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A Grand Journey of Statistical Hierarchical Modelling

Abstract

This thesis presents three research reports composed by the candidate and his collaborators on

different perspectives and applications of statistical hierarchical modelling, which seeks to con-

nect the observed quantities via the assumed and unobserved variables. The topics range from

random graph modelling, Shrinkage estimation, to studying tick-by-tick financial data.

In Chapter 1, we discuss the modeling of unlabeled dense network, whose probabilistic prop-

erty can be uniquely characterized by a sequence of uniformly distributed latent variables that

mean the inter-connectivity of each node, and a bivariate function of interests, graphon, that will

map each pair of these latent variables into the generative probability of each edge on the graph.

A consistent estimation methodology for graphon is proposed.

For the case of simultaneously estimation, studied in Chapter 2, the introduction of an un-

known prior distribution over all the parameters that we want to estimate naturally lead to the

so-called shrinkage estimation, originally introduced in the frequentist sense. We then take an

in-depth look into the theoretical property of these shrinkage estimators under the mean square

error in the scenario where independent variables (or covariates) are available to use.

Finally, when studying the dynamics of high-frequency financial data in Chapter 3, assuming

an non-observable Poisson random fields whose realizations are thought as pulses or innovations

that indeed drive the seen movements of trade price processes, will naturally lead to a new family

of theoretically coherent models for discrete-valued stochastic processes that could address differ-

ent empirical features for market microstructure.
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In this internet age, hierarchical modelling has become an effective methodology that could

help to organize the tremendous amount of data in a logical manner, by pooling information to-

gether, reducing idiosyncratic noises, and finally achieving a better estimation (or prediction)

that can still generalize to future data.

In addition to the viewpoint from the statistical stability, correctly identifying the pieces that

we cannot see and, at the same time, explicitly considering these quantities into our modelling

framework, will often lead to a more descriptive statistical model that can better represents dif-

ferent characteristics of the observed data.

Even though these research topics were introduced by the candidates and his collaborators

from varied original considerations, it turns out that these seemly disconnected studies could all

be seen as different representation and realization of the statistical hierarchical modeling. The

candidate is eager to present this grand journey, during which he feels amazed, blessed, and

breathtaking.
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1
Nonparametric Estimation and Testing of

Exchangeable Graph Models

Exchangeable graph model (ExGM) is a nonparametric approach for modeling network

data that subsumes a number of popular models. The key object that defines an ExGM is often

referred to as a graphon, or graph kernel. Here, we make three contributions to refine the theory

of graphon estimation. We determine a condition under which a unique canonical representation

This Chapter is advised by and coauthored with Professor Edoardo M. Airoldi with the help of Qiuyi
Han.
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for a graphon exists and is identifiable. We propose a 3-step procedure to estimate the canonical

graphon of any ExGM that satisfies this condition. We then focus on a specific estimator, built

using the proposed 3-step procedure, which combines probability matrix estimation using Uni-

versal Singular Value Thresholding (USVT) proposed by Chatterjee (2012) and empirical degree

sorting using the observed adjacency matrix. We prove that this estimator is consistent in the

sense of mean square error. As an application of the theory and the methodology we propose

for estimating graphons , we illustrate how they can be used to develop hypothesis testing proce-

dures for models of graphs.

1.1 Introduction

Network data is ubiquitous and research approaches to network modeling have been gaining mo-

mentum in the past few years Goldenberg et al. (2009). Applications span a diverse range of

scientific areas, from biology and genetics, to social sciences and economics, to the information

sciences. These applications raise challenging statistical questions about modeling, inference and

computation for network data.

Here, we focus on exchangeable graph model (ExGM) and discuss circumstances under which

the graphon that define it can be consistently estimated. A traditional way to formulate this es-

timation problem is to focus on the probability matrix, which generates the observed adjacency

matrix in the sense of independent Bernoulli trials. Several recent papers focus on this direction

(Airoldi et al. (2013), Bickel and Chen (2009), Chatterjee (Chatterjee), Choi et al. (2012)) , but

one of the deficiencies for this formulation is that the resulting estimate always lacks the global

structural information to the generating graphon.

To make this point clear, consider the case that, we have two observed networks which are

conjectured to be generated from the same mechanism, but we don’t know whether those nodes
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of one observed network match exactly to nodes of the other network. If we conduct probability

matrix estimations–usually under the probability measure given some unknown latent variables

which uniquely characterize the nodes we are working on–separately on these two networks, then

how can we compare the similarity between these two estimations when we are uncertain about

whether the two observed networks share exactly the same set of nodes, that is, when the two

estimations might not be coming from the same probability measure?

Therefore, in this Chapter, we would like to adopt an alternative way to formulate the esti-

mation problem for the generating graphon of an ExGM. Our goal in this work is to seek a fully

functional form and a nonparametric estimation to the unknown graphon. A functional form of a

graphon estimate means it is a function of the latent variables. The qualifier ”fully” above refers

to the Aldous-Hoover-Kallenbger characterization theorem Aldous (1981), Hoover (1979), Kallen-

berg (1989), which uses both of the latent variables and a graphon function to fully specify an

ExGM. Precisely, we estimate not only the probability matrix but also the node-specific latent

variables and then combine them (in addition to some smoothing techniques) to get a functional

estimate for the graphon. So far as we know, this is the first implementable∗ study focusing on

such aspect of the graphon estimation, so hopefully this work could open a door toward more

sophisticated statistical tools in this formulation.

We make three contributions in this Chapter. First, we clearly discuss the identifiability issue

when pursuing a functional form estimation to the unknown graphon. In other words, before we

have a functional form estimate, we need to uniquely define an estimand that is also in a func-

tional form. We especially emphasize an identifiability condition that requires an ExGM to have

an absolutely continuous degree proportions distribution, which was originally and vaguely pro-
∗The functional form estimation of a graphon hasn’t been accounted for by other existing approaches

except for the works studied by Bickel et al. (2011) and Wolfe and Olhede (2013). However, their papers
don’t provide a functional estimation that could be implemented in practice. See Section 1.6.1 for more
discussions.
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posed by Bickel and Chen (2009) in another format but has been clarified and reformulated by

us here. Under this condition, there is always a uniquely defined canonical representation for the

generating graphons of an ExGM, which is the primary object we are interested in estimating in

this work.

Second, for any ExGM satisfying the identifiability condition, we propose a 3-step procedure

to construct a flexible set of nonparametric estimates to the canonical graphon. This procedure

requires (i) a probability matrix estimation, (ii) a latent variables estimation by empirical de-

gree sorting using another probability matrix estimation, and finally (iii) an optional smoothing

step as needed. This three steps procedure allows any combination of two probability matrix es-

timations and one smoothing device, so researchers can flexibly design their own nonparametric

estimates to the canonical graphon depending on their goal or willingness to accept additional

assumptions.

Third, we consider a specific estimator, build with the 3-step procedure, by combining proba-

bility matrix estimation using Universal Singular Value Thresholding (USVT) Chatterjee (Chat-

terjee) and empirical degree sorting using the observed adjacency matrix. This combination,

which we informally refer to as the USVT-A estimation, is proved to be consistent in the sense

of mean square error, only requiring continuity, or the weaker piecewise continuity, on the true

canonical graphon. Here are two advantages of our proposed USVT-A method which we need to

especially emphasize: (i) It requires assumptions on the canonical graphon in a least degree, so

researchers can almost always use our proposed method as the first step or preliminary analysis

to their network data without anxiety. (ii) It is both easy to implement and quick to compute,

so a large amount of replications of the estimation calculation is allowable; hence, a simulation

based hypothesis testing to the network data becomes plausible.

The rest of this Chapter is organized as follows. In Section 1.2, we discuss in details the iden-
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tifiability issue to propose a functional form estimate for the generating graphon. In Section 1.3,

we demonstrate and explain our 3-step procedure to construct estimates. In Section 1.4, we focus

on a specific choice of estimate under the 3-step procedure and provide its theoretical asymptotic

consistency. In Section 1.5, We demonstrate the power of pursuing a functional form estimate in

the context of classical hypothesis testing. We offer some discussions to related works and con-

clude in Section 1.6.

1.2 Identifiability of ExGM

Here we define some key notions. We then move on to the discussion of the identifiability of

graphons and conclude with a special but flexible subclass of ExGM, which we will focus on in

the remainder of this Chapter.

1.2.1 Basic setup

Let U1, ..., UN be i.i.d. uniform random variables on the closed interval [0, 1], and let W : [0, 1]2 →

[0, 1] be an unknown symmetric measurable function. The observed data is an undirected simple

graph described by an adjacency matrix A, which is a N × N symmetric random matrix with

binary elements such that, for UN , σ (U1, ..., UN ),

Aii = 0 for each i and Aij |UN v Ber (W (Ui, Uj)) for i < j,

where Aij ’s are, conditionally on UN , independent to each other for i < j. The unknown symmet-

ric parameter matrix

Pii , 0 for each i and Pij ,W (Ui, Uj) for i < j

is then called the probability matrix.
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The model specification that assigns a probability on an undirected graph represented by an

infinitely large adjacency matrix containing the observed part A (which has size N × N) is then

called the exchangeable graph model (ExGM). W is called a graphon generating this ExGM, and

U1, U2, ..., UN are called the latent variables for the observed graph. We will refer the probability

distribution on the infinitely large adjacency matrix as P and simply call the ExGM as P.

Our goal is to draw inferences about the unknown graphon W from the observed adjacency

matrix A. Researchers typically formulate the estimation problem as follows:

Estimation problem 1 (P1). Build a probability matrix estimator P̂ of P under the proba-

bility measure given the latent variables U1, ..., UN .

Even though this is the most common way to formulate the estimation problem, this approach

often leads to an estimator P̂ that is unable to describe the global structural information en-

coded by the generating graphon W , which then blocks us from doing inferences on some inter-

esting and practical problems, like model similarity checking or prediction inferences. Here, we

pursue an alternative formulation of the estimation problem as follows:

Estimation problem 2 (P2). Build a functional form or nonparametric estimator Ŵ (u, v) of

W (u, v) under the top probability measure without conditioning.

However, there is an unavoidable well-posedness issue before we further study Estimation prob-

lem 2. Due to the highly symmetry structure resulted by the exchangeability of ExGM, several

graphons might generate the same† ExGM simultaneously, so Estimation problem 2 won’t be

well-posed unless we can assign a unique and identifiable representation among those graphons

generating the same underlying ExGM. We discuss this issue next.
†We say two ExGM’s P1 and P2 are the same if, for any binary and symmetric N × N matrix realiza-

tion A and any N ∈ N, P1 (A) = P2 (A) .

6



1.2.2 Identifiability of graphons

The discussion of the identifiability for Estimation problem 2 starts from a non-trivial statement,

which seems to be true at a first glance, for any two graphons generating the same ExGM. It is

often stated that, for any measure preserving mapping φ : [0, 1] → [0, 1],

W ′ (u, v) ,W (φ (u) , φ (v)) (1.1)

for almost everywhere (a.e.)‡ (u, v) ∈ [0, 1]2, generates the same ExGM as W . Conversely, for a

given ExGM P, is the relationship above the only uncertainty about W? In other words, suppose

that both W and W ′ generate the same ExGM P, does there exist a measure preserving mapping

φ such that equation (1.1) holds?

The answer is negative, while the opposite wrong answer has been widely misused in many

statistical literatures about ExGM (for example, Bickel and Chen (2009), p. 21069). An easy

counterexample proposed by Diaconis and Janson (2008) is

W (u, v) = uv and W ′ (u, v) , (2u mod 1) (2v mod 1) .

Then these two graphons will generate the same ExGM but there exists no such a measure pre-

serving mapping φ satisfying equation (1.1). Actually, Theorem 7.1 in Diaconis and Janson

(2008) said W and W ′ will generate the same ExGM if and only if§ there exist two–rather than

one–measure preserving mappings φ and φ′ such that

W (φ (u) , φ (v)) =W ′ (φ′ (u) , φ′ (v)
)

‡For [0, 1]
d space, we always refer the term almost everywhere with respect to the complete Lebesgue

measure on it.
§Another equivalent characterization for W and W ′ generating the same ExGM is

δ� (W,W ′) = 0,

where δ� is the so-called cut-metric defined by Borgs et al. (2008).
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for a.e. (u, v) ∈ [0, 1]2.

However, this doesn’t mean that equation (1.1) should be fully abandoned, for this relationship

can still hold among graphons generating the same ExGM and satisfying the following condition:

Twin-free condition. There is no such a pair (u1, u2) in [0, 1] such that W (u1, v) =W (u2, v)

for a.e. v ∈ [0, 1].

For any two twin-free graphons W1 and W2 generating the same ExGM, Borgs et al. (2010) proved

that there is actually a measure preserving bijection φ12 : [0, 1] → [0, 1] such that

W1 (u, v) =W2 (φ12 (u) , φ12 (v))

for a.e. (u, v) ∈ [0, 1]2. Thus, for those earlier literatures misusing equation (1.1) as the only

uncertainty to graphons generating the same ExGM, they just need to rephrase their results by

limiting their interests to a subclass of ExGM generated by a twin-free graphon, which we call

twin-freely generated ExGM.

Unfortunately, as this Chapter is being written, there is no known result that states an ap-

propriate way to choose a unique representation for graphons generating a twin-free ExGM. We

would rather defer this identifiability issue for a twin-freely generated ExGM into a future study.

What we are going to pursue in the rest of this Chapter is to consider a relatively more re-

strictive subclass of ExGM, of which the original considerations came from Bickel and Chen

(2009) . Their attempts to solve this identifiability issue was to claim that, for any ExGM P gen-

erated by a graphon W , one can find a measure preserving mapping φ such that, for W P
can ,

W (φ (u) , φ (v)),

gPcan (u) ,
∫ 1

0
W P

can (u, v) dv

is monotone non-decreasing for u ∈ [0, 1]. They also argue that the so-called canonical form W P
can
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of the graphon W is uniquely determined for a.e. (u, v) ∈ [0, 1]2.

Nevertheless, their arguments to show the uniqueness of W P
can for a given ExGM P is incom-

plete¶ without assuming the following condition:

Degree-identifiable condition. Let U be a uniform random variable on [0, 1]. Then the

degree proportion

g (U) ,
∫ 1

0
W (U, v) dv

is an absolutely continuous random variable‖ on [0, 1].

For any degree-identifiable graphon W generating the ExGM P, a modification to the arguments

provided by Bickel and Chen (2009) can show that there are φ, W P
can, and gPcan defined as above

such that gPcan is strictly increasing on [0, 1], which was indeed the hidden assumption made in

Bickel and Chen (2009) but stated clearly in their later work Bickel et al. (2011).

Therefore, our Estimation problem 2 will be well-posed if we only focus on a subclass of ExGM

generated by a degree-identifiable graphon, which we call degree-identifiable ExGM, and if we

treat the uniquely defined canonical graphon W P
can associated with a degree-identifiable ExGM P

as the major estimand of interest. The next Section will discuss an estimation procedure in this

context.

Remark 1. Starting from the next Section, we will simply write W and g to refer the canonical

graphon of a degree-identifiable ExGM and its marginal integral.

¶An easy example to check the incompleteness of their arguments is the following two graphons

W (u, v) , 1[0,1/2]2 (u, v) + 1[1/2,1]2 (u, v) ,

W ′ (u, v) , 1[0,1/2]×[1/2,1] (u, v) + 1[1/2,1]×[0,1/2] (u, v) ,

which give monotone non-decreasing g (u) ≡ g′ (u) ≡ 1/2, generate a same ExGM, yet are different for a.e.
(u, v) ∈ [0, 1]

2. There is no canonical choice between W and W ′ in this example.
‖We should note that the random variable g (U) here is uniquely determined by the ExGM P in the

distribution sense.
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Remark 2. There are actually three equivalent characterizations for a degree-identifiable ExGM

P:

• g (U) is an absolutely continuous random variable;

• gPcan is strictly increasing on [0, 1];

• The cumulative distribution function (CDF) of g (U) is absolutely continuous and hence is
continuous.

1.3 Three-Step Estimation of Degree-Identifiable ExGMs

In this Section, we will explain how, in a 3-step procedure, to construct a flexible class of func-

tional form or nonparametric estimates for the canonical graphon generating a degree-identifiable

ExGM. Then we will conclude with a special choice of nonparametric estimate.

The main idea behind the estimation procedure is to exploit the degree-identifiability feature

of the canonical graphon and make use of empirical degree sorting to infer unknown latent vari-

ables. We now describe how to proceed this 3-step procedure in the following paragraphs.

Step 1: Probability matrix estimation. Conduct any P1 estimation P̂ for the probability

matrix P .

Step 2: Latent variables estimation. Construct an empirical CDF of degree proportions

using another P1 estimation P̂ ′, which may or may not be the same as P̂ , and then let Ûi’s be

the estimators of the unknown latent variables Ui’s defined as the values of the empirical CDF

evaluating at the degree proportions of i-th node in P̂ ′.

The rationale of doing this Step 2 is explained here. According to some simulation evidences, the

empirical CDF F̂ (x) of degree proportions seems to describe the CDF of g (U), which we denote
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as g−1 (x), quite accurately when the number of nodes N is large enough. On the other hand,

the law of large numbers can somehow guarantee that the degree proportions in P̂ ′ at i-th node,

1

N

∑N
j=1 P̂

′
ij , will be a good approximation to g (Ui) (assuming that given Ui, P̂ ′

ij ’s are roughly

i.i.d. from the distribution W (Ui, U)). As for a degree-identifiable ExGM, which requires the

canonical graphon marginal integral g to be strictly increasing, we must have u = g−1 (g (u))

for every u ∈ [0, 1], so we can trust the estimation of the latent variables Ui = g−1 (g (Ui)) by

Ûi , F̂

(
1

N

∑N
j=1 P̂

′
ij

)
.

Remark 3. In the descriptions above, we temporarily assume that there is no over-lapping for

degree proportions in P̂ ′, i.e.,
{

1

N

∑N
j=1 P̂

′
ij

}N

i=1

are distinct. We will solve this over-lapping is-

sue later after we have a specific choice for P̂ ′.

Once we have conducted Step 1 and 2, we can start to construct a functional form estimate

Ŵ (u, v). For now, we already have a set of three dimensional points

(
Ûi, Ûj , Ŵ

(
Ûi, Ûj

))
,
(
Ûi, Ûj , P̂ij

)
,

which we should treat as a noisy realization∗∗ of the unknown canonical graphon plane at (Ui, Uj ,W (Ui, Uj)).

To build a functional form estimation Ŵ (u, v) from those three dimensional points, we can either

use a linear interpolation or a stepwise approximation as the pre-smoothed estimate. We majorly

focus on the later one in this study, so the pre-smoothed estimate now takes the form of a step

function

Ŵ (u, v) ,
∑

1≤i,j≤N

P̂ij1(Ûi−1/N,Ûi]×(Ûj−1/N,Ûj] (u, v) .

Step 3: Smoothing. (This step is optional.) Apply any smoothing algorithm on the pre-

smoothed estimate to get a smoothed estimate, which may or may not be in a form of step func-
∗∗The noises here are coming into not only the z-direction but also the xy-directions.
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tion.

Here are several notes related to this Step 3. First, it’s a an optional step, and the choice of

whether to include this step or not and how to conduct it depends on researchers’ ultimate goal

for inferences on network data and their willingness to accept those unavoidably additional as-

sumptions on the canonical graphon. A detailed investigation of adding this third step in the es-

timation of canonical graphon is separately discussed in another paper of the third author Chan

and Airoldi (2014), in which they alternatively construct a graphon estimator using our 3-step

procedure by choosing the native adjacency matrix A itself for both Step 1 and 2 and the total

variation minimization (TVM) smoothing Chan et al. (2011) for Step 3. We will illustrate our

proposed graphon estimator build by the 3-step procedure in the following subsection.

1.3.1 USVT-A Estimation

Because both of the Step 1 and 2 above can take any kind of P1 estimator to proceed, we need to

know how to explicitly specify P̂ and P̂ ′. In this Chapter, we especially limit our choice for the

two P1 estimations to be either the method of Universal Singular Value Thresholding (USVT)

proposed by Chatterjee (Chatterjee) or the adjacency matrix A itself. This limitation only re-

flects the authors’ personal favor by the time of writing this Chapter, but it would be interesting

to test on different combinations on Step 1 and 2 in the future study. We describe the USVT

method in the following paragraph.

Universal Singular Value Thresholding (USVT) Let
∑N

i=1 siuiu
T
i be the singular value

decomposition of the adjacency matrix A. Then the USVT estimation P̂ of the probability ma-

trix P is defined by (i) thresholding on the singular values to get M̂ ,
∑

i�{si≥1.01
√
N} siuiu

T
i and

(ii) capping those extreme values of elements in M̂ that are either greater than 1 or smaller than

12



0 to get P̂ij ,
((
M̂ij

)
∧ 1
)
∨ 0.

This spectral method proposed by Chatterjee (Chatterjee) is a handy and general way for dealing

with Estimation problem 1 for the graphon. It requires only one observation network, can be eas-

ily implemented with a tremendous speed, and assume almost non-criterions on the underlying

graphon except for its measurability. When the observation is large enough, USVT method pro-

vides a promising estimation result. Hence, USVT becomes a natural choice for P̂ in the Step 1

of our 3-step procedure.

However, since it’s still addressing on estimation problem in a P1 formulation, only the proba-

bility matrix Pij = W (Ui, Uj) can be written down–which depends on the unknown node specific

latent variables Ui’s. Thus, when two networks with possibly different sets of nodes (and hence

possibly with different sets of latent variables) are considered, we cannot simply compare their

own USVT estimations because of the uncertainty to their latent variables. We want to have a

unifying framework, independent of those latent variables, that would be able to compare the

generating mechanisms from multiple networks with possibly different sets of nodes, so this de-

mand finally drives us to seek a canonical representation to a graphon and design a functional

form estimation for it.

To achieve the goal stated above, we will need to choose a P̂ ′ for Step 2 in the 3-step proce-

dure to conduct an empirical degree sorting to estimate the latent variables and then get a pre-

smoothed estimate Ŵ . It seems to be natural to use USVT in this step again, but the compara-

tive simulation study in the next Subsection suggests the use of the vanilla adjacency A for P̂ ′.

For Step 3, the TVM smoothing†† discussed by Chan et al. (2011) is tested but won’t be used

in our final proposal for the graphon estimation, because, as shown in the next Subsection, the

error reduction from using their method seems to be mild. Thus, for this Chapter, our final pro-
††We want to emphasize here that this smoothing method still gives a step functional estimate, but

other smoothing methods like spline are still open to be tested.
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posal of graphon estimator is to use USVT for Step 1 and the adjacent matrix A for Step 2 (plus

a careful definition to avoid degree over-lapping–see Theorem 3). We informally call it USVT-A

estimation.

1.3.2 Comparative Simulation Study

In this Subsection, we demonstrate two simulations showing the performance of different com-

binations of graphon estimations constructed from the 3-step procedure. In each simulation, we

calculate the root of the mean square error (RMSE) between the constructed estimator (using N

ranging from 300 to 3000) and the true graphon, where only two cases are considered here: the

quadratic graphon W (u, v) =
(
u2 + v2

)
/4 and the logistic graphon W (u, v) = logistic (−5 + 5 (u+ v)),

where logistic (x) , (1 + exp (−x))−1. Our results are shown in Table 1 and 2.

In both of the two Tables, the rule of calling one combination is like ”Step 1 method”-”Step 2

method”-”Step 3 method”, while the last step is optional–for example, USVT-A-TVM method

stands for using USVT in Step 1 for probability matrix estimation, using the plain adjacency ma-

trix A in Step 2 for the empirical degree sorting, and finally using the TVM smoothing in Step 3.

To have a clear contrast, we also include the worst combination A-A as a base line estimation.

From the two Tables, we see that, for Step 1, using USVT is clearly better than using the

vanilla A; for Step 2, sorting according to USVT estimate gives approximately the same result

as (sometimes worse than) sorting according to the plain A; for Step 3, TVM smoothing can

be helpful and reduce some mean square errors. It’s interesting that A-A-TVM method gives a

fairly as good performance as both USVT-USVT-TVM and USVT-A-TVM methods, so this also

motivates the third author’s another work Chan and Airoldi (2014). They separately discuss the

relevant theoretical property of A-A-TVM method and call it Sort-and-Smooth (SAS) algorithm.

Even so adding a third smoothing step is helpful in these two specific examples, we note that
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N 300 900 1500
A-A 0.344657 0.359469 0.357767
USVT-USVT 0.035505 0.024235 0.017006
USVT-A 0.037397 0.024614 0.017132
A-A-TVM 0.02453 0.013044 0.009418
USVT-USVT-TVM 0.040357 0.01202 0.008492
USVT-A-TVM 0.040601 0.011967 0.008526
N 1800 2400 3000
A-A 0.351921 0.360604 0.358457
USVT-USVT 0.01695 0.013922 0.012097
USVT-A 0.017059 0.013995 0.012168
A-A-TV 0.010491 0.00895 0.007025
USVT-USVT-TV 0.009912 0.00813 0.006128
USVT-A-TV 0.009926 0.008101 0.006066

Table 1.1: RMSE Simulation for Quadratic Graphon

N 300 900 1500
A-A 0.38003 0.3812 0.383409
USVT-USVT 0.102721 0.065759 0.034483
USVT-A 0.106061 0.069602 0.034192
A-A-TVM 0.085428 0.034208 0.02423
USVT-USVT-TVM 0.084122 0.051107 0.023318
USVT-A-TVM 0.075824 0.043535 0.02324
N 1800 2400 3000
A-A 0.380116 0.379474 0.379676
USVT-USVT 0.03164 0.024988 0.019176
USVT-A 0.031406 0.024771 0.019082
A-A-TVM 0.023198 0.019551 0.014232
USVT-USVT-TVM 0.023003 0.019187 0.014117
USVT-A-TVM 0.022963 0.019178 0.014113

Table 1.2: RMSE Simulation of Logistic Graphon
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Chan and Airoldi (2014) actually requires more smoothness assumption on the underlying canon-

ical graphon W and hence limits the availability of their method. Furthermore, we note that

USVT-A estimation has only slightly bigger RMSE than SAS method, but its decreasing rate on

the RMSE as the number of nodes increasing is the same as the decreasing rate of SAS method.

Therefore, we are going to pursue the USVT-A method in this Chapter, which has a fairly good

performance when compared with SAS algorithm but owns more clear theoretical property with

less constraints on the graphon. In the remainder of the Chapter, we focus on the USVT-A esti-

mation in order to seek the least assumptions on W . Its theoretical property is discussed in the

next Section.

1.4 Consistency

In this Section, we will talk about the theoretical consistency of the USVT-A estimation, which

is defined through a combination of probability matrix estimation using USVT and the latent

variables estimation using the empirical CDF of observed degree proportions in A. The main

theoretical result of this Chapter is as follows:

Theorem 1 (USVT-A Consistency). Assume that W is the canonical graphon of a degree-identifiable

ExGM. If W is continuous on [0, 1]2, then the Ŵ constructed by the USVT-A method is consis-

tent for estimating W in the sense that

E
(∫ 1

0

∫ 1

0

(
Ŵ (u, v)−W (u, v)

)2
dudv

)
→ 0.

Here are two cornerstones that make our main result hold, both of which correspond to the

consistency of Step 1 and Step 2 in our proposed 3-step procedure in Section 1.3.

Theorem 2 (USVT Consistency Chatterjee (Chatterjee)). Let P̂ be the USVT estimation of
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probability matrix P . Then

E

 1

N2

N∑
i,j=1

∣∣∣P̂ij − Pij

∣∣∣2
→ 0. (1.2)

Here are some notations we are going to use throughout this Section. Let the observed degree

proportions in A to be

Di ,
1

N

N∑
j=1

Aij ,

with their empirical CDF defined as

F̂ (x) , 1

N

N∑
i=1

1{Di≤x}.

The following Theorem describes the consistency of latent variables estimation via empirical

degree sorting using the observed adjacency matrix A.

Theorem 3 (Degree Sorting Consistency). Let the empirical degree sorting estimate of the latent

variables to be

Ûi , F̂ (Di) , (1.3)

but to avoid the over-lapping issues we will instead use

Ũi , Ûi −
κi − 1

N
(1.4)

in the proposed USVT-A estimation, where κi, given all of Ûi, is jointly distributed as follows: let

C1, ..., CM be those unique values of Di’s, and, if Di1 = · · · = Dikm
= Cm, then κi1 , ..., κikm are

a uniform resampling of the set {1, 2, ..., km}. Then we have, for each i = 1, ..., N ,
∣∣∣Ui − Ûi

∣∣∣ → 0

and
∣∣∣Ũi − Ûi

∣∣∣→ 0 in probability, and hence
∣∣∣Ui − Ũi

∣∣∣→ 0 in probability.

A complete proof for Theorem 1 will make use of the two key consistency results described

above and be found in Appendix.
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1.5 Hypothesis Testing

In this Section, we illustrate how the proposed USVT-A estimator can help to develop a classical

statistical inference procedure—specifically, hypothesis testing—in the burgeoning analysis of

network data. There is ample room for improvement of the procedure we describe here.

Hypothesis testing is a powerful procedure with limited literature in network data analysis.

Olding and Wolfe (2009) presents likelihood ratio test on three examples–(i) Erdős-Rényi graph,

(ii) stochastic blockmodel, and (iii) the degree fixed test–in a ground-breaking favor. However,

such a method lacks the flexibility to cope with more sophisticated models, such as exchangeable

graph models.

There are mainly two reasons why it is difficult to extend classical hypothesis testing theory to

network data. The first is that modeling network data often involves latent variables. In case of

ExGM, the Ui’s are especially hard to handle. The second reason is the high computational cost

of fitting existing methods, so it is often untenable to get the sampling distribution of the test

statistic under the null hypothesis from simulations. Instead, the proposed USVT-A estimation

captures the structure of ExGM by design and is also so computationally efficient that a large

number of Monte Carlo replications can be employed for obtaining the sampling distribution un-

der the null hypothesis. Two illustrative examples are discussed in the following two Subsections.

1.5.1 Simple Null Hypothesis with Quadratic Graphon

Suppose that we observe network data represented by an adjacency matrix A, which is generated

by a degree-identifiable ExGM with canonical graphon W . We want to test the two hypothesis:

for WQ(u, v) , 1
4(u

2 + v2),

H0 :W (u, v) =WQ(u, v) versus Ha :W (u, v) ̸=WQ(u, v).
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By Theorem 1, we will have the USVT-A estimate Ŵ is getting closer and closer in the sense of

mean square errors to the true canonical graphon W when N is sufficiently large. Thus we can

choose the test statistic to be

T ,

√∫ 1

0

∫ 1

0

∣∣∣WQ (u, v)− Ŵ (u, v)
∣∣∣2 dudv ,

∥∥∥WQ − Ŵ
∥∥∥ , (1.5)

the L2 distance between WQ and Ŵ . Although we can’t analytically know the sampling distri-

bution of T under the null hypothesis H0, we can easily approximate it using a large amount of

simulations because of the fast implementation of our USVT-A method. Using 5000 Monte Carlo

samples for N = 3000, we get the histogram of T as in Figure 1. We can see that the sampling

Histogram of Test Statistic T

T

D
en

si
ty

0.011 0.012 0.013 0.014 0.015 0.016

0
40

0
80

0
12

00

Figure 1.1: 5000 Monte Carlo draws of T under H0 for quadratic graphon.

distribution of T under H0 is right skewed. The mean and standard deviation of the Monte Carlo

samples are 0.0115 and 5.656 × 10−4, and the 95% quantile is 0.0126, so the rejection region is

T ≥ 0.0126.

1.5.2 Composite Null Hypothesis with Logistic Graphon

In this Subsection, we will consider the testing of a composite hypothesis that whether a data

generated by a degree-identifiable ExGM actually has a canonical graphon in a given parametric

family.
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Precisely, let Wβ0,β1
(u, v) , logistic(β0 + β1 (u+ v)) to be the logistic graphon with given

coefficients β0 and β1. Also, let W be a parametric family of canonical graphons (or equivalently

a parametric subspace of degree-identifiable ExGMs) consisting of Wβ0,β1
for β0 ∈ [−5, 5] and

β1 ∈ (0, 5]. Here we must restrict β1 to be positive because Wβ0,β1
won’t be a canonical repre-

sentation once β1 ≤ 0. On the other hand, we also assume that β0 ∈ [−5, 5] because we need

a finite but reasonably large range in order to (i) practically implement estimations and by the

same time (ii) cover enough possibilities of β0’s which a traditional dense graph scenario could fit

into.‡‡

Now, our hypothesis testing setting will be

H0 :W (u, v) ∈ W versus Ha :W (u, v) /∈ W ,

so a reasonable test statistic for this example would be

T , min
β0∈[−5,5],β1∈(0,5]

∥∥∥Wβ0,β1
− Ŵ

∥∥∥ . (1.6)

Clearly, T represents a L2 distance (in the space of all symmetric measurable [0, 1]-valued func-

tions) between Ŵ (which we thought to be very close to the true canonical graphon W as N

being large enough) and W, so the optimal candidate Wβ∗
0,β

∗
1
∈ W we can get by solving the

optimization problem (1.6) is in fact an approximation to the projection of W onto W. Therefore,

under the null hypothesis and the asymptotic, W (u, v) ∈ W and hence T = 0.

Again, to approximate the sampling distribution of T under the null hypothesis H0, we use

5000 Monte Carlo samples for N = 3000, where each sample is coming from (i) randomly draw-

ing β∗0 ∈ [−5, 5] and β∗1 ∈ (0, 5], (ii) sampling the adjacency matrix A using the graphon Wβ∗
0,β

∗
1
,

and (iii) calculating T using the data A. Another histogram of T is shown in Figure 2. The mean
‡‡In this setting, when β1 ≈ 0, the range of Wβ0,β1

is about [0.7%, 99%], which basically cover most of
the case we will encounter in a dense graph scenario.
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Figure 1.2: 5000 Monte Carlo draws of T under H0 for logistic graphon.

and standard deviation of the Monte Carlo samples are 0.0072 and 0.015, and the 95% quantile is

0.0152, so the rejection region is T ≥ 0.0152.

To conclude the two hypothesis testing examples, given an observed adjacency matrix A, we

can calculate its corresponding Ŵ and T according to either equation (1.5) or (1.6), and then (i)

reject the simple null hypothesis that the data is simply generated from a quadratic graphon if

T ≥ 0.0152 or (ii) reject the composite null hypothesis that the data is generated from a logistic

family (with certain constraints) if T ≥ 0.0126.

With a graphon estimation only in a P1 formulation, which implicitly uses a probability mea-

sure conditional on some latent variables, we can never write down a comparative null hypothesis

like those described in the previous two Subsections–because of the lake of knowledge to those

underlying latent variables. Thus, the needs of doing hypothesis testing suggests the necessity to

go beyond the P1 formulation and consider our proposed P2 formulation of graphon estimation.
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1.6 Discussion

1.6.1 Related work

In this Subsection, we review some common ways to estimate canonical graphon W of a degree-

identifiable ExGM, contrasting them to show the strengths of our proposed USVT-A method.

The most prevailing way to estimate W in the literature is through the blockmodel approxima-

tion. Bickel and Chen (2009) first propose the use of blockmodel as a parametric approximation

to W with the following disadvantages: (i) the high computation cost to do the community detec-

tion, (ii) the model misspecification of using a parametric form to approximate a nonparametric

object, (iii) the inflexibility of using a fixed number of classes K, and (iv) the difficulty of choos-

ing K. Even though the authors propose the estimation problem as though a P2 formulation (see

Section 2.1), they don’t provide a nonparametric estimator Ŵ and neither do they specify the

issue of choosing K.

To bypass the disadvantages (iii) and (iv) listed above, Choi et al. (2012) consider a general-

ization of blockmodel with a growing number of classes K = O
(
N1/2

)
, which doesn’t need to

choose the number of classes K and at the same time leads to a smaller model bias compared

with Bickel and Chen (2009). However, the disadvantages (i) and (ii) still apply for the work of

Choi et al. (2012). Besides, they address the estimation problem in terms of the P1 formulation,

so neither are they able to write down (and prove the consistency of) a nonparametric estimate

in a P2 formulation using this blockmodel with a growing number of classes.

On the other hand, Bickel et al. (2011) want to address the graphon estimation problem in

a P2 formulation by proposing a moment estimation, which counts the motif frequencies in an

observed graph. They theoretically characterize the unknown graphon by an abstract linear func-

tional constructed by the moment estimates. Their approach looks principally convincing with
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theoretical beauty, but these results are almost impossible to implement. More precisely, it’s dif-

ficult to explicitly solve the canonical graphon from the characteristic linear functional described

above, because this will need an accurate and expensive computation to the eigenvalues and the

eigenvectors of the characteristic functional.

The recent work by Wolfe and Olhede (2013) also claim to seek a nonparametric estimation to

the graphon. Nevertheless, they don’t clearly and uniquely define an estimand in a functional

form. Furthermore, they measure the error between the underlying graphon and the estima-

tion via the cut-metric in the theory of graph limits defined by Borgs, Chayes, Lovász, Sós, and

Vesztergombi (2008), so their results in its nature cannot allow explicitly numerical simulations

to check the performance of the estimation. Finally, their asymptotic theory requires very sophis-

ticated assumptions than what we made in this study.

As a summary to the contrasts with the related works above, our proposed USVT-A method

fully addresses a functional form or nonparametric estimation to the canonical graphon W and,

at the same time, allows an easy and quick implementation with an exciting performance. Thus,

our proposed method is more useful in the practical context.

1.6.2 Conclusions

In this Chapter we summarize some existing literatures about estimation problems for ExGM

and dichotomize them into P1 and P2 formulations, one addressing only on the probability ma-

trix estimation while the other one pursuing the fully functional form estimate for the underlying

graphon.

Besides, we discuss the issue of identifiability, which must be faced before any attempt on

addressing Estimation problem 2. We propose a subclass of ExGM, named degree-identifiable

ExGM to allow a uniquely-defined canonical graphon to make the Estimation problem 2 formu-
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lation well-defined. Under the scope of degree-identifiable ExGM, we propose a 3-step procedure

for constructing a flexible class of nonparametric estimates to the canonical graphon, while the

future researchers can freely test on different combinations of (i) probability matrix estimation,

(ii) latent variable estimation, and (iii) smoothing methods.

We especially propose a pre-smoothed estimate, called USVT-A method, theoretically prove

its mean square error consistency with the only assumption being the continuity on the canon-

ical graphon, and witnesses its extremely computational tractability. Some simulation results

also confirm both its consistency and ease for implementation. For practical usage, if we have a

strong belief that the canonical graphon W should be smooth, then a smoothing algorithm like

total variation minimization method Chan et al. (2011) could be applied to get a further reduc-

tion of estimation errors; however, as shown in Subsection 1.3.2, the reduction of using total vari-

ation minimization method seems to be relatively insignificant, so other smoothing methods that

give the estimate of W a functional form beyond step function with the potential to reduce more

estimation errors are still highly intriguing and deserving of more future investigations.
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Learn from yesterday, live for today, hope for

tomorrow. The important thing is not to stop

questioning.

Albert Einstein

2
Optimal Shrinkage Estimation in

Heteroscedastic Hierarchical Linear Models

Shrinkage estimators have profound impacts in statistics and in scientific and engineering ap-

plications. In this Chapter, we consider shrinkage estimation in the presence of linear predictors.

We formulate two heteroscedastic hierarchical regression models and study optimal shrinkage es-

timators in each model. A class of shrinkage estimators, both parametric and semiparametric,

based on unbiased risk estimate (URE) is proposed and is shown to be (asymptotically) optimal

This Chapter is advised by and coauthored with Professor S.C. Samuel Kou.
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under mean squared error loss in each model. Simulation study is conducted to compare the per-

formance of the proposed methods with existing shrinkage estimators. We also apply the method

to real data and obtain encouraging and interesting results.

2.1 Introduction

Shrinkage estimators, hierarchical models and empirical Bayes methods, dating back to the ground-

breaking works of Stein (1956) and Robbins (1956), have profound impacts in statistics and in

scientific and engineering applications. They provide effective tools to pool information from (sci-

entifically) related populations for simultaneous inference—the data on each population alone of-

ten do not lead to the most effective estimation, but by pooling information from the related pop-

ulations together (for example, by shrinking toward their consensus “center”), one could often ob-

tain more accurate estimate for each individual population. Ever since the seminal works of Stein

(1956) and James and Stein (1961), an impressive list of articles has been devoted to the study

of shrinkage estimators in normal models, including Berger and Strawderman (1996), Brown

(2008), Efron and Morris (1972, 1973, 1975), Green and Strawderman (1985), Jones (1991), Lind-

ley (1962), Morris (1983), Rubin (1980), Stein (1962), among others.

In this Chapter, we consider shrinkage estimation in the presence of linear predictors. In par-

ticular, we study optimal shrinkage estimators for heteroscedastic data under linear models. Our

study is motivated by three main considerations. First, in many practical problems, one often

encounters heteroscedastic (unequal variance) data; for example, the sample sizes for different

groups are not all equal. Second, in many statistical applications, in addition to the heteroscedas-

tic response variable, one often has predictors. For example, the predictors could represent longi-

tudinal patterns Fearn (1975), Hui and Berger (1983), Strenio et al. (1983), exam scores Rubin

(1980), characteristics of hospital patients Normand et al. (1997), etc. Third, in applying shrink-
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age estimators to real data, it is quite natural to ask for the optimal way of shrinkage.

The (risk) optimality is not addressed by the conventional estimators, such as the empirical

Bayes ones. One might wonder if such an optimal shrinkage estimator exists in the first place.

We shall see shortly that in fact (asymptotically) optimal shrinkage estimators do exist and that

the optimal estimators are not empirical Bayes ones but are characterized by an unbiased risk

estimate (URE).

The study of optimal shrinkage estimators under the heteroscedastic normal model was first

considered in Xie et al. (2012), where the (asymptotic) optimal shrinkage estimator was identified

for both the parametric and semiparametric cases. Xie et al. (2015) extends the (asymptotic)

optimal shrinkage estimators to exponential families and heteroscedastic location-scale families.

The current Chapter can be viewed as an extension of the idea of optimal shrinkage estimators to

heteroscedastic linear models.

We want to emphasize that this Chapter works on a theoretical setting somewhat different

from Xie et al. (2015) but can still cover its main results. Our theoretical results show that the

optimality of the proposed URE shrinkage estimators does not rely on normality nor on the tail

behavior of the sampling distribution. What we require here are the symmetry and the existence

of the fourth moment for the standardized variable.

This Chapter is organized as follows. We first formulate the heteroscedastic linear models in

Section 2.2. Interestingly, there are two parallel ways to do so, and both are natural extensions

of the heteroscedastic normal model. After reviewing the conventional empirical Bayes meth-

ods, we introduce the construction of our optimal shrinkage estimators for heteroscedastic linear

models in Section 2.3. The optimal shrinkage estimators are based on an unbiased risk estimate

(URE). We show in Section 2.4 that the URE shrinkage estimators are asymptotically optimal in

risk. In Section 2.5 we extend the shrinkage estimation to a semiparametric family. Simulation
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studies are conducted in Section 2.6. We apply the URE shrinkage estimators in Section 2.7 to

the baseball data set of Brown (2008) and observe quite interesting and encouraging results. We

conclude in Section 2.8 with some discussion and extension. The appendix details the proofs and

derivations for the theoretical results.

2.2 Heteroscedastic Hierarchical Linear Models

Consider the heteroscedastic estimation problem

Yi|θ
indep.∼ N (θi, Ai) , i = 1, ..., p, (2.1)

where θ = (θ1, ..., θp)
T is the unknown mean vector, which is to be estimated, and the variances

Ai > 0 are unequal, which are assumed to be known. In many statistical applications, in addi-

tion to the heteroscedastic Y = (Y1, ..., Yp)
T , one often has predictors X. A natural question is

to consider a heteroscedastic linear model that incorporates these covariates. Notation-wise, let

{Yi,Xi}pi=1 denote the p independent statistical units, where Yi is the response variable of the

i-th unit, and Xi = (X1i, . . . , Xki)
T is a k-dimensional column vector that corresponds to the k

covariates of the i-th unit. The k × p matrix

X = [X1| · · · |Xp] , X1, ..,Xp ∈ Rk,

where Xi is the i-th column of X, then contains the covariates for all the units. Throughout this

Chapter we assume that X has full rank, i.e., rank(X) = k.

To include the predictors, we note that, interestingly, there are two different ways to build up

a heteroscedastic hierarchical linear model, which lead to different structure for shrinkage estima-

tion.

Model I: Hierarchical linear model. On top of (2.1), the θi’s are θi
indep.∼ N

(
XT

i β, λ
)
, where

β and λ are both unknown hyper-parameters. Model I has been suggested as early as Stein

28



1

,β

2 ... p

1Y 2Y
...

pY

 
indep.

| , , ,T
i iN  X β X β

 
indep.

| ,i i iY N Aθ 

,  fixed but unknownβ

 covariatesX

 0 0| , ,k β β β W 

 
indep.

| , ,T
i i i iY N AX β X β 

covariatesX

1Y

1

1k k






 
   
  

β 

2Y ... pY

0 ,β 0 ,  fixed but unknownβ

a known covariance matrixW

Figure 2.1: Graphical illustration of the two heteroscedastic hierarchical linear models.

(1966). See Morris (1983) and Morris and Lysy (2012) for more discussions. The special
case of no covariates (i.e., k = 1 and X = [1| · · · |1]) is studied in depth in Xie et al. (2012).

Model II: Bayesian linear regression model. Together with (2.1), one assumes θ = XTβ

with β following a conjugate prior distribution β ∼ Nk (β0, λW ), where W is a known
k × k positive definite matrix and β0 and λ are unknown hyper-parameters. Model II has
been considered in Copas (1983), Lindley and Smith (1972), Raftery et al. (1997) among
others; it includes ridge regression as a special case when β0 = 0k and W = Ik.

Figure 2.1 illustrates these two hierarchical linear models. Under Model I, the posterior mean

of θ is θ̂λ,βi = λ (λ+Ai)
−1 Yi + Ai (λ+Ai)

−1XT
i β for i = 1, ..., p, so the shrinkage estimation is

formed by directly shrinking the raw observation Yi toward a linear combination of the k covari-

ates Xi. If we denote µi = XT
i β, and µ =

(
µ1, ..., µp

)T ∈ Lrow (X), the row space of X, then we

can rewrite the posterior mean of θ under Model I as

θ̂
λ,µ

=
λ

λ+Ai
Yi +

Ai

λ+Ai
µi, with µ ∈ Lrow (X) . (2.2)

Under Model II, the posterior mean of θ is

θ̂
λ,β0 =XT β̂

λ,β0 , with β̂λ,β0 = λW (λW + V )−1β̂
WLS

+ V (λW + V )−1 β0, (2.3)

where β̂WLS
=
(
XA−1XT

)−1
XA−1Y is the weighted least squares estimate of the regression

coefficient, A is the diagonal matrix A = diag (A1, ..., Ap), and V = (XA−1XT )−1. Thus, the

estimate for θi is linear in Xi, and the “shrinkage” is achieved by shrinking the regression coeffi-
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cient from the weighted least squares estimate β̂WLS toward the prior coefficient β0.

As both Models I and II are natural generalizations of the heteroscedastic normal model (2.1),

we want to investigate if there is an optimal choice of the hyper-parameters in each case. Specifi-

cally, we want to investigate the best empirical choice of the hyper-parameters in each case under

the mean squared error loss

lp(θ, θ̂) =
1

p

∥∥∥θ − θ̂
∥∥∥2 = 1

p

p∑
i=1

(
θi − θ̂i

)2
(2.4)

with the associated risk of θ̂ defined by

Rp(θ, θ̂) = EY |θ

(
lp(θ, θ̂)

)
,

where the expectation is taken with respect to Y given θ.

Remark 4. Even though we start from the Bayesian setting to motivate the form of shrinkage es-

timators, our discussion will be all based on the frequentist setting. Hence all probabilities and ex-

pectations throughout this Chapter are fixed at the unknown true θ, which is free in Rp for Model

I and confined in Lrow (X) for Model II.

Remark 5. The diagonal assumption of A is quite important for Model I but not so for Model

II, as in Model II we can always apply some linear transformations to obtain a diagonal covari-

ance matrix. Without loss of generality, we will keep the diagonal assumption for A in Model II.

For the ease of exposition, we will next overview the conventional empirical Bayes estimates in

a general two-level hierarchical model, which includes both Models I and II:

Y |θ ∼ Np(θ,A) and θ ∼ Np(µ,B), (2.5)

where B is a non-negative definite symmetric matrix that is restricted in an allowable set B, and

µ is in the row space Lrow(X) of X.
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Remark 6. Under Model I, µ and B take the form of µ = XTβ and B ∈ B = {λIp : λ > 0},

whereas under Model II, µ and B take the form of µ =XTβ0 and B ∈ B =
{
λXTWX : λ > 0

}
.

It is interesting to observe that in Model I, B is of full rank, while in Model II, B is of rank

k. As we shall see, this distinction will have interesting theoretical implications for the optimal

shrinkage estimators.

Lemma 4. Under the two-level hierarchical model (2.5), the posterior distribution is

θ|Y ∼ Np

(
B(A+B)−1Y +A(A+B)−1µ,A(A+B)−1B

)
,

and the marginal distribution of Y is Y ∼ Np (µ,A+B).

For given values of B and µ, the posterior mean of the parameter θ leads to the Bayes esti-

mate

θ̂
B,µ

= B(A+B)−1Y +A(A+B)−1µ. (2.6)

To use the Bayes estimate in practice, one has to specify the hyper-parameters in B and µ. The

conventional empirical Bayes method uses the marginal distribution of Y to estimate the hyper-

parameters. For instance, the empirical Bayes maximum likelihood estimates (EBMLE) B̂EBMLE

and µ̂EBMLE are obtained by maximizing the marginal likelihood of Y :

(
B̂

EBMLE
, µ̂EBMLE

)
= argmax

B∈B
µ∈Lrow(X)

− (Y − µ)T (A+B)−1 (Y − µ)− log (det (A+B)) .

Alternatively, the empirical Bayes method-of-moment estimates (EBMOM) B̂EBMOM and µ̂EBMOM

are obtained by solving the following moment equations for B ∈ B and µ ∈ Lrow (X):

µ =XT
(
X (A+B)−1XT

)−1
X (A+B)−1 Y ,

B = (Y − µ) (Y − µ)T −A.
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If no solutions of B can be found in B, we then set B̂EBMOM
= 0p×p. Adjustment for the loss

of k degrees of freedom from the estimation of µ might be applicable for B = λC (C = Ip for

Model I and XTWX for Model II): we can replace the second moment equation by

λ =

(
p

p− k

∥Y − µ∥2

tr (C)
− tr (A)

tr (C)

)+

.

The corresponding empirical Bayes shrinkage estimator θ̂EBMLE or θ̂EBMOM is then formed by

plugging (B̂
EBMLE

, µ̂EBMLE) or (B̂
EBMOM

, µ̂EBMOM) into equation (2.6).

2.3 URE Estimates

The formulation of the empirical Bayes estimates raises a natural question: which one is pre-

ferred θ̂EBMLE or θ̂EBMOM? More generally, is there an optimal way to choose the hyper-parameters?

It turns out that neither θ̂EBMLE nor θ̂EBMOM is optimal. The (asymptotically) optimal estimate,

instead of relying on the marginal distribution of Y , is characterized by an unbiased risk esti-

mate (URE). The idea of forming a shrinkage estimate through URE for heteroscedastic models

is first suggested in Xie et al. (2012). We shall see that in our context of hierarchical linear mod-

els (both Models I and II) the URE estimators that we are about to introduce have (asymptoti-

cally) optimal risk properties.

The basic idea behind URE estimators is the following. Ideally we want to find the hyper-

parameters that give the smallest risk. However, since the risk function depends on the unknown

θ, we cannot directly minimize the risk function in practice. If we can find a good estimate of the

risk function instead, then minimizing this proxy of the risk will lead to a competitive estimator.

To formally introduce the URE estimators, we start from the observation that, under the
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mean squared error loss (2.4), the risk of the Bayes estimator θ̂B,µ for fixed B and µ is

Rp(θ, θ̂
B,µ

) =
1

p

∥∥∥A (A+B)−1 (µ− θ)
∥∥∥2 + 1

p
tr
(
B (A+B)−1A (A+B)−1B

)
, (2.7)

which can be easily shown using the bias-variance decomposition of the mean squared error. As

the risk function involves the unknown θ, we cannot directly minimize it. However, an unbiased

estimate of the risk is available:

URE (B,µ) =
1

p

∥∥∥A (A+B)−1 (Y − µ)
∥∥∥2 + 1

p
tr
(
A− 2A (A+B)−1A

)
, (2.8)

which again can be easily shown using the bias-variance decomposition of the mean squared er-

ror. Intuitively, if URE (B,µ) is a good approximation of the actual risk, then we would expect

the estimator obtained by minimizing the URE to have good properties. This leads to the URE

estimator θ̂URE, defined by

θ̂
URE

= B̂
URE

(A+ B̂
URE

)−1Y +A(A+ B̂
URE

)−1µ̂URE, (2.9)

where (
B̂

URE
, µ̂URE

)
= argmin

B∈B, µ∈Lrow(X)
URE (B,µ) .

It is worth noting that the value of µ that minimizes (2.8) for a given B is neither the ordinary

least square (OLS) nor the weighted least square (WLS) regression estimate, echoing similar ob-

servation as in Xie et al. (2012).

In the URE estimator (2.9), B̂URE and µ̂URE are jointly determined by minimizing the URE.

When the number of independent statistical units p is small or moderate, joint minimization of

B and the vector µ, however, may be too ambitious. In this setting, it might be beneficial to set

µ by a predetermined rule and only optimize B, as it might reduce the variability of the result-

ing estimate. In particular, we can consider shrinking toward a generalized least squares (GLS)
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regression estimate

µ̂M =XT
(
XMXT

)−1
XMY = PM ,XY ,

where M is a prespecified symmetric positive definite matrix. This use of µ̂M gives the shrink-

age estimate θ̂B,µ̂M

= B(A +B)−1Y +A(A +B)−1µ̂M , where one only needs to determine B.

We can construct another URE estimate for this purpose. Similar to the previous construction,

we note that θ̂B,µ̂M has risk

Rp(θ, θ̂
B,µ̂M

) =
1

p

∥∥∥A (A+B)−1 (Ip − PM ,X)θ
∥∥∥2

+
1

p
tr

((
Ip −A (A+B)−1 (Ip − PM ,X)

)
A
(
Ip −A (A+B)−1 (Ip − PM ,X)

)T)
. (2.10)

An unbiased risk estimate of it is

UREM (B) =
1

p

∥∥∥A (A+B)−1 (Y − µ̂M
)∥∥∥2+1

p
tr
(
A− 2A (A+B)−1 (Ip − PM ,X)A

)
. (2.11)

Both (2.10) and (2.11) can be easily proved by the bias-variance decomposition of mean squared

error. Minimizing UREM (B) over B gives the URE GLS shrinkage estimator (which shrinks

toward µ̂M ):

θ̂
URE
M = B̂

URE
M

(
A+ B̂

URE
M

)−1
Y +A

(
A+ B̂

URE
M

)−1
µ̂M , (2.12)

where

B̂
URE
M = argmin

B∈B
UREM (B) .

Remark 7. When M = Ip, clearly µ̂M = µ̂OLS, the ordinary least squares regression estimate.

When M = A−1, then µ̂M = µ̂WLS, the weighted least squares regression estimate.

Remark 8. Tan (2015) briefly discussed the URE minimization approach for Model I without

the covariates in Xie et al. (2012) in relation to Jiang et al. (2011), where Model I is assumed

but an unbiased estimate of the mean prediction error (rather than the mean squared error) is
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used to form a predictor (rather than an estimator).

Remark 9. In the homoscedastic case, (2.12) reduces to standard shrinkage toward a subspace

Lrow (X), as discussed, for instance, in Sclove et al. (1972) and Omen (1982).

2.4 Theoretical Properties of URE Estimates

This section is devoted to the risk properties of the URE estimators. Our core theoretical result

is to show that the risk estimate URE is not only unbiased for the risk but, more importantly,

uniformly close to the actual loss. We therefore expect that minimizing URE would lead to an

estimate with competitive risk properties.

2.4.1 Uniform Convergence of URE

To present our theoretical result, we first define L to be a subset of Lrow (X):

L = {µ ∈ Lrow (X) : ∥µ∥ ≤Mpκ ∥Y ∥},

where M is a large and fixed constant and κ ∈ [0, 1/2) is a constant. Next, we introduce the

following regularity conditions:

(A)
∑p

i=1A
2
i = O (p); (B)

∑p
i=1Aiθ

2
i = O (p); (C)

∑p
i=1 θ

2
i = O (p);

(D) p−1XAXT → ΩD; (E) p−1XXT → ΩE > 0;

(F) p−1XA−1XT → ΩF > 0; (G) p−1XA−2XT → ΩG.

The theorem below shows that URE (B,µ) not only unbiasedly estimates the risk but also is

(asymptotically) uniformly close to the actual loss.

Theorem 5. Assume conditions (A)-(E) for Model I or assume conditions (A) and (D)-(G) for
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Model II. In either case, we have

sup
B∈B, µ∈L

∣∣∣URE (B,µ)− lp

(
θ, θ̂

B,µ
)∣∣∣→ 0 in L1, as p→ ∞.

We want to remark here that the set L gives the allowable range of µ: the norm of µ is up to

an o
(
p1/2

)
multiple of the norm of Y . This choice of L does not lead to any difficulty in practice

because, given a large enough constant M , it will cover the shrinkage locations of any sensible

shrinkage estimator. We note that it is possible to define the range of sensible shrinkage loca-

tions in other ways (e.g., one might want to define it by ∞-norm in Rp), but we find our setting

more theoretically appealing and easy to work with. In particular, our assumption of the expo-

nent κ < 1/2 is flexible enough to cover most interesting cases, including µ̂OLS, the ordinary

least squares regression estimate, and µ̂WLS, the weighted least squares regression estimate (as in

Remark 4) as shown in the following lemma.

Lemma 6. (i) µ̂OLS ∈ L. (ii) Assume (A) and (A′)
∑p

i=1A
−2−δ
i = O (p) for some δ > 0; then

µ̂WLS ∈ L for κ = 4−1 + (4 + 2δ)−1 and a large enough M .

Remark 10. We want to mention here that Theorem 5 in the case of Model I covers Theorem

5.1 of Xie et al. (2012) (which is the special case of k = 1 and X = [1|1|...|1]) because the restric-

tion of |µ| ≤ max
1≤i≤p

|Yi| in Xie et al. (2012) is contained in L as

max
1≤i≤p

|Yi| = (max
1≤i≤p

Y 2
i )

1/2 ≤ (

p∑
i=1

Y 2
i )

1/2 = ∥Y ∥ .

Furthermore, we do not require the stronger assumption of
∑p

i=1 |θi|
2+δ = O (p) for some δ > 0

made in Xie et al. (2012). Note that in this case (k = 1 and X = [1|1|...|1]) we do not even

require conditions (D) and (E), as condition (A) directly implies tr(
(
XXT

)−1
XAXT ) = O (1),

the result we need in the proof of Theorem 5 for Model I.

Remark 11. In the proof of Theorem 5, the sampling distribution of Y is involved only through
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the moment calculations, such as E(tr(Y Y T −A − θθT )2) and E(∥Y ∥2). It is therefore straight-

forward to generalize Theorem 5 to the case of

Yi = θi +
√
AiZi,

where Zi follows any distribution with mean 0, variance 1, E
(
Z3
i

)
= 0, and E

(
Z4
i

)
< ∞. This is

noteworthy as our result also covers that of Xie et al. (2015) but the methodology we employ here

does not require to control the tail behavior of Zi as in Xie et al. (2012, 2015).

2.4.2 Risk Optimality

In this section, we consider the risk properties of the URE estimators. We will show that, under

the hierarchical linear models, the URE estimators have (asymptotically) optimal risk, whereas it

is not necessarily so for other shrinkage estimators such as the empirical Bayes ones.

A direct consequence of the uniform convergence of URE is that the URE estimator has a

loss/risk that is asymptotically no larger than that of any other shrinkage estimators. Further-

more, the URE estimator is asymptotically as good as the oracle loss estimator. To be precise,

let θ̃OL be the oracle loss (OL) estimator defined by plugging

(
B̃

OL
, µ̃OL

)
= argmin

B∈B, µ∈L
lp

(
θ, θ̂

B,µ
)

= argmin
B∈B, µ∈L

∥∥B(A+B)−1Y +A(A+B)−1µ− θ
∥∥2

into (2.6). Of course, θ̃OL is not really an estimator, since it depends on the unknown θ (hence

we use the notation θ̃OL rather than θ̂OL). Although not obtainable in practice, θ̃OL lays down

the theoretical limit that one can ever hope to reach. The next theorem shows that the URE

estimator θ̂URE is asymptotically as good as the oracle loss estimator, and, consequently, it is

asymptotically at least as good as any other shrinkage estimator.
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Theorem 7. Assume the conditions of Theorem 5 and that µ̂URE ∈ L. Then

lim
p→∞

P
(
lp

(
θ, θ̂

URE
)
≥ lp

(
θ, θ̃

OL
)
+ ϵ
)
= 0 ∀ϵ > 0,

lim sup
p→∞

(
Rp

(
θ, θ̂

URE
)
−Rp

(
θ, θ̃

OL
))

= 0.

Corollary 8. Assume the conditions of Theorem 5 and that µ̂URE ∈ L. Then for any estimator

θ̂
B̂p,µ̂p = B̂p

(
A+ B̂p

)−1
Y +A

(
A+ B̂p

)−1
µ̂p with B̂p ∈ B and µ̂p ∈ L, we always have

lim
p→∞

P
(
lp

(
θ, θ̂

URE
)
≥ lp

(
θ, θ̂

B̂p,µ̂p

)
+ ϵ

)
= 0 ∀ϵ > 0,

lim sup
p→∞

(
Rp

(
θ, θ̂

URE
)
−Rp

(
θ, θ̂

B̂p,µ̂p

))
≤ 0.

Corollary 8 tells us that the URE estimator in either Model I or II is asymptotically optimal:

it has (asymptotically) the smallest loss and risk among all shrinkage estimators of the form

(2.6).

2.4.3 Shrinkage toward the Generalized Least Squares Estimate

The risk optimality also holds when we consider the URE estimator θ̂URE
M that shrinks toward

the GLS regression estimate µ̂M = PM ,XY as introduced in Section 2.3.

Theorem 9. Assume the conditions of Theorem 5, µ̂M ∈ L, and

p−1XMXT → Ω1 > 0, p−1XAMXT → Ω2, p−1XMA2MXT → Ω3, (2.13)

where only the first and third conditions above are assumed for Model I and only the first and the

second are assumed for Model II. Then we have

sup
B∈B

∣∣∣∣UREM (B)− lp

(
θ, θ̂

B,µ̂M
)∣∣∣∣→ 0 in L1 as p→ ∞. (2.14)

As a corollary, for any estimator θ̂B̂p,µ̂
M

= B̂p

(
A+ B̂p

)−1
Y +A

(
A+ B̂p

)−1
µ̂M with B̂p ∈
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B, we always have

lim
p→∞

P
(
lp

(
θ, θ̂

URE
M

)
≥ lp

(
θ, θ̂

B̂p,µ̂
M
)
+ ϵ

)
= 0 ∀ϵ > 0,

lim sup
p→∞

(
Rp

(
θ, θ̂

URE
M

)
−Rp

(
θ, θ̂

B̂p,µ̂
M
))

≤ 0.

Remark 12. For shrinking toward µ̂OLS, where M = Ip, we know from Lemma 6 that µ̂OLS

is automatically in L, so we only need one more condition p−1XA2XT → Ω3 for Model I. For

shrinking toward µ̂WLS, where M = A−1, (2.13) is the same as the conditions (E) and (F) of

Theorem 5, so additionally we only need to assume (A′) of Lemma 6 and (F) for Model I.

2.5 Semiparametric URE Estimators

We have established the (asymptotic) optimality of the URE estimators θ̂URE and θ̂URE
M in the

previous section. One limitation of the result is that the class over which the URE estimators are

optimal is specified by a parametric form: B = λC (0 ≤ λ ≤ ∞) in equation (2.6), where C =

Ip for Model I and C = XTWX for Model II. Aiming to provide a more flexible and, at the

same time, efficient estimation procedure, we consider in this section a class of semiparametric

shrinkage estimators. Our consideration is inspired by Xie et al. (2012).

2.5.1 Semiparametric URE Estimator under Model I

To motivate the semiparametric shrinkage estimators, let us first revisit the Bayes estimator θ̂λ,µ

under Model I, as given in (2.2). It is seen that the Bayes estimate of each mean parameter θi is

obtained by shrinking Yi toward the linear estimate µi = XT
i β, and that the amount of shrink-

age is governed by Ai, the variance: the larger the variance, the stronger is the shrinkage. This

feature makes intuitive sense.

39



With this observation in mind, we consider the following shrinkage estimators under Model I:

θ̂
b,µ

i = (1− bi)Yi + biµi, with µ ∈ Lrow (X) ,

where b satisfies the monotonic constraint

MON(A) : bi ∈ [0, 1] , bi ≤ bj whenever Ai ≤ Aj .

MON(A) asks the estimator to shrink more for an observation with a larger variance. Since

other than this intuitive requirement, we do not post any parametric restriction on bi, this class

of estimators is semiparametric in nature.

Following the optimality result for the parametric case, we want to investigate, for such a gen-

eral estimator θ̂b,µ with b ∈ MON(A) and µ ∈ Lrow (X), whether there exists an optimal choice

of b and µ. In fact, we will see shortly that such an optimal choice exists, and this asymptoti-

cally optimal choice is again characterized by an unbiased risk estimate (URE). For a general

estimator θ̂b,µ with fixed b and µ ∈ Lrow (X), an unbiased estimate of its risk Rp(θ, θ̂
b,µ

) is

URESP (b,µ) =
1

p
∥diag (b) (Y − µ)∥2 + 1

p
tr (A− 2diag (b)A) ,

which can be easily seen by taking B = A(diag (b)−1 − Ip) in (2.8). Note that we use the super-

script “SP” (semiparametric) to denote it. Minimizing over b and µ leads to the semiparametric

URE estimator θ̂URE
SP , defined by

θ̂
URE
SP = (Ip − diag(b̂

URE
SP ))Y + diag(b̂

URE
SP )µ̂URE

SP , (2.15)

where (
b̂
URE
SP , µ̂URE

SP

)
= argmin
b∈MON(A), µ∈Lrow(X)

URESP (b,µ) .
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Theorem 10. Assume conditions (A)-(E). Then under Model I we have

sup
b∈MON(A), µ∈L

∣∣∣URESP (b,µ)− lp

(
θ, θ̂

b,µ
)∣∣∣→ 0 in L1 as p→ ∞.

As a corollary, for any estimator θ̂b̂p,µ̂p = (Ip − diag(b̂p))Y +diag(b̂p)µ̂p with b̂p ∈ MON(A) and

µ̂p ∈ L, we always have

lim
p→∞

P
(
lp

(
θ, θ̂

URE
SP

)
≥ lp

(
θ, θ̂

b̂p,µ̂p

)
+ ϵ

)
= 0 ∀ϵ > 0,

lim sup
p→∞

(
Rp

(
θ, θ̂

URE
SP

)
−Rp

(
θ, θ̂

b̂p,µ̂p

))
≤ 0.

The proof is the same as the proofs of Theorem 5 and Corollary 8 for the case of Model I ex-

cept that we replace each term of Ai/(λ+Ai) by bi.

2.5.2 Semiparametric URE Estimator Under Model II

We saw in Section 2.2 that, under Model II, shrinkage is achieved by shrinking the regression

coefficient from the weighted least squares estimate β̂WLS toward the prior coefficient β0. This

suggests us to formulate the semiparametric estimators through the regression coefficient. The

Bayes estimate of the regression coefficient is

β̂
λ,β0 = λW (λW + V )−1β̂

WLS
+ V (λW + V )−1 β0, with V = (XA−1XT )−1

as shown in (2.3). Applying the spectral decomposition on W−1/2VW−1/2 gives W−1/2VW−1/2 =

UΛUT , where Λ = diag (d1, ..., dk) with d1 ≤ · · · ≤ dk. Using this decomposition, we can rewrite

the regression coefficient as

β̂
λ,β0 = λW 1/2U (λIk +Λ)−1UTW−1/2β̂

WLS
+W 1/2UΛ (λIk +Λ)−1UTW−1/2β0.
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If we denote Z = UTW 1/2X as the transformed covariate matrix, the estimate θ̂λ,β0 = XT β̂
λ,β0

of θ can be rewritten as

θ̂
λ,β0 = ZT

(
λ (λIk +Λ)−1UTW−1/2β̂

WLS
+Λ (λIk +Λ)−1UTW−1/2β0

)
.

Now we see that λ (λIk +Λ)−1 = diag(λ/ (λ+ di)) plays the role as the shrinkage factor. The

larger the value of di, the smaller λ/ (λ+ di), i.e., the stronger the shrinkage toward β0. Thus, di

can be viewed as the effective “variance” component for the i-th regression coefficient (under the

transformation). This observation motivates us to consider semiparametric shrinkage estimators

of the following form

θ̂
b,β0 = ZT

(
(Ik − diag (b))UTW−1/2β̂

WLS
+ diag (b)UTW−1/2β0

)
= ZT

(
(Ik − diag (b))ΛZA−1Y + diag (b)UTW−1/2β0

)
, (2.16)

where b satisfies the following monotonic constraint

MON(D) : bi ∈ [0, 1] , bi ≤ bj whenever di ≤ dj .

This constraint captures the intuition that, the larger the effective variance, the stronger is the

shrinkage.

For fixed b and β0, an unbiased estimate of the risk Rp(θ, θ̂
b,β0) is

URESP (b,β0) =
1

p

∥∥∥ZT (Ik − diag (b))ΛZA−1Y +ZTdiag (b)UTW−1/2β0 − Y
∥∥∥2

+
1

p
tr
(
2ZT (Ik − diag (b))ΛZ −A

)
,

which can be shown using the bias-variance decomposition of the mean squared error. Minimiz-
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ing it gives the URE estimate of (b,β0):

(
b̂
URE
SP ,

(
β̂0

)URE

SP

)
= argmin
b∈MON(D), β0∈Rk

URESP (b,β0) ,

which upon plugging into (2.16) yields the semiparametric URE estimator θ̂URE
SP under Model II.

Theorem 11. Assume conditions (A), (D)-(G). Then under Model II we have

sup
b∈MON(D),XTβ0∈L

∣∣∣URESP (b,β0)− lp

(
θ, θ̂

b,β0
)∣∣∣→ 0 in L1 as p→ ∞.

As a corollary, for any estimator θ̂b̂p,β̂0,p obtained from (2.16) with b̂p ∈ MON(D) and XT β̂0 ∈

L, we always have

lim
p→∞

P
(
lp

(
θ, θ̂

URE
SP

)
≥ lp

(
θ, θ̂

b̂p,β̂0,p

)
+ ϵ

)
= 0 ∀ϵ > 0,

lim sup
p→∞

(
Rp

(
θ, θ̂

URE
SP

)
−Rp

(
θ, θ̂

b̂p,β̂0,p

))
≤ 0.

The proof of the theorem is essentially identical to those of Theorem 5 and Corollary 8 for the

case of Model II except that we replace each di/(λ+ di) by bi.

2.6 Simulation Study

In this section, we conduct simulations to study the performance of the URE estimators. For the

sake of space, we will focus on Model I. The four URE estimators are the parametric θ̂URE of

equation (2.9), the parametric θ̂URE
M of equation (2.12) that shrinks toward the OLS estimate

µ̂OLS (i.e., the matrix M = Ip), the semiparametric θ̂URE
SP of equation (2.15), and the semi-

parametric θ̂URE,OLS
SP that shrinks toward µ̂OLS, which is formed similarly to θ̂URE

M by replacing

Ai/(λ + Ai) with a sequence b ∈ MON(A). The competitors here are the two empirical Bayes

estimators θ̂EBMLE and θ̂EBMOM, and the positive part James-Stein estimator θ̂JS+ as described
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in Brown (2008), Morris and Lysy (2012):

θ̂
JS+

i = µ̂WLS
i +

(
1− p− k − 2∑p

i=1

(
Yi − µ̂WLS

i

)2
/Ai

)+ (
Yi − µ̂WLS

i

)
.

As a reference, we also compare these shrinkage estimators with θ̃OR, the parametric oracle

risk (OR) estimator, defined as plugging λ̃OR
Ip and µ̃OR into equation (2.6), where

(
λ̃
OR
, µ̃OR

)
= argmin

0≤λ≤∞, µ∈Lrow(X)
Rp

(
θ, θ̂

λ,µ
)

and the expression of Rp(θ, θ̂
λ,µ

) is given in (2.7) with B = λIp. The oracle risk estimator θ̃OR

cannot be used without the knowledge of θ, but it does provide a sensible lower bound of the risk

achievable by any shrinkage estimator with the given parametric form.

For each simulation, we draw (Ai, θi) (i = 1, 2, ..., p) independently from a distribution π (Ai, θi|Xi,β)

and then draw Yi given (Ai, θi). The shrinkage estimators are then applied to the generated data.

This process is repeated 5000 times. The sample size p is chosen to vary from 20 to 500 with an

increment of length 20. In the simulation, we fix a true but unknown β = (−1.5, 4,−3)T and a

known covariates X, whose each element is randomly generated from Unif (−10, 10). The risk

performance of the different shrinkage estimators is given in Figure 2.2.

Example 1. The setting in this example is chosen in such a way that it reflects grouping in

the data:

Ai ∼ 0.5 · 1{Ai=0.1} + 0.5 · 1{Ai=0.5};

θi|Ai ∼ N
(
2 · 1{Ai=0.1} +X

T
i β, 0.5

2
)
; Yi ∼ N (θi, Ai) .

Here the normality for the sampling distribution of Yi’s is asserted. We can see that the four

URE estimators perform much better than the two empirical Bayes ones and the James-Stein

estimator. Also notice that both of the two (parametric and semiparametric) URE estimators
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that shrink towards µ̂OLS is almost as good as the other two with general data-driven shrinkage

location—largely due to the existence of covariate information. We note that this is quite differ-

ent from the case of Xie et al. (2012), where without the covariate information the estimator that

shrinks toward the grand mean of the data performs significantly worse than the URE estimator

with general data-driven shrinkage location.

Example 2. In this example, we allow Yi to depart from the normal distribution to illustrate

that the performance of those URE estimators does not rely on the normality assumption:

Ai ∼ Unif (0.1, 1) ; θi = Ai +X
T
i β;

Yi ∼ Unif(θi −
√
3Ai, θi +

√
3Ai).

As expected, the four URE estimators perform better or at least as good as the empirical Bayes

estimators. The EBMLE estimator performs the worst due to its sensitivity on the normality as-

sumption. We notice that the EBMOM estimator in this example has comparable performance

with the two parametric URE estimators, which makes sense as moment estimates are more ro-

bust to the sampling distribution. An interesting feature that we find in this example is that the

positive part James-Stein estimator can beat the parametric oracle risk estimator and perform

better than all the other shrinkage estimators for small or moderate p, even though the semi-

parametric URE estimators will eventually surpass the James-Stein estimator, as dictated by the

asymptotic theory for large p. This feature of the James-Stein estimate is again quite different

from the non-regression setting discussed in Xie et al. (2012), where the James-Stein estimate

performs the worst throughout all of their examples. In both of our examples only the semipara-

metric URE estimators are robust to the different levels of heteroscedasticity.

We can conclude from these two simulation examples that the semiparametric URE estimators

give competitive performance and are robust to the misspecification of the sampling distribution
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Figure 2.2: Comparison of the risks of different shrinkage estimators for the two simulation examples.

and the different levels of the heteroscedasticity. They thus could be useful tools in analyzing

large-scale data for applied researchers.

2.7 Empirical Analysis

In this section, we study the baseball data set of Brown (2008). This data set consists of the bat-

ting records for all the Major League Baseball players in the 2005 season. As in Brown (2008)

and Xie et al. (2012), we build a given shrinkage estimator based on the data in the first half

season and use it to predict the second half season, which can then be checked against the true

record of the second half season. For each player, let the number of at-bats be N and the success-

ful number of batting be H, then we have Hij ∼ Binomial(Nij , pj), where i = 1, 2 is the season

indicator and j = 1, · · · , p is the player indicator. We use the following variance-stabilizing trans-

formation Brown (2008) before applying the shrinkage estimators

Yij = arcsin

√
Hij + 1/4

Nij + 1/2
,
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which gives Yij∼̇N(θj , (4Nij)
−1), θj = arcsin

√
pj . We use

TSE(θ̂) =
∑
j

(Y2j − θ̂j)
2 −

∑
j

1

4N2j
.

as the error measurement for the prediction Brown (2008).

2.7.1 Shrinkage Estimation with Covariates

As indicated in Xie et al. (2012), there exists a significant positive correlation between the player’s

batting ability and his total number of at-bats. Intuitively, a better player will be called for bat-

ting more frequently; thus, the total number of at-bats will serve as the main covariate in our

analysis. The other covariate in the data set is the categorical variable of a player being a pitcher

or not.

Table 2.1 summarizes the result, where the shrinkage estimators are applied three times—to

all the players, the pitchers only, and the non-pitchers only. We use all the covariate informa-

tion (number of at-bats in the first half season and being a pitcher or not) in the first analysis,

whereas in the second and the third analyses we only use the number of at-bats as the covariate.

The values reported are ratios of the error of a given estimator to that of the benchmark naive

estimator, which simply uses the first half season Y1j to predict the second half Y2j . Note that in

Table 2.1, if no covariate is involved (i.e., when X = [1| · · · |1]), the OLS reduces to the grand

mean of the training data as in Xie et al. (2012).

2.7.2 Discussion of the numerical result

There are several interesting observations from Table 2.1.

(i) A quick glimpse shows that including the covariate information improves the performance

of essentially all shrinkage estimators. This suggests that in practice incorporating good covari-
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All Pichers Non-pichers
p for estimation 567 81 486
p for validation 499 64 435
Covariates? No Yes No Yes No Yes
Naive 1 NA 1 NA 1 NA
Ordinary least squares (OLS) 0.852 0.242 0.127 0.115 0.378 0.333
Weighted least squares (WLS) 1.074 0.219 0.127 0.087 0.468 0.290
Parametric EBMOM 0.593 0.194 0.129 0.117 0.387 0.256
Parametric EBMLE 0.902 0.207 0.117 0.096 0.398 0.277
James-Stein 0.525 0.184 0.164 0.142 0.359 0.262
Parametric URE toward OLS 0.505 0.203 0.123 0.124 0.278 0.300
Parametric URE toward WLS 0.629 0.188 0.127 0.112 0.385 0.268
Parametric URE 0.422 0.215 0.123 0.130 0.282 0.310
Semiparametric URE toward OLS 0.409 0.197 0.081 0.097 0.261 0.299
Semiparametric URE toward WLS 0.499 0.184 0.098 0.083 0.336 0.256
Semiparametric URE 0.419 0.201 0.077 0.126 0.278 0.314

Table 2.1: Prediction errors of batting averages using different shrinkage estimators. Bold numbers highlight
the best performance with covariate(s) in each case.

ates would significantly improve the estimation and prediction.

(ii) In general, shrinking towards WLS provides much better performance than shrinking to-

ward OLS or a general data-driven location. This indicates the importance of a good choice of

the shrinkage location in a practical problem. An improperly chosen shrinkage location might

even negatively impact the performance. The reason that shrinking towards a general data-driven

location is not as good as shrinking toward WLS is probably due to that the sample size is not

large enough for the asymptotics to take effect.

(iii) Table 2.1 also shows the advantage of semiparametric URE estimates. For each fixed

shrinkage location type (toward OLS, WLS, or general), the semiparametric URE estimator per-

forms almost always better than their parametric counterparts. The only one exception is in the

non-pitchers only case with the general data-driven location, but even there the performance dif-

ference is ignorable.

(iv) The best performance in all three cases (all the players, the pitchers only, and the non-
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pitchers only) comes from the semiparametric URE estimator that shrinks toward WLS.

(v) The James-Stein estimator with covariates performs quite well except in the pitchers only

case, which is in sharp contrast with the performance of the James-Stein estimator without co-

variates. This again highlights the importance of covariate information. In the pitchers only case,

the James-Stein performs the worst no matter one includes the covariates or not. This can be

attributed to the fact that the covariate information (the total number of at-bats) is very weak

for the pitchers only case; in the case of weak covariate information, how to properly estimate the

shrinkage factors becomes the dominating issue, and the fact that the James-Stein estimator has

only one uniform shrinkage factor makes it not competitive.

2.7.3 Shrinkage Factors

Figure 2.3 shows the shrinkage factors of all the shrinkage estimators with or without the covari-

ates for the all-players case of Table 2.1. We see that the shrinkage factors are all reduced after

including the covariates. This makes intuitive sense because the shrinkage location now contains

the covariate information, and each shrinkage estimator uses this information by shrinking more

toward it, resulting in smaller shrinkage factors.

2.8 Conclusion and Discussion

Inspired by the idea of unbiased risk estimate (URE) proposed in Xie et al. (2012), we extend the

URE framework to multivariate heteroscedastic linear models, which are more realistic in prac-

tical applications, especially for regression data that exhibits heteroscedasticity. Several parallel

URE shrinkage estimators in the regression case are proposed, and these URE shrinkage estima-

tors are all asymptotically optimal in risk compared to other shrinkage estimators, including the

classical empirical Bayes ones. We also propose semiparametric estimators and conduct simula-
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Figure 2.3: Plot of the shrinkage factors λ̂/
(
λ̂+Ai

)
or 1 − b̂i of all the shrinkage estimators for the case of

all players.

tion to assess their performance under both normal and non-normal data. For data sets that ex-

hibit a good linear relationship between the covariates and the response, a semiparametric URE

estimator is expected to provide good estimation result, as we saw in the baseball data. It is also

worth emphasizing that the risk optimality for the parametric and semiparametric URE estima-

tors does not depend on the normality assumption of the sampling distribution of Yi. Possible

future work includes extending this URE minimization approach to simultaneous estimation in

generalized linear models (GLMs) with canonical or more general link functions.

We conclude this Chapter by extending the main results to the case of weighted mean squared

error loss.

Weighted mean squared error loss. One might want to consider the more general weighted

mean squared error as the loss function:

lp

(
θ, θ̂;ψ

)
=

1

p

p∑
i=1

ψi

(
θi − θ̂i

)2
,

where ψi > 0 are known weights such that
∑p

i=1 ψi = p. The framework proposed in this Chapter
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is straightforward to generalize to this case.

For Model II, we only need to study the equivalent problem by the following transformation

Yi →
√
ψiYi, θi →

√
ψiθi, Xi →

√
ψiXi, Ai → ψiAi, (2.17)

and restate the corresponding regularity conditions in Theorem 5 by the transformed data and

parameters. We then reduce the weighted mean square error problem back to the same setting

we study in this Chapter under the classical loss function (2.4).

Model I is more sophisticated than Model II to generalize. In addition to the transformation in

equation (2.17), we also need λ→ ψiλ in every term related to the individual unit i. Thus,

√
ψiθi|X,β, λ

indep.∼ N
(√

ψiX
T
i β, λψi

)
,

so these transformed parameters
√
ψiθi are also heteroscedastic in the sense that they have dif-

ferent weights, while the setting we study before assumes all the weights on the θi are one. How-

ever, if we carefully examine the proof of Theorem 5 for the case of Model I, we can see that ac-

tually we do not much require the equal weights on the θi’s. What is important in the proof is

that the shrinkage factor for unit i is always of the form Ai/ (Ai + λ), which is invariant under

the transformation Ai → ψiAi and λ → ψiλ. Thus, after reformulating the regularity condi-

tions in Theorem 5 by the transformed data and parameters, we can still follow the same proof

to conclude the risk optimality of URE estimators (parametric or semiparametric) even under the

consideration of weighted mean squared error loss.

For completeness, here we state the most general result under the semiparametric setting for

Model I. Let

θ̂
URE
SP,ψ =

(
Ip − diag

(
b̂
URE
ψ

))
Y + diag

(
b̂
URE
ψ

)
µ̂URE
ψ ,
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URE (b,µ;ψ) =
1

p

p∑
i=1

ψi

(
b2i (Yi − µi)

2 + (1− 2bi)Ai

)
,

(
b̂
URE
ψ , µ̂URE

ψ

)
= argmin
b∈MON(A), µ∈Lrow(X)

URE (b,µ;ψ) .

Theorem 12. Assume the following five conditions (ψ-A)
∑p

i=1 ψ
2
iA

2
i = O (p), (ψ-B)

∑p
i=1 ψ

2
iAiθ

2
i =

O (p), (ψ-C)
∑p

i=1 ψiθ
2
i = O (p), (ψ-D) p−1

∑p
i=1 ψ

2
iAiXiX

T
i converges, and (ψ-E) p−1

∑p
i=1 ψiXiX

T
i →

Ωψ > 0. Then we have

sup
b∈MON(A), µ∈Lψ

∣∣∣URE (b,µ;ψ)− lp

(
θ, θ̂

b,µ
;ψ
)∣∣∣ →

p→∞
0 in L1,

where µ ∈ Lψ if and only if µ ∈ Lrow (X) and

p∑
i=1

ψiµ
2
i ≤Mpκ

p∑
i=1

ψiY
2
i

for a large and fixed constant M and a fixed exponent κ ∈ [0, 1/2). As a corollary, for any estima-

tor θ̂b̂p,µ̂p = (Ip − diag(b̂p))Y + diag(b̂p)µ̂p with b̂p ∈ MON(A) and µ̂p ∈ Lψ, we have

lim
p→∞

P
(
lp

(
θ, θ̂

URE
SP,ψ

)
≥ lp

(
θ, θ̂

b̂p,µ̂p

)
+ ϵ

)
= 0 ∀ϵ > 0,

lim sup
p→∞

(
Rp

(
θ, θ̂

URE
SP,ψ

)
−Rp

(
θ, θ̂

b̂p,µ̂p

))
≤ 0.
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You only have to do a very few things right

in your life so long as you don’t do too many

things wrong.

Warren Buffett

3
Continuous Time Analysis of Fleeting Discrete

Price Moves

A novel model of financial prices is proposed in this Chapter where: (i) prices are discrete;

(ii) prices change in continuous time; (iii) a high proportion of price changes are reversed in a

fraction of a second. Our model is analytically tractable and directly formulated in terms of the

calendar time and price impact curve. The resulting càdlàg price process is a piecewise constant

semimartingale with finite activity, finite variation and no Brownian motion component. We use

This Chapter is advised by and coauthored with Professor Neil Shephard.
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moment-based estimations to fit four high frequency futures data sets and demonstrate the de-

scriptive power of our proposed model. This model is able to describe the observed dynamics of

price changes over three different orders of magnitude of time intervals.

3.1 Introduction

Extracting information from the order and trading flow in financial markets is important for trad-

ing at high and low frequencies, formulating policy and regulation and studying forensic finance.

The distinctness about this area is the frequent focus on the very short term, usually over time

intervals which may be much less than a second. At very short time scales, three essential as-

pects dominate: (i) prices are discrete, due to the tick structure of the market; (ii) prices change

in continuous time; (iii) a high proportion of price changes are fleeting, reversed in a fraction of a

second. However, the econometricians’ cupboard is practically bare, for there are nearly no mod-

els or techniques that focus on all of the three features and put the role of the calendar time on

center stage rather than the tick time.

In this paper we develop a novel continuous calendar time framework for prices out of a desire

to capture these features in an analytically tractable but potentially semi-parametric manner.

We will show that our model captures the serial dependence in price changes over three different

time scales: 0.1 seconds, 1 seconds, 10 seconds and 1 minute.

Although our work is a distinctive move away from the existing literature, it will relate to a

number of aspects that are often dealt with one at a time. Here we discuss some of this material.

Most of the econometric work on the modelling of high frequency financial data focuses on the

times between trades and quote updates. This literature splits into two: the modelling of the

conditional mean duration between events given past data and the modelling of the conditional

intensity of trade arrivals given past data. It is reviewed by, for example, Engle (2000), Russell
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and Engle (2010) and Hautsch (2012). The former was initiated in Engle and Russell (1998) and

contributions include Zhang et al. (2001), Hamilton and Jordá (2002) and Cipollini et al. (2009).

The latter focuses around, for example, Russell (1999), Bowsher (2007) and Hautsch (2012),

building on the stochastic analysis of Hawkes (1972).

There is much less econometric work on the discreteness of high frequency data. Papers that

focus on discreteness include Rydberg and Shephard (2003), Russell and Engle (2006), Liesenfeld

et al. (2006), Large (2011), Oomen (2005), Oomen (2006) and Griffin and Oomen (2008). Some

of the early work on the impact of discreteness in practice includes Harris (1990), Gottlieb and

Kalay (1985), Ball et al. (1985) and Ball (1988). A significant approach to deal with discreteness

is to build continuous time models for prices on the positive half-line that are then rounded to

induce discreteness, sometimes with extra additive measurement error. Examples include, for

a variety of purposes, Hasbrouck (1999), Rosenbaum (2009), Delattre and Jacod (1997), Jacod

(1996) and Li and Mykland (2014). Also note the statistical work by Kolassa and McCullagh

(1990).

The most comparable literatures to our own include Bacry et al. (2013a), Bacry et al. (2013b),

Fodra and Pham (2013a) and Fodra and Pham (2013b). See also Fauth and Tudor (2012). Bacry

et al. model the evolution of price changes as the difference of two self-exciting and interacting

simple counting processes. These multivariate Hawkes processes have intensities that react to pre-

vious moves, so an up move in the price will temporarily increase the intensity of a down move,

creating the chance that the move will turn out to be fleeting. This elegant model only allows

unit price moves, but could be extended, while the dynamics is tightly parameterized. Fodra and

Pham directly assume an irreducible Markov chain structure on the sequence of price changes,

which is less flexible as only the current price direction will impact the next jump direction.

Our paper has its intellectual roots in two papers. Barndorff-Nielsen et al. (2012) build Lévy
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processes (continuous time random walks) that are integer-valued. We are also inspired by the

stationary integer-valued processes of Barndorff-Nielsen et al. (2014). Their processes are re-

lated to the up-stairs processes of Wolpert and Taqqu (2005) and the random measure processes

of Wolpert and Brown (2011). Both of these processes are stationary. Barndorff-Nielsen et al.

(2014) also bring out the relationship between their processes and M/G/∞ queues (e.g. Lindley

(1956), Reynolds (1968) and (Bartlett, 1978, Ch. 6.31)). They also connect these models to the

so-called mixed moving average models of Surgailis et al. (1993). See also the work of Fuchs and

Stelzer (2013). None of these papers can be used directly as a coherent model of high frequency

data. Our paper fills this essential gap.

Our new approach will involve events arriving in continuous time, whose impacts on the prices

may be fleeting and of variable size. The model is directly formulated in terms of the price im-

pact of news. Each fleeting move is a temporary change in the price that has a random survival

time until its impact disappears. The model allows a decomposition of the discrete price pro-

cess into a continuous time random walk (due to permanent impacts) plus a temporary fleeting

component (due to market microstructure noise). The resulting càdlàg price process will be a

piecewise constant semimartingale with finite activity, finite variation and no Brownian motion

component. It is also capable of generating negative autocorrelations for price changes that is

consistent with the empirical observations. We have non-parametric freedom in choosing the level

of dependence in the noises—which can even have long memory if this is needed in the data. Al-

ternatively, the applied researcher can tightly parameterize the model if necessary.

In this paper our model is static: the parameters are time-invariant, not adapting to past data.

This is an important deficiency, but a stochastic time-change can deal with most of these chal-

lenges. We will address them in a follow up paper. Our goal here is to set down a framework

that is both empirically compelling and statistically scalable in the future work.
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Finally, throughout our empirical work we have used trade prices. We could have used our

model on the best bid or ask prices. This would have had the advantage that the best bid or ask

are prices an investor can trade immediately, while trade prices are those which have been traded

by someone in the past.

The outline of this paper is as follows. In Section 3.2 we set up the probability structure of

our model and review a couple of building blocks from previous papers. In Section 3.3 we intro-

duce the core of our contribution: defining our model for prices and providing an analysis of this

process and the corresponding return sequence. In Section 3.4 we discuss the moment-based es-

timations for these models, while in Section 3.5 we apply these estimation methods to real data.

Section 3.6 concludes. The Appendix has four sections. The first collects the proofs of the var-

ious theorems given in the main text of the paper as well as the details of some remarks. The

second outlines how to compute probability mass functions of price changes using the inverse

fast Fourier transform. The third details our data cleaning procedures. The fourth gives a non-

parametric estimator of a part of our model.

3.2 Integer-Valued Stochastic Process in Continuous Time

Our model for (scaled, so they obey the tick structure) prices will be of the form

Pt = P0 +

Nt∑
k=1

κk, (3.1)

where Nt is a counting process for the number of price moves and κk will be the corresponding

integer-valued price move. Some of the price moves are permanent and some are fleeting, so (3.1)

can be written as the sum of two (unobserved) components

Pt = P0 +

NP
t∑

k=1

κP
k +

NT
t∑

k=1

κT
k ,
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where NP
t counts the number of moves due to permanent impacts, NT

t due to temporary ones.

The first component will be assumed to be a Lévy process, the second a stationary trawl pro-

cess in continuous time. This links with the very large literature on the use of compound Poisson

processes in financial econometrics, e.g. Press (1967). However, here we allow a fraction of the

jumps to be fleeting, so the resulting counting process Nt is not simply a Poisson process.

In this Section, we will establish a very flexible stochastic framework for this type of model.

3.2.1 Poisson random measure

Our mathematical framework will revolve around (i) events arriving in continuous time, (ii) events

whose impacts may be fleeting with a random survival time and (iii) events of variable size and

sign. To generate these events, it is natural to base the underlying randomness on a three dimen-

sional Poisson random measure N (see, e.g., Kingman (1993) for a review) with intensity mea-

sure

E (N (dy, dx, ds)) = ν(dy)dxds.

Here s is time (with arrivals randomly scattered on R), x is random source (uniformly scattered

over [0, 1]), which will drive the survival times of the fleeting events, and y marks integer size

(with sign) of events. These names will become clearer later in Figure 3.1 and 3.2.

Price moves can be up or down, but zero is ruled out. Thus the size of the events will be as-

sumed to have a Lévy measure ν(dy) concentrated on y ∈ Z\ {0}, the non-zero integers. With no

confusions, we will sometimes abuse the notation ν (y) to denote the mass of the Lévy measure

centered at y, so

ν (dy) =
∑

y∈Z\{0}

ν (y) δ{y} (dy) ,

where δ{y} (dy) is the Dirac point mass measure centered at y. Throughout this paper, we as-

sume that ∥ν∥ =
∫∞
−∞ ν (dy) =

∑
y∈Z\{0} ν (y) <∞.
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Remark 13. We will see in a moment that the mass ν (y) represents the intensity of events of

size y, so in aggregate the Lévy measure ν will simultaneously controls the scope of all the possible

jumping sizes in addition to their individual intensity.

3.2.2 Lévy basis and Lévy process

Our model will be based on the resulting homogeneous Lévy basis on [0, 1]× R 7−→ Z\ {0}, which

records the size y ∈ Z\ {0} at each point in time s ∈ R and height x ∈ [0, 1]. It is given by

L(dx, ds) =

∫ ∞

−∞
yN (dy, dx, ds) , (x, s) ∈ [0, 1]× R,

and for any Borel measurable set S ⊆ [0, 1]× R we let

L (S) =

∫
[0,1]×R

1S (x, s)L (dx, ds) ,

where 1S is the indicator function of S. To connect with the later discussion, a Lévy process gen-

erated from L can be defined as

Lt = L (Rt) =

∫ t

0

∫ 1

0
L(dx, ds),

where Rt = [0, 1] × (0, t] is a rectangle that grows with t, so Lt just counts up the points in the

Lévy basis from time 0 to time t.

Example 1. Suppose that ν(dy) = ∥ν∥
(
0.5× δ{1} (dy) + 0.5× δ{−1} (dy)

)
. Then ∥ν∥ is the

arrival rate of events in time, each with a random source for the survival time and having size ±1

with equal probability. Figure 3.1 plots a Skellam Lévy basis L using ∥ν∥ = 7, taking on 1,−1

with black and white dots respectively. The lower panel shows the corresponding Skellam Lévy

process, which is the difference of two independent Poisson processes with intensity ∥ν∥ /2.
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Figure 3.1: Top: Lévy basis L(dx, ds), where the horizontal axis s is time and the vertical axis x is random
source for the survival time (denoted height in this picture), which plays no rule in this construction of the
Lévy process in the lower panel as all permanent arrivals survive forever. Black dots denote 1, white ones −1.
Bottom: The corresponding Lévy process, which sums up all the effects in the Lévy basis (in the upper panel)
from time 0 to time t, while the vertical axis here is the value of the Lévy process, which jumps up by 1 by the
effect of black dots and down by 1 by white ones.

3.2.3 Stationary trawl process

To introduce fleeting moves, the random sources for the survival times in the Lévy basis will be

exploited. We start from a fixed shape∗ A ⊆ [b, 1] × (−∞, 0], where b ∈ [0, 1] is called the perma-

nence parameter. Throughout we assume that the area of A, leb (A), is finite. Barndorff-Nielsen

et al. (2014) call A a trawl for the case of b = 0, which is the core of their stationary integer-
∗For technical reasons, we need to assume that the fixed set A is closed on the right and open on the

left, that is, for every x ∈ [b, 1], all the set A ∩ {(x, s) : s ≤ 0} must be a union of half-closed intervals of
the form (a, b]. This is enforced so the resulting jump process is càdlàg. Besides, we need to assume that
the projection of A on the vertical axis has Lebesgue measure b so the parameter b is well-defined and
statistically identifiable.
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valued processes. Here we call A a squashed trawl, a minor variant on their idea.

Definition 1. A squashed trawl A defined by a trawl function d is obtained from

A = {(x, s) : s ≤ 0, b ≤ x < d(s)} ,

where d : (−∞, 0] 7−→ [b, 1] is continuous and monotonically increasing (d (s1) ≤ d (s2) for all

s1 ≤ s2 ≤ 0) and satisfies the following regularity conditions: d (−∞) = lim
s→−∞

d (s) = b, d (0) = 1

and
∫ 0
−∞ (d (s)− b) ds <∞.

We now drag the set A through time without changing its shape

At = A+ (0, t) = {(x, s) : s ≤ t, b ≤ x < d(s− t)} , t ≥ 0.

Notice that leb(At) = leb(A) < ∞ for all t ≥ 0. Then the stationary (trawl) process is defined as

L (At) for t ≥ 0. In a moment this will be a component of our proposed price process.

Example 2. The upper panel of Figure 3.2 illustrates At when d (s) = 0.5 + (1− 0.5) e2s. The

middle panel of Figure 3.2 also shows L (At) when L is a Skellam basis, which sums up all the ef-

fects (both positive and negative) captured by (or surviving in) the trawl. Dynamically, L (At) will

move up by 1 if the moving squashed trawl At either captures one positive event that has height

above b or releases a negative one; conversely, it will move down by 1 if vice versa. Also notice

that L (A0) might not be necessarily zero.

Throughout we use κj(X) as a generic notation for the j-th cumulant of an arbitrary random

variable X. Recall that L1 = L (R1) =
∫ 1
0

∫ 1
0 L(dx, ds). In the following Proposition, we rephrase

the key properties of the stationary process L (At) mentioned in Barndorff-Nielsen et al. (2014)

under the squashed trawl variant.
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Figure 3.2: A moving squashed trawl At is joined by the Lévy basis L(dx, ds), where the horizontal axis s is
time and the vertical axis x is height. The shaded area is an example of the trawl A generated by the trawl
function d, while we also show the outlines of At when t = 1/2 and t = 1. Also shown below is the implied
stationary process L(At) and the Lévy process L(Bt) for t ≥ 0, where Bt = [0, b) × (0, t] is a rectangle that
grows with t and covers the region below b.

Proposition 13. If leb (A) < ∞, then L (At) is well-defined and strictly stationary. If κ2 (L1) <

∞ as well, then it is covariance stationary and for t > s

Cov (L (At) , L (As)) = leb (At−s ∩A)κ2 (L1) , Cor (L (At) , L (As)) =
leb (At−s ∩A)

leb (A)
.

Furthermore, for any t ≥ 0,

leb (At ∩A) =
∫ −t

−∞
(d (s)− b) ds (3.2)

is monotonically decreasing as t increases.
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3.3 Integer-Valued Price Process with Fleeting Moves

3.3.1 Definition

We now turn to the main contribution of this paper. Our integer-valued price process is

Pt = V0 + L(Ct) = V0 + L (At) + L (Bt) , t ≥ 0,

where we recall that At = A+ (0, t) and

Bt = [0, b)× (0, t], Ct = At ∪Bt.

Here V0 is a non-negative integer; L is a Lévy basis; L (At) is a stationary integer-valued process

that controls the fleeting movements of the price; V0 + L (Bt) is an integer-valued Lévy process

(initiating at V0, which is aggregated from the permanent arrivals in the past) that represents a

non-stationary component of the price process. Recall that L (Bt) =
∫ t
0

∫ b
0 L (dx, ds), t ≥ 0.

Example 3 (Continued from Example 2). The lower panel of Figure 3.2 shows the correspond-

ing Skellam Lévy process L (Bt). Notice that there are no permanent events in the negative time

because they have been taken into account in V0. Over short time scales it is hard to tell the dif-

ference between these two processes L (At) and L (Bt), but over long time scales they are starkly

different. For any event arrival, if the random height x—not size y—is above b, then this effect

stays in At temporarily and hence is fleeting; if the height is below b, then this effect is always in

Bt and hence permanent.

This càdlàg price process has finite activity (i.e. finite number of jumps in any finite interval of

time, due to the Lévy basis being of finite activity), is piecewise-constant (i.e. jumps only when

there are arrivals or departures) and consequently has finite variation. Thus the model is in keep-

ing with the empirical data.
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Remark 14. The integer-valued price process Pt is a semimartingale with respect to its nat-

ural filtration. The details can be found in Appendix A.3. Here we especially point out that a

semimartingale model that allows the fleeting behavior is atypical in the literature of market mi-

crostructure.

Remark 15. In this model some price moves have permanent impact. Others are fleeting, be-

ing reversed rapidly. The lifetime of an arrival event is determined by the trawl function. As-

sume that the trawl function d is strictly increasing and hence invertible. Then we can think of

G(s) = 1 − d (−s) (with G (∞) = 1) as the cumulative distribution function of the lifetime for

s ≥ 0. Thus, for U v U(0, 1), the standard uniform distribution, G−1(U) means the lifetime of an

arrival event with random height U . When U ≤ b, then G−1 (U) = ∞, meaning it is permanent.

For U > b then the event will last G−1(U) <∞, meaning it is fleeting.

Remark 16. If a new piece of news arrives at time t, it impacts the price through the arrival

of a new point in the Lévy basis. For concreteness of exposition here, suppose it has unit impact.

Then the expected impact of this individual event at time t + s is d(−s), where s ≥ 0. Hence the

trawl function directly describes the price impact curve of news arrivals. It is tempting to label d

the price impact function, but we continue with the trawl nomenclature. The permanent impact of

the unit news is thus b.

3.3.2 Distribution of price changes

The following Theorem characterizes the distribution of price changes over a time length t.

Theorem 14. Let A\B be set subtraction (all elements of A except those that are also in B).

Then

Pt − P0 = L (Ct)− L (C0) = L (Ct\C0)− L(C0\Ct),
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where L (Ct\C0) is independent of L(C0\Ct). Consequently the logarithmic characteristic function

of returns is

C (θ ‡ Pt − P0) = btC (θ ‡ L1) + leb(At\A) (C (θ ‡ L1) + C (−θ ‡ L1)) , where

C (θ ‡ L1) = logE
(
eiθL1

)
, i =

√
−1, L1 =

∫ 1

0

∫ 1

0
L(dx, ds).

Furthermore, if the j-th cumulant of L1 exists, then

κj(Pt − P0) = btκj(L1), j = 1, 3, 5, ...,

κj(Pt − P0) = (bt+ 2leb (At\A))κj(L1), j = 2, 4, 6, ....

Remark 17. Notice that Ct\C0 has the physical interpretation of arrivals during the time period

0 to t for both positive and negative effects; C0\Ct are departures instead. Further, the equalities

leb(At\A) = leb(A)− leb(At ∩A) = leb(A\At) =

∫ 0

−t
(d (s)− b) ds (3.3)

are often helpful in calculations.

Remark 18. The probability mass function of Pt − P0 can be computed using the characteristic

function and the inverse fast Fourier transform. The details can be found in the Appendix B.1.

Remark 19. Even though our model is written down for the study of high frequency data, it can

easily connect back to those diffusion based models that are commonly used to study data at less

high frequency. Theorem 14 further implies that the fleeting price process becomes a Brownian

motion at lower frequency. Precisely, if κ2 (L1) <∞ and X(c)
t = (κ2 (L1) c)

−1/2 (Pct − P0 − bctκ1 (L1)),

then X
(c)
·

L→W· as c→ ∞, where W· is a Wiener process or a standard Brownian motion.

Let ∆Pt = Pt − Pt− be the instantaneous jump (or return) of the price process at time t. By

the instantaneous jumping distribution, we mean the probability of ∆Pt = y given that ∆Pt ̸= 0

for y ∈ Z\ {0}. In the following we give a closed-form expression for this distribution.
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Theorem 15. The instantaneous jumping distribution is

P (∆Pt = y|∆Pt ̸= 0) =
ν (y) + ν (−y) (1− b)

(2− b) ∥ν∥
. (3.4)

Notice that the trawl function d in the fleeting component has no impact on the instantaneous

jumping distribution: what is important is b, which controls the amount of potential departures

among all the arrival jumps. Besides, the left-hand side of equation (3.4) can be easily estimated

from the data, so we might in turn estimate ν and b by simple moment-matching. To calibrate

the trawl, Theorem 14 imply the easy use of sample cumulants across different t to infer the

shape of leb (At\A) and hence d. We will see these in Section 3.4 later.

3.3.3 Autocorrelation structure of price changes

Theorem 16 captures the linear dependence in the price changes.

Theorem 16. Assume that κ2(L1) < ∞. Then the price changes have the autocorrelation struc-

ture, for some sampling interval δ > 0 and k = 1, 2, ...

γk = Cov
((
P(k+1)δ − Pkδ

)
, (Pδ − P0)

)
=
(
leb(A(k+1)δ\A)− 2leb(Akδ\A) + leb(A(k−1)δ\A)

)
κ2(L1),

ρk = Cor
((
P(k+1)δ − Pkδ

)
, (Pδ − P0)

)
=
leb(A(k+1)δ\A)− 2leb(Akδ\A) + leb(A(k−1)δ\A)

bδ + 2leb(Aδ\A)
.

Corollary 17. ρk ≤ 0 for all k = 1, 2, .... This inequality becomes strict when d is strictly in-

creasing (i.e. d (s1) < d (s2) for all s1 < s2 ≤ 0).

Remark 20. For a pure Lévy process (b = 1), leb (At\A) = 0 for all t, so clearly ρk = 0 for all
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k = 1, 2, ..., as expected. On the other hand, equation (3.3) implies

lim
δ→0

leb (Alδ\A)
δ

= (1− b) l, lim
δ→∞

leb (Alδ\A) = leb (A) , l = 1, 2, ...,

so it is easy to see that, for any fixed k = 1, 2, ...,

lim
δ→0

ρk = lim
δ→∞

ρk = 0.

Thus, Corollary 17 implies that ρk is not a monotonic function of the sampling interval δ. This

matches with the empirical data, which we will see later in Figure 3.7.

3.3.4 Power variation

Quadratic variation plays a central role in stochastic analysis and modern finance (e.g. Andersen

et al. (2001) and Barndorff-Nielsen and Shephard (2002)). For any r ≥ 0, we define the r-th

power Lévy basis as

Σ(dx, ds; r) =

∫ ∞

−∞
|y|rN(dy, dx, ds)

with mean measure

µ(dx, ds; r) = dxds

∫ ∞

−∞
|y|r ν(dy),

assuming that
∫∞
−∞ |y|r ν(dy) <∞. Theorem 18 relates Σ to

{P}[r]t = lim
δ→0

t/δ∑
k=1

∣∣Pkδ − P(k−1)δ

∣∣r = ∑
0<s≤t

|∆Ps|r ,

the r-th (unnormalized) power variation, which was formalized in finance by Barndorff-Nielsen

and Shephard (2004). The special case of r = 2 yields the quadratic variation. Notice that in

our model we can compute {P}[r]t exactly, just using the price path. It is finite for all r ≥ 0 with

probability one. This contrasts with the vast majority of work in econometrics that would take

{P}[r]t as infinity due to the impact of market microstructure.
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Theorem 18. For any r ≥ 0, the r-th power variation is

{P}[r]t = Σ(Bt; r) + Z
[r]
t , Bt = [0, b)× (0, t],

Z
[r]
t = Σ(Ht; r) + Σ(Gt; r), Ht = [b, 1]× (0, t], Gt = (Ht ∪A) \At.

Furthermore, their expectations are

E
(
{P}[r]t

)
= (2− b) t

∫ ∞

−∞
|y|r ν(dy). (3.5)

Remark 21. Like (3.4), (3.5) does not feature the trawl function, as each arrival is joined by a

departure. Hence it is always robust to the details of d. Further,

E
(
{P}[r]t

)
= E

(
{P}[0]t

)∫ ∞

−∞
|y|r ν (dy)

∥ν∥
.

Notice that {P}[0]t counts the total number of jumps of the process P up to time t, so throughout

we call it the counting process of price moves. It will also play an important role in Section 3.4

for the construction of our moment-based estimate for the model parameters.

We think of the random Z
[r]
t , which is finite with probability one, as the component of power

variation due to fleeting moves in prices, for

{P}[r]t − {L (Bt)}[r]t = Z
[r]
t

is the asymptotic stochastic bias of the power variation.

High frequency econometricians would typically think of terms like Z [2]
t as the driver of the

bias in realized variance due to market microstructure effects (e.g. Hansen and Lunde (2006),

Zhang (2006), Jacod et al. (2009), Mykland and Zhang (2012) and Barndorff-Nielsen et al. (2008)),

but it is typically infinite in their studies while here and empirically it is finite with probability
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one†.

We recall from Theorem 14 that

E(Pt − P0) = btκ1(L1), Var(Pt − P0) = {bt+ 2leb (At\A)}κ2 (L1) .

We now think about returns over the time interval [0, T ], so the realized variance is

RV (n) =

n∑
k=1

(Pkδn − P(k−1)δn)
2, δn =

T

n
.

Proposition 19. Assume that κ2(L1) <∞. Then

E
(
RV (n)

)
=

(
b+ 2

leb (Aδn\A)
δn

)
Tκ2 (L1) + b2Tδnκ

2
1 (L1) .

We can set the context of Proposition 19 by discussing the two extremes n = 1 and n → ∞ for

a large T . For n = 1, as T → ∞,

E
(
RV (1)

)
=

(
b+ 2

leb (AT \A)
T

)
Tκ2 (L1) + b2T 2κ21 (L1)

≈ bTκ2 (L1) + b2T 2κ21 (L1)

= κ2 (L (BT )) + (κ1 (L (BT )))
2 = E

(
L (BT )

2
)
,

where the second line uses leb (AT \A) ≈ leb (A). For n→ ∞ and a fixed T ,

lim
n→∞

E
(
RV (n)

)
= (2− b)Tκ2 (L1) .

†Econometricians use a variety of models for market microstructure noise. Typically the noise appears
each time a trade happens, e.g. in Zhou (1996) the noises are i.i.d. with a zero mean. Hence we can think
of these types of models as purely statistical measurement error models. In more recent times, the i.i.d.
assumption has been generalized to allow some levels of temporal dependence and volatility clustering, but
all in tick time instead of the calendar time. All of these models of noise have the power variations being
infinity. There is another set of papers that think of prices as being a rounded version of a semimartingale.
This is closer to our paper, but here the level of dependence in price moves is entirely dependent on the
size of the ticks in comparison to the volatility of the semimartingale. This is insufficiently flexible to fit
the data. Another set of papers round a semimartingale with additive measurement noise, but again this
has infinite power variation, which does not coincide with the empirical observations.
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Therefore, in this model the realized variance and the volatility of price changes are highly dis-

torted by the fleeting component. A variance signature plot (RV (T/δ) against δ) for our model

will start out high around (2− b)Tκ2 (L1) (the expected quadratic variation of the price pro-

cess) for large n (dense sampling) and tend downwards to approximately bTκ2 (L1) (the expected

quadratic variation of the Lévy process component, assuming that κ1 (L1) being very small). A

minor variant of this type of plots, which we will discuss in Remark 24, can be found in Figure

3.8 later in our empirical work.

3.3.5 Generalized compound representation

As the price process is of finite activity, it can be usefully written as a generalized compound

process, driven by the counting process of price moves. Here we detail this. First recall that

G(s) = 1 − d (−s) (with G (∞) = 1) denotes the cumulative distribution function of the lifetime

for s ≥ 0.

L(A0) is built out of NA∗ initial surviving events, who arrive at times τA∗
1 < ... < τA∗

N∗ ≤ 0

and jump with sizes κA∗
1 , ...,κA∗

N∗ . Each arrival has a lifetime G−1(UA∗
1 ), ..., G−1(UA∗

NA∗), where

τA∗
j +G−1(UA∗

j ) > 0 and UA∗
j

i.i.d.∼ U(b, 1). Thus we can write L(A0) =
∑NA∗

j=1 κA∗
j 1τA∗

j +G−1(UA∗
j )>0.

When κA∗
j = 1 for all j, this representation has a close connection to a M/G/∞ queue (i.e.

Markov arrivals, with a fixed service time distribution G, but with an infinite number of servers).

As time progresses some events die and the initial values thin down to
∑NA∗

j=1 κA∗
j 1τA∗

j +G−1(UA∗
j )>t

while new ones are born
∑NA

t
j=1 κA

j 1τAj +G−1(UA
j )>t, where NA

t is the number of births from time 0

to time t with heights greater than b. The corresponding τAj ’s and κA
j ’s are the arrival times of

these events and size of the moves. Thus the stationary process is

L (At) =

NA∗∑
j=1

κA∗
j 1τA∗

j +G−1(UA∗
j )>t +

NA
t∑

j=1

κA
j 1τAj +G−1(UA

j )>t, t ≥ 0.
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The corresponding impact of the permanent changes is a compound Poisson process L (Bt) =∑NB
t

j=1 κB
j , where NB

t counts the number of permanent arrivals up to time t and τBj ’s and κB
j ’s

are the corresponding arrival times and jump sizes. We also write τk to be any one of the jump-

ing times from resulted chronologically from both the arrivals and departures; similarly for κk.

Then Nt = # {k : τk ≤ t} counts the total number of jumps of the price process up to time t.

All these imply that

Pt = V0 +
NA∗∑
j=1

κA∗
j 1τA∗

j +G−1(UA∗
j )>t +

NA
t∑

j=1

κA
j 1τAj +G−1(UA

j )>t +

NB
t∑

j=1

κB
j = P0 +

Nt∑
k=1

κk,

which is called a generalized compound representation.

3.3.6 Parameterized trawl function

To fit this type of model using data, it is sometimes helpful to index the trawl function by a

small number of parameters. Throughout we work within the following framework.

Definition 2. A superposition trawl function has

d(s) = b+ (1− b)

∫ ∞

0
eλsπ (dλ) , s ≤ 0, (3.6)

where π is an arbitrary probability measure on (0,∞). We constrain the superposition class to

where
∫∞
0 λ−1π (dλ) <∞.

Whatever the probability measure π the resulting d always exists since 0 ≤
∫∞
0 eλsπ (dλ) ≤∫∞

0 π (dλ) = 1, as s ≤ 0. The constraint
∫∞
0 λ−1π (dλ) < ∞ is needed to ensure that the area of

A is finite, for this area is

leb(A) =

∫ 0

−∞

∫ d(s)

b
dxds =

∫ 0

−∞
(d(s)− b) ds = (1− b)

∫ 0

−∞

∫ ∞

0
eλsπ (dλ) ds

= (1− b)

∫ ∞

0

∫ 0

−∞
eλsdsπ (dλ) = (1− b)

∫ ∞

0

1

λ
π (dλ) . (3.7)
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Using equation (3.2) the superposition framework (3.6) has

leb(At ∩A) = (1− b)

∫ ∞

0

e−tλ

λ
π (dλ) , t ≥ 0,

so, combining it with equation (3.7), we have

∫ ∞

0
Cor(L (At) , L(A0))dt =

∫∞
0 λ−2π (dλ)∫∞
0 λ−1π (dλ)

.

Thus, the superposition trawl has long memory if and only if
∫∞
0 λ−2π (dλ) = ∞.

In the following we focus only on choices of specific π. These special cases have been analyzed

in Barndorff-Nielsen et al. (2014), so here we only state them to establish notation for our ap-

plied work.

Example 4. When π has a single atom of support at λ > 0, this is the exponential trawl

d(s) = b+ (1− b) exp(λs), s ≤ 0, (3.8)

leb (A) =
1− b

λ
, leb (At ∩A) =

1− b

λ
e−λt.

Trivially it only allows short memory as
∫∞
0 λ̄

−2
π
(
dλ̄
)
= λ−2 <∞ whenever λ > 0.

Example 5. When

π (dλ) =
αH

Γ (H)
λH−1e−λαdλ, α > 0, H > 1,

we produce the superposition gamma (sup-Γ) trawl

d(s) = b+ (1− b)
(
1− s

α

)−H
, s ≤ 0, (3.9)

leb (A) = (1− b)
α

H − 1
, leb(At ∩A) =

(1− b)α

H − 1

(
1 +

t

α

)1−H

, t ≥ 0.

It has long memory when H ∈ (1, 2] and short memory when H > 2 as

∫ ∞

0
λ−2π (dλ) =

Γ (H − 2)

Γ (H)
<∞ if and only if H > 2.
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Example 6. When

π (dλ) =
(γ/δ)ν

2Kν (γδ)
λν−1e−(γ

2λ+δ2λ−1)/2dλ, γ, δ > 0, ν ∈ R,

we produce the superposition generalized inverse Gaussian (sup-GIG) trawl

d (s) = b+ (1− b)

(
1− 2s

γ2

)−ν/2 Kν

(
γδ
√
1− 2s/γ2

)
Kν (γδ)

, s ≤ 0 (3.10)

leb (A) = (1− b)
γ

δ

Kν−1 (γδ)

Kν (γδ)
,

leb(At ∩A) = (1− b)
γ

δ

(
1 + 2t/γ2

)(1−ν)/2
Kν−1

(
γδ
√
1 + 2t/γ2

)
Kν (γδ)

, t ≥ 0,

where Kν (x) is the modified Bessel function of the 2nd kind. It always has short memory as

∫ ∞

0
λ−2π (dλ) =

(γ/δ)ν

2Kν (γδ)

2Kν−2 (γδ)

(γ/δ)ν−2 =
(γ
δ

)2 Kν−2 (γδ)

Kν (γδ)
<∞ for all γ, δ > 0, ν ∈ R.

However, it can also degenerate to the long memory sup-Γ trawl by letting γ =
√
2α, ν = H

and δ → 0. When γ → 0, π (dλ) becomes an inverse gamma distribution with scale parameter

δ2/2 and shape parameter −ν, so correspondingly we produce the superposition inverse gamma

(sup-Γ−1) trawl. This is an important case, for inverse gamma densities have polynomial decay

in their tails so will generate short but substantial memory, which has the same pattern as the

empirical data. We will see this clearly in Section 3.5.

3.4 Moment-Based Inference

Here we discuss the inference technique based on matching moments using a path of prices Pt,

t ∈ [0, T ]. Due to (i) the stationarity of the price changes Pδ − P0
dv Pt+δ − Pt for any t, δ and (ii)

the high frequency nature of the data, moment-based estimates are plausible. The inference can

basically split in two pieces: the inference of the Lévy measure ν and the inference on b and d.
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3.4.1 Inference of Lévy measure

Due to the high frequency nature of the data, the instantaneous jumping distribution of the sam-

ple is close to the true value. Similarly, the sample power variation {P}[r]t for any r ≥ 0, when

treated as a linear function of time t, has a slope that is also close to the truth. We can then use

these facts to estimate the Lévy measure ν in terms of b.

Let us write the sample instantaneous jumping distribution as α̂y, where
∑

y∈Z\{0} α̂y = 1; also,

estimate the slope of the r-th sample power variation against t by

β̂r =
{P}[r]T

T
=

1

T

∑
0<t≤T

|∆Pt|r .

Then by matching moments to equations (3.4) and (3.5), we should have

(2− b)
∑

y∈Z\{0}

|y|r ν (y) = β̂r, r ≥ 0, (3.11)

ν (y) + ν (−y) (1− b) = (2− b) α̂y ∥ν∥ , y ∈ Z\ {0} . (3.12)

Using (3.11) with the case of r = 0, we have ∥ν∥ =
∑

y∈Z\{0} ν (y) = β̂0/ (2− b) and hence

ν (y) + ν (−y) (1− b) = α̂yβ̂0,

ν (−y) + ν (y) (1− b) = α̂−yβ̂0, y ∈ N.

Solving these two equations gives us

ν̂ (y) =
α̂y − (1− b) α̂−y

(2− b) b
β̂0, y ∈ Z\ {0} . (3.13)

Remark 22. This does not guarantee that ν̂ (y) ≥ 0, so empirically we will truncate negative

ν̂ (y) by zero and at the same time tune the value of the corresponding ν̂ (−y) such that

ν̂ (y) + ν̂ (−y) = α̂y − (1− b) α̂−y + α̂−y − (1− b) α̂y

(2− b) b
β̂0 =

α̂y + α̂−y

(2− b)
β̂0
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remains unchanged. The advantage of this modification allows the conservation of all the (non-

negative) moments of the estimated Lévy measure ν̂:

∑
y∈Z\{0}

|y|r ν̂ (y) =
∞∑
y=1

|y|r
(
ν̂ (y) + ν̂ (−y)

)
.

However, it comes with the price that the estimates for all of the odd cumulants of Pt − P0 are

altered, but practically this will be neglectable as the truncation is only needed for larger y and the

corresponding intensity ν (y) is usually quite small.

To completely avoid the negative estimates, one might parameterize the Lévy measure as in

Barndorff-Nielsen et al. (2014), but here we prefer to stay with the non-parametric estimates.

Remark 23. We should note that (3.13) has included all the information we can access from

equations (3.11) and (3.12), so we cannot rely on equations (3.11) and (3.12) to solve b and the

Lévy measure ν at the same time. The details can be found in the Appendix A.3.

3.4.2 Inference of permanence and trawl function

We will need to employ additional moment equations to estimate the trawl function d as well

as b. The easiest way to do this is through Theorem 14. In particular, we will use the sample

variance of
{
Pkδ − P(k−1)δ

}T/δ
k=1

to estimate

Var (Pδ − P0) = (bδ + 2leb (Aδ\A0))κ2 (L1) = (bδ + 2leb (Aδ\A0))
∑

y∈Z\{0}

y2ν (y) .

Denote the sample variance with the sampling interval δ as σ̂2δ . Then by (3.13) and matching

moments, we should have

σ̂2δ =

(
bδ + 2leb (Aδ\A0)

2− b

) ∑
y∈Z\{0}

y2α̂yβ̂0. (3.14)

Appendix B.3 shows how to non-parametrically estimate the trawl function d using σ̂2δ , but here
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we only demonstrate the inference for a parameterized trawl.

Suppose for now that the trawl function d is parameterized by ϕ, for example, ϕ = λ in the

exponential trawl (3.8), ϕ = (α,H)T in the sup-Γ trawl (3.9) and ϕ = (γ, δ, ν)T in the sup-

GIG trawl (3.10). A simple way to estimate b and ϕ simultaneously is through a non-linear least

square fitting to equation (3.14) divided by δ across different δ. The reason to work on σ̂2δ/δ in-

stead of σ̂2δ is to amplify the effect of empirical market microstructure for small δ, so the non-

linear least square estimation of b and ϕ will not be overly dominated by the linear part of the

variogram.

Remark 24. By definition of the sample variance and the realized variance, as T → ∞,

σ̂2δ ≈
1

T/δ

T/δ∑
k=1

(
Pkδ − P(k−1)δ

)2 − (PT − P0

T/δ

)2

,

σ̂2δ
δ

≈ 1

T
RV (T/δ) − δ

(PT − P0)
2

T 2
≈ 1

T
RV (T/δ),

where we throw out the second-order term in the final approximation. Thus, essentially what we

try to fit is the variance signature plot (RV (T/δ) against δ). From now on, we also call the plot

σ̂2δ/δ against δ a variance signature plot.

Example 7. To check the effectiveness of this moment estimator, we conduct a Monte Carlo

simulation study on the price process model parameterized by the exponential trawl (3.8). Through-

out the rest of this paper, all the numerical values are reported under the time unit being a sec-

ond. Then we set λtrue = 0.681 and a non-symmetric Skellam basis with Lévy measure

ν (dy) = ν+δ{1} (dy) + ν−δ{−1} (dy) ,

where ν+true = 0.0138, ν−true = 0.0131 and btrue = 0.396. All the 10, 000 Monte Carlo simulated

paths are drawn with V0 = 7, 486 (ticks) during the time interval 72.03 to 75, 600 (seconds), where
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75, 600 means the closing time of the market, 21:00. All the settings here are taken from the em-

pirical TNC1006 data set on March 22, 2010, which we will study in next Section.

The non-linear least square fitting for (3.14) is conducted for δ’s ranging from 0.1 seconds to

60 seconds with 60 equally spaced grid points on its log-scale. We then repeat the moment-based

estimates for θ = (b, ν+, ν−, λ)
T and derive histograms of these estimates in Figure 3.3. The esti-
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Figure 3.3: 10, 000 Monte Carlo simulation of moment estimations for the price process with exponential trawl
d (s) = b + (1− b) exp (λs) and the Skellam basis ν (dy) = ν+δ{1} (dy) + ν−δ{−1} (dy). The vertical lines in
each of the histograms mean the true value. The Monte Carlo standard deviations are reported on the scale of
the true values.

mates from the proposed methodology (using equations (3.13) and (3.14)) correctly center around

the true values; also notice that this method is particularly accurate for estimating ν+ and ν−.

Remark 25. Except the moment-based estimations, we can also conduct maximum likelihood

estimation for our proposed model, which requires sophisticated techniques to filter out the Lévy
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process L (Bt). We are currently exploring particle methods toward this direction.

3.5 Empirical Analysis for Futures Data

In this Section, we employ these moment-based estimators for empirical analysis. Covering two

days of trading activities on two different assets, four data sets are studied here: (i) the Ten-Year

US Treasury Note futures contract delivered in June 2010 (TNC1006) during March 22, 2010; (ii)

the International Monetary Market (IMM) Euro-Dollar Foreign Exchange (FX) futures contract

delivered in June 2010 (EUC1006) during March 22, 2010; (iii) TNC1006 during May 7, 2010;

(iv) EUC1006 during May 7, 2010. These data sets come from the same database that is used

by Barndorff-Nielsen et al. (2012). The first trading day is randomly chosen, while the second

trading day is not only the release of US non-farm payroll numbers but was also experiencing

the European sovereign debt crisis. These data sets are derived from data feeds at the Chicago

Mercantile Exchange (CME). They have been preprocessed using the procedures described in

Appendix B.2. From now on, we will no longer mention the delivery date of each data set and

the year 2010.

3.5.1 Data features

All of these four data sets use all the trades from 00:00 to 21:00, shown in Figure 3.4. With such

large time scales, each of the trace plots look like a continuous time diffusion process. However,

if we focus these data sets to much smaller time scales (within one hour for TNC and within two

minutes for EUC), shown in Figure 3.5, the discreteness becomes important. In particular, we

can see several multiple-tick jumps in the two EUC data sets shown in Figure 3.5.

Table 3.1 summarizes some basic features of these four data sets. Both contracts have more

activities during May 7 than during March 22 and the standard deviations of the jump size for
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Figure 3.4: The complete trace plots for the four data sets during 00:00 to 21:00. The x-axis is the calendar
time (HH:MM), while the y-axis is the price ($).

all the four data sets are close to 1 even though the range of all possible jump sizes might differ a

lot.

We also plot the empirical instantaneous jumping distribution (on the log-scale) for the four

data sets in Figure 3.6. Those estimated probabilities will be used as α̂y for the moment esti-

mate defined in the previous Section. Generally, the jumps of EUC have more variability than

the TNC. Furthermore, we can see that even for the same contract, say TNC, the jumping char-

acteristic is completely different from a random chosen day (March 22) to a day with a major

economic event (May 7). In a normal day like March 22, the TNC trading has depths so large

that it always jumps by one tick, but the situation changes enormously for a highly active day

like May 7, by this time the TNC trading behaves just like other multiple-tick markets.
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Figure 3.5: The trace plots for two TNC data sets during 09:00 to 10:00 and for two EUC data sets during
12:46 to 12:48. The x-axis is the calendar time (HH:MM:SS), while the y-axis is the price ($).

Remark 26. One more implication from Figure 3.6 is that κ1 (L1) is, of course, a small number.

To see this, we note that

κ̂1 (L1) =
∑

y∈Z\{0}

yν̂ (y) =

∑
y∈Z\{0} yα̂y − (1− b)

∑
y∈Z\{0} yα̂−y

(2− b) b
β̂0 =

∑
y∈Z\{0} yα̂y

b
β̂0.

Hence, the more symmetric the Figure 3.6, the smaller the estimate of κ1 (L1).

Finally, we show the correlograms of the four data sets in Figure 3.7, using three orders of

magnitude of sampling intervals δ: 0.1 second, 1 second, 10 seconds and 1 minute. For each data

set, we will use a single set of parameters in our price model to fit all of the correlograms with

different δ. In general, these autocorrelations are significantly negative and increasing as k in-

creases, while if δ gets very large the autocorrelations will fall to roughly zero. Of course there is
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Contract, Day Tick Size ($) Num. of Price Changes Size of Price Changes (Tick)
Avg. SD. Min. Max.

TNC, 03/22 1/64 3, 249 0.00646 1.000 −1 1
EUC, 03/22 0.0001 13, 943 0.00337 1.012 −2 3
TNC, 05/07 1/64 12, 849 −0.00047 1.035 −13 15
EUC, 05/07 0.0001 55, 379 0.00190 1.077 −13 15

Table 3.1: Summary statistics of the four futures data sets.

strong evidence that the empirical data cannot be well-described by a pure Lévy process, which

always gives zero autocorrelations for returns. Our model is capable of describing these autocor-

relation features (Theorem 16 and Corollary 17). The next Subsection conducts moment-based

estimations for these empirical data sets.

3.5.2 Parameter estimation

We use the methodology described before on the four data sets with the three different trawls

(3.8), (3.9) and (3.10). The estimation‡ results are shown in Table 3.2 on page 84, where

ν+ =
∞∑
y=1

ν (y) and ν− =
∞∑
y=1

ν (−y)

are the positive and negative jump intensities respectively. We observe in the Table that the esti-

mation of ν+ and ν− are relatively robust across different choices of trawls. The estimate of H in

Table 3.2 clearly suggests the insufficiency of using a sup-Γ trawl for the empirical data. Further-

more, even though we fit a more general sup-GIG trawl with three parameters, the four empirical

data sets can almost be described by the sup-Γ−1 trawl with only two parameters (the case of

γ → 0 for sup-GIG trawl mentioned in Section 3.3.6). This phenomenon might be attributed to

the fact that inverse gamma distributions decay exponentially near the origin but polynomially

near infinity, allowing it to capture these very different time scales.
‡To especially emphasize the fitting of market microstructure effects, the sample variance is calculated

on an equally distant grid on the log-scale of δ whose range is shown in Figure 3.9.
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Figure 3.6: The log-histograms for the empirical instantaneous jumping distributions of the four data sets.
The x-axis for each plot is the size of the jump, while the y-axis denotes the estimated probability value in a
log-scale.

Remark 27. In the same Table, we also provide the standard error (SE) estimates for these

moment-based estimations using the model-based bootstrap, i.e., a vanilla Monte Carlo simulation

with plugged-in parameters.

Using these estimated parameters, we first show the variance signature plots of σ̂2δ/δ against

δ along with the corresponding theoretical curves (3.14) for each trawl in Figure 3.8 and 3.9,

where the second of these graphs uses a log-scale for δ. In each of the plots, we put not only

lim
δ→0

σ̂2δ/δ =
(
∂δσ̂

2
δ

)
(0) =

∑
y∈Z\{0} y

2α̂yβ̂0 at the corresponding location of δ = 0 but also a

reference horizontal line from a pure Lévy process model (b = 1), which is calculated from the

slope of a linear fitting line in the variogram of σ̂2δ against δ.
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Figure 3.7: The correlograms with different sampling intervals δ = 0.1, 1, 10, 60 (seconds) for the four data
sets. The x-axis for each plot is the lag k, while the y-axis denotes the value of empirical autocorrelation. The
dashed lines are located at ±2/

√
T/δ.

These fittings to the variance signature plots show good results—here we particularly notice

that using a sup-GIG trawl gives a very good fit; while the other two simpler trawls fail to fit the

region with a smaller δ. This point becomes apparent when we check Figure 3.9.

To further examine our model fitting, we also show the log-histograms for the return distribu-

tion with different δ along with the theoretical curves (by applying the inverse Fourier transform

on Theorem 14) in Figure 3.10. For a larger δ the sup-GIG trawl do a better job than the other

two trawls (not shown in Figure 3.10) while for a smaller δ the difference among the three trawls

is limited. As an overall comment, our model seems to underestimate the tail part of each of the

empirical jumping distributions.
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Trawl Para TNC, 03/22 EUC, 03/22 TNC, 05/07 EUC, 05/07
Est. SE Est. SE Est. SE Est. SE

Exp

b 0.396 0.014 0.654 0.008 0.574 0.015 0.694 0.007
ν+ 0.014 0.000 0.069 0.000 0.059 0.001 0.282 0.001
ν− 0.013 0.000 0.068 0.000 0.060 0.001 0.279 0.001
λ 0.681 0.030 2.470 0.083 3.888 0.218 4.033 0.133

sup-Γ

b 0.283 0.021 0.604 0.012 0.525 0.016 0.649 0.010
ν+ 0.013 0.000 0.067 0.001 0.057 0.001 0.272 0.002
ν− 0.012 0.000 0.066 0.001 0.058 0.001 0.270 0.002
α 1.146 0.191 0.311 0.037 0.187 0.038 0.192 0.023
H 1.000 0.125 1.000 0.104 1.000 0.139 1.000 0.102

sup-GIG

b 0.186 0.028 0.528 0.034 0.440 0.029 0.648 0.011
ν+ 0.013 0.000 0.063 0.001 0.054 0.001 0.272 0.002
ν− 0.011 0.000 0.062 0.001 0.055 0.001 0.269 0.002
γ 0.000 0.066 0.000 0.030 0.003 0.028 0.000 0.064
δ 0.453 0.049 0.604 0.085 0.583 0.099 1.525 0.209
ν -0.604 0.078 -0.453 0.067 −0.332 0.077 −0.741 0.170

Table 3.2: Moment-based estimations under different trawls for the four data sets. Also shown are the stan-
dard error (SE) estimates for the moment estimator to each parameter using the model-based bootstrap, where
the number of bootstrapped paths we draw is 10,000.

We now demonstrate the correlograms for the returns with different δ along with the theo-

retical curves in Figure 3.11. For a larger δ, the empirical returns look almost uncorrelated (in-

significant from being 0) except for TNC on March 22, but the sup-GIG trawl still captures this

anomaly at the first lag. As δ becomes smaller, those negative correlations become more signifi-

cant; even though the exponential trawl and the sup-Γ trawl (not shown in Figure 3.11) can de-

pict the shape of the autocorrelation, only sup-GIG trawl can fit the first few lags.

As a summary, the sup-GIG trawl (or essentially the sup-Γ−1 trawl) performs better than the

other two trawls in every aspects. These empirical analyses demonstrate the descriptive power of

our proposed model for the futures data.

Remark 28. We now criticize the insufficient part of our proposed model. A plot (not shown) of

the counting process of price moves for our four data sets will clearly show a non-linear increas-

ing pattern that disobeys the linearity described by equation (3.5). This non-linear pattern can be
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Figure 3.8: The variance signature plots for the four data sets along with the fitting curves from different
trawls. The x-axis for each plot is δ (seconds), while the y-axis denotes the value of the sample variance of
returns divided by δ.

attributed to the well-known diurnal time-varying levels of trading activity. For the same contract,

its two counting process plots look alike (after rescaling) across different trading days.

We are currently exploring methods that can adjust the model to deal with these effects, hoping

to report on them shortly. It will involve the use of two independent stochastic time changes for

the positive events and the negative events. A special case on the Skellam Lévy process using this

ideas has been addressed in Kerss et al. (2014).
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Figure 3.9: The variance signature plots for the four data sets along with the fitting curves from different
trawls in the scale of log δ.

3.6 Conclusion

We propose a novel and simple model that can adequately capture some of the important fea-

tures of high frequency financial data. It is able to deal with the dependence in price changes

measured over three different orders of magnitude of time intervals. The model is directly formu-

lated in terms of the price impact curve (or trawl function). It has a càdlàg price process that is

a piecewise constant semimartingale with finite activity, finite variation and no Brownian motion

component.

However, we need to emphasize that, the proposed model in this paper is just an initial step.
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(a) δ = 60 seconds.
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(b) δ = 10 seconds.
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Figure 3.10: The log-histograms for the returns of the four data sets over several sampling intervals along with
the theoretical curves from sup-GIG trawl.

Even though we emphasize the discreteness and the fleetingness in the movements of the price

process, we have been assuming a simple structure so far with no time-varying features. We will

shortly report on how to generalize this model to the more realistic case using a stochastic time-

change.

Our model provides a good description to the empirical data, while we majorly focus on the

trade prices, which is not always immediately tradable. For market practitioners who sit either

on the buy side or the sell side, they might consider to apply the proposed model on either the

ask price or bid price, so our model is much more widely applicable than the cases we report
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(a) δ = 60 seconds.
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(b) δ = 10 seconds.
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(c) δ = 1 second.
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Figure 3.11: The correlograms for the returns of the four data sets over several sampling intervals along with
the theoretical curves from sup-GIG trawl. The dashed lines are located at ±2/

√
T/δ.

here.
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A
Proofs and Derivations

A.1 Chapter 1

Proof of Theorem 3. To start with the proof, we first provide a Lemma which plays an essential

rule in the proofs of both the Glivenko-Cantelli Theorem and our Theorem 3.

Lemma 20. Suppose Fn and F are (nonrandom) distribution functions on R such that

Fn (x) → F (x) for all x ∈ R.

If F is continuous, then we have

Fn (x−) → F (x) for all x ∈ R, (A.1)
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and, moreover,

sup
x∈R

|Fn (x)− F (x)| → 0. (A.2)

Proof. We first show equation (A.1). Suppose x is a continuity point of F . Since Fn (x−) ≤

Fn (x),

lim sup
n→∞

Fn (x−) ≤ lim sup
n→∞

Fn (x) = F (x) .

For any y < x, we have

Fn (y) ≤ Fn (x−) ,

which implies that

F (y) = lim inf
n→∞

Fn (y) ≤ lim inf
n→∞

Fn (x−) .

Since

lim
y→x−

F (y) = F (x) ,

the desired result follows.

We now show equation (A.2). Let ϵ > 0 be given and consider a partition of the real line into

finitely many pieces of the form −∞ = t0 < t1 < · · · < tk = ∞ such that, for 0 ≤ j ≤ k − 1,

F (tj+1)− F (tj) ≤
ϵ

2
.

For any x ∈ R, there exists j such that tj ≤ x < tj+1. For such j,

Fn (tj) ≤ Fn (x) ≤ Fn (tj+1−) , F (tj) ≤ F (x) ≤ F (tj+1) ,

which implies that

Fn (tj)− F (tj+1) ≤ Fn (x)− F (x) ≤ Fn (tj+1−)− F (tj) .
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Furthermore,

Fn (tj)− F (tj) + F (tj)− F (tj+1) ≤ Fn (x)− F (x) ,

Fn (tj+1−)− F (tj+1) + F (tj+1)− F (tj) ≥ Fn (x)− F (x) .

By the construction of the partition, we have that

Fn (tj)− F (tj)−
ϵ

2
≤ Fn (x)− F (x) ,

Fn (tj+1−)− F (tj+1) +
ϵ

2
≥ Fn (x)− F (x) .

For each j, let Nj = Nj (ϵ) be such that, for n > Nj ,

Fn (tj)− F (tj) > − ϵ
2
.

Also, by equation (A.1), let Mj =Mj (ϵ) be such that, for n > Mj ,

Fn (tj−)− F (tj) <
ϵ

2
.

Let N = max
1≤j≤k

Nj ∨Mj . For n > N and any x ∈ R, we then have that

|Fn (x)− F (x)| < ϵ.

The desired result follows.

Let W be the canonical graphon of a degree-identifiable ExGM. The marginal integral g (u) ,∫ 1
0 W (u, v) dv must be strictly increasing, of which the range is not necessarily the whole [0, 1] in-

terval. However, we will still use the notation g−1 to denote the corresponding CDF of the degree

proportion random variable g (U). As mentioned in Remark 2, g−1 will be a continuous function

on [0, 1].
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First we show that
∣∣∣Ûi − Ui

∣∣∣→ 0 in probability. Recall that

Ûi = F̂ (Di) and Ui = g−1 (g (Ui)) ,

so ∣∣∣Ûi − Ui

∣∣∣ ≤ ∣∣∣F̂ (Di)− g−1 (Di)
∣∣∣+ ∣∣g−1 (Di)− g−1 (g (Ui))

∣∣ .
In the proof of Theorem 5 in Bickel et al. (2011), they prove that actually

E (Di − g (Ui))
2 → 0,

so, in particular, Di → g (Ui) in probability and hence Continuous Mapping Theorem suggests

g−1 (Di) → g−1 (g (Ui)) in probability.

Furthermore, Theorem 5 in Bickel et al. (2011) also suggest that M2

(
F̂ , g−1

)
→ 0 in probability.

Here M2 means the Mallows 2-distance between two distributions F1 and F2, which is defined by

M2 (F1, F2) , min
F

{√
E (X − Y )2 |(X,Y ) v F,X v F1, Y v F2

}
.

Especially, M2 (Fn, F ) → 0 if and only only if Fn ⇒ F in distribution, i.e.,

Fn (x) → F (x) for all x being the continuous point of F ,

and ∫
x2dFn (x) →

∫
x2dF (x) .

Hence, for every subsequence N1, ..., Nm, there exists a further subsequence Nm1 , ..., Nmk
such

that M2

(
F̂Nmk

, g−1
)
→ 0 a.s. In particular, this means, for a.s. ω,

F̂Nmk
(x) → g−1 (x) ∀x ∈ [0, 1] .
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Because g−1 is continuous, Lemma 20 easily extend this result to

sup
x∈[0,1]

∣∣∣F̂Nmk
(x)− g−1 (x)

∣∣∣→ 0 for a.s. ω.

Thus we actually have

sup
x∈[0,1]

∣∣∣F̂ (x)− g−1 (x)
∣∣∣→ 0 in probability, (A.3)

so this then implies that ∣∣∣F̂ (Di)− g−1 (Di)
∣∣∣→ 0 in probability.

The desired result follows.

Next we show that
∣∣∣Ûi − Ũi

∣∣∣→ 0 in probability. We simply observe that

∣∣∣Ũi − Ûi

∣∣∣ ≤ ∣∣∣F̂ (Di)− F̂ (Di−)
∣∣∣ ≤ ∣∣∣F̂ (Di)− g−1 (Di)

∣∣∣+ ∣∣∣g−1 (Di)− F̂ (Di−)
∣∣∣

≤ sup
x∈[0,1]

∣∣∣F̂ (x)− g−1 (x)
∣∣∣+ lim

x→Di−

∣∣∣g−1 (x)− F̂ (x)
∣∣∣ ≤ 2 sup

x∈[0,1]

∣∣∣F̂ (x)− g−1 (x)
∣∣∣ ,

so equation (A.3) guarantees that
∣∣∣Ûi − Ũi

∣∣∣ → 0 in probability. This then finishes the proof of

Theorem 3.

Proof of Theorem 1. The USVT-A estimate for the canonical graphon is explicitly written as

Ŵ (u, v) ,
N∑

i,j=1

P̂ij1Sij (u, v) ,

where Sij ,
(
Ũi − 1/N, Ũi

]
×
(
Ũj − 1/N, Ũj

]
is the (i, j)-th square with spacing 1/N and P̂ij is

the USVT probability matrix estimation defined in Subsection 1.3.1.

To begin with, we define

∥∥∥Ŵ −W
∥∥∥2 , E

(∫ 1

0

∫ 1

0

(
Ŵ (u, v)−W (u, v)

)2
dudv

)
,
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which can be decomposed into four pieces by inserting the following three objects

W1 (u, v) ,
N∑

i,j=1

W
(
Ũi, Ũj

)
1Sij (u, v) ,

W2 (u, v) ,
N∑

i,j=1

W (Ui, Uj) 1Sij (u, v) ,

W3 (u, v) ,
N∑

i,j=1

Pij1Sij (u, v)

then ∥∥∥Ŵ −W
∥∥∥ ≤ ∥W −W1∥+ ∥W1 −W2∥+ ∥W2 −W3∥+

∥∥∥W3 − Ŵ
∥∥∥ .

Now we will look at these terms individually.

For the first term, since W1 is just a stepwise W evaluated at the upright corner for each small

square Sij , ∥W −W1∥ → 0 as W is continuous on [0, 1]2 and hence uniformly continuous.∗

For the third term, it’s easy to see that, by the definition of Pij ,

∥W2 −W3∥2 = E

 1

N2

∑
1≤i,j≤N

(W (Ui, Uj)− Pij)
2


= E

(
1

N2

N∑
i=1

W (Ui, Ui)
2

)
=

1

N
E
(
W (Ui, Ui)

2
)
→ 0.

For the final term, we refer to Theorem 2, where by definition the left hand side of equation (1.2)

is the same as
∥∥∥W3 − Ŵ

∥∥∥2.
Now we pay attention to ∥W1 −W2∥, which depends only on the empirical degree sorting. De-

note the event
∣∣∣Ui − Ũi

∣∣∣ > δϵ by Ei, where δϵ is chosen by the uniform continuity of W such that

|u1 − u2| ≤ δϵ and |v1 − v2| ≤ δϵ ⇒ |W (u1, v1)−W (u2, v2)| < ϵ.

∗Actually, what we need here is just a uniform continuity modulus δ such that |W (u, v)−W (u′, v′)| <
ϵ whenever |u− u′| < δ and |v − v′| < δ in [0, 1]

2. Thus, the continuity condition of W can be actually
weaken by piecewise continuity on [0, 1]

2 with only finitely many number of pieces.
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Then we will have

E
(∣∣∣W (

Ũi, Ũj

)
−W (Ui, Uj)

∣∣∣2)
= E

(∣∣∣W (
Ũi, Ũj

)
−W (Ui, Uj)

∣∣∣2 ;Ei ∪ Ej

)
+ E

(∣∣∣W (
Ũi, Ũj

)
−W (Ui, Uj)

∣∣∣2 ;Ec
i ∩ Ec

j

)
≤ 4P (Ei ∪ Ej) + ϵ2 ≤ 4 (P (Ei) + P (Ej)) + ϵ2,

so

∥W1 −W2∥2 =
N∑

i,j=1

1

N2
E
(∣∣∣W (

Ũi, Ũj

)
−W (Ui, Uj)

∣∣∣2) ≤
N∑

i,j=1

1

N2

(
4 (P (Ei) + P (Ej)) + ϵ2

)
=

8

N

N∑
i=1

P
(∣∣∣Ui − Ũi

∣∣∣ > δϵ

)
+ ϵ2 = 8P

(∣∣∣Ui − Ũi

∣∣∣ > δϵ

)
+ ϵ2,

where the last equality clearly follows from the exchangeability and the definition of Ũi. By Theo-

rem 3, we indeed have P
(∣∣∣Ui − Ũi

∣∣∣ > δϵ

)
→ 0, so we have lim sup

N→∞
∥W1 −W2∥ ≤ ϵ2. Letting ϵ→ 0

implies lim sup
N→∞

∥W1 −W2∥ = 0, which then finishes the proof to the Theorem 1.

A.2 Chapter 2

Proof of Lemma 4. We can write θ = µ + Z1 and Y = θ + Z2, where Z1 ∼ Np(0,B) and

Z2 ∼ Np(0,A) are independent. Jointly
(
Y

θ

)
is still multivariate normal with mean vector

(
µ

µ

)
and covariance matrix

 A+B B

B B

. The result follows immediately from the condi-

tional distribution of a multivariate normal distribution.

Proof of Theorem 5. We start from decomposing the difference between the URE and the actual

loss as

URE (B,µ)− lp

(
θ, θ̂

B,µ
)
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= URE (B,0p)− lp

(
θ, θ̂

B,0p
)
− 2

p
tr
(
A (A+B)−1 µ (Y − θ)T

)
(A.4)

=
1

p
tr
(
Y Y T −A− θθT

)
− 2

p
tr
(
B (A+B)−1 (Y Y T − Y θT −A

))
(A.5)

− 2

p
tr
(
A (A+B)−1 µ (Y − θ)T

)
= (I) + (II) + (III) .

To verify the first equality (A.4), note that

URE (B,µ)−URE (B,0p)

=
1

p

∥∥∥A (A+B)−1 (Y − µ)
∥∥∥2 − 1

p

∥∥∥A (A+B)−1 Y
∥∥∥2

= −1

p
tr

(
µT
(
A (A+B)−1

)T
A (A+B)−1 (2Y − µ)

)
,

lp

(
θ, θ̂

B,µ
)
− lp

(
θ, θ̂

B,0p
)

=
1

p

∥∥∥(Ip −A (A+B)−1
)
Y +A (A+B)−1 µ− θ

∥∥∥2 − 1

p

∥∥∥(Ip −A (A+B)−1
)
Y − θ

∥∥∥2
=

1

p
tr

(
µT
(
A (A+B)−1

)T (
2
((
Ip −A (A+B)−1

)
Y − θ

)
+A (A+B)−1 µ

))
.

(A.4) then follows by rearranging the terms. To verify the second equality (A.5), note

URE (B,0p)− lp

(
θ, θ̂

B,0p
)

=
1

p

∥∥∥A (A+B)−1 Y
∥∥∥2 − 1

p

∥∥∥(Ip −A (A+B)−1
)
Y − θ

∥∥∥2 + 1

p
tr
(
A− 2A (A+B)−1A

)
=

1

p
tr

((
Y − 2

(
Ip −A (A+B)−1

)
Y + θ

)T
(Y − θ)

)
+

1

p
tr
(
A− 2A (A+B)−1A

)
=

1

p
tr
(
Y Y T −A− θθT

)
− 2

p
tr
(
B (A+B)−1

(
Y (Y − θ)T −A

))
.

With the decomposition, we want to prove separately the uniform L1 convergence of the three

terms (I), (II), and (III).

Proof for the case of Model I. The uniform L2 convergence of (I) and (II) has been shown in
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Theorem 3.1 of Xie et al. (2012) under our assumptions (A) and (B), so we focus on (III), i.e.,

we want to show that sup
0≤λ≤∞, µ∈L

|(III)| → 0 in L1 as p→ ∞.

Without loss of generality, let us assume A1 ≤ A2 ≤ · · · ≤ Ap. We have

sup
0≤λ≤∞, µ∈L

|(III)| = 2

p
sup

0≤λ≤∞, µ∈L

∣∣∣∣∣
p∑

i=1

Ai

Ai + λ
µi (Yi − θi)

∣∣∣∣∣
≤ 2

p
sup
µ∈L

sup
0≤c1≤···≤cp≤1

∣∣∣∣∣
p∑

i=1

ciµi (Yi − θi)

∣∣∣∣∣ = 2

p
sup
µ∈L

max
1≤j≤p

∣∣∣∣∣∣
p∑

i=j

µi (Yi − θi)

∣∣∣∣∣∣ ,
where the last equality follows from Lemma 2.1 of Li (1986). For a generic p-dimensional vector

v, we denote [v]j:p = (0, . . . 0, vj , vj+1, . . . , vp). Let PX = XT
(
XXT

)−1
X be the projection

matrix onto Lrow (X). Then since L ⊂ Lrow (X), we have

2

p
sup
µ∈L

max
1≤j≤p

∣∣∣∣∣∣
p∑

i=j

µi (Yi − θi)

∣∣∣∣∣∣ = 2

p
max
1≤j≤p

sup
µ∈L

∣∣µT [Y − θ]j:p
∣∣

=
2

p
max
1≤j≤p

sup
µ∈L

∣∣µTPX [Y − θ]j:p
∣∣ ≤ 2

p
max
1≤j≤p

sup
µ∈L

∥µ∥ × ∥PX [Y − θ]j:p∥

=
2

p
max
1≤j≤p

Mpκ ∥Y ∥ × ∥PX [Y − θ]j:p∥ .

Cauchy-Schwarz inequality thus gives

E

(
sup

0≤λ≤∞,µ∈L
|(III)|

)
≤ 2Mpκ−1

√
E
(
∥Y ∥2

)
×

√
E
(
max
1≤j≤p

∥PX [Y − θ]j:p∥2
)
. (A.6)

It is straightforward to see that, by conditions (A) and (C),

√
E
(
∥Y ∥2

)
=

√
E(
∑p

i=1
Y 2
i ) =

√∑p

i=1

(
θ2i +Ai

)
= O

(
p1/2

)
.

For the second term on the right hand side of (A.6), let PX = ΓDΓT denote the spectral decom-

position. Clearly,

D = diag

1, ..., 1︸ ︷︷ ︸
k copies

, 0, ..., 0︸ ︷︷ ︸
p−k copies

 .
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It follows that

E
(
max
1≤j≤p

∥PX [Y − θ]j:p∥2
)

= E
(
max
1≤j≤p

[Y − θ]Tj:pPX [Y − θ]j:p
)

= E
(
max
1≤j≤p

tr
(
DΓT [Y − θ]j:p

(
ΓT [Y − θ]j:p

)T))

= E

(
max
1≤j≤p

k∑
l=1

[
ΓT [Y − θ]j:p

]2
l

)
= E

max
1≤j≤p

k∑
l=1

 p∑
m=j

[
ΓT
]
lm

(Ym − θm)

2
≤ E

 k∑
l=1

max
1≤j≤p

 p∑
m=j

[
ΓT
]
lm

(Ym − θm)

2 =

k∑
l=1

E

max
1≤j≤p

 p∑
m=j

[
ΓT
]
lm

(Ym − θm)

2 .

For each l, M (l)
j =

∑p
m=p−j+1

[
ΓT
]
lm

(Ym − θm) forms a martingale, so by Doob’s Lp maximum

inequality,

E
(
max
1≤j≤p

(
M

(l)
j

)2)
≤ 4E

(
M (l)

p

)2
= 4E

(
p∑

m=1

[
ΓT
]
lm

(Ym − θm)

)2

= 4

p∑
m=1

[
ΓT
]2
lm
Am = 4

[
ΓTAΓ

]
ll
.

Therefore,

E
(
max
1≤j≤p

∥PX [Y − θ]j:p∥2
)

≤
k∑

l=1

4
[
ΓTAΓ

]
ll
= 4

p∑
l=1

[D]ll
[
ΓTAΓ

]
ll

= 4tr
(
DΓTAΓ

)
= 4tr (PXA)

= 4tr
(
XT

(
XXT

)−1
XA

)
= 4tr

((
XXT

)−1
XAXT

)
= O (1) ,

where the last equality uses conditions (D) and (E). We finally obtain

E

(
sup

0≤λ≤∞, µ∈L
|(III)|

)
≤ o

(
p−1/2

)
×O

(
p1/2

)
×O (1) = o (1) .

Proof for the case of Model II. Under Model II, we know that

p∑
i=1

Aiθ
2
i = θ

TAθ = βT (XAXT )β = O (p)
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by condition (D). In other words, condition (D) implies condition (B). Therefore, we know that

the term (I) → 0 in L2 as shown in Theorem 3.1 of Xie et al. (2012), and we only need to show

the uniform L1 convergence of the other two terms, (II) and (III).

Recall that B ∈ B =
{
λXTWX : λ > 0

}
has only rank k under Model II. We can reexpress

(II) and (III) in terms of low rank matrices. Let V =
(
XA−1XT

)−1. Woodbury formula gives

(A+B)−1 =
(
A+ λXTWX

)−1
= A−1 −A−1λXT

(
W−1 + λV −1

)−1
XA−1

= A−1 −A−1λXTW (λW + V )−1 V XA−1,

which tells us

B (A+B)−1 = Ip −A (A+B)−1 = λXTW (λW + V )−1 V XA−1.

Let UΛUT be the spectral decomposition of W−1/2VW−1/2, i.e., W−1/2VW−1/2 = UΛUT ,

where Λ = diag (d1, ..., dk) with d1 ≤ · · · ≤ dk. Then

(λW + V )−1 =W−1/2
(
λIk +W

−1/2VW−1/2
)−1

W−1/2 =W−1/2U (λIk +Λ)−1UTW−1/2,

from which we obtain

B (A+B)−1 = λXTW (λW + V )−1 V XA−1 = λXTW 1/2U (λIk +Λ)−1ΛUTW 1/2XA−1.

If we denote Z = UTW 1/2X, i.e., Z is the transformed covariate matrix, then B (A+B)−1 =

λZT (λIk +Λ)−1ΛZA−1. It follows that

(II) = −2

p
tr
(
B (A+B)−1 (Y Y T − Y θT −A

))
= −2

p
tr
(
λZT (λIk +Λ)−1ΛZA−1

(
Y Y T − Y θT −A

))
= −2

p
tr
(
λ (λIk +Λ)−1ΛZA−1

(
Y Y T − Y θT −A

)
ZT
)
,
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(III) = −2

p
tr
(
A (A+B)−1 µ (Y − θ)T

)
= −2

p
tr
((
Ip − λZT (λIk +Λ)−1ΛZA−1

)
µ (Y − θ)T

)
= −2

p
tr
(
µ (Y − θ)T

)
+

2

p
tr
(
λ (λIk +Λ)−1ΛZA−1µ (Y − θ)T ZT

)
= (III)1 + (III)2 .

We will next show that (II), (III)1, and (III)2 all uniformly converge to zero in L1, which will

then complete our proof.

Let Ξ = ZA−1
(
Y Y T − Y θT −A

)
ZT . Then

sup
0≤λ≤∞

|(II)| = 2

p
sup

0≤λ≤∞

∣∣∣∣∣
k∑

i=1

λdi
λ+ di

[Ξ]ii

∣∣∣∣∣
≤ 2

p
sup

0≤c1≤···≤ck≤dk

∣∣∣∣∣
k∑

i=1

ci [Ξ]ii

∣∣∣∣∣ = 2

p
max
1≤j≤k

∣∣∣∣∣∣
k∑

i=j

dk [Ξ]ii

∣∣∣∣∣∣ ,
where the last equality follows as in Lemma 2.1 of Li (1986). As there are finite number of terms

in the summation and the maximization, it suffices to show that

dk [Ξ]ii /p→ 0 in L2 for all 1 ≤ i ≤ k.

To establish this, we note that [Ξ]ii =
∑p

n=1

∑p
m=1

(
A−1

n Yn (Ym − θm)− δnm
)
[Z]in [Z]im,

E
(
[Ξ]2ii

)
=

∑
n,m,n′,m′

E
((
A−1

n Yn (Ym − θm)− δnm
) (
A−1

n′ Yn′ (Ym′ − θm′)− δn′m′
))

× [Z]in [Z]im [Z]in′ [Z]im′ .

Depending on n,m, n′,m′ taking the same or distinct values, we can break the summation into

15 disjoint cases:

∑
all distinct

+
∑

three distinct, n=m

+
∑

three distinct, n=n′

+
∑

three distinct, n=m′
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+
∑

three distinct, m=n′

+
∑

three distinct, m=m′

+
∑

three distinct, n′=m′

+
∑

two distinct, n=m, n′=m′

+
∑

two distinct, n=n′, m=m′

+
∑

two distinct, n=m′, n′=m

+
∑

two distinct, n=m=n′

+
∑

two distinct, n=m=m′

+
∑

two distinct, n=n′=m′

+
∑

two distinct, m=n′=m′

+
∑

n=m=n′=m′

.

Many terms are zero. Straightforward evaluation of each summation gives

E
(
[Ξ]2ii

)
=

p∑
n=1

E
((
A−1

n Yn (Yn − θn)− 1
)2)

[Z]4in

+

p∑
n=1

∑
m ̸=n

E
((
A−1

n Yn (Ym − θm)
)2)

[Z]2in [Z]2im

+

p∑
n=1

∑
m ̸=n

E
((
A−1

n Yn (Ym − θm)
) (
A−1

m Ym (Yn − θn)
))

[Z]2in [Z]2im

+ 2

p∑
n=1

∑
m ̸=n

E
((
A−1

n Yn (Yn − θn)− 1
) (
A−1

m Ym (Yn − θn)
))

[Z]3in [Z]im

+

p∑
n=1

∑
m ̸=n′,n′ ̸=n,m ̸=n

E
((
A−1

m Ym (Yn − θn)
) (
A−1

n′ Yn′ (Yn − θn)
))

[Z]2in [Z]im [Z]in′

=

p∑
n=1

2An + θ2n
An

[Z]4in +

p∑
n=1

∑
m ̸=n

AnAm +Anθ
2
m

A2
m

[Z]2in [Z]2im +

p∑
n=1

∑
m ̸=n

[Z]2in [Z]2im

+ 2

p∑
n=1

∑
m ̸=n

θnθm
Am

[Z]3in [Z]im +

p∑
n=1

∑
m ̸=n′,n′ ̸=n,m ̸=n

Anθmθn′

AmAn′
[Z]2in [Z]im [Z]in′

=

p∑
n,m=1

An

Am
[Z]2in [Z]2im +

p∑
n,m=1

[Z]2in [Z]2im +

p∑
n,m,n′=1

Anθmθn′

AmAn′
[Z]2in [Z]im [Z]in′ .

Using matrix notation, we can reexpress the above equation as

E
(
[Ξ]2ii

)
=
[
ZAZT

]
ii

[
ZA−1ZT

]
ii
+
[
ZZT

]2
ii
+
[
ZAZT

]
ii

[
ZA−1θ

]2
i

≤ tr
(
ZAZT

)
tr
(
ZA−1ZT

)
+ tr

(
ZZT

)2
+ tr

(
ZAZT

)
tr
(
θTA−1ZTZA−1θ

)
= tr

(
WXAXT

)
tr
(
WXA−1XT

)
+ tr

(
WXXT

)2
+ tr

(
WXAXT

)
tr
(
βT
(
XA−1XT

)
W
(
XA−1XT

)
β
)
,
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which is O (p)O (p) + O (p)2 + O (p)O
(
p2
)

= O
(
p3
)

by conditions (D)-(F). Note also that

condition (F) implies

dk ≤
k∑

i=1

di = tr
(
W−1/2VW−1/2

)
= tr

(
W−1V

)
= tr

(
W−1(XA−1XT )−1

)
= O

(
p−1
)
.

Therefore, we have

E
(
d2k [Ξ]2ii /p

2
)
= O

(
p−2
)
O
(
p3
)
/p2 = O

(
p−1
)
→ 0,

which proves

sup
0≤λ≤∞

|(II)| → 0 in L2, as p→ ∞.

To prove the uniform convergence of (III)1 to zero in L1, we note that

sup
µ∈L

|(III)1| =
2

p
sup
µ∈L

∣∣µT (Y − θ)
∣∣ = 2

p
sup
µ∈L

∣∣µTPX (Y − θ)
∣∣

≤ 2

p
sup
µ∈L

∥µ∥ × ∥PX (Y − θ)∥ =
2

p
Mpκ ∥Y ∥ × ∥PX (Y − θ)∥ ,

so by Cauchy-Schwarz inequality

E

(
sup
µ∈L

|(III)1|

)
≤ 2Mpκ−1

√
E
(
∥Y ∥2

)√
E
(
∥PX (Y − θ)∥2

)
. (A.7)

Under Model II, θ = XTβ, so it follows that
∑p

i=1 θ
2
i = ∥θ∥2 = tr

(
ββTXXT

)
= O (p) by

condition (E). Hence
√
E
(
∥Y ∥2

)
=
√∑p

i=1

(
θ2i +Ai

)
= O

(
p1/2

)
. For the second term on the

right hand side of (A.7), note that

E
(
∥PX (Y − θ)∥2

)
= E

(
tr
(
PX (Y − θ) (Y − θ)T

))
= tr (PXA) = tr

((
XXT

)−1
XAXT

)
= O (1)
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by conditions (D) and (E). Thus, in aggregate, we have

E

(
sup
µ∈L

|(III)1|

)
≤ 2Mpκ−1O

(
p1/2

)
O (1) = o (1) .

We finally consider the (III)2 term. We have

sup
0≤λ≤∞, µ∈L

|(III)2| =
2

p
sup
µ∈L

sup
0≤λ≤∞

∣∣∣∣∣
k∑

i=1

λdi
λ+ di

[
ZA−1µ (Y − θ)T ZT

]
ii

∣∣∣∣∣
≤ 2

p
sup
µ∈L

max
1≤j≤k

∣∣∣∣∣∣
k∑

i=j

dk

[
ZA−1µ (Y − θ)T ZT

]
ii

∣∣∣∣∣∣
≤ 2dk

p
sup
µ∈L

k∑
i=1

∣∣∣[ZA−1µ (Y − θ)T ZT
]
ii

∣∣∣
=

2dk
p

sup
µ∈L

k∑
i=1

∣∣[ZA−1µ
]
i
[Z (Y − θ)]i

∣∣
≤ 2dk

p
sup
µ∈L

√√√√ k∑
i=1

[
ZA−1µ

]2
i
×

√√√√ k∑
i=1

[Z (Y − θ)]2i .

Thus, by Cauchy-Schwarz inequality

E

(
sup

0≤λ≤∞, µ∈L
|(III)2|

)
≤ 2dk

p

√√√√E

(
sup
µ∈L

k∑
i=1

[
ZA−1µ

]2
i

)
×

√√√√E

(
k∑

i=1

[Z (Y − θ)]2i

)
.

Note that

sup
µ∈L

k∑
i=1

[
ZA−1µ

]2
i
= sup
µ∈L

k∑
i=1

(
p∑

m=1

[
ZA−1

]
im

[µ]m

)2

≤ sup
µ∈L

k∑
i=1

(
p∑

m=1

[
ZA−1

]2
im

×
p∑

m=1

[µ]2m

)
= sup
µ∈L

k∑
i=1

([
ZA−2ZT

]
ii
∥µ∥2

)
= tr

(
ZA−2ZT

)
sup
µ∈L

∥µ∥2 = tr
(
WXA−2XT

)
(Mpκ ∥Y ∥)2 = o

(
p2
)
∥Y ∥2 ,

where the last equality uses condition (G). Thus,

E

(
sup
µ∈L

k∑
i=1

[
ZA−1µ

]2
i

)
= o

(
p3
)
.
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Also note that

E

(
k∑

i=1

[Z (Y − θ)]2i

)
= E

(
tr
(
ZTZ (Y − θ) (Y − θ)T

))
= tr

(
ZTZA

)
= tr

(
WXAXT

)
= O (p)

by condition (D). Recall that dk = O
(
p−1
)

by condition (F). It follows that

E

(
sup

0≤λ≤∞, µ∈L
|(III)2|

)
≤ 2

p
O
(
p−1
)
o
(
p3/2

)
O
(
p1/2

)
= o (1) .

This completes our proof with Theorem 5 under both Model I and II.

Proof of Lemma 6. The fact that µ̂OLS ∈ L is trivial as

µ̂OLS =XT
(
XXT

)−1
XY = PXY ,

while the projection matrix PX has induced matrix 2-norm ∥PX∥2 = 1. Thus,
∥∥µ̂OLS

∥∥ ≤

∥PX∥2 ∥Y ∥ = ∥Y ∥. For µ̂WLS, note that

µ̂WLS =XT
(
XA−1XT

)−1
XA−1Y

= A1/2
(
XA−1/2

)T (
XA−1/2

(
XA−1/2

)T)−1 (
XA−1/2

)
A−1/2Y

= A1/2
(
PXA−1/2

)
A−1/2Y ,

where PXA−1/2 is the ordinary projection matrix onto the row space of XA−1/2 and has induced

matrix 2-norm 1. It follows

∥∥µ̂WLS
∥∥ ≤

∥∥∥A1/2
∥∥∥
2

∥∥PA−1/2X

∥∥
2

∥∥∥A−1/2
∥∥∥
2
∥Y ∥ = max

1≤i≤p
A

1/2
i × max

1≤i≤p
A

−1/2
i × ∥Y ∥ .

Condition (A) gives

max
1≤i≤p

A
1/2
i = (max

1≤i≤p
A2

i )
1/4 ≤ (

p∑
i=1

A2
i )

1/4 = O
(
p1/4

)
.
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Similarly, condition (A′) gives

max
1≤i≤p

A
−1/2
i = (max

1≤i≤p
A−2−δ

i )1/(4+2δ) ≤ (

p∑
i=1

A−2−δ
i )1/(4+2δ) = O

(
p1/(4+2δ)

)
.

We then have proved that

∥∥µ̂WLS
∥∥ ≤ O

(
p1/4

)
O
(
p1/(4+2δ)

)
∥Y ∥ = O (pκ) ∥Y ∥ .

Proof of Theorem 7. To prove the first assertion, note that

URE
(
B̂

URE
, µ̂URE

)
≤ URE

(
B̃

OL
, µ̃OL

)

by the definition of B̂URE and µ̂URE, so Theorem 5 implies that

lp

(
θ, θ̂

URE
)
− lp

(
θ, θ̃

OL
)

≤ lp

(
θ, θ̂

URE
)
−URE

(
B̂

URE
, µ̂URE

)
+URE

(
B̃

OL
, µ̃OL

)
− lp

(
θ, θ̃

OL
)

≤ 2 sup
B∈B, µ∈L

∣∣∣URE (B,µ)− lp

(
θ, θ̂

B,µ
)∣∣∣ →

p→∞
0 in L1 and in probability, (A.8)

where the second inequality uses the condition that µ̂URE ∈ L. Thus, for any ϵ > 0,

P
(
lp

(
θ, θ̂

URE
)
≥ lp

(
θ, θ̃

OL
)
+ ϵ
)
≤ P

(
2 sup
B∈B, µ∈L

∣∣∣URE (B,µ)− lp

(
θ, θ̂

B,µ
)∣∣∣ ≥ ϵ

)
→ 0.

To prove the second assertion, note that

lp

(
θ, θ̃

OL
)
≤ lp

(
θ, θ̂

URE
)

by the definition of θ̃OL and the condition µ̂URE ∈ L. Thus, taking expectations on equation

(A.8) easily gives the second assertion.

Proof of Corollary 8. Simply note that

lp

(
θ, θ̃

OL
)
≤ lp

(
θ, θ̂

B̂p,µ̂p

)
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by the definition of θ̃OL. Thus,

lp

(
θ, θ̂

URE
)
− lp

(
θ, θ̂

B̂p,µ̂p

)
≤ lp

(
θ, θ̂

URE
)
− lp

(
θ, θ̃

OL
)
.

Then Theorem 7 clearly implies the desired result.

Proof of Theorem 9. We observe that

UREM (B)− lp

(
θ, θ̂

B,µ̂M
)

= URE
(
B, µ̂M

)
− lp

(
θ, θ̂

B,µ̂M
)
+

2

p
tr
(
A (A+B)−1PM ,XA

)
.

Since

sup
B∈B

∣∣∣∣URE (B, µ̂M)− lp

(
θ, θ̂

B,µ̂M
)∣∣∣∣ ≤ sup

B∈B, µ∈L

∣∣∣URE (B,µ)− lp

(
θ, θ̂

B,µ
)∣∣∣→ 0 in L1

by Theorem 5, we only need to show that

sup
B∈B

∣∣∣∣1ptr(A (A+B)−1PM ,XA
)∣∣∣∣→ 0 as p→ ∞.

Under Model I,

tr
(
A (A+B)−1PM ,XA

)
=

p∑
i=1

Ai

Ai + λ
[PM ,XA]ii ≤

(
p∑

i=1

(
Ai

Ai + λ
)2 ×

p∑
i=1

[PM ,XA]2ii

)1/2

≤

(
p×

p∑
i=1

[PM ,XA]2ii

)1/2

≤ p1/2
√
tr (PM ,XA(PM ,XA)T ), for all λ ≥ 0,

but

tr
(
PM ,XAAP

T
M ,X

)
= tr

(
XT

(
XMXT

)−1
XMA2MXT

(
XMXT

)−1
X
)

= tr
((
XMXT

)−1
(XMA2MXT )

(
XMXT

)−1
(XXT )

)
= O(1)
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by (2.13) and condition (E). Therefore,

sup
B∈B

∣∣∣∣1ptr(A (A+B)−1PM ,XA
)∣∣∣∣ = 1

p
O
(
p1/2

)
O(1) = O(p−1/2) → 0.

Under Model II,

A (A+B)−1 = Ip − λZT (λIk +Λ)−1ΛZA−1,

where W−1/2VW−1/2 = UΛUT , Λ = diag (d1, ..., dk) with d1 ≤ · · · ≤ dk, and Z = UTW 1/2X

as defined in the proof of Theorem 5. Thus,

tr
(
A (A+B)−1PM ,XA

)
= tr (PM ,XA)− tr

(
λZT (λIk +Λ)−1ΛZA−1PM ,XA

)
.

We know that tr (PM ,XA) = tr
((
XMXT

)−1
(XMAXT )

)
= O(1) by the assumption (2.13).

tr
(
λZT (λIk +Λ)−1ΛZA−1PM ,XA

)
= tr

(
λ (λIk +Λ)−1ΛZA−1PM ,XAZ

T
)

= tr
(
λ (λIk +Λ)−1ΛZA−1XT

(
XMXT

)−1
XMAZT

)
.

The Cauchy-Schwarz inequality for matrix trace gives

∣∣∣tr((λ (λIk +Λ)−1Λ
)(
ZA−1XT

(
XMXT

)−1
XMAZT

))∣∣∣
≤ tr1/2

(
(λ (λIk +Λ)−1Λ)2

)
× tr1/2

(
ZA−1XT

(
XMXT

)−1
XMAZTZAMXT

(
XMXT

)−1
XA−1ZT

)
.

Since

tr
(
(λ (λIk +Λ)−1Λ)2

)
=

k∑
i=1

(
λdi
λ+ di

)2

≤ kd2k = O
(
p−2
)

for all λ ≥ 0

as shown in the proof of Theorem 5 and

tr
(
ZA−1XT

(
XMXT

)−1
XMAZTZAMXT

(
XMXT

)−1
XA−1ZT

)
= tr

((
XMXT

)−1
XMAZTZAMXT

(
XMXT

)−1
XA−1ZTZA−1XT

)
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= tr
((
XMXT

)−1
(XMAXT )W (XAMXT )

(
XMXT

)−1
(XA−1XT )W (XA−1XT )

)
= O(p2)

from (2.13) and condition (F), we have

sup
B∈B

∣∣∣∣1ptr(A (A+B)−1PM ,XA
)∣∣∣∣ = 1

p

(
O(1) +

√
O (p−2)×O(p2)

)
= O(p−1) → 0.

This completes our proof of (2.14). With this established, the rest of the proof is identical to that

of Theorem 7 and Corollary 8.

A.3 Chapter 3

Details of Remark 14. To see this, we first argue that Pt is a semimartingale with respect to the

complete data filtration Ft ∨ St, which includes the history of the price process itself (Ft) and

the history of all the hidden activities of events (St). Precisely, St is the natural filtration gen-

erated by the process of random set St, which consists of all the surviving events (q, y) in the

trawl at time t, where q ≤ t is the original arrival time of the event and y is its size. Then clearly

L (At) =
∑

(q,y)∈St
y is a càdlàg adapted process (w.r.t. St) of locally bounded variation if the

underlying Lévy basis has finite activities.

Denote the natural filtration generated by the path of L (Bt) as Lt. Then from the definition

of Pt the complete data information Ft ∨ St must be the same as Lt ∨ St ∨ σ (V0)—the path of

L (Bt) will be completely revealed under Ft∨St, where {Lt}, {St} and V0 are completely indepen-

dent to each other. Thus,

Mt = L (Bt)− b

 ∑
y∈Z\{0}

yν (y)

 t ∈ Lt ⊆ Ft ∨ St

must be a martingale w.r.t. Ft ∨ St because

E (Mt|Fs,Ss) = E (Mt|Ls,Ss, V0) = E (Mt|Ls) =Ms,
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where the second equality follows from the independence between {Lt}, {St} and V0.

Write

Pt =Mt +Qt, Qt = V0 + L (At) + b

 ∑
y∈Z\{0}

yν (y)

 t.

As V0 can be revealed under F0 and S0, it is trivially in Ft ∨ St, too. Then Qt is also a càdlàg

adapted process (w.r.t. Ft ∨ St) of locally bounded variation. We then conclude that Pt is a semi-

martingale w.r.t. Ft ∨ St. As the property of being a semimartingale is preserved under shrinking

the filtration, Pt is a semimartingale w.r.t. Ft ⊆ Ft ∨ St.

Proof of Theorem 14. We partition Ct and C0 into three disjoint sets, one of which is in com-

mon:

Ct = (Ct ∩ C0) ∪ (Ct\C0) , C0 = (Ct ∩ C0) ∪ (C0\Ct) ,

so this means that

Pt − P0 = L (Ct\C0)− L(C0\Ct).

L (Ct\C0) is clearly independent of L(C0\Ct) due to the independence property of the Lévy basis

and the disjointedness between Ct\C0 and C0\Ct.

For any t ≥ 0,

Ct\C0 = (At\A) ∪Bt = (At\A) ∪ ([0, b)× (0, t])

C0\Ct = A\At,

leb (Ct\C0) = leb (At\A) + bt,

leb (C0\Ct) = leb (A\At) = leb (At\A) .

Then

C (θ ‡ Pt − P0) = C (θ ‡ L (Ct\C0)) + C (−θ ‡ L (C0\Ct)) ,

109



= leb(Ct\C0)C (θ ‡ L1) + leb(C0\Ct)C (−θ ‡ L1)

= btC (θ ‡ L1) + leb(At\A) (C (θ ‡ L1) + C (−θ ‡ L1)) .

For any random variable X we always have

κj (X) =
1

ij
∂j

∂jθ
C (θ ‡X)

∣∣∣∣
θ=0

,

so using the equation above it is clear that

κj(Pt − P0) =
(
bt+ leb(At\A)

(
1 + (−1)j

))
κj(L1),

which is the required result.

Proof of Theorem 15. For each y ∈ Z\ {0}, the price process has a jump with size y if and only if

either one event with size y arrives or one event with size −y departures—thanks to the mono-

tonicity of d. Thus, the probability of the arrival event can be characterized by the non-zero

probability of a Poisson random variable with intensity

ν (y) leb (Rt\Rt−dt) ≈ ν (y) dt;

on the other hand, the probability of the departure event can be similarly depicted by the non-

zero probability of a Poisson random variable with intensity

ν (−y) leb (At−dt\At) ≈ ν (−y) (1− b) dt.

Therefore, by noting that P (X > 0) = 1− e−λ ≈ λ for X v Pois (λ) and small λ, we have

P (∆Pt = y|∆Pt ̸= 0) =
P (∆Pt = y)∑

y∈Z\{0} P (∆Pt = y)
=

ν (y) dt+ ν (−y) (1− b) dt∑
y∈Z\{0} (ν (y) dt+ ν (−y) (1− b) dt)

=
ν (y) + ν (−y) (1− b)

(2− b) ∥ν∥
.
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Proof of Theorem 16. We will use the following straightforward result on the increments of a

process to prove Theorem 16.

Lemma 21. Suppose Zt, for t ∈ R, has covariance stationary increments. For δ > 0, k =

1, 2, 3, ...

γk = Cov
(
Z(k+1)δ − Zkδ, Zδ − Z0

)
=

1

2
Var

(
Z(k+1)δ − Zkδ

)
−Var (Zkδ − Z0) +

1

2
Var

(
Z(k−1)δ − Z0

)
.

Proof. First note that

Var
(
Z(k+1)δ − Z0

)
= Var

((
Z(k+1)δ − Zkδ

)
+ (Zkδ − Z0)

)
= Var (Zδ − Z0) + Var (Zkδ − Z0) + 2Cov

(
Z(k+1)δ − Zkδ, Zkδ − Z0

)
.

By rearranging, we have

2γ∗k = 2Cov
(
Z(k+1)δ − Zkδ, Zkδ − Z0

)
= Var

(
Z(k+1)δ − Z0

)
−Var (Zδ − Z0)−Var (Zkδ − Z0) .

If k ≥ 2, then

2γ∗k = 2Cov
(
Z(k+1)δ − Zkδ, Zkδ − Z0

)
= 2Cov

(
Z(k+1)δ − Zkδ, Zkδ − Zδ

)
+ 2Cov

(
Z(k+1)δ − Zkδ, Zδ − Z0

)
= 2γ∗k−1 + 2γk.

Hence,

γk =
2γ∗k − 2γ∗k−1

2
=

1

2

 Var
(
Z(k+1)δ − Z0

)
−Var (Zδ − Z0)−Var (Zkδ − Z0)

−
(
Var (Zkδ − Z0)−Var (Zδ − Z0)−Var

(
Z(k−1)δ − Z0

))


=
1

2
Var

(
Z(k+1)δ − Z0

)
−Var (Zkδ − Z0) +

1

2
Var

(
Z(k−1)δ − Z0

)
,

which is the required result.
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Combining Lemma 21 and Theorem 14 gives us

γk =
1

2

(
Var

(
P(k+1)δ − P0

)
− 2Var (Pkδ − P0) + Var

(
P(k−1)δ − P0

))
=

1

2

 b (k + 1) δ + 2leb
(
A(k+1)δ\A

)
− 2 (bkδ + 2leb (Akδ\A))

+b (k − 1) δ + 2leb
(
A(k−1)δ\A

)
κ2 (L1)

=
(
leb
(
A(k+1)δ\A

)
− 2leb (Akδ\A) + leb

(
A(k−1)δ\A

))
κ2 (L1) ,

ρk =
γk

Var (Pδ − P0)
=
leb
(
A(k+1)δ\A

)
− 2leb (Akδ\A) + leb

(
A(k−1)δ\A

)
bδ + 2leb (Aδ\A)

.

Proof of Corollary 17. From Proposition 13 we have

∂

∂t
leb (At ∩A) = − (d (−t)− b) ,

so mean value theorem states that, for any 0 ≤ t1 < t2 < t3, there exist t23 ∈ (t2, t3) and

t12 ∈ (t1, t2) such that

leb (At3 ∩A)− leb (At2 ∩A)
t3 − t2

= − (d (−t23)− b) ≤ − (d (−t12)− b)

=
leb (At2 ∩A)− leb (At1 ∩A)

t2 − t1
, (A.9)

where the second inequality follows from the monotonicity of d and t12 < t23. This proves that

leb (At ∩A) is a convex function of t. Hence, equation (3.3) implies

leb(A(k+1)δ\A)− 2leb(Akδ\A) + leb(A(k−1)δ\A)

= −leb
(
A(k+1)δ ∩A

)
+ 2leb (Akδ ∩A)− leb

(
A(k−1)δ ∩A

)
≤ 0, (A.10)

as required.

When d is a strictly increasing function, the inequality (A.9) becomes strict, so leb (At ∩A)

becomes a strictly convect function of t, which further makes inequality (A.10) strict, as required.
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Proof of Theorem 18. Arrivals are in Rt and so aggregated to Σ(Rt; r), while departures only

happen at most once due to the monotonicity of d. All the departures are in Gt and so aggre-

gated to Σ(Gt; r). Now

E
(
{P}[r]t

)
= E (Σ (Bt; r)) + E (Σ (Ht; r)) + E (Σ (Gt; r))

= (leb(Bt) + leb(Ht) + leb(Gt))

∫ ∞

−∞
|y|r ν(dy)

= (bt+ (1− b)t+ (1− b)t)

∫ ∞

−∞
|y|r ν(dy) = (2− b) t

∫ ∞

−∞
|y|r ν(dy),

where the third equality follows from

leb (Gt) = leb (Ht ∪A)− leb (At) = leb (Ht) + leb (A)− leb (At) = leb (Ht) = (1− b) t.

Proof of Proposition 19. Stationarity of returns and the definition that δn = T/n imply

E
(
RV (n)

)
=

n∑
k=1

E
(
Pkδn − P(k−1)δn

)2
= nVar (Pδn − P0) + n (E (Pδn − P0))

2

= n (bδn + 2leb (Aδn\A))κ2 (L1) + n (bδnκ1 (L1))
2

=

(
b+ 2

leb (Aδn\A)
δn

)
Tκ2 (L1) + b2Tδnκ

2
1 (L1) .

Details of Remark 23. For any r ≥ 0 plug-in (3.13) into the left-hand side of (3.11). Then

(2− b)
∑

y∈Z\{0}

|y|r ν̂ (y) = (2− b)
∑

y∈Z\{0}

|y|r
(
α̂y − (1− b) α̂−y

(2− b) b
β̂0

)

=

∑
y∈Z\{0} |y|

r α̂y − (1− b)
∑

y∈Z\{0} |y|
r α̂−y

b
β̂0 =

∑
y∈Z\{0}

|y|r α̂yβ̂0,

which has nothing to do with parameter b.
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B
Supplementary Details for Chapter 3

B.1 Computing probability mass functions of price changes

Let a1, ..., an be non-zero integers. We will demonstrate how the inverse fast Fourier transform

(IFFT) can be used to calculate py = P (Y = y) of Y =
∑n

k=1 akXk ∈ Z, where Xk’s are indepen-

dent Poisson random variables with intensities λk.

The characteristic function of Y is:

φ (θ ‡ Y ) = E
(
eiθY

)
= E

(
e
∑n

k=1 iθakXk

)
=

n∏
k=1

φ (θak ‡Xk) =

n∏
k=1

exp
(
λk

(
eiθak − 1

))
.

As Y is discrete, the discrete IFFT can be used to get py. Note that φ (θ ‡ Y ) =
∑∞

y=−∞ eiθypy,
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so the inverse Fourier transform is justified by, for y = 0, 1, 2, ..., as N → ∞,

1

N

N−1∑
k=0

φ

(
−2πk

N
‡ Y
)
ei2πky/N =

1

N

N−1∑
k=0

∞∑
y′=−∞

py′e
−i2πky′/Nei2πky/N

=
1

N

∞∑
y′=−∞

py′
N−1∑
k=0

ei2πk(y−y′)/N →
∞∑

y′=−∞
py′1{y=y′} = py,

1

N

N−1∑
k=0

φ

(
2πk

N
‡ Y
)
ei2πky/N =

1

N

∞∑
y′=−∞

py′
N−1∑
k=0

ei2πk(y+y′)/N →
∞∑

y′=−∞
py′1{y=−y′} = p−y,

where the approximation here comes from the Riemann sum

1

N

N−1∑
k=0

ei2πkθ
′/N =

∫ 1

0
ei2πθθ

′
dθ +O

(
N−1

)
= 1{θ′=0} +O

(
N−1

)
.

Hence, the IFFT will take the input of

(
φ (0 ‡ Y ) , φ (−2π/N ‡ Y ) , ..., φ

(
−2π (N − 1)

N
‡ Y
))T

and give the output as (p0, ..., pN−1)
T approximately; similarly, with the input of

(
φ (0 ‡ Y ) , φ (2π/N ‡ Y ) , ..., φ

(
2π (N − 1)

N
‡ Y
))

,

the IFFT will give the output as
(
p0, p−1, ..., p−(N−1)

)T approximately.

In Figure 3.10, we take N = 60 in order to accurately compute py for y ∈ {−30, ..., 30}.

B.2 Cleaning of the empirical data

Here we discuss the preprocessing procedures for the raw empirical data. For each data set, our

database has the current bid price (bid), bid size (bidsz), ask price (ask), ask size (asksz),

trade price (trade), trade volume (tradesz) and the record logging time on the data server

(log_t). The following events will be logged into the raw data set chronologically:

• A change of bid and bidsz (or ask and asksz), which will leave missing ask, asksz (or
bid, bidsz), trade and tradesz.
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Figure B.1: Illustration of the price definition. The white points illustrate all the trade prices with the same
time tag; the black solid line represent the unique price we define. This data is EUC1006 between 00:01:02 and
00:01:12 on May 7.

• A new instance of trade and tradesz, which will leave missing bid, bidsz, ask and asksz.
This is usually followed by a record that shows the newest bid and ask status after the
trading. Sometimes this updating record will be combined with its previous trading record.

Step 1: Remove the wrong records (Optional). We forward fill the missing values in columns
bid and ask; after this, we examine whether the recorded trade price lies in the range from
bid minus a factor M of tick sizes to ask plus M tick sizes. M here is manually chosen as 9.5

for the two EUC data sets, which is a conservative setting and will only remove those visu-
ally inspectable errors. We do not use this step for the two TNC data sets.

Step 2: Preserve only the trading activities. Since in this paper we are only concerned
with the dynamics of the trade prices, we throw out all the other data records that are not
directly associated with a trade, that is, those rows with missing trade and tradesz.

Step 3-1: Associate a unique price to a time tag. Occasionally several data feeds will be
pushed into the data server almost at the same time but perhaps with different prices.
Then we iteratively define a unique price for this particular time tag by the price that is
closest to the price of the previous time tag. Figure B.1 illustrates this.

Step 3-2: Do nothing for an ambiguous case. When there are exactly two trade prices
with the same time tag that are just one tick above and one tick below the previous price
(e.g. at time 01:09.641 in Figure B.1), then we use the previous price as the price for the
current time tag.

Step 4: Keep only jumps. Here it is sufficient to keep only the columns Time and Price, such
that Time is always increasing without duplicates while Price have no two adjacent ele-
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ments that take the same value. Price is always the value the price process takes immedi-
ately after a jump.

B.3 Non-parametric inference of the trawl function

Let d̃ (s) be the non-squashed trawl function with d̃ (−∞) = 0 such that d (s) = b + (1− b) d̃ (s).

Then equation (3.3) implies ∂δleb (Aδ\A) = (1− b) d̃ (−δ). Hence,

∂σ̂2δ
∂δ

=

(
b+ 2 (1− b) d̃ (−δ)

2− b

) ∑
y∈Z\{0}

y2α̂yβ̂0,
∂σ̂2δ
∂δ

(∞) =

(
b

2− b

) ∑
y∈Z\{0}

y2α̂yβ̂0,

which then gives us

b =
2
(
∂δσ̂

2
δ

)
(∞)(

∂δσ̂
2
δ

)
(0) +

(
∂δσ̂

2
δ

)
(∞)

, d̃ (−δ) =
∂δσ̂

2
δ −

(
∂δσ̂

2
δ

)
(∞)(

∂δσ̂
2
δ

)
(0)−

(
∂δσ̂

2
δ

)
(∞)

,
(
∂δσ̂

2
δ

)
(0) =

∑
y∈Z\{0}

y2α̂yβ̂0.

Therefore, by estimating ∂δσ̂2δ for every δ the trawl function is revealed non-parametrically.

In practice, it might be demanding to get
(
∂δσ̂

2
δ

)
(∞), the asymptotic slope of the sample var-

iogram σ̂2δ against δ, because as δ being larger, the sample size we use to calculate σ̂2δ is getting

smaller. Is it possible to use other moment equations in Theorem 14 to identify b rather than

through the boundary behavior of ∂δσ̂2δ for δ → ∞? Unfortunately, the answer is no. b and d are

not identifiable if we neither parameterize d nor adopt a boundary estimation for b at δ → ∞.

To justify this point, assume that one wants to employ all the other additional moment equa-

tions in Theorem 14 to identify b:

κj (Pδ − P0) =
(
bδ +

(
1 + (−1)j

)
leb (Aδ\A)

)
κj (L1)

=
(
bδ +

(
1 + (−1)j

)
leb (Aδ\A)

) ∑
y∈Z\{0}

yjν (y) , j ≥ 3.

Denote the sample j-th cumulant with sampling interval δ as κ̂j,δ. Then equation (3.13) implies
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that

∂κ̂j,δ
∂δ

=

(
b+

(
1 + (−1)j

) ∂

∂δ
leb (Aδ\A)

) ∑
y∈Z\{0}

yj
α̂y − (1− b) α̂−y

(2− b) b
β̂0

=
(
b+

(
1 + (−1)j

)
(1− b) d̃ (−δ)

) ∑
y∈Z\{0} y

jα̂y − (1− b)
∑

y∈Z\{0} y
jα̂−y

(2− b) b
β̂0

=
(
b+

(
1 + (−1)j

)
(1− b) d̃ (−δ)

) 1− (−1)j (1− b)

(2− b) b

∑
y∈Z\{0}

yjα̂yβ̂0

=


∑

y∈Z\{0} y
jα̂yβ̂0 , for j odd

∂σ̂2δ/∂δ∑
y∈Z\{0} y

2α̂yβ̂0

∑
y∈Z\{0} y

jα̂yβ̂0 , for j even
,

which is still again independent of b.
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