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ABSTRACT
We consider the problem of auction design with agents that have
interdependent values, i.e. values that depend on each others’ pri-
vate signals. We adopt the contingent bids model of Dasgupta and
Maskin [3], and allow agents to submit bids of the form “if player 1
bids $x for good � then I will bid $y.” Our main contribution is to
identify a specific linear valuation model for which there exists an
efficient auction for a single item, and then extend this to provide an
approximately efficient combinatorial auction with single-minded
bidders. In both auction, winners and payments are computed from
the fixed point of the valuation mapping defined by contingent bids.
We also adopt search in order to construct a variation on the single-
item auction with improved revenue. In closing, we discuss the
(many) challenges in moving to more general models of interde-
pendent valuations.

1. INTRODUCTION
We consider the problem of auction design with agents that have

interdependent values. In this setting, the value of an allocation can
depend on the private signals of the other agents.
Allocation problems with interdependent values often arise in

auction settings. Consider, for example, the sale of a case of vintage
wine to a group of buyers with distributed information about the
actual quality (and thus value) of the wine. Some of the bidders
may have tasted similar wines, some may have read reviews, while
still others may be complete novices. Interdependent values can
also arise when a bidder’s value for an allocation depends on the
details of the allocation of goods to other bidders, and thus its value
depends (indirectly) on the values of other bidders. Consider an
auction for wireless spectrum. A wireless company might assign
more value to some bundle of licenses if non-competing companies
(e.g. with different business models) win the remaining licenses.
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In addition to settings of electronic commerce, we believe that
interdependent value models will be useful for many coordination
problems in multiagent systems. Consider, for example decision
making about resource allocation on computational grids, for in-
stance in allowing a team of scientists to evaluate their value for
receiving the right to be the first to work with a new data set. Ac-
curately determining this value may require aggregating the private
information of a number of different teams.
The design of efficient (and optimal) auctions with interdepen-

dent values has received some attention in the economic theory
literature. In particular, under the assumption that the private in-
formation (signal) of a bidder can be captured by a single number
(in combination with monotonicity requirements that prevent arbi-
trary information from being encoded in this number), then there
exist ex post efficient auctions [10]. For more general models with
multi-dimensional signals there are strong negative results about
the ability to implement efficient outcomes (or even much at all!)
in an equilibrium [3, 8].
We too will work within the one-dimensional signal model. Specif-

ically, we follow Dasgupta and Maskin [3], but depart from the
other literature on interdependent value models, by working with
contingent bids. As we discuss in the next section, the alternative
is to work in a direct revelation framework, but this appears much
more cumbersome for bidders. With contingent bids, a bidder can
state information such as “my bid value is $x when bidder 2’s value
is $y.” Bidders do not need to describe either their own signal to
the mechanism, nor the domain of signals for the other bidders. We
agree with Dasgupta and Maskin that this seems very difficult. In
our wine example, all bidders would have to agree with the auc-
tioneer on a language to talk about the quality of wine. In our grid
computing example, all research groups would have to agree on a
common language to discuss the potential value of some new data.
In this aspect, our focus on contingent bids differentiates this work
from the earlier work in distributed AI of Dash et al. [4] and Ito et
al. [5, 7], who consider direct revelation mechanisms.
We adopt contingent bids as first-order representations of agents’

private valuation models. Our main contribution is to provide a
specific instantiation of Dasgupta and Maskin’s [3] contingent bid
model. In particular, we define a linear contingent-bid language and
establish necessary and sufficient conditions for bids to satisfy the
technical conditions required for the existence of an efficient auc-
tion. We first introduce this for the single item allocation problem
and later extend the language to allow for combinatorial auctions
with single minded bidders. A single minded bidder is interested in
just one particular bundle of goods.



In pursuit of an auction with improved revenue properties, for
instance of importance to a seller of vintage wine, we then gener-
alize the auction to include a “dummy” agent that represents the
interest of the seller and submits a bid to increase competition and
also to have the effect of setting a reservation price. Following the
ideas introduced in Likhodedov and Sandholm [12, 13] we then use
search to identify an auction with better revenue properties within
this class of generalized auctions. Unlike the existing theory on
optimal auctions with interdependent values [2], in which interim
individual rationality (IR) is provided,1 our auctions have the more
reasonable property of ex post IR. This means that an agent will
never pay more than its value for an allocation.
In closing, we discuss the many challenges in moving towards

more general models of interdependent valuations. Even within the
setting of one-dimensional signals we identify a significant practi-
cal problem in extending multi-unit auctions to allow for more than
single-minded bidders. The problem relates to the amount of infor-
mation that bidders are required to report to an auction about the
possible valuations of other bidders.

1.1 Related Work
Dash et al. [4] define a multi-item variant on the efficient, direct-

revelation mechanism for multiple identical items in Krishna [10].
Unlike the model of Dasgupta and Maskin [3] (DM), which we
adopt in this paper, the model of Dash et al. requires that the mech-
anism knows the valuation function and signal domains of each
bidder. Bidders report their signal and the mechanism determines
the outcome and payments. Ito and colleagues [5, 6, 7] also study
a model with one-dimensional signals in the context of a multi-
item allocation problem. Unlike Dash et al. [4], their mechanisms
do not need to know the valuation functions of agents. However,
they remain direct revelation schemes, in that agents bid both val-
uation functions and signals. Again, the language for describing
an agent’s signal must be common knowledge to all agents and
the mechanism. Ito and colleagues assumed special structure to
the problem, namely that the interdependency is acyclic: there are
“experts” whose signal affect the values of the other agents (“ama-
teurs”). The experts’ values are unaffected by the signal of any am-
ateur and no amateur’s signal affects the value of any other amateur.
This allows for positive results in their model, which is otherwise
quite general.
Jehiel et al. [9] and earlier Jehiel and Moldovanu [8], provide

strong limits on ex post Nash implementation with interdependent
valuations. When signals are multi-dimensional then efficiency is
generally impossible, and it can be the case that no interesting so-
cial choice function can be implemented. Although, see Bikhchan-
dani [1] for a discussion of when this negative result breaks down
(and implementation is again possible.) In grid computing, an ex-
ample of a multi-dimensional signal is when an agent has two sig-
nals, one relates to the novelty of the data set and one relates to
the noise in the data set. One cannot combine these into one di-
mension while retaining properties such as increasing value with
signal, also required for ex post implementation. Multidimensional
signals present a new challenge, unseen in private value settings,
because there are typically multiple signal values that correspond
to the same value on some bundle of goods and no good way to
provide incentives for an agent to report the correct pair of signals.
Reports of the correct pair of signals are important to allow other

1Cremer and McLean [2] show that if there is even a small amount
of correlation between agent signals then the seller can extract all
of the surplus from the participants. However, this requires interim
IR. We are not aware of any revenue optimality results for the more
reasonable requirement of ex post IR.

agents to learn their correct value.
Finally, work on two-stage mechanisms [16] and other ascending

price designs (see Krishna [10]) also shares the concern of DM for
limiting the knowledge required of the mechanism and agents. We
are not aware of previous attempts to instantiate the contingent bid
model of DM, as we do in this paper.

2. PRELIMINARIES
Consider a single item problem. Each agent � � ��� � � � � �� has

a signal �� � �� from some signal space ��. The value ����� � � of
agent � for the item depends on the joint signals � � ���� � � � � ���.2

The efficient allocation is to allocate the item to the agent with max-
imal value. Assume quasilinear utilities, with utility ����� � 	 for
the item at price 	. Throughout the paper, vector notation ��� de-
notes ���� � � � � ����� ����� � � � � ���.
First suppose that the auctioneer has knowledge of valuation

functions ���� � � � � ���, but not signals. One can construct a truth-
ful and efficient “second-price” auction for some technical restric-
tions as follows. Each agent reports its signal ���, perhaps untruth-
fully. The auctioneer computes ������ for every �, allocates the item
to the agent with��	��������� and then charges the agent 	� �

�
�
��
�

����
�
�� ����� (1)

��� ����
�
�� ����� � ��	

� ���
�������� ������

The auction is efficient if valuations satisfy monotonicity,


�����


��
� �� ��� ��� (2)

and the single-crossing condition (SCC),


�����


��
�


�����


��
� (3)

for all � such that ����� � ��	� ����������.
THEOREM 1. [10] The second-price auction is efficient when

the monotonicity and single-crossing property holds.

PROOF. (sketch) Each agent � faces a price 	� that solves Eq. (1)
and is independent of its own report. Suppose the other agents bid
truthfully, with ���� � ���. Then, by SCC and monotonicity, if
agent � bids truthfully (��� � ��) then it is allocated the good when-
ever its value is greater than 	�, and not allocated the good other-
wise. (Fix ���. Then SCC implies that for all signals less than
that which defines 	� agent � is not a winner, and for all signals
greater agent � is the winner.) By reporting its true signal, the agent
maximizes its utility with respect to a price that is independent of
its own report. This is an ex post Nash equilibrium (but not domi-
nant strategy equilibrium). Truthful reporting is only best-response
when the other agents are also truthful (but whatever their true sig-
nals), because the reports of the other agents are required for agent
�’s true value to be correctly determined.

This auction reduces to the Vickrey auction for private value
models. Yet, there is a practical problem with this protocol. As ar-
gued by DM, the auctioneer must know the signal space of agents
(in order to define an expressive language for signals), and also the

2Notation �� � �� � � � � �� 	 ��� denotes an agent’s value as
a function of the signals of all agents. Below, �� � ������ 	 ���

denotes a contingent bid function, and � � ��� is reserved to
denote the value of agent �: as determined either via ����� or as the
fixed point defined by agents’ contingent bids.



valuation function �� of each agent. This seems to be a heavy bur-
den. Moreover, each agent must report its signal. In general, a
signal (for instance information about a case of wine, or the data
set in grid computing) can be difficult for a participant to describe.
Instead, DM work in the framework of contingent bids. Let

� � ����� � � denote agent �’s value for the good. Agents sub-
mit contingent bids, �� � ������ , where ������ is the (reported)
value given values �� � ��� � � � � ���� ���� � � of other agents.
Given contingent bids, the auctioneer determines reported values as
the fixed point of the mapping:

��� � � � � � � 
�	 �������� � � � � ����� �� (4)

We refer to this fixed point as a valuation equilibrium, and denote
the fixed point as Æ. Agent � is said to bid truthfully when Æ

corresponds to interdependent valuations ���� given signals, i.e.

���������� �
�
���� � ������ �

�
���� ������ ��� (5)

Each agent submits a contingent bid, so that its value in the valu-
ation equilibrium is equal to its true value given the signal informa-
tion ��� that is implicit in the fixed-point values of the other agents.
When all agents bid truthfully the fixed point �Æ� � � � � � 

Æ
� � �

������� � � � � ������.
DM propose the following contingent bid auction, which is well

defined when there exists a unique valuation equilibrium:

1. Given bids, compute the valuation equilibrium �Æ� � � � � � 
Æ
� �.

2. Allocate the item to the agent with the maximal fixed-point
value, breaking ties at random.

3. For the winner, agent �, compute payment 	� as �
��� s.t.
�� � ��	� ������ �, where �� � ���

�
�� 

�
���� for all � ��

�, denoting the fixed-point valuations to other agents when
agent �’s bid is adjusted to some value ��.

The payment to the winner is computed as the minimal (non-
contingent) value that the winner could have submitted and still
remained the winner.

THEOREM 2. [3] The contingent-bid auction is efficient (in
an ex post Nash equilibrium) when valuations satisfy monotonic-
ity and SCC, and when the fixed point of the mapping defined by
contingent bids is unique.

The proof follows (modulo technicalities about the uniqueness of
fixed points) from the structure of the proof of Theorem 1. Agents
will bid truthfully in equilibrium.
Contingent bids make interdependent value auctions practical.

The mechanism does not need to know the signal spaces or valua-
tion functions of agents. On the other hand, DM note that the bid-
ders must now have knowledge of each others’ valuation functions
to be able to deduce implicit signal information in the valuation
equilibrium.3 We adopt a different view on this issue. Let us sim-
ply consider the contingent-value model as the underlying model
of value interdependency. With this view point, the contingent bid
model requires an agent to know enough about other agents (and
that this is known by other agents and so on ad infinitum) to define
its value contingent on their values.

3In fact, DM remark that all that is necessary is that the agents are
able to make correct inferences at the inflection point that defines
the price, i.e. where the winner changes from one agent to another
agent.

3. A LINEAR VALUATIONMODEL
An actual instantiation of the contingent-bid auction requires a

concrete bidding language, designed so that bids submitted in the
language define a mapping (Eq. 4) with a unique fixed point, and
so that valuations at this fixed point satisfy monotonicity and SCC.
In this paper we adopt a linear bidding language,

������ � �� �
�
� ���

���� � (6)

where �� � � denotes agent �’s stand-alone value when other
agents have zero value, and ��� � ��� �� is a weight assigned by
agent � to the value of other bidders. Conceptually, the stand-alone
value �� plays the role of the signal and the �-weights indicate im-
plicit structure about the relationships between valuation functions
� � ���� � � � � �� � in the economy.

3.1 Example
Suppose there are three companies, ��� �� ��, bidding in an auc-

tion. Their values are interdependent. For example, company � is
paying attention to the values of company � and company �:

����� �� � �� � ���� � ���� (7)

In Eq. (7), company � places the weight ��� on the value of com-
pany � and weight ��� on the value of company �. Similarly, we
assume � and � have the following (truthful) contingent bids:

����� �� � �� � ���� � ����

����� �� � ��

Namely, � and � are paying attention to the values of the other
companies, while � ignores the others’ values. The sum of weights
are less than 1.0, which ensures uniqueness of the valuation equi-
librium (the details of this result are shown in Section 3.2.) The
valuations implied by these bids are computed as the fixed point
�Æ� � 

Æ
� � 

Æ
� � of mapping Eq. (4). In this case, the fixed point can be

found by solving:

Æ� � �� � ���Æ� � ���Æ� (8)

Æ� � �� � ���Æ� � ���Æ� (9)

Æ� � ��� (10)

for �Æ� � 
Æ
� � 

Æ
�� � ������� ������ �����. Because at the fixed

point, company � has the maximum value it is the winner. Its
payment is computed as �� that solves 

�
� � ��	��� � ���, where

�� � ���
�
�� 

�
� � and 

�
� � ���

�
�� 

�
�� (i.e. the updated fixed point

values for the other companies when 2’s bid is ����� �� � ��).
We have �� � �� , since 

�
� � ���

�
�� 

�
�� � �������������� and

�� � ���
�
�� 

�
�� � ��, and so �� � �� � �����	��� � ���. Solv-

ing, �� � �� and 
�
� � ����� � ����� solves �� � �� � ����� .

Thus, company � wins for a price of 121.4. Notice that this is less
than Æ� , since the contingent value of company � is also reduced in
determining the threshold bid at which � would have just won.

3.2 Establishing Technical Conditions
Given the linear bidding language we must show the uniqueness

of a fixed point, and then also monotonicity and SCC. First, we
prove conditions on weights ��� for which the fixed point of the
mapping ��� � � � � � � 
	 �������� � � � � ����� �� is unique. For
this we adopt Banach’s Fixed Point Theorem (see Vohra [17]).

THEOREM 3 (BANACH’S FIXED POINT THEOREM).
(BFPT) Let ��� �� be a complete metric space4 and let � � � 	 �

4A distance � is ametric for set � if it satisfies: ���� ������� �� �



be a contraction mapping on � , i.e. such that there is some real
number � � � for which

������� �����  � � ���� ��
for all �� � � � . Then, the function � admits a unique fixed point
��, which can be computed as the limit of applying � from any
arbitrary point �� in � .

Note that BFPT requires a complete metric space but allows a
metric space that is not compact. So, for � adopt the space of non-
negative valuations, i.e. ��

�� for� bidders. Instantiate mapping �
as ��� � �������� � � � � �� ��� ��, where �� is the contingent bid
function, Eq. (6). This is a function into ���� . Define the distance
metric, �, as:

��� �� � ��	
�����������

�� � ���� (11)

for � � � �
�
�� . For example, consider two agents with ��� �

��� � ���, and consider values  � ��� �� � ��
�� and � �

���� ��� � ��
��. Then, we have ��� �� � ��	�������� ���

���� and ������ ����� � ��	���� � ���� ��� �������� ��� �
��� � ��� � ������� � ��	����� � ������ ���� � ������.
Clearly, ��	����� � ������ ���� � ������ � ��	��� �
���� �� �����. This analysis extends to the general case.
LEMMA 1. There is a unique valuation equilibrium when�
� ��� ��� � � for all bidders �, and this equilibrium can be com-

puted as the limit to a sequence of the contingent-bid mapping
� � ���� 	 �

�
�� , starting from an arbitrary � � ��

��.

PROOF. Fix some � � � �
�
�� . To show is ��	������� �

������� � ��	���� � ����. Consider any agent �. We will es-
tablish ����� � ������ � ��	� ������ � �� ��, which implies the
required result. Expanding, we require ��� ��� ��� ���� � ��� ��

� ��� ������� � ��	� ������ � �� ��. Simplifying, we require
��� ����� � ���� � ��	� ������ � �� ��. For this, it is sufficient
to show that

�
� ��� ��� �� � �� � � ��	� ������ � �� ��, which is

true since
�

� ��� ��� � � and ��� � ��� ��.

Thus, for uniqueness it is sufficient that the language restricts the
total weight that each bidder � assigns to the values of other bidders
so that

�
� ��� ��� � �. For truthful bidding to form an ex post Nash

equilibrium we also need the analogs to monotonicity and SCC to
hold in the contingent-bid model.

LEMMA 2. For all contingent bids with
�

� ��� ��� � � for all
bidders �, then 
Æ� �
�� � 
Æ� �
�� for all bidders �� � (i.e. the
analog to the single-crossing condition).

PROOF. Consider some finite number of agents, � . Adopt ��

to denote �� in agent bids. Towards a contradiction, assume


Æ�

��

 
Æ�

��

� ���

Æ�

��

�
�

� �������

���

Æ�

��

(12)

Since
�

� ��� ��� � � and ��� � � this implies � � � and

Æ� �
�� � 
Æ��
�� for some � �� ��� ��. W.l.o.g., suppose that
���� ��, ���� �� � ���� ��, ���� �� � �, and ���� �� � � � � �
� for all �� �� � � � . A metric space is complete if it contains all
limit points of Cauchy sequences, where a Cauchy sequence is a
sequence in which �
��	
����� ����� � �. E.g., (0,1) is not
complete because ���� ���� � � � is Cauchy but does not have a limit
in the space. On the other hand, ��� �� is complete, as are �� and
�
�
��. A complete metric space need not be closed (or compact).


Æ��
�� � 
Æ��
�� � 
Æ��
��. Considering agent 3, this
requires

���

Æ�

��

� ���

Æ�

��

�
�

� ���������

���

Æ�

��

�

Æ�

��

(13)

Thus, we must have � � � agents. W.l.o.g., suppose that

Æ��
�� � 
Æ��
��. This induction continues indefinitely,
leading to a contradiction for any finite number of agents.

Informally, the system of equations cannot sustain a fixed point
at which the dependency of some Æ� , for � �� �, on �� is greater
than that of Æ� itself because the effect is “dampened” in all bids
by some multiplier less than one. Monotonicity, which requires
Æ� �
�� � � is immediate since all coefficients in the mapping
 
	 ��� are non-negative.

THEOREM 4. The contingent-bid auction defined with the lin-
ear contingent-bid language is efficient (in an ex post Nash equi-
librium) when the language is expressive.

By “expressive”, we mean that a bidder should be able to use the
language to define a bid value that is equal to its true value, what-
ever the values of the other bidders. The proof follows from Lem-
mas 1 and 2, together with Theorem 2. Informally, once uniqueness
is ensured so that the auction is well defined, fix the bids ��� from
agents � �� �. Agent � faces an agent-independent price, defined in
terms of the smallest uncontingent bid ������� � ��� at which it
would win in the valuation equilibrium, given bids ���. Then, by
SCC and monotonicity, and assuming the other agents are bidding
truthfully, the agent will win (and make this payment) when it bids
truthfully whenever its true value is greater than this price and not
otherwise. Realize that an agent cannot gain by misstating either
its stand-alone value �� or its �-weights.

4. TOWARDS REVENUE OPTIMALITY
We can consider a family of modified interdependent value

auctions to find an auction with improved revenue. Following
the direction set by Likhodedov and Sandholm [12] (in private
value combinatorial auctions), we introduce a “dummy agent” (in-
dexed zero) to represent the seller and then modify the winner-
determination problem by defining static weights �� � ��� �� on
each agent. An allocation � � ���� ��� � � � � �� �, with �� � ��� ��,
�� � ��� �� to indicate whether the dummy agent receives the item
and the item goes unsold, and

��
��� �� � �, is selected to solve:

��	
	

�
������ �

��
���

��
Æ
� ���

�
� (14)

where Æ� ��� � Æ� if �� � � and � otherwise, ���� � � if
�� � � and 0 otherwise denotes the value of the dummy agent (�
can be thought of as the reservation price), and Æ� are agent’s fixed
point values.
Value � and weights � are fixed before bids are received and

heuristically optimized by the auction designer using prior infor-
mation about agent values. The weighted contingent-bid auction is
defined as:

1. Define � and weights � � ��� �����.

2. Receive bids and compute the fixed point �Æ� � � � � � 
Æ
� �.

(Note that agents cannot make their bids contingent on the
dummy agent’s value, and that the dummy agent’s value is
uncontingent and fixed at �.)
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Figure 1: Average Efficiency in the Optimal Auction for the
Symmetric and Asymmetric Environments.

3. Compute the winner as the agent with the maximal weighted
value. If the dummy agent wins then the good is not sold and
no revenue is received.

4. If the item is sold to agent � �� �, then compute the payment:
Decrease �� until ��

�
� � ��	� ������������ �, where �� is

the new fixed point for agent � given value �� to agent � (i.e.,
�� � ���

�
�� 

�
���� for all �). This value, at which � would be

just about to stop winning, is the payment.

Clearly, this auction reduces to the standard auction when the
weights are symmetric and � � �. From Myerson’s [15] work
on optimal auctions, we should expect weights that bias in favor
of agents that are a priori less competitive. It should also be fairly
clear that the auction remains truthful. One needs to show that
the price to the winner is still independent of its bid, and that the
winner wins when its fixed point valuation is above the price, and
only then. (The proof is omitted in the interest of space.)
In our experiments, we consider a symmetric environment

with the signal �� for each agent � �� � is sampled �� �
���������� ����, and an asymmetric environment with the signal
for agent � is sampled from distribution ���������� ���, where
�� � �� � �Æ and Æ � ������

�
. This has the effect of making the

expected signal value of agents increase with the index of the agent
in the asymmetric environment. Then, for each agent � we deter-
mine the �-weights that define the contingent valuations as follows:

(1) Each � �� � has ��� � � with prob. 0.5, otherwise sample
��� from ���������� ��.
(2) Determine a total alpha-weight,��, as follows:
(3.1) For the symmetric environment, by sampling from a Gaus-

sian distribution with mean 0.5 and standard deviation 0.25, trun-
cated to ��� ��.
(3.2) For the asymmetric environment, by sampling from a Gaus-

sian distribution with mean �� � ��� � �Æ� and standard deviation
0.25, truncated to ��� ��, with Æ� � �������

�
. The effect is to cause

the expected total weight assigned to the values of other agents to
increase with the index of the agent.
(4) Normalize weights �� to have total weight ��, by multiply-

ing each ��� by
���

� ��� 
��
.

We use search over auction parameters ��� ��� ��� � � � � �� �, to
maximize the expected revenue. In all cases, we normalize weights
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Figure 2: Average Normalized Revenue in the Optimal Auction
for the Symmetric and Asymmetric Environments.

so that �� � ��� and
��

��� �� � �, so that
��

��� � �� �
���� . Normalization is achieved by setting weights on � � � and
making �� a dependent variable. The search space is discretized,
with � � ��� ��� � � � � ����, and weights �� � ��� ���� � � � � �� �
�����. Because our problem was quite small and because our
goal was to get an initial understanding of whether revenue can be
improved in interdependent value auctions we simply enumerate all
grid points and select the optimal auction parameters. Future work
will explore local search and other approximation methods, as in
Likhodedov and Sandholm [13].
To evaluate a parameterization, we average over 4000 instances

for the symmetric environment and 5000 instances for the asym-
metric environment. We compare the average revenue and effi-
ciency in the optimized auctions with the revenue and efficiency
of the standard contingent bid auctions.
Figure 1 illustrates the average efficiency of the optimal auc-

tion, i.e. the average ratio of total value in the optimal auction
to the maximal value (achieved in the standard auction), for dif-
ferent numbers of agents. Figure 2 illustrates the average normal-
ized revenue of the optimal auction, i.e. the average ratio of total
revenue in the optimal auction to the total revenue in the efficient
auction, for different numbers of agents. As expected, we see that
the auctions can be optimized for revenue, although at some loss in
efficiency and with the benefit quickly dropping off as the number
of agents increases to 5 or more. In addition, for our distributions,
the possible benefit is greater in the asymmetric setting than in the
symmetric setting.
Looking at the optimal parameters, the optimal revenue was

achieved in the symmetric environment with symmetric weights.
For the asymmetric environment, the optimal weights were some-
times asymmetric, for instance when there are 3 agents the optimal
weight assignment was ��� for agent 1, ��� for agent 2, and ���
for agent 3. Moreover, optimal weights were always decreasing
with agents as we expected from Myerson’s [15] study of asym-
metric private value auctions. This suggests that for local search
it would be useful to restrict the search space to only allow states
with weights that are (weakly) decreasing with agent index. The
optimal choice for � in the asymmetric environment varied from
50 to 110, and averaged around 80.

5. SINGLE-MINDED CAS
Many interesting auction scenarios havemultiple items and inter-



dependent values. For instance, consider selling a mix of different
bottles and allowing bidders to put together there own “cases” of
wine. By adopting single-minded bidders, interested in a particular
bundle of goods, we consider the simplest possible model of inter-
dependent value CAs. Agents have two-dimensional, consisting of
the description of the bundle in which it is interested and its signal,
conveying information about the value of its bundle (and perhaps
about the value of other agents for other bundles.) We construct an
approximately efficient auction, which satisfies a generalization of
the single-crossing condition.

5.1 Extending the Contingent-Bid Language
Let � denote the set of goods. A single-minded bidder has an

interesting bundle �� � � and an interdependent valuation func-
tion ����� �� � � on bundles � � �, defined in terms of signals
� � ���� � � � � �� � as:

����� �� �

�
����� if� ���

� otherwise
(15)

Here, we assume free-disposal, so that an agent’s value is (weakly)
increasing with additional goods. Function, ����� � �, defines the
agent’s value for an interesting bundle given signals �.
The contingent-bid language is extended to allow a bid by

agent � to report an interesting bundle, ��� (perhaps untruth-
fully), a stand-alone value �� � �, and weight-bundle pairs
������ ����� � � � � ���� � ��� �� for agents � �� �. Taken together,
this defines the following contingent bid function:

����� ��� �

�
�� �

�
� ��� ���������� for � � ���

�� otherwise
(16)

We follow the earlier notation: �� is a contingent-bid, now for
each bundle � , and ���� denotes an agent’s value for a bun-
dle (determined either in a fixed point, or via its valuation func-
tion �� and signals of others). We also require ��� � ��� ��
and

�
� ��� ��� � � for all �, as before. The valuation equilib-

rium is defined as a fixed point of the mapping ��� � � � � � � 
	
�������� � � � � �� �����, where � � �� 	 ��� and ������ �
�� 	 ��� (i.e. the restriction of the agent’s contingent bid func-
tion, given values of other agents for each bundle.)
An agent’s value for some bundle � is defined in terms of the

value of other agents � �� � for other bundles ��� , and also de-
pends on whether � � ���. Realize that ��� , the bundle that
bidder � picks out for bidder �, in defining its dependency on the
valuation function of bidder �, need not be the same as either ���

or ��� . This provides useful expressiveness as well as ensuring that
the knowledge requirements are reasonable. (See the example in
Section 5.3.)

THEOREM 5. The single-minded contingent bid model has a
unique fixed point when

�
� ��� ��� � � for all �.

PROOF. By reduction to the single-item contingent bid model.
Given a set of contingent bids �, simplify the bids as follows: for
each agent �, replace ��� with ��� if ��� � ��� and replace ���

with � otherwise. Since ���� � � for all agents, this has the ef-
fect of removing any dependence on bundles of this kind. Given
this simplification, the fixed point can be characterized as the fixed
point to the system of equations

��� ���� ��� � �� �
�
� ���

����� ���� (17)

� � � � � �

�� � ��� � �� � � �� �
�
� ���

����� ����� (18)

which have exactly the same form as for the single-item contingent
bid model because the same bundle ��� appears for agent � in all
equations. Thus, there is a unique solution.

5.2 Failure of Generalized SCC
It is tempting to generalize the efficient auction described for

the single item case as follows: (1) compute the fixed point val-
uation functions Æ defined by the mapping induced by Eq. (16);
(2) compute the efficient allocation �� � ���

� � � � � � �
�
� � �

�����	��
�

� 
Æ
� ���� to maximize total value (breaking ties at

random), where � denotes the feasible allocations (restricted to al-
locations in which agent � either receives � or ���); and (3) compute
payment to each winner �, as:

�
� �� (19)

��� �� �
�
� ���

�� ��
�
� � � ��	

��

�
� ���

�� �����

where �� ��� � ����� � ��� 
�
�����, and  

�
���� � �� for � � ���

and zero otherwise. This has the same structure as the previous auc-
tion: ��� denotes the revised fixed point when agent � bids value 

�
�

on its interesting bundle ���; thus, agent � pays the smallest amount
it could have bid and still won, also accounting for the effect of its
new report on the values of other agents.
For truthful bidding to be an ex post Nash equilibrium in this

auction, it would be sufficient for the valuations to satisfy a gen-
eralized form of the monotonicity and single-crossing conditions,5

which combine as:

DEFINITION 1 (GENERALIZED SCC). If, for signals
���� � � � � ��� there is a pair of allocations � and � �, tied for
value, i.e.:

��
���

����� � �� �
��
���

����
�
� � �� � ��	

����

�
�

����
��
� � �� (20)

then for every agent � such that �� �� � �
� , we require:�





��
������ �� �





��
����

�
�� ��

�

��
�





��

��
���

����� � �� �




��

��
���

����
�
� � ��

	
(21)

In words, generalized SCC requires that the value of agent � for
� is improving more quickly than for� � with respect to its signal
whenever this is true for the economy of agents in aggregate, and
vice versa. Conceptually, this will be true when the marginal effect
of an agent’s signal on its own value dominates the marginal effect
of its signal on the aggregate economy.

THEOREM 6. [14] The second-price interdependent value
single-minded CA auction is efficient in an ex post Nash equilib-
rium when the generalized SCC property holds.

For private value single-minded CAs, this auction is equivalent
to the VCG mechanism and truthful bidding is a dominant strategy
equilibrium. But, we will show that generalized SCC, and thus
incentive compatibility, fails in our interdependent value model.
Consider Eq. (21) for single-minded CAs. The LHS of the bidi-
rectional condition is only true when �� � �� and � �

� � �. We
see that generalized SCC requires that whenever an allocation in

5Personal communication [14]. Earlier conditions, as described in
Dasgupta and Maskin [3], appear too strong to be useful.



which agent � wins and an allocation in which agent � loses are tied
for total value, then if a change in agent �’s signal changes the allo-
cation it must be that an increase in its signal causes the allocation
in which the agent is the winner to be selected. Thus, generalized
SCC reduces to the following requirement: for any signals ��� of
other agents, if an agent � is a winner for some signal �� then the
agent must remain a winner for all higher signals. Notice that the
allocation of items to other agents can change for higher signals, as
long as agent � always retains bundle��.

5.3 Example
Consider goods � � ���!�"� and 5 agents, with (truthful)

contingent bids:

����!� ��� � �� � �����"� (22)

���"� ��� � �� � ������� (23)

����!"� ��� � � � ������!� � ������!"� (24)

����� ��� � � � ������!"� (25)

�	�!"� �	� � � � ������!"� (26)

This can be simplified, replacing ��� with �� if ��� � ��

and � otherwise (and removing this term.) We are left with
���"� ��� � �� � ������� � ��, ����!� ��� � �� �
�����"� � ��, ����!"� � ��, and ����� � �	�!"� � ��.
Suppose agents bid truthfully with �� � � for all agents. The

final allocation is ��!�"� �� �� ��. To compute the payment by
agent 1, we solve (by Eq. 19)�
� �� s.t. 

�
� ��� � � � ����� ��

(for allocation ��� �� �!"� �� ��), �� � �� � �� � � � ����� (for
allocation ��� "� �� �� ��, and �� � �� � � � ����� � � � �����
(for allocation ��� �� �� ��!"�. The first two constraints require
�� � ����� �� � �, while the third constraint not binding. Thus,
agent 1’s payment is 	� � �. At a bid equal to this price, the auc-
tioneer would be indifferent between allocation ��!�"� �� �� ��
and ��� "� �� �� ��. For agent 2, we solve�
��� s.t. ��� ����� �
�� � ��������������������� (allocation ��� �� �!"� �� ��) and
����������� � �������������� (allocation ��� �� �� ��!"�.
Only the second constraint is binding, and requires �� � ����.
Thus, agent 2’s payment is 32/5=6.4.
To see the failure of generalized SCC, let �� denote agent 1’s

stand-alone value and consider what happens as �� is increased
from 10. When �� � �� we have ���!� ��� � ��������"�,
and solving for the valuation equilibrium we find ���!� �
��� ��"� � ��� ���!"� � ���� � ����� ���� � �� and
	�!"� � ��. At this point, allocations � � ��!�"� �� �� ��
and � � � ��� �� �� ��!"� are tied for value. In addition,

Æ������
�� � 
Æ���

�
���
�� � �. For the analog to gener-

alized SCC in the contingent-bid model, we need:





��

�Æ����� � Æ������ �




��



Æ���

�
�� � Æ	��

�
	�
�
� (27)

but this does not hold because 
�Æ����� � Æ�������
�� � � �

�Æ���

�
�� � Æ	��

�
	���
�� � ���.

The implication of this failure of generalized SCC is that if agent
1 has true value greater than 34, and the other contingent valua-
tions of agents were unchanged its equilibrium strategy is not to
bid truthfully. For example, if its stand-alone value was 20 but its
�-weights were unchanged from the example, and if the bids ���
were unchanged, then the agent would lose if bidding truthfully.
The selected allocation would give � to agent 4 and !" to agent
5. The agent could do better by reporting an uncontingent bid of
����!� ��� � ��; it would win and make a payment of 3.
Failure of generalized SCC occurs in this example because agent

1’s value does not affect the value of the other agent (agent 2) with

which it must form a winning coalition. On the other hand, its value
affects the value of both agents 4 and 5 in the competing coalition.

5.4 A Truthful Single-Minded CA
We can instead define an approximately efficient auction using a

greedy allocation rule, which is parameterized with some constant
# � �. The auction generalizes the auction proposed in Lehmann et
al. [11] for single-minded bidders and private values to the setting
of interdependent values.6 It also reduces to our single-item auction
when all agents bid on bundles with overlapping goods, so that only
one agent can win. The auction is defined as follows:

1. Compute fixed point values �Æ� � � � � � 
Æ
� � on reported bundles

bundles � ���� � � � � ��� �.

2. Sort bids in decreasing order of Æ� �� �����, breaking ties at ran-
dom. Constant # � � determines the dependence of bid rank on
the number of items in the interesting bundle. Walk down the
list, accepting bids if the goods demanded are still unallocated.
This is the greedy allocation rule.

3. Let $�� �
Æ� � ��� �� denote whether agent � is allocated its

interesting bundle in the greedy allocation, given fixed point
values Æ. For a winner, with $�� �

Æ� � �, define the payment
as the �
� �� s.t. $�� ��

�
�� 

�
���� � � where ��� denotes the

new fixed point given (uncontingent) bid ����� ��� � �� on
� � ��� and � otherwise.

LEMMA 3. For all contingent bids with
�

� ��� ��� � � for all
bidders �, the greedy allocation rule satisfies the generalized single-
crossing condition (with stand-along value �� in the role of signal
��.).

PROOF. (sketch) From Lemma 2 we have �
����

Æ� � ���� �
�

����
Æ� � ����, for all � �� �. So, if agent � is winning for some

stand-alone value, ��, then it will continue to win for a higher sig-
nal because its value will increase by more than the value of any
other agent and therefore its rank in the ordered list of bids to ac-
cept can only improve.

The greedy rule recovers the generalized SCC requirement be-
cause agent � must only compete unilaterally with each other agent
that demands one or more of the same goods. By comparison, the
efficient allocation rule considered competition between coalitions
of agents in deciding whether agent � was a winner.

THEOREM 7. The greedy contingent-bid auction for single-
minded bidders and multiple items supports truthful bidding in an
ex post Nash equilibrium when the bidding language is expres-
sive. Moreover, when parameter # � ��� the greedy auction is�
��competitive w.r.t. efficiency, for� goods.

We omit the proof of equilibrium in the interest of space, and
because it is in all essential aspects the same as that of the single-
item contingent bid auction. Truthfulness follows from the property
of generalized SCC (Lemma 3). The worst-case approximation of�
� for the greedy rule with ordering metric Æ� �������� follows

immediately from Lehmann et al. [11]. The average case efficiency
may be much better.

6Lehmann et al. [11] adopted the greedy allocation rule because
the efficient winner-determination problem is NP-hard. Here, we
adopt the greedy allocation rule because the efficient allocation rule
is not implementable in an ex post Nash equilibrium when agents
have interdependent values. Of course, computational complexity
also provides another reason to prefer this rule in interdependent
value problems with many bids.



5.5 Example: Truthful Greedy Auction
For this example, adopt # � � so that the rank of bids is

determined by computing the per-item bid value. Consider the
greedy auction on the earlier example, where we have Æ���!� �
��� Æ� �"� � ��� Æ� ��!"� � ��� Æ���� � �� and Æ	�!"� �
��. The auction assigns adjusted values ����� ��� ����� �� and
���� to each bid (i.e. the per-item bid values), and places the bids
in decreasing order as bids �� �� �� � and �. Agent 4 is allocated
�, agent 2 is allocated ", and then no other agents receive any
goods because one or more items in their interesting bundles are
already allocated. The allocation is ��� "� �� �� ��. (Note that this
is not the efficient allocation.) Agent 2’s payment is determined
by considering the values of bids that it displaces, namely the bids
from agents 3 and 5. (It must simply remain ranked above agents
3 and 5 to remain a winner.) Considering agent 3, the constraint is
�� � ����� � ������ � ������ � ������ (where the factor ��� is
included because agent 3 bids on 3 items, and thus this reduces its
rank), which gives �� � �����. Considering agent 5, the constraint
is �� � �������������������� (factor ��� because agent 5 bids
on 2 items), which reduces to �� � ����. The latter constraint is
binding, and agent 2’s payment is 	� � ���� � ���. Agent 4 dis-
places bids from agents 1 and 3, and its payment is computed as
�
� �� s.t. 

�
� � ��	������ ����� � ���� � ���.7

6. CONCLUSIONS AND FUTUREWORK
We have instantiated the contingent bid model of Dasgupta and

Maskin [3] to provide a concrete protocol for interdependent value
auctions. A simple linear bidding language is demonstrated to
satisfy the technical conditions required for the efficiency of a
contingent-bid second-price auction. Seeking good revenue prop-
erties, we also illustrated protocols with better expected revenue.
In addition, we described a protocol for interdependent-value

combinatorial auctions (CAs) with single-minded bidders. Thus,
we find a positive counterpoint to the negative general conclu-
sions in the literature on interdependent value auctions with multi-
dimensional private information [8, 9].8 An important future direc-
tion is to study other models that provide structure to value interde-
pendencies and allow for similarly positive results.
In principle, a more general pricing method described in Das-

gupta and Maskin [3] can be used to design truthful auctions in
combinatorial auctions without the restriction to single-minded bid-
ders. (As long as the generalized SCC condition continues to hold,
and with single-dimensional private information.) However, we
wish to draw attention to what we believe to be a severe practical
limitation of the generalized method:

in addition to reporting contingent bids, agents are required to
report the residual domain of valuations that it believes to be pos-
sible for other agents, given its own signal and given its knowledge
about the functional form of the valuations of other agents.

This requirement, which is also discussed in Perry and
Reny [16], is used to ensure that agent-independent payments can
be computed that are consistent (in a utility-maximizing sense)
with the efficient allocation. Requiring that every bidder reports

7It is instructive to consider the effect of agent 1 increasing its value
in the greedy auction. Recall that this is where we observed the
failure of generalized SCC in the proposed efficient auction. In
order to win in the greedy auction, agent 1 must rank above agents
3 and 4, of which agent 4 dominates. To rank above agent 4, we
need ���� � � � ����� , which is impossible for 

�
� � �. So,

agent 1 can never win in this auction given the contingent bids of
the other agents.
8See also Bikhchandani [1] for some additional possibility results.

exact and complete information on the residual valuation domains
of other bidders seems untenable in practical systems. It seems
likely to place a large burden on participants. We think future work
should seek mechanisms for interdependent values that are (neces-
sarily) inefficient when agents do not reveal adequate information,
but fully efficient in the complete-revelation limit.
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