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Abstract

In this thesis, we present semi-analytic theories of radiation noise in nanophotonic de-

vices, which utilize new numerical software for solving light equations in nano-structures,

combined with thermodynamic tools for including radiation noise. The first part of the

thesis focuses on noise in lasers. Our formulation produces a formula for the width of

the central spectral peaks (“the linewidth”) in single- and multimode lasers, as well

as formulas for the sidepeaks, which arise due to relaxation oscillations. Our formu-

las contain almost all previously known effects and find new nonlinear and multimode

corrections in complicated nanophotonic structures. We verify our theory with brute-

force simulations of the semiclassical Maxwell–Bloch equations, augmented with random

sources representing radiation noise. Moreover, we extend our theory of laser noise and

include amplified spontaneous emission (ASE) near the lasing threshold. In the second

part of the thesis, we discuss spontaneous emission at exceptional points (EPs)—exotic

degeneracies in non-Hermitian systems. Our theory extends beyond spontaneous emis-

sion to any light–matter interaction described by the local density of states (e.g., ab-

sorption, thermal emission, and nonlinear frequency conversion). Whereas traditional

spontaneous-emission theories imply infinite enhancement factors at EPs, we derive

finite bounds on the enhancement, proving maximum enhancement of 4 in passive sys-

tems with second-order EPs and significantly larger enhancements (exceeding 400×) in

gain-aided and higher-order EP systems. Finally, we demonstrate an application of our

theory to higher-harmonic generation in nonlinear media with EPs.
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Chapter 1

Introduction
This thesis presents a theory of light in micro-structured lasers and resonators. Tra-

ditional optics started developing in the 17th century, attempting to explain everyday

phenomena like dispersion, interference, reflection, and refraction [1]. Over the next

two centuries, physicists and mathematicians established the relation between electro-

magnetic fields and the charges and currents which produce them and, in 1865, James

Clerk Maxwell gathered these understandings and presented a unified electromagnetic

theory [2, 3], which could explain all the classical optical phenomena known to date.

But there remained questions that could not be answered classically, including the inter-

action of light with small objects like electrons. The answer came in 1917, in Einstein’s

paper on the quantum theory of radiation [4], where he predicted that an excited atom

could return to a lower energy state via spontaneous emission of a photon. Moreover,

Einstein showed that when light passed through an excited atom, it could stimulate

the emission of more light. Three decades later, when Schawlow and Townes were try-

ing to figure out ways to generate short-wavelength radiation, they recalled Einstein’s

idea. Based on the 1917 paper, they proposed a technique for light amplification by

stimulated emission of radiation [5] or, as we call it today, the laser.

The first lasers where “large” (centimeter-scale) devices with relatively simple struc-

tures. Over the years, the advent of semiconductors and progress in fabrication tech-
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(c) Fe3O4 particle(b) periodic holes in Si

5cm

(a) toy lenses

L ≫�λ L ≪�λL ≈ λ
Figure 1.1: Optical length scales: (a) Toy lenses, where L ≫ λ, are in the short-wavelength
regime and can be modeled using ray optics. (b) Modern cavities, like periodically structured
arrays of holes in silicon, have features of size comparable to the wavelength, L ≈ λ, and hence
the full wave nature comes into play. (c) Nano-scale particles, for which L≪ λ, can be treated
using Rayleigh theory.

nology produced “small” (sub-micrometer scale) optical devices, sometimes with fine

and complicated features. Theoretical approaches for modeling optical systems vary

depending on the system’s length scale, L, compared to the wavelength of radiation, λ.

Three regimes (of large, intermediate, and small systems) are shown in Fig. 1.1. Sys-

tems which are much larger than the wavelength (L≫ λ) are accurately described in the

framework of ray optics [6]. Some examples are lenses in sunglasses and toy magnifying

glasses (Fig. 1.1a). In the opposite regime, systems which are much smaller than the

wavelength (L≪ λ, Fig. 1.1c) are described by Rayleigh theory, which amounts to ap-

proximating the scatteres by point-like dipole sources [7]. For example, Rayleigh theory

famously explains how white sunlight turns blue when scattering off of the molecules in

the earth’s atmosphere [8]. The intermediate regime—when the structure size is com-

parable to the wavelength—is the most involved from a theoretical viewpoint, and this

is precisely the regime of nanophotonics [9] (L ≈ λ, Fig. 1.1b). In this regime, simplis-

tic approximations typically fail and wave phenomena, like interference and multiple
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scattering, come into play.

When simplified analytic approaches fail, one usually resorts to numerical solutions.

However, some problems, like analyzing the spectral properties of spontaneous emis-

sion in nanophotonic structures, are so complex that it quickly becomes intractable to

solve them with brute-force methods. A modern approach to solve such problems is

to develop semi-analytic theories, which can utilize existing numerical tools to analyze

nanophotonic devices, and that is the subject of this thesis.

1.1 The laser noise spectrum

The first problem we address in this thesis is the noise spectrum of nanophotonic lasers.

Lasers, in the most naive description, produce light of a single color. However, more

realistically, when laser light passes through a spectrometer, the spectral peak is always

smeared, and its width is called the linewidth (see Fig. 1.2a). The fundamental pro-

cess responsible for this broadening is spontaneous emission.§ [11] (Although the lasing

process should amplify stimulated emission, excited atoms in the laser also produce

spontaneous emission noise.) The fundamental laser linewidth was first computed by

Schawlow and Townes, in the original laser proposal [5]. Over the years, a long list of

corrections were found [12], such as the Petermann correction [13], associated with radi-

ation leaking out of the cavity, the Henry α factor [14], which is an order-of-magnitude

correction in semiconductor lasers, and the incomplete-inversion correction [15], due to

partial excitation of the atoms in the laser (called the gain medium). Traditional laser

theory has two main shortcomings: First, the correction factors are usually derived
§Semiclassically, one can think of spontaneous emission as a stochastic field produced by

random currents. While the currents appear as sources in the classical Maxwell’s equations,
their correlations are determined quantum mechanically [10].
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as separate effects, but this is not true in general (for example, the Henry α factor is

modified in open cavities with a non-trivial Petermann factor). Secondly, most theories

do not take into account the spatial variations in the laser field and, in that sense, are

“zero-dimensional”.

In Ch. 3, we remedy these problems.† Starting directly from the most general semi-

classical Maxwell–Bloch equations [see Eqs. (2.20)–(2.22) below], we obtain a general

linewidth formula [Eq. (3.3)], which contains all previously known corrections, while ac-

curately treating the inhomogeniety in the field. Our formula reduces to the traditional

formula in the appropriate limits, and predicts new order-of-magnitude corrections in

complex microcavities. In Ch. 4, we validate this formula using brute-force simulations

of the stochastic Maxwell–Bloch equations. In contrast to our analytic formula, brute-

force simulations cannot handle arbitrary three-dimensional structures,§ but they are

still useful for verification.

 s
pe
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ω

time
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ld

 in
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(a) (b) (c)

time
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Figure 1.2: (a) The laser noise spectrum consists of a central peak at the laser frequency and
possibly weak and broad sidebands. (b) The field of a single-color laser is sinusoidal (black
curve). Consequently, its spectrum contains only the central peak at the oscillation frequency,
ω0 = 2π/T0. The peak is broadened by spontaneous emission, which produces phase drifts (red
curve). (c) More generally, the atoms can respond non-instantaneously to deviations of the
field from steady state. This causes relaxation oscillations at frequency ωRO = 2π/TRO, which
produce sidepeaks in the spectrum.

†The results of this work were published in [16] and [17], and are reviewed in [12].
§The laser equations [Eqs. (2.20)–(2.22)] are partial differential equations whose solution re-

quires keeping track of multiple fields and involves multiple time scale, making them particularly
computationally demanding [18].
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In chapters 5 and 6 we discuss more features of the laser spectrum (Fig. 1.2a). In

Ch. 5, we derive a formula for spectral sidepeaks [Eq. (5.3)]. In the most naive picture

of a laser, the nonlinear interaction between the laser field and the atoms stabilizes the

laser field at a steady state; That produces a single-color laser with sinusoidal field and

a Lorentzian-shaped spectrum (Fig. 1.2b). More generally however, when the relaxation

rates of the field and atoms are comparable, perturbations from the steady state relax via

relaxation oscillations (Fig. 1.2c) and that produces spectral sidepeaks. The sidepeak

spectrum was first studied by Vahala and Yariv in semiconductor lasers [19], and a

formula for the sidepeaks was derived in [20] (using phenomenological rate equations).

We generalize these results, starting from the more accurate Maxwell–Bloch equations,

and find that the sidepeaks depend on three spatially averaged “α factors” (each with

different weights). We demonstrate our new results with numerical examples. Finally,

in Ch. 6, we address a peculiar feature, which appears in most standard linewidth

formulas: The linewidth scales inversely with the laser intensity, and blows up when

extrapolated to the point of operation where the laser is turned on (the laser threshold).

We remedy this problem by incorporating into our theory spontaneous emission which

has been amplified by the laser atoms [technically called amplified spontaneous emission

(ASE)]. That produces a non-zero threshold intensity and a finite result for the threshold

linewidth (Fig. 6.1). Similar to the linewidth problem, our approach generalizes earlier

results [21] and makes new predictions for highly-inhomogeneous and multimode lasers,

which were previously inaccessible.†

†In another project, lead by people from the Rodriguez group at Princeton, we exploited
new powerful numerical tools to study ASE from arbitrary composite bodies. The results were
published in [22].
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1.2 Controlling light emission with exceptional points

The last two chapters of the thesis apply not only to lasers but, more generally, to

electromagnetic resonators, which is just a fancy name for bodies that can trap light in

a small region for a long time [23]. Resonances are ubiquitous in optics, with applications

including light confinement [24], frequency selection [25], frequency conversion [26], and

“stopping light” [27]. In particular, resonances can be used to control spontaneous

(and stimulated) emission rates.§ In optics, this idea is attributed to Edward Mills

Purcell [29], for showing that when placing an emitter inside a resonator, its emission

rate is enhanced by a factor, which scales inversely with the resonator volume while

scaling linearly with the amount of time the light spends in the resonator before leaking

out. This principle is illustrated schematically in Fig. 1.3a-b. Purcell’s work initiated an

entire industry aimed at developing small and low-loss resonators, which are nowadays

widely used in medical [30] and military [31] applications. State-of-the-art cavities can

enhance spontaneous emission rates by six orders of magnitude [32].

These impressive achievements motivated the search for new resonant structures with

special optical properties. Particularly interesting are systems with “exceptional points”

(EPs), which occur in open systems (Fig. 1.3c) when two or more resonances merge and

have precisely the same frequency and field distribution [33, 34]. (Formally speaking,

such systems are described by non-Hermitian defective matrices—N ×N matrices with

less than N eigenvectors which, therefore, do not have a complete basis of eigenvectors.)
§More generally, resonant interaction of emitters with their environment appear in many fields

of physics. An intuitive example can be found at concert halls: the opera singer (the emitter)
sings and the glass (the resonator) breaks. Specifically, the idea of tailoring the environment in
order to control emission is most easily explained in the context of antenna theory: the same
current radiates a different amount of power depending on the surrounding geometry [28].

6



(a) (b) (c)

Figure 1.3: Purcell enhancement of spontaneous emission. By placing an emitter inside a
resonator (b,c), its spontaneous emission rate is enhanced compared to the rate of emission in
free space (a). The enhancement factor depends on whether the cavity is closed (b) or open (c).
[(a) and (c) borrowed from [43]].

Recently, EPs have been found experimentally in a variety of systems [35, 36, 37],† en-

abling to explore their intriguing properties, such as unconventional lasing behavior [39],

non-trivial topological properties [40], and loss-induced transparency [41]. In regard to

spontaneous emission, EPs are seemingly peculiar: while standard formulas for spon-

taneous emission appear to diverge at EPs [42], experimental measurements find finite

rates.

This apparent contradiction is remedied in the second part of the thesis. In Ch. 7, we

present a theory of spontaneous emission near EPs.§ By carefully adding the emission

rates of the two merging resonances, we show that the divergent components cancel, and

we provide simple formulas for the “corrected Purcell enhancement” at EPs [Eqs. (7.9)

and (7.10)]. Although it was previously known how to regularize similar divergences at

EPs in a general linear-algebra context [46], it was not well understood in the optics
†During my PhD, I was involved in a project lead by people from the Soljacic group at MIT,

where we experimentally observed a new type of EPs: rings of EPs in periodically patterned
Si3N4 slabs. The results were published in [38].

§The results of this work were published in [44]. The algorithm we use to compute the
limiting expressions at the EP is explained in our online manuscript [45].

7



community, leading authors to attribute false significance to the diverging “Petermann”

factor at EPs [47, 48, 49]. Even theoretical descriptions that correctly captured the

finite behavior [50] were not general (limited to one-dimensional systems and other

simplifications). Most importantly, our work quantifies the amount of enhancement

that one could potentially achieve with EPs, and shows that by adding gain (e.g., from

excited atoms), systems with EPs may exceed the traditional Purcell enhancement. In

Ch. 8, we extend our theory to higher-order EPs, which from by merging more than two

resonances.† In addition, we apply our theory to the problem of frequency conversion

in nonlinear media with EPs.§

†The results were published in [51].
§Our manuscript can be found online at [52].
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Chapter 2

Mathematical preliminaries
In the previous chapter, we introduced the topic of light emission in nanophpotonics

from a layman’s perspective. In this chapter, we complete all the technical details.

A key point in our discussion is that lasers and resonators can exchange energy with

their surrounding and are, therefore, open systems [53, 54]: light is lost, either radia-

tively (leaking through the resonator walls) or non-radiatively (getting absorbed by the

medium), while it is also produced (via spontaneous or stimulated emission). Open sys-

tems are formally described by non-Hermitian operators [33] (Fig. 2.1). In Sec. 2.1, we

present a non-Hermitian operator whose eigenmodes are the electromagnetic resonances:

the operator-form of Maxwell’s equations [23] [Eq. (2.4)]. Then, in Sec. 2.2, we move on

to discuss lasers. We review the Maxwell–Bloch laser equations [55] [Eqs. (2.20)–(2.22)]

and recast them in the form of a non-Hermitian eigenvalue problem [56, 57] [Eq. (3.50)].

In Sec. 2.3, we survey key results from thermodynamics (in particular, the fluctuation–

dissipation theorem [58, 59]), which are used for computing the laser noise spectrum

in the first part of the thesis. Finally, in Sec. 2.4, we define exceptional points [34]—a

special kind of degenerate resonances that can exist in non-Hermitian systems, which

are discussed in the second part of the thesis.
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Figure 2.1: (a) Closed systems (top) are represented by Hermitian operators whose eigenfre-
quencies (ωn) are real (bottom), while (b) open systems (top) are represented by non-Hermitian
operators, whose eigenfrequencies are complex (bottom) and lie in the lower half of the complex-
frequency plane. The imaginary part of the eigenfrequency determines the rate of decay of the
resonance.

2.1 Electromagnetic resonances

Classical electromagnetism is governed by the four macroscopic Maxwell’s equations:

two divergence equations and two curl equations [3]. Our starting point in the formula-

tion of electromagnetic resonances is the source-free frequency-domain curl equations,§

which in SI units are [23]:

∇×H = −iωε0ε(x)E

∇×E = iωµ0µ(x)H. (2.1)

§Note that at nonzero frequencies, the divergence equations, ∇ · (εE) = 0 and ∇ · (µH) = 0,
are automatically satisfied since the divergence of a curl vanishes, and we are never interested
in electrostatics (ω = 0) in this work.
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These equations relate electric and magnetic vector fields (E and H respectively) in

a non-dispersive medium with dielectric permittivity ε(x) and magnetic permeability

µ(x).† ε0 and µ0 are the vacuum permittivity and permeability. Since most materi-

als do not have magnetic response at optical frequencies, we restrict the analysis to

nonmagnetic media [with µ(x) = 1] [60].

By recasting Maxwell’s equations [Eq. (2.1)] in the form of an eigenvalue problem,

we can use many tools from quantum mechanics and linear algebra. To this end, we

use the first equation in Eq. (2.1) to eliminate the magnetic field and substitute the

result into the second equation. Introducing the vacuum speed of light, c = 1/
√
ε0µ0,

one obtains:

1
ε(x)∇×∇×E(x) =

(
ω
c

)2
E(x). (2.2)

Equation (2.2) determines the electric field E, while the magnetic field H is related

to E via Eq. (2.1). Electomagnetic resonances are formally defined as outgoing wave

solutions of the eigenvalue problem [33]

Θ̂En(x) =
(
ωn
c

)2
En(x) (2.3)

Θ̂ ≡ 1
ε(x)∇×∇×, (2.4)

where the subscript n denotes the nth mode. Each resonance is associated with a

(possibly) complex “eigenfrequency,” ωn, and “mode profile,” En. As mentioned above,

we are interested in open systems, but we begin by reviewing the more familiar case of
†More generally, the permittivity and permeability may be frequency dependent [i.e., ε(x, ω)

and µ(x, ω)] and that accounts for material dispersion, meaning that different wavelengths are
associated with different phase velocities. For simplicity, we focus here on non-dispersive media
and treat the more general case in Sec. 7.7.
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closed systems.

2.1.1 Closed systems and Hermitian operators

In this section, we derive orthogonality relations in closed systems. Such relations are

a key element in perturbation theory and coupled-mode theory, which we use in this

thesis to obtain approximate solutions to problems that cannot be solved exactly. We

begin by introducing the “conjugated inner product:” [61]

⟨F,G⟩ε ≡ ⟨F, εG⟩ ≡
∫
ε(x)F∗(x)G(x)dx (2.5)

where “∗” denotes complex conjugation. Since the inner product [Eq. (2.5)] is positive-

definite when ε is real and positive [23],§ we can use it and normalize the resonances:

⟨En,En⟩ε = 1 (2.6)

Armed with the definition of the inner product [Eq. (2.5)] and the Maxwell operator

(Θ̂), one defines the adjoint operator as: [62]

⟨F, Θ̂†G⟩ε ≡ ⟨Θ̂F,G⟩ε (2.7)

An operator, Θ̂, is Hermitian if it satisfies:

Θ̂† = Θ̂. (2.8)

§A bilinear form is positive-definite if it satisfies the conditions: ⟨F,F⟩ ≥ 0 and ⟨F,F⟩ = 0 if
and only if F = 0.
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For example, in electromagnetism, Maxwell’s operator, Θ̂, is Hermitian when ε is real

(which is true in the absence of gain or material loss) and when there is no net flux

through the boundaries (e.g., when the fields, E and H, vanish at the boundaries of

integration). We prove this property in the footnote.† Hermitian operators have the

well-known properties: [23]

Real eigenvalues ω2
n = (ω2

n)
∗ (2.9)

Orthogonalmodes ⟨Em,En⟩ε = δmn (2.10)

The first property implies that the eigenmodes oscillate sinusoidally (at frequency ωn)

without decay, as one would expect from energy conservation in closed systems. In

the next section, we derive equivalent results for non-Hermitian systems. We prove

Eqs. (2.9) and (2.10) in the footnote.§

†This can be seen by calculating: ⟨F, Θ̂†G⟩ε =
∫
ε(x)

[
ε(x)

−1∇×∇× F(x)
]∗

G(x)dx =∫
F∗(x) [∇×∇×G(x)] dx =

∫
ε(x)F∗(x)

[
ε(x)

−1∇×∇×G(x)
]
dx = ⟨F, Θ̂G⟩ε The first

equality follows from definition of the adjoint [Eq. (2.7)]. The second equality follows from
integrating twice by parts, assuming that fields vanish at the boundaries of integration and that
ε∗ = ε. The third equality follows simply from rearranging the integrand, and the last equality
follows from the definition of the inner product.

§Proof of Eq. (2.9): Using the eigenvalue equation [Eq. (2.4)] together with the normal-
ization condition [Eq. (2.6)], the eigenvalues can be written as ⟨En, Θ̂En⟩ε =

(
ωn

c

)2 ⟨En,En⟩ε =(
ωn

c

)2. So the first property follows from ⟨En, Θ̂En⟩ε = ⟨En, Θ̂
†En⟩ε = ⟨Θ̂En,En⟩ε =∫

ε(Θ̂En)
∗Endx =

∫ (
εE∗

nΘ̂En

)∗
dx = ⟨En, Θ̂En⟩∗ε. The first equality uses the Hermiticity

of Θ̂. The second equality uses the definition of the adjoint. The third uses the definition of the
inner product, and the two last steps follow from rearranging the terms.
Proof of Eq. (2.10): The orthogonality relation is obtained by subtracting two equal quan-
tities: 0 = ⟨Em, Θ̂En⟩ε − ⟨Em, Θ̂

†En⟩ε = ⟨Em, Θ̂En⟩ε − ⟨Θ̂Em,En⟩ε = ⟨Em,
(
ωn

c

)2
En⟩ε −

⟨
(

ω∗
m

c

)2
Em,En⟩ε =

[(
ωn

c

)2 − (ωm

c

)2] ⟨Em,En⟩ε, The first equality follows from Hermiticity of
Θ̂. The second follows from definition of the adjoint. The third, from the definition of the eigen-
vectors, and the last from realness of the eigenvalues. The result implies that either ω2

n = ω2
m

or ⟨Em,En⟩ε = 0 which ,together with the normalization condition Eq. (2.6), proves Eq. (2.10).

13



2.1.2 Open systems and Non-Hermitian operators

Open systems are represented by non-Hermitian operators. [33] (For example, gain

and absorption are described macroscopically by an imaginary dielectric permittivity,

making Θ̂ non-Hermitian.†) In that case, the properties in Eqs. (2.9) and (2.10) are no

longer true. The eigenfrequencies ωn are generally complex and lie the lower part of the

complex-frequency plane [63] (Fig. 2.1b, bottom). The imaginary part of ωn determines

the rate at which energy leaks out of the system.

In order to derive perturbation theory and coupled-mode theory for open systems,

we need orthogonality relations that hold regardless of Hermiticity of the operators. We

show in this section that such relations can be obtained by using the “unconjugated

inner product:” [33]

(F,G)ε ≡ (F, εG) ≡
∫
ε(x)F(x)G(x)dx. (2.11)

Note that this definition does not satisfy all the properties of the inner product and,

in particular, it is not necessarily real. Using this definition, we introduce also the

transposed operator Θ̂T , defined as [62]

(F, Θ̂TG)ε ≡ (Θ̂F,G)ε (2.12)

In addition to the eigenvectors of Θ̂ (from here on called right eigenevectors), there is

a set of eigenvectors of Θ̂T with the same eigenvalues (from here on called left eigenev-
†When revisiting the Hermiticity proof for closed system [see footnote after Eq. (2.8)], one

finds that if ε ̸= ε∗, then Θ̂ ̸= Θ̂†.
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tors) [62]:

Θ̂ER
n (x) =

(
ωn
c

)2
ER

n (x) (2.13)

Θ̂TEL
n(x) =

(
ωn
c

)2
EL

n(x) (2.14)

Similar to the Hermitian orthogonality relation [Eq. (2.9)], we obtain biorthogonality

relations for non-Hermitian eigenmodes by subtracting two equal quantities:

0 = (EL
m, Θ̂ER

n )ε − (Θ̂ER
n ,E

L
m)ε = (EL

m, Θ̂ER
n )ε − (ER

n , Θ̂
TEL

m)ε =

(EL
m,
(
ωn
c

)2
ER

n )ε − (ER
n ,
(
ωm
c

)2
EL

m)ε =
[(

ωn
c

)2 − (ωm
c

)2]
(EL

m,E
R
n )ε, (2.15)

The first equality follows from the definition of the unconjugated inner product [Eq. (2.11)].

The second from the definition of the transpose. The third from the definition of left

and right eigenvectors, and the last follows from rearranging the terms. The result

implies that either ω2
n = ω2

m or (EL
m,E

R
n )ε = 0, which can be written alternatively as

the

Biorthogonality relation (EL
m,E

R
n )ε = 0 for n ̸= m. (2.16)

Note that in contrast to the conjugated norm [Eq. (2.5)], we cannot normalize the

unconjugated norm of a mode, (EL
n ,E

R
n )ε, to 1, because it can vanish. In fact, it is

not even obvious that the unconjugated norm is bounded. The eigenvectors, which

correspond to complex “leaky” eigenfrequencies, diverge at infinite distance from the

structure [in the sense that ∥EL
n(x)∥, ∥ER

n (x)∥ → ∞ when ∥x∥ → ∞] [64]. There are

many approaches to overcome this issue. One possibility (borrowed from quantum field

theory) is to use a “regulator,” which amounts to introducing a decay factor inside the
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integrand in Eq. (2.11), making the integrand finite while leaving the integral unal-

tered [65]. Another option, which is popular among computational theorists and is the

method of our choice, is to place the so called “perfectly matched” layers (PML) [28] at

a finite distance from the structure. The layers are designed to guarantee that the field

decays to zero at large distances from the structure, while remains unchanged outside

of the layers. In Sec. 7.8, we prove that with PML, the unconjugated norm is bounded.

Last, we mention that although we deal with problems that are not Hermitian,

Maxwell’s operator is complex-symmetric in most cases, which means that it is equal

to its transpose: Θ̂ = Θ̂T .§ It is a simple exercise to show that the following relations

between left and right eigenvectors hold [44]:

If Θ̂ = Θ̂T EL
n = ε−1ER

n (2.17)

If Θ̂ = Θ̂† EL
n = ε−1(ER

n )
∗ (2.18)

Note that the biorthogonality relation generalizes the notion of orthogonality of Her-

mitian eigenvectors, in the sense that when applying Eq. (2.16) to the eigenvectors of

complex-symmetric Hermitian operators, one recovers the standard conjugated norm:

(EL
n ,E

R
m)ε =

∫
εEL

nE
R
m =

∫
εε−1(ER

m)∗ER
n = ⟨EL

n ,E
R
m⟩ (2.19)

§This can be seen by calculating: (F, Θ̂TG)ε =
∫
ε(x)

[
1

ε(x)∇×∇× F(x)
]
G(x)dx =∫

F(x) [∇×∇×G(x)] dx =
∫
ε(x)F(x)

[
1

ε(x)∇×∇×G(x)
]
dx = (F, Θ̂G)ε. The justification

is very similar to the proof that Maxwell’s operator is Hermitian in closed systems.

16



2.2 The laser equations

Next, let us introduce the semi-classical laser equations. Most generally, a laser consists

of light which interacts with a gain medium (e.g. excited atoms) inside a resonator.

The light is described by the classical Maxwell’s equations from the previous section.

The gain medium, in the simplest description of a “two-level” medium,† is described by

the quantum Bloch equations. Together, these form the Maxwell–Bloch equations [55]:

∇×∇×E+ εc Ë = −4πP̈, (2.20)

Ṗ = −i(ωa − iγ⊥)P−
iγ⊥
4π

ED, (2.21)

Ḋ = −γ∥ [Dp −D + 2πi(E ·P∗ −E∗ ·P)] . (2.22)

Here, P is the atomic polarization field, related to the atomic two-level density matrix,

ρ, via P = Ngρ12 [53], where N is the total number of atoms and g is the atomic dipole

moment. D is the population inversion (i.e., the difference between number of atoms

in the excited and ground states), defined as D = N(ρ22 − ρ11). The atomic resonance

frequency ωa is the difference between the two energy levels (ℏωa = E2 − E1). γ⊥ and

γ∥ are the atomic and inversion relaxation rates respectively. The term Dp represents

an external energy source that inverts the population of the atoms, henceforth called

“the pump.” The last terms in the atomic equations [Eqs. (2.21) and (2.22)] couple

the atoms nonlinearly to the electromagnetic field E. In Eq. (2.20), εc is the (linear)

“passive permittivity,” which represents the permittivity of the unpumped medium [in

contrast to the effective (nonlinear) permittivity, which includes the gain]. The field,
†The atoms or molecules in the gain medium have multiple levels, but stimulated emission

into the laser field is produced only by relaxation between two specific levels.
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polarization and inversion are measured in their natural units: ec = pc = ℏ√γ∥γ⊥/(2g)

and dc = ℏγ⊥/(4πg2) respectively [56].

2.2.1 Multimode steady-state lasers

The Maxwell–Bloch equations are difficult to solve in general: They involve three time-

and spatially dependent fields and include multiple timescales [18] (ωa, γ∥, and γ⊥).

Traditional laser theories proceed by making a series of simplifying assumptions about

the field distribution and cavity geometry, which they use in order to reduce Eqs. (2.20)–

(2.22) to a set of ordinary differential equations, commonly called rate equations [53].

As discussed in Ch. 1, these assumptions are invalid in nanophotonics and, therefore,

modern theories try to avoid them. In 2006, Tureci et al. introduced a new powerful

approach—the “steady-state ab-initio laser theory” (SALT) [56]—which allows to solve

the Maxwell–Bloch equations very generally and efficiently.

SALT reduces the Maxwell–Bloch equations to a single nonlinear eigenvalue problem

for the electromagnetic field, assuming only that the laser field oscillates at a steady-state

superposition of a finite set of modes and that the population inversion, D, is stationary.

The first assumption amounts to expressing the electromagnetic field, E(x, t), as:

E(x, t) =
∑
µ

Eµ(x)aµe
−iωµt, (2.23)

where aµ are the steady-state modal amplitudes, Eµ(x) are the field distributions (also

called mode profiles), and ωµ are the lasing frequencies. Using this expansion and a

similar expansion for the polarization field, one finds that the lasing modes are real-

18



frequency outgoing-wave solutions of the nonlinear eigenvalue problem:

[
∇×∇×−ω2

µ

(
εc +

γ⊥
ωµ − ωa + iγ⊥

D

)]
Eµ(x) = 0. (2.24)

where D, the steady-state inversion, is a nonlinear function given by

D =
Dp

1 +
∑

σ
γ2
⊥

(ωσ−ωa)2+γ2
⊥
|aσ|2|Eσ|2

. (2.25)

The term in round brackets in Eq. (3.50) is the effective permittivity, which contains

the passive component, εc, and the effective pumped component. At small pump values,

(Dp < Dth), the resonant frequencies are complex with a finite lifetime given by Im [ωµ].

As the pump reaches a critical value of Dth, the stimulated emission rate (“the gain”)

compensates for cavity losses in one of the modes, and the corresponding eigenfrequency

hits the real axis (Im [ωµ] = 0). The system begins oscillating without decay, that is, it

begins to lase. This point is called the laser threshold. As the pump increases further,

additional modes may begin to lase.

2.3 The fluctuation–dissipation theorem

The SALT equations determine all the steady-state properties of microlasers, including

resonant frequencies, mode profiles, and thresholds. However, in this thesis, we are not

interested in the steady state but rather in the noise spectrum and, in particular, in

fundamental quantum noise from spontaneous emission. In our work, we employ ther-

modynamic tools to determine the noise properties. This idea was developed by Landau

and Lifshitz in their groundbreaking work on radiation noise [60], but it was only re-

cently realized that such methods can produce efficient numerical algorithms [66] (when
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combined with various linear-algebra tricks). This understanding has revolutionized

the field of radiation noise in nanophotonics. For example, Casimir forces, which arise

from vacuum electromagnetic fluctuations, were predicted as early as 1948 [67], but for

nearly 50 years, could only be computed for extremely simple highly idealized struc-

tures like infinite parallel plates. With the new thermodynamic numerical approach, it

became possible to handle structures of arbitrary complexity revealing that the forces

can depend strongly on the shapes and compositions of the objects and can behave very

differently from the monotonic attractive force first predicted by Casimir [68]. Similar

achievements have been made in the field of radiative heat transfer and thermophoto-

voltaic devices [69] (e.g., in the design of efficient solar cells). Given this progress, the

time was ripe to apply similar ideas to the problem of laser noise.

The most basic picture of radiation noise is the Rytov’s semiclassical model [59]:

Stochastic radiation is produced by fluctuating currents (J), which appear as a random

force (FS) in Maxwell’s equations:

∇×∇×E+ εc Ë = −4πP̈+ FS, (2.26)

with FS = 4π ∂J
∂t . The currents are sources in the classical Maxwell equations, while their

correlations are determined by the quantum fluctuation–dissipation theorem (FDT) [70],

which relates the noise spectrum (the fluctuations) to the imaginary part of the permit-

tivity (the dissipation) in systems at thermal equilibrium (at temperature T ):

⟨
F̂S(x, ω)F̂

*
S(x

′, ω′)
⟩
= 2ℏω4Im ε(x, ω) coth

(
ℏω
2T

)
δ(x− x′)δ(ω − ω′). (2.27)

A more detailed picture of laser noise includes fluctuations not only in Maxwell’s equa-
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tion [Eq. (2.20)], but also in the polarization and inversion equations [Eqs. (2.21) and

(2.22)] [71]. In Sec. 4.4, we prove however that our approach is equivalent, given that

the correlations of the noise are computed correctly.

Thermodynamic treatment of lasers requires some justification. In a laser, an exter-

nal pump constantly supplies energy to the system and maintains a spatially varying

atomic population inversion. Theories of laser noise are typically based on the as-

sumption that the atoms reach local equilibrium with the laser field [72], which means

that spatial variations are so slow that, at any point, one can define local thermody-

namic variables, which are related via thermodynamic relations. The local ground- and

excited-state populations in the laser, N1(x) and N2(x) respectively, are related to the

local temperature, T (x), via [73]

N1(x)

N2(x)
= e−ℏωa/kBT (x). (2.28)

In regions where the gain medium is pumped sufficiently to invert the population, T (x)

is negative; in regions where the pump is too weak to invert, T (x) will be positive;

and in unpumped regions, T (x) will simply reduce to the equilibrium temperature of

the surrounding environment.§ Traditionally, it is assumed that in the absence of any

thermodynamics instabilities, the electromagnetic fluctuations also satisfy the hypothe-

sis of local equilibrium. This approximation is implicit in previous laser-noise theories,

and we adopt this ansatz in this thesis as well. However, a more careful analysis in

fluid dynamics [74] reveals that the assumption of local equilibrium is only valid for the

thermodynamic properties themselves, but not for the correlations among these proper-
§In negative-temperature regions, the inversion produces gain and, consequently, the imagi-

nary part of the permittivity is negative as well. Therefore, the right-hand side of Eq. (2.27) is
always positive.
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ties. Specifically, it was shown for the Rayleigh-Benard problem—a fluid with positive

thermal expansion coefficient, confined between two horizontal parallel plates, which

are maintained at two different temperatures—that the fluctuations in the presence of

a nonzero temperature gradient, ∇T , are enhanced by a factor proportional to (∇T )2.

It would be interesting to compute the correction to the FDT in application to laser

noise and, more generally, in radiation noise, but we leave that for future work.

2.4 Exceptional points

The second part of the thesis is about coalescence of resonances in non-Hermitian sys-

tems. If a system depends on some parameter (p):

Θ̂(p)E =
(
ω
c

)2
E, (2.29)

the value (p0) at which the coalescence occurs is called an exceptional point (EP) [33]. In

contrast to ordinary degeneracies, where only the eigenfrequencies merge (ω2
1, . . . , ω

2
m −−−→p→p0

ω2
0), at an EP, also the eigenvectors merge (E1, . . . ,Em −−−→

p→p0
E0). The case of two

merging resonances is demonstrated in Fig. 2.2 (borrowed from [38]).

Since multiple eigenvectors merge at the EP, the operator Θ̂ does not have a complete

basis of eigenvectors. This is most easily understood if we think of Θ̂ as a matrix [e.g.,

obtained when discretizing space using the finite-difference frequency-domain (FDFD)

method]. If the matrix size is N ×N and m eigenvectors merge at an EP, there remain

only N − m independent eigenvectors and the matrix is called defective. One can

complete the set of eigenvectors at the EP into a basis of space by introducing “Jordan

vectors”. At a second-order EP (which forms from the coalescence of two resonances),
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Figure 2.2: Exceptional points in a periodically patterned Si3N4 slab. (This image is borrowed
from [38].) A unit cell of the periodic slab is shown in (a). The resonances are Bloch states,
which depend on the Bloch vector, k [23]. An EP forms as the Bloch vector reaches a critical
value of kEPa/2π = 0.0035, where a is the periodicity lengthscale, defined in (a). Away from
EP, Maxwell’s operator has a complete basis of eigenvectors (b). At the EP, two eigenmodes
merge into a single degenerate mode (c,d). Although the dispersion curve (e) seems to imply
that the modes are degenerate for all 0 < kx < kEP, this is not the case. Only the real part of
the eigenfrequency is shown, but the decay rates of the modes are different for all k ̸= kEP.

the Jordan vector is defined via the chain relations [34]:

Θ̂(p0)E
R
0 =

(
ω0
c

)2
ER

0 ,

Θ̂(p0)J
R
0 =

(
ω0
c

)2
JR
0 +ER

0 , (2.30)

with similar expressions for the left eigenvector EL
0 and Jordan vector JL

0 . If the vec-

tors ER
0 and JR

0 satisfy Eq. (2.30), then so do αER
0 and α(JR

0 + βER
0 ). In order to

uniquely define the chain vectors, we need to specify two normalization conditions [e.g.,

23



(EL
0 ,J

R
0 )ε = 1 and (JL

0 ,J
R
0 )ε = 0]. More generally, when m resonances merge, one needs

to introduce m Jordan vectors in order to have a complete basis.† In Ch. 8, we use this

generalization study spontaneous emission at third-order EPs.

A unique property of EPs is “self-orthogonality” of the degenerate mode [33]:

(EL
0 ,E

R
0 )ε = 0, (2.31)

which follows from the biorthogonality relation [Eq. (2.16)]. The vanishing of the

inner product is the source for the special emission properties at EPs: Traditional

spontaneous-emission formulas (based on non-degenerate perturbation theory) are in-

versely proportional to the norm [(EL
n ,E

R
n )ε], which diverges at the EP. In Ch. 7, we

resolve this problem by using a corrected perturbation theory near the EP.

†A formal definition is as follows. Let xm = E0 be an mth-order degenerate eigenvector
of Θ̂, with eigenvalue λ =

(
ω0

c

)2. The Jordan chain generated by xm is the set of vectors
{xm,xm−1, . . . ,x1} given by xj = (Θ̂− λI)xj+1, with j = 1, 2, . . . ,m− 1.[34]
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Part I

The Microlaser Noise Spectrum
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Chapter 3

Microcavity laser linewidth theory
This chapter presents a formula for the laser linewidth [Eq. (3.3)], which is accurate

for multimode lasers with microstructured cavities. Our theory includes all previously

known effects, and reduces to the traditional formula in the appropriate limits. This

work was motivated by recent advances in laser theory: an elegant formulation of the

steady-state laser equations (SALT) [56] and efficient numerical tools that solve the new

equations [18]. The central idea is to combine SALT, which describes the steady-state

(noise-free) properties of the laser, with the fluctuation–dissipation theorem [58], which

relates the noise spectrum to the steady-state Green’s function, in order to obtain the

linewidth. The work was done in collaboration with Doug Stone from Yale and Alex

Cerjan, who was his PhD student at the time. The results were published in [16].

3.1 Introduction

The fundamental limit on the linewidth of a laser is a foundational question in laser

theory [75, 53, 11, 76, 77]. It arises from quantum and thermal fluctuations [78, 5], and

depends on many parameters of the laser (materials, geometry, losses, pumping, etc.);

it remains an open problem to obtain a fully general linewidth theory. In this chapter,

we present a multimode laser-linewidth theory for arbitrary cavity structures and ge-
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ometries that contains nearly all previously known effects [13, 79, 80, 14, 81] and also

finds new nonlinear and multimode corrections. The theory is quantitative and makes

no significant approximations; it simplifies, in the appropriate limits, to the Schawlow–

Townes formula Eq. (3.2) with the well-known corrections. It also demonstrates the

interconnected behavior of these corrections [82, 83], which are usually treated as in-

dependent. Most previous laser-linewidth theories have employed simple models for

calculating the lasing modes (e.g., making the paraxial approximation). Such simplifi-

cations, though appropriate for many macroscopic lasers, are inadequate for describing

complex microcavity lasers such as 3d nanophotonic structures or random lasers with in-

homogeneities on the wavelength scale [84, 85, 86, 87]. We base our theory on the recent

steady-state ab-initio laser theory (SALT) [56, 57], which allows us to efficiently solve

the semi-classical laser equations in the absence of noise for arbitrary structures [18].

We treat the noise as a small perturbation to the SALT solutions, allowing us to ob-

tain the linewidths analytically in terms of simple integrals over the steady-state lasing

modes. Our SALT-based theory is ab initio in the sense that it produces a quantita-

tively accurate formula for the linewidths, with no free parameters, including the full

spatial degrees of freedom of the system. Hence, we will refer to this approach as noisy

steady-state ab-initio laser theory (N-SALT).

Our derivation (Secs. III–V) begins with the Maxwell–Bloch equations (details in

Sec. 3.9), which couple the full-vector Maxwell equations to an atomic gain medium [55],

combined with random currents (in Sec. 3.4) whose statistics are described by the

fluctuation–dissipation theorem (FDT) [58, 59, 88, 89, 70]. In the presence of these

random currents, we show that the amplitudes of the lasing modes evolve according to

a set of coupled ordinary differential equations (ODEs), which have been called “oscilla-

tor models” [21, 90] or “temporal coupled-mode theory” (TCMT) [91, 92, 93, 94, 95] in
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similar contexts. In their most general form, our N-SALT TCMT equations (Sec. 3.3)

have the form of oscillator equations with a non-instantaneous nonlinear term that sta-

bilizes the mode amplitudes around their steady-state values. The non-instantaneous

nonlinearity arises since the atomic populations respond with a time delay to field fluc-

tuations; this corresponds to the typical case of “class B” lasers [96, 97, 98], in which

the population dynamics cannot be adiabatically eliminated. We are able to show an-

alytically that the resulting linewidths of the lasing peaks are identical to the results

one obtains for a simplified model with instantaneous nonlinearity [21, 90], which de-

scribes the (less common) case of “class A” lasers, in which the population dynamics are

adiabatically eliminated. As expected, however, in certain parameter regimes the full

non-instantaneous model can exhibit side peaks alongside the main lasing peaks [99],

arising from relaxation oscillations (Sec. 3.5.3).

By solving the N-SALT TCMT equations, we obtain a simple closed-form matrix

expression for the linewidths and multimode phase correlations (Sec. 3.5), generaliz-

ing earlier two-mode results that used phenomenological models [100]. This gives a

multimode “Schawlow–Townes” relation (Sec. 3.6.C), where the linewidth of each las-

ing mode is proportional to a sum of inverse output powers of the neighboring lasing

modes. The theory is valid well above threshold, and whenever a new mode turns on,

this inverse-power relation produces a divergence due to the failure of the linearization

approximation near threshold. However, we show that this divergence is spurious and

can be avoided by solving the nonlinear N-SALT TCMT equations numerically [101].

(Our formalism can be extended to treat the near-threshold regime analytically by in-

cluding noise from sub-threshold modes, as discussed in Sec. 3.6.B and in Sec. 3.8.)

Sec. 3.6 and Sec. 3.7 also present several other model calculations that illustrate the

differences between N-SALT and previous linewidth theories. Finally, in Sec. 3.8, we
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Figure 3.1: (Color online) Schematics illustrating linewidth physics. (a) Photonic-crystal (PhC)
laser cavity [94] emitting radiation from the lasing mode at frequency ω0, perturbed by random
currents. (b) The amplitude is stabilized around a20. Below (above) a20, the medium provides
light amplification (attenuation). (c) Phasor diagram for the complex field amplitude: a circular
oscillation (with |a| = a0) for the noise-free mode and a perturbed path for noise-driven mode.
Noise drives small amplitude fluctuations and possibly large phase drifts. (d) The lineshape is
a Lorentzian ∼ Γ/[(ω − ω0)

2 + ( 12Γ)
2], centered around ω0 with width Γ.

discuss some potential additional corrections that will be addressed in future work.

In a second manuscript [102], we also compare the theory against full time-dependent

integration of the stochastic Maxwell–Bloch equations and find excellent quantitative

agreement of the major results presented here.

Laser dynamics are surveyed in many sources [75, 53, 11, 76, 77], but it is useful to

review here a simple physical picture of linewidth physics. A resonant cavity [e.g., light

bouncing between two mirrors or a photonic-crystal (PhC) microcavity as in Fig. 3.1(a)]

traps light for a long time in some volume, and lasing occurs when a gain medium is

“pumped” to a population “inversion” of excited states to the point (threshold) where
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gain balances loss. [Of course, this simple picture is modified once additional modes

reach threshold, or for lasers (such as random lasers [103, 104]) in which the passive

cavity possesses no strong resonances; all of these complexities are handled by SALT [56,

57] and hence are incorporated into our approach.] For simplicity, consider here a laser

operating in the single-mode regime. Above threshold, the gain depends nonlinearly

on the mode amplitude |a|2, as sketched in Fig. 3.1(b): increasing the field intensity

decreases the gain due to depletion of the excited states until it reaches a stable steady-

state amplitude a20. (This gain-saturation effect is called “spatial hole-burning” [76]

since it can be spatially inhomogeneous.) In the absence of noise, this results in a stable

sinusoidal oscillation with an infinitesimal linewidth, but the presence of noise, which

can be modeled by random current fluctuations J [90, 105, 80], perturbs the mode as

depicted in Fig. 3.1(c), resulting in a finite linewidth. There are various sources of

noise in real lasers, but spontaneous emission sets a fundamental lower limit on the

linewidth [76]; here we will include only spontaneous emission and thermal noise. In

particular, although the amplitude is stabilized around a20 by the nonlinear gain, the

phase ϕ of the mode drifts according to a random walk (a Brownian/Wiener phase) with

variance ⟨ϕ2⟩ ≈ Γ t, and the Fourier transform of a Wiener phase yields a Lorentzian

lineshape [Fig. 3.1(d)] with full width at half maximum (FWHM) Γ [21]. The goal of

linewidth theory is to derive Γ, ideally given only the thermodynamic FDT description

of the current fluctuations and the Maxwell–Bloch physics of the laser cavity.

The most basic approximation for the linewidth (sufficiently far above threshold),

usually referred to as the Schawlow-Townes (ST) formula [78, 5], takes the form

Γ =
ℏω0γ

2
0

2P
, (3.1)
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where P is the output power of the laser, γ0 is the passive cavity resonance width, and ω0

is the laser frequency, often approximated to be equal to the real part of the passive-

cavity resonance pole at ω∗ = ω0 − iγ0/2. (A slightly more accurate approximation

for the laser frequency takes into account the small line-pulling of the laser frequency

towards the atomic transition frequency [106].) The inverse-power dependence causes

the famous line-narrowing of a laser above threshold.

Over the decades, a number of now-standard corrections to this formula were found [11,

76, 77], leading to the modified ST formula:

Γ =
ℏω0γ0

2

2P
· nsp ·

∣∣∣∣∣∣∣∣
∫
C
dx |Ec|2∫
C
dxE2

c

∣∣∣∣∣∣∣∣
2

·
(

γ⊥
γ⊥ + γ0

2

)2

·
(
1 + α2

0

)
. (3.2)

First, the gain medium can be thought of, in many respects, as a system at negative

temperature T [107], with the limit of complete inversion of the two lasing levels corre-

sponding to T → 0−. When only partial inversion is present, the linewidth is enhanced

by a factor of nsp ≡ N2
N2−N1

[108, 109], where N2 and N1 are the spatially averaged

populations in the upper and lower states of the lasing transition. We refer to this

correction as the incomplete-inversion factor (also known as “the spontaneous emission

factor”). Second, due to the openness of the laser system, the modes are not power-

orthogonal and the noise power which goes into each lasing mode is enhanced [110];

this correction is known as the Petermann factor, and it becomes significant in low-Q

laser systems, where it is not a good approximation to treat the lasing mode Ec as

purely real. (Q ≡ ω0/γ0 is a dimensionless passive-cavity lifetime defined in units of

the optical period [94].) Note that Ec is the passive-cavity mode [in contrast to SALT

solutions, which are the modes of the full non-linear equations, introduced in Eq. (3.6)].
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∫
C dx denotes integration over the cavity region. Third, for low-Q laser cavities, it is

possible that the gain linewidth γ⊥ can be on the order of or smaller than the passive

cavity resonance width γ0, causing significant dispersion effects as the gain is increased

to threshold [79]. This correction is commonly called the “bad-cavity” factor [111, 80].

Unlike the other corrections mentioned above, the bad-cavity factor decreases the laser

linewidth. However, very few lasers systems are in the parameter regime where this

effect is significant [112]. Finally, amplitude fluctuations in the laser field couple to

the phase dynamics, leading to a correction known as the “α factor”. For atomic gain

media, this effect was identified by Lax [79] in the 1960’s, and for this case it is typ-

ically a small correction. For bulk semiconductor gain media the effect is large, and

typically dominates the broadening due to direct phase fluctuations [113, 114, 115]; in

this context it is known as the “Henry α factor” [14].

Previous linewidth derivations have taken a number of different approaches, making

severe approximations compared to the solution of the full three-dimensional space-

dependent Maxwell–Bloch equations in the presence of noise. Generally speaking,

linewidth theories can be classified into two categories. The first class includes methods

which solve Maxwell’s equations with a phenomenological model for the gain medium

and account for noise spatial and spectral correlations by using the FDT [90, 105, 80].

Typically, these methods do not handle nonlinear spatial hole-burning above thresh-

old or multimode effects. These methods, commonly used in the semiconductor laser

literature, resulted in linewidth formulas which included the Petermann [110], bad-

cavity [53, 80], incomplete-inversion [90], and α factors [14]. Most notably, an early

work by Arnaud [10] derived a single-mode linewidth formula without making any sim-

plifying assumptions about the field patterns, handling anisotropic, inhomogeneous, and

dispersive media. However, this theory was only applied to very simple, effectively one-
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dimensional, homogeneous systems, and it was missing hole-burning effects and the α

factor.

The second class of linewidth theories consists of scattering-matrix methods [116,

117, 82, 83], which can treat arbitrary geometries without phenomenological parameters

and take into account the effects of spatial hole-burning. S-matrix theories only have

access to the input and output fields and, therefore, can only treat the noise in a

spatially averaged manner and are not able to obtain the α factor rigorously. However,

they obtain all of the other corrections to the single-mode linewidth. In particular,

the recent S-matrix approach by Chong et al. [82, 83] takes advantage, as we do, of

the ab-initio computational approach of SALT, and hence has the potential to treat

arbitrary geometries and spatial hole-burning effects. (We reduce our results to the most

recent scattering-matrix linewidth formula [83] in Sec. 3.12.) Note that in practice, S-

matrix methods require a substantial independent calculation beyond SALT to extract

the linewidths, whereas our approach obtains the linewidths immediately from SALT

calculations (or any other method to obtain the steady-state lasing modes) by simple

integrals over the fields.

Our derivation of N-SALT, being based on the SALT solutions, has a similar regime of

validity. For single-mode lasing, SALT and N-SALT are essentially exact, relying only on

the rotating-wave approximation and on the laser being sufficiently far above threshold.

For multimode lasing, those theories require two additional dynamical constraints [56,

57]: the rates associated with population dynamics must be small compared to both

the dephasing rate of the polarization and the lasing mode spacing (roughly, the free

spectral range). The former constraint is satisfied in all solid-state lasers, whereas the

latter requires a sufficiently small laser cavity. The actual size depends both on details

of the cavity and of the gain medium used, but the appropriate limit is realized in
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many complex lasers of interest. When these frequency scales are not well-separated,

the level populations are not quasi-stationary, and multimode SALT will initially lose

accuracy and eventually fail completely (since multimode lasing becomes unstable [118]).

Moreover, while the average (SALT) behavior is unaffected by non-lasing poles, they

do affect the noise properties, and N-SALT in its current form only accounts for a

finite number of poles in the Green’s function (Sec. 3.9.2). [We only include lasing

poles (i.e., poles on the real axis), but extension to include non-lasing poles, which

determine the amplified spontaneous emission (ASE) [101, 119], will be straightforward

(Sec. 3.8)]. As noted above, the linewidth formula additionally assumes that the laser is

operating far enough above threshold that amplitude fluctuations are small compared

to the steady state amplitudes (i.e., |a(t)| ≈ a0 in the notation of Sec. 3.5). Hence, our

formula does not describe the linewidth near the lasing thresholds. Our perturbation

approach takes into account only the lowest-order correction to the complex modal

amplitude a(t) and neglects higher-order corrections to the frequency ω0 and spatial

pattern E0(x) [see Eq. Eq. (3.7)]. Moreover, we neglect non-Lorentzian corrections to

the lineshape [120, 121, 122, 123, 124] (Sec. 3.4). In the following section we present

our generalized linewidth formula in the single-mode regime Eq. (3.3) and compare it

with traditional linewidth theories.

3.2 The N-SALT linewidth formula

Our main result is a multimode linewidth formula which generalizes Eq. (3.2). In the

multimode case, the result takes the form of a covariance matrix for the phases of the

various modes, which is presented in Eqs. (3.36) and (3.37) of Sec. 3.5. In the single-
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mode case, the N-SALT linewidth formula takes the simple form:

Γ =
ℏω0γ̃

2
0

2P
· ñsp · K̃ · B̃ · (1 + α̃2). (3.3)

The modified correction factors (marked by tildes) are defined in Table. 3.1. As can be

seen from the table, those factors generalize the traditional factors by taking into account

both spatial inhomogeneity and nonlinearity. Since the generalized factors depend on the

SALT permittivity ε, mode profile E0(x), and frequency ω0, one can no longer regard

the effects of cavity-openness, nonlinearity, and dispersion as separate multiplicative

effects. In this sense, our formula demonstrates the intermingled nature of the linewidth

correction factors, as previously introduced in [82, 83], but here demonstrated in a new

level of generality. We denote by
∫
dx integration over all space, for any number of

spatial dimensions. We use the shorthand notation for vector products |E0|2 = E0 ·E∗
0

and E2
0 = E0 · E0, where the latter unconjugated inner product appears naturally

because of the biorthogonality relation for lossy complex-symmetric systems [33, 125].

Im ε(x) denotes the imaginary part of the nonlinear steady-state permittivity Eq. (3.5),

which is negative/positive in gain/loss regions. The output power P is related to the

SALT solutions by invoking Poynting’s theorem, which one can use to show that P ∝∫
P dx [−Im ε(x)]|E0(x)|2. We use

∫
P dx to denote some volume which contains the

gain medium. The choice of the volume is somewhat arbitrary; e.g., integrating over

the cavity region corresponds to the output power at the cavity boundary [90]. Note,

however, that this arbitrariness in the choice of the volume is not a general feature of

our formula. After substituting the relevant expressions from Table. 3.1 into Eq. (3.3),

the integrals which contain
∫
P dx cancel, resulting in an expression for the linewidth

only in terms of integrals over the entire space. The effective inverse temperature β(x)
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is determined by the inhomogeneous steady-state atomic populations N1(x) and N2(x),

and is defined as [73, 126, 127]

β(x) ≡ 1

ℏω0
ln

(
N1(x)

N2(x)

)
. (3.4)

In regions where the gain medium is pumped sufficiently to invert the population, β(x)

is negative; in regions where the pump is too weak to invert, β(x) will be positive [and

still given by Eq. (3.4)]; and in unpumped regions, Eq. Eq. (3.4) will simply reduce to

the equilibrium temperature of the surrounding environment (kBT )
−1. The quantities

N1(x) and N2(x) are an output of the SALT solution in the absence of noise. The

spatially dependent expression inside the square brackets in the definition of ñsp in

Table. 3.1 generalizes the spatially averaged incomplete-inversion factor N2
N2−N1

. That

can be seen by noting that 1
2 coth(

ℏωβ
2 ) − 1

2 = (exp[ℏωβ] − 1)−1 ≡ nB, where nB is the

usual Bose–Einstein distribution function [128, 129]. (For gain media, it is sometimes

convenient to introduce the positive spontaneous-emission factor nsp = −nB [72]. Note

that this definition ensures that the generalized incomplete-inversion factor is always

positive.) The 1
2 factor subtracted from the hyperbolic cotangent was discussed in [72],

and we give a simple classical explanation for it in Sec. 3.13. If standard absorbing

layers are used to implement outgoing boundary conditions in the SALT solver [18] and

the temperature of the ambient medium is assigned to these layers, then the N-SALT

formula includes the effect of incoming thermal radiation. A generalized Petermann

factor which formally resembles K̃ appeared in previous work by Schomerus [117] (in

his expression for the Petermann factor for TM modes in two-dimensional dielectric

resonators). However, the earlier formula is expressed in terms of passive resonance

scalar fields, whereas our correction contains 3d nonlinear SALT solutions. Finally, α̃ is

36



Definition Symbol Traditional Generalized

cavity decay rate γ̃0 γ0

∣∣∣ ∫ dx (ω0Im ε)E0
2∫

dx εE0
2

∣∣∣
incomplete inversion ñsp

N2

N2−N1

∫
dx

[
1
2 coth(

ℏωβ
2 )−1

2

]
Imε|E0|2∫

P
dx Im ε |E0|2

Petermann K̃
∣∣∣ ∫C dx |Ec|2∫

C
dx E2

c

∣∣∣2 ∣∣∣ ∫P dx Im ε |E0|2∫
dx Im εE0

2

∣∣∣2
bad cavity B̃

(
γ⊥

γ⊥+
γ0
2

)2 ∣∣∣∣∣ ∫
dx εE2

0∫
dx E2

0(ε+
ω0

2
∂ε
∂ω0

)

∣∣∣∣∣
2

amplitude-phase coupling α̃ ωa−ω0

γ⊥
Im C
Re C

nonlinear coupling C
−i

ω0

2

∫
dx

∂ε
∂|a|2 E2

0∫
dx

(
ε+

ω0

2
∂ε
∂ω0

)
E2

0

Table 3.1: Traditional and new linewidth correction factors for the single-mode linewidth for-
mulas Eqs. (3.2) and (3.3).

a generalized α factor, defined explicitly in Sec. 3.5 Eq. (3.30). For atomic gain media,

the traditional factor is expressed in terms of the atomic transition frequency ωa and

decay rate of the atomic polarization γ⊥. In the current work we will only evaluate

the atomic case, although the general expression in terms of the non-linear coupling C

should also apply to the semiconductor case.

The N-SALT formula Eq. (3.3) reduces to the traditional formula Eq. (3.2) in some

limiting cases. Let us consider, for simplicity, a 1d Fabry-Pérot laser cavity of length

L surrounded by air (i.e., Im ε = 0 outside the cavity region). Let us assume also

that the laser is operating not too far above the threshold and is uniformly pumped,

hence Im ε and β are nearly constant inside the cavity. In this limit, all the integrals in

Table. 3.1 can be approximated by reducing the integration limits to the cavity region;

terms which contain integration over the imaginary part of the permittivity are non-zero

only within the cavity region (e.g.,
∫
dx Im ε|E0|2 becomes Im ε

∫
C dx |E0|2); while terms
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of the form
∫
dx εE2

0 can be written as the sum of the cavity contribution ε
∫
C dxE

2
0

and the surrounding medium contribution
∫
out dxE

2
0, where the latter is negligible

for Lω0 ≫ 1, as shown in Sec. 3.12 and in [83] (here and throughout the chapter,

we are setting c = 1). Using this approximation, it is immediately apparent from

Table. 3.1 that the incomplete-inversion factor reduces to the traditional expression.

The generalized Petermann factor reduces to the traditional factor in the limit of a

high-Q cavity, where the threshold lasing state E(x) is approximately the same as the

passive resonance state Ec(x). In order to simplify the remaining terms, recall that the

lasing threshold is reached when gain in the system compensates for the loss. For weak

losses (small Im ε/ε) that can be treated by perturbation theory, the threshold condition

is γ0 = ω0Im ε
ε [53] and, therefore, the generalized decay rate reduces to γ0 (one can

thereby see that the Schawlow–Townes formula Eq. (3.2) neglects nonlinear corrections

to γ0, as was also shown in [82]). Next, let us discuss the generalized bad-cavity factor,

which simplifies to
(
1 + ω0

2ε
∂ε
∂ω0

)−2
after reducing the integration limits. In order to

show that it agrees with the traditional factor, we need to show that ω0
2ε

∂ε
∂ω0
≈ γ0

2γ⊥
. The

steady-state effective permittivity, as used in SALT theory (Sec. 3.9.1), is

ε(x) = εc(x) +
γ⊥D(x)

ω0 − ωa + iγ⊥
, (3.5)

where εc is the passive permittivity and the second term is the active nonlinear per-

mittivity due to the gain medium. The population inversion D(x) = N2(x) − N1(x)

is generally spatially varying above threshold due to spatial hole-burning. Since we as-

sume here that we are close to threshold and that the pumping is uniform, the inversion

is also uniform in space and near its threshold value. If one assumes, additionally, that

the detuning of the lasing frequency from atomic resonance is small (|ω0 − ωa| ≪ γ⊥),
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one obtains ∂ε
∂ω0
≈ Im ε

γ⊥
. Finally, we show in Sec. 3.6.A that our α̃ reduces to the known

α0 in homogeneous low-loss cavities, so that all factors of the corrected ST formula

are recovered in this limit. (Note that line-pulling effects which may modify the lasing

frequency ω0 are handled by SALT.)

In the next section, we present the TCMT equations which are used in this chapter to

derive the N-SALT linewidth formula Eq. (3.3), but which may also be used to extract

more information on laser dynamics away from steady state.

3.3 The N-SALT TCMT equations

In the absence of noise, the electric field of a laser operating in the multimode regime

is given by the real part of E0(x, t), where

E0(x, t) =
∑
µ

Eµ(x)aµ0e
−iωµt, (3.6)

and the laser has zero linewidth. (This assumes, of course, that there exists a steady-

state multimode solution of the nonlinear semi-classical lasing equations [56, 57].) The

modes Eµ(x) and frequencies ωµ can be calculated using SALT, which solves the semi-

classical Maxwell-Bloch equations in the absence of noise. (SALT has been generalized

to include multi-level atoms [130], multiple lasing transitions, and gain diffusion [131];

any of these cases can thus be treated by N-SALT with minor modifications, but we focus

on the two-level case here.) The linewidth can now be calculated by adding Langevin

noise, as described below.

In the presence of a weak noise source, the electric field can be written as a super-

position of the steady-state lasing modes with time-dependent amplitudes aµ(t) which
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fluctuate around aµ0:

E(x, t) =
∑
µ

Eµ(x)aµ(t)e
−iωµt. (3.7)

In principle, the sum in Eq. (3.7) should also include the non-lasing modes since the set

of lasing modes by itself does not form a complete basis for the fields. Non-lasing modes

contribute to amplified spontaneous emission (ASE), which has a significant effect on

the spectrum near and below the lasing thresholds [101, 119] and will be treated in

future work.

In Sec. 3.9, we derive the N-SALT TCMT equations of motion for aµ(t) starting with

the full vectorial Maxwell-Bloch equations. We show that the noise-driven field obeys

an effective nonlinear equation which, in the frequency domain, takes the form

[
∇×∇×−ω2ε(ω, a)

]
Ê(x, ω) = F̂S(x, ω), (3.8)

where the carets denote Fourier transforms [e.g., E(x, t) ≡
∫∞
0 dω e−iωtÊ(x, ω)]. Sponta-

neous emission is included via the stochastic noise term F̂S(x, ω) (quantified in Sec. 3.4),

and the effective permittivity ε(ω, a) (derived in Sec. 3.9.2) is given by

ε(ω, a)Ê(x, ω) =
∑

µ

[
εcâµ + γ⊥

ω−ωa+iγ⊥
D̂ ∗ âµ

]
Eµ(x), (3.9)

where the asterisk denotes a convolution. The second argument of ε(ω, a) denotes

the implicit dependence of ε on the modal amplitudes aµ through the inversion D̂.

The effective permittivity Eq. (3.9) can be decomposed into a steady-state-amplitude

dispersive term and a nonlinear non-dispersive term (similar in spirit to [132]). The

key point here is that, to lowest order, there are two corrections to the permittivity

in the presence of noise: the dispersive correction due to any shift in frequency at the
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unperturbed amplitudes aµ0, and the nonlinear correction due to any shift in amplitude

at the unperturbed frequency. (Shifts in frequency are small because only frequency

components within the mode linewidths matter, while shifts in amplitude are small

because of the stabilizing effect of gain feedback.) The coupling between these two

perturbations is higher order and is hence dropped, which greatly simplifies the analysis.

Substituting the permittivity expansion (derived explicitly in Sec. 3.9.3) into Maxwell’s

equation Eq. (3.8), we find that the noise-driven field obeys the linearized equation

[
∇×∇×−ω2ε(ω, a0)

]
Ê(x, ω) = F̂NL(x, ω) + F̂S(x, ω), (3.10)

i.e., the dispersive permittivity which appears on the left-hand side of Eq. (3.10) is

evaluated at the steady-state amplitude a0. The nonlinear non-dispersive term F̂NL

[defined explicitly in Eq. (3.67)], which corresponds to amplitude fluctuations at the

unperturbed frequency, appears as a restoring force on the right-hand side. The noise-

driven field Ê(x, ω) is found in Sec. 3.9.4 by convolving the linearized Green’s function

with the source terms F̂NL and F̂S . Finally, the N-SALT TCMT equations are obtained

by transforming the noise-driven field back into the time domain.

3.3.1 Time-delayed multimode model

We find that, in the most general case, the TCMT equations take the form

ȧµ =
∑
ν

∫
dx cµν(x) ×

[
γ(x)

∫ t

dt′e−γ(x)(t−t′)
(
a2ν0 − |aν(t′)|2

)]
aµ + fµ. (3.11)

Comparing Eq. (3.11) and Eq. (3.10), one can see that the first term on the right-hand

side of Eq. (3.11) is related to the nonlinear restoring force F̂NL, and the Langevin noise
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fµ(t) is associated with F̂S .

The nonlinear coupling coefficients cµν(x) [derived in Eq. (3.77)] correspond to local

changes in the nonlinear permittivity with respect to intensity changes in each of the

modes

cµν =
−iω2

µ
∂ε(ωµ)
∂|aν |2 E

2
µ∫

dx(ω2
µε)

′
µE

2
µ

, (3.12)

where we have introduced a shorthand notation for the derivative in the denominator

(ω2
µε)

′
µ ≡ ∂

∂ωω
2ε
∣∣
ωµ
. This modal coupling in the fluctuation dynamics comes about

because of saturation of the gain: a fluctuation in mode µ affects the amplitudes of all

the other modes ν.

The N-SALT TCMT equations are nonlocal in time because the atomic populations

are not in general able to follow the field fluctuations instantaneously and, instead,

respond with a time delay determined by the local atomic decay rate γ(x), given by

γ(x) = γ∥

(
1 +

∑
ν

γ2⊥
(ων − ωa)2 + γ2⊥

|aν0|2|Eν |2
)
. (3.13)

The second term in Eq. (3.13) is precisely the local enhancement of the atomic decay

rate due to stimulated emission in the presence of the lasing fields. (A simplified spatially

averaged enhancement of the atomic decay rate was previously discussed in [99].)

The Langevin force fµ is the projection of the spontaneously emitted field onto the

corresponding mode Eµ [90]. Defining Fµ(t) ≡ FSe
iωµt, the Langevin force fµ is

fµ(t) =

i

∫
dxEµ · Fµ(t)∫
dx(ω2

µε)
′
µE

2
µ

. (3.14)

The full N-SALT TCMT equations Eq. (3.11) describe the most typical situation in
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laser dynamics of a “class B” laser [96, 97, 98], in which the polarization of the gain

medium can be adiabatically eliminated but the population dynamics is relatively slow

and cannot be so eliminated. However, much of the basic linewidth physics can be

extracted from the limit when the population dynamics is also adiabatically eliminable,

which describes “class A” lasers. Since the mathematical analysis is simpler in this

limit, we will begin the spectral analysis in Sec. 3.5 with the latter model. We discuss

this limit, which we refer to as the “instantaneous model,” in the following section.

3.3.2 Instantaneous single-mode model

When the population relaxation rate γ(x) is (everywhere) large compared to the dynam-

ical scales determining aµ(t), the exponential terms in Eq. (3.11) act like δ functions.

After the spatial integration, and specializing in this section to the single-mode case,

we obtain the simple nonlinear oscillator model driven by a weak Langevin force f(t):

ȧ = C
(
a20 − |a|2

)
a+ f, (3.15)

where C =
∫
dx c(x) is the integrated nonlinear coupling. This instantaneous nonlinear

oscillator model was previously introduced by Lax [21, 79], and has been used exten-

sively in linewidth theories [53]. The N-SALT approach enables computing the model’s

parameters ab initio, taking full account of the spatial hole-burning term and the vec-

torial nature of the fields [including multimode effects, when generalizing Eq. (3.15) to

the multimode regime]. Also, our approach shows that this well-known model can be

explicitly derived from the more general (non-instantaneous) model, presented in the

previous section. Above the lasing threshold, a0 > 0 and Re[C] > 0, and the system

undergoes self-sustained oscillations with a stable steady state at |a| = a0, as demon-
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strated in Fig. 3.1(b). In fact, near threshold one can show that Re[C] is approximately

the threshold gain, which balances the cavity loss κ. Hence the dynamical scale of a(t)

is of order κ, which must then be much smaller than γ(x) for the instantaneous model

to hold; this is the standard dynamical condition for class A lasers [96, 97, 98].

The nonlinear term in Eq. (3.15) and the multimode counterpart in Eq. (3.12) are

derived rigorously in Sec. 3.9, but we can motivate the resulting expressions using simple

physical arguments. The nonlinear term can be viewed as a shift in the oscillation

frequency, i.e., −i∆ω = C(a20 − |a|2). Using first-order perturbation theory [133], the

frequency shift due to a change in dielectric permittivity ∆ε is given by

∆ω = −ω2
0

∫
dx∆εE2

0∫
dx(ω2

0ε)
′
0E

2
0

. (3.16)

Plugging in the differential of the permittivity due to small changes in the squared

mode amplitude, ∆ε ≈ ∂ε
∂|a|2 (|a|

2 − a20), we find that the coupling coefficient in the

instantaneous model is

C =

−iω2
0

∫
dx

∂ε

∂|a|2
E2

0∫
dx(ω2

0ε)
′
0E

2
0

. (3.17)

This is the single-mode version of Eq. (3.12) integrated over space due to rapid relax-

ation. As we will see, this simple result, combined with the spectrum of the Langevin

noise (section IV), is all that is needed to derive the single-mode linewidth formula

Eq. (3.3) (see Section V), and the multimode generalization also follows straightfor-

wardly. Hence, after analyzing the noise spectrum, we will first derive the linewidth

within the instantaneous model before moving on to the more complicated case of the

full N-SALT TCMT equations. The latter will show that the basic linewidth formula is
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unchanged from that of the instantaneous model except for the addition of side peaks

due to the relaxation oscillations present in class B lasers.

3.4 The autocorrelation function of the Langevin force

In this section, we express the autocorrelation function of the Langevin force fµ

⟨
fµ(t)f

∗
ν (t

′)
⟩
= Rµδµνδ(t− t′) (3.18)

in terms of the autocorrelation function of the noise source Fµ. It is well known that

quantum and thermal fluctuations can be modeled as zero-mean random variables, de-

fined by their correlation functions [89, 70]. This Rytov picture [59] is essentially a con-

sequence of the central-limit theorem (CLT) [134, 135], which holds since the classical

forcing FS is the sum of a large number of randomly emitted photons. The autocor-

relation function of FS can be found by invoking the fluctuation–dissipation theorem

(FDT), as explained below.

The probability distributions of the pumped medium and the electromagnetic field

obey Boltzmann statistics, with an effective local temperature β defined in terms of

the atomic inversion [107] (see definition in Sec. 3.2). Under the typical conditions of

local thermal equilibrium [58, 59, 88, 89, 70], dissipation by optical absorption must

be balanced by spontaneous emission from current fluctuations J(x, t). One can then

apply the FDT for the Fourier-transformed forcing F̂S(x, ω) = −4π iωĴ(x, ω) [136]:

⟨
F̂S(x, ω)F̂

*
S(x

′, ω′)
⟩
= 2ℏω4Im ε(x, ω) coth

(
ℏωβ(x)

2

)
δ(x− x′)δ(ω − ω′). (3.19)

Using this result, we calculate the autocorrelation of the Langevin force f̂µ [i.e., the
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Fourier transform of Eq. (3.14), defined as f̂µ(ω) ≡ 1
2π

∫∞
0 dt eiωtfµ(t)] and we obtain

⟨
f̂µ(ω)f̂

∗
ν (ω

′)
⟩
= R̂µ(ω)δ(ω − ω′)δµν , (3.20)

where the frequency-domain autocorrelation coefficient is

R̂µ(ω) = 4ℏω4

∫
dx |Eµ|2Im ε(ω)

[
1

2
coth

(
ℏωβ
2

)
− 1

2

]
∣∣∣∣∣
∫
dxE2

µ(ω
2
µε)

′
µ

∣∣∣∣∣
2 . (3.21)

The 1
2 factor subtracted from the hyperbolic cotangent is explained in Sec. 3.13 and

in [72].

The time-domain diffusion coefficient Rµ can be found directly from Eq. (3.21) taking

the inverse Fourier transform. For the common case of a small linewidth, Im ε(ω)

and coth
(
ℏωβ
2

)
are nearly constant for frequencies within the linewidth. [This means,

essentially, that the Langevin force fµ(t) can be treated as white noise]. Consequently,

one can approximate the diffusion coefficient in Eq. (3.21) by its value at ωµ. With this

simplification, the time-domain diffusion coefficient in Eq. (3.18) is conveniently given

by Rµ = 2πR̂µ(ωµ) [90].

More generally, however, including this frequency dependence corresponds to tem-

porally correlated fluctuations, leading to non-Lorentzian corrections to the laser line-

shape [120, 121, 122, 123, 124]. These “memory effects” can be addressed using our

approach (as discussed in Sec. 3.8) and we plan to include them in future work.
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3.5 The laser spectrum

In this section, we calculate the laser spectrum using the N-SALT TCMT equations

Eqs. (3.11) and (3.15) and the noise autocorrelation function Eqs. (3.20) and (3.21). We

begin by showing that the phase of the lasing mode undergoes simple Brownian motion;

consequently, the laser spectrum is a Lorentzian, with a width given by the phase-

diffusion coefficient. In Sec. 3.5.1, we calculate the phase-diffusion coefficient (hence

the linewidth) for the instantaneous model Eq. (3.15) and in Sec. 3.5.2, we outline the

analysis for the time-delayed model Eq. (3.11), leaving the details of the derivation to

Sec. 3.10. More accurately, the spectrum of the time-delayed model consists of a central

Lorentzian peak at the lasing resonance frequency and additional side peaks due to

relaxation oscillations, which are present in class B lasers. The latter side peaks are the

subject of Sec. 3.5.3.

3.5.1 Instantaneous single-mode model

The complex mode amplitude a(t) can be written in polar form as

a(t) = [a0 + δ(t)] eiϕ(t). (3.22)

a0 is the steady-state amplitude, while δ and ϕ are real amplitude and phase fluctuations.

Substituting the modal expansion Eq. (3.22) in Eq. (3.15), defining

A ≡ 2a20ReC

B ≡ 2a20ImC, (3.23)
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and keeping terms to first order in δ/a0, we obtain

δ̇ = −Aδ + fR, (3.24)

a0ϕ̇ = −Bδ + fI, (3.25)

where fR ≡ Re {f} and fI ≡ Im {f}. We check the approximation of |δ| ≪ a0 a

posteriori and we find that it generally holds (as was also shown in [101]), except near

threshold (a0 → 0), which is a case we discuss in Sec. 3.6.C.

When the nonlinear coupling coefficient is real (B = 0), it is evident from Eq. (3.25)

that the phase undergoes simple Brownian motion (i.e., it is a Wiener process) and

hence the phase variance increases linearly in time. An oscillator with Brownian phase

noise has a Lorentzian spectrum [137], and one can reproduce that result briefly as fol-

lows. The laser spectrum Sa(ω) is given by the Fourier transform of the autocorrelation

function of a(t):

⟨a(t)a∗(0)⟩ ≈ a20
⟨
e−i(ϕ(t)−ϕ(0))

⟩
= a20e

− 1
2⟨(ϕ(t)−ϕ(0))2⟩. (3.26)

For a Wiener phase, whose variance is
⟨
(ϕ(t)− ϕ(0))2

⟩
= Γ|t|, the Fourier transform of

Eq. (3.26) is a Lorentzian whose central-peak width is Γ [21]. In passing from the first to

second step in Eq. (3.26), one neglects direct amplitude-fluctuation contributions (which

are decoupled from the phase) as these only introduce broad-spectrum background noise,

but do not affect the linewidth of the laser peak (we return to this point in Sec. 3.5.3).

In passing from the second to the third step, one assumes that the phase is a Gaussian

normal variable, which is justified as a consequence of the CLT.

It is well known that also in the general case of B ̸= 0, the phase is a Wiener
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process, with a modified diffusion coefficient [14]. In order to calculate the phase variance

explicitly, we solve Eqs. (3.24) and (3.25) and obtain

δ(t) =

∫ t

e−A(t−t′)fR(t
′)dt′, (3.27)

a0ϕ(t) = −B
∫ t

δ(t′)dt′ +

∫ t

fI(t
′)dt′. (3.28)

Substituting Eq. (3.27) into Eq. (3.28), using the autocorrelation function of f Eq. (3.21),

and performing the integration, one obtains that the phase variance in the long-time

limit is
⟨
(ϕ(t)− ϕ(0))2

⟩
= R

2a20

(
1 +

(
B
A

)2) |t| (where terms growing more slowly than |t|

were neglected, as explained in greater detail in Sec. 3.10). Therefore, the linewidth is

Γ =
R

2a20
(1 + α̃2), (3.29)

where we have defined the generalized α factor:

α̃ =
B

A
=

ImC

ReC , (3.30)

with the nonlinear coefficient C defined in Eq. (3.17). Substituting the autocorrela-

tion function Eq. (3.21) in Eq. (3.29) and using Poynting’s theorem to relate a20 to

the output power P =
ω0a20
2π

∫
P dx (−Im ε(x))|E0(x)|2 [138], we obtain the single-mode

linewidth formula Eq. (3.3). From Eq. (3.29), it is evident that the Schawlow–Townes,

Petermann, bad-cavity and incomplete-inversion factors are all included in the term R
2a20

,

and generally cannot be separated into the traditional factors of Eq. (3.2) [83].

When the nonlinear coupling coefficient is complex (i.e., when B ̸= 0), the resonance

peak is not only broadened but is also shifted [14]. The shift in center frequency is

49



found by keeping second-order terms in δ/a0 and calculating the average phase drift:

δω = ˙⟨ϕ⟩ = − RB

4a20A
. (3.31)

An identical formula was derived in [90] in a phenomenological instantaneous model.

Fig. 3.2 shows the spectrum of the instantaneous model, which is obtained by numer-

ically solving Eq. (3.15) using a stochastic Euler scheme [139]. Introducing the notation

F(a) ≡ C(a20 − |a|2)a and discretizing time as a(n∆t) ≈ an, the Euler update equation

for the n-th step is

an = an−1 + F (an−1)∆t+
√
R∆t ζ, (3.32)

where ζ is a gaussian random variable of mean 0 and variance 1, i.e., ζ ∈ N(0, 1). [For

the data presented inFig. 3.2, ∆t was decreased until the simulation results converged.

In later sections (Fig. 3.3), we implemented a fourth-order Runge–Kutta method in

order to achieve convergence]. The simulated spectra (noisy colorful curves) match

the predicted Lorentzian lineshapes (solid black curves), which are calculated using

Eqs. (3.29) and (3.31). As α̃ increases, the linewidths are broadened and the center

frequencies are shifted.

3.5.2 Time-delayed multimode model

We now turn to the laser spectrum produced by the time-delayed model, where the

nonlinearity is dependent on the modal amplitudes at previous times. Although we

calculate the linewidth of the full time-delayed N-SALT TCMT equations Eq. (3.11)

in Sec. 3.10, we begin this section by considering the simplified case of a spatially

homogeneous medium γ(x) ≈ γ0 (this is a good approximation for a uniformly pumped
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Figure 3.2: (Color online) Simulated spectrum Sa(ω) of the instantaneous model Eq. (3.15)
with ReC = 10, noise autocorrelation coefficient R = 0.1 and three values of α̃: 10 (blue), 5
(red), 1 (yellow) (C,R, Sa, and ω are given in arbitrary frequency units). The noisy signal is
the simulation result and the black curves are Lorentzian lineshapes with widths Γ and center
frequency shifts given by Eqs. (3.29) and (3.31).

class B laser operating near threshold). In this case, the single-mode time-delayed model

takes the form

ȧ = C

(
γ0

∫ t

dt′e−γ0(t−t′)(a20 − |a(t′)|2)
)
a+ f, (3.33)

where C =
∫
dx c(x) is the integrated nonlinear coupling and c(x) is defined in Eq. (3.12).

This integro-differential equation can be turned into a first-order ODE by using the

modal expansion from Sec. 3.5.1: a = (a0 + δ)eiϕ, keeping terms to first order in δ/a0,

and introducing the variable

ξ(t) = γ0

∫ t

dt′e−γ0(t−t′)δ(t′). (3.34)

Then, Eqs. (3.33) and (3.34) can be recast in the form v̇ = Kv+f , where v = {δ, a0ϕ, ξ}.
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However, most generally, the spatial dependence of γ(x) cannot be neglected. The

time-averaged deviation ξ(x, t) is therefore spatially dependent, and one obtains an

infinite-dimensional problem. To simplify the algebra, we discretize space [e.g., dis-

cretizing Eq. (3.11) into a Riemann sum over sub-volumes Vk] and recover the continuum

limit at the end. This yields the discrete-space multimode model:

ȧµ =
∑
νk

Ck
µν

(
γk

∫ t

dt′e−γk(t−t′)(a2ν0 − |aν(t′)|2)
)
aµ + fµ, (3.35)

where the discretized nonlinear coupling coefficients are Ck
µν =

∫
Vk
dx cµν(x) (so that

Cµν =
∑

k C
k
µν), γk is the relaxation rate at the k’th spatial point and aν0 is the steady-

state amplitude of mode ν.

In Sec. 3.10, we study the statistical properties of the solutions to Eq. (3.35). We

introduce the the M-dimensional vectors whose entries are Φµ≡aµ0ϕµ (where M is the

number of active lasing modes) and we calculate the covariance matrix ⟨Φµ(t)Φν(0)⟩.

We find that the result is independent of the relaxation rates γk or the discretization

scheme: ⟨
Φ(t)Φ T (0)

⟩
=

(
R
2
+ BA−1 R

2

(
BA−1

)T) |t|. (3.36)

The matrices A and B correspond to the real and imaginary parts of the coupling

matrices, with entries Aµν = 2aµ0aν0Re[Cµν ] and Bµν = 2aµ0aν0Im[Cµν ]. R is the

autocorrelation function of the Langevin force vector f [defined in Eq. (3.21)]. The

diagonal of this matrix, divided by |t| and by the squared modal amplitude, gives the

generalized linewidths

Γµ =
1

2a2µ0

(
Rµµ +

[
BA−1R

(
BA−1

)T ]
µµ

)
. (3.37)
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Therefore, the generalized α factor (which is responsible for linewidth enhancement due

to coupling of amplitude and phase fluctuations) is given by

α̃µ ≡
1

Rµµ

[
BA−1R

(
BA−1

)T ]
µµ
. (3.38)

In the single-mode case (M = 1), this matrix formula reduces to the single-mode

linewidth of the instantaneous-model: R
2a20

(1+
(
B
A

)2
) [Eqs. (3.29) and (3.30) in Sec. 3.5.1].

The linewidth in the time-delayed (class B) model is precisely the same (neglecting

side peaks) as in the instantaneous (class A) model. While this result was derived

for single-mode class B semiconductor lasers using a phenomenological rate-equation

framework [99], we prove that this is generally the case in the multimode inhomo-

geneous regime. Naively, one might expect to obtain different linewidths due to the

longer time over which the fluctuations can grow. However, in Sec. 3.10 we obtain a

linewidth expression which is independent of the relaxation-oscillation dynamics, which

demonstrates that there is a cancellation of two competing processes: as γ∥ decreases,

amplitude fluctuations grow, but they are also averaged over longer periods of time so

that their effect is smaller.

Fig. 3.3 presents the simulated spectrum of the time-delayed model in the homogeneous-

γ limit, which is obtained by numerically integrating Eq. (3.33) (by applying a stochastic

Euler scheme, as in Fig. 3.2). The width of the central peak of the spectrum matches

our prediction Eq. (3.29), independent of the value of γ0. At intermediate relaxation

rates, we also observe side peaks in the spectrum due to amplitude relaxation oscillations

(RO), in addition to the central peak.
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Figure 3.3: (Color online) Simulated spectrum of the time-delayed model Eq. (3.33) with ReC =

10 and R = 0.1 (in arbitrary frequency units) at six values of γ0 (using a base 10 logarithmic
scale for the y axis). The noisy signal is the simulation result and the black curves are Lorentzian
lineshapes with widths given by Eq. (3.29).

3.5.3 Side peaks in the time-delayed model

In class B lasers, amplitude fluctuations relax to steady state via relaxation oscilla-

tions [106] and, consequently, give rise to side peaks in the spectrum, in analogy with

amplitude modulation of harmonic signals. Mathematically, the oscillation arises from

the second-order ODE generated by coupling of the δ̇ and ξ̇ equations Eqs. (3.33) and

(3.34), producing the coupled amplitude/gain oscillations. Using the same methods that

we applied to calculate the linewidth of the central resonance peak Eq. (3.37), we also

calculated the full side-peak spectrum in the multimode regime. Our formula is derived

under the fairly general assumption that the central resonance peaks are narrower than

the side peaks, which is the relevant regime for many lasers [99]. Although the deriva-

tion uses the same techniques as in Sec. 3.10, it is fairly involved and will be provided

in Ch. 5; we only summarize here.

As was shown in Sec. 3.3, far above threshold, the atomic relaxation rate Eq. (3.13)

is enhanced and can even be dominated by the electromagnetic field. This modified

relaxation rate, and in particular its spatial dependence due to hole-burning effects, has
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important implications on the RO spectrum which, to our knowledge, have not been

treated before. For simplicity, we focus here on the case of α = 0. (Note that α factor

effects on the RO spectrum have been observed and analyzed using a phenomenological

homogeneous time-delayed model in [99].)

In order to see how one can obtain a closed-form expression for the RO spectrum,

recall that when calculating the spectrum of the central resonance peak in Sec. 3.5.1, we

neglected direct amplitude-fluctuation contributions in Eq. (3.26), i.e., in passing from

the first to second step, we omitted a term of the form

⟨δ(t)δ(0)⟩ ·
⟨
e−i(ϕ(t)−ϕ(0))

⟩
. (3.39)

Adding this term in Eq. (3.26), one finds that the full spectrum consists of an addi-

tional term, which is given by the convolution of the real-amplitude fluctuation spec-

trum ⟨δ(t)δ(0)⟩ and the spectrum of the central resonance peak. In the instantaneous

model, the amplitude autocorrelation function ⟨δ(t)δ(0)⟩ decays exponentially in time

[see Eq. (3.27)] and the omitted term results in near-constant background noise. How-

ever, in the time-delayed model, this neglected term is responsible for the RO side

peaks.

For simplicity, consider first a model which can be solved straightforwardly; the

single-mode homogeneous-γ time-delayed model [i.e., γ(x) ≈ γ0 and
∫
dx c(x) = C

as in Eq. (3.33)], which describes uniformly pumped single-mode lasers near threshold.

Following the discussion in Sec. 3.5.2, we can rewrite Eqs. (3.33) and (3.34) as a set of

linear equations and solve for δ(t), obtaining

δ(t) =

∫
dt′e−

γ0
2
(t−t′) ×

[
cosh

(
∆

2
(t− t′)

)
+
γ

∆
sinh

(
∆

2
(t− t′)

)]
fR(t

′), (3.40)
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where ∆ ≡
√
γ20 − 4Aγ0. In the limit of well-resolved side peaks (e.g., R

a20
≪ γ0 ≪ A),

the amplitude autocorrelation function is approximately

⟨δ(t)δ(0)⟩ ≈ R

2

[
sin
√
γ0At√
γ0A

+
cos
√
γ0At

γ0

]
× e−

γ0t
2 . (3.41)

Thus, additional peaks in the spectrum arise at frequencies ωRO = ω0 ±
√
Aγ0 with

widths γ0. In the high-Q limit near threshold, A is proportional to the cavity de-

cay rate κ, giving the expected behavior for the RO frequency. The side-peak ampli-

tudes R
4

[
1√
γ0A

+ 1
γ0

]
diverge in the limit of γ0 → 0 (that is, when amplitude fluctuations

are not small compared to the steady-state mode amplitude), but this is also the regime

in which our analysis of the spectrum (Sec. 3.5.1 and Sec. 3.5.2) breaks down. The in-

set in Fig. 3.4b shows the simulated spectrum of the homogeneous time-delayed model

Eq. (3.33) (the same data was also shown in Fig. 3.3, but we include here the theoretical

formula for the side-peak spectrum). The exact numerical solution of Eq. (3.33) (blue

curve) reproduces the analytic spectrum prediction of Eq. (3.42) (red curve).

In the limits of extremely small/large relaxation rates γ0 (compared to A), the side

peaks disappear. In the former limit, they merge with the central resonance peak

and in the latter case, they merge with the background noise. This behavior can be

explained by inspection of the δ̇ and ξ̇ equations Eqs. (3.33) and (3.34) in the appropriate

limits. When the relaxation rate is very large, the time-delayed model reduces to the

instantaneous model, which represents the case where the atomic population follows the

field adiabatically. In the opposite limit of extremely small relaxation, the field follows

the atomic population adiabatically. In other words, a clear separation of atomic and

optical time scales will result in the absence of RO side peaks.

In the most general spatially inhomogeneous time-delayed model, the full spectrum
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Figure 3.4: (Color online) Dressed decay rate and the RO spectrum based on SALT solutions
of a 1d PhC laser. Inset: a quarter-wave PhC (period a = 1 mm and alternating layers with
permittivities ε1 = 16 + 0.1i and ε2 = 2 + 0.1i and thicknesses d1 =

a
√
ε2√

ε1+
√
ε2

and d2 = a− d1).
The center region has permittivity εd = 3 + 0.1i and contains gain atoms with bandwidth
γ⊥ = 3 mm−1 and resonance frequency ωa = 25 mm−1. (a) Dressed decay γ(x) evaluated
using Eq. (3.13) at five pump values (2Dth brown, 3Dth blue, 4Dth black, and 5Dth gray). (b)
Side-peak spectrum SRO(ω) evaluated using Eq. (3.42) for the five pump values of (a). Inset:
full simulated spectrum Sa(ω) on a semi-log scale (of base 10) of the homogeneous time-delayed
model Eq. (3.33) with γ0 = 0.09, A = 10, B = 0, R = 0.01 (in arbitrary frequency units). The
noisy signal is the simulation result and the red curve is the theoretical lineshape Eq. (3.42).

57



takes the simple form

Sa(ω) =
Γ

ω2 +
(
Γ
2

)2 +
Γ

ω2

[
1−
∫
dx A(x)γ(x)

ω2+(Γ
2
+γ(x))2

]2
+

[∫
dx

A(x)γ(x)(γ(x)+Γ
2 )

ω2+(γ(x)+Γ
2 )

2

]2 (3.42)

where A(x) is the real part of the local nonlinear coupling [defined in Eq. (3.23)], γ(x)

is the effective decay rate, and Γ is the central peak linewidth. (This formula is valid

when the central resonance peak is narrower than the side peaks Γ ≪ γ∥.) Like our

linewidth formula, this formula is easy to evaluate via spatial integrals of the SALT

solutions.

While the homogeneous time-delayed model near threshold agrees with standard re-

sults on relaxation oscillations [99], the full model above threshold, combined with

SALT, is able to include effects not contained in other treatments. As the pump is

increased far above threshold, the effects of stimulated emission strongly increase the

atomic relaxation rate, and spatial hole burning causes that rate γ(x) to vary substan-

tially in space [see Eq. (3.13)]. These two effects cause both a shift and a broadening

of the side peaks compared to the near-threshold result. Fig. 3.4 shows the dressed

decay rate γ(x) and the side-peak spectrum SRO(ω) [as given by the second term of

Eq. (3.42)], based on a SALT calculation of a one-dimensional photonic crystal (PhC)

laser, at four different pump values well above threshold. [The pump value is controlled

via the parameter Dp in Eq. (3.47), and we denote the threshold value of Dp by Dth.]

This type of cavity (depicted in the inset of Fig. 3.4a) supports a single mode at the sim-

ulated parameter regime, which is localized near the defect region. (Further discussion

of this structure is given in Sec. 3.6.1 below.) As can be seen from Fig. 3.4a, the decay

rate γ(x) is enhanced at high intensity regions (i.e., near the defect), and it increases
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further as the pump increases. Fig. 3.4b demonstrates the shifting and broadening of

the side peaks.

3.6 The generalized α factor
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Figure 3.5: (Color online) (a) The generalized (blue) and traditional (red) α factors of a PhC
laser vs. relative detuning ∆ν ≡ ω0−ωa

ω0
. Upper inset: quarter-wave PhC geometry (see caption

of Fig. 3.4). The gain parameters are γ⊥ = 3 mm−1 and a varying ωa. Lower inset: intensity
distribution of the lasing mode. (b) α factor for an open cavity laser vs. passive permittivity
εc. Blue (red): generalized (traditional) α factor. Upper inset: dielectric slab, of permittivity
εc, bounded by air on both sides, containing gain atoms with ωa = 15 mm−1, γ⊥ = 3 mm−1.
Lower inset: intensity distribution of the lasing mode. Leftmost inset: enlarged segment of the
main plot, around εc = 7.

Our TCMT derivation of the linewidth formula yields a generalized α factor Eq. (3.38)

which depends on the eigenmodes Eµ(x) and eigenfrequencies ωµ of the full nonlinear

SALT equations. This is an advance over previous linewidth formulas; the ab-initio

scattering-matrix linewidth formulas did not obtain an α factor [82, 83], whereas other

traditional laser theories that derived α factors could not handle the full nonlinear

equations [111]. Therefore, in the following section, we focus on the generalized α

factor. We compare the generalized and traditional factors in Sec. 3.6.1, and then we

evaluate these factors in the single-mode (Sec. 3.6.2) and multimode (Sec. 3.6.3) regimes.
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3.6.1 Comparison with traditional α factor

Linewidth broadening due to amplitude–phase coupling (that is, the α factor linewidth

enhancement) was first studied in the 1960s by Lax in the context of single-mode detuned

gas lasers [79]. The Lax α factor is 1 + α2
0, where α0 is the normalized detuning of the

lasing frequency from the atomic resonance, i.e., α0 = ω0−ωa
γ⊥

, which is equal to the

ratio of the real part of the gain permittivity to its imaginary part, or equivalently the

ratio Re∆ng

Im∆ng
, where ∆ng is the refractive index change due to fluctuations in the gain.

Two decades later, Henry derived an amplitude–phase coupling enhancement factor of

the same general type in semiconductor lasers [14], α0 =
Re∆ng

Im∆ng
, but in the latter case

these refractive-index changes arise from carrier-density fluctuations and take a different

form. Here, we are considering atomic gain media, so our α factor generalizes the Lax

form.

The difference between our single-mode generalized α factor Eq. (3.30) and that of

Lax arises because we take into account spatial variation in the gain permittivity due to

spatial hole-burning and also the non-Hermitian (complex) nature of the lasing mode.

Hence we expect our factor to reduce to the Lax factor in some limits. For instance,

consider the situation that was discussed in the last paragraph of Sec. 3.2 of a low-loss 1d

Fabry-Pérot cavity laser, operating near threshold. In this case, the nonlinear coupling

coefficient is approximately C ≈ −iω0
2ε

∫
∂ε

∂|a|2
E2

0∫
E2

0
, and one can show that the generalized

α factor is α̃ = Im C
Re C

≈ Re∆ε
Im∆ε

(the last approximation is valid since in essentially all

realistic cavities, the modes can be chosen to be predominantly real, i.e., have small

imaginary parts).

In many cases, however, our α̃ deviates from the traditional factor α0. An obvious

example is when the lasing frequency precisely coincides with the atomic resonance
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frequency. In this case, the traditional factor vanishes, but α̃ does not necessarily

vanish. In the next section, we calculate and discuss the characteristic properties of the

generalized α factor for two 1d laser structures.

3.6.2 Generalized single-mode α factor

In this section, we evaluate the differences between the generalized and traditional α

factors in 1d model systems. We solve the full nonlinear SALT equations using our

recent finite-difference frequency-domain (FDFD) SALT solver [18].

The generalized factor α̃ can deviate significantly from the traditional factor α0 when

the latter is large (a similar argument was made in [105]). To see this, let us write the

nonlinear coupling coefficient qualitatively as C ∝ (1 + iα0)(1 + iβ), where the term

1 + iα0 is associated with the atomic lineshape γ⊥
ω0−ωa+iγ⊥

, and the term 1 + iβ is a

complex factor due to the remaining integral factors (we refer to the latter term as the

modal contribution to the α factor). Typically β ≪ 1 and, consequently, the generalized

factor is approximately α̃ ≈ α0 + β(1 + α2
0), so the difference between the generalized

and traditional factors grows quadratically with α0.

To verify this argument, we study a model system in which the magnitude of α0

can be controlled. Consider a quarter-wave dielectric photonic crystal (PhC), with a

defect at the center of the structure (the geometry is depicted in the upper inset of

Fig. 3.5a, similar to the structure that was studied in Fig. 3.4). Adding enough layers

of the periodic structure on each side of the defect to mimic an infinite structure, one

finds that the system has a localized mode in the vicinity of the defect (lower inset),

whose resonance frequency is fixed to a real value within the energy gap [94]. To

study finite-threshold lasers, we introduce gain and some passive loss (i.e., a positive
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imaginary permittivity term, which pushes the resonance poles away from the real axis

in the complex plane). Since the resonance frequency of the defect mode is fixed by the

geometry, by varying the resonance frequency of the gain, we control the detuning of the

lasing mode from the atomic resonance, thus controlling the size of α0. As demonstrated

in the figure, the deviation |α̃− α0| grows as the detuning ∆ν ≡ ω0−ωa
ω0

increases.

The openness of the cavity also results in an enhancement of the α factor; the more

open it is, the larger is the necessary imaginary part of the lasing mode, which causes

a deviation from the standard formula. In order to test this prediction, we evaluate

the generalized α factor for an open-cavity laser (Fig. 3.5b), where we can control

the radiative loss rate through the cavity walls and, consequently, this part of the

modal contribution to α̃. We consider a cavity which consists of a dielectric slab (with

permittivity εc) surrounded by air on both sides, with gain spread homogeneously inside

the slab (upper rightmost inset). The reflectivity of the cavity walls is determined by the

difference in cavity and air permittivities ∆ε = εc − ε0. For relatively small dielectric

mismatch, the cavity is relatively low-Q and our α factor differs significantly from

the Lax factor. As ∆ε increases and the cavity Q increases, the generalized α factor

converges to the original factor, so that the red and blue curves in the figure overlap.

Unlike a photonic-crystal defect-mode cavity where there is a finite bandwidth of con-

finement [94], this dielectric cavity has an infinite number of possible lasing resonances

and thus when we sweep ∆ε, the α factor peaks periodically. This is because the free

spectral range of the cavity is ∆ω ≈ 2π√
εcL

[140] and, therefore, changing εc corresponds

to shifting the passive resonances and, consequently, the lasing modes. Every time a

lasing mode crosses an atomic resonance, α0 vanishes and correspondingly α̃ becomes

very small. The traditional factor is maximized when the atomic resonance is equidis-

tant from two passive modes. The peak value is proportional to the free spectral range
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Figure 3.6: (Color online) (a) Spectrum near a resonance peak in the presence of an additional
mode. Numerical simulations of Eq. (3.15) (red curve) and analytic single-mode (blue) and
multimode (black) formulas. The simulation parameters are chosen so that there are two lasing
modes with the same steady-state amplitudes ak0 = 1 and diffusion coefficients Rkk = 0.05, and
with substantial cross correlations: Ckk = 5, Ckl = 4 + 4i, k ̸= l (in arbitrary frequency units).
(b) Linewidth of central resonance peak vs. output power in the neighboring mode [a10 = 1

and a20 ∈ (0, 3)]. Simulated spectrum (red) and analytic single-mode and multimode formulas
(blue and black curves). The point a10 = a20 = 1 is encircled, and corresponds to the parameter
values of Fig. 3.6a.

and, therefore, we find that it is proportional to 1/
√
εc. This type of effect may not

have been observed previously because in macroscopic cavities, the cavity resonances

are very dense on the scale of the gain bandwidth, so the lasing mode can never be sub-

stantially detuned. However, in microcavities with large free spectral range, this could

be an important effect. Another intriguing property of the generalized α factor is that

it varies discontinuously at the peaks (as is shown more clearly in the upper left-most

inset). The traditional factor α0 depends only on the mode detuning from resonance, so

it approaches the same value on different sides of the peak. In contrast, the generalized

factor α̃ depends on the mode profile Eµ, which differs between the two interchanging

laser modes on different sides of the peak, producing the observed asymmetry.
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3.6.3 Generalized multimode α factor

Our multimode linewidth formula includes linewidth corrections from neighboring modes,

which enter through the generalized α factor (since phase fluctuations in each of the

modes couple to amplitude fluctuations in all other modes due to saturation of the gain).

According to the traditional ST formula Eq. (3.2), when phase cross-correlations be-

tween different modes are neglected, each resonance-peak width is inversely proportional

to the corresponding modal output power. We find that when phase cross-correlations

are included, the linewidth of each mode is a sum of inverse output powers of all the

other modes—a type of multimode Schawlow–Townes relation. To see how this comes

about, recall that the generalized α factor, as given by Eq. (3.38), is proportional to[
BA−1 R

(
BA−1

)T ]
ii
. We show in Sec. 3.11 that individual factors in the product scale

as [BA−1]ij ∝ ai0
aj0

, where aj0 is the steady-state amplitude of the j’th mode. Therefore,

the multimode α factor is proportional to the sum: a2i0
∑

j
(const)×Rjj

a2j0
, i.e., a sum over

terms which scale as inverse output powers.

In the two-mode case, the linewidth formula for a lasing mode in the presence of a

neighboring mode is given explicitly by

Γ1 =
R11

2a210
+
R11

2a210

[
CI
11C

R
22 − CI

21C
R
21

CR
11C

R
22 − CR

12C
R
21

]2
+
R22

2a220

[
CR
11C

I
12 − CI

11C
R
12

CR
11C

R
22 − CR

12C
R
21

]2
, (3.43)

where CR
ij ≡ ReCij and CI

ij ≡ ImCij . (A similar expression was derived in [100], by

using a phenomenological version of the two-mode TCMT equations.) As predicted

by the multimode ST relation, the last term in Eq. (3.43) is inversely proportional

to the output power of the second mode a220. This term becomes significant when

the power in the first mode greatly exceeds the power in the second mode (i.e., when
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P1 ≫ P2), correcting the unrealistic Schawlow–Townes prediction that the linewidth

vanishes when P1 → ∞; a similar argument was made in [100]. Fig. 3.6a presents the

spectrum of a two-mode instantaneous model Eq. (3.15) in the parameter regime where

cross-correlations between the two modes are significant. The linewidth of the simulated

spectrum (red curve) is in complete agreement with the generalized formula Eq. (3.43)

(black curve), but deviates substantially from the single-mode formula Eq. (3.29) (blue

curve). In order to reach the regime where this deviation is substantial, in practice, one

needs to design a cavity in which the two lasing modes have comparable amplitudes and

detunings from the atomic resonance frequency.

Eq. Eq. (3.43) predicts an unphysical divergence near the second threshold, i.e.,

when a20 → 0 (see black curve in Fig. 3.6b). In retrospect, this singularity is to be

expected, since the assumptions of our derivation break down in this limit. (Note that

an equivalent divergence was present in [100].) In calculating the phase variance, we

assumed that amplitude fluctuations in all modes were small compared to the steady-

state amplitudes (δI ≪ ai0), and this assumption is no longer valid near threshold. The

N-SALT TCMT equations Eq. (3.11) are still valid, however—it is only their analytical

solution for
⟨
ΦΦT

⟩
that is problematic. Therefore, we study the threshold regime

numerically, via stochastic simulations of the N-SALT TCMT equations. As shown in

Fig. 3.6b, the simulated linewidth of the first mode approaches a finite value near the

second threshold (red curve), and this value is significantly larger than the linewidth

prediction one obtains when neglecting the second mode (blue curve). Even at the

threshold, noise in the second mode mixes with the first mode through off-diagonal

nonlinear coupling terms, thus increasing the linewidth.

Linewidth enhancement at the thresholds of neighboring lasing-modes suggests that

the linewidth must also be enhanced below the modal thresholds [in the regime where
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radiation from non-lasing modes is incoherent, commonly called amplified spontaneous

emission (ASE)]. We believe that this phenomenon could be explored using a future

generalization of our formalism, with some modifications (extending earlier work [101,

21] on linewidth enhancement from ASE).

3.7 Full-vector 3d example

In order to illustrate the full generality of our approach, we apply it in this section to

study a three-dimensional photonic-crystal (PhC) laser. The steady-state properties of

this system (i.e., the lasing threshold and mode characteristics) were previously explored

in [18]. We use those solutions here to calculate the laser linewidth [using Eq. (3.3)],

and we compare the relative contributions of the various correction factors.

The simulated PhC consists of a dielectric slab patterned by a hexagonal lattice of

air holes (Fig. 3.7a). A defect is introduced by decreasing the radii of seven holes at the

center of the structure [141], giving rise to a doubly-degenerate mode which is situated

at the defect (spatially) and in the bandgap of the lattice (spectrally). We select the

TE-like mode out of the degenerate pair by imposing even and odd reflection symmetry

at x = 0 and y = 0 respectively, as well as an even reflection symmetry at z = 0.

Staying close to a potential experimental realization, we choose the pump profile to be

uniform inside the high-index dielectric near the defect region, and zero elsewhere. We

solve the SALT equations using our scalable FDFD solver, and track the evolution of

the first lasing mode upon increasing the pump strength from zero to five times the

first-threshold value.

Typically, realistic laser structures do not use 2-level gain media, but employ a more

complex optical scheme which involves multiple levels and transitions in order to achieve
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Figure 3.7: (Color online) Linewidth correction factors for a 3d PhC laser. (a) The PhC
consists of a hexagonal lattice of air holes (with period a = 1 mm and radius 0.3 mm) in a
dielectric medium with index n =

√
εc = 3.4. The slab has a thickness of 0.5 mm, with air

above and below, terminated by PML absorbers. A cavity is formed by seven holes of radius
of 0.2 mm. The pump is non-zero in the hexagonal region for height 2mm in the z-direction.
(Borrowed from [18].) (b) Schematics of a 4-level gain medium. Levels |1⟩ and |2⟩ form the lasing
transition, with resonance frequency ωa = 1.5 mm−1 and polarization decay γ⊥ = 2.0 mm−1.
The population decay rates are γ01/γ12 = γ23/γ12 = 102 and γ12/γ⊥ = 10−2. The pump rate
P is varied in the range P/γ12 = 0.4 . . . 2.2. (c) Traditional (dashed) and generalized (solid)
correction factors, as defined in Table. 3.1. The total correction is defined as the product of the
(traditional and generalized) Petermann, α, bad-cavity, and incomplete-inversion factors. The
x axis is the Dp/Dth, where Dp is the SALT effective pump parameter (see text) and Dth is the
effective threshold pump.
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significant inversion and depletion of the ground-state population. In this section, we

apply our formalism to a 4-level gain medium (Fig. 3.7b), using a generalization of

SALT [130], which finds the stationary multimode lasing properties of an N -level gain

medium. As shown in [130], an N -level system can be mapped into an effective 2-level

system, which obeys the (2-level) SALT equations with renormalized pump (Dp) and

atomic relaxation rates (γ∥). Consequently, the linewidth of a 4-level laser will given

by our generalized formula Eq. (3.3) with the appropriately renormalized coefficients.

By choosing the decay rate between the lasing transition levels (γ12 in Fig. 3.7b) to

be much smaller than the decay rates into the upper (γ23) and out of the lower (γ01)

states, we can achieve substantial inversion and ground-state depletion. Consequently,

the incomplete-inversion factor is approximately nsp ≈ 1, close to typical measured

values [108].

Fig. 3.7c presents the traditional and new correction factors (dashed and solid lines

respectively), as defined in Table. 3.1. We find that those factors are relatively small for

this system and, consequently, the deviations between the new and traditional factors are

small. A small Petermann factor arises since the first lasing mode has a relatively high

quality factor (i.e., the cold-cavity resonance pole is at ω0 = 1.725 − 0.00512i mm−1

with a quality factor of Q ≈ 700, in agreement with experimental realization [141]).

Moreover, the cold-cavity resonance lies well within the gain bandwidth, resulting in

small α and bad-cavity corrections. The generalized factor α̃ (solid purple line) is

obtained from from Eqs. (3.17) and (3.30). Deviations of α̃ from the traditional factor

α0 ≡ |ω0−ωa|
γ⊥

(dashed purple line) are due to modal contributions to the α factor (see

Sec. 3.6.2). The generalized Petermann factor (full blue curve) is compared against the

traditional factor (dashed blue line), which is expressed in terms of the SALT mode

(instead of the passive cavity mode). The cavity region is taken to be the entire high-
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index medium. (Note the the generalized and traditional factors agree at threshold).

Both the Petermann and α factors increase the linewidth. However, the generalized and

traditional bad-cavity factors (full and dashed red curves respectively) lead to linewidth

reduction.

Last, we evaluate the incomplete-inversion factor ñsp. The inversion D(x) is found

from the SALT solutions of the effective 2-level system. The excited state population

N2(x) can be derived straightforwardly, using the results of [130] as follows. Assuming

that the populations in the non-lasing levels |0⟩ and |3⟩ are at steady-state, one can

express those populations in terms of the populations in the lasing transition |1⟩ and

|2⟩. Then, by invoking the density conservation condition,
∑

iNI = n, where n is the

atom number density and NI are the individual level populations, one finds that the

population in |2⟩ is given by

N2 =
n+ τD

1 + τ
, (3.44)

where τ ≡ 1 + 2γ01
γ23

+ γ01
P . Having obtained expressions for D and for N2, we have all

that is needed to calculate the incomplete-inversion factor ñsp. We define the “linear

incomplete-inversion factor” (nsp dashed green line) as the ratio N2(Dp)
Dp

, [i.e., both the

excited-state population Eq. (3.44) and the inversion are evaluated at D = Dp, neglect-

ing hole-burning effects]. The “nonlinear incomplete-inversion factor” (ñsp solid green

line) is defined in Table. 3.1. The nonlinear factor ñsp coincides with the linear factor

nsp at threshold, but exceeds the traditional factor at higher pumps. We also plot the

total linewidth correction, which is defined as the product of the (traditional and new)

Petermann, α, bad-cavity, and incomplete-inversion factors.
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3.8 Concluding Remarks

We presented a generalized multimode linewidth formula, obtained from the N-SALT

TCMT equations for the lasing mode amplitudes, which we derived starting from the

Maxwell–Bloch equations and using the fluctuation–dissipation theorem to determine

the statistical properties of the noise. Our generalized linewidth formula Eq. (3.3)

reduces to the traditional formula Eq. (3.2) for low-loss cavities and simple lasing struc-

tures, but deviates significantly from the traditional theories for high-loss wavelength-

scale laser cavities. By basing our derivation on the SALT steady-state lasing modes, it

is possible to apply our formula to cavities of arbitrarily complex geometry (e.g., pho-

tonic crystal or microdisk lasers [84, 85, 86, 87]) and arbitrary openness (e.g. random

lasers [104]). Also, since SALT includes to high accuracy the effects of spatial hole-

burning, our formula includes both gain saturation and the spatial variation of the gain

permittivity well above threshold, plus all effects due to modal couplings. From a com-

putational point of view it is important to point out that our formula is analytical and

can be evaluated immediately from the output of a numerical SALT calculation without

any significant computational effort. A manuscript describing a brute-force numerical

validation of our theory against numerical solution of the Maxwell–Bloch equations is

currently being prepared [102]. Given only the laser geometry, the pumping profile, and

characteristic properties of the gain (i.e., its resonance frequency ωa and decay rate γ⊥),

our formula enables linewidth calculation, including a generalized α-factor and account-

ing for temperature variations, at a level of generality that was not possible before. This

generality is most important, of course, in cases where the new result is substantially

different than previous theories, and it would be interesting to study laser cavities in

which the discrepancy is as large as possible.
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One such case is that of lasers which contain exceptional points (EPs) in their spec-

trum, which are points of degeneracy where two (or more) eigenfrequencies and eigen-

functions coalesce [142, 33]. EPs in laser systems have been explored recently, both the-

oretically [143] and experimentally [144]. At the EP, the modes become self-orthogonal

and that causes the denominator of Eq. (3.3) to vanish and is already known to greatly

enhance the Petermann factor [42]. Since a similar denominator appears in the integrals

defining our generalized α factor Eqs. (3.12) and (3.30), we expect that our α̃ will differ

substantially from previous results near an EP (and similarly for the inhomogeneous-

temperature correction).

An important and exciting addition to the theory would be a treatment of ampli-

fied spontaneous emission (ASE) from modes below threshold; we believe this can be

achieved by deriving TCMT equations for below-threshold (passive) modes, in which

there is no steady-state oscillation (generalizing previous ASE work which used simpli-

fied models [21, 101]). Incorporating the ASE contribution to the spectrum will allow us

to follow the noise through the lasing thresholds, correcting the unphysical divergence

which was discussed in Sec. 3.6.2. More importantly, treating below threshold ASE

should allow an ab-initio theory of LEDs in arbitrary cavities

Future work could also incorporate several additional corrections that were not treated

in this chapter. Our derivation applies to isotropic materials described by a scalar per-

mittivity ε, but extension to anisotropic permittivity ε̂, magnetic permeability (µ̂), and

even bianisotropic materials would be very straightforward (e.g., for an anisotropic ε̂, the

only change is that εE2 factors and similar are replaced by E · (ε̂E) etcetera, as in [10]).

As discussed in Sec. 3.5.3, we are also able to exploit our framework to analytically solve

for the relaxation-oscillation side-peak spectra (see Ch. 5). We believe it will be possible

to extend our formalism to handle non-Lorentzian lineshapes arising from frequency de-
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pendence (correlations) in the noise within the laser linewidth [120, 121, 122, 123, 124],

as also discussed in Sec. 3.4. Instead of treating the noise spectrum SF(ω) as a constant

SF(ωµ), one needs to include a first-order correction , e.g., by Taylor expanding SF(ω)

around ωµ; it might be convenient to fit SF(ω) to a Lorentzian matching the amplitude

and slope at ωµ, since the Fourier transform of a Lorentzian is an exponential that

should be easy to integrate. Finally, as noted above, although our derivation was for

the two-level Maxwell–Bloch equations, a similar approach should apply to more com-

plex gain media (including multi-level atoms [130], multiple lasing transitions, and gain

diffusion [131].) The N-SALT linewidth theory can be generalized to account for these

laser models following along the lines of our approach here.

3.9 Appendix A: Derivation of the oscillator equations

In this appendix, we derive the TCMT equations for the lasing mode amplitudes. Our

starting point is the Maxwell–Bloch equations [53, 55], which describe the dynamics of

the electromagnetic field in a resonator interacting with a two-level gain medium:

∇×∇×E+ εc Ë = −4πP̈+ FS, (3.45)

Ṗ = −i(ωa − iγ⊥)P−
iγ⊥
4π

ED, (3.46)

Ḋ = −γ∥ [Dp −D + 2πi(E ·P∗ −E∗ ·P)] , (3.47)

where E is the electromagnetic field, while P and D are the atomic polarization and

population inversion. (From here on, for brevity, we refer to D as the “inversion.”) ωa is

the atomic resonance frequency, and γ⊥ and γ∥ are the population and inversion relax-

ation rates. Dp is the external pump, which determines the steady-state inversion, and
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εc is the passive dielectric permittivity. The field, polarization and inversion are mea-

sured in their natural units: ec = pc = ℏ√γ∥γ⊥/(2g) and dc = ℏγ⊥/(4πg2) respectively,

where g is the atomic dipole matrix element [56, 57, 18]. We introduce spontaneous

emission noise by including a random source term FS = 4π ∂J
∂t in Eq. (3.45), written in

the frequency domain as

F̂S(x, ω) = −i4πωĴ(x, ω), (3.48)

where Ĵ(x, ω) is a random fluctuating current, and the correlations of F̂S(x, ω) are given

by the FDT.

Steady-state ab-initio laser theory (SALT) handles the noise-free regime of the Maxwell–

Bloch equations (i.e., F̂S = 0) and reduces this set of coupled equations to a frequency-

domain nonlinear generalized eigenvalue problem for the electric field Ê (as reviewed

in Sec. 1.1). When noise is introduced (F̂S ̸= 0), the cavity field is perturbed from

steady-state and the nonlinear permittivity is modified (Sec. 1.2). This gives rise to a

restoring force (denoted F̂NL), which we calculate in Sec. 1.3. The noise-driven field Ê

is then found by integrating the Green’s function (derived in Sec. 1.4) over the noise

terms F̂S and F̂NL. Finally, the TCMT equations are obtained by transforming back

into the time domain (Sec. 1.5).

3.9.1 Review of SALT

We begin by reviewing the steady-state theory. In the SALT approach, the steady-state

electromagnetic field is expressed as a superposition of a finite number of lasing modes:

E0(x, t) =
∑
µ

Eµ(x)aµ0e
−iωµt, (3.49)
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where E0(x, t) denotes the steady-state field and aµ0 are the steady-state modal ampli-

tudes. The lasing modes Eµ(x) are real frequency solutions of the nonlinear eigenvalue

problem [
∇×∇×−ω2

µε̂0(ωµ, a0)
]
Eµ(x) = 0, (3.50)

with outgoing boundary conditions. The effective permittivity has a linear (passive)

term εc and a nonlinear (E-dependent) gain term:

ε̂0(ω, a0) = εc +
γ⊥

ω − ωa + iγ⊥
D0(a0). (3.51)

The steady-state inversionD0(a0) [which is a notation shortcut forD0({Eµ}, {ωµ}, {aµ0})]

is given by

D0(a0) =
Dp

1 +
∑

µ
γ2
⊥

(ωµ−ωa)2+γ2
⊥
|aµ0|2|Eµ|2

. (3.52)

To avoid possible confusion, note that in previous SALT works, the steady-state inver-

sion was denoted by D and D0 was the external pump parameter, whereas in this work,

D0 is the steady-state inversion and Dp is the external pump parameter.

3.9.2 Noise-driven Maxwell-Bloch equations

In the presence of a small noise source, the electric field and polarization can be written

as superpositions of the steady-state lasing modes with time-dependent amplitudes aµ(t)
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and bµ(t):

E(x, t) =
∑
µ

Eµ(x)aµ(t)e
−iωµt

P(x, t) =
∑
µ

Pµ(x)bµ(t)e
−iωµt. (3.53)

Substituting the perturbation ansatz Eq. (5.2) into the polarization equation Eq. (3.46),

we obtain

(ḃµ + iωµbµ)Pµ = −i(ωa − iγ⊥)bµPµ −
iγ⊥aµ
4π

EµD. (3.54)

Taking the Fourier transform and rearranging terms, we find

B̃µPµ =
1

4π

γ⊥
ω − ωa + iγ⊥

âµ ∗ D̂Eµ, (3.55)

where we have introduced the shifted frequency ω ≡ ωµ + Ω and the Fourier-domain

envelopes âµ(Ω) = âµ(ω−ωµ), B̃µ(Ω) and D̂(Ω). The asterisk * denotes a convolution.

Next, consider Eq. Eq. (3.45) in the frequency domain

∇×∇× Ê− ω2εc (Ê+ 4πP̂) = F̂S. (3.56)

When the spacing between adjacent lasing modes is much larger than their linewidths,

a noise source with frequency ω ≈ ωµ excites only the mode Eµ(x). Equivalently, the

Green’s function can be approximated by the contribution of the single pole at ωµ.

(Note that we require only that the peaks in the laser spectrum above threshold are

non-overlapping; we do not require isolated resonances in the passive cavity spectrum.)

Therefore, at frequencies ω ≈ ωµ, we can substitute Eq. (3.55) into Eq. (3.56) and
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obtain an effective equation for the noise-driven field Êµ(x, ω):

[
∇×∇×−ω2ε(ω, a)

]
Êµ(x, ω) = F̂S(x, ω), (3.57)

where the effective permittivity ε(ω, a) is given by

ε(ω, a)Êµ(x, ω) =

[
εcâµ +

γ⊥
ω − ωa + iγ⊥

D̂ ∗ âµ
]
Eµ(x). (3.58)

The second variable of ε(ω, a) denotes the implicit dependence of ε on the modal am-

plitudes aµ through the Fourier transform of the inversion D̂. We calculate D̂ explicitly

in the next section.

3.9.3 The nonlinear force term

The noise source F̂S perturbs the modal amplitudes aν from steady state, causing a

change in the atomic inversion D. We neglect dispersion corrections to D (which

amounts to setting ḃµ = 0 in Eq. (3.54) [98]) as these corrections do not affect the

linewidth formula to leading order in the noise [see discussion following Eq. (3.9) in the

main text]. From Eq. (3.47) and Eq. (3.54), we obtain

Ḋ = −γ∥
[
D −Dp +

∑
ν

γ2
⊥

(ων−ωa)2+γ2
⊥
|aν |2D |Eν |2

]
. (3.59)

In order to solve Eq. (3.59), we linearize the time dependent products |aν |2D in the sum

around the steady state |aν |2D ≈ a2ν0D0 +D0(|aν |2 − a2ν0) + a20(D −D0), where D0 is

the steady state (SALT) inversion Eq. (3.52). To simplify the notation, we define the
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local decay rate

γ(x) ≡ γ∥

(
1 +

∑
ν

γ2⊥
(ων − ωa)2 + γ2⊥

|aν0|2|Eν |2
)
. (3.60)

The second term in Eq. (3.60) gives precisely the increased atomic decay rate due to

stimulated emission. Using the definitions above , Eq. (3.59) becomes

Ḋ = −γ(x)(D −D0)− γ∥D0 ·
∑
ν

γ2⊥
(ων − ωa)2 + γ2⊥

|Eν |2(|aν |2 − |aν0|2), (3.61)

which we can integrate, and obtain

D = D0 +
∑
ν

D0

(
γ2⊥

(ων − ωa)2 + γ2⊥
|Eν |2

)
× γ∥

∫ t

dt′e−γ(x)(t−t′)(|aν0|2 − |aν(t′)|2).

(3.62)

Having derived an explicit expression for D(t), we substitute its Fourier transform D̂

into the effective permittivity Eq. (3.58) and obtain

ε(ω, a)Êµ ≈ ε(ω, a0)Êµ +
∑
ν

χν(ω, a0)∆̂aν ∗ Êµ, (3.63)

where ε(ω, a0) is the steady-state SALT permittivity which was defined in Eq. (3.51),

χν(ω, a0) is the permittivity differential due to deviation in the modal amplitude aν

[which we denote by “ ∂ε
∂|a|2 ” in the text, e.g., in Eq. (3.12)]:

χν ≡
γ⊥

ω − ωa + iγ⊥
D0

(
γ2⊥

(ων − ωa)2 + γ2⊥
|Eν |2

)
γ∥

γ(x)
, (3.64)

and ∆̂aν is the Fourier transform of the time-averaged modal deviation from steady
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state

∆aν = γ(x)

∫ t

dt′e−γ(x)(t−t′)(|aν0|2 − |aν(t′)|2). (3.65)

Substituting the permittivity expansion Eq. (3.63) into Maxwell’s equation Eq. (3.57),

we obtain [
∇×∇×−ω2ε(ω, a0)

]
Êµ(x, ω) = F̂NL(x, ω) + F̂S(x, ω), (3.66)

where the nonlinear restoring force is

F̂NL(x, ω) = ω2
∑
ν

χν(ω, a0)∆̂aν ∗ Êµ(x, ω). (3.67)

The left-hand side of Eq. (3.66) is just the linearized steady-state equation Eq. (3.50),

and the nonlinear correction to the effective permittivity due to the noise F̂S appears as

an additional source term F̂NL. As noted above, the noise-driven field Êµ is found by

integrating the Green’s function of the steady-state equation Eq. (3.50) over the noise

terms F̂NL and F̂S . In the following section we derive an approximate formula for the

Green’s function.

3.9.4 The linearized Green’s function

The single-pole approximation of the Green’s function is valid for frequencies near the

resonances ω ≈ ωµ as long as the spectrum consists of non-overlapping resonance peaks,

i.e., when the spacing between resonant modes exceeds the modal linewidths. First, let

us rewrite the left-hand side of Eq. (3.50) as an operator Lω acting on the field E(x, ω):

LωE(x, ω) ≡
(
∇×∇×−ω2ε̂0(ω, a0)

)
E(x, ω). (3.68)
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Next, we choose a complete set (see below) of eigenfunctions En(x, ω) and eigenvalues

λn(ω) of the operator Lω:

LωEn(x, ω) = λn(ω)En(x, ω). (3.69)

We define the inner product of two vector fields, A(x) and B(x), as (A,B) ≡
∫
dx A(x)·

B(x). The operator Lω is complex symmetric under this inner product, i.e., (A,LωB) =

(LωA,B) [94, 33]. Therefore, we use unconjugated inner products throughout the

derivation. In order to treat the set {En} as a discrete (countable) basis, a conve-

nient theoretical trick is to place the system in a box with absorbing boundary layers

in which the absorption turns on more and more gradually. This procedure also gives

the states En finite norms (En, En). Because the operator is non-Hermitian, complete-

ness of the basis can break down at an “exceptional point” [142, 33], but exceptional

points are not generically present—they must be forced by careful tuning of parameters.

Therefore, we assume completeness in this manuscript and will treat the influence of

exceptional points (self-orthogonal modes) as a limiting case in future work, as discussed

in Sec. 3.8.

LetG(ω,x,x′) be the Green’s function of the operator Lω, defined via LωG(ω,x,x′) =

δ(x− x′) [145]. Given the complete set of eigenfunctions and eigenvalues {En, λn}, the

Green’s function can be expressed as the sum [145]

G(ω,x,x′) =
∑
n

En(x)E
T
n (x

′)

λn(ω) ·
∫
dx E2

n(x)

. (3.70)

Each lasing mode is associated with an eigenvalue λµ(ω) of Lω, which has a zero at a

real frequency ω = ωµ. Consequently, G(ω,x,x′) has a pole at ωµ and at frequencies
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near ωµ, it is dominated by a single term in the sum. Expanding λµ(ω) around the pole

λµ(ω) ≈ (ω − ωµ)λ
′
µ (where λ′µ ≡ ∂λ

∂ω

∣∣
ωµ
), we obtain

Gµµ(ω,x,x
′) ≈

Eµ(x)E
T
µ (x

′)

(ω − ωµ)λ′µ ·
∫
dx E2

µ(x)

. (3.71)

In order to evaluate λ′µ, let us rewrite Lω as Lω ≈ Lωµ + V (ω), where Lωµ ≡ ∇×∇×

−ω2
µε̂0(ωµ) and V (ω) ≡ −

[
ω2ε̂0(ω)

]′
µ
(ω − ωµ). According to the Hellmann–Feynman

theorem, the derivative of the eigenvalue λµ(ω) with respect to ω is given by

λ′µ =

∫
dx E2

µ(x)
[
−ω2ε̂0(ω)

]′
µ∫

dx E2
µ(x)

, (3.72)

and substituting Eq. (3.72) in Eq. (3.71), we find that for frequencies near the resonances

ω ≈ ωµ, the Green’s function is approximately

Gµµ(x,x
′, ω) ≈

Eµ(x)E
T
µ (x

′)

(ωµ − ω)
∫
dxE2

µ(x)
[
ω2ε̂0(ω)

]′
µ

. (3.73)

3.9.5 The oscillator equations

Having derived an expression for the Green’s function, the noise-driven field can be found

by integrating the Green’s function over the source terms F̂NL(x
′, ω) and F̂S(x

′, ω):

Êµ(x, ω) =
∑
ν

ω2
µ

∫
dx′G(x,x′, ω)χν(ωµ, a0)∆̂aν ∗ Êµ +

∫
dx′G(x,x′, ω)F̂S. (3.74)
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In the first term on the right-hand side, we approximate ω ≈ ωµ because the correction

term is O
[
(ω − ωµ) · ∆̂a

]
, which is second order in the noise. Substituting the single-

pole approximation Eq. (3.73) in Eq. (3.74) yields

Eµâµ =
∑
ν

ω2
µ

(ω − ωµ)

Eµ

∫
dxχν(ωµ, a0)E

2
µ∫

dxE2
µ(x) [ω

2ε̂0(ω)]
′
µ

∆̂aν ∗ âµ +
Eµ

ω − ωµ

∫
dx F̂S(x

′, ω)Eµ∫
dxE2

µ(x) [ω
2ε̂0(ω)]

′
µ

.

(3.75)

Finally, multiplying both side by ω − ωµ and taking the inverse Fourier transform,

we arrive at the N-SALT TCMT equations, which govern the evolution of the modal

amplitudes aµ:

ȧµ =
∑
ν

∫
dxcµν(x)γ(x)

∫ t

dt′e−γ(x)(t−t′)(|aν0|2 − |aν(t′)|2)aµ + fµ(t). (3.76)

The nonlinear coupling coefficient is

cµν(x) ≡ −iω2
µ

χν(ωµ, a0)E
2
µ∫

dxE2
µ(x)

[
ω2ε̂0(ω)

]′
µ

, (3.77)

and the Langevin force is

fµ(t) ≡ i
∫
[FS(x

′, t)e−iωµt]Eµ∫
dxE2

µ(x)
[
ω2ε̂0(ω)

]′
µ

. (3.78)

3.10 Appendix B: Derivation of the multimode linewidth

In this section, we calculate the laser linewidth for the multimode time-delayed model

by generalizing the solution strategy of Sec. 3.5 in the text. We begin our analysis
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with the discretized time-delayed N-SALT TCMT equation Eq. (3.35) (repeated here

for convenience):

ȧµ =
∑
νk

Ck
µν

[
γk

∫ t

dt′e−γk(t−t′)(|aν(t′)|2 − |aν0|2)
]
aµ + fµ. (3.79)

Following the approach of Sec. 3.5.1, we linearize Eq. (3.79) by expanding the mode

amplitudes aµ around their steady-state values: aµ = (aµ0 + δµ)e
iϕµ (where δµ ≪ aµ0),

and we omit the terms O(δ2µ). Then, we introduce additional variables ξkµ

ξkµ = γk

∫ t

dt′e−γk(t−t′)δµ(t
′), (3.80)

where ξkµ is the time-averaged amplitude deviation of mode µ = 1 . . .M from steady

state at the spatial point k = 1 . . . N . Having introduced the auxiliary variables ξkµ,

the set of integro-differential equations Eq. (3.79) turns into a linear system of ODEs,

which we solve by applying several linear-algebraic transformations to obtain a compact

expression for the covariance matrix, as described in detail below.

Introducing the vector Φµ ≡ aµ0ϕµ , the linear system of ODEs is conveniently written

as

δ̇µ = −
∑
νk

(2aµ0aν0Re[Ck
µν ])ξ

k
ν + fRµ , (3.81)

Φ̇µ = −
∑
νk

(2aµ0aν0Im[Ck
µν ])ξ

k
ν + f Iµ (3.82)

ξ̇kµ = −γkξkµ + γkδµ. (3.83)

To simplify the notation further, we introduce the M ×M matrices Ak and Bk (k =

82



1 . . . N), with entries

Ak
µν = 2aµ0aν0Re[Ck

µν ]) (3.84)

Bk
µν = 2aµ0aν0Im[Ck

µν ]), (3.85)

and we rearrange the set of equations Eqs. (3.81)–(3.83) in a matrix form [compare with

Eqs. (3.24) and (3.25)]:

d

dt
δ = −

∑
k

Akξ
k + f R, (3.86)

d

dt
Φ = −

∑
k

Bkξ
k + f I, (3.87)

d

dt
ξ k = −γkξ k + γkδ. (3.88)

The autocorrelation matrix of the phase vector Φ, which we calculate in this section,

is determined by the autocorrelation matrix of the Langevin force

⟨
f(t)f∗T(t′)

⟩
= Rδ(t− t′). (3.89)

In order to compute
⟨
ΦΦT

⟩
, we solve Eq. (3.87) by straightforward integration. We find

that the phase covariance matrix is a sum of a “pure” phase-diffusion term, proportional

to R
2 , and an amplitude–phase coupling term, proportional to J :

⟨
Φ(t)Φ T (0)

⟩
=

(
R
2
+ J

)
|t|, (3.90)
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where we have the introduced the shorthand notation

J ≡ 1

|t|
∑
kl

Bk

∫∫
dt′ds′

⟨
ξk(t

′)ξ T
l (s

′)
⟩
BT
l (3.91)

for the second term, which is responsible for the generalized α factor.

In the remainder of this section, we calculate J . First, we solve the set of ODEs

for ξk and δ Eqs. (3.86) and (3.88), and then we substitute the solution for δ into

Eq. (3.91) and evaluate the integrals. To this end, we begin by rewriting the equations

for ξk and δ more compactly. We define the [(N + 1) ·M ]× 1 vectors x and F and the

[(N + 1) ·M ]× [(N + 1) ·M ] matrix K:

x =



δ

ξ1

...

ξN


, F =



fR

0

...

0


, K =



0 A1 A2 . . . AN

Λ1 −Λ1 0 . . . 0

Λ2 0 −Λ2 0

...
... 0

. . . 0

ΛN 0 . . . 0 −ΛN


,

(3.92)

where Λk are block-diagonal M ×M matrices with γk on the diagonal entries, and the

zeros in the definition of K are block M ×M zero matrices. Using these definitions, the

equations for ξk and δ Eqs. (3.86) and (3.88) can be conveniently written as

d

dt
x = −Kx+ F. (3.93)
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The solution of Eq. (3.93) is

xm(t) =

∫ t

dt′
∑
ρ

[
e−K(t−t′)

]
mρ
Fρ(t

′) (3.94)

and, in particular, the solution for ξkµ is

ξkµ =

∫ t

dt′
M∑
s=1

[
e−K(t−t′)

]
Mk+µ,s

fRS (t′). (3.95)

For ease of notation, let us denote the (k + 1)st M ×M block in the first column of the

matrix e−K(t−t′) by the shorthand notation [e−K(t−t′)]k+1,1, so that ξk =
∫ t
0 dt

′[e−K(t−t′)]k+1,1f
R(t′).

Substituting the expression for ξk into J and using the autocorrelation function of the

Langevin force Eq. (3.89), we obtain

J =
1

|t|
∑
kℓ

Bk

∫∫∫
dt′dt′′ds′

[
e−K(t′−t′′)

]
k+1,1

× R
2

[
e−KT (s′−t′′)

]
ℓ+1,1

BT
ℓ . (3.96)

We proceed (not shown) by diagonalizing the matrix K and evaluating the integrals in

Eq. (3.96). (The intermediate steps depend on the eigenvalues of K and the matrix of

eigenvectors, but the final result can be expressed in terms of the matrix inverse K−1).

In the long-time limit, we keep the leading order term (which grows linearly in time)

and we obtain

J =

(∑
k

Bk [K]
−1
k+1,1

)
R
2

(∑
ℓ

(Bℓ [K]
−1
ℓ+1,1)

T

)
. (3.97)

In order to complete the derivation of the linewidth formula, we use the following

identity:

[K]−1
k+1,1 =

∑
j

Aj

−1

, (3.98)
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which we prove below. Noting that Aµν =
∑

k A
k
µν and Bµν =

∑
k B

k
µν and using the

identity Eq. (3.98), we find that Eq. (3.97) reduces to

J = BA−1 R
2

(
BA−1

)T
, (3.99)

which completes the derivation of the linewidth formula in the most general time-delayed

model. In particular, and somewhat remarkably, the γ terms completely cancel in the

computation of the first column of the matrix inverse, and drop out of the final result.

Proof of the identity Eq. (3.98): We use Schur complement [146] for the lower-left

corner of a matrix inverse:

 A B

C D


−1

=

 ∗ ∗

−D−1C(A− BD−1C)−1 ∗

 ,

(A and D need to be square matrices). Decomposing the matrix K into the blocks

A =

(
0

)
, B =

(
A1 A2 . . . AN

)
,

C =



Λ1

Λ2

...

ΛN


′ D =



−Λ1 0 . . . 0

0 −Λ2 0

... 0
. . . 0

0 . . . 0 −ΛN


,
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we can calculate the lower-left corner of [K]−1
k+1,1:

− D−1C(A− BD−1C)−1 = (D−1C)[B(D−1C)]−1 =

−



1

1

...

1




(

A1 A2 . . . AN

)


1

1

...

1





−1

= −



1

1

...

1


[∑

I

AI

]−1

. (3.100)

Therefore, we obtain [K]−1
k+1,1 =

(∑
j Aj

)−1
.

3.11 Appendix C: Proof of the lemma: [BA−1]ij ∝ ai0
aj0

In Sec. 3.6.2, we present a multimode Schawlow–Townes relation, which states that the

linewidths are proportional to a sum of inverse output powers of all the other modes.

This result arises from a lemma which we prove here. We use the standard matrix-

inverse formula [147]

A−1 =
1

detA
adjA, (3.101)

where the adjugate matrix is defined as

adjA =
(
(−1)i+jMij

)T
. (3.102)

M is the cofactor matrix, i.e. the matrix whose (i, j) entry is the determinant of the

(i, j) minor of A (which is the matrix obtained from A by deleting the i’th row and the
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j’th column). From the definition of A (i.e., Aij ≡ Re[Cij ]ai0aj0), it follows that

Mij =

∏
k ̸=i,j

a2k0

 ai0aj0Qij . (3.103)

where Qij (and later Q) denote constants that may depend on i and j, but are inde-

pendent of the modal amplitudes. Note also that

detA =
∏
k

a2k0 ·Q. (3.104)

Using Eqs. (3.101)–(3.104), we obtain

A−1
ij =

1

ai0aj0
·Qij . (3.105)

Therefore, one can easily see that the lemma follows, since [BA−1]ij ∝
∑

k ai0ak0·
1

ak0aj0
∝

ai0
aj0

.

3.12 Appendix D: Scattering-matrix linewidth theory

In a recent scattering-matrix based linewidth theory [83], Pillay et al. obtain a formula

for the linewidth of a one-dimensional laser system, expressed in terms of integrals

over the modes which solve the nonlinear SALT equations. In this appendix, we prove

that their formula (which applies to 1d systems) is equivalent to our linewidth formula

Eq. (3.3) (except that their formula gives a spatially averaged incomplete-inversion

factor and omits the α factor).

In the scattering-matrix approach, the lasing modes are described as purely outgoing
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wave functions ψ0, which satisfy the nonlinear SALT equation

∇×∇× ψ0(x)− ω2
0ε(x, ω0)ψ0(x) = 0, (3.106)

and can be expressed as a superposition of outgoing channel modes uµ outside of the

laser region

ψ0(x) =
∑
k

bkuk(x, ω0) for r /∈ C. (3.107)

C denotes the scattering region (i.e., ε = 1 for x /∈ C). Note that ψ0(x) is precisely

the same the mode E0(x) (which was used in Sec. 3.2) inside the cavity region.] The

outgoing mode-amplitudes b are normalized to the value of ψ0 at the cavity boundary

(x = L)

bTb = ψ2
0(L). (3.108)

The apparent difference between our formula and the linewidth formula in [83] is that

the integral term in the denominator of our linewidth formulaEq. (3.3) is replaced by a

sum of two terms in the scattering-matrix approach

∫
all

space
dx

[
εω0 +

ω2
0

2

dε

dω0

]
ψ2
0 −→

ibTb

2
+

∫
C
dx

[
εω0 +

ω2
0

2

dε

dω0

]
ψ2
0. (3.109)

In order for the two formulas to agree, we need to show that

ω0

∫ ∞

L
dxψ2

0(x) =
ibTb

2
(3.110)

(where we have used the fact that ε = 1 outside the cavity region). We show that
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the latter condition Eq. (3.110) holds for any solution ψ0 of Eq. (3.106) which satisfies

outgoing boundary conditions. One way to impose outgoing boundary conditions is to

invoke the limiting-absorption principle (i.e., add loss to eliminate incoming waves from

infinity and take the limit of infinitesimal absorption at the end of the calculation [148,

28]). Formally, we define the integral on the left-hand side of Eq. (3.110) as

∫ ∞

L
dxψ2

0(x) ≡ lim
s→0+

∫ ∞

L
dxe−sxψ2

0(x). (3.111)

By substituting ψ0(x) = eik0x into Eq. (3.111) and taking the limit of s → 0+, we

obtain
∫∞
Ldxψ

2
0(x) = i

2ke
2ik0L = i

2kb
Tb, and since ω0 = ck0 this finishes the proof of

Eq. (3.108) (with the units convention of c = 1).

3.13 Appendix E: Zero-point fluctuation cancellation

The hyperbolic cotangent factor in the FDT Eq. (3.19) arises as a sum of a Bose–Einstein

distribution and a 1/2 factor stemming from quantum zero-point (ZP) fluctuations [128,

129], and this is why it does not vanish in the limit of zero temperature (β → ∞).

However, it turns out that contribution of this ZP term cancels in the linewidth formula,

as was shown by Henry and Kazarinov [72] from a quantum-operator viewpoint, and

it is convenient to explicitly subtract the ZP term from the hyperbolic cotangent as in

Eq. (3.3) and Eq. (3.21). Here, we provide a purely classical explanation for why this

cancellation occurs, and why it is important to perform the explicit subtraction in order

to eliminate a subtlety arising from the definition of outgoing boundary conditions.

The FDT has a hyperbolic cotangent factor, and when we apply the FDT to find the

⟨fµf∗ν ⟩ correlation function in Sec IV, the same hyperbolic cotangent factor arises in the
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R integral, appearing in the form

∫
dx|Eµ|2Im ε0(ωµ) ·

1

2
coth

(
ℏωµβ

2

)
=

∫
dx|Eµ|2Im ε0(ωµ)

[(
1

2
coth

ℏωµβ

2
− 1

2

)
+

1

2

]
(3.112)

for a lasing mode µ, where we have trivially added and subtracted the ZP 1/2 fac-

tor from coth. Now, we wish to analyze the final 1/2 term, which is the integral
1
2

∫
dx|Eµ|2Im ε0(ωµ). Before we treat outgoing boundary conditions, let us consider

the simpler case of a laser surrounded by an explicit absorbing medium, as in [72].

(This is also the situation in more recent computational models, for which one uses a

finite spatial domain surrounded by absorbing layers [18].) For any steady-state lasing

mode (real ωµ), the net gain + loss is zero, but 1
2

∫
dx|Eµ|2Im ε0(ωµ) is proportional to

the net power absorbed or gained by the electric field [3] and hence this integral is zero.

Therefore, in such a case, whether or not we include the 1/2 factor is irrelevant, because

the ±1/2 terms integrate to zero.

However, a subtlety arises in this integral in the common case where the laser is

surrounded by an infinite zero-temperature (β = ∞) lossless medium with outgoing

radiation boundary conditions. Outgoing boundary conditions can be defined mathe-

matically by the limiting absorption principle [148, 28]: one takes the lossless medium

to be the limit of a lossy medium as the losses go to zero from above, which can be

expressed by writing ε as ε + i0+. Just as in appendix D, the correct approach is to

take the lossless limit after solving the problem, i.e. the 0+ limit is taken outside of

the integral. Before we take this limit, it makes no difference whether the 1/2 factor

is included, just as above: it integrates to zero. However, after we take the lossless

limit, there is no explicit absorbing region (Im ε > 0) in the integral (the absorption
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has been “moved to infinity” in some sense), so if we perform the coth integral without

subtracting 1/2 then we would obtain an incorrect contribution from the ZP fluctuations

in the gain medium (which should have been canceled). Instead, if we integrate against

1/2 coth−1/2, the result is correct without requiring any explicit contribution from the

absorbing boundary conditions.

Note that if the laser is surrounded by an infinite lossless medium at a positive tem-

perature, then there is a nonzero contribution of incoming thermal radiation to the

linewidth [53, 11]. This can be included in one of two ways. In practice, we typical

solve the SALT equations in a finite computational box with an explicit absorbing re-

gion, in which case no modification to our linewidth formula is required: one simply

assigns the ambient temperature to the absorbing region. If, on the other hand, the

outgoing boundary conditions are imposed in some other way (e.g. semi-analytically as

in earlier SALT work [56, 149, 104, 57]), then an explicit source term must be added to

account for incoming thermal radiation, as in previous works [150].
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Chapter 4

Verification of the microcavity laser

linewidth theory
The previous chapter presented a theory for the linewidth of micro-structured lasers.

Here we review subsequent work, lead by Alex Cerjan and Douglas Stone at Yale Univer-

sity, which validates our linewidth formula using brute-force simulations of the stochas-

tic Maxwell–Bloch equations.§ The chapter focuses on three results that we worked

on collaboratively: Comparison between our linewidth formula and previous results

(Sec. 4.2), verification of the sidepeak spectrum† (Sec. 4.3), and a justification for mod-

eling radiation noise by a random current in Maxwell’s equations (Sec. 4.4).

4.1 Introduction

Since the topic of linewidth theory was surveyed in great detail in the introduction of

the previous chapter, we review here only the necessary background on the numerical

techniques that we use. We refer to our linewidth theory from Ch. 3 as N-SALT (SALT

plus noise). We believe that the N-SALT linewidth formula quantitatively predicts
§The results of this work were published in [17].
†Here we treat only a laser in which fluctuations in the field intensity are decoupled from

phase fluctuations, i.e., the α factor [defined in Eq. (3.30)] vanishes. The more general case is
treated in Ch. 5
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the laser linewidth (far above threshold) including all corrections in an appropriately

generalized form, and in that sense represents completely the effects of spontaneous

emission on the laser linewidth. We test this hypothesis in the current work by direct

integration of the laser equations with noise. In the single-mode regime, the N-SALT

linewidth formula [Eq. (3.3)] can be rewritten as

δωN−SALT = ℏω0
2P

ω2
0(

∫
Im[ε(x,ω0)]|ψ0(x)|2dx)

(∫
Im[ε(x,ω0)]

N2(x)
D(x) |ψ0(x)|2dx

)
∣∣∣∫ ψ2

0(x)
(
ε(x,ω0)+

ω0
2

dε
dω

)
dx

∣∣∣2 (1 + α̃2) (4.1)

where ψ0(x) is the the semiclassical lasing field inside of the cavity found from the

steady-state ab-initio laser theory (SALT), normalized such that
∫
dxψ2

0 = 1, and the

integral is over the cavity region. ε(x) is the total dielectric function of the passive cav-

ity plus gain medium, assumed here to be homogeneously broadened two-level atoms,

and N2(x) and D(x) are the number of excited atoms and the atomic inversion respec-

tively (generalization to multi-level, multi-transition atoms is straightforward within

SALT and N-SALT, see [130]). α̃ is the generalized α factor, which can be calculated

analytically from knowledge of ψ0(x) and ε(x). This formula is derived under the con-

ditions that δωN−SALT ≪ γ∥,∆. This equation reduces to the separable corrections

discussed above in the appropriate limits [82], but shows that in general the incom-

plete inversion, Petermann, and bad-cavity linewidth corrections cannot be considered

independent from each other or separate from the cavity decay rate.

Here, we test the predictions of the N-SALT linewidth formula against the Schawlow-

Townes linewidth formula, including all the relevant corrections by directly integrating

the laser equations using the Finite Difference Time Domain (FDTD) method, including

the quantum fluctuations using the method proposed by Drummond and Raymer [151],

and employing the timestepping method proposed by Bidégaray [152]. Many previous
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numerical studies of spontaneous emission in laser cavities have implemented the noise

based on knowledge of the lasing mode structure [153, 154]. However, these studies did

not have access to the above-threshold lasingmode profiles, which can differ significantly

from the passive cavity modes used e.g. in calculating the traditional Petermann factor.

In our approach we will not make a particular modal ansatz. Hofmann and Hess derived

FDTD-based noisy lasing equations similar to ours for applications to semiconductors,

but the analysis made further assumptions not valid above the lasing threshold [155].

The effects of fluctuations in the electromagnetic fields due to thermal noise has also

been previously studied using the FDTD algorithm [156, 150]; these effects are necessary

to include when studying the noise properties of masers or other long wavelength lasers,

but can be safely neglected at optical frequencies, where the spontaneous emission events

being considered here dominate the noise of the laser. The approach used in this chapter

is similar to that used by Andreasen et al. [71, 157], both in the equations used and in

the analytic method to extract the signal’s linewidth. More recently FDTD simulations

of a noisy gain medium inside nanoplasmonic metamaterials have been performed to

understand the interesting properties of these structures both below and above the

lasing threshold [158, 159]. However unlike those earlier studies we will analyze the

linewidth far above threshold where it can be compared quantitatively to previously

proposed formulas. To our knowledge this is the first study of this type. To this end, we

will be considering relatively simple and small laser cavities, allowing us to achieve the

spectral resolution necessary to resolve the narrow laser linewidths far above the lasing

threshold. Furthermore, despite the generality of Eq. (4.1), for computational reasons

we will restrict our attention to atomic gain media, which have small α factors. Further

effects of the α factor, such as the linewidth sideband asymmetry observed by Vahala

et al. [19], are treated in Ch. 5.
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4.2 Verification of the single-mode N-SALT formula

To test the predictions of the N-SALT linewidth, Eq. (4.1), against the Schawlow-

Townes linewidth [5], we first study the simple one-dimensional, single-sided dielectric

slab cavity, n = 3. Here, we use the “fully-corrected” form of the Schawlow-Townes

linewidth as the point of comparison, which includes the Petermann factor, bad-cavity

correction, and Henry α factor, and is given by,

δω
(corr)
ST = ℏω0γ2

c
2P

(
N̄2

D̄

) ∣∣∣ ∫ |ϕ0(x)|2dx∫
ϕ0(x)

2dx

∣∣∣2 ∣∣∣∣ 1

1+
ω0
2ε

∂ε
∂ω

∣∣∣∣2 (1 + α2), (4.2)

where ϕ0(x) is the passive cavity resonance corresponding to the lasing mode, the

spatial average of the inversion and occupation of the upper lasing state is denoted

as D̄ =
∫
dxD(x), the spatially averaged inversion is used to calculate the bad-cavity

factor, and α is the Henry a factor. The first term in parentheses of Eq. (4.2) corresponds

to the cavity-averaged incomplete inversion factor and the second corresponds to the

Petermann factor [13]. The quantities ψ0(x),ϕ0(x), D(x), and ε(x) are calculated using

SALT, while the FDTD simulations are run for enough time steps to average together

at least six resulting spectra using Bartlett’s method. For the chosen parameters, the

cold-cavity decay rate is on the order of the relaxation rate of the inversion, placing it

on the border between Class A and Class B lasers [160], close enough to the former that

no relaxation oscillation side-peaks are seen in the resulting spectra.

As can be seen in the left panel of Fig. 4.1, excellent quantitative agreement is seen

between the N-SALT prediction (green line) and the linewidths measured through direct

integration of the noisy Maxwell-Bloch equations (magenta triangles), while both results

differ from the corrected Schawlow-Townes theory (blue line). This discrepancy is shown
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Figure 4.1: Fig. 2. (Left panel) Plot showing the linewidth predictions given by the N-SALT
given in Eq. (4.1) (green), corrected Schawlow-Townes theory given in Eq. (4.2) (blue), integral
form of the Chong-Stone linewidth formula given in Eq. (4.3) (orange), and FDTD simulations
(magenta) for a uniformly pumped, dielectric slab cavity with n = 3, ωa = 42.4, γ⊥ = 0.5,
γ∥ = 0.01, θ = 2× 10−9, and NA = 1010. All of the linewidth formulas are evaluated using the
spatially dependent integral definition of the power given by Eq. (4.6). (Right panel) Plot of
the same data shown on a log-log scale, with reference lines for strict inverse power dependence,
P−1, provided for comparison (black dashed). Schematic inset shows the cavity geometry. The
rates and frequency are given in units of c/L, the number of atoms in the cavity is given in
terms of the SALT units of 4πθ2/(ℏγ⊥), and the output power is given in the SALT units of
4θ2/(ℏ2γ∥γ⊥).

to be more than a simple scaling factor in the right panel of Fig. 4.1, where the same

data is plotted on a log-log scale, and it can be seen that the power law narrowing of the

linewidth with respect to the output power differs between the N-SALT and corrected

Schawlow-Townes linewidth predictions. Somewhat surprisingly only the N-SALT and

FDTD results are very close to P−1 (black dashed lines), the others show a measurably

faster narrowing.

To understand the source of this discrepancy, we also plot the Chong–Stone linewidth [82],
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calculated using its integral form [83],

δωCS = ℏω0
2P

(
N̄2

D̄

)
(ω0

∫
Im[ε(x,ω0)]|ψ0(x)|2dx)

2∣∣∣∫ ψ2
0(x)

(
ε+

ω0
2

dε
dω

)
dx

∣∣∣2 (1 + α2), (4.3)

where we have neglected the vanishingly small boundary term (discussed in Sec. 3.12).

The Chong-Stone linewidth formula is derived through considering the behavior of the

SALT-based scattering matrix of the cavity, and thus is able to account correctly for all

effects stemming from the cavity; it gives the proper cavity decay rate above threshold,

and the same Petermann factor, and bad-cavity correction as N-SALT. However, it

does not provide an accurate treatment of the fluctuations inside the gain medium,

particularly amplitude fluctuations, and thus is unable to find the α factor and finds an

inaccurate, cavity-averaged incomplete inversion factor similar to conventional theories.

For the dielectric slab cavity studied here, the detuning of the lasing mode from the

atomic transition is very small, such that α ≪ 1. Thus the significant discrepancy

between the N-SALT and FDTD results and the Chong-Stone prediction indicates that

the largest source of discrepancy lies in the treatment of the incomplete inversion factor.

The ratio of the N-SALT and Chong-Stone linewidth predictions in the limit that α̃ =

α = 0 can be written as

δωCS

δωN−SALT
=

N̄2

D̄

∫
D(x)|ψ0(x)|2dx∫

N2(x)|ψ0(x)|2dx
, (4.4)

However, for the two-level atomic gain media simulated here, the number of atoms in

the excited atomic level is nearly constant N2 ≈ N1 ≈ N/2, allowing for this ratio to be
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expressed as

δωCS

δωN−SALT
=

∫
D(x)|ψ0(x)|2dx∫

|ψ0(x)|2dx
∫
D(x)dx

, (4.5)

In absolute terms, the fluctuations in N2, N1, and D are all of the same magnitude,

but as D(x) = N2(x) − N1(x) ≪ N2, its spatial variation is much larger on a relative

scale and cannot be neglected, leading to a significant discrepancy between the N-

SALT/FDTD and Chong-Stone linewidth predictions. Note that the approximation

of spatial invariance of the occupation of the upper lasing level does not necessarily

hold when considering more realistic gain media, with more than two levels, and is a

result of the well known difficulty in pumping a two-level medium past the transparency

point to achieve lasing. However the residual discrepancy between Chong-Stone and the

corrected ST prediction indicates that the incomplete inversion factor only accounts for

roughly half the discrepancy, and the remainder (Petermann and bad cavity effects)

would be present in lasers with more than two levels. We note that it is important

in these comparisons to calculate the output power from its fundamental definition via

Poynting’s theorem [3],

P =
ω0

2π

∫
Im[−ε(x)]|E0(x)|2dx (4.6)

where this equation is given in Gaussian units, E0(x) =
√
Iψ0(x) is the unnormalized

lasing mode, and I is the mode intensity.
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Figure 4.2: Plots showing a comparison between the N-SALT prediction (red) and FDTD
simulations (blue) of the optical intensity spectrum for increasing values of the pump, D0, for a
single-sided, dielectric slab cavity with n = 1.5, ωa = 40.7, γ⊥ = 1, γ∥ = 0.0025, θ = 6× 10−10,
and NA = 1010. (a) D0 = 0.18, (b) D0 = 0.28, (c) D0 = 0.38. As can be seen, increasing
the pump value increases the rate of stimulated emission, increasing γ(x), Eq. (4.7), resulting
in increasing separation between the relaxation oscillation side peaks and the central lasing
frequency. In all three panels of Fig. 5, the central frequency, ω0, chosen to evaluate Eq. (4.9)
is the central frequency found by the FDTD simulations. Intensity is plotted on a log scale in
arbitrary units, rates are given in units of c/L, and the inversion and total number of atoms are
given in SALT units of 4πθ2/ℏγ⊥.

4.3 Relaxation oscillation sidebands

In Class B lasers, fluctuations in the amplitude of the electric field undergo relaxation

oscillations while decaying to the steady-state. These relaxation oscillations give rise to

side-peaks in the spectrum of the output intensity and in this section we will demonstrate

that the N-SALT is able to correctly reproduce the location and size of these side-peaks.

It has been known for many decades that the relaxation oscillation frequency increases

as the laser is pumped further above threshold [96], but previous studies did not take

into account the spatial variation in the gain saturation, which was shown to play an

important role in quantitatively predicting the laser linewidth. Using the spatial lasing

mode profiles and inversion calculated using SALT, N-SALT demonstrates that the
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output optical intensity spectrum is dependent upon the total local decay rate,

γ(x) = γ∥

(
1 +

γ2⊥
(ω0 − ωa)2 + γ2⊥

|ESALT(x)|2
)
, (4.7)

which contains contributions from both the non-radiative decay rate of the inversion,

γ∥, as well as the local rate of stimulated emission given by the second term in Eq. (4.7).

N-SALT yields two main results for the effects of relaxation oscillations on the linewidth.

First, that relaxation oscillation side peaks will appear for cavities whose parameters

satisfy the inequality δωN−SALT ≪ γ∥ ≪
∫
dxA(x), in which

A(x) = 2IRe

[
iω0ψ

2
0(x)

∂ε
∂I

2
∫
ψ2

0(x)
(
ε+ ω0

2
∂ε
∂ω

)
dx

]
, (4.8)

where I is the intensity of the electric field, as defined above. Second, N-SALT gives

an explicit form for the output optical intensity spectrum in the presence of relaxation

oscillations (with α = 0):

SN−SALT(ω) =
δωN−SALT

ω2 +
(
δωN−SALT

2

)2 +
δωN−SALT

ω2(1−R(ω))2 + R̃(ω)2
, (4.9)

R(ω) =

∫
A(x)γ(x)

ω2 +
(
δωN−SALT

2 + γ(x)
)2dx, (4.10)

R̃(ω) =

∫ A(x)γ(x)
(
δωN−SALT

2 + γ(x)
)

ω2 +
(
δωN−SALT

2 + γ(x)
)2 dx. (4.11)

The second term in Eq. (4.9) describes the side peaks due to relaxation oscillations.

In Fig. 4.2 we show the output optical intensity spectrum of a dielectric slab cavity

pumped above the first lasing threshold, in the parameter regime where side peaks are
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expected. Each of the plots shows a comparison between the N-SALT prediction (red

line) and the FDTD simulations (blue line) for increasing values of the pump, (a) to

(c). As can be seen in all three plots, excellent quantitative agreement is seen between

the simulated spectrum and the N-SALT prediction. To reiterate, N-SALT has no free

parameters, so the agreement seen here is a demonstration of a first principles test of

N-SALT. As can be see in the FDTD simulations, there are additional peaks in the

spectrum at a distance of twice the relaxation oscillation frequency from the central

peak. In principle N-SALT can be used to predict these additional side-peaks as well.

Finally, relaxation oscillations are proportional to the square root of the decay rate of

the cavity, ωRO ∼
√
(1)
∫
dx γ(x), thus we expect for the side peaks seen in the spectrum

to move away from the central peak as the rate of stimulated emission increases due to

an increasing pump. As the pump is increased from Fig. 4.2(a) to Fig. 4.2(c) we observe

exactly this behavior in both the FDTD simulations and N-SALT results, verifying this

prediction. Finally, we note that due to the use of an atomic gain medium with a small

a factor in these simulations, the sideband asymmetry observed by Vahala et al. [19]

cannot be resolved here.

4.4 Microscopic and macroscopic noise equivalence

There are two different ways of incorporating the effects of spontaneous emission on the

electric field inside of the laser cavity, either by using the fluctuation-dissipation theorem

alongside the wave equation, or by including spontaneous emission in the atomic degrees

of freedom, which are coupled non-linearly to the wave equation. In this section we

will explicitly demonstrate the equivalence of these two methods, which we term the

macroscopic and microscopic perspectives respectively, as the derivation of the N-SALT
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linewidth equation uses the former method, while the Langevin equations augmenting

the FDTD simulations use the latter. This section also serves as a proof that despite

the non-equilibrium nature of the laser, with power flowing in and light flowing out, the

system does reach a point of stability wherein the fluctuations of the electric field can

be appropriately treated with the fluctuation-dissipation theorem.

The derivation of the N-SALT equation incorporates all of the noise due to the quan-

tum fluctuations in the gain medium directly into the wave equation as

[∇×∇×−ω2ε(ω,E0)]E = ω2(ε(ω,E)− ε(ω,E0))E+ FS (4.12)

where ε(ω,E) is the full dielectric function of the cavity and gain medium, ε(ω,E0) is the

non-linear saturated dielectric function of the cavity evaluated using the semiclassical

lasing mode E0(x) =
√
Iψ0(x), where I is the lasing mode intensity, and FS is a random

noise source corresponding to the spontaneous emission from the gain medium. The

first term on the right hand side of Eq. (4.12) corresponds to the effective source due

to fluctuations in the field leading to fluctuations in the saturation of the gain medium,

while the second term corresponds to spontaneous emission contributing directly to noise

in the electric field. The inclusion of the full space-dependent non-linearity of the active

cavity dielectric function above threshold in the noise term is a key feature distinguishing

N-SALT from previous linewidth theories. The autocorrelation of the random noise

source is assumed to be given directly by the fluctuation–dissipation theorem [70],

⟨
F†
S(x, ω)FS(x

′, ω′)
⟩
= 2ℏω4Im[ε(ω,E0)] coth

(
ℏωβ(x)

2

)
δ(x− x′)δ(ω − ω′) (4.13)

where β(x) = (1/ℏω0) ln(N1(x)/N2(x)) is the effective (negative) inverse temperature of

103



the inverted gain medium, with N1 and N2 are the number of atoms in the ground and

excited atomic levels respectively. (Note that Im[ε(ω,E0)] < 0 in the inverted state, so

that the correlation remains positive).

In this treatment of the noise in the laser field due to spontaneous emission, the

atomic degrees of freedom have been completely integrated out, and the fluctuation–

dissipation theorem has been invoked from a macroscopic perspective, relating the au-

tocorrelation of the noise source to the imaginary part of the material response function

and a temperature dependent term. The hyperbolic cotangent factor arises as a sum of

a Bose-Einstein distribution and a factor of 1/2 from the quantum zero-point fluctua-

tions, which is why the auto-correlation does not vanish in the zero temperature limit

(β →∞). However, it was shown by Henry and Kazarinov that the contributions from

the zero-point fluctuations cancel in the linewidth formula [72] (a simpler, semiclassical

proof of this is in Sec. 3.13), and as such it is convenient to explicitly subtract this con-

tribution, allowing for the effective temperature of the gain medium to be determined

by relative occupations of the atomic levels comprising the lasing transition,

1

2
coth

[
ℏωβ(x)

2
− 1

]
= −N2(x)

D(x)
(4.14)

where D(x) = N2(x) − N1(x) is the number of inverted atoms. Thus, for the laser

systems considered here, Eq. (4.13) can be written as

⟨
F†
S(x, ω)FS(x

′, ω′)
⟩
= 4ℏω4Im[ε(ω,E0)] coth

[
1

2

ℏωβ(x)
2

− 1

2

]
δ(x− x′)δ(ω − ω′)

(4.15)

In contrast to this macroscopic picture, many traditional theories of the noise due to

spontaneous emission from the gain media begin by treating the Langevin forces on the
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quantum operators of individual gain atoms and building up an understanding of the

total noise this generates in the electric field, a more microscopic viewpoint [79]. We

will demonstrate the equivalence of these two methods by deriving the total Langevin

force on the polarization from the microscopic perspective. For a two-level atomic gain

medium, the evolution equation for the off-diagonal matrix element of the αth atom,

ρ
(α)
21 , including the Langevin force, Γ(α)

(ρ) (t), is given by,

∂tρ
(α)
21 (t) = −(γ⊥ + iωa)ρ

(α)
21 (t) +

id(α)

ℏ
θ ·E(x(α), t) + Γ

(α)
(ρ) (t) (4.16)

in which ωa is the atomic transition frequency, γ⊥ is the dephasing rate, and θ is the

dipole coupling matrix element. Furthermore, the evolution of the inversion for that

atom, d(α), including the Langevin force, Γ(α)
(d) (t), is given by

∂td
(α) = γ∥(d

(α)
0 − d(α)) + 2

iℏ
θ ·E(x(α), t)(ρ

(α)
21 (t)∗ − ρ(α)21 (t)) + Γ

(α)
(d) (t) (4.17)

where d(α)0 is the inversion of the αth atom in the absence of any electric field. Finally,

the wave equation for the electric field can be written in this context by explicitly

including the coupling between the field and each individual gain atom [see Eqs. (5.48)

and (5.55) in [11]],

[∇×∇×−ω2
0εc]E(x, ω) = 4πω2

0θ
∑
α

δ(x− x(α))ρ
(α)
21 (4.18)

in which we have approximated that the electric field is oscillating at frequencies close

to the semiclassical lasing frequency, ω0, and retained only the positive frequency com-

ponents for both the electric field and atomic polarization. Our aim is to determine the

form of the effective total Langevin force on the electric field by solving Eqs. (4.16) and
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(4.17) for the polarization and inversion, insert these expressions into the wave equation,

and collect the resulting Langevin force terms.

To leading order, ρ21 will oscillate at the lasing frequency, ω0, and if we approximate

this as its only frequency component, we can solve for

ρ
(α)
21 =

−d(α)

ℏ(ω0 − ωa + iγ⊥)
θ · Ẽ(x(α), ω) +

ieiω0t

ω0 − ωa + iγ⊥
Γ
(α)
(ρ) (4.19)

where the electric field is assumed to be a constant over the volume of the atom at

xα. The fluctuation dissipation theorem states that the strength of the fluctuations is

proportional to the strength of the dissipative terms. Thus, for the Class A and B lasers

considered here, γ∥ ≪ γ⊥, so Γ
(α)
(d) (t)≪ Γ

(α)
(ρ) (t), and we can safely ignore the fluctuations

in the atomic inversion. Thus, we can insert Eq. (4.19) into Eq. (4.18),

[∇×∇×−ω2
0εc]E(x, ω) = 4πω2

0θ
∑
α

δ(x− x(α))

×

[
−d(α)

ℏ(ω0 − ωa + iγ⊥)
θ · Ẽ(x(α), ω) +

ieiω0t

ω0 − ωa + iγ⊥
Γ
(α)
(ρ)

]
(4.20)

Equation (4.20) allows for the identification of the spontaneous noise in the polarization,

PN , using Eq. (4.12) and noting that FS = −4πω2PN , as

PN(x, ω) =
∑
α

δ(x− x(α))
iθeiω0t

ω0 − ωa + iγ⊥
Γ
(α)
(ρ) (4.21)

We can now directly calculate the correlation function of the spontaneous noise in the
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polarization using the correlation of the atomic Langevin force [11],

⟨
Γ
(α)
(ρ) (t)Γ

(β)
(ρ)

†
(t′)

⟩
=
[
γ⊥(1 + ⟨d(α)⟩) +

γ∥
2 (d

(α)
0 − ⟨d(α)⟩)

]
δαβδ(t− t′) (4.22)

in which each atom is taken to only be in equilibrium with its reservoir [53]. Note

that the only place the non-equilibrium nature of the reservoir comes in is via the term⟨
d(α)

⟩
= ρ

(α)
22 − ρ

(α)
11 . Since no higher moments or correlations enter the calculation, it

is safe to define an effective temperature for the system which can be negative via this

relation and apply the fluctuation–dissipation theorem. Note also that
⟨
d(α)

⟩
contains

the non-linear effect of gain saturation and spectral hole burning when calculated by

the FDTD method given below.

By assuming that the inversion is relatively stationary, we can identify the same

frequency auto-correlation of the noise as [89]

⟨
Γ
(α)
(ρ) (ω)Γ

(β)
(ρ)

†
(ω′)

⟩
= γ⊥(1 + ⟨d(α)⟩)δαβ (4.23)

in which we have again dropped the noise source proportional to γ∥, to be consistent

with the approximation neglecting fluctuations in the inversion made above. This allows

us to solve for

⟨
P†

N(x, ω)PN(x
′, ω′)

⟩
=

2θ2γ⊥
(ω0 − ωa)2 + γ2⊥

N2(x)δ(x− x′) (4.24)

where the number of atoms in the upper lasing state, N2(x) has been identified using,

N2(x, ω) =
1

2

∑
α

δ(x− x(α))(1 + ⟨d(α)⟩) (4.25)
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Upon substitution of the imaginary part of the dielectric function,

Im[ε] = −4πθ2

ℏ
γ⊥D(x)

(ω − ωa)2 + γ2⊥
(4.26)

we can identify the same frequency auto-correlation of the noise source FS as

⟨
F†
S(x, ω)FS(x

′, ω)
⟩
= 8πℏω4Im[ε(ω,E0)]

N2(x)

D(x)
δ(x− x′) (4.27)

Finally, noting that the different frequency auto-correlation function can be found

as [89],

⟨
F†
S(x, ω)FS(x

′, ω′)
⟩
=

1

2π

⟨
F†
S(x, ω)FS(x

′, ω)
⟩
δ(ω − ω′) (4.28)

and using the definition of the temperature factor given in Eq. (4.14), we recover the

expected auto-correlation of the random noise source given in Eq. (4.15).With this, we

have verified that the microscopic and macroscopic methods of treating the fluctuations

in the gain medium produce identical results, which allows us to use a microscopic model

of the gain medium in our FDTD simulations to test the predictions of the N-SALT

theory.

4.5 Summary

In this work we have performed a first principles test of the N-SALT linewidth results

presented in the previous chapter. To do this, we used the FDTD algorithm to simulate

the Maxwell-Bloch equations coupled to a set of Langevin noise equations, thus including

the effects of spontaneous emission. We found excellent quantitative agreement between
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the N-SALT linewidth predictions and the FDTD simulations, while finding substantial

deviations from the ‘fully corrected’ Schawlow-Townes theory, demonstrating that the

intertwining of the cavity decay rate, Petermann factor, incomplete inversion factor,

bad-cavity correction and Henry α factor in the N-SALT linewidth formula is necessary

and correct. This comparison was first done in a parameter range in which the relaxation

oscillations were weak (near the Class A boundary). Through comparison with the

Chong and Stone linewidth theory [82], we demonstrated that for the small, 20λa ∼ L,

cavities studied here, much but not all of the improved agreement found by N-SALT is

due to the proper treatment of the incomplete inversion factor. Next, we successfully

demonstrated that N-SALT gives the correct output optical intensity spectrum including

relaxation oscillations for Class B lasers, and correctly reproduces the side-peaks due

to relaxation oscillations. This set of simulations also verified that the side-peaks shift

away from the center of the spectrum as the pump on the gain medium is increased.We

then studied the different predictions for the linewidth enhancement due to the coupling

between intensity and phase fluctuations, the α factor, and demonstrated that the N-

SALT form of the α factor yields quantitative agreement with the FDTD simulations,

while previous forms of the α factor are shown to disagree. This set of simulations

is particularly remarkable, because in the absence of the N-SALT prediction for α̃,

one might conclude that the FDTD simulations do not correctly capture the effects of

the α factor. Instead, it is clear that the FDTD algorithm used does contain all of the

relevant physics, and that there can be a significant difference between the various forms

of the α factor. Finally, we demonstrated that the N-SALT theory correctly predicts

the linewidth for multiple active lasing modes.
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Chapter 5

Relaxation oscillation spectrum in

microcavity lasers
In the first two chapters we derived a new formula for the laser linewidth [Eq. (3.3)]. In

addition, we presented (without proving) a formula for the sidebands that may occur

due to relaxation oscillations in lasers with a zero α factor [Eq. (3.42)]. Due to the

length of the derivations and discussions, we left the derivation of the sideband formula

and its generalization to lasers with nonzero α for this chapter. An accurate sideband

formula is useful for measuring the α factor (using the method in Ref. [20]), which is

typically the biggest linewidth enhancement factor in semiconductor lasers [12].

5.1 Introduction

The ability to compute the laser spectrum is essential for understanding its coherence

properties and performance limitations. While traditional theories are excellent at pre-

dicting the spectral properties of macro-scale lasers [19, 20], they fail when applied to

microstructured lasers with wavelength-scale inhomogeneities [82], and they also require

empirical fit parameters. In recent work [16], we presented a formula for the widths of the

lasing resonant peaks (i.e., the central linewidths) which is valid for complex microcav-
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ities. In this paper, we apply a similar approach to obtain not only the linewidths, but

also the entire laser spectrum, including sidepeaks arising from relaxation oscillations

(Fig. 5.1) [106] with no empirical parameters other than the material parameters (re-

fractive index, lasing transition rates/frequency) of the laser cavity. Here and in [17], we

verify our formula with brute-force simulations of the stochastic Maxwell–Bloch equa-

tions (Fig. 5.4) demonstrating the generality of our formulation, which assumes only the

existence of a multimode steady-state laser field and a stationary population inversion

of the gain medium. Our approach uses the recent steady-state ab-initio laser theory

(SALT) [56], which enables computing the laser modes and frequencies in the steady

state, while taking into account inhomogeneity in the modes and pump and treating the

nonlinear gain nonperturbatively. Our single-mode spectral formula [Eq. (5.3)] agrees

with earlier theories in the appropriate limits (reducing to the result of [20] in the limit

of constant atomic-relaxation rates and to [16] when phase and intensity fluctuations

of the field are decoupled) and deviates quantitatively for lasers with wavelength-scale

inhomogeneity (Fig. 5.2). We predict several new spectral effects, such as smearing of

the sidepeaks due to gain saturation (Fig. 5.2b), new multimode sidepeaks due to am-

plitude modulation of the relaxation-oscillation (RO) signal in the multimode regime

(Fig. 5.2c), and three generalized intensity–phase coupling constants (i.e., α factors,

Fig. 5.3a).

The nonlinear interaction between the laser field and gain medium stabilizes the laser

intensity and atomic inversion at a steady state [11]. Spontaneous emission and other

noise produce perturbations from steady state [54, 161] which relax via oscillations when

the relaxation rates of the gain and light are comparable (a regime sometimes called

“type-B lasers” [106]). Early work by Yariv et al. [19, 162] attributed the sidepeaks

in the noise spectrum of single-mode semiconductor lasers to RO dynamics. They
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Figure 5.1: (a) The laser-field amplitude, aeiωLt, and modulus, |a|. a is obtained from Eq. (5.1)
with initial state a(0) = 5, steady state a0 = 1, noise intensity R = 1.44 · 10−4, constant re-
laxation γ(x) = 0.0025, and nonlinear coupling

∫
dx c(x) = 0.19 + 1.18i. The field amplitude

oscillates at frequency ωL = 2π
TL

while the modulus undergoes relaxation oscillations with fre-
quency ωRO = 2π

TRO
. (b) The spectrum, obtained by computing the periodogram of Eq. (5.1)

(red) and by evaluating the spectral formula (black) [Eq. (5.3)].

presented a theory for the spectrum of macrocavity lasers (without wavelength-scale

inhomogenieties), which they verified experimentally using buried optical waveguide

(BOG) GaAlAs laser. They also observed an asymmetry between the amplitudes of the

high- and low-frequency sidepeaks, which they attributed to the coupling of phase and

amplitude fluctuations of the laser field (the dimensionless coupling strength is the α

factor [113, 114]). Later, van Exter et al. [20] derived a simple closed-form expression
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Figure 5.2: (a) Top: Schematics of the geometry. Stacked layers with permittivities ε1 = 1, ε2 =

16, ε3 = 7, and thicknesses d1 = d3 = 0.2a, d2 =
√
ε1a√

ε1+
√
ε2

= 0.8a, where a is the unit cell size.
Gain is added in the three central layers with resonance frequency ωa = 18 and bandwidth
γ⊥ = 1 in (b) and ωa = 17, γ⊥ = 2 in (b). (All frequencies are in units of 1/a) . Bottom:
Intensity profiles of the first and second lasing modes (with threshold frequencies ω1 = 19.05

and ω2 = 14.95 respectively). (b) Spectrum of a single-mode laser, on a log-linear scale. The
stochastic equations [Eq. (5.1)] are solved by employing Euler’s method, and then computing the
periodogram of the signal by ensemble averaging its FFT. We compare the resulting spectrum
(red) with our single-mode formula [Eq. (5.3)] (cyan) and earlier results: [20] (black) which
neglected α−factor corrections and [16] (blue) which neglected inhomogeniety and nonlinearity
of the modes and gain. Inset: Magnification of the sidepeaks, plotted on a linear scale, which
shows the asymmetry of the peaks. (c) Spectrum of a multimode laser. We compare the
numerical solution of the stochastic equations [Eq. (5.28)] (red) with our multimode formula
[Eq. (5.29)] (cyan). Additionally, we plot the homogeneous limit of our formula (black) . Inset:
Zoom on the sidepeaks.

for the single-mode macrocavity laser spectrum, S(ω). They showed that the ratio of

low- and high-frequency sidepeak amplitudes is S(ωL−Ω)
S(ωL+Ω) = 1 + 8α

1+α2

(
Γ
Ω

)
, where ωL is

the laser frequency, Ω is the RO frequency, and Γ is the RO relaxation rate. This result

implied that the asymmetry is most pronounced for lasers with α ≈ 1 and that, since

α is positive in typical semiconductor lasers, the low-frequency sidepeaks are stronger

than the high-frequency ones. These early works [162, 20] are adequate for single-mode

macroscale lasers, but are not accurate for lasers with wavelength-scale inhomogeneities,

do not include nonlinear corrections to the mode profiles and relaxation rates, and do
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not analyze multimode effects on the sideband spectrum. Our new formulas [Eqs. (5.3)

and (5.29)] correct those features.

The starting point of our derivation (here and in Ch. 3) is the Maxwell–Bloch equa-

tions, which we solve in the absence of noise using SALT. For simplicity, we begin by

discussing the single-mode regime (Sec. 5.2, Sec. 5.4, and Sec. 5.5) and present the

general multimode formulation in Sec. 5.6 and in Sec. 5.10. Once noise is included, the

actual lasing solutions will be perturbed from the SALT modes. We represent this effect

by writing the lasing electric field as a product of the mode profile, a rapid oscillating

term, and a slowly varying amplitude [56]: E(x, t) = E0(x)a(t)e
iωLt. By performing

perturbation theory around the SALT solutions, one can show that the mode amplitude

a(t) satisfies the stochastic integro-differential oscillator equation:

ȧ =

∫
dx c(x)γ(x)

∫ t

dt′e−γ(x)(t−t′)
(
a20 − |a(t′)|2

)
a+ f, (5.1)

where the nonlinear coefficient c(x), dressed decay rate γ(x), steady-state amplitude a0,

and Langevin force f are expressed in terms of SALT solutions (the explicit expressions

were derived in Ch. 3). One realization of this stochastic process, a(t), is shown in

Fig. 5.1a.

According to the Wiener–Khintchine theorem [163], the power spectrum of the field is

given by the Fourier transform of the autocorrelation ⟨a(t)a∗(0)⟩ [where angle brackets

denote an ensemble average over realizations of Eq. (5.1)]. In order to compute the

spectrum, it is convenient to rewrite the complex mode amplitude a as [21]:

a(t) = a0e
−u(t)+iϕ(t), (5.2)
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Figure 5.3: (a) Deviation of the generalized α factors (defined in the text) from the traditional
factor (αLax ≈ ωa−ωL

γ⊥
[79]) for the structure from Fig. 5.2a. The relaxation rates of the inversion

and polarization are γ∥ = 0.006 and γ⊥ = 1 respectively. The unsaturated inversion is D0 =

0.095. Each detuning produces a different threshold and output power. (b) Sideband spectrum.
By detuning the gain center in the range ωa = 17.2 . . . 21, we control the α factors. The sideband
asymmetry is reversed when α3 flips sign. We chose γ∥ = 0.02, γ⊥ = 1 and D0 = 0.095. Each
curve has a different different output power. The y-axis is shifted for representation reasons.

where the phase drift dϕ(t)/dt and intensity u(t) can be treated as Gaussian random

variables [164]. Using Eq. (5.2) when evaluating the autocorrelation ⟨a(t)a∗(0)⟩ enables

us to employ standard results on log-normal distributions and to express the autocor-

relation in terms of second moments of u(t) and ϕ(t) [165] (Sec. 5.4). We substitute

Eq. (5.2) into Eq. (5.1) and linearize the equations assuming that, on average, the in-

tensity fluctuations are small (⟨|u(t)|⟩ ≪ a0) since they are suppressed by the nonlinear

gain (Sec. 5.5). Then, by solving the linear equations, we obtain explicit expressions

for the second moments. The intensity and phase evolve on different time scales: a

slow phase drift, which produces the central linewidth, and fast intensity RO, which

give rise to sidepeaks. The central linewidth was already calculated in Ch. 3 and is
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essentially the phase diffusion coefficient with the α-factor correction. Most generally,

the RO dynamics produce an infinite series of decreasing-amplitude sidepeaks and, in

most cases, only the first-order sidepeaks are strong enough to be observed. Here we

compute only the first-order sidepeaks, but our formulation can also lead to formulas for

the higher-order sidepeaks, as outlined in [162]. In Sec. 5.6, we generalize our analysis

to the multimode regime. The multimode amplitudes obey a set of coupled stochas-

tic integro-differential equations [Eq. (5.28)], which we linearize by writing each modal

amplitude in the form of Eq. (5.2). We find that in the presence of M lasing modes,

each resonance peak has 2M RO sidepeaks. In contrast to the single-mode higher-order

sidepeaks mentioned above, which have exponentially decreasing intensities, the extra

peaks we predict in the multimode case are of comparable amplitude (Fig. 5.2c). Even

though our derivation requires many pages of algebra, we compare the final result to

numerical solution of the oscillator equations [Eqs. (5.1) and (5.28)] and the results

match perfectly (Fig. 5.2). Additionally, we verify our theory by directly simulating the

stochastic Maxwell–Bloch equations (Fig. 5.4).

5.2 Single-mode formula

Before going through the details of the derivation (in Sec. 5.5), we begin by summarizing

our results: the new formula, its validation, and its consequences. We obtain the

following result for the spectrum (central peak and first sidebands) of a single-mode
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laser:

S(ω) =
Γ0(α2

1+1)

(ω−ωL)2+[
Γ0
2
(α2

1+1)]2

(
1− Γ0(α2

2+1)
4Γ

)
+

Γ0(α2
2+1)/4

Γ2
eff+(ω−ωL+Ω)2

(
1 + 4α3

α2
2+1
· ΓΩ +

3α2
2−1

α2
2+1
· ω−ωL+Ω

Ω

)
+

Γ0(α2
2+1)/4

Γ2
eff+(ω−ωL−Ω)2

(
1− 4α3

α2
2+1
· ΓΩ −

3α2
2−1

α2
2+1
· ω−ωL−Ω

Ω

)
. (5.3)

In the following sections, we express all the parameters in Eq. (5.3) in terms of the

coefficients from Eq. (5.1): the Langevin force f , nonlinear coefficients c(x), and dressed

decay rate γ(x). As such, their evaluation requires no additional free parameters besides

those appearing in the Maxwell–Bloch equations: the gain center frequency (ωa), the

relaxation rates of polarization (γ⊥) and inversion (γ∥), and the unsaturated inversion

(D0); Given the Maxwell–Bloch parameters and the laser geometry, one can solve the

SALT equations numerically [56] and use Ref. [16] to compute c(x), γ(x), and f .

The first term in Eq. (5.3) corresponds to the central Lorentzian peak while the

second and third terms are the high- and low-frequency RO sidepeaks. The linewidth of

the central peak is Γ0 = R/a20, where R is the Langevin noise amplitude, ⟨f(t)f∗(t′)⟩ =

Rδ(t−t′), which we computed in Ch. 3 from the fluctuation–dissipation theorem [70] (see

Ch. 3). The RO sidepeak frequency and linewidth are Ω ≈ ±
[
2a20

∫
dxRe c(x)γ(x)

]1/2
and Γeff ≡ Γ0(α

2
1+1)+Γ respectively, where Γ ≈

∫
dxγ(x)/2 is the RO relaxation rate.

Since some of the noise power goes into the sidepeaks, the amplitude of the central peak

is reduced by a factor of 1 − Γ0
4Γ(1 + α2

2), where the generalized α factor, α2, Eq. (5.3)

is valid when Γ≪ Ω and the sidepeaks do not overlap with the central peak. Eq. (5.3)

is formally similar to the result of Ref. [20] but we obtain three kinds of generalized

α factors (α1, α2, α3 defined below) and derive all the coefficients directly from the

Maxwell–Bloch equations, whereas the parameters (Γ0, Γ, Ω, and α) in Ref. [20] were
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expressed in terms of many additional empirical parameters (such as the mode volume,

confinement factor, cold-cavity decay rate, effective differential gain, gain saturation

coefficient, etc.) and, quantitatively, were only obtained by empirical fits. In Fig. 5.2b,

we compare our spectral formula Eq. (5.3) with the numerical solution of Eq. (5.1)

and previous theories. The coefficients in Eqs. (5.1) and (5.3) are evaluated for the

single-mode one-dimensional complex-cavity laser described in Fig. 5.2a. The numerical

spectrum is obtained by time-stepping Eq. (5.1) using a standard Euler scheme and

computing the periodogram of the signal by ensemble averaging the FFT of the mode

intensity |a|2. Our new formula (cyan) matches the numerical spectrum (red), correcting

the shortcoming of theories that did not treat the spatial dependence of the nonlinear

coefficient [20] (blue) or the α factor [16] (black). More details on the numerical solution

are given in Sec. 5.3.

We find three kinds of generalized amplitude–phase coupling constants: α1 =
∫
Im [c(x)]∫
Re [c(x)]

,

α2 =
∫
γ(x)Im [c(x)]∫
γ(x)Re [c(x)]

, and α3 =
∫
γ(x)2Im [c(x)]∫

γ(x)
∫
γ(x)Re [c(x)]

. The generalized α factors deviate from

the traditional factor for large α [16] and when c(x) and γ(x) vary strongly in space, as

demonstrated in Fig. 5.3a. The traditional α factor was first introduced by Lax in the

context of single-mode detuned gas lasers [79]. He showed that the amplitude–phase

coupling constant is equal to the normalized detuning of the lasing frequency from the

atomic resonance, i.e., α0 =
ω0−ωa
γ⊥

(which is equal to the ratio of the real and imaginary

parts of a refractive index change due to fluctuations in the gain). Later on, the α factor

turned out to be a dominant linewidth enhancement factor in semiconductor lasers [14].

In contrast to the Lax factor, which can be either negative or positive depending on the

sign of the detuning, the α factor in semiconductor lasers (which arises from refractive-

index changes due to carrier-density fluctuations) is typically positive. From Eq. (5.3),

it is evident that when α3 is positive, the low-frequency sidepeaks are stronger than the
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high frequency sidepeaks. However, more generally, the asymmetry can change sign, as

we show in Fig. 5.3b.

When correctly accounting for gain saturation, one finds that the atomic relaxation

rate is enhanced by the presence of the field [as derived in Ch. 3, Eq. (3.13)]. Since

the laser-mode profile is spatially varying, the “dressed” relaxation rate γ(x) is spatially

varying as well [16], in contrast to the bare relaxation rate in Ref. [162] or the constant

dressed relaxation rate in Ref. [20], which was obtained from a zero-dimensional model.

It is important to note that very close to threshold, the enhancement is small and previ-

ous theories are valid. The signature of spatially varying relaxation on the spectrum is

smearing of the sidepeaks. The smearing is evident in Figs. 2b–c, where we compare the

predictions of our spectral formulas (blue) to a homogeneous model, which corresponds

to replacing the dressed decay rate γ(x) by the constant (unsaturated) decay γ∥ when

evaluating Eqs. (5.3) and (5.29).

5.3 Numerical verification

We verify our single-mode and multimode spectral formulas by comparing the analytical

results [Eq. (5.3) and Eq. (5.29)] with brute-force simulations of the stochastic oscillator

equations [Eq. (5.1) and Eq. (5.28)]. We study a numerical example where the α factor

can be easily tuned: a periodic array of dielectric layers, with gain medium in the three

central layers (Fig. 5.1a). We choose the parameters of the structure so that it has a

bandgap with two localized modes in the gap (the parameters are given in the figure

caption). Using the rule of thumb for low-loss resonators, that α is proportional to the

detuning of the gain resonance from the cavity resonance, we can tune α by varying

the resonance frequency of the gain. We employ a finte-difference frequency domain
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Figure 5.4: Spectrum of a Fabry-Perot laser as predicted by our single mode formula [Eq. (5.3)],
FDTD simulations including Langevin noise terms (Ch. 4), and previous theories [20]. The
Fabry-Perot laser has an index of n=3.5 and is open on both ends, while the atomic gain
medium it contains has a central frequency of ωa = 18.3, dephasing rate γ⊥ = 0.05, inversion
relaxation rate γ∥ = 0.005, atomic dipole strength θ = 2 × 10−9, density N0 = 1010, and is
pumped to an equilibrium inversion density of D0 = 1.34. Here, the rates are given in units of
c/a (a is defined in the inset), while the densities are given in SALT units [56].

(FDFD) [166] approach to discretize the SALT equations on a grid with 180 pixels and

solve the resulting equations using the numerical algorithm from [18]. Using the SALT

solution, we evaluate the coefficients of the oscillator equations [Eqs. (5.1) and (5.28)]

and the spectral formulas [Eqs. (5.3) and (5.29)]. These results are shown in Fig. 5.2

and Fig. 5.3.

We also compare our analytical results against a first-principles simulation based on

the finite-difference time-domain method (FDTD) (Fig. 5.4). In these simulations, the

electric field is coupled to a set of auxiliary equations which represent the evolution of

the inversion and polarization of the atomic degrees of freedom, which are augmented

with Langevin force terms (as in Ch. 4). These simulations automatically include the

effects of dispersion, radiative losses at the cavity boundary, and the non-linear coupling

between the amplitude and phase fluctuations. As such, these simulations represent a
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complete test of our theory. In order to demonstrate the new features of our spectral

formula we study a Fabry-Perot cavity in which the polarization dephasing rate is much

smaller than the free spectral range of the cavity, γ⊥ ≪ ∆ω, enabling us to significantly

detune the central frequency of the gain medium from the cavity resonance so as to

achieve a moderate α factor. As can be seen in Fig. 5.4, semi-quantitative agreement

is seen between the analytic theory [Eq. (5.3)] and the noisy FDTD simulations. In

particular, although the exact strength of the sidebands is slightly underestimated,

their spectral location is predicted nearly exactly, in contrast to previous theories.

5.4 The autocorrelation function

Assuming that ϕ(t) and u(t) are Gaussian variables and using standard results on log-

normal distributions, one finds that the average autocorrelation of the field is [20, 165]

⟨a(t+t′)a∗(t′)⟩
⟨|a(t′)|2⟩ = e−

1
2{⟨[ϕ(t+t′)−ϕ(t′)]2⟩−⟨[u(t+t′)+u(t′)]2⟩+4⟨[u(t′)]2⟩}×

e−i⟨[u(t+t′)+u(t′)][ϕ(t+t′)−ϕ(t′)]⟩ (5.4)

By substituting the ansatz Eq. (5.2) into the oscillator equation Eq. (5.1), we find that

the autocorrelations have the form§

⟨
[ϕ(t+ t′)− ϕ(t′)]2

⟩
= a1t+ a2(1− e−Γt cosΩt) + a3e

−Γt sinΩt⟨
[u(t+ t′) + u(t′)]2

⟩
= a4(1 + e−Γt cosΩt) + a5e

−Γt sinΩt⟨
[u(t+ t′) + u(t′)][ϕ(t+ t′)− ϕ(t′)]

⟩
= a6 + a7e

−Γt cosΩt+ a8e
−Γt sinΩt. (5.5)

§Note that
⟨
[u(t+ t′) + u(t′)]2

⟩
− 4

⟨
[u(t′)]2

⟩
= −a4(1− e−Γt cosΩt) + a5e

−Γt sinΩt.
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We prove this result in Sec. 5.5 and the coefficients ai are given in Eq. (5.17), Eq. (5.21),

and Eq. (5.27). When the RO sidepeaks are spectrally separated from the central peak,

the autocorrelation [Eq. (5.4)] can be simplified. (Mathematically, this is valid when

|ai| ≪ |a1| ∀i = 2 . . . 8, which can be interpreted as strong phase diffusion since a1 is

essentially the diffusion coefficient). In this regime, we find

⟨a(t+t′)a∗(t′)⟩
⟨|a(t′)|2⟩ =

e−
a1|t|
2
(
1− a2+a4+2ia6

2

)
+ e−Γeff |t|

[
cosΩ|t|

(
a2+a4−2ia7

2

)
+ sinΩ|t|

(
a5−a3−2ia8

2

)]
if t > 0

e−
a1|t|
2
(
1− a2+a4−2ia6

2

)
+
[
e−Γeff |t| cosΩ|t|

(
a2+a4+2ia7

2

)
+ sinΩ|t|

(
a5−a3+2ia8

2

)]
otherwise

where Γeff ≡ a1
2 + Γ.

The spectrum is then found by taking the Fourier transform of Eq. (5.5), and we

obtain:†

S(ω) = a1
ω2+(a1/2)2

(
1− a2+a4+2a6

2

)
+ Γeff

(ω+Ω)2+Γ2
eff

[(
a2+a4+2a8

2

)
+ Ω+ω

Γeff

(
a5−a3+2a7

2

)]
+

Γeff

(ω−Ω)2+Γ2
eff

[(
a2+a4−2a8

2

)
− Ω−ω

Γeff

(
a5−a3−2a7

2

)]
. (5.6)

In the next section, we derive the autocorrelation functions [Eq. (5.5)].
†Some Fourier transforms are given in Sec. 5.8.
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5.5 Obtaining second-order moments

In this section, we obtain expressions for the phase and intensity correlations. Substi-

tuting the ansatz [Eq. (5.2)] into the oscillator equation [Eq. (5.1)] and assuming small

intensity fluctuations, one finds the linearized equations:

ϕ̇ =

∫
dxB(x)ξ(x) + fI/a0

u̇ = −
∫
dxA(x)ξ(x) + fR/a0

ξ̇(x) = −γ(x)ξ(x) + γ(x)u (5.7)

where we introduced the auxiliary variable ξ(x) ≡
∫ t
dt′e−γ(x)(t−t′)u(t′) to turn the

integro-differential equation into a set of ordinary differential equations. We define

A(x) ≡ 2a20Re c(x), B(x) ≡ 2a20 Im c(x), fR = Re (e−iϕf) and fI = Im (e−iϕf). It

is convenient to solve these linear equations in the frequency domain. The Fourier

transform of Eq. (5.7) is:

iωϕ̃ =

∫
dxB(x)ξ̃(x) + f̃I/a0

iωũ = −
∫
dxA(x)ξ̃(x) + f̃R/a0

iωξ̃(x) = −γ(x)ξ̃(x) + γ(x)ũ (5.8)

123



which we solve and obtain

ũ =
1

iω +
∫
dxA(x)γ(x)

γ(x)+iω

· f̃R
a0

ξ̃(x) =
γ(x)

γ(x) + iω
· 1

iω +
∫
dxA(x)γ(x)

γ(x)+iω

· f̃R
a0

ϕ̃ =

∫
dxB(x)ξ̃(x)

iω
+

f̃I
iωa0

. (5.9)

By inspection of Eq. (5.9), the functions ũ, ξ̃, and ϕ̃ have poles at ω = 0 and additional

complex frequencies. The poles in the upper-half of the complex frequency plane give

rise to the spectral peaks.

5.5.1 The phase variance

The phase variance is related to the Fourier transform of the phase via:§ [167]

⟨
[ϕ(t+ t′)− ϕ(t′)]2

⟩
= Re

[
1

π

∫ ∞

−∞
dω
⟨
|ϕ̃(ω)|2

⟩
(1− eiωt)

]
. (5.10)

In order to compute Eq. (5.10), we use Eq. (5.9) to write

⟨
|ϕ̃(ω)|2

⟩
= R

ω2a20
+

∫ ∫
dx dx′ B(x)B(x′)⟨ξ̃(x)ξ̃∗(x′)⟩

ω2 . (5.11)

Substitution of Eq. (5.11) into Eq. (5.10) yields two improper integrals, which can be

evaluated using the Cauchy residue theorem, with knowledge of the location of the poles.
§This relation is derived by substituting the Fourier transform of the phase difference, ϕ(t+

t′)−ϕ(t′)= 1√
2π

∫
dω ϕ̃(ω) eiωt′(eiωt−1), into the phase variance,

⟨
[ϕ(t+ t′)− ϕ(t′)]2

⟩
, and then

simplifying the resulting expression: 1
2π

∫ ∫
dω dω′

⟨
ϕ̃(ω)ϕ̃∗(ω′)

⟩
ei(ω−ω′)t′(eiωt−1)(e−iω′t−1) =

1
2π

∫
dω
⟨
|ϕ̃(ω)|2

⟩
(2−eiωt−e−iωt).
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The first term in Eq. (5.11) has a pole at ω = 0 and gives rise to a linear diffusion

term in the phase variance. That can be seen by calculating the improper integral:

∫ ∞

−∞

dω (1−eiωt)
ω2 = lim

β→0

∮
dz (1−eizt)

(z+iβ)(z−iβ) = 2πi1−e−βt

2iβ = πt (5.12)

The second term in Eq. (5.11) has one pole at ω = 0, which is responsible for the

α-factor broadening of the central peak, and two additional poles in the upper-half of

the complex plane, which produce the RO sidepeaks. In order to show this, we prove

in Sec. 5.9 that ξ̃(x) can be written as

ξ̃(x) =
γ(x)

γ(x) + iω
·
[∫
dxQx(ω)

]−1

(ω − ω+)(ω − ω−)
· f̃R
a0
, (5.13)

where Qx(ω) ≡ [γ(x) + iω]−1. We find two poles at ω± = ±Ω + iΓ, where Ω ≈

[
∫
dxA(x)γ(x) − (

∫
dx γ(x)

2 )2]1/2 and Γ ≈
∫
dx γ(x)

2 . Substitution of Eq. (5.13) into

Eqs. (5.10) and (5.11) yields the improper integral:

∫ ∞

−∞
dω
⟨
ξ̃(x)ξ̃(x′)∗

⟩ 1− eiωt

ω2
=∫ ∞

−∞

dω γ(x)γ(x′)R
[iω+γ(x)][−iω+γ(x′)]

|[∫ dxQx(ω) ]|−2

|(ω−ω+)(ω−ω−)|2
1−eiωt

ω2 ≡ J0 + J± (5.14)

where J0 and J± are the terms associated with the poles at 0 and ω± correspondingly.

J0 is most easily computed by noting that ξ̃(0) = fR
Aa20

where A =
∫
dxA(x) [as can be

seen from Eq. (5.9)]. Therefore,

J0 =
2πRt

A2
. (5.15)
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We compute J± in the limit of resolved sidepeaks (Γ≪ Ω), and find†:

J± =
[

2πiγ(x)γ(x′)R(1−eiω+t)
(ω+−ω−)(ω+−ω∗

+)(ω+−ω∗
−)ω2

+
+ 2πiγ(x)γ(x′)R(1−eiω−t)

(ω−−ω+)(ω−−ω∗
+)(ω−−ω∗

−)ω2
−

]
=

πγ(x)γ(x′)R
4ΩΓ

[
1−eiω+t

(Ω+iΓ)3
+ 1−eiω−t

(Ω−iΓ)3

]
(5.16)

Substituting Eqs. (5.11)–(5.16) into Eq. (5.10), we obtain the phase variance:

⟨
[ϕ(t+ t′)− ϕ(t′)]2

⟩
= R

a20

(
1 + α2

1

)
t+

Rα2
2

2a20Γ
(1− e−Γt cosΩt)− 3Rα2

2

2a20Ω
e−Γt sinΩt (5.17)

where we introduced the generalized α-factors: α =
∫
dxB(x)∫
dxA(x)

and α2 =
∫
dxB(x)γ(x)∫
dxA(x)γ(x)

.

Comparing Eq. (5.17) with Eq. (5.5), we find that a1 = R
a20

(
1 + α2

)
, a2 =

Rα2
2

2a20Γ
, and

a3 = −
3Rα2

2

2a20Ω
.

5.5.2 Intensity autocorrelation

Similar to the derivation of Eq. (5.10), one can show that the intensity autocorrelation

is related to the Fourier transform of the intensity via

⟨
[u(t+ t′) + u(t′)]2

⟩
= Re

[
1

π

∫ ∞

−∞
dω
⟨
|ũ(ω)|2

⟩
(1 + eiωt)

]
. (5.18)

Using the results of Sec. 5.9, ũ can be written as

ũ =

[∫
dxQx(ω)

]−1

(ω − ω+)(ω − ω−)
· f̃R
a0
. (5.19)

†We derive Eq. (5.16) by considering the regime of resolved sidepeaks, where Qx(ω±) =

− 1
γ(x)+iω±

≈ i
ω±

. That enables to simplify the residues since γ(x)γ(x′)[|
∫
dxQx(ω±)|]−2

[iω±+γ(x)][−iω±+γ(x′)] ≈
γ(x)γ(x′).
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Substitution of Eq. (5.19) into Eq. (5.18) yields an improper integral that we calculate

using Cauchy’s residue theorem. The integrand has two poles at ω±. In the limit of

resolved sidepeaks, we approximate Qx(ω±) ≈ i
ω±

and find:

∫ ∞

−∞
dω
|∫ dxQx(ω)|−2

(1+eiωt)

|(ω−ω+)(ω−ω−)|2 ≈ 2πiω2
+(1+eiω+t)

(ω+−ω−)(ω+−ω∗
+)(ω+−ω∗

−) +
2πiω2

−(1+eiω−t)

(ω−−ω+)(ω−−ω∗
+)(ω−−ω∗

−) =

π
4ΩΓ

[
ω2
+(1+eiω+t)

Ω+iΓ +
ω2
−(1+eiω−t)

Ω−iΓ

]
(5.20)

Finally, in the limit of Ω≫ Γ, the intensity autocorrelation is

⟨
[u(t+ t′) + u(t′)]2

⟩
=

R

2Γa20
(1 + cosΩte−Γt) +

R

2Ωa20
sinΩte−Γt (5.21)

Comparing Eq. (5.21) with Eq. (5.5), we find that a4 = R
2Γa20

and a5 = R
2Ωa20

.

5.5.3 The cross term

Similar to the previous sections, one can relate the time averaged cross term to the

Fourier transforms of ũ and ϕ̃ via

⟨
[ϕ(t+ t′)− ϕ(t′)][u(t+ t′) + u(t′)]

⟩
=
i

π

∫ ∞

−∞
dω sinωt

⟨
ũ∗ϕ̃

⟩
. (5.22)

As in the previous sections, the integrand in Eq. (5.22) has three poles, at 0, ω+ and

ω−. We evaluate the improper integral using Cauchy’s theorem, which can be easily

applied after rewriting ũ and ϕ̃ using the results of Sec. 5.9:

⟨
ũ∗ϕ̃

⟩
=
R

a20

∫
dx

B(x)γ(x)

γ(x)2 + ω2
·
(γkiω − 1)|

∫
dxQx(ω)|−2

|(ω − ω+)(ω − ω−)|2
. (5.23)
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When substituting this result into Eq. (5.22), only the odd part of
⟨
ũ∗ϕ̃

⟩
contributes

to the integral since sinωt is an odd function in ω [which is obtained by replacing the

(γkiω − 1) in the numerator of the integrand by γk
iω ]. Therefore, Eq. (5.22) reduces to

1
π

∫∞
−∞ dω eiωt

⟨
ũ∗ϕ̃

⟩
odd

. We find

⟨
[ϕ(t+ t′)− ϕ(t′)][u(t+ t′) + u(t′)]

⟩
=

R
πa20i

∫
dxB(x)

∫ ∞

−∞
dω eiωt

ω
γ(x)2

γ(x)2+ω2

|
∫
dxQx(ω)|−2

|(ω−ω+)(ω−ω−)|2

≡ I0 + I± (5.24)

where I0 and I± denote the contributions from the poles at 0 and ω± correspondingly.

The contribution of the pole at 0 is most easily computed bu returning to the solutions

of ϕ̃ and ũ [Eq. (5.9)]. We find that§

I0 = RB
a20A

2
1
πi

∫ ∞

−∞
dω eiωt

ω = R
a20

B
A2 (5.25)

where we defined B ≡
∫
dxB(x). We compute I± by using the approximation Qx(ω±) ≈

i
ω±

, which is valid in the regime of resolved sidepeaks. Therefore, we obtain:

I± ≈
∫
dxB(x)γ(x)2R

πia20
·
(

2πi eiω+t

ω+(ω+−ω−)(ω+−ω∗
+)(ω+−ω∗

−) +
2πi eiω−t

ω−(ω−−ω+)(ω−−ω∗
−)(ω−−ω∗

+)

)
=∫

dxB(x)γ(x)2R

4iΓΩa20

(
eiω+t

(Ω+iΓ)2
− eiω−t

(Ω−iΓ)2

)
(5.26)

§Use
∫∞
−∞ dω eiωt

ω = lim
α→0

∫ ∞

−∞
dω eiωt

ω+iα = πi.
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Substituting Eqs. (5.23)–(5.26) into Eq. (5.22), we find that the cross-term is

⟨
[ϕ(t+ t′)− ϕ(t′)][u(t+ t′) + u(t′)]

⟩
= Rα

a20 A
+ Rα3

a20Ω

(
−2Γ

Ω cosΩt e−Γt + sinΩt e−Γt
)

(5.27)

where α3 =
∫
dxB(x)γ(x)2

2Γ
∫
dxA(x)γ(x)

. By comparing Eq. (5.27) with Eq. (5.5), we find that a6 =

Rα
a20A

, a7 = 2ΓRα3

a20Ω
2 , and a8 = Rα3

a20Ω
. This completes our derivation of the single-mode

formula [Eq. (5.3)].

5.6 Multimode lasers

In Sec. 5.10, we generalize the analysis of the previous section to the multimode regime.

The mode amplitudes (aµ) in a multimode laser evolve according to a set of coupled

nonlinear oscillator equations [16]:

ȧµ =
∑
ν

∫
dx cµν(x)

[
γ(x)

∫ t

dt′e−γ(x)(t−t′)
(
a2ν0 − |aν(t′)|2

)]
aµ + fµ (5.28)

where µ, ν = 1 . . .M , for M lasing modes. We find that the multimode spectrum is

given by

Sµν(ω) =
Γµν

ω2+(Γµν/2)2

(
1−

∑
σ [Sσ

µν+Uσ
µν ]

2

)
+

∑
σ

Γµνσ
eff

(ω+Ωσ)2+(Γµνσ
eff )

2

[(
Sσ
µν+Uσ

µν+2Yσ
µν

2

)
+ Ωσ+ω

Γeff

(
Vσ
µν−Tσ

µν

2

)]
+
∑

σ
Γµνσ
eff

(ω−Ωσ)2+(Γµνσ
eff )

2

[(
Sσ
µν+Uσ

µν−2Yσ
µν

2

)
− Ωσ−ω

Γeff

(
Vσ
µν−Tσ

µν

2

)]
(5.29)

where Γµν ≡ 2Rµν

aµ0aν0
+

2(BA−1RA†−1
B†)µν

aµ0aν0
are the central linewidths and Γµνσ

eff ≡ Γµν

2 + Γσ

are the linewidths of the sidepeaks. R is the matrix of correlations of noise terms in
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each of the modes. A and B are matrices whose entries are Aµν = 2aµ0aν0Re[
∫
dx cµν(x)]

and Bµν = 2aµ0aν0Im[
∫
dx cµν(x)] respectively. The frequencies Ωσ and linewidths Γσ

are the real and imaginary parts of the eigenvalues of the matrix
√
γA + iγI, where

σ = 1 . . .M . The matrices Sσ,Tσ,Uσ,Vσ,Xσ and Yσ are defined in the appendix, along

with the derivation.

5.7 Discussion

In this chapter, we used the ab-initio theory of radiation noise in lasers from Ch. 3, and

presented formulas for the relaxation-oscillation sidepeaks in single- and multimode

micro-structured lasers. Since our formulation relies on the methods from Ch. 3, it a

similar validity regime, with an additional assumption that the RO relaxation rate (Γ)

is faster than the phase diffusion rate, which is the regime when the RO sidepeaks do

not overlap with the central peak [Γ0 =
R
a20
(1+α2

1)]. The effects that are not covered by

our linewidth formula are also not treated by our RO sidepeak formula. For example,

we assume that spontaneous emission noise is small, and that the laser is operating

far enough above threshold. The threshold regime is treated in the next chapter. Our

single-mode result [Eq. (5.3)] implies that the spectrum consists of a central peaks at

the lasing frequency and two sidepeaks. If we kept higher orders in the small parameter,

Γ/Γ0, our formulation could produce closed-form expressions for higher-order sidepeaks.

A similar approach was explored in[162]. However, the amount of noise in subsequent

sidepeaks is exponentially decreasing and, therefore, they are almost always negligible.

The ability to compute the RO spectrum while taking full account of spatial variations

of the field patterns is a powerful new tool, which may have applications in other fields

were ROs have been observed, such as neural gamma-oscillations in the brain [168],
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noise-driven synchronization in predator-prey models [169], models for explaining the

seismic cycle of earthquake recurrence [170] and more. We discuss these examples in

greater detail in Ch. 9.

5.8 Appendix A: List of Fourier transforms

In our derivations, we use the Fourier transforms:

∫ ∞

−∞
dt e−iωte−γ|t| = 2γ

ω2+γ2∫ ∞

−∞
dt e−iωte−γ|t| cosΩ|t| = γ

(Ω+ω)2+γ2 + γ
(Ω−ω)2+γ2∫ ∞

−∞
dt e−iωte−γ|t| sinΩ|t| = Ω+ω

(Ω+ω)2+γ2 + Ω−ω
(Ω−ω)2+γ2∫ ∞

−∞
dt sign(t)e−iωte−γ|t| sinΩ|t| = γ/i

(Ω+ω)2+γ2 − γ/i
(Ω−ω)2+γ2∫ ∞

−∞
dt sign(t)e−iωte−γ|t| cosΩ|t| = (Ω+ω)/i

(Ω+ω)2+γ2 + (Ω−ω)/i
(Ω−ω)2+γ2

5.9 Appendix B: Derivation details of Eq. (5.13)

In order to prove Eq. (5.13), we perform several algebraic manipulations. First, we write

the denominator of Eq. (5.9) as:

iω +

∫
dx A(x)γ(x)

γ(x)+iω

∫
dxQx(ω){A(x)γ(x) + iω[γ(x) + iω]}. (5.30)

where Qx(ω) ≡ [γ(x) + iω]−1. Then, we use the quadratic formula to rewrite the

expression in square brackets as:

A(x)γ(x) + iω[γ(x) + iω] = [ω − ω+(x)][ω − ω−(x)], (5.31)
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with ω±(x) ≡ ±
√
A(x)γ(x)− γ(x)2

4 + iγ(x)2 . Next, we collect powers of ω and obtain:

∫
dxQx[ω − ω+(x)][ω − ω−(x)] =∫

dxQx(ω)
[
ω2 − ω

∫
dxQµ(ω)[ω+(x)+ω−(x)]∫

dxQx(ω)
+

∫
dxQx(ω)ω+(x)ω−(x)∫

dxQx(ω)

]
=∫

dxQx(ω)× [ω − z+(ω)][ω − z−(ω)]. (5.32)

with

z±(ω) =
−

∫
dxQx(ω)[ω+(x)+ω−(x)]

2
∫
Qx(ω)

±
[(∫

Qx(ω)[ω+(x)+ω−(x)]

2
∫
Qx(ω)

)2
−

∫
dxQx(ω)ω+(x)ω−(x)∫

dxQx(ω)

]1/2
.

(5.33)

We need to find the zeros of Eq. (5.32), since only those contribute to the spectrum. A

numerical solution can be easily obtained with Newton’s method. However, we proceed

by approximating Qx(ω) = dx/(iω+γx) to simplify the algebra. In the limit of resolved

sidepeaks (A≫ γx for all x), the RO frequencies are much greater than γx and therefore,

at the RO frequencies Qx(ω) ≈ dx/iω. We obtain a zeroth order approximation to the

RO frequencies:

z0± ≈ ±

√∫
dxA(x)γ(x)−

(∫
dxγ(x)

2

)2

+ i

∫
dxγ(x)

2 . (5.34)

In our calculations, we improved the accuracy of the results by taking the first order

approximation and setting

ω± ≈ z±(z0±) (5.35)
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5.10 Appendix C: Derivation of the multimode formula

In this appendix we compute the sideband spectrum for a laser operating in a multimode

regime. We showed in previous work that the mode amplitudes in this regime obey

coupled nonlinear oscillator equations:

ȧµ =
∑

νk C
k
µν

[
γk
∫ t
dt′e−γk(t−t′)

(
a2ν0 − |aν(t′)|2

)]
aµ + fµ (5.36)

Here we consider the case ofM lasing modes and we discretize space into N regions (e.g.,

employing a finite-difference approach), which becomes exact in the limit of N →∞. In

order to compute the spectrum, we use the following ansatz for the modal amplitudes

aµ = aµ0e
−uµ+iϕµ and we linearize the equations around steady state, assuming small

intensity fluctuations (uµ ≪ aµ0). We obtain

u̇µ = −
∑
νk

Ak
µνξ

k
ν + fRµ

ϕ̇µ =
∑
νk

Bk
µνξ

k
ν + f Iµ

ξ̇kµ = −γkξkµ + γkuµ (5.37)

where ξkµ = γk
∫ t
dt′e−γk(t−t′)uµ(t

′), Ak
µν ≡ 2a2ν0Re[C

k
µν ] and Bk

µν ≡ 2a2ν0Re[C
k
µν ]. Simi-

lar to the single-mode case, we take the Fourier-transform of Eq. (5.37) and we solve the

equations. We first solve the set of equations for u and ξk using matrix manipulations,

and then use the results to compute ϕ. First, we write the equations for uµ and ξkµ in

matrix form:

x = [iωI +K]−1f (5.38)
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where:

K =



0 A1 . . . AN

−Λ1 Λ1

... . . .

−ΛN ΛN


x =



u

ξ1

...

ξN


f =



fR

0

...

0


. (5.39)

u is the vector whose entries are uµ and similarly fR and ξk for k = 1 . . . N . Λk are

diagonal matrices with γk on the diagonal. In order to solve Eq. (5.38) and find u and

ξk, we need to invert the matrix

iωI +K =

 Aω B

C Dω

 (5.40)

Here

Aω = Iω B =

(
A1 . . . AN

)

C =


−Λ1

...

−ΛN

 Dω =


Λ1 + iωI

. . .

ΛN + iωI

 (5.41)

Using Schur’s complement, the matrix inverse is

[iωI +K]−1 =

 (Aω −BD−1
ω C)−1 −(Aω −BD−1

ω C)−1BD−1
ω

−D−1
ω C(Aω −BD−1

ω C)−1 D−1
ω +D−1

ω C(Aω −BD−1
ω C)−1BD−1

ω

 (5.42)
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Therefore, we obtain

u = (Aω −BD−1
ω C)−1 fR

a0
=

(
iωI +

∑
µ

Aµ
Λµ

Λµ + iωI

)−1
fR
a0

ξk = −
[
D−1

ω C(Aω −BD−1
ω C)−1

]
k

fR

a0
=

Λk

Λk + iωI
·

(
iωI +

∑
µ

Aµ
Λµ

Λµ + iωI

)−1

· f
R

a0

(5.43)

Similar to the single-mode case, we now show that the matrix
(
iωI +

∑
µ Aµ

Λµ

Λµ+iωI

)
has 2M zeros in the upper-half of the complex plane, where M is the number of lasing

modes. These zeros give rise to 2M RO sidepeaks around each lasing frequency.

In order to find the location of the poles, we rewrite the denominator of ξ̃k Eq. (5.9)

as a second-order polynomial (with zeros at ω±) times a function,
∑

µQµ(ω), which has

no zeros in the upper-half plane:

iωI +
∑
µ

Aµ
Λµ

Λµ + iωI
=
(
−
∑

µ Qµ

)
(ω − M1) (ω − M2) (5.44)

where we introduced the definitions Qµ(ω) ≡ (Λµ + iω)−1 and

M1,2 ≡ ±
√∑

µ NQµAµΛµ∑
µ Qµ

−
(∑

µ QµΛµ∑
µ 2Qµ

)2
+i

∑
µ QµΛµ∑
µ 2Qµ

. (Note that the square root of a diago-

nalizable matrix M = VDV−1 is
√

M = V
√

DV−1.) In order to show Eq. (5.44), we perform

several algebraic manipulations. First, we write iωI +
∑

µ Aµ
Λµ

Λµ+iωI as
∑

µ Qµ[NAµΛµ+

iω(Λµ + iωI)] = (
∑

µ Qµ)(−ω2 + iω
∑

µ QµΛµ∑
µ Qµ

+
∑

µ NQµAµΛµ∑
µ Qµ

), where in the last equality,

we collected powers of ω. Then, since the matrices Λµ and Qµ are proportional to unity

and therefore commute with any matrix, we can use the quadratic formula for matrices

and rewrite this expression in the form of Eq. (5.44).
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5.10.1 The phase variance

Similar to the single-mode case, we compute the phase variance using the average of

the Fourier transforms
⟨
ϕ̃µϕ̃

∗
ν

⟩
. The result contains a linear diffusion term coming from

the pole of
⟨
ϕ̃µϕ̃

∗
ν

⟩
at ω = 0 and additional terms due to relaxation oscillations. We

denote these terms by J0 and J± correspondingly:

⟨∆ϕµ(t)∆ϕν(t)⟩ = Re

[
1

π

∫ ∞

−∞
dω
⟨
ϕ̃µϕ̃

∗
ν

⟩
[1− eiωt]

]
≡ J0 + J± (5.45)

The quantity
⟨
ϕ̃µϕ̃

∗
ν

⟩
can be found using the results from the previous section:

ϕ =

∑
k Bk ξ

k

iω
+

fI
iω

ξk =
Λk

Λk + iωI
·
[(
−
∑

µ Qµ

)
(ω − M1)(ω − M2)

]−1
· f

R

a0
. (5.46)

We obtain

⟨ϕ̃µϕ̃∗ν⟩ =

[∑
mn

Λm
Λm+iωI

Λn
Λn−iωI |

∑
ℓ Qℓ|−2 Bm(ω−M1)−1(ω−M2)−1R(ω+M†

2)
−1(ω+M†

1)
−1B†

n

a20ω
2 + R

a20ω
2

]
µν

(5.47)

Substituting Eq. (5.47) into Eq. (5.46) and applying Cauchy’s theorem, we find that the

pole at ω = 0 gives

J0 =

(
[BA−1RA†−1

B†]µν
a20

+
Rµν

a20

)
2t (5.48)

where we first used the definition of the matrices M1,2 and Qµ to write

(M1)
−1(M2)

−1R(M†
2)

−1(M†
1)

−1 = |
∑

ℓ Qℓ(0)|2 A−1RA†−1 and then introduced the spatially
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integrated matrices: A ≡
∑

n An and B ≡
∑

n Bn.

In order to compute J1, we introduce the eigenvalue decomposition of M1 and M2:

(ω − Mk)
−1 =

∑
m

Pkm

ω − ωkm
(5.49)

where iωσ are the eigenvalues of Mσ and Pσ are projection operators onto the corre-

sponding eigenspaces. The real and imaginary parts of ωσ determine the frequencies

and widths of the RO side peaks. Substituting Eq. (5.49) into Eq. (5.47) and performing

the contour integration, we obtain

J1 =
∑
pq

σℓmn

Re

{
(2iΛpBpP1σP2ℓRP†

2mP†
1nB†

qΛq)µν
a20

(
1−eiω1σt

ω2
σ(ω1σ−ω2ℓ)(ω1σ−ω∗

1m)(ω1σ−ω∗
2n)

+ 1−eiω2ℓt

ω2
ℓ (ω2ℓ−ω1σ)(ω2ℓ−ω∗

1m)(ω2ℓ−ω∗
2n)

)}
, (5.50)

which can be conveniently written as

J1 =
∑
σ

[
Sσ
µν(1− e−Γσt cosΩσt) + Tσ

µνe
−Γσt sinΩσt

]
(5.51)

where we introduced

Sσ
µν ≡ Re

 ∑
ℓmnpq

(2iΛpBpP1σP2nRP†
2ℓP

†
1mB†

qΛq)µν

a20ω
2
1σ(ω1σ−ω2n)(ω1σ−ω∗

1ℓ)(ω1σ−ω∗
2m)

+
(2iΛpBpP1nP2σRP†

2ℓP
†
1mB†

qΛq)µν
a20ω

2
2σ(ω2σ−ω1n)(ω2σ−ω∗

1ℓ)(ω2σ−ω∗
2m)


Tσ
µν ≡ −Im

 ∑
ℓmnpq

(2iΛpBpP1σP2nRP†
2ℓP

†
1mB†

qΛq)µν
a20ω

2
1σ(ω1σ−ω2n)(ω1σ−ω∗

1ℓ)(ω1σ−ω∗
2m)
− (2iΛpBpP1nP2σRP†

2ℓP
†
1mB†

pΛq)µν
a20ω

2
2σ(ω2σ−ω1n)(ω2σ−ω∗

1ℓ)(ω2σ−ω∗
2m)


(5.52)

Indeed, we find that
⟨
ϕ̃µϕ̃

∗
ν

⟩
is of the form Eq. (5.6) with a1 = 2

(
[BA−1RA†−1

B†]µν
a20

+
Rµν

a20

)
,
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a2σ = Sσ
µν and a3σ = Tσ

µν .

5.10.2 The intensity autocorrelation

As in the single-mode case, we need to compute

⟨
[uµ(t+ t′) + uµ(t

′)][uν(t+ t′) + uν(t
′)]
⟩
= π−1Re

∫ ∞

−∞
dω ⟨ũµũ∗ν⟩ (1 + eiωt) (5.53)

Using the results of Sec. 5.10.1, we have:

u =
(
−
∑

µ Qµ

)−1
(ω − M1)

−1(ω − M2)
−1 fR
a0
. (5.54)

and therefore the average of the Fourier transformed intensity fluctuations is

⟨ũµũ∗ν⟩ =

[
(ω−M1)−1(ω−M2)−1R(ω+M†

2)
−1(ω+M†

1)
−1

]
µν

a20|
∑

ℓ Qℓ|2
=

1

a20|
∑

ℓ Qℓ|2
∑
µνστ

[
P1µP2νRP†

2σP†
1τ

]
µν

(ω−ω1µ)(ω−ω2ν)(ω−ω∗
1σ)(ω−ω∗

2τ )
(5.55)

Next, we perform the integration using Cauchy’s theorem and obtain

1

π

∫ ∞

−∞
dω ⟨ũµũ∗ν⟩ [1 + eiωt] = Re

{∑
σnℓm

[
2iP1σP2nRP†

2ℓP
†
1m

]
µν

a20(
(1+eiω1σt)ω2

σ
(ω1σ−ω2n)(ω1σ−ω∗

1ℓ)(ω1σ−ω∗
2m) +

(1+eiω2nt)ω2
n

(ω2n−ω1σ)(ω2n−ω∗
1ℓ)(ω2n−ω∗

2m)

)}
(5.56)
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Once again, we rewrite the result in compact form as

⟨
[uµ(t+ t′) + uµ(t

′)][uν(t+ t′) + uν(t
′)]
⟩
=∑

σ

[
Uσ
µν(1 + e−Γσt cosΩσt) + Vσ

µνe
−Γσt sinΩσt

]
, (5.57)

where we introduced the matrices

Uσ
µν ≡ Re

{∑
ℓmn

[
2iω2

1σP1σP2nRP†
2ℓP

†
1m

]
µν

a20(ω1σ−ω2n)(ω1σ−ω∗
1ℓ)(ω1σ−ω∗

2m)
+

[
2iω2

2σP1nP2σRP†
2ℓP

†
1m

]
µν

a20(ω2σ−ω1n)(ω2σ−ω∗
1ℓ)(ω2σ−ω∗

2m)

}

Vσ
µν ≡ −Im

{∑
ℓmn

[
2iω2

1σP1σP2nRP†
2ℓP

†
1m

]
µν

a20(ω1σ−ω2n)(ω1σ−ω∗
1ℓ)(ω1σ−ω∗

2m)
−

[
2iω2

2σP1nP2σRP†
2ℓP

†
1m

]
µν

a20(ω2σ−ω1n)(ω2σ−ω∗
1ℓ)(ω2σ−ω∗

2m)

}
.

(5.58)

The intensity correlations are of the form Eq. (5.6), with a4σ = Uσ
µν and a5σ = Vσ

µν .

5.10.3 The cross term

Similar to the previous sections, we need to compute

⟨
[ϕµ(t+ t′)− ϕµ(t′)][uν(t+ t′) + uν(t

′)]
⟩
=

1

π

∫ ∞

−∞
dω eiωt

⟨
ϕ̃ ũ∗

⟩
o

(5.59)

Use the expressions from the previous section:

u = (−
∑

ℓ Qℓ)
−1 (ω − M1)

−1(ω − M2)
−1 fR
a0

ϕ =
∑
k

Bk
Λk

Λk+iω (−
∑

ℓ Qℓ)
−1 (ω−M1)−1(ω−M2)−1fR

iωa0
+

fI
iωa0

, (5.60)
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we find that the average of the Fourier transformed phase and intensity fluctuations is

⟨
ϕ̃µũ

∗
ν

⟩
o
=[∑

k

γk
γk+iω

[
Bk(ω−M1)−1(ω−M2)−1R(ω−M†

2)
−1(ω−M†

1)
−1

]
µν

iωa20

∣∣∣∑ℓ Qℓ

∣∣∣2
]
o

=

∑
k

γk
γ2
k+ω2

γk
iω

[
Bk(ω−M1)−1(ω−M2)−1R(ω−M†

2)
−1(ω−M†

1)
−1

]
µν

a20

∣∣∣∑ℓ Qℓ

∣∣∣2 (5.61)

Substituting the latter expression into Eq. (5.59) we find†

1

π

∫ ∞

−∞
dω eiωt

⟨
ϕ̃µũ

∗
ν

⟩
=

[2BA−1R(A†)−1]
µν

a20
+
∑

σnℓmk

[
(2Λ2

kBk)P1σP2nRP†
2ℓP

†
1m

]
µν

a20(
eiω1σt

ω1σ(ω1σ−ω2n)(ω1σ−ω∗
1ℓ)(ω1σ−ω∗

2m) +
eiω2nt

ω2n(ω2n−ω1σ)(ω2n−ω∗
1ℓ)(ω2n−ω∗

2m)

)
(5.62)

Finally, we rewrite Eq. (5.62) in compact form

⟨
[uµ(t+ t′) + uµ(t

′)][ϕν(t+ t′) + ϕν(t
′)]
⟩
=

[2BA−1RA−1]
µν

a20
+
∑
σ

[
Xσ
µνe

−Γσt cosΩσt+ Yσ
µνe

−Γσt sinΩσt
]
, (5.63)

†Use
∫∞
−∞

dω(1−eiωt)
ω2 = lim

α→0

∫ ∞

−∞

dω(1−eiωt)
(ω+iα)(ω−iα) = lim

α→0
2πi (1−e−αt)

2iα = πt and
∫∞
−∞

dωeiωt

ω =

lim
α→0

∫ ∞

−∞

dωeiωt

(ω+iα) = lim
α→0

2πie−αt = 2πi
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where we introduced the definitions

Xσ
µν ≡

(∑
p 2γ

2
pBp

)(∑
ℓmn

[
P1σP2nRP†

2ℓP
†
1m

]
µν

a20ω1σ(ω1σ−ω2n)(ω1σ−ω∗
1ℓ)(ω1σ−ω∗

2m)
+

[
P1nP2σRP†

2ℓP
†
1m

]
µν

a20ω2σ(ω2σ−ω1n)(ω2σ−ω∗
1ℓ)(ω2σ−ω∗

2m)

)

Yσ
µν ≡ i

(∑
p 2γ

2
pBp

)(∑
ℓmn

[
P1σP2nRP†

2ℓP
†
1m

]
µν

a20ω1σ(ω1σ−ω2n)(ω1σ−ω∗
1ℓ)(ω1σ−ω∗

2m)
−

[
P1nP2σRP†

2ℓP
†
1m

]
µν

a20ω2σ(ω2σ−ω1n)(ω2σ−ω∗
1ℓ)(ω2σ−ω∗

2m)

)
.

(5.64)

Indeed, the cross term is of the form of Eq. (5.6) , with a6σ =
[2BA−1RA−1]

µν

a20
, a7σ = Xσ

µν ,

and a8σ = Yσ
µν .
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Chapter 6

Microcavity laser linewidth

near threshold
Most laser linewidth formulas (including ours) have an apparently puzzling feature: they

are derived assuming that the laser operates above threshold, but when extrapolated to

the threshold regime, the linewidth blows up. In this chapter, we remedy this problem.

By including amplified spontaneous emission (ASE) from sub-threshold modes, we ob-

tain generalized oscillator equations, which are valid not only above (as in Ch. 3) but

also below and at threshold. We compute the laser linewidth at threshold by brute-force

time-stepping of the equations. The numerical computation of the spectrum is similar

in spirit to early work by Lax [21], but in contrast to Ref. [21], our oscillator equations

are more general and are valid for nanophotonic lasers. Moreover, our formulation easily

extends to the second threshold and multimode regimes, which are far less studied. In

fact, to the best of our knowledge, only Ref. [100] and Ref. [16] obtained closed-form

expressions for the linewidth of a two-mode laser, and both expression diverge at the

second threshold. In Sec. 6.3.2, we provide an analytic finite formula for the second-

threshold linewidth. Our results apply to microstructured amplifiers and lasers with

moderate levels of ASE (leaving the problem of strong ASE to future work).
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6.1 Introduction

Amplified spontaneous emission (ASE) is incoherent light, produced by spontaneous

emission, that has been amplified by stimulated emission in a gain medium [171]. Feed-

back of the ASE by the laser’s optical cavity may produce laser operation if the lasing

threshold is reached. In high-power lasers and gain amplifiers, ASE is usually an un-

wanted effect: the excitation of the gain medium is depleted by incoherent ASE rather

than by coherent laser radiation [172]. Therefore, effort has been made to suppress ASE

in such devices [173]. However, ASE can also be desirable in applications that require

low temporal coherence, such as optical coherence tomography [174]. Other examples of

applications of ASE include superluminescent diodes and doped fiber amplifiers [175].

Similar to the problem of the laser noise, a theoretical description of ASE in mi-

crostructured devices is complicated, as it involves analyzing a stochastic field that sat-

isfies the Maxwell–Bloch equations [Eqs. (2.20) and (2.22)] below the lasing threshold.

An additional complication comes from the fact that ASE can modify the steady-state

properties of the laser; Strong ASE can deplete the gain and prevent lasing, so it must

be taken into account when computing the lasing threshold and, therefore, cannot be

described by steady-state theories, such as SALT. In this chapter, we address the situa-

tion where the ASE level is moderate, so that it does not affect (to first order) the lasing

steady state properties, like threshold and frequency. We use this approach to obtain a

finite field intensity at threshold and correct the apparent divergence of our linewidth

formula [Eq. (3.3)]. The case of strong ASE can be analyzed with generalization of our

theory, as described in the outlook (Sec. 6.4).

Here, we generalize the theory of microlaser noise from Ch. 3 and include ASE from

sub-threshold modes. Similar to our treatment of noise in lasers, we first derive dynam-
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ical equations for the lasing- and subthreshold-mode amplitudes and then, calculate

the variances and autocorrelation functions of the modal amplitudes, from which we

obtain the spectrum below, above and near the thresholds. Note that our oscillator

equations [Eq. (6.3)] fail far bellow the threshold (when 2κµ ≤ γ(x)). However, since

modes far below the lasing threhold have negligible contributions to the noise spectrum,

this mathematical issue does not pose a real difficulty in applying the theory to realis-

tic spectrum calculations. We leave the far sub-threshold regime to future work. Our

results reduce to the results of Lax in Ref. [21] for single-mode lasers in the limit of de-

coupled phase and intensity fluctuations (i.e., when the α factor vanishes), and deviate

from the traditional results for complex-cavity devices and far above threshold. We also

use our approach to study the multimode regime, and specifically discuss the linewidth

enhancement due to mixing of ASE from subthreshold modes with the lasing mode.

Since we focus here on computing only the central linewidths (as in Ch. 3), and not

the relaxation oscillation sidepeaks (Ch. 5), we analyze the spectrum using an instanta-

neous toy model which corresponds to the limit where the population inversion relaxes

to steady state instantaneously. This ansatz proved to be accurate in computing the

laser linewidth above threshold, and we anticipate that it is also exact near threshold.

Let us first introduce the instantaneous toy model. The cavity field can be expressed

as a superposition of lasing and subthreshold modes, E(x, t) =
∑

µ aµ(t)Eµ(x)e
iωµt. The

modes Eµ are eigenstates of a generalized Maxwell equation with a nonlinear permit-

tivity [Eq. (3.50)] [56]. Lasing modes are real-frequency solutions, while subthreshold

modes correspond to complex eigenfrequencies with Im[ωµ] < 0. In the presence of

noise, the mode amplitudes aµ are slowly varying, and their autocorrelation determines

the laser spectrum. In the single-mode regime, the instantaneous toy model for the laser
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mode amplitude is in the form of the Van der Pol oscillator equation, [21]

ȧ = C(ρ− |a|2)a+ f, (6.1)

with ρ changing sign at threshold. (For simplicity, we drop the subscript µ in the single-

mode regime.) Above threshold, the nonlinear interaction between the gain and the laser

field stabilizes the mode amplitude at a steady state, a0, and ρ = a20 > 0. The Langevin

term f represents spontaneous-emission noise, which drives small perturbations away

from the steady state, and the amplitude returns to steady state provided that Re[C] >

0. Below threshold, the mode amplitude is zero on average. Any perturbation relaxes

to zero at a rate given by the imaginary part of the complex eigenfrequency, κ ≡ Im[ω].

In the spirit of coupled-mode theory (CMT), the dynamics can be written as

ȧ = κa− C|a|2a+ f, (6.2)

where the nonlinear and Langevin terms have the same form as above threshold. When

C is real, Eq. (6.2) agrees with Eq. (6.1) when introducing ρ = Im[ω]
C < 0. More generally,

when C is complex, Eq. (6.2) can be rewritten as: ȧ = C(ρ− |a|2)a+ i∆a+ f , with the

order parameter ρ ≡ κRe[C]
|C|2 (1 + α2), the frequency detuning ∆ ≡ −κα, and α ≡ Im[C]

Re[C] ,

the usual α factor.

We obtain the toy model [Eq. (6.1)] from the Maxwell–Bloch equations [Eqs. (2.20)–

(2.22)], in the limit where atoms respond instantaneously to changes in the field intensity

(satisfied in “type-A lasers” [160, 16]). More generally, we find that the dynamical
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equations are:

ȧµ =κµaµ +
∑
ν

∫
dx cµν(x)γ(x)

∫ t

dt′e−γ(x)(t−t′)+2κνt′
(
⟨|aν |⟩2 − |aν(t′)|2

)
aµ + fµ.

(6.3)

For subthreshold modes, κµ < 0, whereas for lasing modes, κµ = 0, and the first term

on the right-hand side of Eq. (6.3) vanishes. The sum contains contributions from lasing

and subthreshold modes. For lasing modes, ⟨|aν |⟩2 = a2ν0 > 0, and the corresponding

terms in the sum represent a nonlinear restoring force. For subthreshold, the mode

amplitudes have a zero mean ⟨|aν |⟩2 = 0, but a non-zero variance, which increases the

linewidths, as we show below. The nonlinear coupling [cµν(x)], dressed-decay rate [γ(x)],

and Langevin force (fµ) are expressed in terms of integrals over SALT solutions [given

in Eq. (3.77), Eq. (3.60), and Eq. (3.78) in Ch. 3]. The derivation of the subthreshold

terms is explained in the following section. Note that Eq. (6.3) is only valid close

enough to threshold so that 2κν < γ(x). As discussed above, this mathematical issue is

insignificant in practice because only near-threshold modes contribute significantly to

the ASE spectrum, and will be addressed elsewhere.

The general oscillator equations [Eq. (6.3)] reduce to the instantaneous toy model

[Eq. (6.1)] in the appropriate limits. In the single-mode regime, the atomic relaxation

rate below threshold is just the bare rate, γ(x) = γ∥, and the nonlinear gain term

reduces to:

Cµµγ∥

∫ t

dt′e−γ∥(t−t′)−2κµt′
(
⟨|aµ|⟩2 − |aµ(t′)|2

)
aµ, (6.4)

where Cµµ ≡
∫
dxcµµ(x). When the relaxation rate, γ∥, is much greater or much
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smaller than the nonlinear restoring rate, Re[Cµµ]a
2
µ0, the time delayed nonlinear term

in Eq. (6.4) reduces to an instantaneous term similar to Eq. (6.1). In this regime,

Eq. (6.3) agrees with Eq. (6.1) when neglecting the term e−2κµt′ in the integrand, which

is justified because subthreshold modes contribute to the spectrum only when sufficiently

close to threshold, but in this regime κµ ≪ γ∥.

6.2 Derivation of the oscillator equations

We begin by reviewing the derivation of the oscillator equations for lasing-mode ampli-

tudes [Eq. (3.11)], and then point out differences in the derivation when treating sub-

threshold modes. First, consider the steady-state regime (analyzed by SALT [56]). In

the absence of noise, Maxwell–Bloch equations can be greatly simplified assuming that

the field oscillates at a multimode steady state (an assumption which holds for most mi-

crolasers). Writing the field as a superposition of modes, E(x, t) =
∑

µ aµ0Eµ(x)e
iωµt,

SALT finds that the lasing modes are solutions of the effective Maxwell’s equation,

[∇ × ∇ × −ω2
µε(ωµ)]Eµ = 0, with outgoing boundary conditions. The dispersive non-

linear permittivity is:

ε(ω) = εc +
γ⊥

(ω − ωa) + iγ⊥
D (6.5)

where D is the population-inversion of the gain medium and εc is the “cold cavity”

permittivity in the absence of gain. The dispersion has a Lorenzian lineshape, Γ(ω) ≡
γ⊥

(ω−ωa)+iγ⊥
, centered around the gain center frequency ωa, with width given by the

polarization decay rate γ⊥. Next, one can include noise (from spontaneous emission,

thermal sources or technical noise) by introducing a fluctuating source term on the right-
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hand side of Maxwell’s equation, [∇×∇×−ω2
µε(ωµ)]Eµ = Fµ. The noise perturbs the

field, causes fluctuations in the modal amplitudes [16]

E(x, t) =
∑
µ

aµ(t)Eµ(x)e
iωµt. (6.6)

In the spirit of time-dependent perturbation theory, one can substitute this expansion

into the Maxwell–Bloch equations and show that the amplitude perturbations give rise

to the nonlinear restoring term in the generalized oscillator equations [Eq. (3.11)].

When including subthreshold modes, there are two key differences. First, the Loren-

zian linewidth is reduced by the resonance lifetime

Γ(ωµ) = εc +
γ⊥

(ωµ − ωa) + i(γ⊥ + κµ)
D (6.7)

The new factor, Γ(ωµ), modifies the definition of the nonlinear coefficients , cµν(x),

which correspond to subthreshold modes [see Eq. (3.77)]. At at threshold, κ approaches

zero, and we reproduce the nonlinear coefficient from Ch. 3. Since we are interested here

in the effects of ASE near threshold, this modification leads only to a small quantitative

correction.

Another difference is an increased time delay or, equivalently, a reduced relaxation

rate of the nonlinear gain term in Eq. (6.3). [In other words, the effective decay rate of

the subthreshold mode µ is modified from γ(x) to γ(x)− 2κµ; a description that breaks

down when γ(x) = 2κµ.] The source for this modification is as follows. The nonlinear

gain term is found by computing changes in the population inversion due to changes

in the mode amplitudes. In the Maxwell–Bloch framework, temporal changes of the
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inversion are governed by

Ḋ = −γ∥ [Dp −D + 2πi(E ·P∗ −E∗ ·P)] , (6.8)

where γ∥ is the inversion relaxation rate, Dp represents the pump, and the last term

is the nonlinear coupling of the field E to the atomic inversion D via the polarization

field P. Assuming that the field is a superposition of a finite set of lasing modes and

resonances, one expands the field E and polarization P [see Eq. (6.6) and Eq. (5.2)

respectively]. Therefore, the product Im[E∗ · P] contains cross-terms from different

modes, which oscillate at the beating frequency ∆µν ≡ ωµ − ων . In macrocavity lasers,

the mode spacing (free spectral range, ∆µν) is typically much greater than the atomic

decay rates, γ∥ and γ⊥, and the beating terms can be neglected because the effect of

rapid oscillations on the average steady state is negligible. Lasing modes are associated

with real frequency solutions (Im[ωµ] = 0) and, therefore, the phases of the self terms,

∝ Eµ ·P∗
µ−E∗

µ ·Pµ, cancel so the inversion is stationary. However, for non-lasing modes,

ωµ is complex and the self term contains an exponentially decaying factor of e−2κµt.

Once again, this modification vanishes as a subthreshold mode reaches threshold and

κµ approaches zero.

6.3 Applications

6.3.1 Single-mode linewidth near the first threshold

In this section, we compute the linewidth of a one-dimensional microcavity laser (shown

in the inset of Fig. 6.1). For simplicity, we focus on the case where the nonlinear coeffi-

cient [C in Eq. (6.3)] is real, which means that the α factor [defined in Eq. (3.30)] is zero.
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In that case, the linewidth above threshold is given by a generalized Schawlow-Townes

relation, Γ = 1
2⟨|a|2⟩ [Eq. (3.29)]. Well below threshold, the linewidth is Γ = 1

⟨|a|2⟩ [53],

which can be shown by neglecting the nonlinear term in Eq. (6.1). The linewidth above

threshold is smaller by a factor of two, due to suppression of intensity fluctuations

by the nonlinear interaction. The threshold regime can only be handled numerically.

In Ref. [21], the near-threshold spectrum was computed using the eigenvalues of the

associated Fokker–Planck equation, while here, we compute the spectrum by directly

time-stepping Eq. (6.3). The advantage of our formulation here is that it is adequate

for microstructured lasers.

We verify numerically that the product Γ ·
⟨
|a|2
⟩
/R changes from 1 below to 1

2

above threshold (Fig. 1). The linewidth Γ is obtained from a numerical fit of the

simulated spectrum. The amplitude variance
⟨
|a|2
⟩
can be calculated analytically far

above and below threshed, but near threshold, we use the interpolation formula [21]:⟨
|a|2
⟩
= 1

2

(
ρ+

√
ρ2 + 2R

Re[C]

)
, where R is the diffusion coefficient of the Langevin term,

defined via ⟨f(t)f∗(t′)⟩ = Rδ(t− t′).

6.3.2 Linewidth enhancement near subsequent thresholds

According to the traditional Schawlow–Townes formula, the laser linewidth decreases

upon increasing the pump power. However, in Sec. 3.6.3, we saw that when additional

modes approach threshold, ASE from those modes can mix with the laser signal and

actually increase the linewidth. [This effect is similar in spirit to the linewidth enhance-

ment near the first threshold in lasers with a large α factor [101], defined in Eq. (3.30).]

In Ch. 3, we computed the spectrum above the second threshold and extrapolated the

results to the threshold region. Here, we handle the threshold regime exactly; we ana-
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Figure 6.1: The linewidth of a single-mode laser above, below, and near threshold. We compute
the linewidth by time-stepping Eq. (6.1) and verify that the product 2Γ·⟨|a|2⟩

R changes from 2 to
1 when crossing threshold. The coefficients of the oscillator equation are computed for the struc-
ture shown in the inset—a one-dimensional array of dielectric layers with varying permittivities
[ε1 = 1 (red) and ε2 = 16 (yellow)] and thicknesses d1 = 1 and d2 set by the quarter-wave plate
condition:

√
ε1d1 =

√
ε2d2. The permittivity of the center layer, εd = 3 (green), is chosen to

create the localized gap mode (with passive frequency ωc ≈ 19.11) shown at the bottom of the
inset. Gain is added in the defect area. We vary ρ (defined in the text) by increasing the pump.
The gain center frequency ωa = 19.11 and linewidth γ⊥ = 1 are chosen so that the Lax α factor,
ωa−ωL

γ⊥
, is negligible. The dots are obtained at unsaturated inversion D0 = 0 . . . 0.045, where

the threshold value is Dth = 0.017. All parameters are defined in Eq. (6.6) in Ch. 3.

lyze the oscillator equations Eq. (6.3), which are valid throughout the threshold regime,

and compute the enhancement analytically.

The oscillator equation of a single-mode laser near the second threshold is

ȧ1 = C11(a
2
10 − |a1|2)a1 − C12|a2|2a1 + f1. (6.9)

Assuming that the amplitudes a1 and a2 are uncorrelated and evolve on different time

scales, we can simplify the second nonlinear term using mean-field approximation:

|a2|2 ≈
⟨
|a2|2

⟩
th
, where the latter is the variance at the second threshold, computed
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below. Defining β ≡ −C12

⟨
|a2|2

⟩
th
, we obtain the oscillator equation

ȧ1 = C11(a
2
10 − |a1|2)a1 + βa1 + f1. (6.10)

In order to compute the spectrum, it is convenient to rewrite Eq. (6.10) as

ȧ1 = C11(η − |a1|2)a1 + i∆a1 + f1, (6.11)

where we introduced two real variables§: η ≡ a210 +
Re (βC∗

11)
|C11|2 +

Im (βC∗
11)

|C11|2 · ImC∗
11

ReC∗
11

and

∆ ≡ Im (βC∗
11)

Re (C∗
11)

. The presence of ASE from the second mode produces a shift in the mean

amplitude and in the oscillation frequency. Using the results of Sec. 6.3.1, we obtain

the central result of this section—the linewidth at the second threshold:

Γ =
R1

2

[
a210 −

Re (⟨|a2|2⟩thC12C∗
11)

|C11|2 − Im (⟨|a2|2⟩thC12C∗
11)

|C11|2 · ImC∗
11

ReC∗
11

] (6.12)

Typically Re[C∗
11C12] > 0 and the denominator is smaller than a210, leading to linewidth

enhancement. The physical explanation is that intensity in the second mode depletes

the gain for the first mode, which causes reduced intensity and enhanced noise.

In order to complete the calculation, we need to compute the second-mode variance

at threshold,
⟨
|a2|2

⟩
th
. The oscillator equation for the second mode is

ȧ2 = C21(ρ10 − |a1|2)a2 + C22(p2 − |a2|2)a2 + f2, (6.13)
§The details are as follows. We write C11(a

2
10 − |a1|2)a1 + βa1 = C11

(
a210 − |a1|2

)
a1 +

C11
βC∗

11

|C11|2 a1 = C11

(
a210 +

Re[βC∗
11]

|C11|2 − |a1|
2
)
a1 + iC11

Im[βC∗
11]

|C11|2 a1 an then introduce two real vari-

ables, A and ∆, and require that iC11
Im[βC∗

11]
|C11|2 = C11A + i∆. This gives a single complex

equations with two unknowns. Finally, η = a210 +
Re (βC∗

11)
|C11|2 +A.
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where p2 in the second parenthesis implies linear decay below and nonlinear restoring

force above threshold. Using mean-field approximation for a1

ȧ2 = C22(p2 − |a2|2)a2 + f2. (6.14)

We use the quasi-linear approximation [x] to estimate the mean variance:

⟨
|a2|2

⟩
= 1

2

(
p2 +

√
p22 +

2R2
Re[C22]

)
(6.15)

with ⟨f2(t)f∗2 (s)⟩ = R2δ(t − s). At the second threshold, p2 = 0 and the steady-state

mean variance at the second threshold is
⟨
|a2|2

⟩
th
≈ 1

2

√
R2

2Re[C22]
.

6.4 Outlook

In this chapter, we incorporated the effect of ASE from subthreshold modes into our

microcavity laser-linewidth theory (presented in Ch. 3). We restricted the analysis to

“weak ASE” or, more explicitly, to cases where the depletion of the inversion by the

ASE field is small enough so that, to first order, it can be neglected when computing

the lasing properties. This analysis allowed us to obtain a finite result for the laser

linewidth near the first and second thresholds. However, our current analysis does not

apply to high-power lasers and high-gain amplifiers, where the ASE field modifies the

steady-state lasing properties and, hence, is not captured by SALT.

We anticipate that SALT can be quite easily generalized to incorporate ASE, even at

high gain levels. The steady-state field would satisfy a SALT-type nonlinear Maxwell
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equation

[
∇×∇×−(ωµ + iκµ)

2

(
εc(x) +

γ⊥
ωµ − ωa + i(γ⊥ − κµ)

D(x)

)]
Eµ = 0, (6.16)

with a generalized inversion of the form

D(x) =
D0(x)

1 +
∑

µ
γ2
⊥

(ωµ−ωa)2+(γ⊥−κµ)2
⟨|Eµ(x)|2⟩.

(6.17)

In contrast to standard SALT, the steady-state modal intensities |Eµ|2 in the denomi-

nator should be replaced by the modal mean variances, ⟨|Eµ(x)|2⟩, which are finite even

for subthreshold modes despite their zero mean [⟨Eµ(x)⟩ = 0]. Similar to our approach

in Ch. 3, we can use the fluctuation–dissipation theorem [58, 70] to relate the variance

of the field to the linearized Green’s function:

⟨Eµ(x, ω)E
∗
µ(x

′, ω′)⟩ = −2ℏω2ImGµµ(x,x, ω) coth

(
ℏωβ(x)

2

)
δ(x−x′)δ(ω−ω′). (6.18)

The green’s function, Gµµ, may be approximated (in some appropriate limits) by the

single-pole approximation via Eq. (3.73) and the inverse temperature, β, is defined in

Eq. (3.4). Similar to SALT, this approach produces a nonlinear Maxwell-type equation

for the modes, with a generalized nonlinear permittivity which incorporates the effect

of ASE of arbitrary intensity.
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Part II

Spontaneous Emission at

Exceptional Points
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Chapter 7

Spontaneous emission at

exceptional points
This chapter provides a complete solution to a problem of broad current interest, and

which has appeared in multiple recent high-profile publications [38, 176, 177, 178, 179,

180]: understanding light-matter interactions at ”exceptional points,” where the non-

Hermitan eigenvector decomposition breaks down [33].§ Although there have been sev-

eral experimental and theoretical papers on this topic, the existing theory is incomplete

and often even erroneous, with several authors [42, 48, 49] attributing false significance

to the diverging ”Petermann” factor at exceptional points (K̃ in Table 1.1), whereas

we prove that the true interaction is always finite and not described by the Peter-

mann factor. Even theoretical descriptions that correctly captured the finite behav-

ior [50] were not general (limited to one dimensional systems or other simplifications).

Furthermore, similar problems with exceptional points appear in many other areas of

physics [35, 36, 181] and mathematics [46].
§The results in this chapter were published in [44].
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7.1 Introduction

Electromagnetic resonances enable precise control and enhancement of spontaneous

emission and other light–matter interactions. While it is well known that resonances

can enhance spontaneous emission rates via the celebrated Purcell effect [29, 182, 183]

by confining light to small volumes for long times, recent work [47, 184, 42] suggests

that giant enhancements can occur via the less familiar Petermann effect [13, 185, 186,

119, 110]. The Petermann enhancement factor is a measure of non-orthogonality of the

modes in non-Hermitian systems and it appears to diverge when two modes coalesce at

an exceptional point (EP)—an exotic degeneracy in which two modes share the same

frequency and mode profile [33, 187]. In recent years, there has been an explosion of

interest in EPs due to the many interesting and counter-intuitive phenomena associated

with them, e.g., unidirectional reflection and transmission [188, 189, 190], topological

mode switching [176, 36, 177], intrinsic single-mode lasing [37, 191], and lasers with

unconventional pump dependence [178, 180, 192]. An understanding of spontaneous

emission at EPs is essential for their implementation in optical devices, but the existing

theory is limited to one-dimensional [50, 193] or discrete oscillator systems [194].

In this chapter, we present a general theory of spontaneous emission near EPs. Our

theory extends beyond spontaneous emission to any light–matter interaction described

by the local density of states (LDOS) or, more precisely, any situation in which one

analyzes the contribution of a given resonance to the emission of a source, such as

narrowband thermal emission [195, 196, 197, 198], absorption [199], perfect coherent

absorption [200, 201, 202], and nonlinear harmonic generation [203]. Whereas traditional

theories of spontaneous emission imply infinite enhancement factors at EPs (since the

Petermann factor diverges), we use a modified Jordan-form-based perturbation theory

157



to derive (finite) bounds on the enhancement at second- and higher-order EP systems.

We show that line narrowing leads to a maximum enhancement of 4 in passive systems

with second-order EPs and significantly larger enhancements (exceeding 400×) in gain-

aided and higher-order EP systems. Our analytical results are presented in Sec. 7.2,

where we express the emission rate at an EP in terms of the degenerate mode and its

corresponding Jordan vector. This derivation assumes negligible dispersion, but we show

in Sec. 7.7 that the effect of dispersion amounts to merely modifying the normalization of

the resonant modes, changing the results quantitatively but not qualitatively. Then, in

Sec. 7.3, we demonstrate the implications of our theory via a concrete numerical example

of coupled plasmonic resonators. Motivated by the fact that an EP is associated with

a double pole in the Green’s function, we find specific locations where the emission

lineshape becomes a squared Lorentzian, with peak amplitude scaling as Q2, where

Q is the resonance quality factor (a dimensionless measure of the resonance lifetime).

We show that the enhancement at the EP is thus, potentially, much larger than the

Purcell factor, which scales linearly with Q. Then, in Sec. 7.4, we derive bounds on the

maximal enhancement at an EP, and we explore these bounds using a periodic system,

which allows us to tune gain, loss, and degeneracy independently. Our theory provides a

quantitative prescription for achieving large enhancements in practical optical systems,

which is applicable to arbitrary geometries and materials and can be implemented with

the recent experimental realizations of EPs [38, 191, 37, 190, 35, 178, 176, 36].

Traditional enhancement formulas fail at EPs since they are based on non-degenerate

perturbation theory, which is invalid at EPs. Standard perturbation theory relies

on Taylor expansions of differentiable functions while, near EPs, eigenvalues change

non-analytically in response to small matrix perturbations. Instead, one needs to use

a Jordan-form-based perturbative expansion [34, 204]. Although Jordan-vector per-
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turbation theory is well known in linear algebra, along with related results on resol-

vent operators, these algebraic facts have not previously been applied to analyze Pur-

cell/Petermann enhancement or LDOS in a general EP setting. By using such a modified

expansion, we obtain a quantitative formula for the LDOS, which is a measure of how

much power a dipole source can radiate [28] or, equivalently, a measure of its spon-

taneous emission rate. Note that similar expansion methods were previously used to

evaluate the Green’s functions at EPs [205, 65, 206]; however, these works were limited

to one-dimensional and paraxial systems, and were not applied to study spontaneous

emission. An alternative semi-analytic approach was presented in [50]. In this work,

the authors applied a scattering matrix formulation to model a simple one-dimensional

system and analyzed its emission properties under PT -symmetry conditions. With

proper modifications, such an analysis could be generalized to handle more complicated

one-dimensional structures (e.g., continuously varying media or complex layered me-

dia). However, our general formulas [Eqs. (7.9) and (7.10)] can be directly applied to

any system with an EP (e.g., three-dimensional photonic or plasmonic structures). Our

results demonstrate that the unique spectral properties at EPs are general and do not

rely on certain symmetry or dimensionality. Moreover, our theory enables modeling

complex experimental apparatuses, performing numerical optimization and design, and

deriving bounds on the enhancement, thereby clarifying the usefulness and limitations

of EPs for enhancing light matter interactions.

Formally, the Petermann factor is inversely proportional to the “unconjugated norm”

of the resonant mode
∫
dx εE2

n, where En is the mode profile and ε is the dielectric

permittivity (with modifications to this “norm” when treating dispersive media [3].)

At an EP, the unconjugated norm vanishes,
∫
dx εE2

n = 0 [187] (a property also called

“self-orthogonality” [33]), and the Petermann factor diverges. In fact, the Petermann

159



factor can only diverge at an EP. This is because the Petermann factor is proportional

to the sensitivity of an eigenvalue to perturbations [46] (its “condition number”), and

that sensitivity can only diverge when two eigenvectors coalesce (i.e., at an EP) by

the Bauer–Fike theorem [46]. This implies that our theory is applicable to any system

exhibiting a giant Petermann factor. Specifically, in any laser and optical parametric

oscillator (OPO) system where a giant Petermann factor was identified [207, 48, 49],

there must have been a nearby “hidden” EP.

7.2 Local density of states and Green’s function expan-

sions

In the following section, we give some background on LDOS calculations in non-degenerate

systems, i.e., systems without EPs (Sec. 7.2.1), and then we review perturbation the-

ory for systems with EPs (Sec. 7.2.2). Finally, in Sec. 7.2.3, we present a condensed

derivation of our key analytical result—a formula for the LDOS at an EP [Eqs. (7.9)

and (7.10)].

7.2.1 LDOS formula for non-degenerate resonances

The spontaneous emission rate of a dipolar emitter, oriented along the direction êµ, is

proportional to the local density of states (LDOS) [208, 209, 210], which can be related

to the dyadic Green’s function G via [208, 211, 28]

LDOSµ(x, ω) = −2ω
π Im[Gµµ(x,x, ω)]. (7.1)
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Here, G is defined as the response field to a point source J = δ(x−x′)êµ at frequency ω.

More generally, currents and fields are related via Maxwell’s frequency-domain partial

differential equation, (∇×∇×−ω2ε)E = iωJ, where ε is the dielectric permittivity of

the medium. Throughout the chapter, we use bold letters for vectors, carets for unit

vectors, and Greek letters for vector components. Moreover, we set the speed of light

to be one (c = 1).

Computationally, one can directly invert Maxwell’s equations to find G and evaluate

Eq. (7.1), but this provides little intuitive understanding. A modal expansion of the

Green’s function, when applied properly, can be more insightful. Away from an EP, one

can use the standard modal expansion formula for non-dispersive media [147]:

Gµµ(ω,x,x
′) =

∑
n

ER
nµ(x)E

L
nµ(x

′)

(ω2 − ω2
n)(E

L
n ,E

R
n )
. (7.2)

(We review the derivation of this formula for non-dispersive media in Sec. 7.6 and treat

dispersion effects in Sec. 7.7). Here, ER
n is a solution to the source-free Maxwell’s

equation with outgoing boundary conditions or, more explicitly, is a right eigenvector

of the eigenvalue problem: ÂER
n = ω2

nE
R
n [23] (with Â ≡ ε−1∇ × ∇×). Left modes

(EL
n) are eigenvectors of the transposed operator ÂT ≡ ∇ × ∇ × ε−1. In recipro-

cal media ε = εT , and one can easily derive a simple relation between left and right

eigenvectors: EL
n = εER

n . Right and left modes which correspond to different eigenval-

ues are orthogonal under the unconjugated “inner product” (EL
n ,E

R
m) ≡

∫
dxEL

n ·ER
m =

δm,n [212, 171, 56]. [The convergence of the denominator (EL
n ,E

R
n ) is proven in Sec. 7.8.]

Due to the outgoing boundary condition, the modes solve a non-Hermitian eigenvalue

problem whose eigenvalues (ω2
n) are generally complex, with the imaginary part indi-

cating the decay of modal energy in time (in accordance with our intuition that typical
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resonances have finite lifetimes). From Eq. (7.2), it follows that the eigenfrequencies,

±ωn, are poles of the Green’s function—a key concept in the mathematical analysis

of resonances [213]. When considering dispersive media, the denominator in Eq. (7.2)

changes to
∫
dxEL

n(x)[ω
2ε(ω, x)− ω2

nε(ωn, x)]E
R
n (x), as shown in Sec. 7.7.

In many cases of interest, one can get a fairly accurate approximation for the LDOS

by including only low-loss resonances in the Green’s function expansion [Eq. (7.2)] since

only those contribute substantially to the emission spectrum. Under this approximation

(i.e., considering only resonances ωn = Ωn − iγn which lie close to the real axis in the

complex plane, with γn ≪ Ωn), the spectral lineshape of the LDOS reduces to a sum of

Lorentzian functions, weighted by the local field intensity:

LDOSµ(x, ω) ≈
∑
n

1

π

γn
(ω − Ωn)2 + γ2n

Re
[
ER

nµ(x)E
L
nµ(x)

(EL
n ,E

R
n )

]
. (7.3)

Near the resonant frequencies, ω ≈ Ωn, the peak of the LDOS scales linearly with

the resonance quality factor Qn ≡ Ωn
2γn

, leading to the celebrated Purcell enhancement

factor [29]. On the other hand, the “unconjugated norm,” (EL
n ,E

R
n ), which appears

in the denominator of Eq. (7.3) leads to the Petermann enhancement factor, defined

as (ER
n
∗
,ER

n )(E
L
n
∗
,EL

n)/
∣∣(EL

n ,E
R
n )
∣∣2 [184]. In non-Hermitian systems, the mode profiles

(En) are complex and the Petermann factor is, generally, greater than one. At the

extreme case of an EP, the unconjugated norm in the denominator vanishes and the

enhancement factor diverges. However, this divergence does not properly describe LDOS

or spontaneous emission at EPs since Eq. (7.3) is invalid at the EP. That is because

the derivation of Eq. (7.2) assumes that the set of eigenvectors of the operator Â spans

the Hilbert space, but this assumption breaks down at the EP. In order to complete

the set of eigenvectors of Â into a basis and obtain a valid expansion for the Green’s
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function and the LDOS at the EP, we introduce in the following section additional

Jordan vectors [46, 34, 214].

7.2.2 Jordan vectors and perturbation theory near EPs

At a (second order) EP, the operator Â0 is defective—it does not have a complete basis of

eigenvectors and is, therefore, not diagonalizable. However, one can find an eigenvector

(ER
0 ) and an associated Jordan vector (JR

0 ), which satisfy the chain relations [34]:

Â0E
R
0 = λEPE

R
0 ,

Â0J
R
0 = λEPJ

R
0 +ER

0 , (7.4)

where λEP = ω2
EP is the degenerate eigenvalue. Equivalent expressions can be written

for the left eigenvector EL
0 and Jordan vector JL

0 . In order to uniquely define the Jordan

chain vectors, we need to specify two normalization conditions, which we choose to be

(EL
0 ,J

R
0 ) = 1 and (JL

0 ,J
R
0 ) = 0.

Near the EP, on can find a pair of nearly degenerate eigenvectors and eigenvalues

that satisfy

Â(p)ER
± = λ±E

R
±, (7.5)

where p≪ 1 represents a small deviation from the EP. [More explicitly, Â(p) ≡ 1
ε(p)∇×

∇× = Â0 + Â1p + O(p2), with Â0 being defective]. In order to obtain consistent

perturbative expansions for E± and λ± near the EP, one can use alternating Puiseux
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series [34]:

λ± = λ0 ± p
1/2λ1 + p λ2 ± p

3/2λ3 + . . .

ER
± = ER

0 ± p
1/2 ER

1 + pER
2 ± p

3/2 ER
3 + . . . (7.6)

Substituting Eq. (7.6) into Eq. (7.5) and using the additional normalization condition

(JL
0 ,E

R
±) = 1, one finds that the leading-order terms in the series are

λ± = λ0 ± p
1/2∆+O(p),

ER
± = ER

0 ± p
1/2∆JR

0 +O(p), (7.7)

where ∆=

√
(EL

0 ,Â1,ER
0 )

(JL
0 ,E

R
0 )

and (EL, Â1,E
R) ≡

∫
EL

0 Â1E
R
0 . In the next section, we use

these results to derive a formula for the LDOS at the EP.

7.2.3 LDOS formula at exceptional points

Near the EP (i.e., for small but non-zero p), one can use the non-degenerate expansion

formula Eq. (7.2) to compute G. In order to compute G at the EP, we substitute the

perturbative expansions for λ± and E± [Eq. (7.7)] into Eq. (7.2) and take the limit of

p going to zero, namely:

GEP
µµ (ω,x,x

′) ≈ lim
p→0

[
ER

+µ(x)E
L
+µ(x

′)

(λ− λ+)(EL
+,E

R
+)

+
ER-µ(x)EL-µ(x′)

(λ− λ-)(EL- ,ER- )

]
. (7.8)

The denominators in Eq. (7.8) vanish in the limit of p→ 0 since (EL
±,E

R
±) = ±2 p

1
2λ1+

O(p) [as follows from Eq. (7.6)]. Most importantly, however, the opposite signs of the

denominators lead to cancellation of the divergences and a finite value remains, leading
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to

GEP
µµ (ω,x,x

′) ≈ 1
(ω2−ω2

EP)
2

ER
0µ(x)E

L
0µ(x

′)

(EL
0 ,J

R
0 )

+ 1
ω2−ω2

EP

ER
0µ(x)J

L
0µ(x

′)+JR
0µ(x)E

L
0µ(x

′)

(EL
0 ,J

R
0 )

. (7.9)

A formula for the LDOS at the EP is obtained by taking the imaginary part of Eq. (7.9).

Considering again low-loss resonances (at which the enhancement is largest), and eval-

uating the LDOS near the EP frequency (ω ≈ ωEP), we find

LDOSEPµ (x, ω) ≈

Ωn

2π

(
γn

(ω − Ωn)2 + γ2n

)2

×
[
1

2
Im
(

ER
0µ(x)E

L
0µ(x)

(E0
n,J

0
n)

)
− ω − Ωn

γn
Re
(

ER
0µ(x)E

L
0µ(x)

(E0
n,J

0
n)

)]
.

(7.10)

Crucially, Eqs. (7.9) and (7.10) yield finite results at the EP resonance frequency

ΩEP. Moreover, a squared Lorentzian prefactor, Ωn
2π (

γn
(ω−Ωn)2+γ2

n
)2, replaces the tra-

ditional Lorentzian prefactors near non-degenerate resonances, 1
π

γn
(ω−Ωn)2+γ2

n
[compare

with Eq. (7.3)]. This unique spectral feature follows directly from the existence of

a double pole in the modified expansion formula for G [the first term in Eq. (7.9)].

As shown in the following section, a squared Lorentzian lineshape implies a narrower

emission peak and greater resonant enhancement in comparison with a non-degenerate

resonance at the same complex frequency. The strength of our formulation [Eqs. (7.9)

and (7.10)] is that it is applicable to arbitrary structures and can therefore be used to

design and optimize complex three-dimensional geometries with EPs. Moreover, it clar-

ifies the conditions under which LDOS enhancement is maximal; essentially, determined

by the relative magnitude of the two terms in Eq. (7.9), depending on the location of

the emitter.
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7.3 Properties of the LDOS at EPs

In this section, we explore the spectral emission properties at EPs [following Eqs. (7.9)

and (7.10)] via a numerical model system of coupled plasmonic resonators.

7.3.1 Example: EPs in plasmonic systems

A convenient approach for tailoring the LDOS in practice is by using plasmonic res-

onances in metallic structures, which can enable ultra-high LDOS enhancements and

are widely used in various applications [215]. In this subsection, we numerically explore

a system of two plasmonic resonators with approximate parity-time (PT ) symmetry.

PT symmetric systems in optics are characterized by having balanced distributions of

gain and loss, and are known to possess EPs at critical gain/loss values at which the

mode profiles undergo spontaneous symmetry breaking [216]. Our numerical setup is

shown on the left-hand side of Fig. 7.1(a). It includes two rods with metallic cores

(ε = −2.3 + 0.0001i) and a silica coating (ε = 2.1316) surrounded by air (ε = 1). The

dimensions of the structure (b = 0.643a, t1 = 0.536a, t2 = 0.16a, and t3 = 0.268a) were

tuned in order to have two nearly degenerate resonances that are spectrally separated

from the neighboring resonances of the structure. We implement outgoing boundary

conditions using perfectly matched layers (PML) [28]. In order to preserve the approx-

imate PT symmetry of the system, gain and loss are added symmetrically to the outer

parts of the coating. By brute-force optimization, we find that an EP occurs when the

gain/loss value is |Im ε| ≈ 0.0002551 and the background permittivity of the upper half

of the silica coating is slightly shifted to ε ≈ 2.129. The right-hand side of Fig. 7.1(a)

depicts the trajectories of the two eigenvalues (red and blue curves) that merge at the
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EP (orange dot) upon varying the gain/loss parameter |Im ε|. More details on the

numerical optimization procedure are given in Sec. 7.9.

gain/loss 

(a)  

Im
(ω

) 
[2
πc

/a
]

Pe
te

rm
a
n

n
 

0.15 0.17 0.1

-100

0

100 1st term x1e-3

2nd term x1e-3
total

ω [2πc/a]

Ag

AgS
iO

2
 c

o
a
ti

n
g

r0

a

b
t1

t2

t3

t2

t3

x

y

(b)  
LD

O
S

x
 (

a
.u

.)

x1e-4
0.84 0.95 1.06

0.9335    0.934     0.9345    0.9350.9335 0.934 0.9345 0.935

more EP

κ 

1e6

1e3

1e0

-0.0105

-0.011

-0.0115

-0.012

Re(ω) [2πc/a]

0 1 2 3 4 5

x 10
−4

10
0

10
3

10
6

0 1 2 3 4 5

fa
ct

o
r

air

gain/loss

LOSS

GAIN

100

-100

Figure 7.1: Plasmonic system with exceptional points. (a) Left: Two plasmonic resonators with
silver cores and a silica coating, with gain and loss (red/blue) added to the outer sides of the coat-
ing. Right: Eigenvalue trajectories in the complex plane upon increasing gain/loss. The trajecto-
ries merge at the EP (orange dot). (b) The Petermann factor, (ER

n
∗
,ER

n )(E
L
n
∗
,EL

n)/
∣∣(EL

n ,E
R
n )
∣∣2,

diverges at the EP (left) while the LDOSx [evaluated using Eq. (7.2)] remains finite (right), since
the giant contributions of the terms in Eq. (7.2) have opposite signs (blue/red curves, scaled by
10−3).

We discretize Maxwell’s equations using a finite-difference frequency-domain (FDFD)

approach [217] and compute the LDOS by taking imaginary part of the Green’s function.

The Green’s function is found via three methods: (i) directly inverting Maxwell’s partial

differential equation, (ii) using the non-degenerate expansion formula, Eq. (7.2), which

is valid away from the EP, and (iii) using the degenerate formula, Eq. (7.9), at the

EP. In principle, one can use the non-degenerate formula, Eq. (7.2), very close to the

EP to compute the LDOS, relying on cancellation between the terms to yield a finite
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result. However, non-degenerate perturbation theory obfuscates the finite enhancement

at the EP, confusing previous estimates of LDOS, whereas our formulation, based on

degenerate perturbation theory, naturally captures the finite enhancement.

Our numerical results are shown in Fig. 7.1(b). The plot on the left shows the Peter-

mann factor, which diverges at the EP, while the right-hand side plot shows the finite

LDOS. We excite TM modes and, therefore, compute the LDOS for x-polarized modes

(denoted by LDOSx). The red and blue curves show the two terms that contribute to

the sum in Eq. (7.2). Upon approaching the EP, the individual contributions to the

sum diverge with opposite signs, while their sum (black curve) remains finite. The red

and blue curves are scaled by 10−3 for ease of presentation.

7.3.2 Simplified model for the LDOS

Although our general formula for the LDOS at the EP can be directly applied to the

plasmonic system of Fig. 7.1, it is useful to introduce a simplified model to interpret the

results. First, we project Maxwell’s operator, Â = ε−1∇×∇×, onto the two-dimensional

subspace spanned by the nearly degenerate eigenvectors near the EP, thus producing a

reduced 2×2matrix, Â (which gives a meaningful description of the system as long as the

emission spectrum is dominated by the two coalescing resonances). Second, we employ

an approach similar in spirit to coupled-mode theory (CMT) [218, 219], which involves

expressing the modes of the two-rod system (the coupled system) in terms of modes

of two reduced systems (the uncoupled systems), containing only one or the other rod.

Such an approach is valid whenever the rod–rod separation (t1) in the coupled system

is large enough so that the frequency splitting induced by the coupling [κ depicted in

Fig. 7.1(a)] is smaller than the uncoupled resonance frequencies. Denoting by U and V
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the matrices whose columns are the right and left eigenvectors of the uncoupled system

(ER
1,2 and EL

1,2 corresponding to rod 1 and 2 respectively), we find in Sec. 7.10 that the

reduced operator is

Â = V T ÂU =

 [ωEP − iη]2 2ΩEPκ

2ΩEPκ [ωEP + iη]2

 . (7.11)

Here, ωEP ≡ ΩEP − iγ is the degenerate eigenvalue (ΩEP is the resonant frequency

while γ denotes the decay rate), and κ is the near-field coupling between the rods.

In general, κ is complex; however, in low-loss systems, κ is almost real and, in the

current analysis, we neglect its imaginary part entirely for ease of discussion. Finally,

η ≈ ΩEP
2

∫
dxEL

n(Im ε/ε)ER
n

(EL
n ,E

R
n )

is the imaginary frequency shift induced by the gain and loss

(Im ε) in the coating. (This definition of η follows from perturbation theory for small

gain/loss [23].) This approach is closely related to the recent 2 × 2 formalism used in

PT -symmetry works [189, 190, 178, 191, 37]. In fact, the formulations are equivalent

for low-loss resonances, γ ≪ ΩEP, which is the regime considered in this section. We

note that the EP occurs at a complex frequency (i.e., below the real axis in the complex

plane) due to outgoing boundary conditions.

11

Next, we obtain a simplified formula for the LDOS at the EP. The reduced matrix Â

has an EP at the critical gain/loss value: η = κ. Denoting the defective matrix by Â0

and the identity operator by 11, we can relate the full Green’s function at the EP to Â0

via:

GEP(r, r
′, ω) ≡ (Â0 − ω211)−1 ≈ U(Â0 − ω211)−1V T . (7.12)
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A formula for the LDOS is obtained by taking the imaginary part of Eq. (7.12), which

allows expressing the LDOS in terms of entries of the 2 × 2 resolvent operator, (Â0 −

ω211)−1, weighted by a product of the left and right local fields ER
nE

L
m (with n,m = 1, 2

denoting the two resonances of the uncoupled system).

The advantage of this formulation becomes apparent when evaluating the LDOS in

close proximity to one of the resonators. For instance, near the gain region [e.g., at

r0 in Fig. 7.1(a)], the lossy mode intensity, ∝ |ER
2 E

L
2 |, is negligible, so it follows from

Eq. (7.12) that the LDOS is proportional to the first diagonal entry of the resolvent

(Â0 − ω211)−1
[1,1] =

1

ω2 − ω2
EP

+
2ΩEPκ

[ω2 − ω2
EP]

2
. (7.13)

Moreover, since we consider low-loss resonances, we can normalize the mode profiles so

that they are mainly real (Re[E1] ≈ E1), and we find

LDOSx(r0, ω) ≈
ER

1 (r0)EL
1 (r0)

2ΩEP

[
γ

(ω−ΩEP)2+γ2 +
κ[γ2−(ω−ΩEP)

2]
[γ2−(ω−ΩEP)2]

2+[2γ(ω−ΩEP)]
2

]
. (7.14)

The inset in Fig. 7.2(b) demonstrates the nearly perfect agreement between this simpli-

fied CMT-based LDOS formula (red dashed curve) and brute-force inversion of Maxwell’s

equation, discretized via FDFD (black curve).

7.3.3 Quadratic scaling and linewidth narrowing

In this subsection, we apply our CMT-based simplified formulas [Eqs. (7.12)–(7.14)] to

evaluate the LDOSx near the upper rod [see Fig. 7.1(a)]. As can be seen from Eq. (7.14),
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Figure 7.2: Spectral properties of LDOS at EPs. (a) LDOS peak vs. quality factor Q for five
coupling values κ, showing quadratic (linear) scaling for large (small) κ values. Q is varied by
adding gain to the coating, while κ is varied by changing the rod–rod separation. Inset: Red and
blue points from the main plot, on a log-log scale. (b) Normalized linewidth (FWHM) at the
EP, Γ/Γ0, vs. normalized coupling, κ/γ , computed using: 1. FDFD-discretization of Maxwell’s
equations (dots), and 2. the CMT-based linewidth formula, Eq. (7.16) (black line). The limit
as κ/γ → ∞ is shown in purple (dashed line). (Γ0 ≡ 2γ is the FWHM of a Lorentzian curve,
see text.) Inset: LDOSx at the EP, computed via FDFD (black) and via CMT [Eq. (7.14), red
dashed line].

the LDOS peak value scales as

MEP ≡ max
ω
{LDOS(r0, ω)} ∝

1

γ
+

κ

γ2
. (7.15)

When the resonance-decay rate γ is much smaller than the mode-coupling rate κ, the

lineshape approaches a squared Lorentzian curve and MEP scales quadratically with

the quality factor Q ≡ ΩEP
2γ [23]. On the other hand, when γ ≫ κ, the LDOS peak

scales linearly with Q (similar to isolated resonances, as predicted by Purcell [29]).

Figure 7.2(a) demonstrates this key feature. To this end, we computed the LDOS peak,

MEP, for several resonance decay rates γ (corresponding to several Q values), varied by

introducing homogeneous background gain in the coating. We repeated this procedure
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for five rod–rod separations (corresponding to five κ values, ranging from 0.0015 to

0.0274), and verified the scaling laws of Eq. (7.15). The inset in Fig. 7.2(a) presents

the blue and red data points from the main plot on a log-log scale, providing additional

confirmation for the quadratic scaling at γ ≪ κ (blue) and the linear scaling in the

opposite limit of γ ≫ κ (red).

Another consequence of a squared Lorentzian lineshape is a narrower emission peak,

compared to that of a standard Lorentzian spectrum. The full-width half maximum

(FWHM) of a standard Lorentzian curve, 1
π

γn
(ω−Ωn)2+γ2

n
, is Γ0 = 2γ (where Ω0 ± Γ0/2 is

the frequency at which the Lorentzian drops to half of its maximal value). On the other

hand, following Eq. (7.14), the FWHM of the LDOS near an EP with Im[ωEP] = γ is

Γ = Γ0

√√
γ2 + 2γκ+ 5κ2 − 2κ

γ + κ
. (7.16)

As shown in Fig. 7.2(b), the FWHM at the EP is always smaller than Γ0, approaching

a value of
√√

5− 2Γ0 ≈ 0.48Γ0 in the limit of κ/γ → ∞. We computed the FWHM

directly from the FDFD-discretization of Maxwell’s equations (dots) and by using the

CMT-based simplified expression, Eq. (7.14) (black solid line), proving very good agree-

ment between the two methods.

7.4 LDOS enhancement at EPs

In the previous section, we showed that a squared Lorentzian lineshape can lead to

enhanced emission rates and reduced linewidth. In this section, we quantify the en-

hancement at the EP and study its bounds. To demonstrate our results, we employ

another numerical example: a periodic waveguide (Sec. 7.4.1). This structure allows
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us to independently tune gain/loss and degeneracy and, therefore, demonstrate the

impacts of the two effects separately. We treat both passive (Sec. 7.4.2) and active

(Sec. 7.4.4) systems (i.e., systems without and with gain respectively), and then gener-

alize our results (in Sec. 7.4.3) to higher-order EPs, which form at the coalescence of

multiple resonance.

7.4.1 Example: EPs in periodic structures

To demonstrate our results in this section, we numerically explore the periodic struc-

ture shown in Fig. 7.3(a). The modes of a periodic system are Bloch wavefunctions of

the form E(r) = Ek(r)e
ik·r, where Ek(r) is a periodic function and k is the wavevec-

tor [220]. At each k, the mode Ek(r) solves an eigenvalue problem of the form [218,

219]: Â(k)Enk = ω2
nkEnk, where Â(k) ≡ ε−1(∇ + ik) × (∇ + ik)× and n labels the

band. The figure of merit for spontaneous emission in periodic structures is the LDOS

per wavevector k and field component µ, which is a measure of the power expended by

a Bloch-periodic dipole source with a particular k-vector, in the presence of an elec-

tromagnetic field polarized along direction µ. We abbreviate it as LDOSk (also called

the mutual density of states [221]). The LDOSk can be integrated over k to obtain

the LDOS from an isolated (non-periodic) point source in the periodic structure [222].

However, the effect of the EP is much clearer in the integrand (LDOSk) than in the

integral (LDOS), and so we focus here on the former for illustration purposes, exploiting

the fact that k allows us to control how close we are to an EP without altering losses.

Our example system consists of a waveguide with periodic index modulation along

its central axis, x̂ [Fig. 7.3(a)]. PML are used to truncate the transverse (ŷ) direction.

The design parameters are: ε1 = 12, ε2 = 13.137, d = 0.51a, and t = 0.25a. These
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parameters were chosen so that the corresponding one-dimensional system (with the

same ε1, ε2, d and infinite thickness, t → ∞) has nearly degenerate second and third

frequency bands near kx = 0 [guaranteed by choosing parameters close to the quarter-

wave plate condition:
√
ε1d =

√
ε2(a − d)]. We force an EP for TM-polarized modes

(Ez,Hx,Hy) by fine-tuning the wavevector kx and the permittivity contrast δε ≡ ε2−ε1

(see Sec. 7.9, Fig. 7.6). Figure 7.3(a) also depicts the real and imaginary parts of the

coalescing eigenvalues (blue and red curves respectively). At k = 0 (also called the

Γ point), Maxwell’s eigenvalue problem is complex-symmetric and, consequently, the

eigenvectors ER
1 and ER

2 are orthogonal (see mode profiles in the lower-left corner,

having even/odd symmetry when x is flipped to −x). At the EP, the eigenmodes

ER
1,2 merge into a single degenerate mode ER

0 (upper-right panel). We also compute

the Jordan vector (JR
0 ) with our novel iterative method [45], and use it to verify our

formula for the LDOS at the EP [Eq. (7.10)].

7.4.2 Passive structures with EPs

Figure 7.3(b) depicts the LDOSk near the periodic waveguide at several wavevectors

(kEP, k1, k2, k∞ marked on the lower plot). Far from the EP (at k∞), the LDOSk is a

sum of two non-overlapping Lorentzian curves. As k approaches the EP (e.g., at k1 and

k2), the resonance peaks begin to overlap and the LDOSk peaks increase due to the

growing Petermann factor. Most importantly, for k values near but not equal to kEP,

the traditional modal expansion formula [Eq. (7.2)] approaches the limiting Jordan-

form-based formula [Eq. (7.9)]. Physically, this means that structures with nearby

EPs can be approximated by truly defective structures, making this analysis useful for

experimental systems, which can only be close to but not exactly at an EP due to
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outgoing boundary condition in the transverse direction. Bottom left: Field patterns of TM
modes at k = 0 (only the real part is shown). Top right: Degenerate mode and Jordan vector at
kEP. Bottom right: Resonance [ωn(k)] vs. k-vector, showing an EP (orange dot) at kEPa/2π ≈
1.46×10−4. (b) Top plot, positive y-axis: LDOSk at r0 for four k-values (kEP, k1, k2, k∞,
marked on the lower plot). Negative y-axis: Resonances [ωn(k)] in the complex plane. Bottom:
Normalized LDOSk peak (Mk/M∞) vs. deviation from the EP (∆k) for four structures with
different Q values, showing 4-fold enhancement at the EP. (Mk is the LDOS peak at k.)

fabrication and calibration imperfections. Computationally, this implies that as long as

Maxwell’s operator A(k) is not exactly defective, one can use Eq. (7.2) to evaluate the

LDOSk, when properly canceling the divergent terms in the sum.

The lower plot in Fig. 7.3(b) compares the enhancement,Mk/M∞, for structures with

varying quality factors, where we introduce the definitions Mk ≡ γ ·maxω[LDOSk(ω)]

and M∞ ≡ γ ·maxω[LDOS∞(ω)]. We change Q by modifying the permittivity contrast

δε: Radiation losses decrease with decreasing index contrast of the periodic modula-

tion [223], with the limit of zero contrast corresponding to infinite Q. By plotting the

normalized LDOSk peak (Mk/M∞) vs. deviation from the EP (∆k ≡ k − kEP), we

find that the enhancement at the EP (MEP/M∞) is always four-fold, regardless of Q.

This follows from a sum rule which states that the spectrally integrated LDOS (and,
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therefore, also the LDOSk) is a constant [224]. It implies that the maximum LDOS at

an EP [i.e., the peak of a square Lorentzian MEPγ
3

[(ω−ΩEP)2+γ2]2
] is four times larger than the

maximum LDOS at a non-degenerate resonance [i.e., the peak of a simple Lorentzian
M∞γ

(ω−ΩEP)2+γ2 ].

7.4.3 Passive structures with higher order EPs

Motivated by recent interest in higher-order EPs [225, 226, 227, 179], we generalize our

results from the previous section to nth order degeneracies (i.e., EPs that form when

n degenerate eigenvectors merge). In this case, we define the enhancement factor as

the ratio of the LDOS peak at the EP and at a reference point with n non-degenerate

resonances (generalizing our earlier definition for MEP/M∞). Following the arguments

from Sec. 7.3.2, we expect to find a squared Lorentzian emission curve at second-order

EPs, a cubic Lorentzian curve at third-order EPs, and a Lorentzian to the nth power,

Ln(ω) = Mnγ2n−1

[(ω−ΩEP)2+γ2]n
, at nth order EPs. (This is essentially equivalent to a known

result on the rate of divergence of the norm of the resolvent matrix as an nth order EP

is approached [46].) From the sum rule mentioned above [224], the spectrally integrated

LDOS at an nth order EP, Sn =
∫
dωLn(ω) =

Mn
√
πΓ[n− 1

2
]

Γ[n] , is equal to the integrated

LDOS before the n resonances merge (here, Γ[n] is the gamma function). Realizing

that the enhancement at the EP is maximal when merging n identical resonances, a

bound can be computed by solving Sn = nS1. We find that the enhancement at the EP

is at most Mn/M1 =
√
πΓ[n+1]

Γ[n− 1
2
]
. For example, at third order passive EPs (n = 3), the

enhancement is at most 8-fold (as some of us recently confirmed in [51]).

These results imply that higher order EPs could potentially provide a new route for

achieving order-of-magnitude enhancement of the LDOS and order-of-magnitude nar-
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rowing of the emission linewidth (in contrast to traditional methods, which typically aim

to maximize the traditional Purcell factor by increasing the quality factor and reducing

the mode volume [29]). However, this result does not necessarily mean that higher-

order EPs will yield a larger LDOS than the best lower-order EP or single resonance.

The reason is that the degrees of freedom that one would use to bring n resonances

together might otherwise be employed to enhance the Q of an individual resonance. In

practice, there will be a tradeoff between the quality of individual resonances and the

order of the EP.

7.4.4 Active structures

We show in this section that much greater enhancements can be achieved in active

systems, i.e., by introducing gain. Figure 7.4 compares four periodic waveguides with

different index contrasts (δε), corresponding to different passive quality factors, Qp.

Gain and loss are added to each of the waveguides in order to force EPs, all of which

share the same active quality factor Qa. The empty (filled) markers in Fig. 7.4(a) are

the EP resonances (ωEP) in the complex plane before (after) adding gain/loss. As shown

in Fig. 7.4(b), the structure with the smallest passive quality factor Qp has the largest

LDOSk enhancement at the EP since it requires more gain in order to attain the same

Qa. Structures with smaller initial Qp values can lead to even greater enhancements,

and we present such a case in Sec. 7.11. In principle, the relative enhancement at the

EP,MEP/M∞, is not bounded in this computational model. However, in practice, giant

relative enhancements do not necessarily imply giant absolute LDOS values (since the

value of the LDOS at the reference point may be very small). Moreover, when adding

enough gain to bring the system to the lasing threshold, stimulated emission eventually
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limits line narrowing and LDOS enhancement at the EP.
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Figure 7.4: LDOSk enhancement in active structures. (a) Resonances with different passive loss
rates γp (hollow symbols) and equal active loss rates γa (full symbols). Inset: Structure from
Fig. 7.3(a) with gain/loss added to the waveguide. (b) Normalized LDOSk peak (Mk/M∞) vs.
∆k, evaluated at r0 [marked in Fig. 7.3(a)], after adding gain/loss. The enhancement at the EP
increases with the overall gain.

Similar to the analysis of the plasmonic example in Sec. 7.3, we can introduce a

simplified 2 × 2 model to interpret the results [analogous to Eq. (7.11)]. We project

the full Maxwell’s operator Â onto the subspace spanned by the two modes at kx = 0

[shown in the left-lower corner of Fig. 7.3(a)] and we obtain

Â =

 [ΩEP ± iη]2 2ΩEPvgk

2ΩEPvgk [ΩEP − 2iγp ± iη]2

 , (7.17)

where vg ≡ ∂ω
∂k

∣∣
k=0

is the the group velocity (similar to the model used in [38]). Prior

to adding gain/loss, an EP occurs when vgk = γp, and the degenerate frequency is

ωEP = ΩEP− iγp. After adding gain/loss, ±iη, the EP frequency moves vertically in the
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complex plane, becoming ΩEP−iγa, while the EP condition remains the same: vgk = γp.

In analogy to Eq. (7.15), this model implies that the maximal enhancement at the EP

scales as MEP ∝ γp
γ2
a
+ 1

γa
. The quadratic scaling of MEP with Qa in the limit of γa ≪ γp

is demonstrated in Sec. 7.11 [but this result is essentially another demonstration of the

spectral property shown in Fig. 7.2(b)].

7.5 Discussion

The theory presented in this work provides a quantitative prescription for achieving

large spontaneous emission rates using EPs, potentially exceeding by orders of mag-

nitude those attained with standard non-degenerate resonances. Such enhancements

could be useful for various applications, including fluorescent and Raman sensing [228],

high-power low-coherence light sources [174], and sources with tunable coherence [229].

Moreover, by extending the current linear theory to account for EPs in nonlinear sys-

tems, our approach could be applied to study the properties of lasers at EPs—a topic

that has recently drawn great attention in the optics community [178, 191, 37, 230].

Our formulation for the LDOS at the EP [Eqs. (7.9) and (7.10)] establishes that the

enhancement generally consists of two terms, one that scales linearly and one that scales

quadratically with the quality factor. In Sec. A.2 and Sec. 7.4, we verified this scaling

argument via two numerical examples, and we employed simplified 2 × 2 models to

estimate the coefficients of the quadratic terms in the LDOS formula. (In the plasmonic

system, we found that the coefficient was the coupling constant κ, while in the periodic

example, the coefficient was the passive decay rate γp.) More generally, we show in
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Sec. 7.12 that for arbitrary low-loss systems, the quadratic coefficient is bounded by

κ ≤ |ωEP|
√

max |Im ε|. (7.18)

This result provides an easy-to-evaluate upper bound on the maximal enhancement in

complicated geometries, depending only on the maximal gain/loss of the constituent

materials. More explicitly, in active systems, we find that the maximal enhancement at

the EP is bounded by MEP
M∞

= 2(1 + κ
Im[ωEP]

) ≤ 2
(
1 + 2Q|

√
max |Im ε|

)
. Note that in

our plasmonic example, the quadratic coefficient is within 10% of the bound.

Finally, our theory extends beyond spontaneous emission, and can be applied to a

broader class of phenomena described by the LDOS. For example, we anticipate sim-

ilar enhancements in higher-harmonic generation rates in nonlinear media (e.g., Kerr

media). In that case, the input lower-harmonic field (multiplied by the nonlinear sus-

ceptibility) acts as a source to the higher-harmonic field. To lowest order in the nonlin-

earity, the converted power is found by convolving the Green’s function with the input

signal. This is analogous to our formulation of spontaneous emission (which involved

convolving a dipole source with the Green’s function), and would therefore result in

similar enhancements [52]. More generally, a similar treatment could produce enhance-

ments in related quantities at EPs in other areas of physics (e.g., exciton-polariton [35]

mechanical systems [36], and also leak-wave antennas both at radio-frequency and vis-

ible frequencies [231, 232]). Finally, our theory can be generalized to study scattering

and extinction problems. We find, however, that even though EPs can produce special

spectral features in scattering cross-sections, they do not give rise to giant scattering

enhancements, since the scattered intensity is bounded by the incoming intensity (and

the bound of perfect scattering can be easily achieved with a single non-degenerate
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resonance [233]).

7.6 Appendix A: Traditional Green’s function expansion

In this section we review the derivation of the Eq. (7.2) in the main text. Our deriva-

tion is similar to standard methods for Hermitian eigenvalue problems [147], with the

necessary modifications for treating general non-Hermitian systems (most importantly,

using the unconjugated “inner product” [33] between left and right eigenmodes).

Given a non-magnetic medium with dielectric permittivity ε, the fields E and cur-

rents J in the medium are related via Maxwell’s frequency-domain partial differential

equation:

(Âr − ω211)E(r) = iωJ(r). (7.19)

where Âr ≡ 1
ε∇r×∇r×. The response to arbitrary currents can be found by convolving

the dyadic Green’s function with the current sources: E(r) =
∫
dr′G(r, r′)J(r′), where

G is defined via:

(Âr − ω211)G(r, r′) = −δ(r− r′)11. (7.20)

In this section, we expand G in terms of right and left resonant modes (ER
n and EL

n),

which are outgoing solutions of the partial differential equations

(Âr − ω2
n11)E

R
n (r) = 0

(ÂT
r − ω2

n11)E
L
n(r) = 0. (7.21)

When the set of eigenvectors of Eq. (7.21) forms a complete basis of the Hilbert space,

one can introduce the completeness relation, which consists of expanding the Dirac delta
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function as

δ(r− r′)11 =
∑
n

ER
n (r)⊗EL

n(r
′), (7.22)

where ⊗ is the outer/tensor product u ⊗ v = uvT . The question of completeness of

eigenmodes in non-Hermitian open systems has not been proven in general, for arbitrary

three-dimensional systems. However, since in this work we always evaluate the Green’s

function in close proximity to the resonators and at frequencies close to the resonance

frequencies, the eigenmodes which overlap spectrally and spatially with the emitter give

a good approximation for the LDOS, justifying the use of Eq. (7.22).

Similarly, we wish to find an expansion formula for G or, more explicitly, find the

coefficients an(r′) in the series

G(r, r′) =
∑
n

ER
n (r)⊗ an(r

′). (7.23)

To this end, we substitute Eq. (7.22) and Eq. (7.23) into Eq. (7.20) and obtain

∑
n

(
Ar − ω2

)
ER

n (r)⊗ an(r
′) = −

∑
n

ER
n (r)⊗EL

n(r
′). (7.24)

Next, we multiply both sides of the equation by [EL
m(r)]

T . Using the relation: [EL
m(r)]TAr =

ω2
m[EL

m(r)]T , integrating over r, and invoking the bi-orthogonality relation for non-

Hermitian systems [234]: ∫
drEL

m(r) ·ER
n (r) = δm,n, (7.25)

we obtain am(r′) = EL
m(r′)

ω2−ω2
m
. Finally, substituting this result in Eq. (7.23) we obtain an

eigenmode expansion of the dyadic Green’s function [which reduces to Eq. (7.2) in the
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text]:

G(r, r′, ω) =
∑
n

1

ω2 − ω2
n

ER
n (r)⊗EL

n(r
′)∫

drER
n (r) ·EL

n(r)
. (7.26)

The integral in the denominator of Eq. (7.26) is one, but we keep it here for comparison

with Eq. (7.2).

Last, we note that in reciprocal media ε = εT , and there exists a simple relation be-

tween left and right eigenvectors: EL
n = εER

n . More generally, the left and right eigen-

vectors of a symmetric generalized eigenvalue problem (EVP): AER
n = λnBER

n ,A
TEL

n =

λnBTEL
n , with A = AT and B = BT are related via EL

n = BER
n . To see this, rewrite the

EVP for the left vectors as (B−1A)TEL
n = A(B−1EL

n) = λnB(B−1EL
n) which shows that

B−1EL
n is a right eigenvector. Note that this relation holds also with Bloch-periodic

boundary conditions (and the surface-term correction found in [235] does not appear

in our formulation). Although the matrix A is no longer symmetric in the k-periodic

problem, it satisfies the relation A(k)T = A(−k), and since we are essentially relating

k-right eigenvectors to (−k)-left eigenvectors, the relation above remains unchanged.

7.7 Appendix B: LDOS formula for dispersive media

In this appendix, we consider the effects of dispersion on the Green’s function near

and at the EP. In accordance with previous work on quasi-normal modes in dispersive

media [236, 237], we find that the Green’s function has non-diagonal contributions

∝ EL
± ⊗ER

∓ near the EP. However, exactly at the EP, the Green’s function has exactly

the same form as the non-dispersive degenerate formula [Eq. (7.9)], with dispersion

affecting only the normalization of the degenerate mode (E0) and Jordan vector (J0).

In the same spirit as our derivation of the non-dispersive formula, we expand the
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Green’s function G in eigenmodes:

G(r, r0, ω) =
∑
m

ER
m(r)⊗αm(ω, r0), (7.27)

and use simple algebraic manipulations to express the coefficients αm in terms of the

modes. Recall that G is defined as the solution to the partial differential equation:

[
∇×∇×−ω2ε(r, ω)

]
G(r, r0, ω) = −δ(r− r0)11 (7.28)

By multiplying both sides of Eq. (7.28) from the left by EL
n(r) and integrating over dr,

we obtain

EL
n(r0) =

∫
drEL

n(r)
[
ω2ε(r, ω)− ω2

nε(r, ωn)
]
G(r, r0, ω) (7.29)

Then, by substituting Eq. (7.27) into Eq. (7.29), we find

EL
n(r0) =∑
m

∫
drEL

n(r)[ω
2ε(ω)− ω2

nε(ωn)]E
R
m(r)⊗αm(ω, r0) ≡

∑
m

(Em,En)αm(ω, r0). (7.30)

(Note that this result was also derived in [237] by invoking Lorentz reciprocity.) Since

we are interested in emission from emitters in close proximity to the resonators and in

frequencies near the resonant frequencies, we may assume that a finite set of N eigenvec-

tors adequately describes the system’s response [similar to our assumption in the non-

dispersive derivation in Eq. (7.22)]. We introduce the vector s(r) = {E1(r), . . . ,EN (r)}

and the matrix Omn ≡ (Em,En), and rewrite Eq. (7.30) as: s(r0) = O(ω)α(ω, r0) or

equivalently α(ω, r0) = O−1(ω)s(r0). With this notation, Eq. (7.27) can be rewritten
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as: G = α(ω, r0)
T s(r) = s(r0)

T (O−1)
T
s(r0) or

G(r, r0, ω) =
∑
nm

(O−1)nmER
n (r)⊗EL

m(r0) (7.31)

where

Oij =

∫
drEL

i [ω
2ε(r, ω)− ω2

i ε(r, ωi)]E
R
j . (7.32)

Equation (7.31) and Eq. (7.32) are the main result of this appendix—an eigenmode

expansion of the Green’s function in the presence of dispersion, generalizing Eq. (7.2)

from the main text. In the non-dispersive limit, this expression reproduces our previous

result since Omn = (Em,En) = (ω2 − ω2
n)
∫
dr εEL

m · ER
n = (ω2 − ω2

n)δmn and G =∑
n(ω

2 − ω2
n)

−1ER
n (r)⊗EL

n(r0).

Next, let us calculate the limit of Eq. (7.31) when two modes E± coalesce at an EP.

Keeping only the terms corresponding to E± in Eq. (7.31), expanding both ω and ω±

in Taylor series around ω0 and introducing the notation:

ω2ε(ω)− ω2
±ε(ω±) = (ω − ω±)

d(ω2ε)
dω

∣∣∣
ω0

≡ (ω − ω±)(ω
2ε)′0 , (7.33)

we find that Oij = (ω − ωj)
∫
dr(ω2ε)′0E

L
i ·ER

j , and the matrix inverse is

O−1 =

 1
ω−ω+

∫
(ω2ε)′0E

L
−·ER

−
N − 1

ω−ω+

∫
(ω2ε)′0E

L
+·ER

−
N

− 1
ω−ω−

∫
(ω2ε)′0E

L
−·ER

+

N
1

ω−ω−

∫
(ω2ε)′0E

L
+·ER

+

N

 , (7.34)

where N ≡
[∫

(ω2ε)′0E
L
+ ·ER

+

] [∫
(ω2ε)′0E

L
− ·ER

−
]
−
[∫

(ω2ε)′0E
L
+ ·ER

−
] [∫

(ω2ε)′0E
L
− ·ER

+

]
.

Substituting Eq. (7.34) into Eq. (7.31), we find that the Green’s function near the EP
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is

G(r, r0, ω) =
ER

+⊗EL
+

ω−ω+

∫
(ω2ε)′0E

L
−·ER

−
N +

ER
−⊗EL

−
ω−ω−

∫
(ω2ε)′0E

L
+·ER

+

N −

ER
−⊗EL

+

ω−ω+

∫
(ω2ε)′0E

L
+·ER

−
N − ER

+⊗EL
−

ω−ω−

∫
(ω2ε)′0E

L
−·ER

+

N . (7.35)

Last, we want to take the limit of Eq. (7.35) as the two modes E± approach the EP.

We expand ω± and E± around the EP using degenerate perturbation theory (using the

notation of Sec. 7.2.2):

ω± ≈ ω0 ±
√
p∆,

E± ≈ E0 ±
√
p∆J0. (7.36)

Generalizing our derivation of the non-dispersive formula, we choose the normalization

conditions
∫
(ω2ε)′0E

L
0 J

R
0 =

∫
(ω2ε)′0J

L
0E

R
0 = 1 and

∫
(ω2ε)′0J

L
0 J

R
0 = 0, while the condi-

tion
∫
(ω2ε)′0E

L
0E

R
0 = 0 is automatically satisfied due to self-orhotognality. With this

normalization, we can calculate integrals in Eq. (7.35):

∫
(ω2ε)′0E

L
±E

R
± =

��������
∫
(ω2ε)′0E

L
0E

R
0 ± 2

√
p∆

∫
(ω2ε)′0E

L
0 J

R
0 + p∆2

�������
∫
(ω2ε)′0J

L
0 J

R
0 +O(p3/2)∫

(ω2ε)′0E
L
±E

R
∓ =

��������
∫
(ω2ε)′0E

L
0E

R
0 − p∆2

�������
∫
(ω2ε)′0J

L
0 J

R
0 +O(p3/2)

N = −4p∆2

∫
(ω2ε)′0E

L
0 J

R
0 +O(p3/2)

The first two terms in Eq. (7.35) have the same form as the non-dispersive expansion

[Eq. (7.8)]: 1
2∆

√
p

ER
+⊗EL

+

ω−ω+
− 1

2∆
√
p

ER
−⊗EL

−
ω−ω−

+ O(p3/2). Upon approaching the EP, each

contributions diverges with an opposite sign, and a finite contribution remains. The
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last two terms scale as √p near the EP, and vanish at the EP. Finally, we obtain

GEP(r, r0, ω) =
ER

0 (r)⊗EL
0 (r0)

(ω − ω0)2
+

JR
0 (r)⊗EL

0 (r0) +ER
0 (r)⊗ JL

0 (r0)

ω − ω0
. (7.37)

Equation (7.37) implies that the green’s function at the EP in dispersive media has the

same form as the non-dispersive formula [Eq. (7.9) in the text], but the normalization

of the modes changes.

7.8 Appendix C: Convergence of the “unconjugated norm”

In this appendix, we show that when perfectly matched layers (PML) are used to im-

plement outgoing boundary conditions, the “unconjugated norm” of a scattering eigen-

mode,
∫
dx ε(x)En(x)

2, converges to a finite result as the PML thickness tends to in-

finity. Scattering eigenmodes are solutions to Maxwell’s eigenvalue problem, ε−1∇ ×

∇ × En = ω2
nEn [23], with outgoing radiation conditions. These solutions (also called

“leaky modes” [64]) have complex frequencies ωn which lie in the lower-half of the com-

plex plane (Im[ωn] < 0) [238] and, consequently, the modal amplitudes (|En|) grow

unboundedly at large distances from the structure. Even though the modal amplitude

diverges, we show that the unconjugated inner product is finite and independent of the

PML parameters, as long as the PML works effectively (i.e., designed so that outgo-

ing waves are attenuated exponentially inside the PML and are not reflected at the

air-PML interface.) We provide a simple proof for a one dimensional geometry. An

abstract proof for the independence of the unconjugated norm on the PML parameters

appeared in [237] (using a generalized definition of the norm, which includes disper-

sion). An alternative one-dimensional proof was given in [239], where the authors used
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analytic continuation of the coordinates, similar to the coordinate stretching method

that we use here.

We consider the one-dimensional geometry depicted in Fig. 7.5(a), which consists

of a slab of thickness a and refractive index n, embedded in air. (Generalizations

to more complex one-dimensional structures straightforwardly follow.) We truncate the

computational cell by placing PML at a finite distance from the slab (|x| = L/2), and we

impose metallic boundary conditions at the cell boundary (x = ±N
2 ). The PML can be

viewed as an analytic continuation of the spatial coordinate into the complex plane [240],

x̃ = x + if(x), where the derivative of f satisfies df
dx = σ(x)

ω . (The latter condition

guaranties that fields oscillating at different frequencies ω will be attenuated inside the

PML at rate that is independent of ω.) For concreteness, we choose: σ(x) = σ0x
d , where

d = N−L
2 is the PML thickness. Consequently, the coordinate stretching transformation

inside the PML is

x̃ = x+ i
σ0
(
x− L

2

)2
2ωd

. (7.38)

Scattering solution for this geometry can be written explicitly as

En =



Ane
−iωnx−(σ0/2d)(x+L/2)2 +Bne

iωnx+(σ0/2d)(x+L/2)2 −N/2 < x < −L/2

Ane
−iωnx +Bne

iωnx −L/2 < x < −a/2

e−iωnnx + eiωnnx −a/2 < x < a/2

Ane
iωnx +Bne

−iωnx a/2 < x < L/2

Ane
iωnx−(σ0/2d)(x−L/2)2 +Bne

−iωnx+(σ0/2d)(x−L/2)2 L/2 < x < N/2

,

where the coefficients An, Bn and resonant frequency ωn are found by requiring conti-

nuity of the field (En) and its derivative (dEn/dx) at the interfaces, while imposing the
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Figure 7.5: Leaky modes in one dimension. (a) A slab in air with PML at the cell boundary.
(b) The intensity of the leaky mode increases exponentially in the air region and is attenuated
in the PML.

boundary condition: En = 0 at ±N/2. We obtain

An =
einka/2 + e−inka/2

eika/2 − Cne−ika/2
,

Bn = −AnCn ,

where we introduced Cn ≡ eiωnN−σ0d.

Next, we compute the unconjugated norm,
∫
εE2

n, and study its convergence. Intro-

ducing the antiderivative function

J(x) ≡
∫ x

dx′ ε(Ane
iωnx′

+Bne
−iωnx′

)2, (7.39)

the unconjugated norm can be written as

I(d) ≡
∫
all
dx εE2 =

∫
Cav

dx εE2 + 2
[
J
(
L
2

)
− J

(
a
2

)]
+ 2

{
J
[
x̃(N2 )

]
− J

[
x̃(L2 )

]}
.

(7.40)
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We now show that whenever the condition Eq. (7.41) (below) holds, I is finite and inde-

pendent of the PML parameters in the limit of d→∞. Since the coordinate stretching

factor is zero at the air-PML boundary [x̃(L2 ) =
L
2 ], the antiderivative terms at L/2 can-

cel (J
(
L
2

)
= J

[
x̃(L2 )

]
). Next, consider the boundary term, J

[
x̃(N2 )

]
. Straightforward

integration of Eq. (7.39) yields three terms, all of which decay exponentially as d→∞,

provided that |Cn| decays exponentially. [The first is A2
ne

2iωnx̃(N/2)

2iωn
=A2

nCn

2iωn
, the second

term is B2
ne

−2iωnx̃(N/2)

−2iωn
= A2

nCn

−2iωn
, and the last term is 2AnBnx̃(N/2) = −2A2

nCn · O(d).]

Introducing ωn = ω′
n − iω′′

n and α = d/L, one finds from the definition of Cn that it

decays exponentially whenever

[ω′′
n(α+ 2) + σ0]d≫ 1. (7.41)

Evaluating the remaining terms in Eq. (7.40),
∫
Cavdx εE

2 and J
(
a
2

)
, we obtain:

lim
d→∞

I(d) = 2
nωn

[sin(nωna) + nωna] +
4i

ωn
cos
(
nωna
2

)
.

The result is finite, and independent of the location of the air-PML interface or the cell

boundary, thus completing the proof.

7.9 Appendix D: Forcing EPs in periodic waveguides

In order to force an EP (i.e., an accidental degeneracy of two nearby resonances), we

need to satisfy a single complex equation (ωm = ωn), which can be done by searching two

real parameters. In the plasmonic example in Sec. 7.3, we search the two-dimensional

parameter space spanned by the gain/loss parameter (|Im ε|) and the (real part) of the

refraction index in the upper-half of the silica coating. In the periodic example from
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Figure 7.6: Forcing EPs in the periodic waveguides. (a) Real and (b) imaginary parts of
the eigenvalues of Maxwell’s operator, as a function of the wavevector kx and the permittivity
contrast δε ≡ ε2 − ε1, for the geometry from Fig. 7.3(a). The EP is found by numerically
minimizing the distance between the two eigenvalue sheets (red and blue surfaces). Cyan dots:
Eigenvalues for fixed kx = kEP and varying δε. Black dots: Eigenvalues for fixed δε = δεEP and
varying kx.

Sec. 7.4, we search the two-dimensional space spanned by the wavevector kx and the

permittivity contrast δε. Figure 7.6 presents our numerical results for the periodic ex-

ample. As shown, we find a degenerate resonance at ωEP = 0.3924377− 0.00004119303i

when kEPa/2π ≈ 1.468× 10−4 and δεEP ≈ 1.137.

7.10 Appendix E: Reduced 2× 2 model for the LDOS

In this section, we derive Eq. (7.11) from the main text, which provides a simplified

formula for the LDOS in Sec. 7.3. Our approach is similar to coupled-mode theory,

originally developed for photonic waveguides [218, 219]. Our derivation consists of

projecting Maxwell’s operator [describing the coupled-rod system from Fig. 7.1(a)] onto

the subspace spanned by the modes of the corresponding uncoupled-system (i.e., a
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system in which the rod–rod separation is infinite).

The field of the (original) coupled system satisfies Maxwell’s equation:

ÂE ≡ 1
ε∇×∇×E = ω2E. (7.42)

Denoting by εℓ the permittivity of a system that contains only a single rod [where

ℓ = 1 (2) indicates the upper (lower) rod in Fig. 7.1(a)], the right eigenvectors of the

uncoupled system satisfy

1
εℓ
∇×∇×ER

ℓ = ω2
ℓE

R
ℓ , (7.43)

with a similar definition for left eigenvectors.

Next, let us compute the projection of A onto the subspace spanned by E1 and E2,

denoted by Â. The diagonal terms of Â are

∫
EL

j
1
ε∇×∇×ER

j ≈
∫

EL
j

1
εj
∇×∇×ER

j = ω2
j . (7.44)

The first approximation follows from the fact that the mode profile ER
j is significant

only in close proximity to resonator j, and in that region ε = εj . The second equality

follows from Eq. (7.43). Now, let us define ∆εj ≡ ε − εj . The off-diagonal terms of Â

are

∫
EL

i
1
ε∇×∇×ER

j =

∫
EL

i
εj
ε

1
εj
∇×∇×ER

j =

ω2
j

∫
EL

i
ε−∆εj

ε ER
j = 2ωj

(
−ωj

2

∫
EL

i
∆εj
ε ER

j

)
≡ 2ωjκij (7.45)

Assuming that the structure is approximately symmetric in the ŷ direction (i.e., under
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exchanging i↔ j), we have κij ≈ κji ≈ κ. In the limit of low losses/gain, γ ≪ ΩEP, we

obtain Eq. (7.11):

Â = V T ÂU =

 (ωEP − iη)2 2ΩEPκ

2ΩEPκ (ωEP + iη)2

 . (7.46)

where U is the matrix whose columns are ER
1 and ER

2 and V is the matrix whose columns

are EL
1 and EL

2

7.11 Appendix F: Giant enhancement in periodic systems
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Figure 7.7: LDOS enhancement in active periodic waveguides. Middle: LDOS peak (Mk)
vs. ∆k for increasing amounts of gain in the waveguide from Fig. 7.3(a). Left: log10(MEP)

vs. log10(Qa) for the data from the middle panel near kEP, showing quadratic scaling with
Qa. Right: log10(M∞) vs. log10(Qa) for the data from the middle panel at k∞, showing linear
scaling with Qa. Inset: Eigenvalues move vertically in the complex plane upon adding gain.

In this section, we demonstrate substantial LDOS enhancements by forcing EPs in
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periodic waveguides with significant amounts of gain. Similar to Sec. 7.3 in the text, we

consider a waveguide with periodic index modulation along x̂ and outgoing boundary

conditions in the transverse y-direction [Fig. 7.3(a)]. The parameters of the system,

prior to adding gain, are ε1 = 12, ε2 ≈ 14.43, and d = 0.4807a.

Figure 7.7 shows our numerical results. At each wavevector, we compute the LDOSk

peak value (Mk) vs. deviation from the EP (∆k ≡ k − kEP) when adding increasing

amounts of gain to the waveguide (i.e., fixing Qp while increasing Qa). The LDOS is

evaluated at r0 [Fig. 7.3(a)] by direct inversion of Maxwell’s equations. We show here

enhancements of ≈ 400, while higher values can easily be obtained; the enhancement is

essentially not bounded in this computational model. However, in reality, it is bounded

by quantum noise near threshold [16]. The side panels in the figure demonstrate that the

LDOS peak scales quadratically with Qa near the EP [Fig. 7.7(a)] and linearly with Qa

away from the EP [Fig. 7.7(c)]. Finally, we note that when evaluating the LDOS near

the center of the computational cell (i.e., at x ≈ 0), the lineshape changes dramatically,

and it actually has a minimum at the resonance frequency and two side peaks, whose

amplitude scales as Q2
a (not shown).

7.12 Appendix G: Limit of LDOS enhancement at an EP

In this section, we derive Eq. (7.18) in the text. Let us first define an effective mode

amplitude ⟨E,E⟩ ≡
∫
Cdx |E|

2, where C denotes a finite region containing the geometry

(e.g., the last scattering surface). In order to obtain an upper bound on the LDOS

enhancement at the EP, we need to estimate the quantities
⟨
ER

0 ,E
R
0

⟩
/
⟨
JR
0 ,J

R
0

⟩
and⟨

EL
0 ,E

L
0

⟩
/
⟨
JL
0 ,J

L
0

⟩
, which determine the relative magnitude of the two terms in the

expansion formula for G at the EP [Eq. (7.9)]. Let us decompose the complex-symmetric
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Maxwell’s operator into: Â = Â′ + iÂ′′, where Â′ ≡ Â+Â∗

2 and Â′′ ≡ Â−Â∗

2i , and

the asterisk denotes complex conjugation. In many cases of interest, one can assume∥∥∥Â′′
∥∥∥≪ ∥∥∥Â′

∥∥∥ (under an appropriate matrix norm). In such cases, one can use defective

perturbation theory (Sec. 7.2.2) to expand the eigenmodes ER
± and eigenvalues ω± of

Â′ in terms ER
0 , JR

0 and λEP. Using Eq. (7.6), we obtain

ER
0 ≈ (ER

+ +ER
−)/2 (7.47)

JR
0 ≈ (ER

+ −ER
−)/(2λ1p

1
2 ). (7.48)

Since Â′ is a real Hermitian operator, it has real and orthogonal eigenvectors E±.

Using Eqs. (7.47) and (7.48) and assuming ⟨E+,E+⟩ ≈ ⟨E−,E−⟩ and ⟨E−,E+⟩ = 0,

one obtains

⟨
ER

0 ,E
R
0

⟩
≈ ⟨E+,E+⟩ /2⟨

JR
0 ,J

R
0

⟩
≈ ⟨E+,E+⟩ /2|λ1|2p. (7.49)

Substituting the explicit perturbative expansion Eq. (7.7), we find

⟨
ER

0 ,E
R
0

⟩⟨
JR
0 ,J

R
0

⟩ ≈ |λ1|2p ≈
∣∣∣∣∣(EL

0 , Â′′,ER
0 )

(JL
0 ,E

R
0 )

,

∣∣∣∣∣ (7.50)

(with an equivalent expression for the left eigenvector). Next, recall the definition of

Â ≡ 1
ε∇ × ∇×. In the limit of low losses, ∥Im ε/ε∥ ≪ 1, we can approximate Â′′ ≈
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− Im ε
ε2
∇×∇× and, consequently

|(EL
0 , Â′′,ER

0 )| ≈
∣∣ω2

EP

∫
EL

0 (Im ε/ε)ER
0

∣∣ =∣∣∣ω2
EP

∫
Im εER

0
2
∣∣∣ ≈ ∣∣∣ω2

EP

∫
Im ε |ER

0 |
2
∣∣∣ ≤ |ωEP|2max |Im ε| , (7.51)

where, in going from the first to the second line, we used the relation ER
0 = ε−1EL

0

(which holds for Maxwell’s eigenvalue problem) and, in the following approximations,

we used the property E2
0 ≈ |E0|2 (valid for low-loss systems) and the normalization

condition
∫
|E0|2 = 1. This completes the proof of Eq. (7.18).

196



Chapter 8

Applications of LDOS enhancement

at exceptional points
In the previous chapter, we showed that the LDOS can increase dramatically when

two non-Hermitian resonances merge at an exceptional point (EP). In this chapter, we

generalize and explore applications of this effect. The work in this chapter was done in

collaboration with Prof. Alejandro Rodriguez from Princeton University and Zin Lin

from Harvard University. In Sec. 8.1, we extend our theory from Ch. 7 to higher-order

EPs, which form when multiple resonances merge, and demonstrate LDOS enhancement

in a realistic structure with a third-order EP (shown in Fig. 8.1).§ Then, in Sec. 8.2,

we study higher-harmonic generation in nonlinear media with EPs.† We use a coupled-

mode theory (CMT) approach to analyze the enhancement near the EP.

8.1 LDOS enhancement near third-order EPs

In this section, we exploit a powerful inverse-design method [241] to design a triply

degenerate Dirac point (DP), formed out of modes belonging to different symmetry
§The results were published in [51]. I was mainly involved in the analytic calculations.
†An online version of our manuscript can be found at [52]. My contribution is in deriving

CMT near EPs in nonlinear media and in showing that the CMT equations can lead to enhanced
frequency-conversion rates.
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representations. In particular, we show that such higher-order DPs can be exploited

to create third-order exceptional points (EP3). In addition, we exploit coupled-mode

theory to derive conditions under which such EP3s can exist and extend recent work [44]

to consider the possible enhancements and spectral modifications in the SE rate of emit-

ters. Specifically, we show that an EP3 can produce 8-fold enhancement in the LDOS

of passive structures, and can lead to a cubic Lorentzian spectrum. More generally,

we find that the enhancement factor scales as
√
n3 for n-fold degenerate EPs. Even

larger enhancements are expected when introducing gain [44]. Our findings provide the

foundations for future discoveries of complex structures with unusual and exotic modal

properties currently out of the reach of conventional, intuitive design principles.

Structures with EPs are designed by exploiting degeneracies between modes of dif-

ferent symmetry representations, often in simple geometries involving cylindrical pillars

or holes on a square or triangular lattice [242, 243]. These singularities are typically

of order two (comprising two interacting modes) and arise partly out of some underly-

ing lattice symmetry (e.g. C4v or C3v) and through the fine-tuning of a few geometric

parameters [242, 244]. For instance, in [38], it was recently demonstrated that a Dirac

point (DP) at the Γ point of a photonic crystal (PhC) with C4v symmetry can give rise to

a ring of EP2s. Such a DP is formed by a degeneracy involving modes of both monopo-

lar (M) and dipolar (D) nature, which transform according to A and E representations

of the C4v group [242, 244]. Even though the degeneracy consists of one monopole and

two dipoles, the induced EP is of the second order, with only the monopole and one of

the dipoles colliding, while the coalescence of the dipole partner is prevented by their

symmetry [38]. Below, we show that an EP3 can be induced by a completely “acciden-

tal” third-order degeneracy (D3) at Γ, involving modes of monopolar (M), dipolar (D)

and quadrupolar (Q) nature arising in a novel, inverse-designed PhC structure lacking
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C4v symmetry.

8.1.1 Coupled-mode analysis

The band structure in the vicinity of such a D3 can be modeled by an approximate

Hamiltonian of the form [243]:

H =


ω0 vMDkx 0

vMDkx ω0 vQDky

0 vQDky ω0

 (8.1)

Here, vij , i, j ∈ {M,D,Q} characterizes the mode mixing away from the Γ point, to first

order in k [243]. Note that the diagonalization of this Hamiltonian yields a completely

real band structure comprising a Dirac cone and a flat band,

ω = ω0, ω0 ±
√
v2MDk

2
x + v2QDk

2
y (8.2)

To induce an EP, non-Hermiticity can be introduced by the addition of a small imag-

inary perturbation to the Hamiltonian,

H =


ω0 + iγM vMDkx 0

vMDkx ω0 + iγD vQDky

0 vQDky ω0 + iγQ

 (8.3)

with γ > 0 (< 0) representing a small amount of absorption (amplification) or radiation.

An EP3 is obtained by demanding that the characteristic polynomial of Eq. (8.3) has
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vanishing derivatives up to second order,

det (H− ωI) = P (ω) = 0, (8.4)

P ′(ω) = 0, (8.5)

P ′′(ω) = 0. (8.6)

Solving the above equations for ω, kx, and ky yields the EP3 condition:

ωEP3 = ω0 +
i

3

(
γM + γD + γQ

)
(8.7)

kEP3x = ± 1

3vMD

√√√√(γD + γQ − 2γM
)3

3
(
γQ − γM

) (8.8)

kEP3y = ± 1

3vQD

√√√√(2γQ − γM − γD)3
3
(
γQ − γM

) (8.9)

where any choice of distinct γ leading to real k induces an EP3. In this work, we

used a novel topology optimization (TO) based design method, which can discover

PhC geometries with “accidental” and tunable D3s, formed by degenerate modes with

different symmetries.

8.1.2 Numerical example

We used our novel inverse-design tool to create triply degenerate DPs in binary dielec-

tric/air square lattices. Fig. 8.1(left) shows two such structures, involving materials of

either low (n = 2, upper) or high (n = 3, lower) refractive indices (in air) and peri-

odicities a = 1.05 λ and a = 0.6 λ, respectively, where λ is the design wavelength in

vacuum. Note that such refractive indices are typical for common materials such as
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Figure 8.1: Inverse-designed 2d square lattices comprising refractive indices = {2, 3, 1.82}
(upper, middle, and lower schematics) materials in air (white regions), with periodicity a =

{1.05, 0.6, 1}λ. Lower right: band structure of the lattice with refractive index = 2 (upper
schematic), revealing a Dirac point induced by the presence of an accidental third-order de-
generacy (D3) of monopolar (M), dipolar (D), and quadrupolar (Q) modes (upper insets). A
schematic of the Brillouin zone (BZ) denoting high-symmetry k points (Y,Γ,X,M) is also shown.
Due to the lack of C4v symmetry, the dispersion along the X and Y directions differ.

silicon nitride, lithium niobate, diamond, silicon, alumina, or many low and high-index

ceramics at optical, microwave, and terahertz frequencies. We focus our discussion on

the low-index structure (more details can be found in [51]). Noticeably, the band struc-

ture of the low-index lattice exhibits a D3 comprising M, D and Q modes at the Γ point,

shown in Fig. 8.1 (lower right). Note that since the optimized PhC lacks C4v symmetry

(but possesses C2v), there is only one dipolar mode at the designated frequency and

hence, the degeneracy of the three modes is completely accidental. In the vicinity of

the tri-modal degeneracy, the band structure exhibits conical Dirac dispersion accom-
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panied by a quadratic flat band. While general rules regarding the occurrence of Dirac

point (DP) dispersion in the vicinity of a modal degeneracy are well understood from

group theoretic considerations, e.g. as arising from two different irreducible representa-

tions [244], to our knowledge our TO-designed PhC is the first demonstration of a DP

formed by three degenerate modes belonging to three different representations, namely

the A1, A2 and B1 representations of the C2v group.

The third order Dirac degeneracy of Fig. 8.1 can be straightforwardly linked to an EP3

through the introduction of non-Hermiticity, i.e. material loss, gain, or open boundaries

(radiation). Here, we consider such an EP3 by introducing a small imaginary part in

the dielectric constant, κ =
√

Im[ϵ] = 0.005, representing intrinsic material loss and

resulting in small decay rates {γM, γD, γQ}/ω0 ≈ {3.6, 4.3, 4.2} × 10−4. From Eqs. (8.8)

and (8.9), it follows that there exists an EP3 at Re[ωEP3] ≈ ω0, Im[ωEP3] ≈ 4×10−4(2πca ),

kEP3x ≈ 7× 10−5 (2πa ) and kEP3y ≈ 1.8× 10−5 (2πa ).

A defining signature of non-Hermitian systems is that eigenvectors are no longer

orthogonal. Rather, they are bi-orthogonal [245] in the sense of an unconjugated “in-

ner product” between left and right eigenvectors,
(
ΨL

n

)T
ΨR

m = δnm, defined such that

AΨR = ω2ΨR and ATΨL = ω2ΨL, where A is the Maxwell operator ϵ̂−1(∇+ik)× 1
µ(∇+

ik)× under Bloch boundary conditions at a specific k, ϵ̂ is the diagonal permittivity ten-

sor ϵ(r). At our EP3 , the three eigenmodes coalesce and become self-orthogonal [246],

leading to vanishing inner products
(
ΨL

n

)T
ΨR

n = 0, n ∈ {1, 2, 3}, as characterized by

the so-called Petermann factor (PF),

PFn =
||ΨL

n||2||ΨR
n ||2

| (ΨL
n)

TΨR
n |2

(8.10)

where ||...||2 is the usual L2 norm given by ||Ψ||2 = ΨT∗Ψ.
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Local density of states.— The divergence of the Petermann Factor (PF) in open

systems can lead to many important effects [13, 247]. In particular, the SE rate of

emitters in resonant cavities is traditionally expressed via the PF (a generalization of the

Purcell factor [13]), becoming most pronounced near EPs where the latter diverges [184].

More rigorously, however, the SE rate is given by the LDOS, or electromagnetic Green’s

function (GF), which though enhanced turns out to be finite even at EPs [44]: coalescent

eigenmodes no longer form a complete basis, requiring instead an augmented basis of

associated Jordan modes and hence a different definition of LDOS. Such an expansion

was recently employed in [44] to demonstrate limits to LDOS at EP2s in both passive

and active media; here, we extend these results to the case of EP3s.

The LDOS at an EP3 can be obtained from the diagonal elements of the imaginary

part of the dyadic GF:

GEP3 ≈
ΨR

EP3(Ψ
L
EP3)

T

(ω2 − ω2
EP3)

3
+

ΨR
EP3(Φ

L
I )

T +ΦR
I (Ψ

L
EP3)

T

(ω2 − ω2
EP3)

2

+
ΨR

EP3(Φ
L
II)

T +ΦR
I (Φ

L
I )

T +ΦR
II(Ψ

L
EP3)

T

ω2 − ω2
EP3

. (8.11)

Eq. (8.11) involves a complicated sum of cubic, quadratic, and linear Lorentzian

profiles weighted by the outer products of the only surviving left (right) eigenmode

Ψ
(L,R)
EP3 and the two associated Jordan vectors Φ(L,R)

(I,II) , determined by the third-order

Jordan decomposition of the Maxwell eigenproblem,

AEP3Ψ
R
EP3 = ω2

EP3Ψ
R
EP3 (8.12)

AEP3Φ
R
I = ω2

EP3Φ
R
I +ΨR

EP3 (8.13)

AEP3Φ
R
II = ω2

EP3Φ
R
II + ΦR

I , (8.14)
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and its associated dual. Eq. (8.11) reveals that the LDOS spectrum∼ −Im
[
Tr
(
G
)]

can vary dramatically depending on position, frequency, and decay rates.

Figure 8.2: (a) Local density of states (LDOS) at the center of the unit cell of the structure in
Fig. 8.1, evaluated at either kEP3 ≈ {7, 1.8}×10−5( 2πa ) (red curves) or k = {7, 1.8}×10−2( 2πa )≫
kEP3 (blue curves). (b) Maximum (8-fold) LDOS enhancement associated with a EP3, computed
via the reduced 3× 3 Hamiltonian model of Eq. (8.3). (c)–(f) LDOS profiles evaluated at either
ωEP3 or at the non-degenerate frequencies ω1, ω2, and ω3, corresponding to the EP3 and far-
away points described in (a). Note that the LDOS is evaluated only in air regions since the
LDOS within a lossy medium formally diverges [248].

Figure 8.2(a) shows the LDOS spectra at the center of the unit cell r0, evaluated

at either kEP3 (red curves) or a point k = {7, 1.8} × 10−2(2π/a) ≫ kEP3 (blue

curves) far away from the EP3, demonstrating an enhancement factor of ≈ 2.33

in this geometry. Figure 8.2(c-f) show the corresponding spatial LDOS profiles at

and away from the EP3, illustrating the seamless coalescence of the eigenmodes.

Even greater enhancements are possible under different loss profiles, i.e., γM, γD

and γQ, as illustrated by the following analysis based on the reduced Hamiltonian
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framework above. In particular, the GF at a given location in the unit cell can

be directly related to the diagonal entries of the resolvent of H, defined as G ≡

(H − ωI)−1. For example, the third entry of G yields the LDOS at points where

the intensity of the quadrupole mode dominates. Consider a scenario in which

only the monopole mode has a finite lifetime, i.e., γM = γ while γD = γQ = 0. It

follows from Eq. (8.3) and Eq. (8.11) that the LDOS in this case is given by,

− Im{GEP3[3, 3]} ≈ −
2γ2

27

γ̄3 − 3γ̄(Re[ωEP3]− ω)2

(Re[ωEP3]− ω)2 + γ̄2]3

+
γ

3

γ̄2 − (Re[ωEP3]− ω)2

[(Re[ωEP3]− ω)2 + γ̄2]2
− γ̄

(Re[ωEP3]− ω)2 + γ̄2
, (8.15)

where γ̄ ≡ γ/3. Moreover, the peak LDOS at ω = Re[ωEP3] is found to be 8/γ,

corresponding to an 8-fold enhancement relative to the peak LDOS far away from

the EP3. Such an enhancement is illustrated in Fig. 8.2(b), which also reveals

the highly non-Lorentzian spectrum associated with this EP3. We remark that

this enhancement in LDOS does not lead to additional dissipation, which is made

clear upon observing that the loss rates (described by the imginary parts of the

complex eigenfrequencies) remain roughly the same at and away from the EP.

Instead, it arises from the complex, constructive interference of these modes, as

mediated by the decay channels. Note also that similar enhancements can also be

realized in non-dissipative media so long as there exist decay channels leading to

non-Hermiticity (e.g. radiative or coupling losses).

It is possible to exploit a simple sum rule, namely that the spectrally integrated

LDOS is a constant [224], to predict the maximum enhancement possible for an EP
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of arbitrary order n. In particular, the integrated LDOS of an order-n Lorentzian

of the form Ln(ω) =
γ2n−1cn

[(ω−Re[ωEPn])2+γ2]n
is Sn(ω) =

∫
dω Ln(ω) =

cn
√
πΓ[n−1

2
]

Γ[n]
, where

Γ is the gamma function. It follows from the sum rule that nS1(ω) = Sn(ω) and,

consequently, that cn/c1 =
√
πΓ[n+1]

Γ[n−1
2
]
∼
√
n3 for large n≫ 1. In the case of an EP3,

the maximum enhancement c3/c1 = 8, which is realized in the scenario discussed

above. We now turn to discuss another application of EPs to higher-harmonic

generation.

8.2 Nonlinear Frequency conversion at EPs

In this section, we demonstrate that radiative emission at ωe from a subwave-

length particle, e.g. spontaneous emission or fluorescence from atoms or radiation

from plasmonic antennas, embedded in a triply resonant nonlinear χ(2) cavity

can be greatly modified and efficiently up-converted to 2ωe in the vicinity of an

EP. The efficiency of such a frequency-conversion process depends strongly on

the lifetimes and degree of confinement of the cavity modes [249], which we char-

acterize by deriving a closed-form, analytical formula for the nonlinear Purcell

factor: the LDOS or emission rate at 2ωe from a dipole current source oscillating

at ωe. In particular, we obtain emission bounds applicable to situations involving

both monochromatic and broad-bandwidth emitters, showing that the nonlinear

Purcell factor in a cavity supporting an EP at ωe formed out of dark and leaky

modes can generally be more two orders of magnitude larger than that of a non-

degenerate cavity, depending on the position of the emitter and on complicated

but designable modal selection rules. When combined with recently demonstrated
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inverse-designed structures optimized to enhance nonlinear interactions [51, 241],

the proposed EP enhancements could lead to several orders-of-magnitude larger

luminescence efficiencies.

The key to enhancing the LDOS at an EP is to exploit the intricate physics

arising from the coalescence of dark and leaky (lossy) resonances. Featuring in-

finite lifetimes and vanishing decay rates, dark modes are by definition generally

inaccessible to external coupling. Consequently, an emitter on resonance with

a dark mode cannot radiate unless it is also coupled to a leaky mode. Such a

shared resonance underlies the monochromatic LDOS enhancements at EPs de-

scribed recently in Refs. [44, 51], which showed that the LDOS at an EP exhibits

a narrowed, squared Lorentzian lineshape whose peak is four times larger than the

maximum LDOS at a non-degenerate resonance. Although such an effect makes

it possibile to enhance monochromatic emission near the EP resonance, the exis-

tence of a sum rule [224], which forces the frequency-intregrated LDOS over the

resonance bandwidth to be a constant, prohibits any enhancement in the case

of broadband emitters (e.g. fluorescent molecules). In this section, we exploit a

coupled-mode theory framework to show that in contrast to the linear LDOS, both

the monochromatic and frequency-integrated radiation rate of a dipolar emitter

in a nonlinear medium can be can be enhanced in the presence of an EP.§

§In our online manuscript [52], we buttress this theoretical prediction with a concrete phys-
ical example: a 2D PhC slab designed to support an EP at ωe and a leaky (phase-matched)
resonance at 2ωe. Furthermore, we consider individual emitters as well as uniform distributions
of incoherent emitters throughout the crystal, showing that EPs can enhance emission in both
cases.
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8.2.1 Coupled-mode analysis

To understand the impact of EPs on nonlinear frequency conversion, we consider

a generic system involving a degenerate (a1, b1) tuple of dark and leaky modes at

ω1 and a single mode a2 at ω2. Such a system, shown schematically in Fig. 8.1, is

well described by the following coupled-mode equations (CME) [95]:

da1
dt

= iω1a1 + iκb1 − iω1 (β1a2a
∗
1 + β3a2b

∗
1) + s(t) (8.16)

db1
dt

= iω1b1 − γ1b1 + iκa1 − iω1 (β2a2b
∗
1 + β3a2a

∗
1) (8.17)

da2
dt

= iω2a2 − γ2a2 − iω1

(
β1a

2
1 + β2b

2
1 + β3a1b1

)
(8.18)

Mode a1 is dark while b1 and a2 have decay rates γ1 and γ2, respectively. The

two degenerate modes are coupled to one another via the linear coefficient κ and

nonlinearly coupled to a2 by a parametric χ(2) nonlinear process characterized by

mode-overlap factors βs [249, 95], defined further below in terms of the linear

cavity fields. Solving the CMEs in the absence of nonlinearities, one finds that

for κ ≥ γ1/2, the frequencies and decay rates of the coupled modes are given by

ω± = ω1 ±
√

κ2 − γ2
1/4 and γ1/2, respectively, where the latter is independent

of κ. In particular, the two degenerate modes coalesce at κEP = γ1/2, forming

an EP at the complex frequency ω1 − iγ1/2. In the limit κ → ∞ of far-apart

mode frequencies, one recovers the well-known, non-degenerate (ND), single-mode

description of second-harmonic generation [95], which we compare against when

208



considering any enhancements arising from the EP.† Note that in these CMEs,

the term s(t) represents a dipole current source positioned in such a way so as

to exclusively couple to the dark mode, a situation that is illustrated with a

concrete physical example in [52]. Since such a term is meant to model a weak

emitter (except in the case of gain media), we primarily focus on the so-called

small-signal or non-depletion regime where one can neglect the nonlinear terms

responsible for down-conversion (e.g. β1a2a
∗
1).

Before delving further into the nonlinear equations, it is instructive to briefly

review the mechanism of LDOS enhancement in the linear regime of β = 0.

Consider a monochromatic source s(t) = s0e
iωet that is on-resonance with the

cavity, i.e. ωe = ω1. Solving the CMEs, one finds that the steady-state mode

amplitudes at the EP are aEP1 = 4s0/γ1 and bEP1 = 2is0/γ1, whereas in the ND

limit of κ→∞, aND1 = bND1 = s0/γ1. Since the LDOS or radiated power is given by

γ1|b1|2, it follows that the EP produces an enhancement factor γ1|bEP
1 |2

γ1|bND
1 |2 = 4, a result

recently derived in [44] by a perturbative expansion of the Green’s function based

on Jordan eigenvectors but which also follows from the coupled-mode picture

above (see supplemental materials). We emphasize that such an enhancement

can be realized despite the fact that both the EP and ND resonances exhibit

the same effective decay rate γ1/2, indicating that the enhancement does not

arise from an otherwise trivial increase in resonant lifetimes but rather from a

constructive interference of the two modes, which leads to both narrowing and
†Note that in principle, coupled-mode theory breaks down in the asymptotic limit of infinite

coupling κ → ∞. However, as exemplified in the physical example of Fig. 2.2 and as follows
from the CMEs, similar enhancements are achieved in the more practical and adequate situation
of far-separated and well-defined resonances with κ≫ γ1.
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amplification of the cavity spectrum [44]. Unfortunately, such an enhancement

disappears when considering the frequency-integrated emission from a broadband

source, a consequence of a general sum rule (derived from causality [224]) which

implies that
∫
γ1|bEP1 (ω)|2 dω =

∫
γ1|bND1 (ω)|2 dω. As we show below, however,

such a sum rule no longer seems to be valid in the case of finite β ̸= 0.

Consider a typical Lorentzian source, s(t) =
∫∞
−∞

√
γe

γe+i(ω−ωe)
eiωt dω, of frequency

ωe and decay rate γe, and whose Fourier amplitude s(ω) is normalized so that∫
|s(ω)|2 dω = π. Solving the CMEs in the non-depletion regime yields the

amplitude a2 of the harmonic mode as a convolution,

a2(ω) =
iω1/2

i (ω − ω2) + γ2

∫ ∞

−∞
dq
[
β1a1 (ω) a1 (ω − q)

+ β2b1 (ω) b1 (ω − q) + β3a1 (ω) b1 (ω − q)
]
, (8.19)

in terms of the mode amplitudes,

a1(ω) =
s(ω)
√
γe (γ1 + i (ω − ω1))

(κ2 + (ω − ω1) (iγ1 − ω + ω1)) (γe + i (ω − ωe))
(8.20)

b1(ω) =
is(ω)

√
γeκ

(κ2 + (ω − ω1) (iγ1 − ω + ω1)) (γe + i (ω − ωe))
. (8.21)

which can be evaluated to yield closed-form, analytical solutions, as we show in

Sec. 8.4.

In the particular limit of a monochromatic source with γe ≪ γ1, the emission
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rate at the harmonic frequency, γ2|a2(δ)|2, or nonlinear LDOS can be written as:

γ2|aEP2 (δ)|2γe→0 =
64π2ζ|s|4

γ5
1 (4δ

2 + 1)4 (4δ2 + ζ2)

[
16β2

1

(
δ2 + 1

)2
+ 4β2

3

(
δ2 + 1

)
+8β1

(
β2

(
δ2 − 1

)
− 2β3

(
δ3 + δ

))
− 4β2β3δ + β2

2

]
, (8.22)

where δ = ω1−ωe

γ1
is the normalized frequency detuning of the emitter from the

cavity resonance and ζ = γ2/γ1. Evidently, the output spectrum assumes a nar-

rowed and highly non-Lorentzian lineshape, a signature of the EP. In the opposite

limit of a broadband source with γe ≫ γ1, the relevant quantity to consider is the

integrated LDOS near ω2, given by:

∫
γ2|aEP2 (ω)|2 dω

∣∣∣
γe≫γ1

≈ π3|s|4

4608γ5
1(ζ + 1)3

(
γ1
γe

)2
[
β2
1

(
237312ζ2 + 638208ζ + 460800

)
−2β2β1

(
29952ζ2 + 89856ζ + 92160

)
+ β2

2

(
6912ζ2 + 20736ζ + 18432

)
+β2

3

(
29952ζ2 + 89856ζ + 73728

) ]
, (8.23)

To quantify the impact of these spectral modifications, we compare the emission

rates at the EP against those obtained in the ND scenario, given by:

γ2|aND2 (δ)|2γe→0 =
4π2 (β1 + β2 + β3)

2ζ|s|4

γ5
1 (4δ

2 + 1)2 (4δ2 + ζ2)
(8.24)

∫
γ2|aND2 (ω)|2 dω

∣∣∣
γe≫γ1

=
π3 (β1 + β2 + β3)

2|s|4

γ5
1(ζ + 1)

(
γ1
γe

)2

(8.25)
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Figure 8.3: Schematic of a dipole emitter (ωe, γe) embedded in a triply resonant χ(2) nonlinear
cavity supporting an exceptional point (EP). The cavity consists of two degenerate resonances
(a1, b1) at ω1, one dark and one leaky with decay rate γ1, that are coupled to one another via
a linear coupling rate κ and nonlinearly coupled to a harmonic mode of frequency ω2 = 2ω1

and decay rate γ2 by the χ(2) process. An EP is formed when κ = γ1/2. The EP leads to
enhanced emission at the second harmonic frequency over and above that of a non-degenerate
(ND) system with a single mode at ω1 of the same effective decay rate γ1/2. The plot summarizes
the nonlinear EP enhancement factor, defined as the ratio of nonlinear emission rate at EP to
that of ND, as a function of the relative emitter bandwidth γe/γ1, showing the enhancement
ratio of 256 in the limit γe/γ1 → 0 and 100 in the opposite limit γe ≫ γ1. The inset (top-right)
shows the second-harmonic emission spectra aka nonlinear local density of states γ2|a2|2 as a
function of detuning (ωe−ω1)

γ1
in the limit of a monochromatic emitter, γe → 0, for both EP

(solid) and ND (dashed) systems. For convenience, both emission rates have been normalized
to unity, showing narrowed linewidth in the case of EP.

Figure 8.3 shows the nonlinear EP enhancement factor, F(ω, γe) = |aEP
2 (ω,γe)|2

|aND
1 (ω,γe)|2

,

which is the ratio of the emission rate around ω2 at the EP to that in the ND

scenario for the typical situation of an emitter that is resonantly coupled to the

fundamental cavity frequency, i.e. ωe = ω1. In particular, the figure shows F as

a function of the output frequency (ω − ω2)/γ1 and for multiple values of γe/γ1

when all of the nonlinear coupling coefficients except the one pertaining to the
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dark mode vanish, i.e. β1 ̸= 0, β2 = β3 = 0. Such a nonlinear configuration belies

one of the main results of this work, which follows from Eq. (8.24) and Eq. (8.25):

the largest radiation rates and therefore Purcell enhancements are achieved when

the dipole emitter couples exclusively to the dark mode and when only the latter

couples strongly to the harmonic mode. Evaluating F at ω = ω2 and taking the

limit of γe → 0 or equivalently, evaluating the ratio of Eqs. (8.22) and (8.24)

in the limit of zero detuning δ = 0, yields a maximum enhancement factor of

256. The (top-right) inset of Fig. 8.3 shows the dependence of the nonlinear

LDOS Eq. (8.22) with respect to the emitter detuning δ in the monochromatic

regime γe → 0, showing a slightly narrowed EP spectrum compared to the ND

scenario (both spectra are normalized to have the same peak amplitude for clar-

ity). Notably, one finds that compared to the linear scenario discussed above,

the nonlinear spectrum undergoes significantly less narrowing, evidence that the

frequency-integrated emission can also be enhanced. Indeed, focusing in the case

of a broadband emitter with γe ≫ γ1, e.g. a fluorescent molecule [250], and tak-

ing the ratio of Eqs. (8.23) and (8.25), one finds that the frequency-integrated

emission can be enhanced by a factor of 100.

The aforementioned LDOS enhancements at the EP can be understood intu-

itively from a recently derived sum rule [224]. In the linear regime, causality

demands that when two non-degenerate resonances of equal bandwidths γ merge

to form an EP, the resulting LDOS spectrum becomes a squared Lorentzian § and

obeys the sum rule [224],
∑

i

∫ s2i γ
δ2+γ2 dδ =

∫ 2s2EPγ
3

(δ2+γ2)2
dδ, where s2EP = s21 + s22 and

§The optical response of a system near a doubly degenerate leaky resonance can be approxi-
mated by a second-order, complex pole [44, 50]
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s1,2 denote the coupling strengths of a dipole source which generally couples to

both modes. It follows from the sum rule that at an EP and in the special case

of identical coupling strengths, s1 = s2 = sND, the mode volume of the cavity

resonance decreases (and hence the coupling rate of an emitter increases) so that

sND = sEP/
√
2, but only at the expense of an effectively narrower cavity band-

width. Such a multi-modal interference phenomenon also leads to an effective

increase in the nonlinear coupling coefficient, with βND = 0.5βEP, as we show in

Sec. 8.5. Both effects combine to increase nonlinear emission by two orders of

magnitude.

8.3 Concluding remarks

In this section, we explored two applications of LDOS enhancement near EPs

in systems with third-order EPs and systems with triply degenerate χ(2) media.

Moreover, we demonstrated that topology optimization can be used to design

structures that could demonstrate this enhancement. Although fabrication of the

“bar-code” structures in Sec. 8.1 may prove challenging at visible wavelengths us-

ing currently available technologies, future experimental realizations are entirely

feasible in the mid-infrared to microwave regimes, where complex features can be

straightforwardly fabricated in polymers and ceramics with the aid of computer-

ized machining, 3D printing, laser cutting, additive manufacturing, or two-photon

lithography [251, 252, 253]. In Sec. 8.2, we have shown that the efficiency of non-

linear frequency conversion processes can be greatly enhanced in cavities featuring

EPs. Our derived bounds on the possible nonlinear Purcell factors achievable in
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EP systems show that the degree of enhancement depends on complicated but

tunable modal selection rules and are optimal when the emission sources couple

primarily to dark modes. In combination with recently demonstrated inverse-

designed structures optimized to enhance nonlinear overlaps [254], the proposed

EP enhancements could lead to orders-of-magnitude larger nonlinear interactions

and emission efficiencies. While luminescence enhancements at EPs in linear me-

dia are nullified in the case of broadband emitters, nonlinear Purcell factors can be

enhanced by two orders of magnitudes even when the emission bandwidth is much

larger than the cavity bandwidth. Although we illustrated these ideas by examin-

ing a simple proof-of-concept 2d PhC design, these predictions could also be tested

in a wide variety of structures, including highly nonlinear mid-infrared quantum

wells [255] or microwave super-conducting qubit [256] platforms. Finally, we ex-

pect that similar or even potentially larger enhancements can arise in systems

supporting higher-order exceptional points [51] or other nonlinear processes, e.g.

third-harmonic generation, four-wave mixing, and two-photon down-conversion,

with potential applications to quantum information science.
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8.4 Appendix A: Nonlinear EP enhancement formula

The nonlinear CMEs describing emission from a dipolar source embedded in the

triply resonant cavity above are (in the non-depletion regime):

da1
dt

= iω1a1 + iκb1 + sa(t) (8.26)
db1
dt

= (iω1 − γ1)b1 + iκa1 + sb(t) (8.27)
da2
dt

= iω2a2 − γ2a2 − iω1

(
β1a

2
1 + β2b

2
1 + β3a1b1

)
(8.28)

Here, we assume that the two cavity resonances are frequency-matched for second-

harmonic generation, so that ω2 = 2ω1. Assuming a Lorentzian dipole source

located at some position r, the coupling amplitudes in Eqs. (8.26) and (8.27) are

sa/b(t) =
(

Ea/b(r)

2
∫
ϵr|Ea/b|2dr

) ∫∞
−∞

√
γe

γe+i(ω−ωe)
eiωt dω. To obtain an explicit expression for

a2(ω), it suffices to Fourier transform Eq. (8.28), in which case one finds that the

amplitude at the second harmonic depends on a convolution of the linear modes

at ω1. Focusing on the EP scenario (κ = γ1/2) and defining δ = ω − 2ω1, one
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obtains:

aEP2 (ω) = −8πγe

{
iβ3

[
2sasb

(
γ21δ + iγ31 + γ1δ (4γe + i (−4ωe + 5ω − 6ω1)) + 2δ2 (iγe + ωe − ω + ω1)

)
+ γ1s

2
a (2γ1 + iδ) (2γ1 + 2γe + i (−2ωe + 3ω − 4ω1)) + γ1δs

2
b (2iγ1 + 2iγe + 2ωe − 3ω + 4ω1)

]
+ β1

[
2γ1sasb (2γ1 + iδ) (2iγ1 + 2iγe + 2ωe − 3ω + 4ω1)

+ s2a
(
8γ31 + γ21 (10γe + i (−10ωe + 21ω − 32ω1)) + 4γ1δ (3iγe + 3ωe − 4ω + 5ω1)

−4δ2 (γe + i (−ωe + ω − ω1))
)
+ γ21s

2
b (−2γ1 − 2γe + 2iωe − 3iω + 4iω1)

]
− β2

[
2γ1δsasb (2γ1 + 2γe + i (−2ωe + 3ω − 4ω1)) + γ21s

2
a (2γ1 + 2γe + i (−2ωe + 3ω − 4ω1))

+ s2b
(
γ21 (−2γe + 2iωe − iω) + 4γ1δ (−iγe − ωe + ω − ω1) + 4δ2 (γe + i (−ωe + ω − ω1))

) ]}
/{

[γ1 + i (ω − 2ω1)]
3 [−iγ2 + ω − 2ω1) (γ1 + 2 (γe + i (−ωe + ω − ω1))]

2 (−2iγe − 2ωe + ω)

}
(8.29)

Given this unruly but general expression, we consider two main limiting cases in

the main text, corresponding to either a monochromatic (γe → 0) or broadband

(γe ≫ γ1) emitter, leading to the simplified expressions in several limits.

8.5 Appendix B: Nonlinear-overlap enhancement

In the main text, we showed and argued that the effectively smaller mode volume

associated with an EP also leads to a two-fold increase in the nonlinear overlap

coefficients. Here, we show explicitly how such an increase manifests in the CMEs.

The Hamiltonian corresponding to the linear, coupled-mode system above is
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given by:

H =

ω1 κ

κ ω1 − iγ1

 . (8.30)

For κ ̸= γ1/2, H can be diagonalized such that the mode amplitudes a1 = (a1, b1)

can be transformed into the diagonal basis a′
1 = (a′1, b

′
1) by a linear, unitary

transformation matrix S, such that a1 = Sa′
1. In the strong-coupling limit κ→∞

of ND resonances, the transformation matrix is S =

− 1√
2

1√
2

1√
2

1√
2

. Writing the

amplitude of the second-harmonic mode in the non-depletion limit,

a2(ω) =
−iω1 (β1a

2
1 + β2b

2
1 + β3a1b1)

γ2 + i(ω − ω2)
,

in terms of the ND resonance (i.e. taking a1 → Sa′
1), one finds that the amplitude

in the ND limit κ→∞ is given by:

a2(ω) =
−iω1

γ2 + i(ω − ω2)

(β1 + β2 + β3)

2
(a′1)

2
. (8.31)

Thus, the nonlinear overlap coefficient of the ND system is related to the corre-

sponding overlap factors of the system at the EP by the relation:

βND =
(β1 + β2 + β3)

2
. (8.32)
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Chapter 9

Outlook
In this chapter, we discuss generalizations and futuer applications of our theory

of radiation noise.

9.1 Laser noise at exceptional points

In previous chapters, we focused on the properties of spontaneous-emission noise

in two kinds of systems: non-degenerate lasers on the one hand and degenerate

non-lasing systems with EPs on the other hand. A natural question that comes

to mind is what happens to spontaneous emission in lasers which operate at EPs?

This problem is not trivial for several reasons. First, laser equations are nonlinear,

while EPs are traditionally analyzed in linear systems. Most importantly, self-

orthogonality, which was the culprit for the apparent divergence of the linewidth

in the linear theory, follows from the bi-orthogonality relations, but the modes of

nonlinear equations are no longer orthogonal [257]. Additionally, the definition of

“Jordan vectors,” which we use to compute the limiting behavior at linear EPs (in

Ch. 7), changes in nonlinear eigenvalue problems [34]. From a numerical perspec-

tive, we need new tools for computing Jordan vectors (similar to those presented
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in appendix A) and for forcing EPs. Secondly, even after correctly formulating

and finding nonlinear EPs, one still needs to show that the nonlinear solution

is a stable one (i.e., small perturbations relax to the solution). The question of

stability in lasers can be a rather subtle issue [258], even near ordinary modal

degeneracies [259] and, therefore, cannot be taken for granted at EPs. Last, even

after correctly formulating the EP solution and proving its stability, there remains

the question of computing the linewidth. In the simpler case of non-degenerate

(and spectrally separated) resonances, we were able to compute the spectrum

semi-analytically by treating the phases of the modes as independent Brownian

variables. However, near the EP, the phases of the degenerate eigenmode and

associated Jordan vectors are likely to be dependent, and it is not obvious that a

semi-analytic solution even exists.

9.2 Linewidth reduction

In Ch. 3, we presented a new comprehensive theory for the laser linewidth. It

is naturally interesting to apply our new linewidth formula [Eq. (3.3)] to the

practical problem of linewidth reduction. Narrow-linewidth high-power lasers are

highly desirable for many applications, such as laser cooling [260] and precision

spectroscopy [261]. The challenge of narrowing the linewidth involves achiev-

ing stable single-mode steady-state operation with low noise levels. The existing

literature on linewidth optimization typically makes many simplifying approxima-

tions [262], and we believe that more accurate modeling (along the lines of our

work) could greatly advance this field. Note that our current theory applies only
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to the Schawlow-Townes limited linewidth, i.e., when external noise influences are

lower than internal noise (from spontaneous emission in the gain medium), but

can be generalized to include external noise as well. Additional generalizations

are required in order to account for external-cavity coupling and seeding, which

are commonly used in narrow-linewidth sources [263, 264].§ Last, we mention

that the full generality of our approach is only revealed when applied to complex-

cavity realistic structures, and therefore requires efficient tools for solving the

steady-state (noise-free) laser equations. The recent algorithm in [18] is already

more efficient than the original SALT formulation [56], but our group is develop-

ing a new generation of Anderson-acceleration-based software, which can handle

complex three-dimensional lasers efficiently.

9.3 Noise-driven relaxation oscillations in other fields

Noise-driven relaxation oscillations (ROs) are not restricted to lasers, and appear,

more generally, in complex systems with a nonlinear steady state and multiple

time scales: a nonlinear restoring force and a time delay. As such, we think that

the tools developed in Ch. 5 could apply to problems in other areas of research.

For example, ROs in the neuron network of the brain were suggested as a possible

mechanism for gamma oscillations [168]—neural oscillations, typically at 40Hz,

which (hypothetically) relate the activity in different areas of the brain and may

play a central role in human perception. A neural network is somewhat analogous

to the atoms in a laser in the sense that the network consists of coupled elements
§For an extension of SALT to seeded lasers, see [265].
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(neurons/atoms) which alternate stochastically between two states (active and

quiescent neurons/excited and depleted atoms). Another example can be found

in geophysics. An earthquake is commonly described as an instability occurring

along preexisting crustal faults [170]. The seismic cycle of earthquake recurrence

is characterized by long periods of quasi-static evolution which precede sudden

slip events accompanied by elastic wave radiation: the earthquake. This succes-

sion of processes over two well distinguished time scales recalls the behavior of

nonlinear relaxation oscillations. Other examples include predator-prey models in

population dynamics [169] and mesoscopic oscillatory chemical reactions [266].

9.4 Theory for LEDs and high-gain amplifiers

Another possible extension of our laser-noise theory is to gain amplifiers or lasers

with strong amplified spontaneous emission (ASE). As mentioned in Ch. 6, a

strong ASE field may deplete the atomic inversion and affect lasing properties such

as output power and threshold. Since SALT in its current form treats only the

steady-state “deterministic field,” it does not account for ASE. However, the effect

of ASE can be incorporated into the theory by using the fluctuation-dissipation

theorem to relate the variance of the ASE field to the steady-state Green’s func-

tion, similar to our general approach for handling laser noise.
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9.5 Applications of LDOS enhancement at EPs

In the second part of the thesis, we studied a new striking feature of EPs: a

dramatic increase in the “local density of states” (LDOS) near specially designed

structures. We explored two applications of this property: enhanced spontaneous

emission rates (Ch. 7) and enhanced frequency conversion in nonlinear media

(Ch. 8). From a practical standpoint, it is important to understand how to maxi-

mize the enhancement and whether it is bounded at all. The answer to the latter

question is yes, and recent work [233] shows that existing resonant structures

fall orders-of-magnitude short from the theoretical bound. It would be interest-

ing to explore whether EPs may be used to attain (or get closer to) the bound.

This hypothesis can be tested with the numerous experimental realizations of

EPs in optical systems: waveguides [176], periodic photonic structures (with [267]

or without [38] gain), coupled whispering-gallery mode resonators [192] and cou-

pled quantum cascade lasers [178], to name a few. In fact, EPs occur in a wide

variety of other systems (such as exciton–polariton billiard-shaped traps [35], op-

tomechanical systems [36], laser-induced autoionized atoms [268], and acoustical

systems [181]) and LDOS enhancement in those systems may have additional

applications.
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Appendix A

Scalable Computation of Jordan Chains

A.1 Introduction

In this appendix, we present algorithms to find approximate Jordan vectors of

nearly defective matrices, designed to be scalable to large sparse/ structured matri-

ces (e.g., arising from discretized partial differential equations), by requiring only

a small number of linear systems to be solved. This project was lead by Felipe Her-

nandez, and was motivated by our work in chapter X and, more generally, by the

recent explosion of interest in the physics of “exceptional points” (EPs), in which

a linear operator A(p) that depends on some parameter(s) p becomes defective at

p = p0, almost always with a 2× 2 Jordan block [188, 189, 190, 176, 36, 178, 38].

A variety of interesting phenomena arise in the vicinity of the EP. The limiting

behavior at the EP [40, 44], as well as perturbation theory around it [34], is un-

derstood in terms of the Jordan chain relating an eigenvector x0 and a Jordan

vector j0:

A0x0 = λ0x0, (A.1)

A0j0 = λ0j0 + x0, (A.2)
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where A0 = A(p0). Typically in problems that arise from modeling realistic physi-

cal systems, one does not know A0 precisely, but only has a good approximation µ

for the degenerate eigenvalue λ0 and a matrix Aε = A(p0 + ε) near to A0, limited

both by numerical errors and the difficulty of tuning p to find the EP exactly.

Given Aε and µ, the challenge is to approximately compute x0, λ0, and j0 to at

least O(ε) accuracy.

Existing algorithms to approximate the Jordan chain [269, 270] rely on comput-

ing the dense SVD of Aε, which is not scalable, or have other problems described

below. Instead, we want an algorithm that only requires a scalable method to

solve linear systems (Aε − µI)x = y (“linear solves”), and such algorithms are

readily available (e.g. they are needed anyway to find the eigenvalues away from

the EP that are being forced to coincide). Using only such linear solves, we show

that we can compute the Jordan chain to O(ε) accuracy (Sec. A.3), or even O(ε2)

accuracy if dA/dp is also supplied (Sec. A.5), which we find is similar to the

previous dense algorithms (whose accuracy had not been analyzed) [270]. Our al-

gorithm consists of two key steps. First, in Sec. A.2, we compute an orthonormal

basis for the span of the two nearly defective eigenvectors of Aε, using a shift-and-

invert–like algorithm with some iterative refinement to circumvent conditioning

problems for the second basis vector. Second, in Sec. A.3, we use this basis to

project to a 2 × 2 matrix, find a defective matrix within O(ε) of that, and use

this nearby defective matrix to approximate the Jordan chain of A0 to O(ε). We

have successfully applied this method to study EPs of large sparse matrices arising

from discretizing the Maxwell equations of electromagnetism [23], and include an
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example calculation in Sec. A.4.

In this sort of problem, we are given the existence of a 2× 2 Jordan block of an

unknown but nearby matrix A0, and we want to find the Jordan chain. (Larger

Jordan blocks, which rarely arise in practice for large matrices [51], are discussed

in Sec. A.6.) To uniquely specify the Jordan vector j0 (to which we can add any

multiple of x0 [270]), we adopt the normalization choice ∥x0∥ = 1 and x∗
0j0 = 0.

Our algorithm finds approximations with relative errors ∥λε − λ0∥/∥λ0∥, ∥xε −

x0∥/∥x0∥, and ∥jε − j0∥/∥j0∥ which are O(ε). The nearly degenerate eigenvalues

and eigenvectors of Aε are given via perturbation theory [33] by Puiseux series:

x± = x0 ± cε1/2j0 + εw ±O(ε3/2) (A.3)

for some constant c and a vector w, and similarly for the eigenvalues λ±. This

means that a naive eigenvalue algorithm to find xε by simply computing an eigen-

vector of Aε will only attain O(ε1/2) accuracy, and furthermore that computing

both x± eigenvectors is numerically problematic for small ε because they are nearly

parallel. In contrast, the invariant subspace spanned by x± varies smoothly around

A0 [as can easily be seen by considering x+ + x− and ε−1/2(x+ − x−)] and, with

some care, an orthonormal basis for this subspace can be computed accurately by

a variant of shifted inverse iteration (Sec. A.2). From that invariant subspace, we

can then compute xε and so on to O(ε) accuracy, which is optimal: because the

set of defective matrices forms a continuous manifold, there are infinitely many

defective matrices within O(ε) of Aε, and hence we cannot determine A0 to bet-

ter accuracy without some additional information about the desired A0, such as
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dA/dp.

An algorithm to solve this problem was proposed by Mailybaev [270], which

uses the SVD to approximate the perturbation required to shift Aε onto the set

of defective matrices, but the dense SVD is obviously impractical for large dis-

cretized PDEs and similar matrices. Given A0, Leung and Chang [269] suggest

computing x0 by either an SVD or a shifted inverse iteration, and then show that

j0 can be computed by solving an additional linear system (which is sparse for

sparse A). Those authors did not analyze the accuracy of their algorithm if it is

applied to Aε rather than A0, but we can see from above that a naive eigensolver

only computes x0 to O(ε1/2) accuracy, in which case they obtain similar accuracy

for j0 (since the linear system they solve to find j0 depends on x0). If an O(ε)

algorithm is employed to compute x0 accurately (e.g. via our algorithm below),

then Leung and Chang’s algorithm computes j0 to O(ε) accuracy as well, but

requires an additional linear solve compared to our algorithm. It is important to

note that our problem is very different from Wilkinson’s problem [271], because

in our case the Jordan structure (at least for the eigenvalue of interest) is known,

making it possible to devise more efficient algorithms than for computing an un-

known Jordan structure. (The latter also typically involve dense SVDs, Schur

factorizations, or similar [272, 273, 274].) Our algorithm differs from these previ-

ous works in that it relies primarily on inverse iteration (and explicitly addresses

the accuracy issues thereof), and thus is suitable for use with the large (typically

sparse) matrices arising in physical applications. Moreover we perform an analysis

of the error in terms of ε (i.e., the distance between Aε and A0), which was absent
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from previous works.

A.2 Finding the invariant subspace

In this section, we describe two algorithms for computing the invariant subspace

of Aε spanned by the eigenvectors whose eigenvalues are near λ0. Both algorithms

begin by using standard methods (e.g., Arnoldi or shifted inverse iteration [275])

to find u1 as an eigenvector of Aε. Then, we find an additional basis vector u2 as

an eigenvector of P⊥Aε, where P⊥ ≡ I−u1u
∗
1 is the orthogonal projection onto the

subspace perpendicular to u1. We denote by Uε the matrix whose columns are the

orthonormal basis vectors, u1 and u2. In Algorithm 1, u2 is found by performing

inverse iteration on the operator P⊥Aε (lines 3–8). Since P⊥Aε does not preserve

the sparsity pattern of Aε, this algorithm is scalable only when using matrix-free

iterative solvers (that is, solvers which only require fast matrix-vector products).

Algorithm 1 for finding the invariant subspace Uε using matrix-free iterative
solvers
1: Find an eigenvector u1 of Aε with eigenvalue near µ (e.g., using inverse iter-

ation).
2: P⊥ ← I− u1u

∗
1

3: λ′ ← µ
4: u2 ← a random vector orthogonal to u1.
5: while ∥(P⊥Aε − λ′I)u2∥ > tol do
6: v ← (P⊥Aε − λ′I)−1u2

7: u2 ← v/∥v∥
8: λ′ ← u∗

2P
⊥Aεu2

9: Set Uε = (u1, u2).

Note that this iteration could easily be changed from Rayleigh-quotient inverse
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iteration to an Arnoldi Krylov-subspace procedure. In practical applications where

the matrix parameters were already tuned to force a near EP, however, the esti-

mate µ is close enough to the desired eigenvalue λ2 that convergence only takes a

few steps of Algorithm 1.

Alternatively, when using sparse-direct solvers, one can implement Algorithm 2,

which performs inverse iteration on Aε and only then applies P⊥. In order to

see the equivalence of the two algorithms, let us denote the nearly degenerate

eigenvectors of Aε by u1 and x2 [i.e., Aεu1 = λ1u1 and Aεx2 = λ2x2, with λ1 ≈ λ2].

While Algorithm 1 finds the eigenvector u1 and then computes an eigenvector of

P⊥Aε, Algorithm 2 computes in the second step the orthogonal projection of

the second eigenvector of Aε, P⊥x2. The equivalence of the Algorithms follows

from the fact that the orthogonal projection of x2 is precisely an eigenvector of

P⊥Aε [since (P⊥Aε)(P
⊥x2) = (P⊥Aε)(I−u1u

∗
1)x2 = P⊥(Aεx2)−P⊥(Aεu1)u

∗
1x2 =

λ2P
⊥x2 − λ1P

⊥u1u
∗
1x2 = λ2(P

⊥x2)]. Note, however, that a subtlety arises when

using Algorithm 2 since the vector (Aε − µI)−1u2 (line 3) is nearly parallel to

u1 and, consequently, the roundoff error in the projection P⊥ is significant. To

overcome this difficulty, we use an iterative refinement procedure [276] (lines 5–7)

before continuing the inverse iteration.

The importance of the invariant subspace Uε is that it is, in fact, quite close

to the invariant subspace for the defective matrix A0. Thus it is possible to find

good approximants of the eigenvector and Jordan vector of A0 within the column

space of Uε, as stated in the following lemma.

Lemma 1 Let Aε be near to a defective matrix A0 (i.e., ∥Aε−A0∥ = O(ε)), and
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Algorithm 2 for finding the invariant subspace Uε using sparse-direct solvers
1: Do steps 1-4 in Algorithm 1.
2: while ∥(P⊥Aε − λ′I)u2∥ > tol do
3: v ← P⊥(Aε − λ′I)−1u2

4: e← u2 − P⊥(Aε − λ′I)v
5: while ∥e∥ > tol do
6: v ← v + P⊥(Aε − λ′I)−1e
7: e← u2 − P⊥(Aε − λ′I)v

8: u2 ← v/∥v∥
9: λ′ ← u∗

2P
⊥Aεu2

10: Uε ← (u1, u2).

Uε be the invariant subspace of its nearly degenerate eigenvalue. Then there exists

a matrix U0 which spans the invariant subspace for A0 such that ∥U0−Uε∥ = O(ε).

This Lemma establishes that the invariant subspace of nearly degenerate eigen-

values varies smoothly at the vicinity of the EP, a property that has been previ-

ously established (e.g., [245, Chapter 2.1.4]) and can be easily proven using the

following proposition:

Proposition 1 Let v0 be any vector in the invariant subspace of A0. Then there

exists a vector v in the column space of Uε such that ∥v − v0∥ = O(ε∥v0∥).

Proof. Expand v0 in the basis {x0, j0} consisting of the eigenvector and Jordan

vector for A0, so that

v0 = αx0 + βj0.

According to perturbation theory near A0, the eigenvectors x± of Aε can be

expanded in a Puiseux series [Eq. (A.3)]. Let us choose v = ax+ + bx− with
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a = (α + βε−1/2/c)/2 and b = (α − βε−1/2/c)/2. By construction, v is in the

invariant subspace of Aε and, therefore, also in the column space of Uε. Moreover,

∥v0 − v∥ = εαw +O[(|α|+ |β|ε−1/2)ε3/2] = O(ε∥v0∥).

Proposition 1 allows us to approximate vectors in U0 (the invariant subspace of

A0) with vectors in Uε (the invariant subspace in Aε). To prove Lemma 1, we need

to show that the converse is also true, i.e., that vectors in U0 can be approximated

by vectors in Uε. Since U0 and Uε have equal dimensions, this follows as a corollary.

A.3 Computing the Jordan chain

In this section we introduce vectors, xε and jε, in the column space of Uε, which

approximate the Jordan chain vectors, x0 and j0, with O(ε) accuracy. Since the

first and second columns of Uε are eigenvectors of Aε and P⊥Aε respectively,

a naive guess would be to set xε = u1 and jε ∝ u2. However, we know from

perturbation theory that such an approach leads to relatively large errors since

∥u1 − x0∥ = O(ε1/2), and we show below that we can obtain a more accurate

approximation. Algorithm 3 presents a prescription for constructing xε and jε.

In the remainder of this section, we prove the following theorem:

Theorem 1 Suppose A0 is a defective matrix with Jordan chain vectors x0 and

j0, and Aε is a nearby matrix such that ∥Aε − A0∥ = O(ε). The vectors xε and

jε, constructed via Algorithms 1–3, satisfy ∥x0 − xε∥, ∥j0 − jε∥ = O(ε).
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Algorithm 3 for finding approximate Jordan chain vectors.
1: Introduce Sε = U∗

εAεUε (denote entries of Sε by sij).
2: Set λε = (s22 + s11)/2.
3: Set γ = (s22 − s11)/2s12.
4: Set xε = u1 + γu2 and jε = u2/s12.
5: Normalize xε and jε.

To prove Theorem 1, we first introduce the 2× 2 defective matrix

S̃ =

 s11 s12

− (s11−s22)2

4s12
s22

 . (A.4)

The vectors xε and jε, constructed above, are related to the Jordan chain vectors

x′
ε and j′ε of S̃ via xε = Uεx

′
ε and jε = Uεj

′
ε. [More explicitly, one can verify that

the vectors x′
ε = [1; γ] and j′ε = [0; s−1

12 ] satisfy the chain relations: S̃x′
ε = λεx

′
ε and

S̃j′ε = λεj
′
ε + x′

ε.] Using this observation, we prove Theorem 1 in two steps: First,

we introduce the 2× 2 defective matrix S0 ≡ U∗
0A0U0, and show that the Jordan

chain vectors of S0 and S̃ are within O(ε) of each other (Lemma 2). Then, we

use Lemma 3 to show that the proximity of the Jordan chains of S0 and S̃ implies

the proximity of {xε, jε} and the Jordan chain vectors of A0. In the remainder of

this section, we prove Lemmas 2–3.

Lemma 2 The Jordan chains of S0 and S̃ are within O(ε) of each other.

Proof. Any defective matrix is similar to a 2× 2 defective matrix of the form

S =

 λ+ αβ α2

−β2 λ− αβ

 , (A.5)
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with appropriate complex parameters α, β, λ [272]. The Jordan chain vectors of

S are

x′ =
1√

|α|2 + |β|2

 α

−β

 , j′ =
1

|α|2 + |β|2

 β

α

 . (A.6)

The matrix S̃ can be recast in the form of Eq. (A.5) with α̃2 = s12, β̃2 =

(s22−s11)2

4s12
, and λ̃ = (s11 + s22)/2. To rewrite S0 in the form of Eq. (A.5), we

introduce α0, β0 and λ0. From Eq. (A.6), in order to prove the proximity of the

Jordan chains, it remains to show that |α̃− α0| and |β̃ − β0| are both O(ε).

Since u1 is an eigenvector of Aε and is also orthogonal to u2, Sε is upper trian-

gular (i.e. s21 = 0). By construction, the matrices S̃ [Eq. (A.4)] and Sε ≡ U∗
εAεUε

differ only in the lower-left entry, which has the form (s11 − s22)
2/4s12. Since s11

and s22 are the nearly degenerate eigenvalues of Aε, they differ by ε1/2, so this

entry is of size O(ε), which implies ∥S̃ − Sε∥ = O(ε). From Lemma 1 we have

∥Uε − U0∥ = O(ε), which implies that ∥Sε − S0∥ = O(ε), and it follows that

∥S̃ − S0∥ = O(ε). Then, using Eq. (A.5), we conclude that |α̃2 − α2
0| = O(ε), so

that either |α̃− α0| = O(ε) or |α̃+ α0| = O(ε) and we may choose the sign of α0

so that |α̃− α0| = O(ε). To prove that |β̃ − β0| = O(ε), we first bound

2|α̃β̃ − α0β0| ≤ |(α̃β̃ + λ̃)− (α0β0 + λ0)|+ |(α̃β̃ − λ̃)− (α0β0 − λ0)| = O(ε),

where the two terms on the right are bounded by O(ε) as they are terms con-

tributing to ∥S̃ − S0∥. Now since |α̃ − α0| = O(ε), the above inequality implies

that |β̃ − β0| = O(ε).
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Lemma 3 Given that the Jordan chains of S0 and S̃ are within O(ε) of each

other, it follows that the Jordan chain of A0 and the vectors {xε, jε} are within

O(ε) of each other.

Proof. The Jordan chain vectors of the 2×2 matrix S0 are related to the Jordan

chain vectors of the large matrix A0 via: x0 = U0x
′
0, j0 = U0j

′
0. Using the standard

triangle inequality, we have ∥x0−xε∥ = ∥U0x
′
0−Uεx

′
ε∥ ≤ ∥U0x

′
0−U0x

′
ε∥+∥U0x

′
ε−

Uεx
′
ε∥. It follows that ∥x0 − xε∥ ≤ ∥U0∥∥x′

0 − x′
ε∥ + ∥U0 − Uε∥∥x0∥. Both terms

on the right-hand side are quantities that we already know are O(ε). The same

argument can be used to prove that ∥j′0 − j′ε∥ = O(ε).

A.4 Implementation

In this section, we analyze the accuracy of our shift-and-invert-based algorithm

and compare it with the SVD-based algorithm presented by Mailybaev [270]. We

apply both algorithms to dense defective 50 × 50 matrices, which are randomly

perturbed by an amount ε. Figure A.1 shows the relative errors in eigenvalues and

Jordan vectors as a function of ε. We find that both methods are O(ε) accurate.

However, our method is scalable for large defective matrices (as demonstrated

below), whereas the SVD-based method becomes impractical.

When the derivative of the matrix dA/dp is known, the accuracy of both algo-

rithms can be improved. This can happen, for example, when A is an operator

arising from a physical problem which depends on p in a known way. An exten-

sion of the SVD-based algorithm to incorporate the knowledge of dA/dp is given

in [270]. Our algorithm can be improved as follows. First, we employ the adjoint
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method to find the value p for which Aε ≡ Aε + p dA/dp = A0 + O(ε2). More

explicitly, we compute the derivative dg/dp, where g is a function constructed to

be equal to 0 at the exceptional point, and then take a single Newton step in p to

obtain Aε. More details are given in the Sec. A.5, (where it is assumed that the

matrices A0 and Aε are real, but the resulting formula works for both real and

complex matrices). Then, by applying Algorithms 1–3 to Aε, we obtain a Jordan

vector to accuracy ε2, with the additional cost of a single linear solve compared

to the first-order method. Therefore, we refer to the modified algorithm as a

second-order method.
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Figure A.1: Relative errors in eigenvalues (|λε − λ0|/|λ0|) and Jordan vectors
(∥jε − j0|/|j0∥). (a) Comparison of our shift-and-invert based first-order method (red and cyan
dashed lines) and the previous SVD-based algorithm [270] (black lines). All algorithms demon-
strate O(ε) convergence. (b) Comparison of our second-order algorithm, which uses the adjoint
method (red and cyan dashed lines), and the second-order SVD-based algorithm (black lines).
Both methods demonstrate O(ε2) convergence.

The accuracy of our second-order method and a comparison with the SVD-

based second-order method are presented in Fig. 1b. Both methods show O(ε2)
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convergence. Note that a floor of 10−12 in the relative error is reached due to

rounding errors in the construction of the exactly defective matrix A0.

In the remainder of this section, we show an application of our algorithm to

a physical problem of current interest: Computing spontaneous emission rates

from fluorescent molecules which are placed near electromagnetic resonators with

EPs [44]. The resonant modes of a system can be found by solving Maxwell’s equa-

tions, which can be written in the form of an eigenvalue problem: Âxn = λnxn [23].

Here, Maxwell’s operator is Â ≡ ε−1∇×∇× (where ε is the dielectric permittivity

of the medium), xn are the eigenmodes (field profiles) and the eigenvalues λn ≡ ω2
n

are the squares of the resonant frequencies. We discretize Maxwell operator, Â,

using finite differences [217, 44] to a matrix A. As recently shown in [44], the

spontaneous emission rate at an EP can be accurately computed using a simple

formula that includes the degenerate mode xn, Jordan vector jn, and eigenvalue

λn. To demonstrate our algorithm, we computed xn, jn and λn for the numerical

example of two coupled plasmonic resonators (Fig. A.2a). The system consists

of two rectangular silver (Ag) rods covered by a silica (SiO2) coating, with com-

mensurate distributions of gain and loss in the coating. When adding gain and

loss, the eigenvalues move in the complex plane (blue and red lines in Fig. A.2b)

and, at a critical amount of gain and loss, they merge at an EP (orange dot).

Fig. A.2c presents approximate eigenvector xε and Jordan vector jε, computed

via our shift-and-invert-based algorithm, and normalized so that x∗
0j0 = 1 and

j∗0j0 = 0. (Only the real parts of the vectors are shown in the figure.) The matrix

Aε in this example is 2122 × 2122. An SVD-based approach would require enor-
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mous computational resources for this relatively small two-dimensional problem,

whereas our algorithm required only a few seconds on a laptop. The result was

validated in [44] by comparing the Jordan-vector perturbation-theory predictions

to explicit eigenvector calculations near the EP.
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Figure A.2: Application of the algorithm for problems in electromagnetism. (a)
Schematics of the structure. Two silver rods (Ag) covered by a silica coating (SiO2). Gain and
loss are added to the outer sides of the coating. (b) By adding gain and loss, the eigenvalues
move in the complex plane (blue and red curves) and merge at an EP (orange dot). (c) The
approximate degenerate eigenvector xε and Jordan vector jε. (a) and (b) are borrowed from [44].

A.5 Adjoint method

In this section we suppose we know how to compute the derivaive of the matrix

dA/dp and we explain how to use the adjoint method [277, 278] in order to find

the value p for which Aε + pdA/dp = A0 + O(ε2). The derivation in this section

assumes that all matrices are real but, with slight generalizations (some complex

conjugations) summarized in Algorithm 5, the formula we provide in the end

works both for real and complex matrices.
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To find the exceptional point, we consider the matrices U and S as depending

on the parameter p. To do this, we would like to define U(p) and S(p) by the

equations

A(p)U(p) = U(p)S(p)

U(p)TU(p) = Id2,

but these do not have a unique solution because of the possibility of rotating the

basis U . When U is complex, there are also phase degrees of freedom. To fix this,

we can enforce that the first column of U , u1, is orthogonal to some vector w. We

will actually choose w such that when p = 0, the matrix S is upper triangular.

Thus U(p) and S(p) solve f(U, S, p) = 0, where

f(U, S, p) =



Au1 − s11u1 − s21u2

Au2 − s12u1 − s22u2

uT
1 u1 − 1

uT
1 u2

uT
2 u2 − 1

uT
1w


.

Now we would like to find the value of p such that S(p) is defective and therefore

satisfies

g(S) = (trace(S)/2)2 − det(S) = 0.

By computing g(0) and dg/dp, we can find the correct value of p at which g(p) = 0
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and we accomplish this task by using the adjoint method, as explained below.

Using the chain rule, we have

dg/dp = (∂g/∂S)(dS/dp). (A.7)

The derivative dS/dp can be found from differentiating f(U, S, p); it satisfies

∂f/∂p+ (∂f/∂U)dU/dp+ (∂f/∂S)dS/dp = 0.

Combining the unknowns into a single variable X = (u1, u2, s11, s12, s21, s22), the

equation simplifies to

∂f/∂p+ (∂f/∂X)dX/dp = 0.

Substituting this into Eq. A.7, we obtain

dg/dp = −(∂g/∂X)(∂f/∂X)−1(∂f/∂p).

To compute this, we let ΛT = (∂g/∂X)(∂f/∂X)−1, so that

(∂f/∂X)TΛ = (∂g/∂X).
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The matrix ∂f/∂X takes the form

∂f/∂X =



A− s11 −s21 −u1 0 −u2 0

−s12 A− s22 0 −u1 0 −u2

2uT
1 0 0 0 0 0

uT
2 uT

1 0 0 0 0

0 2uT
2 0 0 0 0

0 0 0 0 1 0


.

Moreover the vector ∂g/∂X has the form ∂g/∂X = (0, 0, h11, h12, h21, h22)
T (the

zeros reflecting the fact that g is independent of U), where

∂g/∂S =

 h11 h12

h21 h22

 =

 (s11 − s22)/2 s21

s12 (s22 − s11)/2

 . (A.8)

Expanding the adjoint variables as Λ = (λT
1 , λ

T
2 , σ11, σ12, σ22, σ21)

T , we obtain the

adjoint equations

(AT − s11)λ1 = s12λ2 − 2σ11u1 − σ12u2 (A.9)

(AT − s22)λ2 = −σ12u1 − 2σ22u2, (A.10)
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and the normalization equations

−uT
1 λ1 = h11 (A.11)

−uT
1 λ2 = h12 (A.12)

−uT
2 λ2 = h22. (A.13)

To solve this system, we first take the dot product of Eq. A.9 with u1, resulting

in

gT1 u1 + s12λ
T
2 u1 − 2σ11 = 0.

Now applying Eq. A.12, this simplifies to

σ11 =
−h12s12

2
. (A.14)

Similarly, taking the dot product of Eq. A.10 with u2 and using Eq. A.13, we find

that

σ22 =
h12s12

2
. (A.15)

To find σ21, we take the dot product of Eq. A.10 equation with u1 and ap-

ply Eq. A.11,

−(s11 − s22)h12 = (s11 − s22)λ
T
2 u1 = λT

2 (A− s22)u1 = −σ12.
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This yields

σ12 = (s11 − s22)h12. (A.16)

Now that σij are known, we can solve for λ2 and then for λ1 using the first two

equations. Then we must add back some multiple of the left eigenvectors of AT

to λ2 and λ1 so that they satisfy the other two normalization conditions. These

steps are summarized in Algorithm 4.

Algorithm 4 The adjoint method for finding p

1: σ12 ← −(s11 − s22)h12 (h is defined in Eq. A.8)
2: σ22 ← −s12h12

3: Solve (A− s22)
Tλ2 = σ12u1 − σ22u2.

4: Add a multiple of the left eigenvector of A to λ2 so that uT
2 λ2 = −h22.

5: Solve (A− s11)
Tλ1 = s12λ2 − σ22u1 − σ12u2.

6: Add a multiple of the left eigenvector of A to λ1 so that uT
2 λ1 = −h21.

7: Compute dg/dp = −λT
1 (dA/dp)u1 − λT

2 (dA/dp)u2.
8: Set p = −g(0)/(dg/dp).

To derive the adjoint method for complex A, one can split the problem into real

and imaginary parts. The resulting computation is described in Algorithm 5.

A.6 Concluding remarks

In this appendix, we presented efficient algorithms for computing Jordan chains

of large matrices with a 2 × 2 Jordan block. These tools can be readily applied

to study the limiting behavior of physical systems near second-order exceptional

points. The presented algorithm can be easily generalized to handle larger Jordan
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Algorithm 5 The adjoint method with complex A

1: Solve 2α1 − s12β4i = −s12(gS)12 for real α1 and β4.
2: Set a = −s11 − s22(−(gS)12 + β4i).
3: Set b = (s12(gS)11 − (gS)22 − a.
4: Solve 2α4 − β3i = s12(gS)12 + iβ4 for real α4 and β3.
5: Solve (A− s22)

∗λ2 = −au1 − (2α4 + β3i)u2.
6: Add a left eigenvector of A to λ2 so that u∗

2λ2 = −(gS)22.
7: Solve (A− s11)

∗λ1 = s12λ2 − 2α1u1 − (a+ b)u2.
8: Add a left eigenvector of A to λ1 so that u∗

2λ1 = −(gS)21
9: Compute dg/dp = −λ∗

1(dA/dp)u1 − λ∗
2(dA/dp)u2.

10: Set p = −g(0)/(dg/dp).

blocks by first finding an N -dimensional degenerate subspace and a reduced N×N

eigenproblem, and then computing the Jordan chain of its nearest N×N defective

matrix. Since N (the algebraic multiplicity of the eigenvalue) will in practice be

very small, existing SVD-based methods [269, 270] can be applied to find this

nearby defective N × N matrix. Moreover, defective nonlinear eigenproblems

can be handled using a similar approach with proper modification of the chain

relations at the EP [279].
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