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and

Higher Spin DS/CFT

Abstract

In this thesis we explore holography beyond the much studied case of

AdS/CFT by considering two less well understood dualities: the Kerr/CFT and

dS/CFT conjectures. Conformal symmetry continues to appear as a central

organizing principle in both cases. In the first part of the thesis we use Kerr/CFT

to shed light on the microscopic origin of black hole entropy. Specifically we

consider corrections, logarithmic in the horizon area, to the microcanonical

entropy of spinning black holes in dimensions four and greater. The logarithmic

corrections to the black hole area/entropy law are entirely determined

macroscopically by the massless particle spectrum, and therefore serve as

powerful consistency checks on any proposed enumeration of black hole

microstates. We compute these corrections microscopically using the Kerr/CFT

correspondence and provide support for the conjecture by successfully matching

the macroscopic computation in the simpler case of odd dimensions. Thematch

depends sensitively on the values of the CFT central charge and the levels of the

KacMoody current algebras corresponding to spacetime and gauge isometries

and sheds light on the statistical ensembles occurring in Kerr/CFT.We also take

the extremal limit of the non-extremal microscopic computation and reproduce

the macroscopic logarithmic corrections to the extremal black hole.
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In the second part of the thesis we discuss the simplest known explicit

examples of dS4/CFT3: the duality between Vasiliev’s higher spin gravity in dS4

and three dimensional Euclidean vector model CFT’s. In particular we

conjecture that the level k U(N)Chern-Simons theory coupled to free

anticommuting scalar matter in the fundamental is dual to non-minimal

higher-spin Vasiliev gravity in dS4 with parity-violating phase θ0 = πN
2k and

Neumann boundary conditions for the scalar. Related conjectures are made for

fundamental commuting spinor matter and critical theories. This generalizes a

recent conjecture relating the minimal Type A Vasiliev theory in dS4 to the Sp(N)

model with fundamental real anti-commuting scalars.
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0
Introduction

A holographic duality is an equivalence between a theory of quantum gravity and
a lower dimensional quantummechanical theory without gravity. The study of
holographic dualities was revolutionized about twenty years ago with the
conjecture of the AdS/CFT correspondence relating quantum gravity in Anti de
Sitter spacetimes with a conformal field theory living on the boundary of AdS.
Explorations of AdS/CFT have inspired attempts to formulate holographic
dualities in other settings such as the dS/CFT correspondence for
cosmologically relevant expanding de Sitter universes [36] and the Kerr/CFT
correspondence in the context of astrophysically relevant Kerr black holes [21].
This thesis works towards flushing out both the dS/CFT and Kerr/CFT dualities
albeit by taking a different tack in each case. Understanding of AdS/CFT was
greatly aided by the study of explicit examples in string theory, a microscopic
theory of gravity, but dS/CFT has suffered for a lack of explicit microscopically
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complete examples. An important piece of progress in this direction was the
conjecture of a duality between a particular Vasiliev higher spin gravity in dS4 and
the three dimensional Sp(N) CFT [6]. In this thesis we generalize this
conjecture and propose explicit duals to the entire family of Vasiliev higher spin
gravities in dS4 - they are Chern-Simons vector models with ”wrong”-statistics
scalars or spinors. On the other hand with Kerr/CFT we take a bottom up,
effective theory approach and explore universal constraints on the microscopic
theory. The constraints arise from demanding a match of certain universal
corrections to black hole entropy that can be reliably computed on the gravity
side using low energy effective theory.

In the remainder of this chapter we provide separate detailed introductions to
the two parts of this thesis. In the first part we discuss logarithmic corrections to
black hole entropy and in the second non-minimal higher spin dS/CFT dualities.

0.1 Part1: Understandinglogarithmiccorrectionstoblack

hole entropy using Kerr/CFT

In classical General Relativity, a black hole is a solution to Einstein’s equations
with an event horizon. Nomatter can escape from inside the event horizon and
so a black hole is a perfect black body at zero temperature in classical physics.
However taking into account quantummechanical effects, black holes behave like
thermodynamic systems with a finite thermodynamic entropy and temperature

SBH =
A
4L2

p
=

A
4GN

, T =
κ
2π

, (1)

which obey the first law,

dM = TdSBH + · · · (2)

Here A is the area of the event horizon and κ is the surface gravity. This raises the
question of whether this thermodynamic entropy has a statistical interpretation.
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In other words can we associate a set of quantum states with the black hole whose
degeneracy (dm) for fixed black hole charges (mass, angular momentum, etc.)
yields,

SBH
?
= ln(dm) (3)

Answering this question requires knowledge of the quantum theory of gravity.
Turning the logic around, any self consistent theory of quantum gravity must
reproduce SBH.

Now if the microscopic theory of gravity is known the quantum black hole
states can in principle be explicitly identified and counted. This has been done for
a variety of supersymmetric black holes in string theory starting with the work of
Strominger and Vafa [38]. However the universal Bekenstein-Hawking entropy
follows from the low energy behavior of gravity and is insensitive to the specific
UV completion of Einstein’s theory. This suggests that all the nitty-gritty details
of the microscopic theory governing quantummicrostates are not needed to
reproduce SBH. Rather any putative microscopic theory should possess universal
properties which are responsible for reproducing the universal entropy area
relation.

For rotating black holes the Kerr/CFT conjecture proposes an answer to this
question [7, 14, 18, 21, 35, 37]. There are different formulations of the conjecture
but it generally states that the theory governing the quantummicrostates of a
rotating black hole is a two dimensional quantum field theory with Virasoro and
KacMoody symmetries in the IR limit. These infinite dimensional symetries
constrain the microscopic degeneracy and are responsible for reproducing the
Bekenstein-Hawking entropy. The Kerr/CFT conjecture, as well as the origin of
SBH are better understood for near extremal black holes which is the case we
consider in this thesis.

The challenge of reproducing the Bekenstein Hawking formula
microscopically has spurred many developments in quantum gravity including
the Kerr/CFT correspondence. However this formula is approximate since it
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ignores higher derivative corrections to Einstein’s equations as well as quantum
loop effects due to fields fluctuating about the black hole. SBH is the leading
contribution when the area of the black hole is large. It receives subleading
corrections suppressed by inverse powers of A from higher derivative terms as
well as subleading contributions proportional to Log(A). Such logarithmic
corrections arise from one loop contributions to the black hole partition function
whose Legendre transform in turn yields the statistical entropy. Crucially they
only arise from loops of massless fields and from integrating over loop momenta
much smaller than the Planck scale. They can therefore be evaluated using only
low energy data- the spectrum of massless fields and their coupling to the black
hole background. Matching logarithmic corrections therefore imposes a
consistency check on any proposed enumeration of black hole microstates that
goes beyond the match of the Bekenstein-Hawking entropy. Writing the
corrected entropy as

S = SBH + n LogA+ · · · , (4)

our goal is to reproduce the number n from the microscopic theory of black hole
states. We will do so for a general rotating black hole in D dimensions using the
framework of the Kerr/CFT correspondence.

Before exploring the Kerr/CFT dictionary further let us spell out more details
regarding the origin of the logarithmic correction. For a non-extremal, rotating,
charged black hole in D dimensions, the logarithmic correction to its
microcanonical entropy reads,

Smc
(
M, J⃗, Q⃗

)
= SBH

(
M, J⃗, Q⃗

)
+ log a

(
Clocal −

D− 4
2
− D− 2

2
NC −

D− 4
2

nV
)

(5)

where a is the black hole radius with A ∼ aD−2[33]. The black hole is labelled by
specifyingNC = [(D− 1)/2] angular momenta, (NC is the number of Cartan
generators of the spatial rotation group) and by nV U(1) gauge charges. The term
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Clocal arises form the contribution of the determinants of kinetic operators of
massless fields to the Euclidean (thermal) partition function and is proportional
to the trace anomaly of the massless fields. In particular Clocal vanishes in odd
spacetime dimensions. The remaining contributions to arise from path
integrating over the zero modes of the kinetic operator and from the Laplace
transform relating the microcanonical entropy to the partition function. For
extremal black holes the formula (1.46) is slightly modified to,

Smc
(⃗
J, Q⃗
)
= SBH

(⃗
J, Q⃗
)
+ log a

(
Clocal − 3

D− 2
2
− D− 2

2
NC −

D− 4
2

nV
)
(6)

The second termmultiplying log a has changed from−D−4
2 to−3D−2

2 . This is not
a contradiction because the precise definition of Smc differs in the non-extremal
and extremal cases as observed in [33]. In the non-extremal case Smc(M, J,Q) is a
density in the sense that eSmc(M,J,Q)ΔM equals the total number of states in the
mass interval ranging fromM toM+ ΔM. However in the extremal case
Smc(J,Q) is a degeneracy, not a density, because the extremal black hole is
labelled by quantized (discrete) charges. Therefore it makes sense to count the
total number of states associated with a fixed set of charges. On the other hand
the massM is not quantized in the low energy theory and assumes continuous
values, thereby forcing us to consider a density in the non-extremal case.
Nevertheless it is possible to deduce the extremal formula (1.46) from a limit of
the non-extremal formula: the argument is presented in chapter 3.

We now survey the Kerr/CFT dictionary which prescribes features of the
microscopic theory governing black hole states that we will need to deduce the
entropy microscopically. It states that the ”CFT” is a two dimensional quantum
field theory living on the space spanned by the coordinates t and φi. Here t is near
horizon time (for extremal and near extremal black holes it is the AdS2 time)
while φi is one of the azimuthal angles in the geometry along which the black hole
has angular momentum Ji. We henceforth restrict ourselves to extremal and near
extremal black holes whose near horizon geometries have a SL(2,R)× U(1)
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isometry subgroup arising from the isometries of the near horizon AdS2 and the
rotation isometry along the CFT direction φi. Kerr/CFT proposes different
infinite dimensional enhancements of these isometries. Explicit examples from
string theory [39] suggest that the most plausible enhancement is

SL(2,R)R × U(1)L → VirR × Û(1)L , (7)

where the R index refers to the AdS2 time (t) direction while the L index refers to
the angluar direction (φi). Both the Virasoso and Kac-Moody extended
symmetries appearing on the righthand side are rightmoving. Another proposed
enhancement is [11],

SL(2,R)R × U(1)L → VirR × VirL , (8)

In this proposal VirR is rightmoving while VirL is left moving. We show in chapter
2 that both extensions yield the same logarithmic corrections. Since the second
extension is more familiar - its symmetries are the same as those of a CFT2 - we
preview it here while leaving the details of the other extension to chapter 2.

The Kerr/CFT dictionary for the enhancement (1.32) states that the central
charges of the Virasoro algebra scale as,

cL = cR ≡ c ∼ A ∼ aD−2 (9)

Additional spatial rotation isometries lead to corresponding Kac-Moody algebras
in the CFT with levels (kJ) that scale as,

kJ ∼ c ∼ A ∼ aD−2 (10)

Finally the nV U(1) gauge fields correspond to nV additionalU(1)Kac-Moody
current algebras in the microscopic theory with levels (kQ),

kQ ∼ aD−4 (11)
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Note that all these central charges and levels are microscopic quantities defined
in the theory governing black hole states. They are not detected directly by probe
fields in the macroscopic black hole spacetime. With the central charges and
levels in hand we can give a discussion of the microscopic computation of black
hole entropy.

In the microscopic theory the entropy is extracted from the CFT partition
function

Z(τ, τ̄) = Tr e2πiτL0−2πīτL̄0 , (12)

which is approximated using its modular transformation property,

Z(τ, τ̄, μ⃗) = e−
2πiμ2

τ Z
(
−1
τ
,−1

τ̄
,
μ⃗
τ

)
. (13)

The μi are chemical potentials for the Kac-Moody charges. The density of states is
in turn related to the approximate partition function as,

ρ(EL, ER, p⃗) ≃
∫

dτdτ̄ dnμ e
2πi

(
− μ2

τ −
EvL
τ +

EvR
τ̄ −ELτ+ER τ̄−μip

i
)
, (14)

as elaborated in chapter 2. The integral can be performed using the saddle point
approximation. The saddle point result yields the Bekenstein-Hawking entropy
upon applying the Kerr/CFT dictionary. Gaussian fluctuations about the saddle
yield logarithmic corrections. Using the scalings for the various quantities
prescribed bby the Kerr/CFT dictionary, we recover the logarithmic correction
(1.46). The reason we get the non-extremal result is because (1.56) is a density.

The rest of the thesis is organized as follows. In Chapter 2, the logarithmic
correction to the density (1.46) is obtained microscopically. Chapter 3 considers
extremal black holes and deduces the formula (6) for the degeneracy.
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0.2 Part2: Explicitexamplesofnon-minimalhigherspindS/CFT

Astronomical hints of a positive cosmological constant suggest our universe may
asymptote to de Sitter space in the future [8, 9]. The dS/CFT conjecture was
formulated precisely for such asymptotically de Sitter spacetimes. It posits that
quantum gravity in a de Sitter spacetime (dS) is holographically dual to a
conformal field theory (CFT) living on the spacelike boundary of dS at future
infinity [22, 36, 44]. However basic conceptual issues in the duality, for example
the microscopic interpretation of the entropy associated with the de Sitter
cosmological horizon, still remain mysterious. Exploring concrete examples of
the dS/CFT conjecture may help facilitate our understanding of such issues. A
few years ago an explicit example was proposed which involved one of Vasiliev’s
higher spin gravity theories in dS4: Vasiliev type A theory in dS4 is conjecturally
dual to the Sp(N)CFT3 with anti-commuting scalars [6]. This duality was
deduced by analytically continuing a previously established AdS/CFT duality
between Vasiliev type A theory in AdS4 and theO(N)CFT3. The

Vasiliev actually constructed families of classical higher-spin gravity theories in
dS4 labelled by a parity-violating phase θ0 and, at the quantum level, a loop
counting parameter g2dS. Indeed in AdS/CFT there is a whole family of dualities
with the microscopic theories being U(N) Chern-Simons theories coupled to
free or critical bosons or fermions in the fundamental representation of
U(N)[13, 20, 25, 30]. In this thesis we construct the analogous family of dualities
in dS4 again utilizing the tool of analytic continuation from AdS4 to dS4. The
dualities are displayed in the table below. The existence of such dualities was
anticipated in [5, 28].1

Let us discuss the general structure of our dS/CFT claim. We will conjecture a
minimal form of the correspondence which starts with correlation functions of
fields in the gravitational theory. Correlation functions of operators (Oφ) in the
dual CFT are obtained simply by pushing points in bulk correlation functions of

1The complexification of k considered in [5] is not realized in our construction.
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Table 0.2.1: CONJECTUREDdS4/CFT3 DUALITIES

VASILIEV dS4 THEORY BOUNDARYCFT3 SPECTRUM
Non-minimal; θ0 = π

2 λ U(N)k Chern-Simons; 2*All integer spins
Neumann scalar free anticommuting scalar
Non-minimal; θ0 = π

2 (1− λ) U(N)k Chern-Simons; 2*All integer spins
Dirichlet scalar free commuting spinor
Non-Minimal; θ0 = 0 U(N)∞ Chern-Simons 2*All integer spins
Neumann scalar free anticommuting scalar
Non-minimal; θ0 = π

2 U(N)∞ Chern-Simons; 2*All integer spins
Dirichlet scalar free commuting spinor
Minimal; θ0 = π

2 λ Sp(N)k Chern-Simons; 2*Even spins
Neumann scalar free anticommuting scalar
Minimal; θ0 = π

2 (1− λ) Sp(N)k Chern-Simons; 2*Even spins
Dirichlet scalar free commuting spinor
Minimal θ0 = 0 Sp(N)∞ Chern-Simons; 2*Even spins
Neumann scalar free anticommuting scalar
Minimal; θ0 = π

2 Sp(N)∞ Chern-Simons; 2*Even spins
Dirichlet scalar free commuting spinor
g2dS =

1
N ; λ =

N
k ; Dirichlet (Neuman) bulk scalars have Δ = 2 (Δ = 1).

Free (critical) anticommuting scalars are dual to critical (free) commuting
spinors.

the corresponding fields (”φ) to the future boundary and stripping of appropriate
powers of the dS time coordinate.

⟨φ(x1) · · · φ(xn)⟩dS ↔
⟨
Oφ(x1) · · ·Oφ(xn)

⟩
∂dS

(15)

We do not discuss the interesting formulation of the correspondence involving
the equality of the de Sitter wavefunction and the CFT partition function.

The spectrum of fields in a general bosonic (non-minimally truncated) Vasiliev
higher spin gravity consists of massless symmetric tensor fields of all integer spins
starting with spin 0. These fields are in one to one correspondence with higher
spin symmetry currents in the dual vector model CFT’s. In AdS4, the boundary
three point functions of the higher spin fields were explicitly computed for
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several of Vasiliev’s higher spin models and shown to equal the correponding
CFT three point corelators in [13, 25, 30] thus providing evidence for the duality.
We will demonstrate agreement of the corresponding three point functions in
dS4 using analytic continuation.

It is a special feature of Vasiliev theory that the dS and AdS theories are related
by a simple analytic continuation which involves taking the cosmological
constant to minus itself,

Λ → −Λ,GN → fixed (16)

The duality set up in [13, 30] identifies,

N ∼ 1
ΛGN

(17)

and thus this analytic continuation corresponds toN→ −N in the dual theories.
We will argue in chapter 3 that takingN→ −N is equivalent to reversing the
statistics of the matter fields coupled to the Chern-Simons gauge fields.

The analytic continuation from AdS to dS in Vasiliev theory stands in stark
contrast with familiar examples of AdS/CFT in string theory such as the duality
betweenN = 4 super Yang-Mills and string theory of AdS5× S5. There taking
Λ → −Λ leads to severe problems such as imaginary flux (N) in the bulk as well
as unstable bulk fields with wrong sign kinetic terms.

The outline of part 2 is as follows. In Chapter 3 Section 2, we review the
Chern-Simons theories coupled to bosonic scalar or fermionic spinor matter in
the fundamental ofU(N). We also discuss the statistics-reversed versions of
these theories, namely Chern-Simons coupled to fundamental anticommuting
scalar or commuting spinor matter, as well as Wick rotation fromMinkowski to
Euclidean space. In Section 3, we review the parity-violating Vasiliev theories in
the AdS4 and dS4 vacua. In section 4, we present an analytic continuation that
relates them. In particular, we show how the n-point correlation functions in
AdS4 and in dS4 are related by this analytic continuation. In section 5,

10



higher-spin bulk duals are conjectured for the various wrong-statistics
Chern-Simons-matter theories. Formulae are given relating the bulk coupling
constants and boundary conditions to the boundary level, gauge group and
interactions. Spinor conventions are in the appendix.
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1
Microscopic computation of logarithmic

corrections to the density of states

Our goal in this chapter is to use the Kerr/CFT correspondence to
microscopically reproduce macroscopically computed logarithmic corrections to
the entropy of near a near extremal, charged, rotating black hole in D spacetime
dimensions. We start by considering elements of Kerr/CFT for the specific
example of the five dimensional Kerr/Newman black hole and follow this up
with a discussion of Kerr/CFT for general D dimensional black holes. After this
we review the macroscopic computation of the logarithmic corrections (1.46)
and finally end with a microscopic, Kerr/CFT, derivation of the same.

Let us start by considering aspects of Kerr/CFT for a charged and rotating
black hole solution of five-dimensional Einstein gravity minimally coupled to a
gauge field. The dynamics of the latter is specified by the

12



Yang-Mills-Chern-Simons Lagrangian, so that the complete action is,1

S5 =
1
4π2

∫
d5x
(√
−g
(
R− 3

4
F2
)
+

1
4
εabcdeAaFbcFde

)
. (1.1)

Specifically, we are interested in the following Kerr-Newman black hole solution
to (1.1) considered in [14],

ds25 = −
(a2 + r̂2)(a2 + r̂2 −M0)

Σ2 d̂t2 + Σ
(

r̂2d̂r2

f2 −M0r̂2
+

dθ2

4

)
− M0F

Σ2 (dψ̂ + cos θ dφ̂) d̂t

+
Σ
4
(dψ̂2

+ dφ̂2 + 2 cos θ dψ̂ dφ̂) +
a2M0B
4Σ2 (dψ̂ + cos θ dφ̂)2 ,

(1.2)

A =
M0 sinh 2δ

2Σ
(
d̂t− aeδ(dψ̂ + cos θ dφ̂)

)
, (1.3)

where we have defined the quantities

B = a2 + r̂2 − 2M0s3c3 −M0s4(2s2 + 3) , F = a(̂r2 + a2)(c3 + s3)− aM0s3 ,

Σ = r̂2 + a2 +M0s2 , f = r̂2 + a2 , (1.4)

and s ≡ sinh δ , c ≡ cosh δ. The geometry depends on three independent
parameters (a,M0, δ) and the physical quantities of the black hole, i.e., its mass,
angular momentum and electric charge, are given in terms of those parameters by

M =
3M0

2
cosh 2δ , JL = aM0 (c3 + s3) , Q = M0sc . (1.5)

In five dimensions, it is possible to have a second angular momentum, JR, but we
set JR = 0. Note that the SU(2)L angle is identified ψ̂ ∼ ψ̂ + 4π.

1This coincides with the bosonic sector of minimal supergravity in five dimensions.
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This black hole displays inner and outer horizons located at

r2± = 1
2(M0 − 2a2)± 1

2

√
M0(M0 − 4a2) . (1.6)

At the (outer) horizon, the angular velocities are

ΩL ≡ Ωψ̂ =
4a
M0

1
(c3 − s3) + (c3 + s3)

√
1− 4a2/M0

, ΩR ≡ Ωφ̂ = 0 ,

(1.7)

and the electric potential is

Φ =
c2s− s2c+ (c2s+ s2c)

√
1− 4a2/M0

c3 − s3 + (c3 + s3)
√

1− 4a2/M0
. (1.8)

Finally, the Hawking temperature is given by

TH =
1

π
√
M0

√
1− 4a2/M0

c3 − s3 + (c3 + s3)
√

1− 4a2/M0
, (1.9)

and the Bekenstein-Hawking entropy is

SBH = π
√
2M0

√
(c6 + s6)M0 − 2(c3 + s3)2a2 + (c4 + c2s2 + s4)

√
M0(M0 − 4a2) .

(1.10)

The black hole approaches extremality in the limitM0 → 4a2. In this limit, the
two horizons (1.6) coalesce at r+ = a and the Hawking temperature (1.9)
vanishes. The charges (1.5) become

Mext = 6a2 cosh 2δ , JL ext = 4a3 (c3 + s3) , Qext = 4a2sc , (1.11)

and the angular velocity (1.7) and electric potential (1.8) become

ΩL =
1

a(c3 − s3)
, Φext =

c2s− s2c
c3 − s3

. (1.12)
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At extremality, the Bekenstein-Hawking entropy (1.10) reduces to

SBH = 8πa3(c3 − s3) . (1.13)

In this paper we are interested in the near-extreme case so we introduce a small
parameter κ̂ that measures the deviation from extremality and write
M0 = 4a2 + a2κ̂2. Substituting this into (1.10) and keeping terms up to linear
order in κ̂, the near extremal entropy is

SBH near ext = 8πa3(c3 − s3) + 4πa3(c3 + s3) κ̂2 +O(κ̂2)

=
π2

3
(6JL )

(
1
π
c3 − s3

c3 + s3
+

κ̂
2π

)
+O(κ̂2) . (1.14)

1.0.1 Near horizon, near extremal limit

Consider the coordinate transformation

t = 1
2 εΩL t̂ , r =

r̂2 − r2+
ε r2+

, ψ = ψ̂ − ΩL t̂ , φ = φ̂ . (1.15)

Here, r+ is the location of the outer horizon given in (1.6) andΩL is the extremal
angular velocity (1.12). Making this coordinate transformation in the
five-dimensional geometry (1.2), (1.3), withM0 fixed to its extremal value,
M0 = 4a2, and letting ε→ 0, one obtains the extremal near horizon geometry
given in [14].

Here, we are interested in reaching the near horizon geometry of the black hole
close, but not exactly at, extremality. This is the analog of the so-called
near-NHEK limit for 4D Kerr considered in [18]. In order to do this, we still
make the coordinate transformation (1.15), but now parametrize deviations from
extremality with a parameter κ defined by

M0 = 4a2 + a2ε2κ2 . (1.16)
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Then the metric (1.2) gives rise to

ds25 =
M
12

[
−r(r+ 2κ)dt2 +

dr2

r(r+ 2κ)
+ dθ2 + sin2 θdφ2

+
27J2L

M3
(
πTL(dψ + cos θ dφ) + (r+ κ)dt

)2
]

(1.17)

in the ε→ 0 limit. Here, we have defined

TL ≡
1
π
c3 − s3

c3 + s3
. (1.18)

This notation will be clarified in the next subsection. The location of the horizon
in (1.17) is at r = 0 and the associated surface gravity is κ. We denote the
corresponding Hawking temperature by

TR ≡
κ
2π

. (1.19)

When we identify κ with the parameter κ̂ introduced in (1.14), the metric
(1.17) corresponds to the near horizon geometry of the black hole (1.2) close to
extremality in the following complementary sense as well. Making the coordinate
transformation (1.15) with ε = 1 and expanding the metric components in (1.2)
to leading order in r ∼ κ̂ ≪ 1we obtain (1.17) with κ = κ̂. In the rest of the
paper we make this identification throughout.

The gauge field corresponding to the near horizon, near extremal geometry is
obtained by accompanying the coordinate transformation (1.15) with the gauge
transformation

A → A− dΛ , with Λ ≡ Φ t̂ . (1.20)

Then the gauge field (1.20) becomes

A = −aeδ tanh 2δ
(
dψ + cos θdφ + e−2δ(r+ κ)dt

)
(1.21)
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in the ε→ 0 limit.

1.0.2 Frolov-Thorne temperatures

We nowmove on to compute the Frolov-Thorne temperatures corresponding to
the near-extremal Kerr-Newman black hole, by adapting the strategy of [18] to
our present context. Consider a scalar field

ϕ = e−iω̂t+imψ̂ R̂(̂r) S(θ)T(φ̂) (1.22)

on the the black hole background (1.2), with charge q under the gauge field (1.3).
Zooming into the near horizon region requires performing the coordinate
transformation (1.15) combined with the gauge transformation (1.20). The
charged scalar (1.22) thus becomes

ϕ = eiqΛe−inRt+inLψ R(r) S(θ)T(φ) (1.23)

with

Λ =
2Φ
εΩL

t , m = nL , ω =
1
2
εΩL

(
nR +

2
ε
nL −

2qΦ
εΩL

)
. (1.24)

Now, the scalar field is in a mixed quantum state whose density matrix has
eigenvalues given by the Boltzmann factor e−

1
TH

(ω−mΩL+qΦ), where TH is the
Hawking temperature (1.9). Identifying

e−
1
TH

(ω−mΩL+qΦ)
= e−

2nL
TL

− nR
TR

− q
TQ (1.25)
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and using (1.24) we find the following Frolov-Thorne temperatures:

TR =
2

εΩLext
TH =

2a
επ
√
M0

(c3 − s3)
√

1− 4a2/M0

c3 − s3 + (c3 + s3)
√

1− 4a2/M0
, (1.26)

TL = − 2
ΩL − ΩLext

TH =
2a

π
√
M0

(c3 − s3)
c3 + s3 + (c3 − s3)

√
1− 4a2/M0

,(1.27)

TQ =
1

Φ− Φext
TH =

1
2π
√
M0

c3 − s3

s2c2
. (1.28)

Near extremality,M0 is given by (1.16) and (1.26)–(1.28) become, in the ε→ 0
limit,

TR =
κ
2π

, TL =
1
π
c3 − s3

c3 + s3
, TQ =

1
4πa

c3 − s3

s2c2
. (1.29)

Recall that both TR and TL have already appeared in our discussion: the former
as the Hawking temperature (1.19) of the near-horizon, near-extremal metric
(1.17) and the latter as a parameter, (1.18), in that metric. The present analysis
elucidates the names given previously to those quantities.

At this stage instead of continuing to restrict toD = 5, we lay out the
Kerr/CFT dictionary for a general rotating charged black hole inD dimensions.
TheD = 5 case is a subcase of the results presented below.

1.1 The Kerr/CFT dictionary in general dimensions (D ≥
4)

Consider a general black hole inD spacetime dimensions. This solution is
labelled byNC =

[D−1
2

]
angular momenta (⃗J = {Ji}) and nV U(1) gauge charges

(Q⃗). HereNC is the number of Cartan generators of the spatial rotation group
and nV is the number of gauge fields in the theory. If the black hole is extremal
then these are all the labels while non extremal black holes are additionally
labelled by their massM. Note that for a given black hole solution some of theNC
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angular momenta and some of the nV U(1) gauge charges may be zero.
Suppose we scale the horizon radius of the black hole by a so that the horizon

area scales as,
A ∼ aD−2 (1.30)

Then the non zero angular momenta J⃗, charges Q⃗ and massM scale as [33],

J⃗ ∼ aD−2, Q⃗ ∼ aD−3 (1.31)

We now turn to the Kerr/CFT dictionary for such general black holes. We will
only consider extremal and near extremal black holes since the dictionary is
better understood in these cases. For aD dimensional Kerr-Newman black hole,
the dual ”CFT” lives on the two dimensional space spanned by the coordinates t
and φi. Here t is the near horizon time - in the case of extremal and near-extremal
black holes it is the AdS2 time - while φi is one of the azimuthal anlges in the
geometry along which the black hole has a non-zero angular momentum Ji.
Indeed a black hole with multiple angular momenta may be holographically
described using one of multiple CFT’s corresponding to the multiple anlges φi. It
has been checked in a wide variety of examples that at least for the leading
entropy, the precise angle φi chosen for the CFT to live on does not matter- each
CFT yields the same answer for the entropy [3].

The near horizon geometry of a generalD dimensional near extremal black
hole has a SL(2,R)R × U(1)L isometry subgroup coming from the isometries of
the near horizon AdS2 submanifold and the unbrokenU(1) rotation isometry
corresponding to shifts in the angle φi on which the CFT lives respectively [16].
Various infinite-dimensional enhancements of this global isometry, involving
different boundary conditions, have been extensively considered in the literature,
and may be relevant in different circumstances or for different computations. See
[11] for a recent discussion. We consider two of them which turn out to both
give the same log corrections.2

2Had they been different, the matching of logarithmic corrections would have singled one out.
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1.1.1 VirR × VirL

In this subsection we consider a microscopic theory in which the global
symmetries are enhanced as

SL(2,R)R × U(1)L → VirR × VirL , (1.32)

where VirL and VirR are left and right moving Virasoro algebras with generators
Ln and L̄n respectively. L0 generates ψ rotations and L̄0 generates AdS2 time
translations. Let cL = cR = c denote the equal central charges of VirR and VirL.
Using the results of [11],[4], we have,

cL = cR = c ∼ A ∼ aD−2 (1.33)

The fact that the central charges are equal follows from the asymptotic symmetry
analysis in [11]. The FrolovThorne temperatures are,

TL,TR ∼ a0 (1.34)

Furthermore suppose that a subset, J⃗′ of theNC angular momenta, J⃗ are zero
while the remainder are non-zero. Then the near horizon geometry has an
additional isometry subgroupU(1)[J−J′] × SO(D− 1− [J′]). Here [J] is defined
to be the dimension of the vector J⃗ and similarly for [J− J′]. In Kerr/CFT we
expect this to enhance to the corresponding Kac-Moody current algebra [23]

U(1)[J−J′] × SO(D− 1− [J′])→ Û(1)
[J−J′]
× ̂SO(D− 1− [J′]) (1.35)

Furthemore the result of [23] inD = 4, 5 for the levels of these current algebras
straightforwardly generalizes to,

kU(1) ∼ kSO ∼ c ∼ A ∼ aD−2 (1.36)
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Finally the nV U(1)Q gauge fields in the gravity theory correspond to nV
additionalU(1)KacMoody current algebras in the microscopic theory. In
Appendix 1.5 theU(1)Q level has been computed forD = 5 dimensions. While
we do not explicitly do so, we expect the analysis of Appendix 1.5 to generallize
straightforwardly to generalD and yield,

kQ ∼ aD−4 (1.37)

1.2 Logarithmic correction to entropy

In this section we review the computation of the logarithmic corrections to the
microcanonical entropy of a non-extremal, rotating charged black hole in general
spacetime dimension (D) done by Sen in [33]. His results apply to the near
extremal black holes considered in this chapter, which have a small but non zero
Hawking temperature.

Consider an asymptotically flat black hole solution of Einstein’s theory
minimally coupled to a set of massless fields including scalars, vectors, Dirac
fermions and Rarita-Schwinger fields in D dimensions with canonical kinetic
terms for all of these fields. We will use the Euclidean path integral approach to
compute the quantum corrected black hole entropy. The Euclidean partition
function is macroscopically defined as,

Z(β, ω⃗, μ⃗) =

∫
DΨ e−SE(Ψ) (1.38)

whereΨ includes all fields in the macroscopic theory and SE(Ψ) is the Euclidean
action. β is the period of the Euclidean time coordinate while μi/β and ωj/β
denote the asymptotic values of the time component of the corresponding gauge
field and the t− φj component of the metric respectively. The Euclidean path
integral over macroscopic fields (1.38) is interpreted microscopically as a
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statistical partition function involving a trace over black hole microstates,

Z(β, ω⃗, μ⃗) = Tr
(
e−βE−ω⃗.⃗J−μ⃗.Q⃗

)
(1.39)

When considering extremal black holes in the next chapter we will relate the
microscopic statistical partition function to a Euclidean path integral over the
near horizon geometry of the black hole. However for the non extremal black
holes in this chapter the path integral is over the entire asymptotically flat region
outside the horizon. The statistical interpretation of the partition function (1.39)
means that the density of microscopic states can be extracted from Z by
performing a Laplace transform.

ρ(M, J⃗, Q⃗) =
∫

dβ dω dμ e Log Z(β,⃗ω,⃗μ)+βM+ω⃗.⃗J+μ⃗.Q⃗ (1.40)

The Euclidean partition function (1.38) can be evaluated using the saddle
point approximation which in our case consists of evaluating the action on the
black hole solution. However the Euclidean black hole saddle point contribution
to (1.38) corresponds to a black hole in thermal equilibrium with a thermal gas
of particles. Because we are interested in the entropy of the black hole we should
remove the contribution to log(Z) from the thermal gas. Since the thermal gas
contribution diverges with volume we first put the system in a box of size L.The
thermal gas contribution can now be removed by considering another black hole
solution of size a0 instead of a, putting it in a box of size L0 = (a0/a)L and
subtracting Log Z0 from Log Z, where Z0 is the partition function of the new
black hole. This works because the the leading contribution to log(Z) from the
thermal gas takes the form LD−1 f(β, ω⃗, μ⃗). By dimensional analysis upon scaling
the size a of a black hole by a0/a, β and μ also scale as a0/a (ω does not scale) and
the function f scales as (a0/a)1−D. Therefore the new black hole of size a0, in a
box of size (a0/a)L, will have the same leading thermal gas contribution as the
original black hole and it will cancel in the difference Log Z− Log Z0.
Henceforth we will drop the explicit Log Z0 everywhere for brevity of notation.
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Moving on, since we are in the thermodynamic limit we will use the saddle
point approximation when extracting the entropy from the partition function
using the above laplace integral: the saddle point values of β, ω⃗ and μ⃗ extremize
the exponent in (1.40). Additionally the gaussian integral over the potentials
about their saddle point values gives a logarithmic contribution to the entropy.
The remaining logarithmic corrections to the entropy originate from
multiplicative corrections to the Euclidean partition function itself from the
quadratic (one-loop) fluctuations of quantum fields about the black hole
solution. The one loop path integral about the black hole background can be
divided into an integral over zero modes (Ψz) and non-zero modes (Ψnz) of the
fields. These modes are defined by,

□Ψz = 0, □Ψnz = λΨnz (1.41)

Here□ denotes the kinetic operators of the fieldsΨ and λ denotes the non-zero
eigenvalues of□. Themultiplicative one-loop contribution to the path integral

Z ≈ Zsaddle Z1−loop, (1.42)

decomposes as,
Z1−loop = (det□)−

1
2 Zz (1.43)

where det□ is the determinant of□ over the non zero mode subspace,

det□ = Πλn ̸=0 λn, (1.44)

while Zz is the remaining path integral over the zero modes,

Zz =

∫
DΨz (1.45)

Evaluating Z1−loop about the general black hole background and plugging into
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(1.40) yields the following logarithmic correction to the statistical entropy [33],

Smc
(
M, J⃗, Q⃗

)
= SBH

(
M, J⃗, Q⃗

)
+log a

(
Clocal −

D− 4
2
− D− 2

2
NC −

D− 4
2

nV
)

(1.46)
whereNC =

[D−1
2

]
is the number of Cartan generators of the spatial rotation

group and nV is the number of vector fields in the theory.
In the above formula Clocal arises from the path integral over the non-zero

modes and vanishes in odd dimensions. We will not consider it further in this
thesis. The remaining logarithmic correction comes from gaussian integrals over
β, ω⃗ and μ⃗ about their saddle point values in (1.40) and from the path integral
over translational zero modes of the black hole. These zero modes correspond to
the (asymptotic) translational symmetries broken by the black hole. Actually
only the zero modes corresponding to translations which commute with the
rotation isometry of the black hole contribute to the Euclidean path integral. This
is because all the other translational zero modes as well as all rotational zero
modes do not have the required periodicity in Euclidean time as carefully
explained by Sen in [33]. In the next chapter we will carefully describe how the
integration over a zero mode corrects the Euclidean partition function. For now
we proceed towards our main goal of using Kerr/CFT to reproduce the result
(1.46) microscopically.

One loop exactness

Before proceeding let us briefly discuss, for completeness, the robustness of the
logarithmic correction to the entropy, specifically its one-loop exactness by
reviewing the discussion in [33] . Consider a vacuum diagram of massless fields
with l loops in a low energy theory with a two derivative lagrangian. Themass
dimension of this graph is (D− 2)l+ 2. A contribution to the lagrangian desity
(L) must have dimension D, so the remaining dimension is made up by the
appropriate power of the Planck length (the fundamental scale in the theory),
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namely lD−2
p . Log Z involves an additional integral

∫
dxD√gwhich gives a factor

of aD. Putting the various factors together, the l loop contribution takes the form,

log Z ⊃ l(D−2)(l−1)
p

∫ Λ

dDk k2−2lF(ka). (1.47)

Λ is a momentum cutoff. The function F(ka) accounts for the fact that the
propagators deviate from their flat space expression in the black hole back
ground. It has the property that

F(ka)|k→∞ → 1 (1.48)

since space looks flat at short distances. Scaling out the factors of awe can write,

Log Z ⊃ l(D−2)(l−1)
p a−(D−2)(l−1)

∫ aΛ

dDk k2−2lF(k) (1.49)

Assuming all the loop momenta are of the same order, expand the integrand in
powers of k−1 for large kwhere the function F asymptotes to 1. The only Log(aΛ)
term from the momentum integral can come from the k−(D−2)l−2 term in the
expansion of the integrand. But this term will be multiplied by an additional
factor of a−(D−2)(l−1) unless l = 1. Finally if some of the loop momenta are small
(soft), the effect of the hard part may be thought of as renormalizing the
propagators and vertices of the soft part. Assuming this renormalization does not
change the low energy effective action, for instance massless particles remain
massless, we can integrate out the hard part and run the same argument as before
for the soft part. For example this assumption holds for the graviton which
remains massless in the face of quantum corrections. Finally, higher derivative
corrections generated by integrating out the hard part will be suppressed by
powers of lp/a and will not contribute to the pure logarithmic term.
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1.3 Microscopic computation

We now change gears and compute the logarithmic correction to the entropy of
the microscopic theory dual to the charged rotating black holes. In [14] the five
dimensional Kerr/Newman example was embedded into string theory and the
microscopic dual thereby shown to be the infrared fixed point of a 1+1 field
theory living on the brane intersection. This fixed point is a possibly non-local
deformation of an ordinary 1+1 conformal field theory which preserves at least
one infinite-dimensional conformal symmetry. While the string theoretic
construction implies the existence of the fixed point theory, it exhibits a new kind
of 1+1 dimensional critical behavior and is only partially understood.

Since we have already computed the scaling of the microscopic central charges
and levels with the horizon area of the black hole in hand we can proceed with
the microscopic computation of black hole entropy.

We start by putting the CFT on a circle along ψ − t and consider the ensemble

Z(τ, τ̄) = Tr e2πiτL0−2πīτL̄0 . (1.50)

We assume that
4πτ = βL − βR + i(βL + βR) (1.51)

and 4πτ̄ = βL − βR − i(βL + βR). Standard modular invariance of this partition
function is Z(τ, τ̄) = Z(−1/τ,−1/τ̄). Themicroscopic dual to the
Kerr-Newman black hole we are considering in this paper has additional global
symmetries, corresponding to rotation isometries andU(1) gauge symmetries.
Turning on the associated chemical potentials, the partition function becomes

Z(τ, τ̄, μ⃗) = Tr e2πiτL0−2πīτL̄0+2πiμiP
i

(1.52)

and it obeys the modular transformation rule

Z(τ, τ̄, μ⃗) = e−
2πiμ2

τ Z
(
−1
τ
,−1

τ̄
,
μ⃗
τ

)
. (1.53)
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Here μi are left chemical potentials associated with the left moving conserved
charges Pi and μ2 ≡ μiμjk

ij with kij the matrix of Kac-Moody levels of the left
moving currents. i, j run from 1 to n. This partition function is related to the
density of states, ρ, at high temperatures by

Z(τ, τ̄, μ⃗) =
∫

dEL dER dnp ρ(EL, ER, p⃗) e2πiτEL−2πīτER+2πiμip
i
, (1.54)

where EL, ER, pi are the eigenvalues of L0, L̄0, Pi respectively. For small τ, (1.53)
implies that

Z(τ, τ̄, μ⃗) ≈ e−
2πiμ2

τ e−
2πiEvL

τ +
2πiEvR

τ̄ +
2πiμip

i
v

τ . (1.55)

Then, inverting (1.54), we obtain the following expression for the density of
states:

ρ(EL, ER, p⃗) ≃
∫

dτdτ̄ dnμ e
2πi

(
− μ2

τ −
EvL
τ +

EvR
τ̄ −ELτ+ER τ̄−μip

i
)
, (1.56)

where we have assumed that the vacuum is electrically neutral, piv = 0. This
integral may be evaluated by saddle point methods. The integrand reaches an
extremum at

τ0 =
√

4Ev
L

4EL − P2 , τ̄0 = −
√

Ev
R

ER
, μ0i = −kijp

j

√
Ev
L

4EL − P2 ,

(1.57)
where thematrix kij is the inverse of kij andP2 ≡ pipjkij. The leading contribution
to the entropy is obtained by evaluating (1.56) at the saddle (1.57). This gives

S = log ρ0 = 2π
√
−Ev

L (4EL − P2) + 2π
√
−Ev

R (4ER) . (1.58)

Putting

Ev
L = Ev

R = −
c
24

, EL −
P2

4
=

π2

6
c T2

L , ER =
π2

6
c T2

R , (1.59)
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we have
S =

π2

3
c TL +

π2

3
c TR . (1.60)

The analysis of [11, 14] yields c = 6JL ext and using the values for TL,TR obtained
in (1.29), we see that (1.60) matches the near-extremal Bekenstein-Hawking
entropy (1.14) to linear order in κ. This extends the match of [14] from the
extremal to the near-extremal regime.

The logarithmic correction ΔS to the leading entropy (1.58) is generated by
Gaussian fluctuations of the density of states (1.56) about the saddle (1.57):

ΔS = −1
2
log

detA
(2π)n+2 , (1.61)

whereA is the determinant of the matrix of second derivatives of the exponent in
the integrand of (1.56) with respect to τ, μi, τ̄. We find

detA =
(2π)n+2

16
(−Ev

L)
− n+1

2 (4EL−P2)
n+3
2 (−Ev

R)
− 1

2 (4ER)
3
2 det kij . (1.62)

We now fix n = NC + nV for the Cartan currents of the left moving
U(1)[J−J′] × SO(D− 1− [J′]) current algebra corresponding to SU(2) rotations
and those corresponding to the nV U(1) gauge fields. p2 ∝ Q. The scalings of all
central charges and levels are given in equations (1.33), (1.36) and (1.37).
Taking into account (1.11), we thus have the following scalings,

Ev
L , E

v
R , EL − P2/4 , ER ∼ aD−2 , kQ ∼ aD−4 , kJ ∼ aD−2 . (1.63)

Bringing (1.63) to (1.61, 1.62), we obtain

ΔS =
(
−D− 2

2
− D− 2

2
NC −

D− 4
2

nV
)
log a . (1.64)

which almost matches (1.46) with Clocal = 0. We explain the resolution of this
descrepancy shortly in subsection 1.4.
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VirR × Û(1)L

In this subsection we consider a warped CFT, in which the global symmetries are
enhanced as

SL(2,R)R × U(1)L → VirR × Û(1)L . (1.65)

Here Û(1)L is a right moving Kac-Moody algebra whose zero mode R̃0 generates
the left sectorU(1)L rotational isometry and VirR is a right moving Virasoro
algebra whose zero mode L̃0 generates time translations in AdS2.

Let c be the central charge of VirR and kR be the level of theU(1)KacMoody
Û(1)L. The analysis of [11] yields,

c ∼ kR ∼ A ∼ aD−2 (1.66)

The levels of additional current algebras arising from the spatial rotation group
and from anyU(1) gauge fields scale in the same way as (1.36), (1.37). Once
again with these results in hand we can proceed to the microscopic computation
of the entropy.

The symmetry algebra of our warped CFT is

[
L̃m, L̃n

]
= (m− n)L̃m+n +

c
12

(m3 − m)δm+n ,[
R̃m, R̃n

]
=

kR
2
mδm+n ,

[
L̃m, R̃n

]
= −nR̃m+n ,

where L̃m and R̃m are the Virasoro and Kac-Moody generators respectively.
Putting the theory on a circle along ψ, the partition function at inverse
temperature β and angular potential θ is given by Z(β, θ) = Tr e−βR̃0+iθL̃0 . On the
other hand, in [29] it was shown that by redefining the charges as

Ln = L̃n −
2
kR
R̃0R̃n +

1
kR
R̃2
0δn , Rn =

2
kR
R̃0R̃n −

1
kR
R̃2
0δn , (1.67)
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and putting the theory on the same circle but in the different ensemble3

Z(τ, τ̄) = Tr e2πiτL0−2πīτR0 , (1.68)

the partition function obeys the usual CFTmodular invariance:

Z(τ, τ̄) = Z(−1/τ,−1/τ̄) . (1.69)

Assuming
4πτ = βL − βR + i(βL + βR) (1.70)

and 4πτ̄ = βL − βR − i(βL + βR)wemay then proceed as in the previous section
replacing L̄0 with R0 everywhere starting from equation (1.52) onwards 4. We
thus arrive at the same results for the leading entropy and its logarithmic
correction.

1.4 Matchofthemacroscopicandmicroscopiccomputations

We have already exhibited the match, in the near-extremal regime, of the bulk and
microscopic results for the leading term of the entropy theD = 5Kerr-Newman
black hole under consideration: the Cardy formula (1.60) reproduces the
near-extremal Bekenstein-Hawking entropy (1.14). This match can be
straightfowardly generalized to higher dimensions.

We will now show that the logarithmic corrections in generalD agree. In order
to furnish a sensible comparison, one must ensure that both results are given in
the same ensemble. This is not the case for the macroscopic, (1.46), and
microscopic, (1.64), results given above. The former assumes the entropy to be a
function of the energyQ[∂̂t] conjugate to the asymptotic time which features in

3A change of ensemblemay result in different logarithmic corrections to the entropy. However,
as explained in Appendix 1.6, the change of ensemble corresponding to the charge redefinitions
(1.67) here does not imply any change in the logarithmic correction to the entropy.

4The derivation of the leading entropy with the current enhancement is subtle and to the au-
thors knowledge has not appeared previously in the literature. However it has appeared in the
unpublished works [17, 27].
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the full black hole solution (1.2), while the latter is instead a function of the
energyQ[∂t] conjugate to the near horizon time which appears in (1.17). The
transformation between the macroscopic and microscopic density of states
requires a Jacobian factor (Appendix 1.6),

ρbulk =
δQ[∂t]
δQ[∂̂t]

ρ . (1.71)

Now, from the change of coordinates (1.15) and the expression for the extremal
angular velocity in (1.12), we see that this Jacobian scales like

δQ[∂t]
δQ[∂̂t]

∼ a . (1.72)

Thus
ΔSbulk = ΔS+ log a , (1.73)

which indeed is satisfied by (1.64) and (1.46).

1.5 Appendix: Computation of kQ

In this appendix we compute the level kQ of theU(1)Kac-Moody algebra
associated with the gauge field Aμ. We do not perform a full asymptotic
symmetry group analysis here. We expect that with appropriate boundary
conditions on the gauge field this Kac-Moody is consistent with the rest of the
asymptotic symmetries used in Section 3. Here we are particularly interested in
deriving the scaling of the level kQ with a.

Thus we assume theU(1) current algebra is generated by

Λη = η(ỹ) , (1.74)

where ỹ = πTL ψ. In modes, the generators

pn = −2πTL e−iñy/(2πTL) , (1.75)
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satisfy the algebra
[pm, pn] = 0 . (1.76)

Using the formulas in [10], one can compute the central extension in the
corresponding Dirac bracket algebra. We find:

{
Qpm ,Qpn

}
= −im 24π2T2

Lae
δ tanh 2δ δm+n . (1.77)

The central extension comes entirely from the Chern-Simons term in the action
(1.1). Passing to the commutators { , } → −i[ , ]we obtain the current algebra,

[Pm, Pn] =
kQ
2
mδm+n , (1.78)

with level given by
kQ = 12 (2πTL)

2 aeδ tanh 2δ . (1.79)

1.6 Appendix: Change of ensemble

Under a charge redefinition, q⃗ = q⃗ (q⃗ ′), the density of states, ρ(⃗q), transforms
with the appropriate Jacobian factor as

ρ′(q⃗ ′) =
∂(q1, q2, . . .)
∂(q′1, q′2, . . .)

ρ(⃗q) . (1.80)

The leading piece of the entropy S = log ρ typically scales like aD−2 for large
q ∼ a and is therefore independent of the change of ensemble. However, the
logarithmic correction, which scales like log a, often picks up contributions from
the Jacobian factor above. We have seen this explicitly in section 1.4 where the
Jacobian (1.72) scales with a.

Another instance of a change of ensemble was mentioned in relation to the
charge redefinitions in (1.67). In this case the Jacobian is

∂(L0,R0)

∂(L̃0, R̃0)
= 2

R̃0

kR
= 2
√

R0

kR
. (1.81)
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However, kR ∝ c ∼ a3 [11] and R0 ∼ a3 so in this instance the Jacobian does not
scale with a and therefore the logarithmic correction to the entropy is left intact
by this particular change of ensemble.
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2
Microscopic computation of logarithmic
corrections to the extremal degeneracy

In this chapter we consider logarithmic corrections to the entropy of exactly
extremal black holes. We will use the quantum entropy function formalism
which equates the microcanonical microstate degeneracy with a macroscopic
Euclidean path integral over the near horizon region of the black hole. This is
unlike our macroscopic computations in the previous chapter where the
Euclidean path integral yielded the statistical partition function, not the
degeneracy. Themain non-trivial result of this chapter is that the multiplicative
correction to this macroscopic Euclidean path integral from the integral over zero
modes matches the correction on the microscopic side coming from the laplace
transform of the microscopic canonical partition function required to extract the
microcanonical degeneracy.

34



We start this chapter with a brief review of the computation of the degeneracy
within the quantum entropy formalism. We follow this up by taking a subtle
extremal limit of the macroscopic computation of the previous section and
reproduce the logarithmic corrections coming frommacroscopic zero modes.

2.1 Computationoftheextremaldegeneracyusingthequan-

tum entropy function formalism

In this section we review the argument supporting the equality between the
extremal degeneracy and a Euclidean AdS2 partition function. As discussed in
the introduction, the near horizon region of extremal black holes contains an
AdS2 factor plus additional compact directions. Dimensionally reducing, we get
two dimensional scalars, vectors and two tensors propagaing on AdS2.
Additionally there may be fermions but we restrict ourselves to bosonic fields in
this chapter. The emergent AdS2 factor plays a central role in the entropy
function formalism for extremal black holes. We will work in Euclidean signature
where the AdS2 space has the topology of a disc with a metric,

ds2 =
l2

(1− ρ2)2
(dρ2 + ρ2dτ2) (2.1)

We will impose an infrared cutoff in the AdS2 space so that the coordinates have
the ranges,

0 ≤ ρ < 1− ε < 1, τ ∼ τ + 2π (2.2)

Next consider the following partition function on this regulated space,

ZAdS2 =
⟨
e(−iQj

∫
ρ=1−ε dτA

j
τ)
⟩

(2.3)

The expectation values imply a path integral over all macroscopic fields
propagating on AdS2 weighted by the exponential of the Euclidean action. The
set {Qj} includes all the charges labelling the black hole, namely itsNC Cartan
angular momenta and nV electric charges. From the AdS2 point of view these
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charges equal the fluxes of the corresponding AdS2 electric fields Aj.
In order to define the Euclidean path integral (2.3) we have to specify

boundary conditions on the AdS2 gauge fields Aj. We will work in
Fefferman-Graham gauge with Aρ = 0. Maxwell’s equations in two dimensions
imply that time independent solutions take the asymptotic form,

Aτ = A(0) +
A(1)

ε
(2.4)

The coefficient of the non-normalizable mode A(1) equals the electric charge.
Thus if we fix the non-normalizable coefficient A(1) while carrying out the path
integral the resulting Euclidean partition function is labelled by the black hole
charges {Qj}.

ZAdS2 = ZAdS2({Qj}) (2.5)

Note the contrast with higher dimensional (≥ 4) AdS spaces where the
constant mode of the gauge field, equal to the chemical potential, is dominant
near the boundary and held fixed while the mode equalling the electric charge is
sub-dominant and integrated over. Thus in that case the corresponding Euclidean
path integral computes a partition function labelled by chemical potentials
conjugate to the charges. Finally, the extra term e(−iQj

∫
ρ=1−ε dτA

j
τ) in (2.3) serves to

make the variational principle well defined when the divergent mode A(1) is held
fixed.

So far we have not argued why the Euclidean partition function ZAdS2(Qj)

equals the degeneracy of extremal black hole microstates,

ZAdS2({Qj})
?
= dext({Qj}) = eSext({Qj}) (2.6)

To do so we will use the AdS2/CFT1 conjecture which equates the Euclidean
AdS2 partition function to a thermal partition function in the dual quantum
mechanics. First as discussed in [19], the theory dual to the black hole has a gap
in its spectrum separating the ground states from the first excited (non-extremal)
states. Since the extremal black hole has zero temperature it is captured by the
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infrared limit of the dual quantummechanics - due to the gap in the spectrum
only the ground states survive the zero temperature limit. Hence, the thermal
partition function of the quantummechanics becomes,

ZQM = Tr(e−βH) → d(0) e−βE0 (2.7)

HereH is the Hamiltonian of the quantummechanics and d(0) is the degeneracy
of ground states. E0 is the ground state energy which can be arbitrarily shifted,
while β is the inverse temperature.

Using the AdS2/CFT1 conjecture we equate the AdS2 partition function ZAdS2

with the limit of the partition function (2.7). This implies that the finite parth of
the Euclidean AdS2 partition function ZAdS2 equals the degeneracy of extremal
states d(0).

ZAdS2 = eC L d(0), L→∞, (2.8)

where L is length of the AdS2 time boundary and C is an arbitrary, counterterm
dependent, constant.

Finally note that all quantummechanical states involved in the thermal trace
possess the same charges {Qj}. The reason is that we have fixed the
non-normalizable mode of the gauge field A(1) on the gravity side and thus
restricted to a fixed charge sector in the microscopic theory. Thus the degeneracy
of ground states d(0) is the degeneracy in a fixed charge sector where all states
have the same charges {Qj}. In other words, because of the boundary conditions
on the AdS2 path integral, which hold fixed the asymptotic AdS2 electric fluxes,
ZAdS2 equals the degeneracy in the microcanonical ensemble in which all the
charges are specified. Thus unlike in higher dimensions we have an Euclidean
partition function which equals the degeneracy rather than the microscopic
canonical partition function.

d(0) = d({Qj}) = eSext({Qj} (2.9)
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2.2 Logarithmic corrections to the extremal entropy

In this section we discuss logarithmic corrections to the extremal entropy
focusing on those arising from zero modes on the macroscopic side. We start by
discussing the macroscopic computation in the first subsection and follow with
the microscopic results in the second subsection.

2.2.1 Macroscopic computation of logarithmic corrections

In the previous section we argued that the microcanonical extremal degeneracy
d({Qj}) equals the Euclidean partition function ZAdS2 . Hence we can now
compute the logarithmic correction to the entropy by computing the one-loop
correction to the partition function about in the near horizon black hole
background. The one-loop computation is the same as that outlined in section
1.2 in chapter 1. Since in this thesis we are interested in connecting the
corrections coming from zero modes to those arising from a change of ensemble
in the microscopic theory, we will now elaborate on the macroscopic zero mode
path integral following [32].

As discussed in 1.2 we are interested in determining the a (Ahor ∼ aD−2)
dependence of,

Zz =

∫
DΨz =

∫
Π Dan, (2.10)

where a general zero mode is decomposed as,

Ψz =
∑
n

anΨn
z (2.11)

We will dimensionally reduce the near horizon geometry to two dimensions
and consider zero modes of fields propagating on AdS2. The zero modesΨz are
associated with asymptotic symmetries, large gauge transformations which act
non trivially near the boundary. For example the two dimensional metric zero
modes correspond to reparameterizations of the AdS2 time τ. In this case, the
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general metric zero mode is,
hzμν = D(μεν) (2.12)

where εν corresponds to the reparameterization,

τ → τ + ετ(τ) (2.13)

and is expanded as,
ετ(τ) =

∑
n

bn einτ (2.14)

Our strategy for evaluating (2.10) will be to perform a change of variables
from the coefficients an of the zero modes to the parameters labelling the
asymptotic symmetry group bn. The ranges of the asymptotic symmetry group
parameters are independent of the black hole scale a. Suppose the Jacobian for
the change of variables from the ith field species (i = m for the metric, i = v for a
vector field, etc.) to the corresponding asymptotic symmetry group parameters
gives a factor of aβi for each zero mode. For reasons that will become clear
momentarily the index i refers to a field in the entire AdS2×Mnear horizon
geometry and not AdS2 fields. We have,

Π Dain = aβi N
i
zm Π Dbin (2.15)

whereNi
zm is the number of zero modes of the ith field species. Hence,

DΨz = a
∑

i βi N
i
zm Π Dbin (2.16)

The entire a dependence is now isolated in the prefactor on the right hand side of
(2.16). Our remaining task is to determine the numbersNi

zm and βi.

Determination of βi

For concreteness we first perform the computation of βi for a U(1) vector fieldAμ

(i = v) propagating on the near horizon geometry AdS2 × M. The path integral
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measure for Aμ is normalized as,∫
DAμ e[−

∫
dDx√g gμνAμAν] = 1 (2.17)

The integral in the exponent is over AdS2 × M. Noting that

gμν = a2 g0μν, (2.18)

where g0μν is independent of a, we have,∫
DAμ e[−aD−2 ∫ dDx

√
g0 g0 μνAμAν] = 1. (2.19)

This requires,
DAμ = Π(μ x) d(aD−2Aμ(x)) (2.20)

We noted earlier that the vector field zero modes are associated with large gauge
transformations under which Aμ changes as

Aμ(x) → Aμ(x) + ∂μα(x). (2.21)

The function α(x) parameterizes the asymptotic symmetry group and its
integration range is independent of a. Thus upon changing integration variables
from the Aμ(x) zero modes to the large gauge parameters α(x)we pick up a factor
of a(D−2)/2 for each independent zero mode An

μ or equivalently each independent
gauge transformation αn, that is,

βv =
D− 2
2

(2.22)

Performing the analogous analysis for metric fluctuations hμν we find,

βm =
D
2

(2.23)

Though we will not need it in this thesis the analogous analysis for gravitino
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zero modes yields,
βf = D− 1 (2.24)

Determination ofNi
zm

In order to compute the number of zero modes for each field species it is
convenient to define the following covariant Kernel,

Ki(x) =
∑
n

Gi
pqΨ

(i,p)
n (x)Ψ(i,q)

n (x). (2.25)

HereGi
pq is a non-degenerate metric on the space of the ith field species. For

example for the vector field Aμ we have,

Gv
pq = gpq (2.26)

The index n runs over all zero modes of the ith field species. The zero modes
Ψ(i,p)

n (x) are normalized such that,∫
dDx√g Gi

pq Ψ
(i,p)
n (x)Ψ(i,q)

n′ (x) = δnn′ (2.27)

Because AdS2 is a homogeneous space the kernelKi(x) does not depend on AdS2
coordinates. Denoting the coordinates of the internal spaceM by ywe have,

Ni
zm =

∫
dx√g Ki(x) = 2π

(1
ε
− 1
)∫

dD−2y√gy Ki(y) (2.28)

The infinite pre-factor of 2π
(
1
ε − 1

)
arises from the AdS2 volume integral which

we could pull out since Ki(x) depends only on the internal coordinates. The
problem has now been reduced to computing

∫
dD−2y√gy Ki(y). This is most

conveniently done by first dimensionally reducing each field species to AdS2. As
an example consider the metric. Upon dimensional reduction over M we get
scalars, vectors and a two tensor on AdS2. The number of metric zero modes on
AdS2 × M equals the total number of zero modes from the AdS2 fields obtained
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after dimensionally reducing the metric fluctuations onM.ThusNi
zm can be

written as,

Ni
zm =

∑
l N(i,l)

zm

∑
l
∫
AdS2

dx2√g K(i,l)
AdS2(x), (2.29)

where K(i,l)
AdS2(x) is the Kernel for the the l

th AdS2 field coming from the reduction
of the the ith field on AdS2 × M. The computation ofN(i,l) for l = v, m i.e. for
AdS2 vectors and two tensors has been done in [31, 32] where it is also shown
that AdS2 scalar fields have no zero modes. The results are,

N(i,v) =
1
ε
− 1, N(i,m) =

3
ε
− 3 (2.30)

Because AdS2 is a non-compact space with infinite volume the number of zero
modes is infinite which is reflected in the volume divergence in (2.30). However
writing the a dependence of the zero mode contribution Zz to ZAdS2 as,

Zz ∼ a
∑

i βi N
i
zm = elog a(

∑
i βi N

i
zm), (2.31)

we see that any volume divergences inN(i,v) and henceNi
zm can be absorbed into

into the arbitrary ground state energy E0.
Putting together the above results for a general extremal black hole labelled by

NC Cartan angular momenta in a theory with nV D dimensional gauge fields we
get the following finite a dependent contribution to Log Zz and hence also to the
microcanonical degeneracy d({Qj},

Log Zz ∼ log a
(
−3D− 2

2
− D− 2

2
NC −

D− 4
2

nV
)

(2.32)

2.2.2 Microscopic computation of logarithmic corrections

In this section we discuss the microscopic computation of the logarithmic
corrections to the extremal entropy (2.32). Much of the computation can be
directly imported from the microcopic calculation in section 1.3 of the previous
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chapter. First, consider the correction coming from a change of ensemble in the
microscopic theory with respect to the chemical potentials corresponding to the
NC Cartan generators of the spatial rotation group as well as those corresponding
to the nV D dimensional U(1) vector fields. According to (1.62) they give a
contribution,

ΔSext
(⃗
J, Q⃗
)
⊃ log a

(
−D− 2

2
NC −

D− 4
2

nV
)

(2.33)

Thus we have shown that the logarithmic contribution to
Sext
(
{Qj}

)
= Log d({Qj}) from the nV U(1) vector zero modes as well as that

from the metric zero modes associated with the rotating t− φi components of gμν
(i.e. those which upon dimensional reduction become AdS2 gauge fields) is
manifested on the microscopic side as the correction coming from the laplace
transform with respect to the corresponding chemical potentials involved in
going from the canonical to the microcanonical ensemble.

It remains only to reproduce the−3D−2
2 contribution in (2.32) which comes

from the integral over AdS2 symmetric two-tensor (metric) zero modes. To do so
note that after performing the laplace transfom with respect to TR in (1.56) we
get the density of states ρ(ER, {Qj}). In order to compute the extremal
degeneracy we would like to set ER = 0. However this is too quick because
ρ(ER, {Qj}) is a density in the sense that ρ(ER, {Qj})ΔER equals the total
number of states in the interval ranging from ER to ER + ΔER. However in the
extremal case d(0, J⃗, Q⃗) = eS(J ,Q)ext is a degeneracy, not a density, because the
extremal black hole is labelled by charges which are quantized (discrete). In other
words we are counting the total number of extremal states associated with a fixed
set of charges. We now explain how to go from the microscopic density
computed in 1.3 to the degeneracy in the limit ER → 0.

Let the number of quantummicrostates in the interval from ER to ER + ΔER

be Δn. Then,

Δn = ρ(ER, {Qj}) ΔM (2.34)
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Since we are interested in the extremal limit, the temperature of non-extremal
excitations, TR, is infinitesimal and we work at leading order in TR. As discussed
in chapter 2, TR does not scale with a. To first order in TR the number of
near-extremal states in the range dER is,

dn = eSmc(J ,Q)ext ×
(

∂S
∂TR

TR

)
dER (2.35)

From equation (1.60) we see that,

∂S
∂TR
∼ c ∼ aD−2 (2.36)

Hence in addition to the extremal degeneracy eS(J ,Q)ext , (2.34) also includes a
number of near-extremal (excited) states that scales with c at first order in TR.
Since we are working in a large c expansion it does not make sense to discard this
O(c) number of states in taking the extremal limit TR = 0. In order to obtain the
extremal degeneracy we must first change variables and express the density in
terms of a charge X and take the extremal limit such that there are anO(1)
number of excited states about the extremal point X = 0 forDeltaX ∼ O(1).The
result will equal the extremal degeneracy upto irrelevant numerical factors
independent of a. Defining,

ER ≡
X
c

(2.37)

ρ(ER) = eS(ER,{Qj}) and ρ̃(X) = eS̃mc(X,{Qj}) (2.38)

Since ρ is a density (not a scalar degeneracy) it transforms as,

ρ̃(X) =
∂ER

∂X
ρ(ER) =

ρ(ER)

c
. (2.39)
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We identify the extremal degeneracy as a limit of the density as

eS(⃗J ,Q⃗)ext = ρ̃(X)|X→0 =
ρ(ER)

c
|ER→0, (2.40)

Adding this extra logarithmic correction to the correction coming from the
change of ensemble with respect to TR in (1.62) we reproduce the remaining
macroscopic correction of−3D−2

2 coming from the integral over AdS2 metric
zero modes.

Let us elaborate a bit more on the above reasoning. As discussed in [19] the
spectrum of black hole microstates has a gap of order 1/c in the energy above
extremality (ER) at ER = 0. Furthermore there are anO(1) number of states at
the edge of this gap with energies of order 1/c. Since our results for the entropy
are organized as a large c expansion and the gap closes as c→∞, we expect the
statistical fluctuations of theO(1) number of states present at the gap to be
relevant when extracting the extremal density ρ(0, {Q}) from the canonical
partition function. Since we are interested in counting only extremal states (in a c
expansion) we do not expect statistical fluctuations involving a large -i.e. scaling
with c - number of excited states to affect ρ(0, {Q}). It is to systematically retain
only theO(1) number of states with ER ∼ 1/c at the gap that we changed
variables from ER to X. The gap in the X spectrum at X = 0 isO(1) and there are
are anO(1) number of excited states for anyO(1) value of X. Thus in computing
the density ρ̃(X = 0, {Q}) via a transform from the canonical ensemble only
statistical fluctuations of theO(1) number of states at the gap are relevant.
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3
A family of dS/CFT dualities

In this chapter we analytically continue the conjectured dualities between
Chern-Simons theories coupled to vector matter and Vasiliev higher spin
gravities in AdS4 to deduce the analogous dualities in dS4. We start by reviewing
the relevantU(N)Chern-Simons theories coupled to fundamental matter as well
as their statistics reversed versions in section 2. In Section 3, we review the
parity-violating Vasiliev theories in the AdS4 and dS4 vacua. In section 4, we
present an analytic continuation that relates them. In particular, we show how the
n-point correlation functions in AdS4 and in dS4 are related by this analytic
continuation. In section 5, higher-spin bulk duals are conjectured for the various
wrong-statistics Chern-Simons-matter theories. Formulae are given relating the
bulk coupling constants and boundary conditions to the boundary level, gauge
group and interactions. Spinor conventions are in the appendix.
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3.1 U(N)Chern-Simons theories

In this section, we briefly review the Chern-Simons scalar and Chern-Simons
fermion theories in three dimensions, which are conjectured to be dual to the
parity-violating Vasiliev theories in AdS4 [25, 30]. We also discuss the statistics
reversed versions of these theories which are conjectured, in Section 4, to be dual
to the parity-violating Vasiliev theories in dS4.

3.1.1 Spinors

The action for a complex anticommuting fermion ψ in the fundamental
representation ofU(N) coupled to a gauge field Ai with a level kChern-Simons
interaction in three Lorentzian dimensions is

S =
k
4π

∫
tr
(
AdA+

2
3
A3
)
+

∫
d3x ψ̄γ iDiψ. (3.1)

According to [30], the spectrum of primary operators in this theory consists of a
spin-s single trace operator J(s) for each s > 0, which take the schematic form

J(s)i1···is = isψ̄γ i1Di2 · · ·Disψ + · · · . (3.2)

J(s)i1···is are almost conserved, in the sense that the violation of current conservation
is suppressed by a power of 1/N, and the conformal dimensions of these
operators are given by the unitarity bound up to 1/N corrections, i.e.
Δ = s+ 1+O(1/N). In additional to the spin-s primary operators, there is a
spin zero primary operator:

J(0) = ψ̄ψ, (3.3)

with conformal dimension Δ = 2+ O(1/N). All other primaries are products of
these “single-trace” operators. This theory is conjectured by [30] to be dual to a
Vasiliev theory with parity-violating phase θ0.1 The higher-spin currents J(s) are

1We review parity-violating Vasiliev theories in section 3.

47



dual to the higher-spin gauge fields in the bulk, and the spin zero operator J(0) is
dual to a bulk scalar with Δ = 2 (Dirichlet) boundary condition. The ’t Hooft
coupling

λ =
N
k

(3.4)

is mapped by the duality to the parity-violating phase θ0 by

θ0 =
π
2
(1− λ). (3.5)

The planar three-point functions for the spin-0, 1 currents have been computed
in [15], which exactly match with the tree level correlation functions in the bulk
Vasiliev theory. In general, theN dependence of a Feynman diagram is given by
N2−2g−h, where h is the number of fermion loops, and g is the genus of the
diagram. More explicitly, the n-point function takes the form as
N2−2g−hfg,h(λ, xik), where xik for k = 1, · · · , n are the positions of the n points.

Now consider the same theory, but with opposite statistics for the spinors. The
action for the theory is

S =
k
4π

∫
tr
(
AdA+

2
3
A3
)
+

∫
d3x ξ̄γ iDiξ, (3.6)

where ξ is a commutingDirac spinor in the fundamental representation ofU(N).
In the ’t Hooft large-N limit, the spectrum of single-trace primary operators
contains the spin-s operators J(s) for each s ≥ 0. These take the schematic form:

J(s)i1···is = is ξ̄γ i1Di2 · · ·Disξ + · · · , for s > 0, and J(0) = ξ̄ξ. (3.7)

By the same argument as in [30], these spin-s operators are almost conserved and
have an anomalous dimension of order 1/N. The correlation functions of these
operators can be computed by the exact same diagrams as in the theory (3.1)
with the anticommuting spinors. The only change is that there is an extra minus
sign associated with every independent matter loop by Bose statistics. As a result,
the correlation functions with hmatter loops at genus g take the form
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(−1)hN2−2g−hfg,h(λ, xik), where fg,h(λ, xik) is the same function as in the theory
with anticommuting spinors. So to obtain the current correlation functions in
the reversed statistics theory, we simply have to flip the sign ofN, while keeping λ
fixed.

3.1.2 Scalars

The Lorentzian action for a three-dimensional complex scalar φ in the
fundamental representation ofU(N) coupled to a gauge field Ai with a
Chern-Simons interaction at level k is

S =
k
4π

∫
tr
(
AdA+

2
3
A3
)
+

∫
d3x
(
|Diφ|2 +

λ6
3!N2 (φ

†φ)3
)
, (3.8)

whereDi = ∂i + Ai, and k ∈ Z. We are interested in the ’t Hooft large-N limit,
keeping λ = N

k and λ6 fixed. According to [25], conformality constrains the
parameter λ6 to be a function of λ. The spectrum of operators in the theory
includes a single primary operator for each integer spin s ≥ 0. Each J(s) can be
written as a symmetric, traceless tensor that is schematically given by

J(s)i1···is = isφ†Di1 · · ·Disφ + · · · . (3.9)

As in the fermion case, the J(s)i1···is are almost conserved currents. This theory is
conjectured [25] to be dual to a parity-violating Vasiliev theory with Δ = 1
(Neumann) boundary condition for the bulk scalar, and the higher-spin
operators J(s) are dual to the higher-spin gauge fields in the bulk. The planar
three-point functions for spin-0, 1, 2 currents have been computed in [26],
which exactly match with the tree level correlation functions in the bulk Vasiliev
theory with θ0 = π

2 λ. As in the previous subsection, we want to have a formula
for theN dependence of general Feynman diagrams. For this purpose, it is
convenient to introduce the auxiliary fieldsD and σ. The equivalent action with
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the auxiliary fields is given by

S =
k
4π

∫
tr
(
AdA+

2
3
A3
)
+

∫
d3x

(
|Diφ|2 + φ†(σ2 − D)φ +

√
3!N2

λ6
tr(Dσ)

)
.

(3.10)
In this form it is evident that theN dependence of the Feynman diagrams with h
matter loops at genus g is given byN2−2g−h.

Now consider the same theory, but with opposite statistics for the scalar field.
The action for the theory is

S =
k
4π

∫
tr
(
AdA+

2
3
A3
)
+

∫
d3x
(
|Diχ|2 +

λ6
3!N2 (χ

†χ)3
)
, (3.11)

where χ is an anticommuting scalar in the fundamental representation ofU(N).
In the ’t Hooft large-N limit, the spectrum of single-trace primary operators
contains the spin-s operators J(s) for each s ≥ 0. These take the schematic form:

J(s)i1···is = isχ†Di1 · · ·Dis χ + · · · . (3.12)

By the same argument as in [25], these spin-s operators are almost conserved and
have an anomalous dimension of order 1/N. The correlation functions of these
operators can be computed by the exact same diagrams as in the theory with the
commuting scalar. The only change is that there is an extra minus sign associated
with every matter loop by Fermi statistics. The net effect is to flip the sign ofN
while keeping λ fixed.

3.1.3 Wick rotation

The future boundary of dS4 has Euclidean signature, so we are interested in
Euclidean CFT3s. Let us consider the analytic continuation of the statistics
reversedU(N)Chern-Simons spinor and Chern-Simons scalar theories from
Lorentzian signature to Euclidean signature. This can easily be done by an
analytic continuation of the coordinate of the function fg,h(λ, xia) from x0a to−ix3a.
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More explicitly, the analytic continuation of the higher-spin currents are

J(s),Ei1···is = inJ(s),Li1···is

∣∣∣
x0→−ix3

, (3.13)

where the superscripts L, E distinguish the operators in Lorentzian or Euclidean
signature, and n is the number of the indices of J(s),Li1···is that are 0. It is convenient to
define generating functions

J(s)L (x|y) =
∑
i1,··· ,is

J(s),Li1···is(yσ
i1
Ly) · · · (yσ

is
Ly),

J(s)E (x|y) =
∑
i1,··· ,is

J(s),Ei1···is(yσ
i1
Ey) · · · (yσ

is
Ey), (3.14)

where yα is an auxiliary bosonic spinor variable,

yσ iLy = yα(σ iL)
α
βyβ, yσ iEy = yα(σ iL)

α
βyβ, (3.15)

(σ iE)αβ = (σ1, σ3, σ2) are Pauli matrices, and (σ iL)αβ = (σ1, σ3, iσ2). In terms of
the generating functions, the analytic continuation of the higher-spin currents
can be simply stated as

J(s)E (x|y) = J(s)L (x|y)
∣∣∣
x0→−ix3

, (3.16)

which accounts for the in in (3.13). The analytic continuation of the correlators is
simply

J(s1)E (x1|y) · · · J(sn)E (xn|y) = J(s1)L (x1|y) · · · J(sn)L (xn|y)
∣∣∣
x0k→−ix3k

. (3.17)

3.2 Vasiliev theories in AdS4 and dS4

In this section, we review the Vasiliev theory in AdS4 and dS4 backgrounds
[1, 40–42]. We will start with a background independent formalism, and then
specify the vacuum solutions and reality conditions. The fields in the Vasiliev
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theory are functions of bosonic variables (x, Y,Z) = (xμ, yα, zα, ȳα̇, z̄α̇). Here xμ

are an arbitrary set of coordinates on the four dimensional spacetime manifold
with signature (−,+,+,+). (yα, zα, ȳα̇, z̄α̇) are commuting SO(1, 3) spinors.
Our spinor conventions for AdS4 and dS4 are given in the Appendix A.The
Vasiliev master fields consist of an x-space 1-form

W = Wμdxμ, (3.18)

a Z-space 1-form
S = Sαdzα + Sα̇dz̄α̇, (3.19)

and a scalar B, all of which depend on all the bosonic variables introduced above.
Themaster fields are truncated by the condition

ππ̄(W) = W, ππ̄(S) = S, ππ̄(B) = B, (3.20)

where the π-action is defined as

π : (y, z, dz, ȳ, z̄, dz̄) 7→ (−y,−z,−dz, ȳ, z̄, dz̄), (3.21)

and the π̄-action is given by the π-action with exchanging the barred and
unbarred variables. It is easy to check that the equation of motion is consistent
with the truncation (3.20).

Themaster field equation of motion is [1, 2]:

dxÂ+ Â ∗ Â =

(
1
4
+ B ∗ K eiθ0

)
dz2 +

(
1
4
+ B ∗ K e−iθ0

)
dz̄2, (3.22)

where
Â = W+ S− 1

2
zdz (3.23)

and K = ezy,K = ez̄̄y and θ0 is a coupling constant and dx is the exterior
derivative with respect to spacetime coordinate xμ. Here the Vasiliev’s ∗-product
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is defined by

f∗g = f(Y,Z)exp
[
εαβ
(←−
∂ yα +

←−
∂ zα

)(−→
∂ yβ −

−→
∂ zβ

)
+ εα̇β̇

(←−
∂ yα̇ +

←−
∂ zα̇

)(−→
∂ yβ̇ −

−→
∂ zβ̇

)]
g(Y,Z).

(3.24)
In the parity invariant A-type and B-type theories, θ0 takes the values θ0 = 0

and θ0 = π
2 , respectively. Parity is not conserved for generic θ0. In addition to θ0,

the quantum Vasiliev theory has an additional coupling constant gwhich
measures the strength of quantum corrections. For the Vasiliev theory on AdS4
and dS4 background, we will denote this coupling as gAdS or gdS, respectively.

The Vasiliev master fields are, a priori, complex-valued fields. There are several
different consistent reality conditions that can be imposed on the master fields.
Different reality conditions preserve different vacuum solutions. In the following
two subsections, we review the Vasiliev theory on AdS4 and dS4 backgrounds,
and specify the reality conditions that preserve these two backgrounds.

3.2.1 AdS4

Let us consider the Vasiliev theory with the spacetime signature (+,+,+,−),
with coordinates denoted xμ = (z, x1, x2, x0). The AdS4 vacuum solution is

W = W0 = ω0(x|Y) + e0(x|Y), B = 0, S = 0, (3.25)

where
ω0(x|Y) = −

1
8
dxi
z

(yσ izAdSy+ ȳσ izAdSȳ) ,

e0(x|Y) = −
1
4
dxμ
z
yσμAdSȳ,

(3.26)

and the σ-matrices are defined in the (3.59). Themetric or vielbein are not
fundamental quantities in Vasiliev theory. They can be extracted from the
vacuum solutionW0. The vielbein eaAdS can be extracted from e0(x|Y) by

e0(x|Y) = −
1
4
ηabe

a
AdS(yσ

b
AdSȳ), (3.27)
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and the AdS4 metric is then given by

gAdSμν dxμdxν = ηabe
a
AdSe

b
AdS = (ημν/z

2)dxμdxν (3.28)

The reality condition on the Vasiliev’s master fields that preserves the AdS4
vacuum solution is2

−ι(Â)∗ = Â, ιπ(B)∗ = B, (3.29)

where the reality condition on the auxiliary variables (Y,Z) are defined in
appendix A, and the ι-action is defined as

ι : (y, ȳ, z, z̄, dz, dz̄) 7→ (iy, īy,−iz,−iz̄,−idz,−idz̄) (3.30)

It follows that the ι-action would reverse the ∗-product, i.e.

ι(f(Y,Z) ∗ g(Y,Z)) = ι(g(Y,Z)) ∗ ι(f(Y,Z)). (3.31)

At the linear level, after an appropriate gauge fixing and eliminations of the
auxiliary fields, the Vasiliev’s equation of motion on the background (3.26)
reduces to the Fronsdal’s equation of motion [12, 13, 43, 45]. The Fronsdal
equation in the traceless gauge is,

−(□− m2)ϕAdS
μ1···μs

+ s∇(μ1∇
νϕAdS

μ2···μs)ν
− s(s− 1)

2(d+ 2s− 3)
gAdS(μ1μ2
∇ν1∇ν2ϕAdS

μ3···μs)ν1ν2
= 0,

(3.32)
wherem2 = s(s− 2)− 2, and ϕAdS

μ1···μs
is traceless symmetric spin-s gauge field. It

appears in the components of the Vasiliev master fieldsW,B. More explicitly, the
spin-s higher-spin gauge field ϕAdS

μ1μ2···μs
is an expansion coefficient of the master

fieldW (equation (3.59) in [12])

W(x, Y,Z = 0)
∣∣
ys−1 ,̄ys−1 ∝ (iz)s−1ϕAdS

μ1μ2···μs
(yσμ2AdSȳ) · · · (yσ

μs
AdSȳ). (3.33)

2The ι(W)∗ is to be understood as first acting the ι onW then taking the complex conjugate.
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The spin zero field ϕAdS sits in the (Y,Z) independent part of master field B as

B(x|Y,Z)
∣∣∣
Y=Z=0

= ϕAdS. (3.34)

At the nonlinear level, one can, in principle, extract the corrections to the right
hand side of the linear equation (3.32) from the Vasiliev equation order by order
in the number of higher spin gauge fields. A systematic procedure for this was
discussed in [12, 34].

The reality condition (3.29) for the master fields, hence, gives the reality
condition on the physical higher-spin gauge fields. More explicitly, by imposing
the reality condition on equation (3.33), we find

(ϕAdS
μ1···μs

)∗ = ϕAdS
μ1···μs

. (3.35)

The scalar field, on the other hand, is the bottom component of B according to
(3.34). Imposing the reality condition on (3.34) gives ϕ∗

AdS = ϕAdS for the spin-0
field.

The scalar has mass squarem2 = −2. Depending on the boundary condition
for this scalar, its dual operator has either dimension Δ = 1 or Δ = 2, classically.
We will refer to the two different boundary conditions as Δ = 1 (Neuman) and
Δ = 2 (Dirichlet) boundary conditions, respectively.

3.2.2 dS4

In dS4, we label the coordinates by (η, x1, x2, x3)with the signature (−,+,+,+).
The dS4 vacuum solution to Vasiliev’s equation of motion is given by

W = W0 = ω0(x|Y) + e0(x|Y), B = 0, S = 0, (3.36)
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and
ω0(x|Y) = −

1
8
dxi
η
(
yσ iηdSy+ ȳσ iηdSȳ

)
,

e0(x|Y) = −
i
4
dxμ
η
yσμdSȳ,

(3.37)

where the σμdS, σ
iη
dS are the σ-matrices defined in (3.64). The vielbein eadS is

extracted from e0(x|Y) according to

e0(x|Y) = −
1
4
ηdSabe

a
dS(yσ

b
dSȳ). (3.38)

Themetric is then

gdSμνdx
μdxν = ηabe

a
dSe

b
dS = − (ημν/η

2)dxμdxν (3.39)

A reality condition on the Vasiliev’s master fields that preserves the dS4 vacuum
solution (3.37) is

π(Â)∗ = Â, π(B)∗ = B, (3.40)

which is also compatible with the equation of motion (3.2.1) and truncation
(3.20).3

As in the AdS4 case, the linearized Vasiliev equation of motion on the dS4
background (3.37) is reduced to the Fronsdal equation (3.32) with all the
subscripts and superscripts AdS replaced by dS. The spin-s higher-spin gauge field
ϕdS
μ1···μs

is the expansion coefficient of the master fieldsW and B:

W(x, Y,Z = 0)
∣∣
ys−1 ,̄ys−1 ∝ ηs−1ϕdS

μ1μ2···μs
(yσμ2dSȳ) · · · (yσ

μs
dSȳ),

B(x|Y,Z)
∣∣∣
Y=Z=0

= ϕdS.
(3.41)

The reality condition (3.40) implies

(ϕdS
μ1···μs

)∗ = (−1)sϕdS
μ1···μs

. (3.42)

3This reality condition agrees with [1] when reduced to the minimal theory.
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Note that, for the odd spin gauge fields, this reality condition differs from the
reality condition (3.35) in AdS4. However we will find below that they are
mapped into one another by our analytic continuation procedure.

3.3 Analytic continuation fromAdS4 to dS4

In this section, we describe the analytic continuation of Vasiliev theory from
AdS4 to dS4.4 Let us start with the Vasiliev equation - with any value of θ0 - for
the master fields expanded about the AdS4 background. Before imposing reality
conditions on either the auxilliary spinor variables or the master fields, the
analytic continuation of the coordinates:

(z, x1, x2, x0)AdS = (−iη, x1, x2,−ix3)dS, (3.43)

maps the AdS4 background solution (3.26) to the dS4 background solution
(3.37). This gives the first-order Vasiliev master field equations expanded about
the dS4 background. It follows that the second-order equation of motion for the
physical higher-spin component fields in dS4 obtained by continuing the
second-order Vasiliev equation in AdS4 will match the second-order equation
obtained directly from the Vasiliev equation expanded about the dS4
background. Hence the AdS4 and dS4 theories are simply related by analytic
continuation. We will describe our prescription for the analytic continuation of
the higher-spin gauge fields in subsection 3.3.1, and of the correlation functions
in subsection 3.3.2.

4We could have obtained the dualities for the parity invariant Type A and B models by ana-
lytically continuing the corresponding results from EAdS4 instead of AdS4. This was done for the
minimal Type A model in [6]. But because of the (4, 0) signature of EAdS4 we cannot impose re-
ality conditions on the auxiliaryWeyl spinors (y, ȳ, z, z̄). As noted in [1] thismeans that the reality
conditions on themaster fields in EAdS4 are not compatible with Vasiliev’s equation for the parity-
violating models. Here we have circumvented this Euclidean problem by directly continuing from
Lorentzian AdS4 to Lorentzian dS4.
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3.3.1 Fields

In this subsection, we give the analytic continuation of higher-spin gauge fields.
First of all, applying the analytic continuation (3.43) to the background solutions
(3.26) and (3.37), we find that the AdS4 metric gAdSμν is indeed related to the dS4
metric gdSμν by

gdSμνdx
μdxν = gAdSμν dxμdxν

∣∣∣x0→−ix3

z→−iη
. (3.44)

The prescription for continuing the higher-spin fields is

ϕdS
μ1···μs

(η, x1, x2, x3) = inϕAdS
μ1···μs

(−iη, x1, x2,−ix3), (3.45)

where n is the total number of 0 and z indices. By the reality conditions (3.35)
and (3.42), the odd spin fields are pure imaginary on the left hand side, while the
odd spin fields are real on the right hand side.

At first sight, this analytic continuation might seem to lead to bunch of
unwanted i’s in the Vasiliev equation of motion, but this is actually not the case.
Note that there are no explicit indices in Vasiliev’s equation of motion, that is,
every free index on a higher-spin gauge field must be contracted with yσμAdSȳ,
yσμνAdSy, ȳσ

μν
AdSȳ or similar terms with y, ȳ replaced by z, z̄. When we perform the

analytic continuation from AdS4 to dS4, the σ-matrices for AdS4 absorb the i’s
and turn into the σ-matrices for dS4. More explicitly, the first and last
components of σμAdS in

σμ
AdS,αβ̇

= (i1, σ1, σ3, iσ2) (3.46)

absorb an−i and turn into the first and last components of σμdS in

σμ
dS,αβ̇

= (1, σ1, σ3, σ2). (3.47)

This suggests that we focus on the generating functions:

Φs
AdS(x|y, ȳ) = ϕAdS

μ1···μs
(yσμ1AdSȳ) · · · (yσ

μs
AdSȳ), (3.48)
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and
Φs

dS(x|y, ȳ) = ϕdS
μ1···μs

(yσμ1dSȳ) · · · (yσ
μs
dSȳ). (3.49)

For these the analytic continuation procedure takes the very simple form

Φs
dS(η, x

1, x2, x3|Y) = Φs
AdS(−iη, x1, x2,−ix3|Y). (3.50)

3.3.2 Correlators

Now we give the prescription for analytically continuing the AdS4 correlators to
the dS4 ones. In order to go from the classical equations of motion to the
quantum ones one must specify an additional coupling (essentially ℏ), which we
have denoted gAdS (gdS) for AdS4 (dS4). These couplings may be defined as the
coefficient of the singularity in the scalar two point function: More explicitly, one
needs to associate a factor g−2

AdS with each internal or external line, and a factor g
2
AdS

with each (cubic) vertex. This gives a factor g2n+2ℓ−2
AdS for the ℓ-loop, n-point

function. For example, the bulk scalar two point function takes the form

ϕ0
AdS(x

μ
1)ϕ

0
AdS(x

μ
2)AdS ≈ g2AdS

z1z2
−(x01 − x02)2 + (x11 − x12)2 + (x21 − x22)2 + (z1 − z2)2

,

(3.51)

ϕ0
dS(x

μ
1)ϕ

0
dS(x

μ
2)dS ≈ g2dS

η1η2
−(η1 − η2)2 + (x11 − x12)2 + (x21 − x22)2 + (x31 − x32)2

,

(3.52)
in the limit when the two points are very close to each other, i.e.
(z1, x⃗1)→ (z2, x⃗2). Once this normalization is specified, the dependence of
higher point correlators on the coupling is determined by unitarity. By our
analytic continuation procedure, the z1z2 in the numerator of (3.53) becomes
−η1η2 in the numerator of (3.52). Hence, as in [6], the bulk coupling constant
must continue as g2AdS → −g2dS at the same time to maintain the positivity of the
kinetic term.

We now examine the short distance singularity in the two point function for
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fields of higher spin gauge fields. For s > 0, the two point functions for the
physical transverse components of two higher spin gauge fields have the
singularity

ϕAdS
i1···is(x

μ
1)ϕ

AdS
i1···is(x

μ
2)AdS ≈ g2AdS

(z1z2)−s+1

−(x01 − x02)2 + (x11 − x12)2 + (x21 − x22)2 + (z1 − z2)2
,

ϕdS
i1···is(x

μ
1)ϕ

dS
i1···is(x

μ
2)dS ≈ g2dS

(−1)s(η1η2)−s+1

−(η1 − η2)2 + (x11 − x12)2 + (x21 − x22)2 + (x31 − x32)2
,

(3.53)
in the limit when the two points are very close to each other, where
i1, i2, · · · , is = 1, 2. They are related by our analytic continuation procedure and
the analytic continuation of coupling constant: g2AdS → −g2dS. Recalling that the
reality condition implies that the odd spin component fields are purely imaginary
in dS4, the important factor of (−)s in the second line of (3.53) implies positivity
of the kinetic term (in terms of real fields) is maintained by the analytic
continuation.

The rule for the analytic continuation of the bulk correlation function is

Φs1
dS(x

μ
1|Y) · · ·Φ

sn
dS(x

μ
n|Y)dS = Φs1

AdS(x
μ
1|Y) · · ·Φ

sn
AdS(x

μ
n|Y)AdS

∣∣∣g2AdS→−g2dS

x0→−ix3,z→−iη
.

(3.54)
The boundary correlation functions can be extracted from the bulk correlation
functions by taking the scaled boundary limit [12, 13]5:

J(s)AdS(⃗x|y) = lim
z→0

1
g2AdSz

Φs
AdS(x

μ|y, ȳ = −iσzAdSy), (3.55)

and similarly
J(s)dS (⃗x|y) = lim

η→0

1
ig2dSη

Φs
dS(x

μ|y, ȳ = σηdSy). (3.56)

Therefore, we have

J(s1)dS (⃗x1|y) · · · J(sn)dS (⃗xn|y)dS = J(s1)AdS(⃗x1|y) · · · J
(sn)
AdS(⃗xn|y)AdS

∣∣∣g2AdS→−g2dS

x0→−ix3
. (3.57)

5Notice that−iyσμAdSσzAdSy = δμ,iyσ iLy, and yσ
μ
dSσ

η
dSy = δμ,iyσ iEy.
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3.4 dS4/CFT3

In section 2, we showed that for both the Chern-Simons scalar and
Chern-Simons fermion theories, the net effect of reversing the statistics of the
matter fields is flipping the sign ofNwhile keeping λ fixed. Correlators of the
statistics reversed theories can be further transformed to the corresponding
correlators in Euclidean signature by analytic continuation x0 → −ix3. In section
3, we showed that the correlators in the Vasiliev theory in AdS4 and dS4 are
related by the analytic continuation (3.57). In particular, the correlators in dS4
are given by the correlators in AdS4 by flipping the sign of the squared coupling,
i.e. g2AdS → −g2dS together with the analytic continuation on the coordinates.
Using the conjectures in [25, 30], the parity-violating Vasiliev theory in AdS4,
with the Δ = 1 or Δ = 2 boundary condition for the scalar, is dual to the
Chern-Simons scalar or Chern-Simons fermion theory, respectively, with
N = g−2

AdS. For the case Δ = 1 (Δ = 2), the bulk parity-violating phase θ0 and
boundary ’tHooft coupling λ = N

k are related by θ0 =
π
2 λ (θ0 =

π
2 (1− λ)).

Hence, if the conjectures in [25, 30] are correct, the parity-violating Vasiliev
theory in dS4, with either boundary condition, is dual to the statistics reversed
Chern-Simons scalar or Chern-Simons spinor theories, respectively, with
N = g−2

dS , with θ0 and λ obeying the same boundary-condition-dependent
relation as in the AdS4 theory.

In the special case k→∞ of our conjecture, we obtain that the Type A theory
in dS4 with Δ = 1 boundary condition is dual to the freeU(N) anticommuting
scalar theory, and the Type B theory in dS4 with Δ = 2 boundary condition is
dual to the freeU(N) commuting spinor theory. Our conjecture can also be
generalized to the Sp(N)Chern-Simons anticommuting scalar or commuting
spinor theories.6 The bulk dual of these theories is the Vasiliev theory in dS4
background with minimal truncation: −ι(Â) = Â, ιπ(B) = B. The
Chern-Simons critical scalar and Chern-Simons critical spinor theories are also

6The correlators in the Sp(2N)Chern-Simons theory with wrong-statistics matter are equal to
the correlators in the SO(2N)Chern-Simons matter theory withN replaced by−N. [24]
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dual to the parity-violating Vasiliev theory with the Δ = 2 or Δ = 1 boundary
conditions, respectively. On the CFT side, by the bosonization duality [26], the
Chern-Simons critical scalar theory is dual to the Chern-Simons non-critical
spinor theory, and the Chern-Simons critical spinor theory is dual to the
Chern-Simons non-critical scalar theory. We expect the bosonization duality still
holds after reversing the statistics of the matter fields.

3.5 Appendix

3.5.1 Conventions

In this appendix, we give our conventions for the σ-matrices and the auxilliary
spinor variables (y, ȳ, z, z̄) for the theories in dS4 and AdS4.

3.5.2 AdS4

AdS4 has signature (+,+,+,−). It is parametrized by the coordinate
(z, x1, x2, x0) in Poincare patch. The σ-matrices in AdS4 are defined by

(σμAdS)α
β̇(σνAdS)

γ
β̇ + (σνAdS)α

β̇(σμAdS)
γ
β̇ = 2δγαη

μν
AdS, (3.58)

where ημνAdS = diag(1, 1, 1,−1). An explicit representation7 of the σ-matrices is

(σμAdS)αβ̇ = (i1, σ1, σ3, iσ2), (3.59)

where the σ1, σ2, σ3 are Pauli matrices. In this representation the complex
conjugate of the σ-matrices are given by

(σμ
AdS,αβ̇

)∗ = −(σμAdS)
βα̇. (3.60)

7This is not the conventional representation for the σ-matrices, but it is related by analytic con-
tinuation to the conventional representation for the σ-matrices in dS4.
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The reality condition for the bosonic spinor variables (Y,Z) is defined as

(yα)∗ = ȳα̇, (ȳα̇)∗ = yα, (zα)∗ = z̄α̇, (z̄α̇)∗ = zα, (3.61)

such that yσμAdSȳ is real and

(yσμAdSσ
ν
AdSy)

∗ = ȳσμAdSσ
ν
AdSȳ (3.62)

We also define

(σμνAdS)αβ = (σ
[μ
AdS)α

γ̇(σν]AdS)βγ̇ (3.63)

3.5.3 dS4

dS4 has signature (−,+,+,+). It is parametrized by the coordinate
(η, x1, x2, x3) in Poincare patch. Our definition of the σ-matrices in dS4 is
different from the σ-matrices in AdS4. Hence, we denote the σ-matrices in dS4 by
σdS to avoid confusion. The σ-matrices in dS4 are defined by the same algebra as
in AdS4:

(σμdS)α
β̇(σνdS)

γ
β̇ + (σνdS)α

β̇(σμdS)
γ
β̇ = 2δγαη

μν
dS, (3.64)

however, with a different representation:

(σμdS)αβ̇ = (1, σ1, σ3, σ2), (3.65)

and ημνdS = diag(−1, 1, 1, 1). In this representation, the complex conjugate of the
σ-matrices is given by

(σμ
dS,αβ̇

)∗ = (σμdS)βα̇. (3.66)

The reality condition for the auxiliary variables is defined as

(yα)∗ = ȳα̇, (ȳα̇)∗ = yα, (zα)∗ = z̄α̇, (z̄α̇)∗ = zα, (3.67)
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such that yσμdSȳ is real and

(yσμdSσ
ν
dSy)

∗ = ȳσμdSσ
ν
dSȳ (3.68)

We also define

(σμνdS)αβ = (σ
[μ
dS)α

γ̇(σν]dS)βγ̇ (3.69)
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