to the

complex magnetic phase diagram that hosts a pair of magnetic phases and a pair of spin-

density-wave states, see Fig. (1.12). A most interesting feature is a power-law divergence in

specific heat and entropy ∆C, ∆S/T ∝ ∣H − Hc∣−1 that signals a square-root divergence in the

DoS of states, ν(ε)∝ ∣ε − εc∣. Authors of Ref. [34] discuss that while a quasi-one-dimensional

dispersion can produce a required power dependence, it would imply the existence of the

divergence only to one side of the band edge. No plausible explanation of the symmetric

divergence was suggested so far.

We focus on specific electron bands, γ-bands [35], and argue that given the C4 rotational

symmetry of the crystal, the electron dispersion in the vicinity of the singularity can be

described as a fourth order saddle, a symmetry-restricted unimodal parabolic singularity

Figure 1.12: Left: magnetic phase diagram of Sr3Ru2O7, showing low- and high-magnetization phases
(LM and HM) and two types of spin-density waves. Right: specific heat and entropy in the vicinity of the
metamagnetic transition between LM and HM phases shows a ∝ ∣H − Hm∣−1 divergence. Figures are taken
from Refs. [33, 34].
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K = −20 K = −6 K = −2 K = −1/2

Figure 1.13: Left: The three dimensional surfaces above are electron dispersions ε = ε(kx, ky) in the vicinity of
the singularity. The grey horizontal plane represents the critical energy of the singularity ε = 0. All values of
the modulus K < −2 lead to the same topological features. The value of the modulus K = −6 corresponds to
electron-like and hole-like sections of the same width, a property that is confirmed in the DFT calculation. This
implies existence of an additional symmetry in the system, a superposition of the particle-hole transformation
ε↔ −ε and rotation by an angle π/4. If we increase the value of the modulus, at K = −2 the system reaches a
critical point and the saddle disappears leaving a singular ∝ p4 electronic pocket.

X9 in the electronic dispersion ε(k).

From symmetry arguments, the electron dispersion in the vicinity of the singularity can

be captured by the dispersion

ε(k) = (k4
x +Kk2

xk2
y + k4

y)+ a(k2
x + k2

y)− µ. (1.134)

The core of the singularity is the set of 4th order terms k4
x + Kk2

xk2
y + k4

y. This part

corresponds to the germ of the singularity, while the remaining terms (a(k2
x + k2

y)− µ) are

the perturbation unfolding the singularity. Unlike simpler singularities, X9 forms a whole

family of singularities parametrized by the modulus K. While a generic singularity from

the X9 family has a co-dimension eight, one modulus and seven control parameters, the

presence of the lattice symmetry greatly simplifies the situation leaving only the modulus K

and two control parameters a, µ. Moreover, physical properties of the singularity are the

same for the whole range K < −2 (see Fig. 1.13) and the DFT calculations suggest a value of

the modulus close to K = −6, see Fig. 1.14. At this special value the low-energy dispersion

acquires an additional symmetry that is composed from the particle-hole transformation

and rotation by an angle π/4, with dispersion acquiring especially especially simple form in

polar coordinates (k, ϕ):

ε(k)∣K=−6 = k4 cos 4ϕ + ak2 − µ. (1.135)
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Figure 1.14: Left: topological phase diagram of the effective model (1.134)) with an added k8 term to close the
Fermi surface. It is very similar to the phase diagram of BLG (Fig. 1.2). In Sr3Ru2O7 there is no control over
the parameter a > 0, so that only green, yellow and red phases are accessible. Right: results of DFT calculation
performed by Dmitry Efremov [36]. Shown is the Fermi surface of a single spin species. Yellow color shows the
Fermi surface at zero magnetic field and gray shows the Fermi surface near the singularity at H = 7.8 T

The DoS of states of this dispersion has a critical ∝ ∣µ∣−1/2 scaling for a = 0 and can be

summarized as

ν(µ)∝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣µ∣−1/2 , ∣µ∣ ≫ µc

ln
µc

∣µ − µc∣
, ∣µ − µc∣ ≪ µc,

(1.136)

where the critical value of the chemical potential µc = a∣a∣/4. We present a detailed calculation

leading to the result above in the appendix A.1.

1.8 Conclusion

We studied the properties of electronic systems tuned to a monkey saddle singularity, where

the dispersion is ∝ p3
x − 3px p2

y. We showed that such a situation occurs in a multicritical

Lifshitz point where three van Hove singularities merge. We showed that such a singular

point is accessible in bilayer graphene by controlling two parameters, the interlayer bias

voltage and the chemical potential. We identified a number of experimentally accessible
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features associated with the monkey saddle dispersion when the system is subject to a

magnetic field. The Landau level structure has a trademark behavior where Em ∝ (Bm)3/2,

different from the behavior of both linearly or quadratically dispersing systems. The

oscillations of either thermodynamic or transport properties with the applied magnetic field

(de Haas-van Alphen or Shubnikov-de Haas oscillations) contain a signature tripling of the

oscillation period when the Fermi energy crosses the saddle point energy. This tripling,

associated with the topological transition between a single- and three-sheeted Fermi surface,

can be viewed as a smoking gun of the monkey saddle singularity.

Generically, the singular electronic dispersion in such multicritical Lifshitz point implies

a strong tendency towards development of many-body instabilities. We found that the

stronger divergence of the density of states in monkey saddle singularities (n = 3), as

compared to the case of ordinary van Hove singularities (n = 2), brings about crucial

simplifications in the field theoretical analysis of the effect of interactions. We showed that

the theory for systems with higher order singularities (n > 2) is super-renormalizable. Thus,

in contrast to the case of van Hove singularities where a renormalization group analysis

requires two cut-off scales to properly account for the singular and non-singular parts of

the Fermi surface, the analysis of higher order saddles requires no large momentum cut-off,

since there are only infrared divergences, which are regularized by temperature T and

chemical potential µ.

Via renormalization group analysis of the super-renormalizable theory, we showed

that the non-interacting electron fixed point of a system with a single monkey saddle is

unstable to interactions, developing either a superconducting instability or non-Fermi liquid

behavior. We also showed that the electronic lifetime depends crucially on the symmetry

of the dispersion, with odd and even saddles displaying non-Fermi-liquid and marginal

Fermi liquid behavior, respectively. For bilayer graphene, which has two non-nested monkey

saddles at the K and K′ points, we showed that interactions (depending on their nature) lead

to s-wave superconductivity, ferromagnetism, charge-density wave, or spin-density wave.

The studies of multicritical Lifshitz points in electronic systems suggest an exciting link
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to catastrophe and singularity theories. Namely, the monkey saddle could be considered

as a lattice-symmetry-restricted elliptical umbilic elementary catastrophe D−
4 . Catastrophe

theory may be a useful language to classify the different possible singularities where Fermi

surface topology changes. The relevant classification at criticality is not that of the Fermi

surface topologies, but of the singularity itself. Controlling the chemical potential and

the interlayer bias voltage in bilayer graphene is a clear example of how to engineer a

catastrophe in an electronic system, the monkey saddle. Crystalline symmetries may reduce

the possible types of catastrophes in the ADE classification that could be realized in solid

state systems. We showed that Sr3Ru2O7 is another example of the system with a singularity

in electronic dispersion. Remarkably, it displays an X9 singularity that falls outside of the

ADE classification and is an example of a degenerate singularity, being in fact a whole

family of singularities. Which other singularities could occur in electronic systems remains

an open problem. However, our analysis of the physical consequences of such singularities

should be applicable to other types of catastrophes in systems of electrons.
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Chapter 2

Topological electronic properties of

silicon

2.1 Introduction

The experimental discovery of the integer quantum Hall effect [37], where the Hall resistance

is quantized to the extraordinary precision of one part in a billion, led to the new standard

of resistance for the international system of units. A degree of precision such as this has

its roots in a fruitful confluence of physics and mathematics, which ties the Hall resistance

to a topological quantity. In the case of the integer Hall effect, this quantity is the first

Chern number associated to each filled Landau level [38]. The integer Hall effect was the

first example of a system with topological electronic properties; the number of systems in

which topology plays a prominent role has grown explosively in the recent past, fueled by

the discovery of a new class of topological band insulators occurring in semiconductors

with strong spin-orbit coupling, in which gapless surface states exist [39, 40, 41, 42, 43,

44, 45, 46, 47, 48, 49, 50, 51, 52] (for reviews, see Refs. [53, 54].) After the discovery of

topological insulators, many examples of topological semimetals were identified, such as

Weyl metals [55, 56, 57, 58, 59, 60, 61] and systems with Weyl nodal lines [55, 62], and nodal

chains [63].
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Spin-orbit interactions play a prominent role in the topological insulators and Weyl

systems, but spin-orbit coupling is not central to the understanding of the basic electronic

properties of silicon. Indeed, in the standard classification of topological insulators, silicon is

not classified [64] as one with protected Dirac surface states. Therefore, silicon thus far has

sat on the sidelines. Here we show that the sublattice structure of crystals such as silicon

is responsible for a network of Berry flux lines in the Brillouin zone that link at points of

high symmetry in momentum space. This Berry flux network is topologically stable, obeys

ice rules (two in, two out) at the X points, and is responsible for topological protection of

degeneracies along the X-W direction. The nontrivial topological structure of the Berry

flux network in silicon shares the same physical origin as the Berry flux in graphene: the

fact that there are two atoms in the unit cell gives rise to a spinor structure with associated

Berry phases. The existence of the Berry flux network opens a novel “topological knob” to

manipulate electrons in silicon, especially in light of progress made in the past decade from

studying the effects of Berry phases in the electronic properties in graphene.

The presentation of the results in this chapter is organized as follows. In Sec. 2.2 we

identify the spinor structure and the Berry flux within a general tight-binding approximation

(valid for an arbitrary number of orbitals). We argue based on topological and symmetry

arguments that the Berry flux network is robust and remains beyond the tight-binding

description of silicon. In Sec. 2.3 we derive an effective two-band Hamiltonian that describes

key topological properties of silicon. We also argue that it corresponds to a simple toy tight-

binding model with just two s-orbitals per site. In Sec. 2.4 we point out a bulk-boundary

correspondence, and existence of topological drumhead states in both the toy model and

real silicon that follows from the bulk band topology. Such connection is in a close analogy

with a physics of nodal-line and nodal-chain semimetals. In Sec. 2.5 we perform a numerical

analysis of a thin silicon slab to find energy disperion of drumhead states within sp3s∗

model. We suggest that the valence band drumhead states can be visualized with ARPES.

We also consider a silicon quantum well with a large voltage bias and show that in certain

regimes drumhead states dominate low-energy behavior of the system. We close the chapter
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by summarizing the results and discussing open problems in Sec. 2.6.

2.2 Berry flux network

A tight-binding Hamiltonian for a system on a bipartite lattice comprised of sublattices A

and B can be represented as

H(k) =
⎡⎢⎢⎢⎢⎢⎣

HAA(k) HAB(k)

HBA(k) HBB(k)

⎤⎥⎥⎥⎥⎥⎦
, (2.1)

where the blocks HAA and HBB contain hoppings between sites in the same sublattice, and

the blocks HAB and HBA = H†
AB contain hoppings between sites is different sublattices. The

size of these blocks depend on the number of orbitals included in the tight-binding model.

For example, in graphene the blocks are 1 × 1 if one considers only the π-orbital, and in

silicon the blocks are 4× 4 if one takes account of only the s, px, py, pz orbitals (or 5× 5 in

the sp3s∗ model [65], with the inclusion of the s∗ orbital). The diagonal blocks are periodic

in k-space: HAA(k) = HAA(k +Gi) and HBB(k) = HBB(k +Gi), where Gi (i = 1, . . . , d) is a

reciprocal lattice basis vector (d = 2 for graphene, d = 3 for silicon). The matrix elements of

the off-diagonal blocks are written as

[HAB(k)]αβ = −∑
µ

tαβ(dµ) eik⋅dµ , (2.2)

where the vectors dµ connect the atoms from A to B, and the tαβ(dµ) contain the overlap of

the orbitals α and β separated by dµ. Because the vectors dµ are not Bravais lattice vectors,

dµ ⋅Gi is generically not a multiple of 2π, and therefore the off-diagonal blocks HAB and

HBA are not periodic in k-space. An attempt to gauge out these non-periodicities comes

with the price of adding singularities (branch cuts) to the phase of the wave function in

momentum space.

In graphene the vectors dµ, µ = 0, 1, 2, point to the vertices of a triangle, while in silicon

the dµ, µ = 0, 1, 2, 3, point to the vertices of a tetrahedron. In these lattices (see Appendix B),

it follows that HAB(k +Gi) = eiΦ(Gi) HAB(k), where Φ(Gi) = 2π/N, with N = 3 and N = 4
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Figure 2.1: A loop in k-space encircling a single π-flux line. A Berry flux network in k-space is
schematically shown in red color with the grey surface guiding the visualization of the flux flow. Blue
color represents a 0–G1–(G1 +G2)–(G1 +G2 +G3)–0 walk that we use to argue the existence of the Berry
π-flux/Dirac line piercing this loop.

for the graphene and silicon lattices, respectively. The Hamiltonian H(k) is not periodic in

k-space; however, it is periodic up to a gauge transformation that rotates the amplitudes on

the two sublattices by opposite phases:

H(k+Gi) = U(Gi) H(k) U†(Gi) , (2.3)

with

U(Gi) = e i 1
2 Φ(Gi) σz , (2.4)

and σz a Pauli matrix acting on the A/B sublattice grading. It follows from Eq. (2.3) that the

eigenenergies ε(k) = ε(k+Gi), as expected. However, the spinor structure and the lack of

periodicity of the matrix Hamiltonian H(k) (not just its eigenvalues) is what leads to the

Berry π-vortices at the K points in graphene, and the Berry π-flux network that we uncover

in this work. (In the Appendix B we illustrate how the generic framework above recovers

the familiar results in graphene as a warm up for the calculations in silicon.)

Consider the walk in k-space that visits, in order, the points k, k+G1, k+G1 +G2, k+

G1 +G2 +G3 and back to k. This walk passes through 4 of the 6 edges of the tetrahedron
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formed by the four points in k-space, closing a loop. We choose the initial point not to be

one of high symmetry, to avoid that the edges pass through band crossings, thus avoiding

degeneracies along the walk. For example, one may choose to start close to but not at the Γ

point, say at k = (δx, δy, δz), with infinitesimal δx,y,z. At the end of the walk, the Hamiltonian

returns to H(k), but the eigenvector is rotated by the sequence of unitary operations

U(−G1 −G2 −G3) U(G3) U(G2) U(G1) = e iπ σz = −I , (2.5)

which amounts to a rotation by π. This geometric phase implies the existence of π-flux

lines in k-space, which pierce the loop we described above. An example of a π-flux network

that threads the 4-edged loop in k-space is shown in Fig. 2.1, which, as we show below,

corresponds to the case of the conduction band in silicon.

These singular flux lines are stable, and cannot be removed by small deformations.

Silicon is inversion symmetric, which implies that the Berry curvature B(k) = B(−k); in the

absence of time-reversal breaking perturbations, B(k) = −B(−k). These two symmetries,

together, imply that the Berry curvature vanishes everywhere with the possible exception

of singular lines carrying flux multiple of π, like those we identified above. These two

symmetries thus ensure that the π-flux cannot spread over a finite region, and thus remains

singular and contained within a network of flux lines circulating around the Brillouin zone.

The number of orbitals in the description of the system does not alter our conclusions based

on the topological constraints imposed by Eq. (2.5).

To visualize the network of fluxes in silicon, we consider explicitly the 5-orbital sp3s∗

nearest-neighbor tight-binding model [65]. This model captures essential features of silicon’s

band structure; in particular, it reproduces the conduction band minimum along the ∆ line

connecting the Γ and X points in the Brillouin zone. In this approximation, sites within

the same sublattice are not connected, so that diagonal blocks simply contain the on-site

potential energies HAA/BB = diag(Es, Ep, Ep, Ep, Es∗), while the inter-sublattice hoppings
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Figure 2.2: Berry curvature field. Left: a single first Brillouin zone. Right: a doubled Brillouin zone. The
colored spheres represent three inequivalent X points. The grey surface guides the visualization of the flux flow
and the ice-rule links at the X points.

contain the non-trivial momentum dependence:

HAB(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vss g0(k) Vsp g1(k) Vsp g2(k) Vsp g3(k) 0

−Vsp g1(k) Vxx g0(k) Vxy g3(k) Vxy g2(k) −Vs∗p g1(k)

−Vsp g2(k) Vxy g3(k) Vxx g0(k) Vxy g1(k) −Vs∗p g2(k)

−Vsp g3(k) Vxy g2(k) Vxy g1(k) Vxx g0(k) −Vs∗p g3(k)

0 Vs∗p g1(k) Vs∗p g2(k) Vs∗p g3(k) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.6)

where momentum functions

g0(k) =1
4
(eid0⋅k + eid1⋅k + eid2⋅k + eid3⋅k) ,

g1(k) =1
4
(eid0⋅k + eid1⋅k − eid2⋅k − eid3⋅k) ,

g2(k) =1
4
(eid0⋅k − eid1⋅k + eid2⋅k − eid3⋅k) ,

g3(k) =1
4
(eid0⋅k − eid1⋅k − eid2⋅k + eid3⋅k) ,

(2.7)

and d0 = a
4 (1 1 1), d1 = a

4 (1 1̄ 1̄), d2 = a
4 (1̄ 1 1̄), and d3 = a

4 (1̄ 1̄ 1), with a = 5.4310Å. The

interaction parameters in the Hamiltonian are (in eV) Es = −4.20, Ep = 1.72, Es∗ = 6.69, Vss =

−8.30, Vsp = 5.73, Vs∗p = 5.38, Vxx = 1.72, Vxy = 4.58 [65]. The resulting band structure is shown
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Figure 2.3: Electronic band structure of silicon within the sp3s∗ model. Left: all bands exhibit a
two-fold degeneracy along the X-W line (highlighted in red). This degeneracy may be used as evidence for the
existence of the Dirac lines along the X-W direction. Right: first Brillouin zone with points of high symmetry.

in Fig. 2.3.

This spectrum has an intricate set of lines along which the spectrum is twofold degen-

erate, in particular along the Z line connecting the X and W points, which is consistent

with the O7
h crystal symmetry of silicon [66]. We argue that these degeneracies, associated

with the Berry flux π identified above, correspond to Dirac lines: fixing the longitudinal

momentum along the line yields a two-dimensional Dirac Hamiltonian for the transverse

degrees of freedom. While the dispersionless nature of these lines along their longitudinal

direction is an artifact of the nearest-neighbor tight-binding approximation, the two-fold

degeneracy and the Berry π-flux that travels along these lines are robust. We remark that

distorting the hoppings would not remove these lines of degeneracy because the π-fluxes

are topologically stable; hence topology ensures that there should be lines of degeneracy in

silicon even if rotational symmetry is broken but sublattice symmetry is not. (An analogous

reasoning holds in graphene, where the nodes are stable even if the hopping matrix elements

to the three neighbors are close but unequal.) We find that the lowest conduction band

exhibits the simplest pattern of these Berry flux lines, which reduces to a cage-like net of

Dirac lines connecting inequivalent X points (going along the Z line through both X and

W points), as is shown on the Fig. 2.2. The Dirac lines meet at the X point, forming an
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ice-nodal point (Fig. 2.4).

2.3 Effective Hamiltonian near the X point

2.3.1 Degenerate perturbation theory

Since electron energies at the X point come in degenerate pairs, the relevant physics of the

two lowest conduction bands (that together are degenerate along the X-W direction) is to

be described by an effective 2× 2 Hamiltonian. This can be done within the framework of

degenerate perturbation theory [67].

In order to derive such an effective Hamiltonian we first diagonalize the full 10 × 10

Hamiltonian of the sp3s∗ model at the X point to identify pairs of eigenstates corresponding

to five degenerate eigenvalues. Then we expand the Hamiltonian in the newfound basis to

the second order in momentum (around the X point) to get a matrix of the type

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĤI1 ĤI1 I2 . . . ĤI1 I5

ĤI2 I1 ĤI2 . . . ĤI2 I5

⋮ ⋮ ⋱ ⋮

ĤI5 I1 ĤI5 I2 . . . ĤI5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.8)

where Iα label groups of degenerate sublevels and HIα are Dα by Dα matrices with Dα being

the degeneracy of a given level group. ĤIα Iβ
represent matrix elements between two such

groups of levels. In the case of the X point in silicon all degeneracies are twofold and

{I1, I2, I3, I4, I5} = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)}, the enumeration starting from the lowest

valence band. Then within the second-order perturbation theory the effective Hamiltonian

describing level group Iα is given by

Ĥeff
Iα

= ĤIα −∑
β≠α

ĤIα Iβ
ĤIβ Iα

EIα − EIβ

. (2.9)

Since Iα and Iβ are groups of indices, we can also clarify the equation above and expand in
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a more explicit form using ordinary level indices m, n, l and the full Hamiltonian H as

(Ĥeff
Iα

)m,n = Hm,n −∑
β≠α

1
EIα − EIβ

∑
l∈Iβ

Hm,l Hl,n, m, n ∈ Iα. (2.10)

Performing this procedure for silicon numerically, we obtain the effective Hamiltonian

for bands 5 and 6

Heff
(5,6)(p) =

⎡⎢⎢⎢⎢⎢⎣

1.63+ 0.02p2
x 0.29py pz + 0.02ipx

0.29py pz − 0.02ipx 1.63+ 0.02p2
x

⎤⎥⎥⎥⎥⎥⎦
, (2.11)

where we expanded Hamiltonian in momentum k = (2π, 0, 0)+p around one of the X points.

This Hamiltonian can be conveniently represented with Pauli matrices:

HX = ε0(p) σ̂0 + vx px σ̂1 + κyz py pz σ̂2, (2.12)

where vx = 0.51, κyz = 0.18, ε0(p) = 1.63 + 0.11 p2
x, and σ̂i are Pauli matrices. (Energies are

measured in eV and momentum in units of 1/a.) This expression explicitly shows the

ice-nodal nature of the X point. For example, in the vicinity of the points 2π (1, 0,±0.1) the

Hamiltonian takes the form

HX±δ = ṽx px σ̂1 ± ṽy py σ̂2, (2.13)

where ṽx = 0.51 and ṽy = 0.02 are electron velocities at the 2π(1, 0,±0.1) points. This

Hamiltonian structure indicates two Dirac lines with opposite chiralities approaching the

X point along the z-axis from opposite directions. Similarly, there are two more such lines

along the y-axis (see Fig. 2.4).

2.3.2 Toy model

It turns out that all crucial topological properties of the conduction band can be studied

within a simple toy model, with a single orbital per site and nearest-neighbor tight-binding
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Figure 2.4: Berry flux network near the X point. The figure shows Dirac lines linking at the X point
according to the ice rule 2-in and 2-out. Red loops show the winding of the phase around the lines to visualize
the ice rule.

Hamiltonian

Htoy(k) =tnn

⎡⎢⎢⎢⎢⎢⎣

0 g0(k)

g∗0(k) 0

⎤⎥⎥⎥⎥⎥⎦

=tnn (σ̂1 Re g0(k)+ σ̂2 Im g0(k)) .

(2.14)

Hopping matrix elements to farther neighbors can be included, especially between the

sites of the same sublattice, to reproduce features of silicon’s band structure, such as a

conduction band minimum along the ∆ line. Yet, the topological features are captured by

the off-diagonal terms alone: the Hamiltonian is degenerate along the g0(k) = 0 manifold,

yielding essentially the same cage-like net of Dirac lines connecting at X points, just as in

the full sp3s∗ model for silicon.

The real and imaginary parts of g0(k) are

Re g0(k) = cos
kx

4
cos

ky

4
cos

kz

4
,

Im g0(k) = − sin
kx

4
sin

ky

4
sin

kz

4
,

(2.15)
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from which we identify

(2π, 0, s), (2π, s, 0), (0, 2π, s), (s, 2π, 0), (0, s, 2π), and (s, 0, 2π) for s ∈ [0, 2π) (2.16)

as the set of nodal lines, crossing at the three ice-nodal X points,

(2π, 0, 0), (0, 2π, 0), (0, 0, 2π). (2.17)

Expanding around one of the ice-nodal points, k = (2π, 0, 0)+p, we obtain

Re g0(k) =− sin
px

4
cos

py

4
cos

pz

4
≃ −1

4
px,

Im g0(k) =− cos
px

4
sin

py

4
sin

pz

4
≃ −

py pz

16
,

(2.18)

reproducing the same structure of the X-point effective Hamiltonian derived using the sp3s∗

model:

Htoy, X = −VAB (
px

4
σ̂1 +

py pz

16
σ̂2) . (2.19)

We note that perturbing this toy model Hamiltonian with a σ̂3 term gaps out the Dirac lines

(it breaks sublattice symmetry), while a σ̂2 perturbation separates the Dirac lines in different

ways depending on the sign of the σ̂2 term, indicating the singular character of the ice-nodal

point.

Finally, we gather all results above on the ice-nodal points and combine them with other

information inferred from results on the band structure of silicon that is obtained from

methods other than tight-binding. We condense this combined information into an effective

Hamiltonian near the (2π, 0, 0) nodal point:

Heff, X =
p2

x

2m`
+

p2
y

2mt
+

p2
z

2mt
+ vx px σ̂1 + κ py pz σ̂2 , (2.20)

where m` = 0.98 me and mt = 0.19 me coincide with the masses from the standard low-

energy description of the conduction band (with me the electron mass); the velocity vx =

0.15 (2π/a)(h̄/m`) is estimated from the location of the conduction band minimum; and κ

follows from the dispersion along the X-U direction. This effective Hamiltonian, we claim,

captures the topological properties and hence gives a more accurate description of the
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low energy states in silicon’s conduction band than simply expanding the dispersion to

quadratic order near the band minimum. That the minimum occurs close to the X point

is captured by the interplay between the Dirac dispersion along the x-direction and the

parabolic term, which places the minimum close to the X point (notice that the energy

difference between the minimum and the X point is only 0.08eV [67]).

2.4 Surface states and bulk-boundary correspondence

Probably the most important theoretical insight in the field of topological insulators is the

fact that non-trivial bulk topology leads to the existence of robust surface states. Recently

this idea was extended to topological semimetals, where Fermi surface consists of a nodal

loop. In such materials surface states exist only in parts of the surface Brillouin zone that

are determined by projecting the nodal loop from the bulk Brillouin zone onto the surface

Brillouin zone. Here we argue that the same bulk-boundary correspondence applies to

silicon and the existence of the Berry flux "wire frame" leads to the existence of non-trivial

topological drumhead surface states.

The two-band toy model Hamiltonian (2.14) is of an archetypal semimetallic form and

the manifold g0(k) = 0 defines a nodal loop. Moreover, this Hamiltonian describes a nodal

chain semimetal, a topologically critical system with crossing nodal lines yielding ice-nodal

X points [63, 68]. According to the intuition from semimetallic systems [69, 70, 71, 72], the

projection of the bulk wire frame onto the surface Brillouin zone breaks it into segments.

These segments can be colored with two colors, for example red and blue, in such way

that adjacent parts are always of the opposite color. Surface drumhead states then exist

in all segments colored either in blue or in red, depending whether the crystal surface is

terminated at A or B sublattice. In our case of silicon, the projection of the wire frame breaks

down surface Brillouin zone into quadrants. Surface states exist either in first and third or

second and fourth quadrants, see Fig. 2.5.

In the nearest neighbor toy model sublattice symmetry protects dispersionless nature of

the wire frame and the Fermi Surface at this energy coincides with the wire frame. The same
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Figure 2.5: Bulk-boundary correspondence within the toy model. (Doubled) bulk and surface Brillouin
zones are topologically related. Bulk wire frame projected on the surface Brillouin zone breaks it into quadrants.
Surface drumhead state exists either in first and third or second and fourth, depending whether the crystal
surface terminates on A or B sublattice

happens at the touching of the two lowest valence bands in the sp3s∗ model, see Fig. 2.3. In

real silicon, however, X −W line poss nontrivial dispersion. Hopping matrix elements to

farther neighbors can be included in order to break sublattice symmetry and reproduce this

feature:

Htoy-2(k) = σ̂0 (tn3 vn3(k)+ tn4 vn4(k))+ tnn (σ̂1 Re g0(k)+ σ̂2 Im g0(k)) , (2.21)

where

vn3(k) = 1
2
∑
i≠j

cos
kia
2

cos
k ja
2

, (2.22)

vn4(k) =∑
i

cos(kia). (2.23)

We allow for both next-nearest-neighbor (n3) and next-next-nearest-neighbor (n4) hopping.
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Figure 2.6: Electronic band structure and Fermi surface of the toy model. Left: Electronic band
structure of toy model with next- and next-next-nearest neighbor hoppings included. The latter leads to
nontrivial dispersion along X-W line. Right: Fermi surface corresponding to the energy level shown with red
dashed line on the left figure. The chosen energy crosses both bands, lower is shown with blue color and upper
with red.

It turns out that n3 hopping alone is not sufficient to destroy the flatness of dispersion along

X-W lines. We fit parameters of the toy model to reproduce Γ, X, W point energies in the

lowest valence band of real silicon. The resulting band structure and Fermi surface in the

vicinity of the X point are shown in Fig. 2.6.

2.5 Silicon quantum well

2.5.1 Zero Voltage Bias ∆V ≡ 0

The clean and straightforward connection between bulk topology and surface states relies

on the sublattice symmetry, which, unfortunately, is destroyed even within the sp3s∗ model.

While sp3s∗ model has matrix elements only between A and B sublattices, only two of the

ten states are involved in the formation of each wire frame. When the full Hamiltonian

is projected on the relevant two dimensional subspace for each wire frame, longer range
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Figure 2.7: Energy dispersion E(ky, kz) within a silicon slab (valence bands on the left and conduction
bands on the right). Figure in the center shows surface Brillouin zone with shaded areas (2nd and 4th
quadrants) revealing region where a surface state exists within a toy model.

hopping elements are induced via transitions to the states that were projected out. For

example, if we focus on the lowest energy wire frame that is formed by first two bands,

next-nearest neighbor element between an A site at the i-th and (i+1)-th cells is formed as

− ∑
α=2...10

⟨Ai, 1 ∣ Heff ∣ Bi, α⟩ ⟨Bi, α ∣ Heff ∣ Ai+1, 1⟩
(Eα − E1)2 . (2.24)

Despite this unfortunate fact, the bulk-boundary correspondence and surface states in

the toy model are of topological nature. Hence, we expect that breaking respective symmetries

retains qualitatively bulk-boundary correspondence and surface states for reasonably large

perturbations of the toy model.

To explore drumhead states within sp3s∗ model, we perform a numerical calculation of

electron dispersion in a silicon slab. We consider a slab of the material with [100] surface and

the thickness approximately 10 nm (20 unit cells). The sample is infinite in y, z directions

parallel to the surface, for which we perform the Fourier transformation, retaining only the

spatial dimension x perpendicular to the surface, so that the electron wavefunction can be

factorized as

Ψαµ(xi, ky, kz) = ei(kyy+kzz)ψ
αµ
ky,kz

(xi), (2.25)

where xi is the position of the i-th unit cell (i = 1 . . . 20), α = 1, 2 labels A/B sublattices and

µ = 1 . . . 5 enumerates each of the five orbitals. We find all eigenvalues of the Hamiltonian

Ei(k∥) for each value of the momentum k∥ = (ky, kz) parallel to the surface and repeat

this procedure along the path Γs −Xs1 −Xs2 within the surface Brillouin zone. The result is

shown on the Fig. 2.7. While the exact nature of the bulk-boundary correspondence does
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not survive in the five band model, the qualitative connection remains clear.

As we have argued in the previous section, the energy dispersion of silicon in the vicinity

of the touching of the lowest valence bands is fairly close to that of the toy model. Largely,

this is the case due to other bands well separated in energy from the first two valence

bands. To further clarify the connection between the surface states and the bulk topology,

we consider a following modification of the sp3s∗ model. We slowly tune interband hopping

parameters from 0% to 100%,

(V′
sp(α), V′

s∗p(α), V′
xy(α)) = α ⋅ (Vsp, Vs∗p, Vxy) , (2.26)

keeping other parameters intact. At α = 0 we have five exactly solvable copies of the

toy model and for each of them we know that the drumhead states exist and they are of

topological nature. This way, by slowly tuning α from 0 to 1, we can track the evolution of

the surface state arising from the lowest energy wire frame.

In Fig. 2.8 we zoom into the region between points Xs2 and Xs1, to show a striking

robustness of the drumhead state in the full sp3s∗ model. On the top panels, we show the

evolution of the spectrum for α = 0, 0.5, and 1.0, and on the bottom panels we show the

spectrum resulting from further addition of a term that breaks inversion symmetry and

opens a gap. Notice that the drumhead states acquire a dispersion as α is turned on, and

that the corresponding bandwidth is large. Thus, if one opens a gap that is smaller than

that bandwidth (as in the bottom panels), a stable drumhead state remains at the surface,

crossing the bulk gap. We remark that the scale of the bandwidth is rather large in the sp3s∗

model, of the order of several eV. In other words, breaking of the chiral symmetry protects

the drumhead state against other perturbations that weakly break any other symmetry.

In addition to tracking the α-dependence of the energy spectrum, for each value of α we

also calculate the inverse participation ratio defined as

ipr(ky, kz) =∑
i
∣ψky,kz(xi)∣

4
. (2.27)

For localized states the ipr is inversely proportional to the localization length ∝ 1/l, while
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Figure 2.8: Drumhead state dispersion for different interband interaction strengths α = 0.0, 0.5, 1.0
(columns). Bottom row shows dispersion with an additional A/B staggered chemical potential corresponding to
opening of 1 eV bulk gap between the first and second valence bands. We increased the number of unit cells to
n = 40 for the clarity of the presentation.
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Figure 2.9: Inverse participation ratio of the surface drumhead state related to the lowest in energy wire
frame. The figures are given within the doubled surface Brillouin zone, and the progression from left to right
represents tuning of interband interactions from complete absence α = 0 to a full sp3s∗ model α = 1 (following
Eq. (2.26)). The figures are given for α = 0, 0.25, 0.50, 0.75, 1. The red cross shows a projection of the bulk
wire frame onto the surface Brillouin zone.

for bulk states it vanishes as ∝ 1/L, where L is the size of the system. The resulting inverse

participation ratios are shown in the Fig. 2.9. Aside from the emergence of new surface

states as we tune α, the topological nature this surface state is unambiguous.

2.5.2 Non-Zero Voltage Bias ∆V

As we discuss above, electron states in a silicon slab can be divided into localized (along the

x−direction) surface states and delocalized bulk states. Application of perpendicular electric

field leads to localization of bulk states and formation of the Shockley-type states near the

bottom of the conduction band. The conventional theories of MOSFETs focus on such states.

However, here we show that in the clean system of a very thin slab geometry it is possible

to achieve regime when topological drumhead states dominate low energy behavior of the

system.

Since topological surface states are strongly localized at the surface, they are more

sensitive to the application of the perpendicular voltage bias. By perturbation theory,

voltage bias leads to a linear shift of the surface levels

δEtopological ∝ V. (2.28)

In contrast, bulk states have a zero first order correction and will experience only quadratic
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Figure 2.10: Left: Energy dispersion of the silicon slab with applied voltage. The lowest state is the drumhead
state showing a strong anisotropy and only C2 rotational symmetry. The second state is of a Shockley type is a
bulk electron localized by electric field. In contrast to the lowest state, the second state is nearly isotropic at
lowest energies. Right: inverse participation ratio for the first and second conduction band surface states (top
and bottom respectively).

shift under the application of the voltage bias

δEnon−topological ∝ V2. (2.29)

This means that at small enough thickness of the sample it should be possible to pull

down topological surface states to dominate low-energy transport of the system. At stronger

fields the scaling (2.29), breaks down, but qualitatively the conclusion remains the same. We

verify these speculations numerically and find that they are indeed true.

In this subsection we consider a slab of 20 unit cells to magnify the effects of electric

field. Fig. 2.10 shows the energy dispersion of two lowest conduction band states when a

voltage bias equal to 50% of the gap is applied, ∆V = 0.59 V. We can see that the drumhead

surface state indeed dominates the low energy behavior of the system. Moreover, while

the non-topological Shockley-type states have almost perfect C4 symmetry and are nearly
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isotropic at lowest energies, the drumhead state is strongly anisotropic with the rotational

symmetry reduced to C2. Such drastic difference will be readily observable in transport

properties of clean intrinsic silicon structures.

2.6 Conclusion

In this work we identified a network of π Berry flux lines in reciprocal space, for silicon. We

first constructed a rather general argument, based solely on the existence of two sublattices,

to argue that there must be π flux lines independently of how many bands there are. The

π flux lines are tied to the spinor structure due to the two sublattices, and the flux cannot

spread out because of time-reversal and inversion symmetry. The situation is analogous

to what happens in graphene, where the Dirac points carry π flux and cannot be removed

perturbatively.

We then identified these lines in a tight-binding model containing 5 orbitals per sublattice

(a 10 × 10 matrix Hamiltonian). We showed explicitly that the π flux lines appear, and

identified the X point as a location where flux lines meet. The electronic dispersion near the

X point can be described in terms of the Dirac lines analyzed in this chapter.

Flux lines inside the bulk Brillouin zone imply the existence of drumhead surface states,

which are confined within the projection of the flux lines onto the surface Brillouin zone.

We discussed how the breaking of sublattice symmetry makes the identification of the

drumhead states less obvious, but that nevertheless the qualitative connection between

bulk-boundary remains.

There are two sets of questions that our work suggests:

• Can one observe all or some of these features experimentally?

• Can the knowledge that these topological features exist in silicon lead to novel elec-

tronics in this “old” material?

Regarding the first question, one of the possible tools to probe these flux lines and the

dispersion of wire frames is angle resolved photoemission spectroscopy (ARPES). Since the
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features we identified are present in all bands of silicon, one can study them in the valence

bands, which are accessible in ARPES. If high energy photons are used, not only can one

probe electronic states deep inside the valence bands but also use the high penetration depth

(here the x-direction) of those photons to map constant energy surfaces as function of ky

and kz for different kx. Such techniques are used in Ref. [73], for example. These types of

scans would be able to identify the wire frames, providing evidence for the lines of nodes

where the flux runs through.

As for addressing the second question, one must find ways to pull the physics of these

nodal lines or surface states to the Fermi level. While the Fermi level lies in the gap for

intrinsic silicon, one can reach the regime where the Fermi level crosses the conduction

band in inversion layers in doped silicon field effect transistors (FETs).

Another possibility is to use undoped silicon, and pull down the surface states by electric

fields. States that are already localized at the boundary are more sensitive to potentials

caused by an electric field (a linear potential has its largest and smallest values at the

boundary). Intrinsic silicon cannot screen the electric field. Once the surface states are

pulled to the Fermi level, there should be metallic boundary states. The absence of disorder

should lead to high mobilities at these surfaces. While the mechanism described above does

not require that the surface states be drumhead ones, we already observe from Fig. 2.7 that

the lowest surface band at positive energies is of the drumhead type.

The findings presented in this work reveal novel topological electronic features in the

band structure of silicon, one of the best known and most studied materials. That these

features had been missed does not signal an accident, but rather suggests that there are

a number of topological properties occuring in many, if not most, other materials. The

topological features of silicon that we expose provide new impetus to revisit the physics of

bulk silicon and two-dimensional electron gases in silicon FETs, particularly in light of what

is now known from recent studies of both graphene and topological insulators.
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Chapter 3

Superfluid density of a photo-induced

superconducting state

3.1 Introduction

The subject of nonequilibrium superconductivity has recently gained much interest, in

part due to experiments on photo-induced transient states in YBa2Cu2O6+δ [74], and the

subsequent experimental and theoretical progress (see Ref. [75] for a review). In fact, ideas

to extend the temperature regime where superconductivity exists by optical excitation have

a long history. Their root can be traced back to the pioneering theoretical predictions by

Eliashberg and Gor’kov [76, 77], who showed that microwave radiation may assist the

formation of the superconducting gap and thus raise the transition temperature Tc. These

predictions were later confirmed by experiments [78]. The applied electromagnetic radiation

shifts the electronic occupation numbers, extending the temperature regime in which the

BCS self-consistency equation has a non-zero solution.

These ideas of population control can also be applied to systems that are not super-

conductors at equilibrium. It was proposed that superconductivity could be induced in

narrow, indirect gap semiconductors, with pairing between electrons in the same band

(intraband pairing) [79, 80, 81, 82]. A non-zero superconducting gap was shown to be
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Figure 3.1: Electrons of a semiconductor are optically pumped from the valence (red) band to the conduction
band (blue). In the absence of pumping, i.e. in thermal equilibrium, the conduction band is empty. The
laser drive creates a nontrivial steady-state distribution function partially depleting (populating) the valence
(conduction) band. Such a population imbalance can also be assisted via an auxiliary band (gray).

possible with attractive and, notably, with repulsive electronic interactions as well. The

latter case is particularly important because repulsion is prevalent in electronic systems.

However, in the latter case it was also noted that there was no Meissner effect accompanying

the formation of a gap, because the sign of the current response was opposite to that in a

standard superconductor: the system would respond as a perfect paramagnet instead of a

perfect diamagnet. This strange response, corresponding to a negative superfluid density,

signals that the state is unstable for repulsive interactions.

Recently, Ref. [83] proposed to use optical pumping to achieve interband, rather than

intraband, pairing. In this scheme, electrons sitting in two bands at widely different energies

and far away from the chemical potential can form interband Cooper pairs in the s-wave

channel, even in the case of repulsive interactions. (See Fig 3.1 for a sketch of the relevant

mechanism.)

In this chapter, we investigate the stability of the corresponding photo-induced interband

superconducting state by computing its superfluid density. We find a positive superfluid

density for repulsive interactions for all parameters (e.g., band curvatures, quasi-particle
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populations) where a non-trivial mean-field solution exist. The positivity of the superfluid

density implies the stability of the state as well as the existence of a Meissner effect. The

latter could be used as a reliable alternative to transport properties to confirm the presence

of a nonequilibrium superconducting order in a semiconductor.

of the results in this chapter is organized as follows. In Sec. 3.2 we introduce the system

that we study in the present chapter. In Sec. 3.3 we introduce Schwinger-Keldysh formalism

that helps us to describe nonequilibrium transport response of the system. In Sec. 3.4

we derive a superfluid density for a general non-equilibrium state with a well-defined

quasiparticle distribution function, specializing to the specific steady state in Sec. 3.5. We

close the chapter by summarizing the results in Sec. 3.6.

3.2 Model

We consider a two-band semiconductor model with electronic dispersions E1p and E2p. The

chemical potential of the system is set in the middle of the two bands, see Fig. 3.1. For

simplicity, we consider isotropic bands, i.e. Eα p = Eα−p for α = 1, 2. The semiconductor is

optically pumped with a broad-band light source, as described in Ref. [83]. In this setup, the

optical pumping creates a nonequilibrium distribution of the quasiparticles, which is key

to achieve the interband pairing. The semiconductor is coupled to external thermal bath,

a necessary condition for a well defined steady state, since external driving continuously

injects energy into the system.

3.2.1 Hamiltonian

We consider a two-band Hamiltonian

H = H0 + Hint, (3.1)

where H0 describes non-interacting system,

H0 = ⨋
pα

Eαpcα†
p cα

p, (3.2)
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with cα†
p and cα

p being the fermionic creation and annihilation operators corresponding the

electrons in the conduction (α = 1) and valence (α = 2) bands. To simplify the discussion, we

work with spinless electrons. Hint describes short-range interaction between electrons of the

valence and conduction bands,

Hint = Vint∫
p1,p2

c2†
p2

c2
p1

c1†
−p2

c1
−p1

, (3.3)

with Vint being positive for repulsive interactions.

Let us assume that, after a transient regime under the optical pumping, the interband

superconducting pairing has already built up. The mean-field description of the system

consists in the following Hamiltonian

H = ⨋
pα

Eαpcα†
p cα

p +
1
2 ⨋pαβ

[cα†
p ∆(iσy

αβ)cβ†
−p +h.c.], (3.4)

where ∆ is the s-wave superconducting order parameter to be determined self-consistently,

see below. σy is the usual Pauli matrix. Without loss of generality, we assume that ∆ is real.

After introducing the Nambu-Gor’kov spinor notation

Ψp = (c1
p , c2†

−p) , (3.5)

the Hamiltonian in Eq. (3.4) can be compactly re-written as

H = ∫
k

Ψ†
p[εp Ǐ + Epτ̌z +∆τ̌x]Ψp, (3.6)

where

Ep ≡ (E1p + E2p)/2 , εp ≡ (E1p − E2p)/2 , (3.7)

and where Ǐ, τ̌x, and τ̌z are the usual identity and Pauli matrices, respectively, in Nambu-

Gor’kov space.

The Hamiltonian can be readily diagonalized via the following transformations in
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Nambu-Gor’kov space

Ǔp = exp [ i
2

βpτ̌y] , with tan βp ≡
∆
Ep

, (3.8)

leading to

H = ∫
p

Ψ†
p[ξpτ̌z + εp Ǐ]Ψp , (3.9)

with ξp ≡
√

E2
p +∆2. We adopt the underlining to indicate the use of the quasiparticle basis.

3.2.2 Self-consistency equation

In this manuscript, we consider a generic steady state with a diagonal quasiparticle distribu-

tion function,

⟨Ψα†
p Ψβ

p⟩ = Ǔ†
⎛
⎜⎜
⎝

n1p 0

0 1− n2p

⎞
⎟⎟
⎠

Ǔ . (3.10)

To derive the self-consistency equation, we go back to the original microscopic electron

interaction and track the origin of the superconducting pairing in Eq. (3.4) as stemming

from an electronic interaction

Hint = Vint∫
p1,p2

c2†
p2

c2
p1

c1†
−p2

c1
−p1

, (3.11)

where Vint is positive for repulsive interactions. Within a mean-field treatment, we have

Hint = −∫
p
(∆c2†

p c1†
−p +∆∗c2

pc1
−p) , (3.12)

together with a self-consistency equation reading

∆ =Vint∫
p
⟨c2

pc1
−p⟩ . (3.13)

Using the explicit form of the distribution function in Eq. (3.10), the self-consistency equation

takes a standard form when written in terms of quasiparticle distribution function:

1 = Vint

2 ∫p

n1p + n2p − 1

ξp
, (3.14)
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where ξp ≡
√

E2
p +∆2. The nonequilibrium effects enter through changes of the quasiparticle

distribution functions with respect to their equilibrium values,

neq
1(2)p = nF(εp ± ξp, µ) , (3.15)

where nF(ε, µ) = [1+ exp(−(ε − µ)/T)]−1 is the Fermi-Dirac distribution at the temperature

T and chemical potential µ. The latter would reproduce the standard BCS self-consistency

equation.

3.2.3 Equations of motion for the distribution functions

In the general steady state, the electron distribution function can be parametrized by four

parameters,

⟨Ψα†
p Ψβ

p⟩ =
⎛
⎜⎜
⎝

n11
k s12

k

s12∗
k 1− n22

−k

⎞
⎟⎟
⎠

, (3.16)

Let us assume that, after a transient regime under the broadband optical pumping, the

interband superconducting pairing has already built up. The equations of motion for the

distribution function setup by the internal dynamics of the system and by coupling to the

reservoir. The former can be computed straightforwardly by commuting the distribution

function with the Hamiltonian of the system, while the latter can be boiled down to effective

decay rates Γ1(2), for electrons in conduction and valence bands. This eventually leads

to [83]

d
dt

n11
k = i∆s12

k − i∆∗s12∗
k − 2Γ1ñ1

k,

d
dt

n22
−k = i∆s12

k − i∆∗s12∗
k − 2Γ2ñ2

−k,

d
dt

s12
k = −i(2Ek − iΓ12)s12

k + i∆∗(n11
k + n22

−k − 1),

(3.17)

where the tilded quantities ñα
k = nαα

k − nF(Eαk, µα), and nF(Eαk, µα) are distribution functions

in the external thermal bath. We assume that we have two separate reservoirs for the

conduction and valence bands that have potentially different chemical potentials µα.

67



In the steady state all time derivatives are zero. The last equation gives a useful relation

s12
k = ∆∗

2Ek − iΓ12
(n11

k + n22
−k − 1), (3.18)

making use of it and proceeding with solving equations of motion, we get

n11
k + n22

−k − 1 =
4E2 + Γ2

12

4E2 + Γ2
12 + γ∗∆2

NS , (3.19)

s12
k = ∆∗(2E + iΓ12)

4E2 + Γ2
12 + γ∗∆2

NS , (3.20)

where NS = (nF(E1k, µ1)+nF(E2k, µ2)− 1) and γ∗ = Γ12(Γ−1
1 +Γ−1

2 ). Only these two quantities,

(3.19) and (3.20) are of interest, as we will see below.

Using Eqs. (3.10, 3.16), we get for the matrix quasiparticle distribution function

⎛
⎜⎜
⎝

n1k 0

0 1− n2k

⎞
⎟⎟
⎠
= Û

⎛
⎜⎜
⎝

n11
k s12

k

s12∗
k 1− n22

−k

⎞
⎟⎟
⎠

Û†, (3.21)

n1k = n11
k cos2 β

2
+ (1− n22

−k) sin2 β

2
+ (Re s12

k ) sin β,

1− n2k = n11
k sin2 β

2
+ (1− n22

−k) cos2 β

2
− (Re s12

k ) sin β.
(3.22)

As we have already mentioned, only the following combination is of interest,

n1k + n2k − 1 = (n11
k + n22

−k − 1) cos β + 2(Re s12
k ) sin β. (3.23)

Recalling that we set the order parameter to be real and focusing on energies larger than

the decay rate,

n1k + n2k − 1 = 4EE∆

4E2 + γ∗∆2 NS . (3.24)

3.2.4 Superfluid density

The focus of this chapter is on the Meissner effect i.e. the response of the system to a

non-uniform static electromagnetic vector potential. In this static limit, the electromagnetic
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properties are governed by the superfluid density defined through the following relation

jµ = −ρµν Aν. (3.25)

We consider the isotropic case, when the superfluid density tensor ρµν is reduced to a scalar

quantity ρ,

ρµν = (e2/d)ρ δµν. (3.26)

The superfluid density ρ in the present text differs from the standard definition by a factor

e2/d, where d is the spatial dimension, in order to simplify the expressions below.

Similarly to the equilibrium case, there are two contributions to the electric current,

paramagnetic and diamagnetic,

ρ = ρ(para) + ρ(dia) . (3.27)

Below we compute these two contributions for generic quasiparticle distributions. In

order to do this, we introduce Schwinger-Keldysh formalism in Sec. 3.3, use it to calculate

superfluid density in a generic nonequilibrium state with a well-defined quasiparticle

distribution function in Sec. 3.4 and then later specialize to the case of photo-induced

superconductivity in our specific setup in Sec. 3.5.

3.3 Schwinger-Keldysh formalism

Equilibrium systems have an inherent symmetry between electrons and holes: a hole at a

given energy corresponds exactly to an electron undergoing motion back in time at this

same energy. Such system can be fully described by considering an electron action

S = ∫
+∞

−∞
dt∫ dr ψ̄ [i∂t − Ĥ]ψ, (3.28)

where ψ̄, ψ are electron fields and Ĥ is single particle Hamiltonian. For simplicity, in this

section we consider a single band system. We then generalize the results for the case of the

two-band system.
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Figure 3.2: Keldysh integration contour Υ and four components of the Green’s function.

A process of extracting information from the action (3.28) is not without challenges:

derivation of finite temperature correlation functions typically involves Matsubara technique,

analytical continuation to and back from imaginary time. In the present chapter we will

be dealing with a system that is driven out of thermal equilibrium with external bath.

Such explicit time dependence of the Hamiltonian (external driving) adds another layer of

complexity to the theoretical description of the quantum system.

As we have stated above, in equilibrium it is enough to describe evolution of electrons

and the evolution of holes follows. In a formal language, the evolution of the creation

operator ψ† follows from the evolution of the annihilation operator ψ. In the presence of

external drive these two operators have to be described independently. One of the ways

to approach the description of such problem, beside a master equation formalism that

is especially popular in optical literature, is a Schwinger-Keldysh approach [84, 85, 86].

According to this approach, in order to accommodate the need to describe both ψ and ψ†

simultaneously, we can double the number of variables at each moment of time and consider

simultaneously forward and backward evolution in time. This leads to action

S0 = ∫
Υ

dt∫ drψ̄ [i∂t − Ĥ]ψ, (3.29)

where the time integral over t goes along the standard Keldysh contour Υ going from −∞

to +∞ and then back to −∞. The Keldysh contour is shown on Fig. 3.2. Variables living

on the upper branch of the contour going forward in time are labeled with a "+" subscript,

while variables on the lower branch are labeled with a "−". Dealing with such unusual time
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contour proves to be cumbersome. It is much more convenient to explicitly double the

number of variables and have a usual time integration going from −∞ to +∞ one only time:

S0 = ∫
+∞

−∞
dt∫ dr [ψ̄+(t) (i∂t − Ĥ)ψ+(t)− ψ̄−(t) (i∂t − Ĥ)ψ−(t)] . (3.30)

Such structure leads to four Green’s functions instead of just one,

Gαβ = −i ⟨ψαψ̄β⟩ , α, β = ±, (3.31)

It is customary to perform a so-called Keldysh rotation of the fields living on the two

time branches. Electron fields (ψ†, ψ) transform according to [87]

ψ1 =
ψ+ +ψ−√

2
, ψ2 =

ψ+ −ψ−
2

, (3.32)

while ψ̄ is chosen to transform as

ψ̄1 =
ψ̄+ − ψ̄−√

2
, ψ̄2 =

ψ̄+ + ψ̄−
2

. (3.33)

It is important to stress that two fileds ψ̄, ψ are independent of each other and transformation

rules (3.33) for ψ̄ and ψ are independent and are not related by a simple conjugation.

The structure of the Green’s function in the rotated basis is

Ǧαβ ≡ −i ⟨ψαψ̄β⟩ =
⎛
⎜⎜
⎝

ǦR ǦK

0 ǦA

⎞
⎟⎟
⎠

αβ

, (3.34)

where GR(A) are retarded and advanced Green’s functions and Keldysh component can be

parametrized as

GK = GR ○ F − F ○GA, (3.35)

where "○" stands for convolution in time and space and F describes the distribution function

of electrons. In equilibrium

F(ε) = tanh
ε

2T
(3.36)

and

GK(ε) = F(ε) (GR(ε)−GA(ε)) . (3.37)
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Electromagnetic vector potential is introduced by minimal coupling respecting gauge

invariance of the system, replacing momenta p → p − eA. This modifies electron action by

modifying electron dispersion as

ε(p − eA) = ε(p)− ev ⋅ A + e2

2
(κ̂)αβ Aα Aβ. (3.38)

where κ̂ is a curvature of electron dispersion

(κ̂)αβ =
1
2
( ∂αv

∂pβ
+

∂βv
∂pα

) . (3.39)

Similarly to electron fields, vector potential also lives on both branches of the Keldysh

contour having components A+/−. We rotate the source of external vector potential introduc-

ing classical and quantum components

Acl =
A+ + A−

2
, Aq =

A+ − A−

2
. (3.40)

Such names, classical and quantum, follow from the fact that a physical real observable

external field has to be the same on both branches of the Keldysh contour. Hence its

quantum component would be zero.

The total action can be written as

S[A] =∫
+∞

−∞
dt⨋

α,β
dpψ̄α [G]αβ ψβ+

+∫
+∞

−∞
dt⨋

α,β,γ
dpψ̄α

⎡⎢⎢⎢⎢⎣
ev ⋅ A(γ) −

e2

2
∑
µ,ν

(κ̂)µν A(γ),µ A(γ),ν

⎤⎥⎥⎥⎥⎦
Λγ

αβψβ,
(3.41)

where the Keldysh vertex

Λcl =
⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠

αβ

, Λq =
⎛
⎜⎜
⎝

0 1

1 0

⎞
⎟⎟
⎠

αβ

. (3.42)

Below we will be dealing only with a physical component and it is implied that A ≡ Acl.

The electric current as a physical observable at time t can be obtained as a variation of the
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action over the vector potential with −+ components [85]

j = ⟨ δS
δA+

⟩
A
= e ⟨ψ̄− [v − e(κ̂A)]ψ+⟩A , (3.43)

where the average should be taken with the action S[A] that also depends on the vector

potential. As we discuss in the previous section, electric current can be decomposed into

para- and diamagnetic contributions,

j = j(para) + j(dia) . (3.44)

that correspond to the two terms in the equation above. We now expand the action in

vector potential and keep only linear terms. Once we integrate out electron fields following

Eq. (3.34), we find

j = −ρX A, X = (para)/(dia), (3.45)

with superfluid densities

ρ(dia) = −
i
2 ⨋ε,p,µ

(κ̂)µµ [ǦK − ǦR + ǦA] (ε, p) , (3.46)

and

ρ(para) = −
i
2 ⨋ε,p,µ

[ǦK v̌µǦRv̌µ + ǦAv̌µǦK v̌µ.] (ε, p) (3.47)

We now proceed with the analysis of the two-band semiconductor.

3.4 Superfluid density

Generalizing results of Sec. 3.3 to the case of a two-band semiconductor, Keldysh action

corresponding to the Hamiltonian in Eq. (3.6) reads

S = ∫
Υ
dt⨋

p
Ψ†

p[(i∂t − εp) Ǐ − Epτ̌z −∆τ̌x]Ψp , (3.48)
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where the time integral over t goes along the standard Keldysh contour. Now Green’s

function is a 4×4 matrix with a standard Keldysh space structure

Ǧαβ =
⎛
⎜⎜
⎝

ǦR ǦK

0 ǦA

⎞
⎟⎟
⎠

αβ

, (3.49)

with each component Ǧ
R(A,K)

being also a 2 × 2 matrix in Nambu-Gor’kov space. For

example, the retarded Green’s function encodes the spectral properties of the steady-state

and reads ǦR = ǓǦ
R

Ǔ† with

Ǧ
R(ε, p)−1 = (ε − εp + i0) Ǐ − ξpτ̌z, (3.50)

where the operator Ǔ was defined in Eq. (3.8). A convenient representation is given by

ǦR(ε, p) = 1
ε − εp − ξp + i0

P̌+p +
1

ε − εp + ξp + i0
P̌−p (3.51)

with P̌± being the projectors onto the states of the quasiparticle basis, i.e. P̌± = ( Ǐ ± τ̌z)/2.

ǦA can be determined from ǦR by a simple time-reversal operation. The Keldysh Green’s

function encodes the nonequilibrium state populations by the relation (3.35) extended to the

two-band case,

ǦK(ε, p) = [ǦR F̌ − F̌ǦA] (ε, p). (3.52)

In the case of our model the assumption about well-defined quasiparticle distribution

functions expressed with Eq. (3.10) implies that the matrix F̌ is also diagonal in quasiparticle

basis and is given by

F̌(ε, p) =
⎛
⎜⎜
⎝

1− 2n1p 0

0 2n2p − 1

⎞
⎟⎟
⎠

. (3.53)

This means that F̌ commutes with the Green’s functions Ǧ
R

and Ǧ
A

just as in equilibrium.

In computing superfluid densities in the following subsections, we will need expressions
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for “velocity” and “mass” of quasiparticles

v̌µ
p = Vµ

p Ǐ + vµ
pτ̌z, ˇ∂µvν

p = ∂µVν
p τ̌z + ∂µvν

p Ǐ, (3.54)

with ∂µ ≡ ∂/∂pµ, Vµ
p ≡ ∂µEp, and vµ

p ≡ ∂µεp. In the quasiparticle basis, they read (omitting

the p indices)

v̌µ =Vµ Ǐ + vµ(τ̌z cos β − τ̌x sin β) ,

ˇ∂µvν =∂µVν(τ̌z cos β − τ̌x sin β)+ ∂µvν Ǐ .
(3.55)

3.4.1 Diamagnetic contribution

We start with the diamagnetic contribution to the superfluid density. Generalizing Eq. (3.46),

we have

ρ(dia) = −
i
2 ⨋ε,p,µ

Tr [∂µv̌µ [ǦK − ǦR + ǦA] (ε, p)] , (3.56)

where the trace runs in Nambu-Gor’kov space. The equation (3.56) has contributions

from both quasiparticle bands. The contribution from the upper quasiparticle band can be

computed using equations (3.50), (3.55), and (3.10), yielding

⨋
p,µ

(∂µVµ cos β + ∂µvµ)n1p, (3.57)

since the actual occupation number [85] is given by

n1p = −
i
2 ∫ε

[Ǧ
K
11 − Ǧ

R
11 + Ǧ

A
11] (ε, p). (3.58)

The second quasiparticle band contributes with

⨋
p,µ

(−∂µVµ cos βp + ∂µvµ) (1− n2p) , (3.59)

such that, at last, we obtain

ρ(dia) = ⨋
p,µ

(∂µVµ cos βp (n1p + n2p − 1)+ (∂µvµ)(n1p − n2p + 1) . (3.60)
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3.4.2 Paramagnetic contribution

The paramagnetic contribution to the superfluid density is given by (see Eq. 3.47)

ρ(para) = −
i
2 ⨋ε,p,µ

Tr [ǦK v̌µǦRv̌µ + ǦAv̌µǦK v̌µ] . (3.61)

Given that we focus on the Meissner effect, we have to be careful with the order of limits

ω, q → 0 for the external vector potential A. The Meissner effect corresponds to expulsion of

the static magnetic field, so in order to get the superfluid density we have to take the ω → 0

limit first. To show the importance of the order of limits we retain ω, q explicitly:

ρ(para)(ω, q) = − i
2 ⨋ε,p,µ

Tr [ǦK
+ v̌µǦR

− v̌µ + ǦA
+ v̌µǦK

− v̌µ] , (3.62)

where ± correspond to arguments ε ±ω/2, p ± q/2.

We separate the total Green’s function bubble into intra- and interband parts based on

whether the quasiparticles change bands within the Green’s function bubble,

ρ(para)(ω, q) = ρ
(intra)
(para)(ω, q)+ ρ

(inter)
(para)(ω, q). (3.63)

Intraband contribution

The intraband contribution can be further broken down into contributions of the two

quasiparticle bands,

ρ
(intra)
(para)(ω, q) = ρ

(intra-1)
(para) (ω, q)+ ρ

(intra-2)
(para) (ω, q), (3.64)

where the contribution of the first quasiparticle band is

ρ
(intra-1)
(para) (ω, q) = − i

2 ⨋ε,p,µ
(v̌µ

11)
2 (GK

11+GR
11− +GA

11+GK
11−) , (3.65)
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The first term of (3.65) is

⨋
ε,p,µ

(v̌µ
11)

2GK
1+GR

1− = ⨋
ε,p,µ

(v̌µ
11)

2F11+ (GR
1+ −GA

1+) GR
1− (3.66)

= −2iπ⨋
ε,p,µ

(v̌µ
11)

2F11+δ(ε+ − (ε + ξ)+)
1

ε− − (ε + ξ)− + i0

= −i⨋
p,µ

(v̌µ
11)

2 F11+

(ε + ξ)+ − (ε + ξ)− −ω + i0
,

where we took into account the fact that the Green’s function combination (GR −GA) is

related to density of states and

GR
1+ −GA

1+ =
1

ε+ − (ε + ξ)+ + i0
− 1

ε+ − (ε + ξ)+ − i0

=− 2iπδ(ε+ − (ε + ξ)+),
(3.67)

with δ being Dirac delta function.

Similarly, the second term turns out to be

⨋
ε,p,µ

(v̌µ
11)

2GA
1+GK

1− = −i⨋
ε,p,µ

(v̌µ
11)

2 −F11−

(ε + ξ)+ − (ε + ξ)− −ω + i0
, (3.68)

so that the total contribution of the first band into intraband part is

ρ
(intra-1)
(para) (ω, q) = −1

2 ⨋ε,p,µ
(v̌µ

11v̌µ
11)

F11+ − F11−

(ε + ξ)+ − (ε + ξ)− −ω + i0
. (3.69)

To proceed we note that the matrix element F11 gives the quasiparticle distribution function

F11(ε, p) = 1− 2n1p, (3.70)

the matrix element of the velocity operator is

v̌µ
11 = Vµ + vµ cos β, (3.71)

and taking the limit yields

ρ
(intra-1)
(para) = ⨋

p,µ
(Vµ

p + vµ
p cos β1p)2n′1p, (3.72)
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where we introduced the quantity

n′1(2)p = −
1
2

lim
q→0

lim
ω→0

F11(22)+ − F11(22)−

(ε + ξ)+ − (ε + ξ)− −ω + i0

≡ lim
q→0

n1(2)p+q − n1(2)p

(εp+q ± ξp+q)− (εp ± ξp)
=

∂pn1(2)p

vqp
1(2)p

(3.73)

and in the last step we assumed isotropic dispersion relations and vqp
α is the quasiparticle

velocity (α = 1, 2). This quantity can be interpreted as a derivative of the quasiparticle

distribution function over energy. In particular, it reduces to the usual energy derivative in

the equilibrium.

Similarly, the contribution of the second band is

ρ
(intra-2)
(para) = ⨋

p,µ
(Vµ

p − vµ
p cos βp)2n′2p. (3.74)

Summation of the two gives

ρintra
(para) = ⨋p,µ

(Vµ
p + vµ

p cos βp)2n′1p + (Vµ
p − vµ

p cos βp)2n′2p, . (3.75)

The order of limits in ω, q → 0 was crucial throughout the calculation. With the opposite

order of limits we would have a zero intraband contribution

lim
ω→0

lim
q→0

n1(p+q/2) − n1(p−q/2)

(ε + ξ)p+q/2 − (ε + ξ)p − q/2−ω + i0
= lim

ω→0

0
−ω + i0

= 0. (3.76)

Finally, we note that strictly speaking the vertex coupling electrons to the vector potential

is
1
2
(v̌µ

p+q/2 + v̌µ

p−q/2) = v̌µ
p +O(q2), (3.77)

but the corrections coming from finite external vector potential momentum q are irrelevant

for the present calculation.

Interband contribution

In contrast, the order of limits is irrelevant for the interband contribution due to the presence

of the superconducting gap. In the intraband contribution we compare energies of the two

78



quasiparticles from the same band and the quantity (ε+ ξ)+ − (ε+ ξ)− → 0 in the denominator

results in the importance of the order of limits. Meanwhile, in the interband contribution

below we will be comparing two quasiparticles from different bands encountering a well-

defined denominator (ε + ξ)+ − (ε − ξ)− → 2ξ ≥ 2∆. Thus we omit external frequency ω and

momentum q right away.

The contribution of interband processes is

ρ
(inter)
(para) = −

i
2 ⨋ε,p,µ

(v̌µ
12v̌µ

21) (GK
11GR

22 +GA
11GK

22 +GK
22GR

11 +GA
22GK

11) . (3.78)

This expression can be conveniently represented as

ρ
(inter)
(para) = Im ⨋

ε,p,µ
(v̌µ

12v̌µ
21) (GK

11GR
22 +GK

22GR
11) . (3.79)

The first term in the equation above gives

⨋
ε,p,µ

(v̌µ
12v̌µ

21)GK
11GR

22 = ⨋
ε,p,µ

(v̌µ
12v̌µ

21)F11 (GR
11 −GA

11) GR
22 (3.80)

= −2iπ⨋
ε,p,µ

(v̌µ
12v̌µ

21)F11δ(ε − (ε + ξ)) 1
ε − (ε − ξ)+ i0

= −i⨋
p,µ

(v̌µ
12v̌µ

21)
F11

2ξ
.

Similarly, the second term is

⨋
ε,p,µ

(v̌µ
12v̌µ

21)GK
22GR

11 = −i⨋
p,µ

(v̌µ
12v̌µ

21)
F22

−2ξ
. (3.81)

Taking into account that the diagonal elements of the quasiparticle distribution function are

F11(ε, p) = 1− 2n1p, F22(ε, p) = 2n2p − 1, (3.82)

and the matrix elements of the velocity operator are

v̌µ
12 = v̌µ

21 = −vµ sin β, (3.83)
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we get

ρ
(inter)
(para) = −⨋p,µ

(vµ sin β)2 F11 − F22

2ξ
= ∫

p,µ
v2

p sin2 βp
n1p + n2p − 1

ξp
. (3.84)

3.4.3 Total superfluid density

Integrating by parts the diamagnetic contribution (3.60) and summing with both paramag-

netic terms (3.75,3.84), we obtain the final result for the net superfluid density of the system

(see appendix C.1 for detailed steps):

ρ = −∫
p
(V2

p − v2
p) sin2 βp [

n1p + n2p − 1

ξp
− n′1p − n′2p] . (3.85)

The equation above is the central result of this chapter. It is applicable to a wide class of

electronic dispersions as long as the superconducting state is stable and with a diagonal

quasiparticle distribution function. The immediate application of interest is to use this result

to study the superfluid density of a photo-induced inter-band superconductor, which is the

topic of the next section.

3.5 Superfluid density in the steady state

In the optical-pumping setup a nonequilibrium population of the two electron bands is

created by shining a laser on the system. The laser is responsible for the emergence of a

resonance surface in momentum space, S , where the sum of the two bands 2Ek = E1k + E2k =

0. The resonant surface S has essentially the same role as a Fermi surface in a conventional

BCS superconductor in thermal equilibrium. Superconducting pairing takes place around

the resonant surface S, where Ek = 0. For simplicity, we assume that S is rotationally

invariant. The electronic dispersions can be expanded in the vicinity of this surface as

Ek ≡
E1k + E2k

2
≃ V(k − kS)+ κ+(k − kS)2, (3.86)

εk ≡
E1k − E2k

2
≃ ε0 + v(k − kS)+ κ−(k − kS)2. (3.87)
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Superconductivity ✓ ✓ ✓ ✓

Vint - - + +

NS - + - +

κ+ = κ1+κ2
2 + - - +

ρ - - + +

Table 3.1: Sign of the superfluid density ρ for different parameters: electronic interaction Vint (repulsive when
positive), nonequilibrium population imbalance NS [see Eq. (3.91)] and average band curvature κ+. Only the
cases allowing for an inter-band superconducting state are displayed.

A situation which is especially favorable for the formation of the superconducting order

corresponds to whenever the velocity matching condition V = 0 is satisfied, see Ref. [83] for

details. Below, we concentrate on this case, such that Ek ≃ κ+(k − kS)2.

As it follows from Eqs. (3.19, 3.20), the distribution functions in Eq. (3.85) are relatively

smooth around the resonant surface and depend only on the energy Ek. Together with

the assumed velocity matching condition, V ≃ 0, this implies that the second term in

the superfluid density in Eq. (3.85) is negligible as compared to the first one, since the

quasiparticle velocities v1(2)p = vp ±Vp cos βp ≃ v and

n′αp ≡
∂knαk

vqp
αk

≃
dnα(E)

dE
(V

v
) Ð→

V/v→0
0. (3.88)

Simplifying, we get

ρ ≃ ∫
p

v2 ∆2

ξ3
p
(n1p + n2p − 1) , (3.89)

where, we recall, ξp ≡
√

E2
p +∆2.

Now, we make use of the explicit form of distribution functions (3.19, 3.20). In particular,

a relevant quantity of interest is

n1k + n2k − 1 =
4Ek

√
E2

k +∆2

4E2
k + γ∗∆2

NS , (3.90)
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where we introduced the combination

NS ≡ nF(E1k, µ1)+ nF(E2k, µ2)− 1 , (3.91)

with nF(Eαk, µα) the Fermi-Dirac distributions corresponding to the quasi-thermal equi-

librium that sets up in each band. The effective chemical potentials µα can be seen as

Lagrange multipliers enforcing the average number of particles in each band, and depend

on the balance between the optical drive and the interband relaxation mechanisms [83].

Note that the finiteness of the above quantity, NS ≠ 0, is crucial to the formation of an

interband Cooper pairing. For convenience we introduced γ∗ ≡ Γ12(Γ−1
1 + Γ−1

2 ) with Γ1,2

being intraband relaxation rates. We obtain the superfluid density

ρ ≃ NS v2∫
k

4∆2Ek

(E2
k +∆2)(4E2

k + γ∗∆2)
, (3.92)

and the self-consistency equation for photo-induced superconductivity

1 = 2NS Vint∫
k

Ek

4E2
k + γ∗∆2

. (3.93)

The most pressing questions are now

• Is superconductivity possible?

• What is the sign of the superfluid density?

Answers to these question depend solely on the signs of three parameters, namely: electron-

electron interaction Vint, curvature of the electron dispersion κ+, and NS . Indeed, a rapid

inspection of the right-hand side of Eq. (3.92) implies that the sign of the superfluid density

is governed by

sgn(ρ) = sgn(κ+)× sgn(NS) . (3.94)

Similarly, the inspection of the right-hand side of Eq. (3.93) implies that a solution with a

finite superconducting order parameter exists whenever

sgn(Vint) = sgn(κ+)× sgn(NS) . (3.95)
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The corresponding outcomes for different cases are summarized in the Table 3.1. We now

compute the expression of the superfluid density in two limiting cases: ∆ ≫ Γ and ∆ ≪ Γ.

In the regime ∆ ≫ Γ, we start by expanding the energy Ek around the resonance surface

(using the velocity matching condition, V ≃ 0), E ≃ κ+(k − kS)2, so that the superfluid density

becomes

ρ = (sgn κ+NS)
ASv2

√
∆ ∣κ+∣

Bρ (γ∗) , (3.96)

where AS = 4πk2
S is the area of the resonant surface (2πkS for a two-dimensional system)

and Bρ(x) is a positive function

Bρ(x) = ∫
∞

−∞
dt

4t2

(t4 + 1)(4t4 + x)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

πx−1/4 x ≪ 1

2
√

2πx−1 x ≫ 1
. (3.97)

Equation (3.96) displays an anomalous scaling of the superfluid density ρ with the order

parameter ∆,

ρ ∝ 1√
∆

for ∆ ≫ Γ . (3.98)

Such a divergent scaling survives only while ∆ ≫ Γ. In the regime where ∆ ≪ Γ, after

re-including properly the factors of Γ that have been neglected so far (see the appendix C.2

for a detailed derivation), one finds

ρ ∝ ∆2 for ∆ ≪ Γ , (3.99)

which is similar to the conventional BCS scenario in equilibrium. The two scalings in

Eqs. (3.98) and (3.99) signal that the superfluid density reaches a maximum in the crossover

regime.

3.6 Conclusion

We have computed the superfluid density of the superconducting state that can be induced

by optically pumping valence band electrons to the conduction band. We found a positive
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superfluid density in the presence of repulsive electronic interactions, and this constitutes

an important check of the stability of the superconducting order announced in Ref. [83]. The

next check is to make sure that the heating caused by the optical pumping is slow enough

to allow for the superconducting order to develop (on the order of hundreds on 1/Γ’s) and,

perhaps more importantly, for the transport measurements to be performed. The power

dissipated can estimated to be P ∼ ΓInterband × N × h̄ωgap with an interband recombination

rate ΓInterband ∼ 10−8 eV, a density of states N ∼ 1020/cm3, and h̄ωgap ∼ 0.3 eV, amounting to

P ∼ 106−7 J/s.cm3, and leading to a generous window of 10−4 s to perform the experiments

before the sample temperature increases by approximately 10 K (in the absence of external

cooling).
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Appendix A

Appendix to Chapter 1

A.1 DOS in the vicinity of the multicritical point in Sr3Ru2O7

As we discuss in the main text, the physics of the multicritical Lifshitz point can be described

by the dispersion

ε(p) = ap2 + bp4 cos 4ϕ + cp8 − µ. (A.1)

Below we assume small values of a and µ. In this case the p8 term is not crucial for the

analysis, as it only serves to close the Fermi surface away from the singularity, and it can be

omitted safely,

ε(p) ≃ ap2 + bp4 cos 4ϕ − µ. (A.2)

For definiteness we assume a > 0 below. The symmetry of the dispersion (A.2) implies

relation ν(− ∣a∣ , µ) = ν(∣a∣ ,−µ).

The DoS of A.2 is given by

ν(µ) = ∫
d2 p

(2π)2 δ(ap2 + bp4 cos 4ϕ − µ) = ∫
dϕdt
8π2 δ(at + bt2 cos 4ϕ − µ) = 1

4π2a
D (

4bµ

a2 ) ,

(A.3)

where we made a substitution t = p2 and the function D(x) is an elliptic integral

D(x) = ∫
2π

0
dϕ∫

∞

0
dt δ(2t + t2 cos ϕ − x) = 2 Re ∫

∞

0
dt

1√
t4 − (2t − x)2

. (A.4)

92



The DoS obtained above has a natural energy scale

µc = a2/4b. (A.5)

A.1.1 Critical scaling at ∣µ∣≫ µc

The term ap2 breaks the multicriticality, so that at large values of the chemical potential

∣µ∣ ≫ a2/4b, when quadratic term can be neglected, the dispersion reduces to the pure

fourth-order saddle

ε(p) = bp4 cos 4ϕ − µ (A.6)

with the critical scaling of the DoS ν(µ)∝ ∣µ∣−1/2,

ν(µ) = ∫
d2 p

(2π)2 δ(bp4 cos 4ϕ − µ) = 1

4π2
√

b ∣µ∣ ∫
d2k δ(k4 cos 4ϕ − 1) = K(1/2)

4
√

2π2

1√
b ∣µ∣

∝ ∣µ∣−1/2 ,

(A.7)

where K(1/
√

2) ≈ 1.85 is a complete elliptic integral of the first kind.

A.1.2 Jump at µ = 0

As we approach the singularity from the region of negative chemical potential, the quadratic

term leads to the formation of electron pocket at the center. The electron pocket forms at

µ = 0 and leads to a jump in the density of states,

ν(µ = +0)− ν(µ = −0) = lim
µ→+0

∫
d2 p

(2π)2 δ(ap2 + bp4 cos 4ϕ − µ)− lim
µ→−0

∫
d2 p

(2π)2 δ(ap2 + bp4 cos 4ϕ − µ)

= lim
µ→+0

∫
d2 p

(2π)2 δ(ap2 − µ) = 1
4πa

.

(A.8)

A.1.3 Van Hove singularity at µ = µc

Finally, at the value of the chemical potential µ = µc = a2/4b the electron pocket formed at

µ = 0 touches four outer leaves of the Fermi surface via the formation of four saddle points,
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located at pc =
√

a/2b, cos 4ϕc = −1:

ap2 + bp4 cos 4ϕ − µ ≈ a(pc +∆p)2 − b(pc +∆p)4 (1−
(4∆ϕ)2

2
)− µ

= (ap2
c − bp4

c − µ)+ (2apc − 4bp3
c)∆p + (a − 6bp2

c)(∆p)2 + 8bp4
c(∆ϕ)2

= (µ − µc)− 2a(∆p)2 + 8µc(∆ϕ)2.

(A.9)

The saddle point result in the logarithmic divergence in the DoS:

ν(µ) = 4∫
d2 p

(2π)2 δ((µ − µc)− 2a(∆p)2 + 8µc(∆ϕ)2)

= 1
2
√

2π2a
∫ dxdy δ(

µ − µc

µc
− x2 + y2)

≃ 1√
2π2a

log
µc

∣µ − µc∣
.

(A.10)

These results can be confirmed by studying limits of the general expression (A.3).

A.1.4 General expression

Using a substitution z = (t − x)/t the elliptic integral D(x) can be rewritten as

D(x) = 2 Re ∫
∞

−sgn x

dz√
[(∣x∣− 1)+ z2][(∣x∣+ 1)− z2]

. (A.11)

Taking the real part of the integral above just reduces the integration to the region where

the argument of the square root is positive. Depending on the value of x, the true domain

of integration is

x > 1 ∶ z ∈ (−1,
√

1+ ∣x∣),

0 < x < 1 ∶ z ∈ (−1, −
√

1− ∣x∣)∪ (
√

1− ∣x∣,
√

1+ ∣x∣),

x < 0 ∶ z ∈ (1,
√

1+ ∣x∣).

(A.12)

Transforming the variable as z =
√

(∣x∣+ 1) cos θ we bring the integral to the canonical
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Figure A.1: DoS ν(µ) ≡ D(µ), with DoS and chemical potential in units (4π2a)−1 and µc = a2/4b
respectively. The plot on the right shows DoS at larger values of the chemical potential when the singularity
breaking term ap2 can be neglected. The dashed line shows the critical scaling of the density of states given by
(A.15), ν(µ)∝ ∣µ∣−1/2.

form

D(x) =
√

2
∣x∣

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(π − ϕ1(x), k(x)), x > 1

2F(ϕ2(x), k(x))− F(ϕ1(x), k(x)) 0 < x < 1

F(ϕ1(x), k(x)), x < 0

(A.13)

where modulus and angles are

k(x) =

¿
ÁÁÀ1+ ∣x∣

2 ∣x∣
, ϕ1 = arctan(

√
∣x∣), ϕ2 = arctan

¿
ÁÁÀ 2 ∣x∣

1− ∣x∣
. (A.14)

At large values of the argument the asymptotic behavior is

D(x) ≃
√

2
∣x∣

K ( 1√
2
) , ∣x∣ ≫ 1, (A.15)
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Appendix B

Appendix to Chapter 2

B.1 Spinor structure and Berry fluxes in the graphene and silicon

lattices

Let us first apply the formalism presented in the main text to derive the familiar result

that in graphene there is a π-vortex in the Brillouin zone at the K point. The carbon

atoms form a honeycomb lattice, with interpenetrating triangular sublattices A and B. The

A sites sit on lattice sites spanned by the basis vectors R1 =
√

3 a (1/2,
√

3/2) and R2 =
√

3 a (−1/2,
√

3/2), where a = 1.42Å. The reciprocal lattice vectors are G1 = 4π
3a (

√
3/2, 1/2)

and G2 = 4π
3a (−

√
3/2, 1/2). The three vectors connecting sublattice A to B are d0 = a (0, 1),

d1 = a (−
√

3/2,−1/2), and d2 = a (
√

3/2,−1/2).

The off-diagonal hopping matrix element for the π-orbital is

HAB(k) = −
2

∑
µ=0

t(dµ) eik⋅dµ , (B.1)

where we allowed generically for unequal values for the hoppings to the three nearest

neighbors. The vectors G1,2 and d0,1,2 satisfy

Gi ⋅dµ = 2π

3
(mod 2π) for i = 1, 2 and µ = 0, 1, 2 . (B.2)

It then follows that the 2 × 2 Hamiltonian for graphene is not periodic in k, but instead
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is periodic up to the gauge transformation in Eq. (2.3) of the main text (repeated here for

convenience):

H(k+Gi) = U(Gi) H(k) U†(Gi) , with U(Gi) = e i 1
2 Φ(Gi) σz , (B.3)

with Φ(Gi) = 2π/3. One can also check that −(G1 +G2) ⋅dµ = 2π
3 (mod 2π), for µ = 0, 1, 2, or

equivalently, Φ(−G1 −G2) = 2π/3.

We then consider the walk in k-space that visits, in order, the points k, k+G1, k+G1 +G2

and back to k. This walk visits three neighboring Brillouin zones, returning to the original

point in k-space, closing a loop, shown in Fig. B.1. We know that, in graphene, this loop

will not visit a degeneracy point if we choose k = 0 (the Γ point). (In silicon, we shift the

point k from the origin to avoid going through degeneracies.) At the end of the walk, the

Hamiltonian returns to H(k), but the eigenvector is rotated by the sequence of unitary

operations

U(−G1 −G2) U(G2) U(G1) = e i 1
2 [Φ(−G1−G2)+Φ(G2)+Φ(G1)] σz

= e iπ σz = −I .
(B.4)

This rotation changes the sign of the wavefunction, which is equivalent to an accumulation

of a Berry phase of π. Indeed, the Dirac node at the K point contains the π-vortex when

all the three hoppings to the nearest neighbors are equal. If these three hoppings are not

equal, the vortex moves location in k-space, but cannot disappear; it must be contained

within the triangle. To disappear, the vortex must come to the boundaries of the triangle to

meet an anti-vortex, but when that happens our assumption that the path does not include

a degenerate point no longer applies.

Having completed the warm up exercise of recovering know results for graphene in

two spatial dimensions, we apply the same steps for silicon in three dimensions. In silicon

the A sites sit on lattice sites spanned by the basis vectors R1 = a
2 (0, 1, 1), R2 = a

2 (1, 0, 1),

and R3 = a
2 (1, 1, 0), with a = 5.4310Å. The reciprocal lattice vectors are G1 = 2π

a (−1, 1, 1),

G2 = 2π
a (1,−1, 1), and G3 = 2π

a (1, 1,−1). The four vectors connecting sublattice A to B are

d0 = a
4 (1, 1, 1), d1 = a

4 (1,−1,−1), d2 = a
4 (−1, 1,−1), and d3 = a

4 (−1,−1, 1).
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G1

G1 +G2

Figure B.1: Reciprocal lattice. Left: reciprocal lattice of graphene. There are three possible axial phases at
the center of the Brillouin zone, 0, 2π/3, 4π/3, which are represented by three colors. This leads to tripling of
the Brillouin zone, as shown by the dashed line emclosing three hexagons of different colors. The figure also
shows a loop constructed out of G vectors with an overall π Berry phase that establishes existence of the Dirac
points at the K/K’ points.
Right: reciprocal lattice of silicon. In the case of silicon there are four possible axial phases and hence four
colors for the reciprocal lattice sites, indicating the quadrupling of the Brillouin zone.

The off-diagonal block matrix, whose dimension depends on how many orbitals we

consider, is given by Eq. (2.2) of the main text with the index µ = 0, 1, 2, 4:

[HAB(k)]αβ = −
4

∑
µ=0

tαβ(dµ) eik⋅dµ , (B.5)

where again we allowed generically for unequal values for the hoppings to the three nearest

neighbors. The vectors G1,2,3 and d0,1,2,3 satisfy

Gi ⋅dµ = 2π

4
(mod 2π) for i = 1, 2, 3 and µ = 0, 1, 2, 4 . (B.6)

The Hamiltonian for silicon is therefore not periodic in k, but instead is periodic up to the

gauge transformation in Eq. (2.3) of the main text [repeated in Eq. (B.3) for convenience],

with Φ(Gi) = 2π/4. One can also check that −(G1 + G2 + G3) ⋅ dµ = 2π
4 (mod 2π), for

µ = 0, 1, 2, 3, or equivalently, Φ(−G1 −G2 −G3) = 2π/4.

We then consider the walk in k-space that was described in the main text, one that visits,

in order, the points k, k+G1, k+G1 +G2, k+G1 +G2 +G3 and back to k. As explained in

the main text, we start at a k near but not at the Γ point, to avoid passing through lines of
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degeneracy. At the end of the walk, the Hamiltonian returns to H(k), but the eigenvector is

rotated by the sequence of unitary operations

U(−G1 −G2 −G3) U(G3) U(G2) U(G1) =

= e i 1
2 [Φ(−G1−G2−G3)+Φ(G3)+Φ(G2)+Φ(G1)] σz

= e iπ σz = −I .

(B.7)

The wavefunction changes sign upon returning from the walk, which requires that a π-flux

lines pierce the region enclosed by the walk. The flux lines required by the argument above

are precisely those described in the main text, obtained via direct calculation of the Berry

curvature in the sp3s∗ model.

99



Appendix C

Appendix to Chapter 3

C.1 Total superfluid density

Here we reproduce the result (3.85) for the total superfluid density from the main text.

While the summation of the dia- and paramagnetic contributions is a mathematical exercise,

it is not entirely straightforward and we illustrate it here for the convenience of the reader.

To reproduce the compact expression from the main text, we have to integrate by parts the

diamagnetic contribution

ρ(dia) = ⨋
p,µ

(∂µVµ
p cos βp (n1p + n2p − 1)+ (∂µvµ

p)(n1p − n2p + 1) . (C.1)

Integrating by parts we have

ρ(dia) = −⨋
p,µ

(Vµ
p ∂µ(cos βp) (n1p + n2p − 1)+

+Vµ
p cos βp ∂µ(n1p + n2p)+

+vµ
p∂µ(n1p − n2p) .

(C.2)

Let us label the contribution in each line above as ρ
(α)
(dia), α = 1, 2, 3.

First, since cos βp = E/
√

E2
p +∆2, we have

∂µ(cos βp) =
∆2

(E2
p +∆2)3/2

Vµ
p =

Vµ
p

ξp
sin2 βp (C.3)
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and the first contribution becomes

ρ
(1)
(dia) = −∫p,µ

V2
p sin2 βp

n1p + n2p − 1

ξp
. (C.4)

Second, we go back to the definition of the derivative of the distribution function over the

quasiparticle energy (3.73) and observe that since

n′1(2)p ≡ lim
q→0

n1(2)p+q − n1(2)p

(εp+q ± ξp+q)− (εp ± ξp)
, (C.5)

then

∂µn1(2)p = n′1(2)p(vµ
p ± ∂µξp) = n′1(2)p(vµ

p ±Vµ
p cos βp). (C.6)

Using this identity, we have

ρ
(2)
(dia) = −∫p,µ

Vµ
p cos βp (n′1p(vµ

p +Vµ
p cos βp)+ n′2p(vµ

p −Vµ
p cos βp)) (C.7)

and

ρ
(3)
(dia) = −∫p,µ

vµ
p (n′1p(vµ

p +Vµ
p cos βp)−−n′2p(vµ

p −Vµ
p cos βp)) , (C.8)

Adding together ρ(dia−2), ρ(dia−3) and ρintra
(para) (given by Eq.(3.75)), we have

ρ
(2)
(dia) + ρ

(3)
(dia) + ρintra

(para) =

= −∫
p,µ

[n′1p (v2
p + 2vµ

pVµ
p cos βp +V2

p cos2 βp +−(Vµ
p + vµ

p cos β1p)2)+

+n′2p (v2
p − 2vµ

pVµ
p cos βp +V2

p cos2 βp −−(Vµ
p − vµ

p cos β1p)2)] .

(C.9)

After simplification the expression becomes

ρ
(2)
(dia) + ρ

(3)
(dia) + ρintra

(para) = ∫p,µ
(V2

p − v2
p) sin2 βp (n′1p + n′2p) . (C.10)

The remaining piece ρ(dia−1) can be combined with the interband paramagnetic contribution

ρ
(inter)
(para)

ρ
(1)
(dia) + ρ

(inter)
(para) = −∫p,µ

(V2
p − v2

p) sin2 βp
n1p + n2p − 1

ξp
. (C.11)
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It is clear now that we indeed obtain the total superfluid density from the main text:

ρ = ρ(para) + ρ(dia) = (ρ
(2)
(dia) + ρ

(3)
(dia) + ρintra

(para))+ (ρ
(1)
(dia) + ρ

(inter)
(para)) (C.12)

=−∫
p
(V2

p − v2
p) sin2 βp [

n1p + n2p − 1

ξp
− n′1p − n′2p] .

C.2 Finite Γ effects on superfluid density

Here we analyze more closely the superfluid density in the vicinity of the superconducting

transition. In order to explore the region ∆ ≪ Γ we would like to phenomenologically

include the effects of finite dissipation Γ. Therefore we write:

ρ ≅ NSv2∫
k

4∆2Ek

(E2
k + Γ2/4+∆2) (4E2

k + Γ2 + γ∗∆2)
(C.13)

Furthermore the self consistency equation becomes

1 = 2NSVint∫
k

Ek

(4E2
k + Γ2 + γ∗∆2)

, (C.14)

which after the integration gives

1 = πVintNS
2
√

2κ+
× (Γ2 + γ∗∆2

4κ2
+

)
−1/4

, (C.15)

From this expression we obtain that for superconductivity to exist we must have that

Vint >
2
√

κ+Γ
πNS

≡ Vmin. (C.16)

We then get for Vint ≥ Vmin and ∣Vint −Vmin∣ ≪ Vmin

ρ ≅ NSv2∫
k

4∆2Ek

(E2
k + Γ2/4) (4E2

k + Γ2)

= NSv2∆2 1
κ3
+

⋅ π

4
√

2
( Γ2

4κ2
+

)
−5/4

= v2NS∆2 1
Γ2

√
κ+Γ

⋅ π

4
√

2

≃ ∆2

2
√

2Γ2

v2

Vmin
,

(C.17)
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the result presented in the main text.

C.3 Off-diagonal element of the distribution function

Finally, throughout the third chapter we assumed that we deal with a pure quasiparticle

state. The general form of the distribution function in the quasiparticle basis,

⎛
⎜⎜
⎝

n1k OD

OD∗ 1− n2k

⎞
⎟⎟
⎠
= Û

⎛
⎜⎜
⎝

n11
k s12

k

s12∗
k 1− n22

−k

⎞
⎟⎟
⎠

Û†, (C.18)

have an offdiagonal element OD. We implied that OD = 0. Here we show that this statement

is true. Using the definition of OD above, we get

OD =
1− n22

−k − n11
k

2
sin β + s12 cos2 β

2
− s∗12 sin2 β

2
. (C.19)

Making use of the equations (3.19) and (3.20),

OD = 1
4E2 + Γ2

12 + γ∗∆2

NS
2E∆

(−∆(4E2 + Γ2
12)+

+4E2∆ + iΓ12∆) ,

(C.20)

so that the offdiagonal element is indeed vanishingly small for energies larger than decay

rate Γ12,

OD =
−∆Γ2

12 + iΓ12∆E∆

2E∆(4E2 + Γ2
12 + γ∗∆2)

NS →
Γ12→0

0. (C.21)
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