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Abstract. We present a cryptographic protocol for conducting efficient,
provably-correct and secrecy-preserving combinatorial clock-proxy auc-
tions. The “clock phase” functions as a trusted auction despite price
discovery: bidders submit encrypted bids, and prove for themselves that
they meet activity rules, and can compute total demand and thus ver-
ify price increases without revealing any information about individual
demands. In the sealed-bid “proxy phase”, all bids are revealed the auc-
tioneer via time-lapse cryptography and a branch-and-bound algorithm
is used to solve the winner-determination problem. Homomorphic en-
cryption is used to prove the correctness of the solution, and establishes
the correctness of the solution to any interested party. Still an NP-hard
optimization problem, the use of homomorphic enryption imposes ad-
ditional computational time on winner-determination that is linear in
the size of the branch-and-bound search tree, and thus roughly linear in
the original (search-based) computational time. The result is a solution
that avoids, in the usual case, the exponential complexity of previous
cryptographically-secure combinatorial auctions.

1 Introduction

While there now exist practical protocols for cryptographic auctions of identical
items, and practical methods of computing optimal outcomes in non-cryptographic
combinatorial auctions, we know of no practical protocol for conducting a cryp-
tographic combinatorial auction, in which a seller offers various quantities of
distinct goods, buyers bid on bundles of these goods, and cryptography provides
both secrecy and provable correctness. By secrecy, we mean that the auctioneer
cannot exploit bid information to change the outcome of the auction, and by
provable correctness, we mean that the auctioneer is obligated to issue proofs of
correctness to prove he did not deviate from the posted auction rules.

Indeed, the optimization problem associated with winner determination for
combinatorial auctions is NP-hard and computing the outcome of such an auc-
tion in a secure manner is therefore a significant challenge. We describe a crypto-
graphic auction protocol that meets our secrecy and provable-correctness require-
ments, elicits accurate bids, and achieves a significant efficiency improvement
over earlier solutions. Whereas all previous methods incur exponential compu-
tational cost, our solution avoids exponential cost in the usual case because we



can emply the use of branch-and-bound search, with additional cyrptographic
proof work that scales linearly in the size of the branch-and-bound search tree.
Indded, one important contribution is to develop a general framework for prov-
ing the correctness of a solution to mathematical optimization problems, where
the input and constraints are encrypted.

The particular combinatorial auction that we study is the combinatorial
clock-proxy auction (CCP) [1], which is a simple and efficient protocol for con-
ducting combinatorial auctions. It was originally developed for auctions of wire-
less spectrum but is applicable in many other domains such as those of airport
landing slots and power generation rights. This auction combines a simple price
discovery (“clock”) phase with a sealed-bid round (“proxy”) phase.1

In the clock phase, the auctioneer creates a “clock” for each item for sale that
represents the current price at which that item is to be sold, starting with low
prices and increasing the price across rounds. In a sequence of rounds, bidders
submit a bundle of the items they desire at the current clock prices. Whenever
the demand exceeds the supply for a good, the clock price increases for that
good in the next round. The clock phase ends when there is no excess demand
for any good. At this point, bidders can submit additional bids, which, together
with the clock bids, form the bids that define the input to the proxy phase. The
proxy phase (or simply “proxy auction”) is a second price, sealed-bid auction.

In our cryptographic combinatorial clock-proxy (CCCP) auction, all bid in-
formation is encrypted, and these encryptions are posted to the public. No party,
including the auctioneer, can decrypt any values until all bids have been sub-
mitted in both phases. After all bids are in, only the auctioneer receives the
decryption key, computes the outcome in private, reveals individual outcomes to
each bidder, and issues efficiently-checkable proofs that the reported outcomes
are correct given the public encrypted bids. This complete secrecy until the
auction closes removes opportunities for collusion while assuring that the pro-
cess remains trusted and verifiable by all participants, offering an unprecedented
balance of efficiency, privacy, and transparency.

In non-cryptographic auctions, trust can be made possible at the cost of
privacy via disclosure. Indeed, this is one path that Ausubel et al. [1], the de-
signers of CCP suggest. But this can be undesirable for a number of reasons:
bidders may not want competitors to learn about the values of their bids even
after the fact; it may be politically undesirable to reveal that the winning bid-
der was willing to pay much more that was charged via the auction rules, and
revealing bids received during the clock phase may lead to new opportunities
for collusion.2 Ausubel et al. [1] also argue that the confidentiality of values is
of primary importance in an implementation, and suggest that in some areas of

1 Porter et al.[2] earlier described a combinatorial-clock auction, and Parkes and Un-
gar [3] and Ausubel and Milgrom [4] described variants on the proxy auction phase.

2 In a recent FCC auction for the 700MHz spectrum the government has for the first
time removed all feedback about the particular bids submitted in each round. Each
bidder receives individualized feedback about its own bid activity. Clearly this higher
degree of secrecy brings along the need for increased trust in the auctioneer.



the auction, some values should be hidden even from the auctioneer: “Only the
computer need know.” Our techniques complement such a “black box” system
by guaranteeing the results are correct, not simply that the programs on the
system are believed to be correct.

We advance several technical contributions in the present work. During the
clock phase, we employ homomorphic cryptography to protect the secrecy of
bids while allowing bidders to prove they satisfy “activity rules” and allowing
everyone to compute the aggregate demand for goods that determines the next
round’s prices. As in our previous work on non-combinatorial sealed bid auctions
[5], we employ time-lapse cryptography [6], to provide secrecy during the bid-
ding process while enforcing nonrepudiation: guaranteed revelation of the bids
to the auctioneer when the bidding is complete. This avoids protocol completion
incentive problems [7] in which bidders who realizing they will lose or change
their minds can refuse to complete a distributed commercial protocol.

In the primary technical contribution, we demonstrate how to use our cryp-
tographic framework to prove the correctness of solutions to general classes of
integer linear optimization problems; this is how we efficiently compute the auc-
tion outcome and prove it correct. Our auctioneer employs branch-and-bound,
mixed-integer programming search techniques to compute the outcome in pri-
vate, avoiding costly secure computation for the optimization task; he can then
prove that the outcome is correct with efficiently-checkable proofs. This seems
to us to open up the possibility, for the first time, of large-scale, provably-correct
combinatorial auctions.

1.1 Related work

A body of existing research considers the use of cryptographic methods to pro-
vide trust without compromising privacy; see Brandt [8] and Parkes et al. [5]
for a recent discussion. Much of the previous work focuses on non-combinatorial
sealed bid auctions with complete privacy, where no party learns anything except
the outcome [9–12]. We previously advanced the security model adopted here,
that of an auctioneer who must prove every action correct, and who learns bid
information only after the auction closes—preventing meaningful disclosures [5].

We are only aware of one collection of research, by Yokoo and Suzuki [13], that
considers cryptographic combinatorial auctions in depth. While their pioneering
work offers a theoretical solution to an important problem, their solutions, which
require exponential computations to prove the auction correct, can scale only to
very small auctions in practice. One method they provide is based on dynamic
programming using polynomial secret sharing to compute the optimal solution to
the combinatorial optimization problem without revealing the inputs. Another
method employs homomorphic encryption [14], but again fails to scale because
computation is performed explicitly on each of the exponentially many possible
allocations of goods. The same authors also extend their work to remove the
need for a third-party auctioneer [15], but are again limited by the scalability of
dynamic programming in this domain and also by additional process complex-
ity implied by such a completely distributed solution. Naor et al. [11] have also
proposed the use of garbled circuits to compute the outcome of a combinatorial



auction. Though the work is important for its foresight and theoretical affirma-
tive results, we know of no practical implementation of obfuscated circuits that
has been applied to significant real-world problems on the scale of a commercial
combinatorial auction.

2 Cryptographic preliminaries

Several cryptographic systems support the secrecy-preserving, provably-correct
computation that we employ to conduct the auction. Because Paillier’s cryp-
tosystem [16] supports all of the operations we need and is widely accepted in
secure protocols, we use it in our exposition. That said, there is nothing that ne-
cessitates the use of Paillier’s system; in fact, other solutions can be constructed
that are computationally more efficient, but may complicate the protocol. These
include, among others, Pedersen commitments [17] and ElGamal encryption [18],
based on the hardness of computing discrete logarithms modulo a prime, and
the provably correct secure computation system described by Rabin et al. [19].3

We reserve for future work a complete discussion of how these and other systems
might also support our protocol.

Due to special mathematical properties Paillier encryption enjoys, it is pos-
sible for a Prover (in our application the Auctioneer) to create a random per-
mutation S′ of a set of encryptions S so that a verifier believes that S′ encrypts
precisely the same set of values that S does. In the spirit of our work, this can
be done in a manner not revealing any information about the encrypted values.

In the Paillier cryptosystem, one can generate a new “random-looking” en-
cryption of a particular element by multiplying it by a encryption of 0 — we call
this a “re-encryption factor”. The auctioneer can create many random permu-
tations of the encrypted values and commit to the re-encryption factors in each
permutation. The Verifier then asks the auctioneer to reveal the re-encryption
factors for some of the permutations, and verifies that the factors are well-formed
(that is, they are encryptions of zero) and that the permutation is correct. The
remaining permutations, for which the factors remain unrevealed, are now ver-
ified correct with high probability. Cryptographers have formalized this idea as
a “shuffle”, or “mix network”.45

We will employ a mix network to create a verifiable random permutation
of the encrypted bids that are submitted to the proxy auction. This will allow
3 We have devised a similar protocol to the one we describe based on Pedersen com-

mitments; while this protocol is computationally more efficient, it is mathematically
more sophisticated, and we present the Paillier-based solution here because of the
simplicity that a protocol with a single cryptosystem enjoys.

4 The latter term should not be confused with hard-to-trace network communications
protocols that are sometimes referred to by the same name.

5 See Abe et al. [20, 21] for early work on such permutation networks, and Boneh and
Golle [22] for an excellent formalization of mix networks, a brief survey of other solu-
tions, and an interesting efficient protocol for proving a mix network is correct with
high (but not overwhelming) probability. Boneh and Golle’s efficient solution should
not be employed without using an additional mechanism to verify its correctness.
See Boneh and Golle [22].



the branching decisions of the branch-and-bound proof tree to be published
without revealing any information about the actual underlying inputs to the
linear optimization problems; bidders can thereby be satisfied with their outcome
without learning private bid information.
3 Combinatorial auctions

We consider a multi-unit combinatorial allocation problem with goods G =
{G1, . . . , Gm} and bidders B = {B1, . . . , Bn}. There are Cj units of each good
Gj available and each bidder Bi has a valuation function vi(si) on bundles
si ∈ Zm≥0, where sij ≤ Cj denotes the number of units of item Gj in the bundle.

An efficient allocation solves V ∗ = maxs∈F
∑
i vi(si) where F = {s :

∑
i sij ≤

Cj , ∀j ∈ G} and s = (s1, . . . , sn) denotes the allocation of items to bidders.
We assume quasi-linear utility ui (or payoff πi), so that bidder Bi’s utility

for bundle si, given payment yi ∈ R≥0, is πi = ui(si, yi) = vi(si)− yi. We make
the standard assumptions of normalization, with vi(si) = 0 when sij = 0 for all
items Gj , and free disposal, with vi(si) ≥ vi(s′i) for s′i ≥ si.

Bidder Bid Items Price

1 1 {A,B} 3
2 1 {B,C} 3
3 1 {A,C,D} 3
4 1 {C,D,E} 2
5 1 {E,F} 4.5
6 1 {F} 3
7 1 {D} 1

Table 1. A simple example of a combinatorial auction problem

An example of a combinatorial auction problem is illustrated in Table 1. This
example has 7 bids each from a unique bidder, and 6 goods G = {A,B, . . . , F},
all in unit supply. In this case each bidder is single-minded, and only interested
in a single bundle of goods. The example is adapted from Sandholm et al. [23].
In the efficient allocation, the winners are bidders {1,5,7}, for a total value of
8.5. (By tie-breaking, another outcome that is just as good is to select {2, 5, 8}
as winners.)

The payments in the proxy auction are selected from the buyer-optimal core.
Consider the payoff vector π = 〈π1, . . . , πn〉 induced by an efficient allocation s∗

and payment vector y = 〈y1, . . . , yn〉, i.e. with πi = vi(s∗i ) − yi. Let π0 denote
the payoff to the seller, which is the total revenue received by the seller, i.e. π0 =∑
i yi = V ∗−

∑
i πi. A payoff profile 〈π0, π〉 is in the core if π0+

∑
i∈K πi ≥ V (K)

for all K ⊆ B, where V (K) = maxs∈F
∑
k∈K vk(sk). This states that no coalition

of K ⊆ B buyers and the seller can improve its total payoff by leaving the auction
and allocating the items amongst itself, leaving all members weakly better off.
Simple algebra shows that the core payoffs can be equivalently defined as:

Core = {π :
∑

i∈W\K

πi ≤ V ∗−V (K), ∀K ⊆W,πi ≥ 0, πi ≤ vi(s∗i )},



where W is the set of winners in the efficient allocation s∗. The buyer-optimal
core defines a payoff vector that solves π ∈ arg maxπ∈Core

∑
i πi.

The buyer-optimal core is related to the outcome of the Vickrey-Clarke-
Groves (VCG) mechanism [24]. The VCG mechanism defines payments so that
the payoff to bidder i is πvcg

i = V ∗ − V (B \ {i}), i.e., each bidder’s payoff is
the marginal value it contributes by its presence. In general,

∑
i πi <

∑
i π

vcg
i

and the revenue to the seller is greater in a buyer-optimal core outcome than
in the VCG mechanism. But when the VCG outcome is in the core then it
coincides with the (unique) buyer-optimal core outcome. In the general case, the
buyer-optimal core is not unique and the final payments in the proxy auction
are selected to minimize the maximal difference to the VCG payoff across all
buyer-optimal core outcomes.6

In the example in Table 1, the payoff to winning buyers {1, 5} and 7 in the
VCG mechanism is 8.5 − 8.5 = 0, 8.5 − 8 = 0.5 and 8.5 − 8 = 0.5 respectively,
with corresponding payments {$3, $4} and $0.5. It is easily checked that this
outcome is in the core, and thus also the buyer-optimal core outcome.
4 Phase One: The Clock Auction

The presentation of our main results begins by considering the first phase of
the CCP auction, which is the clock-auction phase. The clock phase proceeds in
rounds until demand is weakly less than supply for every good. In each round t,
a price vector pt = 〈pt1, . . . , ptm〉 associates prices with each good: ptj is the price
for good Gj in round t. The price vector is initialized to low prices (although not
necessarily uniformly across all goods) for the first round, t = 1, and is increased
in each successive round based on the amount of excess demand. Bidders submit
a bid sti ∈ Zm≥0 in each round. These bids are ultimately included within the
proxy bids that form the input to the proxy phase.

We are interested in supporting this price discovery process, but without al-
lowing any party—the auctioneer included—to learn anything about any bids not
already implied by the public information. Following the description of Ausubel
et al. [1], we allow the price increase on a good in a round to depend on the
amount of excess demand on that good.7 One requirement, then, is that any
party (the auctioneer included) must be able to determine the excess demand
on each good in the current round without learning anything else about the
current bids. It will also be necessary to allow any party to verify that the bids
meet an activity rule that restricts bidding strategies, in particular a revealed
preference activity rule, and without revealing any information.

All bids made during the clock phase must also be submitted as proxy bids
in the proxy phase. We ensure this and prevent non-repudiation through the use
6 This particular choice follows the suggestion of threshold payments in Parkes et

al. [25] in the context of a combinatorial exchange, and as refined in the context of
the proxy auction by Day and Raghavan [26].

7 Ausubel et al. [1] also discuss the idea of using intra-round bids in which the auction
proceeds in a smaller number of discrete rounds and bidders express quantity de-
mands in each round at all prices along a price trajectory that will be traced during
the round. We save this extension for future work.



of a time-lapse cryptography (TLC) service [6]. At the start of the auction, the
auctioneer in CCCP announces the initial price vector p1 and the supply C =
〈C1, . . . , Cm〉 and designates a public time-lapse cryptographic key N . Because
the secret key corresponding to N (and based on the factorization of N) is not
revealed until after all bidder information has been submitted, the auctioneer
cannot reveal private information that could affect the outcome. The forced
reconstruction of N guarantees that the bids can be opened by the auctioneer
when the auction is complete.8

At the beginning of round t, the auctioneer publishes the current clock price
vector pt = 〈pt1, . . . , ptm〉. Then, each bidder Bi publishes an encrypted version of
her bid given the current prices: E(sti) = 〈E(sti1, r

t
i1), . . . , E(stim, r

t
im)〉. Bidders

publish these encrypted bundles to all bidders, the auctioneer and any verifiers,
either by broadcast or to a common “bulletin board” during a fixed period of
time for round t. This encrypted bundle is represented as a vector of length m,
in which each coefficient stij is an encryption of the quantity Bi wants for good
Gj at price ptj . The values rtij are independent, fresh random help values that
each bidder selects in accordance with the probabilistic homomorphic encryption
scheme, and kept secret. Encryptions of zero must be included for any undesired
item to keep the number of items in the bundle secret.

Bid Validity and Activity Rules Each bidder must now prove that the bid
is valid and satisfies an activity rule.9 The basic idea in a revealed-preference
activity rule (RPAR) is to require bidders to follow a demand-revealing strategy
that is consistent with some fixed valuation function across all clock rounds.
Consider a current round t and some previous round t′ < t, corresponding price
vectors pt and pt

′
, and Bi’s associated demands sti and st

′

i . A straightforward
bidder with valuation vi prefers sti to st

′

i when prices are pt, i.e. vi(sti)− pt · sti ≥
vi(st

′

i )− pt · st′i , and prefers st
′

i to sti when prices are pt
′
, i.e. vi(st

′

i )− pt′ · st′i ≥
vi(sti)− pt

′ · st′i . Adding these two inequalities (the values of the bundles cancel)
yields the activity rule, i.e. (pt − pt′) · (sti − st

′

i ) ≤ 0.
Before proving the RPAR, bidders must prove that their current demands

are valid by using an interval proof: each Bi proves for the demand for good
Gj , 0 ≤ stij ≤ Cj . That is, the demand lies in the interval between 0 and the
auction’s capacity for that good.10

8 The TLC service in Rabin et al. [6] creates a time-lock ElGamal key, but it can
also create any cryptographic key for which a verifiable distributed key generation
protocol exists, including Paillier keys (like RSA keys, the product of two large
primes).

9 While we talk about the “bidder” proving various facts about the bid history to
the auctioneer and any other interested party, we of course intend the proofs to be
generated by a computer program running on secure hardware controlled by the
bidder, both to maintain the security of any private information and because the
cryptographic computations should not be carried out by hand.

10 We also require that the capacities Cj are less than half the modulus of the cryp-
tosystem (N/2), but as the moduli are typically hundreds or thousands of bits, this
poses no practical problems.



Each bidder can now readily prove that she satisfies the activity rule using
homomorphic cryptography via the clock prices and the published encrypted
bids. This must be established in round t with respect to all previous rounds
t′ < t. The details of this are presented in Appendix A.1.
Computing Aggregate Demand At the conclusion of each round, the aggre-
gate demand for each item must be computed. The aggregate demand vector st

for all goods at the end of round t is simply:

st = 〈
n∑
i=1

sti1, . . . ,

n∑
i=1

stim〉

Given the encrypted demand vectors, we can compute use the homomorphic
properties of the cryptosystem to compute an encryption of the aggregate de-
mand vector st as follows:

E(st) = 〈
n∏
i=1

E(sti1, r
t
i1), . . . ,

n∏
i=1

E(stim, r
t
im)〉 (1)

= 〈E(
n∑
i=1

sti1,

n∏
i=1

rti1), . . . , E(
n∑
i=1

stim,

n∏
i=1

rtim)〉 (2)

By multiplying each bidder’s encrypted demand for an item together, we
obtain an encryption of the sum of all bidders’ demands for that item; the
random help value of this encryption is the product of the random help values
from all bidders’ encrypted demands. Since the secret decryption key does not
yet exist, decryption can only be performed by unlocking the encrypted value
with its random help value.

While the random help value could be directly constructed from the other
values, such a direct computation would reveal too much, because each encrypted
demand’s random help value would unlock that particular demand. We thus
employ another well-known cryptographic protocol, a simple, secure multi-party
computation of a product of secret values, to compute the random help values
needed to unlock the aggregate demand. We sketch the protocol but omit a more
detailed description for reasons of space.

After each round t, we repeat the following process for each good Gj , ob-
taining the above aggregate demand vector (Eq. 2). Bi constructs shares of the
random help value associated with the demand for good Gj , so that the product
of these shares equals the random help value rtij . Bi then distributes these shares
among all bidders. Once all the shares are received, the bidders multiply their
received shares together, yielding random factors of the help value

∏
i = 1nrtij .

Then, bidders broadcast these random factors to all bidders, and multiply them
together to yield the desired help value. This allows anyone to decrypt the en-
crypted sum of the aggregate demand for that good and verify the result. Recall
that since the encrypted individual demands are public, one can compute an
encryption of their sum by multiplying the encryptions.

We remark without proof that this sub-protocol to compute the random help
values is information-theoretically secure and reveals no information other than



the results. Furthermore, it requires only two broadcasts and scales linearly in
the number of items for sale. Moreover, bidders who refuse to participate in
this protocol to compute the aggregate demand can be disqualified, and the
demand recomputed without them. If a bidder submits incorrect values during
this protocol, then the computed values rtj will be discovered to be incorrect.11

4.1 Transition to the Proxy Phase

Let T denote the number of rounds in the clock phase. Each bidder has submitted
a bid on 〈s1i , . . . , sTi 〉 bundles at public prices 〈p1, . . . , pT 〉. A bidder can now:

(a) improve any bid submitted during the clock phase
(b) include bids on additional bundles
These additional bids are committed by each bidder, by encrypting with

the key associated with the TLC service and then sharing them, for instance
posting them to a public bulletin board. When the auctioneer receives the time-
lapse decryption key he will then prove that each bidder meets the activity rules
that constrain her ability to bid in this transition from clock to proxy.

For (a), we first require each bidder Bi to associate a bid price bi(sti) with
every bid. This bid price must satisfy:

bi(sti) ≥ pt · sti (3)

For (b), each bidder can also submit additional bids, which we index k > t to
indicate that they are received after the close of the clock phase. Consider some
bundle ski , either one of the clock bundles or one of these additional bundles,
and its associated bid price bi(ski ). Any such bid must satisfy the following
constraints:

bi(ski )− pt · ski ≤ α(bi(sti)− pt · sti), ∀t ∈ {1, . . . , T} (4)

This requires that the bidder would not have been much happier (by some
relaxation parameter α ≥ 1) by bidding this bundle in any clock round than the
bundle that it did bid in that round. We will also require each bidder to pad her
bids (with zero bids), so that the total number of bundles that receive a bid is
constant across all bidders. Let K denote the number of such bids.

Once this transition round closes the auctioneer receives the time-lapse de-
cryption key and will now generate a proof that all bids satisfy these activity
rules (Eq. 3 and 4).12 If a bidder submits a non-compliant bid at this phase, the
auctioneer can prove the bid is non-compliant and remove any such bids from
the computation of the outcome.
11 Although the process we describe cannot detect which bidder submitted incorrect

values, the auctioneer can resort to a more sophisticated verifiable secret sharing
protocol (e.g., [27]) that can identify non-compliant bidders. The ability to use such
protocols if necessary should discourage malicious bidders from attempting to disrupt
our protocol: they can always be discovered and disqualified. The auctioneer can also
recover and reveal disqualified bidders’ prior bids once he receives the time-lapse
decryption key.

12 To establish the activity rule, then for every bidder Bi and round t ∈ {1, . . . , T},
the auctioneer computes provably correct encryptions of the dot products pt · sti



5 Phase Two: The Proxy Auction

The proxy phase of the CCP auction is used to determine the final allocation
of goods and the final payments. This requires solving a sequence of optimiza-
tion problems. Given that the winner-determination problem for combinatorial
auctions is NP-hard, it seems to us essential that the bids are now revealed
to the auctioneer in plain text. This enables the auctioneer to leverage efficient,
branch-and-bound methods of integer programming in determining the outcome.
We reiterate that the auctioneer is unable to submit or alter bids, or change the
outcome of the auction in any way, once the bids are revealed. And up until this
point neither the auctioneer or any other party has received any information
about the bids.

The main technical innovation is to use cryptographic methods to prove
that a solution to an integer program is optimal by establishing various linear
constraints implied by a “fathomed” (or solved) branch-and-bound tree. An ap-
pealing aspect of our approach is that it is completely agnostic to the particular
heuristics by which a branch-and-bound proof tree is generated (e.g. depth-first,
breadth-first, memory management, branch-selection heuristics, etc.). Rather,
the system works directly with the information that is established upon the
conclusion of the search, i.e. from the final proof tree.

We confine our solution to what can be considered a standard, textbook
treatment of branch-and-bound search (e.g., see Wolsey [28]). In doing so, we
impose two main restrictions on the use of branch-and-bound algorithms: (a) no
pre-processing, and (b) no cut-generation. While modern optimization solvers,
such as ILOG’s CPLEX, do make extensive use of both of these methods, good
performance can be achieved on reasonably sized problems without either fea-
ture. Nevertheless, this presents a very appealing avenue for future work.

5.1 Branch-and-Bound Search

To illustrate the principle of branch-and-bound search we will consider the
winner-determination problem (WDP) in the proxy phase. In defining this, we
index the proxy bids si = 〈si1, . . . , siK〉 from each bidder i. Recall that K is the
total number of bids received from each bidder (by padding if necessary.) Let
bi = 〈bi1, . . . , biK〉 denote the associated bid values. The integer programming
(IP) formulation for the WDP is:

max

{∑
i

∑
k

xikbik : s.t. x ∈ F, xik ∈ {0, 1}, ∀i, ∀k

}
(5)

for values bid during the clock phase. He further computes, for every bidder Bi,
the t(K − T ) dot products pt · ski , ∀t ∈ {1, . . . , T}∀k ∈ {T + 1, . . . ,K}. These dot
products are computed in the same way encrypted dot products are computed at
the end of Section 4. To prove Eq. 4, he shows that the bidder prefers each final
proxy bid 〈ski , bi(ski )〉, T < k ≤ K, he computes the encrypted differences of these
encrypted dot products and encrypted bid values bi(s

k
i ) and bi(s

t
i) (respectively) and

multiplies the second result by the public constant α; this allows him to use a simple
interval proof to demonstrate the inequality.



where

F =
{∑

i

∑
k sikjxik ≤ Cj , ∀j ∈ G,∑
k xik ≤ 1, ∀i ∈ B

}
, (6)

and these constraints ensure that no more units of a good are allocated than in
the supply and that no more than one bid is accepted from any single bidder.

In describing branch-and-bound, let z denote the value of the best solution
found so far (initialized to −∞), and let x denote that solution (undefined when
no solution has been found.) This is the incumbent solution. The first step in
branch-and-bound is to solve the linear-programming (LP) relaxation,

max

{∑
i

∑
k

xikbik : s.t. x ∈ F, xik ≥ 0, ∀i,∀k

}
(7)

Let L0 = {x : x ∈ F, xik ≥ 0,∀i,∀k} denote the LP-relaxation of the solution
space. Let x0 denote the solution on L0 and z0 the value of this solution. If x0 is
integral then branch-and-bound can stop with x := x0 and z := z0. The solution
x0 will in general be fractional, meaning that one or more of the variables has a
value that is neither 0 or 1.

To illustrate this, consider again the example in Table 1 and let xi1 denote the
variable corresponding to the bid from each agent i. In the example, the solution
to the LP relaxation is fractional, with an assignment 〈0.5, 0.5, 0.5, 0, 1, 0, 0.5〉
and total value of 9.5. When this occurs, a branching decision is made on one of
the fractional variables. Continuing with the example, suppose that we branch
on x71 ≤ 0 and x71 ≥ 1. This generates two new sub-problems, one defined on
solution space L1 = {x : x ∈ F, x71 ≤ 0, xik ≥ 0, ∀i,∀k} and one defined on
solution space L2 = {x : x ∈ F, x71 ≥ 1, xik ≥ 0, ∀i,∀k}. Branch-and-bound
continues by picking one of these and solving the associated linear program.

Let (Lp, xp, zp) denote the associated LP and solution. In any one of the
following three cases, this becomes a “fathomed” (or solved) leaf:

(a) the subproblem is infeasible
(b) the subproblem has an integral optimal solution; if z < zp then z := zp

and x := xp.
(c) the subproblem is feasible and the solution fractional, but βzp ≤ z for

some β ≤ 1 that controls the optimality tolerance.
In our example, the solution to L2 is integral and we would set z := z2 = 8.5

and x := x2 = 〈1, 0, 0, 0, 1, 0, 1〉. This leaf is now fathomed. But the solution to
L1 is fractional (x1 = 〈0.5, 0.5, 0.5, 0, 1, 0, 0〉) and has value z1 = 9 � z = 8.5. In
such a case, branch-and-bound search will generate two additional subproblems,
typically by doing something like branching on the most fractional variable. The
unsolved subproblems are stored on the “open list.” Branch-and-bound finally
terminates when the open list is empty, returning the incumbent as the solution.
Finishing with the example, when we branch on x11 ≤ 0 and x11 ≥ 1 we obtain
two leaves that are fathomed. The LP relaxations generate integral solutions and
their value is less than that of the solution already found.



While there are many sophisticated strategies for managing the details of
a branch-and-bound search, for our purposes all that is required is a fathomed
branch-and-bound tree, i.e. one for which all leaves have been fathomed. An
example of a so-called proof tree for the example is shown in Figure 5.2.

Fig. 1. Branch-and-Bound Proof Tree

5.2 Establishing Correctness of Integer Program Solutions

In this section we describe the general approach to establish the correctness of
the solution to an integer program (IP). Along the way we also provide a method
to establish the correctness of the solution to a linear program (LP). Recall that
the input to the IP is published in encrypted form. In describing our approach
we assume that the solution to the IP is revealed to all parties, but this is not
necessary. All relevant steps can instead be performed using an encryption of
the solution, if the solution itself is to remain private.

The cryptographic proof is constructed from a proof tree, as generated at
the termination of a branch-and-bound search. To perform these steps on the
encrypted inputs, we first note that IPs, LPs and their duals are all defined with
linear inequalities and linear objective functions. Therefore, we can prove that
a set of constraints are satisfied, or that a solution has a particular objective
value, using the verifiable addition, subtraction and multiplication operations,
and equality and inequality tests, on Paillier-encrypted values. All that is re-
quired are encryptions of all the private inputs (the bids in our case).

Because we have formulated all inputs as integers, it is theoretically possible
to obtain LPs with rational coefficients at every point in the proof tree, which
implies that they have rational solutions. Moreover, since any computation on
the rationals can be performed by an equivalent computation on the integers
(with at most a constant factor increase in the number of steps), we can employ
established cryptographic techniques that prove integer computations correct
for rational numbers as well. This allows us to calculate and prove correct exact
solutions to rational LPs.13
13 In practice, it is likely that the results will be computed using a computer program

that yields a floating-point or real number as a result. We can instead convert this



The proof of the correctness of a solution x∗ to a IP proceeds with the
following steps:
1. Any permutation-invariance in the class of problems being solved is leveraged

for the purpose of secrecy by generating a random permutation using a mix
network as described in Section 2. This proves to verifiers that the set of
encrypted values in the proof tree is the same as the set of inputs, but makes
the correspondence between those sets is unknown.14

2. The branching decisions that define the proof tree are revealed. (For instance,
“at the root the left branch is x6 ≤ 0 and the right branch is x6 ≥ 1” and
so on.) The amount of information that this reveals depends on the amount
of permutation invariance in the class of problems. For example, if all inputs
can be “mixed” with all other inputs then this reveals no information.

3. The solution x∗ to the IP is revealed along with a claim β ≤ 1 about its opti-
mality (e.g., β = 9999/10000 would state that the solution quality is within
multiplicative factor 9999/10000 of the optimal solution.) The encrypted so-
lution E(x∗) is published and shown to be a valid encryption of x∗: this is
because many of our operations only apply to two encrypted operands, and
for those we need to use E(x∗) rather than the unencrypted x∗.

4. Let q∗ denote the leaf associated with the optimal solution. This is revealed
by the prover. The prover then proceeds to:
(a) Publish E(V ∗) and prove that its value is correct (i.e. the value is an

encryption of the objective value of the IP given solution x∗).
(b) Prove that x∗ satisfies the constraints of the LP formulated at leaf Lq

∗

(i.e. prove inequalities defined in terms of the encrypted input to the IP
and also the additional inequalities implied by the branching decisions.)

(c) Prove that x∗ is integral.
5. Consider every leaf q (including the optimal leaf) in turn. For every such leaf,

the prover then proceeds to:
(a) Let yq denote the solution to the dual LP at leaf Lq and Dq the value

of that dual solution. Publish the encrypted dual E(yq) solution and the
encrypted dual value E(Dq) at this leaf.

(b) Prove that the dual solution satisfies the constraints of the dual LP for-
mulated at leaf Lq.

(c) Prove the correctness of the dual value E(Dq) by reference to the dual
formulation, and that βE(Dq) ≤ E(V ∗).

This procedure encompasses both leaves that are fathomed by infeasibility
and leaves that are fathomed by bound in the same way. Note that a leaf that is

value to a rational number and prove that the constraints are satisfied with accept-
ably small error.

14 A complete permutation invariance is not required for this step. For example, in the
context of the combinatorial auction application, we seek a permutation of the order
of the bids submitted by a particular bidder and also a permutation across bidders.
But we should not mix-up bids submitted by one bidder with bids submitted by
another bidder.



infeasible in its primal form has a dual solution with value −∞ by the duality
theory of LP. Therefore, the prover can always construct a feasible dual solution
to prove that there is no better (primal) solution in the feasible solution space
that corresponds to a particular leaf. It should be easy to see how to generalize
the above approach to a mixed integer program.15

5.3 Application: Winner Determination

We now instantiate the general approach to the WDP for combinatorial auctions.
Recall that (sik, bik) denotes the kth proxy bid submitted by bidder i, where
bundle sik contains sikj units of item j ∈ G. The IP formulation for the WDP
is:

max
xik

∑
i∈B

∑
k

xikbik WDP(B)

s.t.
∑
i∈B

∑
k

sikj xik ≤ Cj , ∀j ∈ G (8)∑
k

xik ≤ 1, ∀i ∈ B (9)

xik ∈ {0, 1}, ∀i ∈ B, ∀k

where xik indicates whether the kth bid from bidder i is accepted. We label
this formulation WDP(B) to make explicit that this is problem is defined for all
bidders and to allow for variations WDP(L) defined on a subset L ⊆ B of bidders.
Constraints (8) ensure that the supply constraints are satisfied. Constraints (9)
ensure that no bidder receives more than one bundle of items.16

Once the solution x∗ is published and associated with a leaf of the branch-
and-bound tree, and once it has been shown to satisfy the constraints of the
appropriate restricted-primal formulation for the leaf (se the Appendix) and
also to be integral, the remaining work in proving the optimality is in terms of
establishing properties for the dual of this restricted primal formulation for each
leaf of the search tree. All the information required to complete these proofs is
either available in the encrypted proxy bids (e.g. sikj , bik), publicly known (e.g.
the capacity Cj), or defined by the branching decisions that are published by
the mechanism.

5.4 Determining Payments and Announcing Results

The final step in the CCP auction is to find the buyer-optimal core point that
minimizes the maximal deviation across all buyers from the payoff profile in
15 In the case that the original problem is an LP rather than a IP then there is no proof

tree to deal with, and the procedure simplifies to: (a) publish E(V ∗) and prove this
value is correct; (b) prove that x∗ satisfies the constraints of the LP; (c) publish an
encrypted dual solution E(yq) and associated dual value E(Dq); (d) prove that the
solution is dual feasible, and that βE(Dq) ≤ E(V ∗).

16 Details about the linear-programming relaxation of WDP(B) and the corresponding
dual DWDP(B), along with the restricted primal and dual formulations for the leaf
of a winner-determination branch-and-bound tree are provided in Appendix A.2.



the VCG mechanism, as discussed in Section 3. The details of this step are
provided in Appendix A.3, and require solving and proving the correctness of
sequence of optimization problems (each of which is a simple variant on the
winner determination problem), and ultimately establishing the correctness of a
solution to a linear program to determine the final payments.

Taken together, the above steps are sufficient to prove to any interested party
that the allocation and payments are correct. But because we employed a mix
network to prevent bidders from learning the position of their bids in the proof
tree, we still need to convince an individual bidder that the particular allocation
announced for them is correct for them. This is easy to achieve by privately
revealing to each bidder only the correspondence between their original proxy
bid that was accepted and its position in the permutation generated by the mix
network. The bidder will then be satisfied that the outcome proven is correct
from her perspective because she can verify that her bid was allocated in the
optimal allocation. She will similarly believe that the payment corresponding to
the bidder that submitted the bid, and hence her own payment, is correct.17

6 Conclusions

We have described a cryptographic method to enable secret and provably-correct,
combinatorial auctions. Whereas previous methods incur exponential cost in
providing a secure solution to the NP-hard winner-determination problem, we
can use branch-and-bound algorithms and generate a proof with overhead that
is linear in the size of the ultimate branch-and-bound tree, and thus linear in the
computational search time. In doing so, the solution presented here will avoid
exponential time complexity with overwhelming probability. Our particular focus
has been on the practically important combinatorial clock-proxy auction, which
is used by governments in high-stakes settings. It bears additional emphasis
that in striving for what we consider to be a practical solution, we require that
the auctioneer is trusted not to reveal information about bids once an auction
has closed. This is the same tradeoff that we made in our earlier work on non-
combinatorial auctions [5]. In making this tradeoff, we achieve a system that
is provably correct and trustworthy, and we believe can be implemented in a
realistic business setting on cost-effective computing hardware.

17 This does imply that a small amount of information that is leaked by our system,
over and above that implied by the outcome of the auction: each bidder learns where
in the various proof trees her own accepted bid was branched on. But this appears
to us to disclose no useful information to a bidder.
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A Appendix: Further Details of the Auction Protocol

A.1 Establishing the Activity Rule: First, since the price vectors pt
′

and pt

are public, anyone can compute the price difference vector p̂ = 〈p̂1, . . . , p̂m〉 =
pt − pt

′
. Second, using the encrypted demand vectors E(sti) and E(st

′

i ), the
homomorphic properties of the cryptosystem allow computing Bi’s encrypted
demand difference vector ŝi = 〈ŝi1, . . . , ŝim〉 = sti − st

′

i :

E(sti) = 〈E(sti1, r
t
i1), . . . , E(stim, r

t
im)〉

E(st
′
i ) = 〈E(st

′
i1, r

t′
i1), . . . , E(st

′
im, r

t′
im)〉

E(ŝi) = 〈E(sti1, r
t
i1)

E(st
′
i1, r

t′
i1)
, . . . ,

E(stim, r
t
im)

E(st
′
im, r

t′
im)
〉

=〈E(sti1−st
′
i1, r

t
i1/r

t′
i1), . . . , E(stim−st

′
im, r

t
im/r

t′
im)〉

To compute the encrypted dot product of the price difference vector and the
encrypted demand difference vector, E(p̂· ŝi), we can again use the homomorphic
properties of the cryptosystem:

E(p̂ · ŝi) = E(ŝi1, r
t
i1/r

t
i1′)

p̂1 × . . .× E(ŝim, r
t
im/r

t′
im)p̂m

=E(p̂1 × ŝi1, rti1/rt
′
i1)× . . .× E(p̂m × ŝim, rtim/rt

′
im)

=E(p̂1 × ŝi1 + . . .+ p̂m × ŝim, rti1/rt
′
i1 × . . .× rtim/rt

′
im)



We adopt r̂i to notate the random help value encrypting the dot product (the
last formula above): r̂i = rti1/r

t′

i1 × . . . × rtim/rt
′

im. We now have an encryption
of this dot product—a single value that proves the activity rule when it is less
than or equal to zero.18 Consequently, each bidder now proves using another
interval proof that this encrypted value is less than (but relatively close to)
zero. Our example shows that Bi can compute the precise random help value
corresponding to the encryption of a dot product of an encrypted vector with a
public vector. This allows Bi to prove facts about the result like any other value
it encrypted and even though the decryption key has not yet been constructed.

A.2 Detailing the LP Relaxations for Winner Determination: The
linear-programming relaxation of WDP(B) is defined by replacing xik ∈ {0, 1}
with xik ≥ 0. In defining the dual (and overloading notation from the clock
phase, which is no longer needed), we introduce variables pj to denote the dual
variable for constraints (8) and πi to denote the dual variable for constraints (9).
Given this, then the dual problem is:

min
p,π

∑
j

Cjpj +
∑
i

πi DWDP(B)

s.t.
∑
j

sikj pj + πi ≥ bik, ∀i, k (10)

pj ≥ 0, πi ≥ 0

A sequence of branching decisions leading to a fathomed leaf in the search
tree introduces additional constraints to WDP(B) and modifies the dual problem
at the leaf. Let (i, k) ∈ OUT indicate that branch xik ≤ 0 has been taken and
(i, k) ∈ IN denote that branch xik ≥ 1 has been taken. Given these constraints,
the restricted primal and dual pair becomes:

max
xik

∑
i

∑
k

xikbik RWDP(B)

s.t.
∑
i

∑
k

sikj xik ≤ Cj , ∀j ∈ G (11)∑
k

xik ≤ 1, ∀i (12)

xik ≤ 0, ∀(i, k) ∈ OUT (13)

xik ≥ 1, ∀(i, k) ∈ IN (14)

xik ≥ 0, ∀i,∀k

18 If the bidder does not prove the activity rule, then the bid is invalid and the auction
rules should dictate whether the bidder must resubmit, or be disqualified for the
round.



min
p,π,δ

∑
j

Cjpj +
∑
i

πi −
∑

i|(i,k)∈W

δi DRWDP(B)

s.t.
∑
j

sikj pj + πi ≥ bik, ∀(i, k) /∈ (OUT ∪ IN ) (15)

∑
j

sikj pj + πi − δi ≥ bik, ∀(i, k) ∈ IN (16)

pj ≥ 0, πi ≥ 0, δi ≥ 0

Dual variable δi corresponds to constraints (14) in RWDP(B). The vari-
able that dualizes constraints (13) drops out of the dual formulation because
it appears with coefficient zero in the objective and appears in a non-binding
constraint.
A.3 Determining the Proxy Payments: To determine the payments we
must determine the payoffs in the buyer-optimal core that minimize the maximal
deviation across all buyers from the VCG payoff profile. Solving for this point
requires the use of constraint generation, but the cryptographic proof can be
constructed after-the-fact in terms of just the final set of constraints. By a slight
reformulation of the method in Day and Raghavan [26], the payoffs to winning
buyers i ∈W can be computed in the following LP:

max
π,m

∑
i∈W

πi − ε m EBOP

s.t.
∑

i∈W\L

πi ≤ V ∗ − V (L), ∀L ⊆W (17)

πi +m ≥ πvcg
i , ∀i ∈W (18)

0 ≤ πi, ∀i ∈W
0 ≤ m,

with πi = 0 for all i /∈ W , and for some small ε > 0. The objective is to
maximize the total buyer payoff, but then for small ε to break ties in favor
of minimizing the maximal deviation m from the VCG payoffs across all such
buyers. Constraints (17) are the core constraints and constraints (18) force m
to adopt the maximal difference to VCG payoffs. Given a solution π∗ to EBOP,
the payments collected from each winning buyer i ∈W are bi(s∗i )− π∗i .

EBOP is an LP and has no integer variables. But notice that part of its
input has required solving IPs (since constraints (17) are defined in terms
of V ∗ and V (L)). More difficult, there are an exponential number of con-
straints (17). Day and Raghavan [26] suggest using constraint generation to
construct a subset L ⊆ 2W of coalitions, with constraints (17) reformulated as∑
i∈W\L πi ≤ V ∗ − V (L), ∀L ∈ L. Let EBOP(L) denote the relaxed form of

EBOP in with just this subset of constraints. New constraints are introduced
until it can be established that:



max
L⊆W

∑
i∈W\L

πi − (V ∗ − V (L)) ≤ 0 (19)

This establishes that none of the missing constraints is binding. (In practice,
this is also the separation problem that is solved in generating a new constraint.)
Given a solution π∗ to EBOP(L), the separation problem can be formulated and
solved via an IP as a simple variation on the regular WDP:

max
xik

∑
i∈W

(
1−

∑
k

xik

)
πi − V ∗ +

∑
i∈W

∑
k

xikbik SEP(π∗)

s.t.
∑
i

∑
k

sikj xik ≤ Cj , ∀j (20)∑
k

xik ≤ 1, ∀i ∈W (21)

xik ∈ {0, 1}

Putting this all together, the methodology for establishing the correctness of
the final payments is as follows:
1. Publish the set L of coalitions of winners that are used to establish the

correctness of payments. (Note that this does not reveal any information if
a mix network was used on the inputs.) Publish the parameter ε > 0.

2. Publish the solution E(π∗) and E(m∗) to EBOP(L). Publish the vector of
proxy payments p∗ = 〈p∗1, . . . , p∗n〉. Prove that p∗i =

∑
k x
∗
ikbik − π∗i for all

buyers i.
3. Publish and establish the correctness of E(πvcg), for πvcg = 〈πvcg

1 , . . . , pvcg
n 〉.

Publish and establish the correctness of E(V (L)) for all L ∈ L.
4. Publish and prove the solution to the separation problem SEP(π∗).
5. Prove that the solution to EBOP is primal feasible.
6. Publish an encrypted solution to the dual problem and prove it is dual fea-

sible. Prove the value E(D∗) ≤ βE(V ∗) for some parameter β ≥ 1, e.g.
β = 100001/100000.
Step 3 requires proving facts about solutions to different winner determina-

tion problems. For the VCG payoff, πvcg
i = V ∗ − V (B \ i) and thus this needs

the value of E(V (B \ i)) to be proved correct. This can be done following the
approach in the previous section for the WDP. Similarly, we need to prove the
correctness of E(V (L)) for subsets L ⊆ B. Note that both kinds of proofs can be
verified without revealing the solution to these subproblems, and that no useful
information leaks from publishing branching decisions in the branch-and-bound
search because of the use of a mix network. Step 4 can be reduced to an instance
of the WDP and proved analogously. In Step 6 we need the dual to the linear
program EBOP(L).


