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Uncovering genes underlying quantitative trait variation  

using S. cerevisiae as a model system 

Abstract 

Individuals from the same species often differ quantitatively in many phenotypes. Understanding 

the genetic causes of such individuality may improve our understanding of the corresponding 

phenotypes, and our ability to make models to predict phenotypes using individual’s genotype. 

In this thesis, I would like to present two works related to this question. In Chapter 2, I used a 

few highly sensitive experimental systems to ask, what are “all” the genes that can affect a given 

quantitative trait. By analyzing these results, I found that a large number of yeast genes can 

affect four studied traits, namely two galactose response traits, unfolded protein response and 

growth rate in rich medium. These genes consist of a few large effect-size genes that are 

typically directly involved in the process related to the quantitative trait, and a large number of 

small effect-size genes that are enriched in a number of core cellular processes. This implies that 

genetic variation in one process has the potential to influence behaviors in seemingly 

unconnected processes, and a considerable proportion of trait variation in natural populations 

may be caused by the cumulative effects of many small effect-size genetic variants. The core 

processes that are discovered in Chapter 2 can be affected by many types of genetic changes. In 

Chapter 3, in collaboration with Angelika Amon lab, I followed a specific type of mutation, 

aneuploidy, and experimentally measured the effects of aneuploidy-associated stresses on three 

different yeast traits, namely galactose response, DTT response and heat shock response. The 
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results showed that, aneuploidy can generally increase cell-to-cell variability in an isogenic 

population. In Chapter 4, I will present a few potentially interesting directions. Overall the 

results presented in this thesis improved our understanding about potential source of quantitative 

trait variation.  
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Chapter 1. Introduction 

Although individuals within the same species share highly similar genetic material, it is clear that 

they also vary substantially in many phenotypes. Such phenotypes include morphological traits, 

cellular responses to stress, propensity to various diseases and etc. Because such variation is 

often quantitative, rather than qualitative, the corresponding phenotypes are called quantitative 

traits. Understanding the pattern, causes and consequences of this variation is an important task 

to biologists. 

In this thesis, I would like to present two works related to this topic - one as my main Ph.D. 

project and another one as a collaborative project. Before going into details of each work, I 

would like to present a short overview of this field to motivate the rest of the thesis, followed by 

an outline for the remaining chapters. 

1.1 Quantitative trait variation as a hundred-year-old topic 

While much of what we know today about quantitative trait variation, such as the identity of 

causal genetic variants, relies on modern technologies, many insights in this field can be traced 

back to century-old observations. One of the first lessons that researchers learned about 

quantitative traits is that traits do not vary randomly in a population. Such non-random patterns 

reflect on the phenotypic similarity among family members. For example, in 1886, Francis 

Galton described such a pattern in height as, 

“… we define the law of regression very briefly. It is that the height-deviate of 
the offspring is, on the average, two-thirds of the height-deviate of its mid-
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parentage.” [1] 

Based on the phenotype-level characterization, the genetic cause of trait correlation among 

family members was later correctly proposed by Ronald Fisher, who attributed this pattern to the 

results of "a large number of Mendelian factors". In 1918, he wrote that, 

" The simplest hypothesis ... is that such features as stature are determined by 
a large number of Mendelian factors, and that the large variance among 
children of the same parents is due to the segregation of those factors in 
respect to which the parents are heterozygous. " [2] 

The idea that there are genetic factors underlying quantitative trait variation in a population is 

further supported by a series of artificial selection experiments on various traits. For a given trait, 

selectively breeding individuals that exhibit extreme trait values led researchers and breeders to 

observe a continuous response to selection. The explanation is that the genetic variants that are 

related to the trait of interest, either de novo mutations or existing variants before selection, are 

favored in the selection process and cause a continuous response to selection. For example, for 

abdominal bristle number of Drosophila melanogaster, exerting artificial selection pressure on 

this trait produced the observation that, 

"response continued for at least 75 generations and average total response 
was in excess of 36 additive genetic standard deviations of the base 
population ..." [3] 

All these theories and experiments lead to an analytic framework to decompose quantitative trait 

variation in terms of the contributions from genetic factors and environmental factors. In 

population genetics, heritability is often used to analyze the relative importance of these two 

factors and is broadly applied in many traits. Technically, heritability is defined as the proportion 
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of trait variation determined by genetic factors. A number of methods were used to quantify this 

trait-specific population-level metric [4]. For example, it is estimated that about 80% of human 

height variation is determined genetically, hence human height heritability is about 0.8. In this 

thesis, the main relevance of this number is that it sets a goal for future endeavors to identify 

causal genetic variants underlying quantitative traits. If the total contribution of all identified 

variants is close to the estimated heritability, one can conclude that we are close to identifying all 

the important variants for this trait in the studied population. 

It is worthwhile to mention that many human diseases are heritable, and can be analyzed in the 

same framework as continuous traits. With a few exceptions, most human disease traits are 

binary, i.e. individuals are either affected or not affected. In 1965, Falconer proposed a liability 

model [5], in which individuals are assigned a 'liability' score based on the genotypes and 

environments. If liability score is above a certain threshold, the individual will be affected by the 

disease. 

A lot of recent progress in understanding quantitative trait variants focused on locating the causal 

genetic variants for a given trait of interest. While much of the progress is empowered by the 

newly developed genotyping techniques, the idea to use genetic markers to locate causal variants 

is not new. As an experimental example, David Botstein et al. proposed a method in 1980, to use 

restriction fragment length as genetic marker [6] to detect potential linkage to human disease. 

From the theory side, Risch and Merikangas showed in 1996 that association studies should in 

principle be more powerful than family linkage studies to detect small effect polymorphisms. In 

the conclusion part of that work, they insightfully mentioned that, 
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"the primary limitation of genome-wide association tests is not a statistical one 
but a technological one. A large number of genes (up to 100,000) and 
polymorphisms ... must first be identified, and an extremely large number of 
such polymorphisms will need to be tested." [7] 

Such "an extremely large number" of polymorphisms indeed became possible to genotype in the 

next few years. After finishing sequencing the human genome, the pattern of common human 

genetic variants was mapped systematically. In the HapMap project[8], which aimed to develop 

a haplotype map of the human genome, “a block-like structure of linkage disequilibrium” was 

found. The “substantial correlation of SNPs” discovered in this project allowed using a relatively 

small fraction of common SNPs as genetic markers to locate causal genetic variants in human. 

There are enormous efforts to use common genetic variants to study human traits – by the end of 

2008, 531 SNP-trait associations were discovered in 151 studies [9]; by the time of writing this 

thesis (Feb 2017), over thirty thousand of such association were identified in 2732 studies [10]. 

Despite such vast advances in techniques, our understanding of the source of quantitative trait 

variation is still far from complete, which is the main motivation of this thesis. As mentioned, 

heritability for a given trait sets a target of the total contribution of genetic factors that can be 

discovered to explain trait variation. However, when summing up the total contribution of 

identified SNPs, the explained fraction of trait variation is often much lower than the 

corresponding estimated heritability. Such problem is often referred as the “missing heritability” 

problem [11].  

1.2 Outline of this thesis 

This thesis is about two projects completed during my Ph.D. studies to study the genetic causes 
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of quantitative trait variation using yeast as a model system. The main project in my Ph.D. study 

is to understand what are the genes that possibly affect quantitative traits. The second project is a 

collaboration project, which studied how aneuploidy state can affect quantitative traits.  

For a given trait, supposing that there is a gene list that contains all the genes that when mutated 

can affect the trait of interest, the causal genetic variants in a natural population that affect the 

quantitative trait must act on all or a subset of such genes. Although it is still unclear which 

subset of genes harbor causal genetic variants, studying such a gene list might shed lights on the 

“missing heritability” problem to clarify the target size of potential mutations. In Chapter two, 

we set up a highly sensitive assay to identify the most important genes that are capable of 

affecting two yeast quantitative traits related to galactose signaling. To aid the analysis, we also 

analyzed two additional traits that were previously studied in other labs. Together, the 

experiments and analysis suggest that a large number of genes can affect quantitative traits, and 

many of such genes might be related to core cellular processes. 

Chapter 3 is a collaboration with the Angelika Amon lab. Previously, they found that 

aneuploidy-associated stress can increase the cell-to-cell variability of the cell cycle progress in 

an isogenic population, yet it was unclear if such stress can affect any other traits. To address this 

question, I studied the effects of adding additional chromosome on yeast galactose response, heat 

shock response, and unfolded protein response. The results will be presented in Chapter 3. 
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Chapter 2. Small effect-size mutations cumulatively affect 

yeast quantitative traits 

Bo Hua1,2 and Michael Springer1,* 

 

1 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 

2 Systems Biology Graduate Program, Harvard University, Cambridge, Massachusetts, United 

States of America 

 

This chapter is adapted from a manuscript written by the authors listed above. 

 

2.1 Introduction 

What are all the genes that are involved in a trait? Classically, the pathways that contribute to a 

trait, like those involved in signaling or development, were defined by genetic screens that 

identified genes with loss- or gain-of-function phenotypes [1]. As screens became more 

quantitative, many alleles of both small and large effects size were identified [2,3]. But, the 

methods to validate and then determine the molecular function have remained laborious. Hence, 

research has typically focused on genes on characterizing genes with large effect size. This has 

led to a potential bias that these large effect size genes dominate the behavior and variability in a 
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pathway. An alternative view is that cumulatively, the mainly overlooked small effect size genes 

significantly shape pathway function and population-level trait variation, and hence the genetic 

architecture of a pathway is distributed not centralized (Figure 2.1). Until recently, it wasn’t 

possible to easily and comprehensively identify genes implicated in quantitative traits, making it 

difficult to distinguish between these two hypotheses concerning the architecture of most 

pathways. 

The genetic architecture of quantitative traits has taken on increased importance as it has become 

clear that many human traits, such as body mass index and traits that underlie heritable human 

disease, are also quantitative. Numerous human traits and disease have been studied using 

genome-wide association studies (GWAS) to uncover the loci containing causative variants that 

are responsible for the genetic component of these traits [4]. If the genetic architecture of the 

underlying pathway were centralized, one would expect GWAS would yield a small number of 

large effect-size genes typically of related function; if the genetic architecture of a quantitative 

trait were distributed, one would expect GWAS would yield a large number of small effect-size 

genes of often seemingly unrelated function. In some diseases, e.g. age-related macular 

degeneration (AMD), GWAS indeed identified several common alleles of large effect size that 

explain about half of the disease risk to siblings of affected individuals [5]. This would support 

the view of centralized signaling pathways. But, in many cases, GWAS has yielded many small 

effect-size variants with low odd ratios [4], and additionally many identified loci have not 

included genes with an obvious connection to disease [6,7]. These results are consistent with the 

hypothesis that the gene architecture of some pathways underlying human traits is distributed. 
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Direct experiments to separate between these two hypotheses can help frame our expectation for 

the results from these association studies. 

Model organisms should be a powerful set of tools for defining the architecture of quantitative 

traits. Several studies in yeast [2,8] show that linkage analysis has the potential to identify most 

of the causative loci needed to explain trait variation between two natural yeast isolates. But 

these studies, like human GWAS, are limited by recombination block size and sample size, and 

hence are not ideal for identifying causative genes or the exact number and identity of small 

effect-size loci. As an alternative approach, deletion libraries have been used to assess the role of 

every yeast gene. These studies have been transformative for defining the function of unknown 

genes [9] and for showing that many processes in yeast are genetically interconnected [10,11]. 

While informative, the assays that are typically performed, e.g. colony size assay, are not 

quantitative enough to accurately determine the effect size of every mutant. Hence whether this 

interconnectedness has a significant role in pathway function is still unclear. 

In this work, we quantified the effect sizes of all non-essential yeast genes on several traits. 

Instead of identifying existing genetic variation in natural populations, we used a yeast deletion 

library to measure with high precision the magnitude of effect of all non-essential genes on a 

quantitative trait, which we refer to as gene effect size. By its design, this approach identifies all 

the genes whose loss-of-function has the potential to influence a trait, and the effect size 

distribution of these genes. We found that all four traits we analyzed have an exponential 

distribution of effect sizes. The consequence of these results is that cumulatively, small effect-
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size can significantly contribute to pathway function. Gene Ontology (GO) analysis and 

additional experiments showed that many of these small effect-size mutations are involved in 

core cellular processes and affect quantitative traits in a trait-specific, not generic, manner. In 

natural populations, phenotypic variation is influenced by the actual existing variants; this 

natural variation is more complex than our deletion library. We showed through simulation that 

our analysis based on deletion mutants, given modest assumptions, yields an effect size 

distribution that is close to the distribution that would be observed for other sources of genetic 

variation. 

 

Figure 2.1 Genes outside of the canonical signaling pathways have the potential to 

substantially influence pathway function 
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(A) A canonical pathway (red circles) can be modified by anywhere from a small number to 

large number of currently unidentified genes (green circles). (B) Regardless of the number of 

modifiers, the modifiers could range from having a weak to strong effect on the pathway 

(represented by arrow thickness). (C) If the number of modifiers is small (I) or if the effect size 

of the modifiers is small (II) the genetic architecture of the pathway will be centralized, i.e. a 

small number of genes will control the function of and variation in the pathway. If the number of 

modifiers is large and the effect size of the modifiers is sufficiently large (III) the genetic 

architecture will be distributed; i.e. a large number of genes will control the function of and 

variation in the pathway. 

2.2 A large fraction of genes can influence multiple biological processes 

A large number of screens have been performed with the yeast deletion library [12]. These 

screens could potentially serve as a rich source of data for determining the effect size of each 

gene on many traits. Reanalyzing this data, we found that, due to measurement noise, most of 

these studies do not have the power to determine the full gene-level effect size distribution (See 

Appendix A). This is not surprising as the goal of most studies was to identify genes of large 

effect size rather than attempting to identify all genes of any effect size. Therefore, to determine 

the number of genes that can affect a pathway, we created a reporter library with which we could 

quantitatively measure the response of cells to galactose (GAL). We systematically constructed a 

library of strains deleted for all non-essential yeast genes each containing a YFP reporter driven 

by the GAL1 promoter (GAL1pr-YFP). We then assayed the bimodal YFP response [13,14] in 
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single cells growing in mixtures of glucose and galactose by flow cytometry (Figure 2.2 A-B). 

Additionally, to supplement the analysis, we identified and re-analyzed two deletion studies 

[15,16], one on growth rate in rich medium and one on the unfolded protein response (UPR), 

which had a signal-to-noise ratio that was sufficiently large to determine the effect size 

distribution. 

 

Figure 2.2 Quantitative genetic screen determines that a large number of genes 

quantitatively affects the yeast galactose response 

(A) Galactose (Gal) activates while glucose (Glu) inhibits transcription from a GAL1 promoter 
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YFP fusion. B) A mCherry expressing mutant strain (red) was co-culture with a wild-type 

reference strain (black); both strains contained the reporter construct from A. Each well 

contained a distinct deletion mutant. (C) We defined two metrics to characterize the bimodal 

response of the GAL pathway. We defined the induced fraction (yellow area versus total area 

under the curve) as the percent of cells whose YFP expression level was above a threshold (black 

dotted line). We also defined the induction level as the mean YFP expression of all induced cells 

(green dotted line). (D) Mutant effect sizes for the induction level (D, left) and for induced 

fraction (D, right) are defined as the relative change in each metric between mutant (red) and the 

co-cultured wild-type reference strain (black). (E-F) Effect size distribution for two GAL traits. 

Effect sizes of all mutants were binned and plotted as a histogram (black bars). Mutant that 

passed a 0.5% false discovery rate cut-off were well fit with an exponential distribution using 

maximum likelihood estimation (dashed black line, R2 =0.96 for each, see Method). The full 

distribution is parsimonious with a convolution of experimental noise and an exponential 

distribution (blue line is the average distribution of 100,000 simulations, R2=0.92-0.98; gray 

shading is one standard deviation around the mean). 

Principal component analysis of the results from our GAL response screen highlighted three 

distinct traits (Figure S2.1). These traits, corresponding to: 1) the fraction of cells that are 

induced above background; 2) the induction level of the induced ('on') peak; and 3) the 

background level of the uninduced ('off') peak (Figure 2.2C, Supplemental Information). The 

signal-to-noise ratio of the first two metrics was sufficient to calculate an effect size distribution 

for a large number of genes. We will refer to these two separable GAL traits as the "induced 
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fraction" and the "induction level" (Figure 2.2D). 

Each of the four traits - the induced fraction, induction level, growth rate, and UPR - considered 

in isolation, was influenced by a large number of deletion strains (Figure 2.2E and F); the 

distribution of mutant effects was continuous. Based on a comparison of the measured effect 

sizes and the measurement noise estimated from biological replicates, 19% (796 of 4201), 16% 

(735 of 4562), 16% (689 of 4162), and 20% (849 of 4162) of non-essential genes screened, at a 

0.5% false discovery rate, affect the growth rate in rich media, unfolded protein response, 

induced fraction in GAL, and induction level in GAL respectively. Together the two GAL traits 

are composed of 1104 unique genes. Interestingly, if we used a single composite trait, i.e. mean 

expression, to quantify the GAL response, fewer genes (593 of 4162) were identified, 

highlighting the utility of sub-classifying higher-level phenotypes that might be composed of 

separable traits each controlled by distinct genetic factors (Appendix A). To obtain a more 

accurate estimate of how many genes can quantitatively affect each of the traits, at the sacrifice 

of knowing the identity of the genes, we determined the area of the normalized effect size 

distribution that is outside the normalized measurement noise distribution (Figure S2.2). From 

this, we estimate that the fraction of genes affecting the growth rate in rich media is 62%, 

unfolded protein response is 23%, induced fraction in GAL is 28%, and induction level in GAL 

is 34% (Appendix A). Together these results highlight that a large fraction of the protein-coding 

genes has the potential to quantitatively affect a trait.  

As a final method to determine the number of genes that influence our four traits we determined 

whether the effect size distributions could be explained by a simply analytical function. To 
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minimize the effect of measurement noise on measured effect sizes, we first focused our analysis 

on the genes whose effect size was significantly different from measurement noise. Interestingly, 

we found that the effect size distribution for all four traits was well fit by an exponential 

distribution (R2=0.91-0.96, Figure 2.2E an F, dotted line). When extrapolating the exponential fit 

into the measurement noise, it predicts that 27-33% of genes affect each of our four traits, similar 

to the orthogonal estimates above. Adding measurement noise to the exponential distribution 

(Figure 2.2E and F, blue line) well fit the full measurement distribution (R2=0.92-0.98). 

Therefore, a parsimonious explanation of our data is that the effect size distribution of a quarter 

to half of genes is exponential. Half to three quarters of all genes have little to no effect.  

2.3 Small effect-size genes can influence pathway function 

The shape of the determined effect size distributions implies that each of the four traits is 

affected by genes with a continuous distribution of effect sizes ranging from a small number of 

large effect-size genes to a large number of small effect-size genes. It has been questioned 

whether even such a large number of small effect-size mutants could substantially contribute to 

the functionality of a pathway [17]. The answer to this question depends on the exact shape of 

the measured effect size distribution (e.g. Figure 2.1C II versus III). We therefore determined the 

number of genes that are cumulatively important for pathway function. To do so, we devised a 

method to quantify the impact of each gene, which is similar to the one used to quantify allelic 

contribution to narrow-sense heritability in a GWAS [18]. In the calculation, we first assumed a 

population of cells with independent and randomly assorting alleles. We assumed only two 
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possible alleles for each gene, i.e. deletion or wild-type (a more complex model will be 

considered below). We then calculated each gene’s contribution to the trait variation in the 

population as 2"#$ 1 − $  [18], where � is the effect size and f is the allele frequency, 

assuming that each allele has a frequency of 50% and no epistasis (Figure 2.3A). For our four 

traits, using the measured effect size for each gene, we find that 257-352 genes with the largest 

effect sizes, representing 5.6-8.5% of screened genes, are needed to explain 80% of total 

computed variation (Figure 2.3B and C, and Figure S2.4). If human traits behave similarly to our 

yeast deletions, we would estimate that the number of genes required to explain most of the 

heritability of a quantitative trait is in the range of 1200-1900 genes. Interestingly, our estimate is 

concordant with estimations from GWAS. For example, the current estimate for human height, 

the best characterized human trait, is that 423 1Mb loci are involved. Yet this explains only 20% 

of the heritability. This result suggests that both in yeast and humans, some pathways and traits 

resemble the distributed architecture from Figure 2.1C III; i.e. a large number of genes of slowly 

diminishing effect size contribute to pathway function and trait variation. 
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Figure 2.3 Pathway modifiers can significantly contribute to heritability 

(A) Methods to estimate the heritability explained by a set of deletion mutants. Genes were 

sorted based on their effect size when deleted. The heritability was calculated as the sum of the 

squares of the effect sizes for the top n genes compared to all genes. The heritability (right) for 

the top 100 (red), 200 (blue), and 300 (green) mutant strains (left) is shown. (B-C) The 

contribution to explained heritability, as calculated in A, from GAL genes (red) or all genes 

(black) for induction level (B) and induced fraction (C). 

Given their individual small effect size, our analysis also suggests that a significant portion of the 

genes that account for pathway function would not typically be considered to be contributing to 

each trait. Classical genetic screens identified only a fraction of the genes that have the potential 
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to significantly affect each of the two GAL traits. A compiled list of the 50 genes previously 

identified as affecting the GAL pathway (Supplemental Information) explained only 32.0% and 

11.7% of variation in the induction level and induced fraction traits respectively. Similarly, in the 

unfolded protein response, genes whose products localize throughout the secretory pathway (ER 

and Golgi) explain only 27.1% of variation, further suggesting substantial roles of additional 

genes/processes. Hence, much of the variance occurs in genes we term non-trait-specific, i.e. 

genes that are not typically considered to be physiologically related to the trait. This is consistent 

with previous GWAS that identified putative causative loci that in some cases contained genes 

that were obviously trait-specific but in other cases were involved in general cellular processes. 

For example, human height is affected by variants in genes that underlie skeletal growth defects 

(trait-specific), as well as general pathways such as the Hedgehog pathway (non-trait-specific) 

[19]. Surprisingly, our analysis suggests that the non-trait-specific processes can have a larger 

aggregate effect than trait-specific pathways. 

A potential caveat to these estimates is that the GAL phenotypes of ten mutants are either fully 

induced or uninduced, causing the effects of these genes to be underestimated. These ten genes 

have previously described influences on the GAL pathway. GAL1, GAL3, GAL4, GAL80, REG1, 

and SNF3 are involved in either glucose or galactose signaling. HSC82 and STI1 interact with the 

HSP90 co-chaperone that has been shown to influence the GAL pathway. SNF2 is a SWI/SNF 

chromatin remodeling complex that was previously suggested to be involved in nucleosome 

occupancy on GAL promoter [20]. GCN4, is a general transcription factor that responds to amino 

acid starvation. We believe in most cases this caveat does not affect our results. Because, the 
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loss-of-function effect size of these alleles is effectively infinite, they will behave as Mendelian 

not quantitative alleles. Instead, for any quantitative traits, the predominant alleles of these 

Mendelian loss-of-function genes must be hypomorphic alleles. Indeed, when we assume 

hypomorphic allele effect sizes for these genes by randomly sampling from the tail of the fitted 

exponential distribution, we only observed a modest increase in total trait variation (< 3%). 

2.4 Gene deletions in core cellular processes affect quantitative traits 

What are the functions of these ‘pathway modifiers’ we identified? Are they genes that have 

general effects on all traits or are they specific to one or a subset of traits? We found that non-

trait-specific processes often affect more than one trait. All pairs of traits share significantly 

more genes that affect their behaviors than expected (p < 10-65, one-tailed hypergeometric test). 

While only 2 genes would be expected by chance, 113 genes were shared by all traits (Figure 

2.4A). These genes also overlap significantly with "hub" genes identified from genetic 

interaction network (between 140 and 257 out of 380 hubs genes are significant for each of the 

four traits, p < 10-47, hypergeometric test) [12]. We used Gene Ontology to ask if shared non-

trait-specific genes were enriched for specific biological processes. Indeed, many processes were 

enriched (Table S2.1), including translation (GO:0006412), regulation of metabolism 

(GO:0031323), and transcription (GO:0006351). Although this has not previously been 

extensively characterized, it is not surprising that these traits might be altered by perturbations in 

some core cellular processes. 
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Figure 2.4 Core cellular processes affect quantitative traits 

(A) Venn diagram showing the overlap between genes that significantly affect each of our four 

quantitative traits. Effect size for the unfolded protein response and growth rate in rich media 

was determined by reanalyzing data from Jonikas et al. and Breslow et al. [15,16]. Only genes 

that were assayed for all four traits are included in the Venn diagram. (B) Identification of gene 
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ontologies (GOs) that are significantly clustered in the 4-D trait space. For each GO the mean 

circular variance in the 4-D trait space was determined (Methods) and plotted against the 

corresponding number of genes in that GO (orange dots are significant, gray dots are not). To 

determine the 1% false discovery rate (FDR < 1%, black line), gene names were permuted 

(10000 bootstraps) before calculating the circular variance. GOs displayed in C and D are shown 

as squares. (C) The average effect size vector for each significant GO in B projected into the 3-D 

induced fraction-induction level-UPR response space. (D) Examples of GO with distinct spatial 

clustering. The effect of gene deletion on the unfolded protein response vs. GAL induction level 

(top) and on the GAL induced fraction vs. GAL induction level (bottom) was plotted for all 

genes from five different significant GOs from B (GO genes in color, all other genes in gray). 

(Inset) Average mutant vector of GO. 

The identification of these core cellular processes as having potential to explain a significant 

amount of trait variation could be fundamental or trivial. It could reflect an architecture where 

many biological traits integrate many external and internal factors as inputs (e.g. the GAL 

pathway responding not just to galactose but glucose, redox status, ribosome capacity, ER 

capacity, etc.). Alternatively, as the expression of a large fraction of yeast genes is affected by 

growth rate control [21-23], a trivial explanation could be that the effect on the UPR and GAL 

traits is solely an indirect effect of a growth rate defect (Figure S2.4). Our data do not support 

growth rate as the sole factor explaining our results. Between 40% and 60% of gene deletions 

affect our GAL and UPR traits without affecting growth and vice versa (Table S2.2). 

Furthermore, for genes that affect both growth rate and any of the other traits, there is no 
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correlation in effect size between the two effects (R2<0.02, Figure S2.7B-D). These observations 

argue against the idea that defects in growth are the main reason that non-trait-specific genes 

affect the behavior of traits. The involvement of many non-trait-specific genes instead suggests 

that many signaling pathways integrate a much larger set of cellular inputs than the single input 

for which the pathways are named. 

2.5 Perturbation of core cellular processes can have trait-specific effects 

Consistent with the idea that traits integrate a number of inputs in a trait-specific manner, we find 

that biological processes often affect more than one trait, but importantly not all traits. Using a 

spatial clustering algorithm in the four-trait space (Figure 2.4B-C), we found an enrichment in 

core cellular components (Table S2.3), such as ribosomal genes (GO:0002181), mitochondrial 

genes (GO:0005743), mannosyltransferases (GO:0000030), genes that affect histone exchange 

(GO:0000812) or proteasome assembly (GO:0043248), and genes involved in peptidyl-

diphthamide synthesis (GO:0017183). Each of these sets of genes had a separable direction in 

this 4-dimensional space suggesting each process is responding distinctly to the mutations 

(Figure 2.4D). For example, the 89 genes involved in cytoplasmic translation (GO:0002181) 

were enriched in 3 out of 4 quantitative traits, namely the unfolded protein response, growth rate 

in rich media, and GAL induction level, but not GAL induced fraction (40, 21, 37 and 3 genes 

respectively out of the top 300 genes). Conversely, mitochondrial inner membrane genes 

(GO:0005743) are enriched in the GAL induced fraction but not growth rate, unfolded protein 

response, nor GAL induction level (21 versus 3, 1, and 4 respectively out of the top 300 genes). 
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Furthermore, the same core processes can have distinct effects on different traits. For example, at 

first glance, one might expect mutations in ribosomal genes to affect the level of induction of a 

pathway (e.g., by altering the expression level of all genes) but not the fraction of cells induced. 

Indeed, this is the case for the GAL response. But, when we examined the effect of the same 

mutants on a phosphate responsive (PHO) promoter, PHO84pr, we obtained a different result 

(Figure 2.5). The PHO84 promoter responds to phosphate limitation in a bimodal manner and 

can therefore be characterized in the same way as we characterize the GAL response. The effects 

of ribosomal mutants on the induction level of PHO84pr-YFP are significantly less than for 

GAL1pr-YFP (Figure 2.5B versus C; Figure 2.5E and Figure S2.5, p=3x10-10, two-tailed t-test). 

Instead, ribosomal mutants affect the PHO induced fraction and the level of expression of the 

uninduced cells (Figure 2.5C and examples in Figure 2.5D). In support that these results are a 

direct consequence of perturbation of ribosomal function, cycloheximide, a small molecule 

inhibitor of the ribosome, phenocopies the results of ribosomal gene deletions on both the GAL 

and PHO pathways (Figure 2.5B-D). While this result at first may seem counter-intuitive, these 

results could be explained if ribosomal proteins differentially impacted the expression level of 

positive versus negative regulators of a trait. In total, this suggests that variation in genes 

involved in core cellular processes could have both generic and pathway specific effects. 
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Figure 2.5 Effects of protein synthesis perturbation on the phosphate response (PHO) are 

distinct from the effects on the galactose response (GAL) 

(A) Schematic of experiment to quantify the effects of perturbing protein synthesis on the PHO 

response. A PHO84pr-YFP reporter was used to quantify PHO pathway activation in single cells. 

Protein synthesis was perturbed by either (I) knocking out genes involved in protein synthesis or 

(II) treating our wild-type strain with a titration of cycloheximide. (B-D) The effects of 

perturbing protein synthesis are different between the GAL and PHO response. Perturbation 

phenotypes were quantified by: 1) induced fraction, 2) induction level and 3) for the PHO 

response, basal expression level. A set of 95 strains each deleted for a gene involved protein 

synthesis (black dots) was assayed (GAL in B; PHO in C and D). Cycloheximide (chx), a protein 
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synthesis inhibitor, was added at 11 different concentrations to a wild-type strain (green dots; 

green arrow denotes direction of increasing chx concentration). Cycloheximide has a dose-

dependent affect on both the GAL and PHO response that phenocopies the effect of protein 

synthesis mutants. (E) The expression distribution for two representative mutants, rpl16a∆ and 

rpl35b∆ in (red dots in B-D). The GAL1pr-YFP (top) and PHO84pr-YFP (bottom) distributions 

of rpl16a∆ and rpl35b∆ mutants are shown (red), together with the co-cultured wild-type strain 

(black). The induction level metric is denoted (dashed line). The induction level is not change in 

PHO (bottom) while it is in GAL (top). 

2.6 Extension to other sources of genetic variation through simulation 

We next wished to determine to what extent our results generalize to genetic variation beyond 

the complete loss-of-function variants we experimentally measured. Genetic variation in natural 

population is more complex genetically than the deletion library we analyzed. To generalize our 

results to account for a broader range of genetic variation, we developed a model where we 

accounted for 1) other types of alleles, i.e. hypermorphs and neomorphs as originally proposed 

by Muller [24], 2) variable number of alleles per gene, and 3) variable allele frequencies in the 

population (Figure 2.6). While the actual molecular cause of the variation can come from many 

sources, e.g. single nucleotide polymorphisms (SNPs), copy number variation, and indels, for the 

purpose of understanding the genetic architecture, it is only important to understand the effect of 

the genetic change on the trait, and hence for simplicity we will refer to all genetic variants as 

SNPs. Additionally, we assumed all SNPs contribute linearly to the trait with no epistasis. This 
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assumption is based on the fact that a linear model using all SNPs genotyped in human height 

GWAS can explain a large fraction of height heritability [25,26]. 

 

Figure 2.6 Effect size distribution estimated from gene deletions is informative for more 

complex genetic scenarios 

(A) In figure 2.3, heritability versus gene number was estimated assuming an allele frequency of 

0.5, exactly 1 SNP per gene, and the effect size distribution measured in figure 2.2. To simulate 
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more complex biological scenarios, we sampled allele frequency from a Beta distribution, 

Beta(fa, fb); number of SNPs from a Poisson distribution, Poisson(λ); simulated hypomorphs by 

convolving the measured effect size distribution for amorphs with a Beta distribution, Beta(Sa, 

Sb); and neomorphs by randomly sampling from the hypomorph effect size distribution. The 

frequency of hypomorphs versus neomorphs was a constant, g, for each simulation. The 

extremes and middle of the range of each distribution are shown (red, blue, and green) (B) 

Comparison of the number of genes required to explain 80% of the heritability in the 

experimental and simulated data. Simulate data was generated by Latin hypercube sampling of 

the six parameters (1000 iterations; blue dots). The fraction of neomorphs (g) had the largest 

affect on the model. To examine the effect of the rest of parameters, g was set to 5% (vertical red 

dashed line), and Latin hypercube sampling was used was used to scan the remaining five 

parameter space 1000 times (red dots).  

To instantiate the model (Figure 2.6) a series of functional forms and constants were assumed for 

each of the potential variables. The number of SNPs that affect a given gene was chosen from a 

Poisson distribution to reflect variable number of alleles observed in human genome [27]. The 

effect size of hypomorphic SNP was modeled by multiplying a beta distributed random variable 

by the actual measured effect size of each affected gene. In this way, the maximum effect size 

was the complete loss-of-function and the minimum effect size was zero. A beta distribution was 

chosen to allow modeling of a wide range of different shaped distributions (Figure 2.6). To 

simulate neomorphic (gain-of-function) SNPs, we randomly selected a fraction SNPs, and 

reassigned their effect sizes with the effect size of randomly chosen SNPs. Lastly, the allele 
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frequency for each SNP was chosen from a beta distribution. 

In each simulation, we calculated the explained trait variation for each SNP, and then summed 

up all the SNPs for a single gene to obtain the explained variation for each gene. We then varied 

the parameters in each of the distributions of the variables introduced above. Specifically, we 

used Latin hypercube sampling to scan the parameter space of the distributions (blue dots, Figure 

2.6), and then compared the number of genes that explain 80% of trait variation obtained from 

this model and our experimental results (Figure 2.3). The results from our simulation show 

variation in the fraction of neomorphs dominates variation in the model. However, as long as this 

fraction is below 5%, the results of the simulation do not vary from the experimental results by 

more than 17%. Neomorphic alleles are typically assumed to be rare. In order to determine the 

potential impact of the other parameters in our model, we fixed gain-of-function rate to be 5%. 

Resampling the other five parameters, we found that the average number of SNPs per gene is the 

second largest source of variation in our model. However, as long as on average 5 SNPs exist per 

gene in the population, the effect is negligible (orange samples in Figure 2.6B). Large-scale 

sequencing efforts have now identified ~20 million genetic variants in humans [28]. Even if 99% 

of these variants were neutral, there would still be enough SNPs per gene on average to support 

our conclusions. From this, we determined that our estimate of number of genes that influence a 

trait from our knockout data is largely insensitive to the parameters of our model, and 

quantitative analysis of complete loss-of-function alleles should be informative even for the 

analysis of less severe and of rare alleles. 
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2.7 Discussion 

In this work we sought to determine all the genes that can influence a pathway underlying a 

quantitative trait. Depending on the number of genes and the magnitude of the effect, pathways 

could in principle have a centralized or distributed architecture (Figure 2.1). To address this 

question we determined the effect size distribution of deletion mutants for four quantitative traits 

in yeast. We did this by measuring the response to galactose at the single-cell level for each 

deletion strain from the yeast library and by reanalyzing two additional quantitative screens that 

measure competitive growth rates [15] and the unfolded protein response (UPR) [16] in the 

deletion library. We found that in all four cases, the distribution of effect sizes is such where a 

quarter to half of the genes follow an exponential distribution, with the rest of the genes having a 

negligible effect size (Figure 2.2). Based on a simple model to calculate heritability, we found 

this result implies that a large number of genes (5-9% of all genes) would be needed to 

cumulatively explain at least 80% of trait variation (Figure 2.3). Our results imply that there is a 

significantly larger subset of genes that affect each trait than previously appreciated, but that 

individually their effect is difficult to detect by less quantitative experimental methods. The 

results provide evidence for pathways having a distributed, rather than centralized, genetic 

architecture. 

A distributed pathway architecture suggests that many genes that are not typically considered 

part of a pathway, such as the GAL pathway, could still play an important role in pathway 

function. We found that these “pathway modifiers” were enriched in several core cellular 
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processes (Figure 2.4). Given the pleiotropic nature of these processes, it is not surprising that 

these genes can influence multiple traits. Unexpectedly, however, we found that a mutant in a 

core cellular process can have trait-specific consequences; e.g. a ribosomal mutant affects the 

induction level in the GAL response, but the induced fraction in the PHO response (Figure 2.5). 

This implies that, instead of making cells ‘sick’, biological processes underlying quantitative 

traits are likely affected by a large number of inputs that have the potential to act in a trait-

specific manner. 

Previous work had found that yeast traits were affected by fewer genes than we report here. 

Work by Bloom et al. used linkage analysis to identify quantitative loci underlying 46 yeast 

traits, and found a median of 12 loci affected each trait [8]. While it is possible that our four traits 

happen to be more complex than the traits that were analyzed by Bloom et al., we believe the 

differences result from the applied methods. If either the two yeast strains used in the linkage 

analysis of Bloom et al. are more related than two random isolates in a natural population or if 

the traits analyzed were under strong selection, this would lead to an underestimation of the 

number of genes. Because we are using a deletion library, we avoid the confounding effect of 

selection and the biases due to the limited number of alleles between two natural isolates. We 

therefore believe that the discrepancy between the results of these two works is at least in part 

due to the applied methods, in particular selection on growth rates. 

2.7.1 Mendelian vs. quantitative trait 

A distributed genetic architecture, as observed in this study, has implication for patterns of 
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genetic inheritance. Different individuals can have different numbers of alleles and the effect size 

of the strongest alleles can be different. Therefore, the expectation should be that the same trait, 

when examined in a pairwise manner between many individuals, should exhibit a range of 

segregation patterns from Mendelian to quantitative depending on the number and strength of the 

alleles. Indeed, this exactly what was recently observed for multiple traits in crosses between 

yeast strains [29]. Furthermore, one should expect a smaller number of genes that contribute to a 

quantitative trait will have rare alleles that make the trait behave as a Mendelian trait. Indeed, 

this has also been found that many quantitative loci associated with normal human height 

variation contain genes underlying syndromes characterized by abnormal skeletal growth [19]. 

2.7.2 Application to human genetics 

Our results suggest that the number of genes that can influence a trait, when extrapolated to 

humans, is ~ 1500. However, our results were focused on a single-celled microbe that has a more 

compact genome with a smaller number of protein-coding genes than metazoan genomes. To 

what extent might our observations generalize to human genetic variation, given the differences 

in genome architecture and complexity? Do human traits, especially ones involved in important 

human disease, also have such a distributed underlying genetic architecture? One way to assess 

whether the genetic architecture of yeast and human traits is different is to compare the number 

of genes and their corresponding effect size distribution. 

While a small number of human diseases or traits can be explained by a small number of 

causative genes, e.g. three genes explain 50% of the genetic risk in macular degeneration [5], 
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many traits are poorly explained by a small number of genes. For example, a GWAS on human 

height found that 423 loci explained less than 20% of total heritability [30]. Similarly, 163 loci 

only explain 14% of heritability in Crohn’s disease [31], and 100 loci, excluding major 

histocompatibility complex, explain less than 6% of heritability in rheumatoid arthritis [32]. 

Since the explained fraction of heritability is far less than 100% in all these studies, it is difficult 

to accurately estimate the number of loci required to explain a majority of heritability in a human 

trait, but a reasonable estimate would be in the thousands. This suggests that the fraction of genes 

involved in a quantitative trait is similar in yeast and humans. 

While the effect size distribution of human traits is poorly defined it is consistent with our 

results. Park et al. devised a method to determine the effect size distribution by taking into 

account all identified alleles and the power to have detected these alleles. From this they 

concluded that the effect size distribution alleles affecting human traits are monotonically 

increasing [33]. The range of possible distribution discussed in that work is consistent with an 

exponential distribution. While there is no good human data exists on the distribution of small 

effect size alleles, gene essentiality can be used as a rough comparison of the relative distribution 

of strong effect size allele between yeast and humans. Further supporting the similarity in effect 

size distributions, the number of essential genes in yeast and humans is similar. In total we 

believe this supports the idea that while the human genome is more complex than yeast, 

differences in genetic architecture are likely subtle and quantitative not large and qualitative. 

2.7.3 Implication of a distributed genetic architecture on human disease 
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High-throughput genetic interaction maps have suggested that cellular processes are deeply 

interconnected [10,11]. But, it was not determined whether these connections were strong 

enough to be physiologically relevant. Our results demonstrate that cumulatively many genes of 

small effect size can make significant contributions to quantitative traits. Importantly, the effect 

sizes of these variants are not infinitesimal, and therefore we believe that increased power in 

GWAS would likely capture a significant portion of the missing heritability. This conclusion is 

consistent with work from Yang et al., which has shown that human genetic variants tagged in 

GWAS on body mass index is capturing the vast majority of heritability even if it is 

underpowered to identify the causative loci [26]. Of course, increased power alone will not help 

identify which SNPs within a locus is causative. 

Given that so many genes can affect a trait, a second expectation is that causative small effect 

size loci should be shared between many but not all traits. Indeed, correlation among genetic 

variants has been observed in a recent study using 24 human traits [34]. Interpreting these results 

has been challenging as these genetic correlations could arise from either a direct causative link 

between the two diseases or shared genetic factors. Our results suggest that these correlations can 

result from shared genetic factors that are enriched in core cellular processes. This means that 

there could be power in searching for processes that are significantly enriched between diseases 

that wouldn't typically be thought of as related. Finally, the spectrum of defects seen in some 

complex diseases could arise from the specific combination of small effect alleles in each 

individual. 
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In summary, our work provides a system-level perspective into the architecture of a quantitative 

trait. In contrast to most other works that focused on existing genetic variants, our work 

quantitatively determined the contribution of loss-of-function alleles. With further development 

of gene editing technologies and disease models, it will be interesting to test these conclusions in 

more complex systems. 

 

Methods 

Re-analysis of quantitative screening that used the yeast deletion collection. Genome-wide 

screens that used the yeast deletion collection (reviewed in Giaever 2014) were re-analyzed. 

After downloading available effect size measurements for individual mutants, the measurement 

error of each assay in Table S2.4 was determined as the standard deviation of the differences of 

replicate measurements for identical strains (see Supplemental Information for details). The 

effect sizes were compared to measurement noise distribution, ~N (0, measurement noise), to 

assign p-values for mutants. False discovery rates (FDR) were used to correct for the multiple 

hypothesis test problem. Significant mutants were defined as ones with FDR less than 0.5%.  

Plasmid and strain construction. We constructed a plasmid containing the GAL1 promoter 

driving YFP with a Zeocin resistance marker all flanked by regions that are homologous to the 

HO locus (A65V). This plasmid was digested with Not1 and transformed into the parental SGA 

strain (B56Y, MATx ura3∆ leu2∆ his3∆ met15∆ can1∆::ste2pr-spHIS5 lyp1∆::Ste3pr-LEU2 

LYS2+ cyh2) [1] to construct a base strain (D62Y), which was used to create both query and 
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reference strains used in the GAL screen. Query strains (library SLL14) were constructed using 

the SGA techniques[1] on the deletion collection and base strain D62Y. A reference strain 

(F59Y) was constructed by a second transformation with a TDH3pr-mCherry construct. The 

PHO84 promoter driving YFP reporter (E40B) was constructed using similar method by using 

PHO84pr PCR-ed from FY4 (using primer 

CGTACGCTGCAGGTCGACGGATCCCGTTTTTTTACCGTTTAGTAGACAG and 

TAATTCTTCACCTTTAGACATTTTGTTATTAATTAATTGGATTGTATTCGTGGAGTTTT

G) instead of the GAL1 promoter. The resulting PHO library (SLL15) and reference strain 

(I32Y) were used in the PHO screen. 

Galactose induction assay. Mutant strains from the deletion library that contains GAL1pr-YFP 

reporter and the corresponding reference strain were pinned onto YEPD agar plate before being 

inoculated into synthetic complete 2% raffinose medium to allow growth till saturation. Mutants 

and the reference strain were pinned together into 150 µl of fresh raffinose medium and grown 

for another seven hours, before being inoculated into 150 ul of synthetic complete 0.2% glucose 

and 0.3% galactose. After induction for eight hours, 10 ul of cultures were analyzed by flow 

cytometry LSRII with HTS. Each plate ran for ~20 minutes on the instrument. To ensure that all 

mutants underwent roughly the same induction time, no more than four plates were inoculated at 

a time. The induction level and induced fraction trait were based on measurements from two 

biological replicates in two separate days. Data were analyzed using a Matlab script (for 

representative raw data, see Figure S2.6). 

Phosphate starvation induction assay. Mutant strains from the library that contain the 
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PHO84pr-YFP reporter and the corresponding reference strain were pinned on YEPD plate 

before being inoculated into synthetic glucose medium (SD). Mutants and the reference strain 

were then co-cultured in SD for 12 hours before washing in water twice and transferred into 

induction medium - synthetic glucose medium supplemented with 200 µM of K2HPO4. Medium 

recipe is from Wykoff et al. [2]. Cultures were analyzed by a Stratedigm S1000EX cytometer 

cytometry. The three PHO traits were based on measurements from two biological replicates in 

two separate days. Data was analyzed using Matlab scripts. 

Fitting the effect size distribution. As the measured effects of most strains are close to 

measurement error, we first analyzed the effect size distribution of strains with significant 

measured effect sizes (FDR<0.5%). Mutant effect sizes were binned and fitted to exponential 

distributions. The only fitting parameter is the scale of the exponential distribution, which was 

estimated by maximizing the following log-likelihood function. 

log * = ,-.	(1 234|6 )
849:4;4<=:>	9?:?8

 

, where 234	is the effect size of the ith significant gene, and 6 is the the scale of the exponential 

distribution. The probability distribution is an exponential distribution defined over a range of 

effect size, i.e.: 

1 @ 6 =

1
6 A@B − @6 C@

D
EFGH

	A@B	(− @I4:6 )
 

Parameters that maximize the likelihood of measurements were used for Figure 2.2. The fitted 
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exponential distribution was extrapolated into the small effect size region to estimate the number 

of genes that are likely to follow the distribution. As a parsimonious model to explain our effect 

size measurements for four traits, we assumed the rest of mutants to have effect sizes as zero. 

Using this model, we predicted the expected effect size measurement distribution by convolving 

the true effect size distribution with the measurement noise of each assay (solid blue line in 

Figure 2.2). This distribution was then randomly sampled in 10,000 simulations and the standard 

deviation of the simulation was used as the confident zone of our estimation. 

Extrapolate the number of genes that affect quantitative traits to human traits. The number 

of significant genes were corrected by a factor determined by the gene number ratio between 

known human genes and screened yeast genes. The number of human genes is estimated as 

22,500 [3]. The number of screened yeast genes was determined as the number of genes that 

passed quality control. 

Simulation of potential biases from the study of amorphs. In our model, we defined the 

explained heritability as the total explained heritability by all SNPs that affect each gene. As 

described in the main text, we simulated the number of SNPs that affect each gene as a Poisson 

distribution. The allele frequency and relative effect size are modeled using beta distribution. 

Gain-of-function SNPs were modeled by re-assigning effect sizes of a fraction of all SNPs by 

randomly sampling from the effect size distribution of all SNPs. In our Latin hypercube 

sampling, parameters in the two beta distributions ranged from 0.5 to 9, the fraction of gain-of-

function SNPs ranged from 0 to 50%, and the average number of SNP per gene ranged from 1 to 

100. The heritability of each SNP is modeled as 2*S2*f*(1-f), where S is effect size and f is 
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allele frequency. Measured knockout effect size on induced level is used in the model as 

complete loss-of-function effects. The code used for this simulation is available at Dryad. 

Gene Ontology analysis. Genes that are significant for all four traits (FDR<0.5%) were used as 

a hit list; all the genes that passed quality control were used as a background list. Gene Ontology 

analyses were done using GO TermFinder [4]. 

Spatial clustering algorithm. Each gene was represented a 4-dimensional effect size vector 

using the effect size measured for each of the four yeast traits. Since different traits have 

different units, we normalized each dimension of the effect size vectors by its scale, which is 

defined as the root mean square of the effect sizes of all the genes that significantly affect that 

trait. For any gene set, we determined the similarity of their effects on four traits by 1) filtering 

out all genes that are not significant to any of our traits; 2) calculate the circular mean of the 

normalized effect size vectors (e) as: J = A
A ; 3) calculate the circular deviation as KLM =

1 − J. To determine the significance of this, we repeated the calculation 10,000 times after 

randomizing the gene names. Gene Ontologies that have at least five genes significant for any of 

the four traits were analyzed using the method above. Significantly clustered processes were 

defined as FDR < 0.01.  

Cycloheximide effect on GAL and PHO. Cycloheximide was purchased from Sigma (C7698). 

Cycloheximide was added directly to the induction media and this was the only change in the 

protocol from strains that were not exposed to cycloheximide. Cells were grown in a two-fold 

dilution series of cycloheximide with the highest concentration of cycloheximide being 20 
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µg/ml. Cycloheximide effects in Figure 2.5 were based on at least three biological replicates. 
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3.1 Introduction 

Aneuploidy, a genomic state defined by chromosome gains and losses, is the leading cause of 

miscarriages and mental retardation in humans and a hallmark of cancer. A remarkable 

characteristic of diseases caused by unbalanced karyotypes is high variability in presentation. In 

Down Syndrome (Trisomy 21), for example, 87.5 percent of fetuses die in utero, while some 

individuals reach ages of 60 and more (reviewed in [1]. High levels of variability are also 

observed in the degree of facial dysmorphology, cognitive abilities, hypotonia, and 
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dermatoglyphic features at birth. Disease predisposition is also variable. This phenotypic 

variability has been attributed to allelic variance among individuals (reviewed in [1]. Here we 

show that phenotypic variability is inherent to the aneuploid state, providing an additional 

potential explanation for the heterogeneity observed in diseases caused by large-scale karyotypic 

abnormalities. 

Gains and losses of genes encoded on autosomes generally lead to corresponding changes in 

gene expression (reviewed in [2]); therefore, it is not surprising that the consequences of mis-

segregating entire chromosomes are severe. Aneuploid cells exhibit proliferation defects, form 

protein aggregates at an elevated level, and are genomically unstable, which are collectively 

known as the aneuploidy-associated stresses (reviewed in [3]). In addition to the traits observed 

in a broad range of aneuploidies, aneuploid cells exhibit gene-specific phenotypes where changes 

in dosage of specific genes cause a specific phenotype [4]. 

Studies of aneuploidy to date have largely been confined to cell lines that have gained 

chromosomes [5–7] because cell lines harboring chromosome losses are difficult to maintain 

[8,9]. Thus, it is not known how chromosome loss impacts cell physiology nor whether 

monosomic cells exhibit some or all of the aneuploidy-associated stresses that are so widespread 

among cells with chromosome gains. Not only do we lack an understanding of how monosomy 

affects cell physiology, but we also do not know how quickly aneuploidy-associated phenotypes 

develop following chromosome mis-segregation. 

Here we employ a system that allows us to examine the immediate consequences of defined 
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chromosome gains and losses in budding yeast. Our analyses reveal that the adverse effects of 

aneuploidy on cell proliferation are immediate for both chromosome gains and losses. Our 

analyses further revealed high cell-to-cell variability in cell cycle progression among cells 

harboring the same aneuploidies. We identify gene copy number imbalances caused by the 

aneuploid state as one source of this variability and show that the high variance in S phase and 

early mitosis duration is due to stochastic DNA damage caused by these gene imbalances. 

Responses to environmental perturbations are also highly variable among cells of the same 

aneuploid karyotype, indicating that aneuploidy impacts the robustness of multiple—perhaps 

all—biological processes. Finally, we find that inbred trisomic mouse embryos exhibit 

phenotypic variability. Our results show that while subtle changes in gene dosage of individual 

genes have little effect on the robustness of biological networks, they can promote alternate 

behaviors when they occur at a large scale. 

3.2 A system to examine the immediate consequences of chromosome mis-

segregation 

In budding yeast, chromosomes that cannot attach to the mitotic spindle due to centromere 

failure are retained in the mother cell [10,11]. To induce chromosome mis-segregation, we 

replaced the endogenous centromere of each chromosome with a conditional centromere: a 

construct containing the galactose inducible/glucose repressible GAL1 promoter adjacent to the 

centromere [10]. Using this strategy, we generated a set of strains with chromosomes whose 

segregation can be controlled by carbon source (Figure S3.1A). To follow chromosome mis-
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segregation, we introduced an E. coli lac operator array near the centromere of the chromosome 

harboring the conditional centromere and expressed a GFP-LacI fusion to visualize the array 

(GFP dot; [12]; Figure S3.1A). Using this system, we found that upon addition of galactose to 

the medium, 67 - 93 percent of mother cells retained both sister chromatids harboring the 

conditional centromere (Figure S3.1B). 

In a haploid strain, chromosome mis-segregation generates nullisomes (N-1)—which are 

inviable—and disomes (N+1); in a diploid strain, monosomes (2N-1) and trisomes (2N+1) are 

generated by chromosome mis-segregation. To ensure that induction of mis-segregation of one 

chromosome does not lead to non-disjunction of other chromosomes, we followed the 

segregation of a large (chromosome IV) and a small chromosome (chromosome V) one (3 hours) 

and 2-3 cell divisions (5 hours) after induction of mis-segregation of an unrelated chromosome. 

Inducing mis-segregation of chromosomes I, II, VIII, IX, XI or XIII did not cause mis-

segregation of chromosome IV or V (Figure S3.1C), indicating that inactivation of one 

centromere does not cause substantial destabilization of other chromosomes. 

We generated a large number of strains harboring single or multiple conditional centromeres 

(Supplemental Experimental Procedures). This allowed us to examine the consequences of mis-

segregating up to 8 chromosomes and enabled us—for the first time—to systematically analyze 

the consequences of chromosome losses on yeast cell physiology. We conducted all of our 

cytological analyses in strains harboring GFP dots on the mis-segregating chromosome to ensure 

that we only analyzed cells that had indeed gained or lost a chromosome. 
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Quantitative proteomic analyses of budding yeast cells harboring an additional chromosome 

showed that approximately 80 percent of proteins encoded on the disomic chromosome are 

expressed according to their gene dosage [13,14]. To determine how quickly protein levels 

change upon gain of an additional chromosome, we measured protein content of haploid cells 

that had gained a copy of chromosome IV (disome IV) immediately after chromosome mis-

segregation (1 hour) and 2 cell divisions later (after 5 hours). As a control we measured protein 

content of cells constitutively harboring an extra copy of chromosome IV (henceforth chronic 

disomes). Proteome quantification by TMT showed that levels of proteins encoded on the 

disomic chromosome were increased in this control strain. However, the increase was only 1.4-

fold instead of two-fold, likely the result of the ‘ratio compression’ effect, a well-known artifact 

occurring in isobaric labeling analyses (Figure 3.1A; reviewed in [15]. We corrected for this ratio 

compression in our analysis. 
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Figure 3.1 The proteome rapidly adjusts to changes in gene dosage following chromosome 

mis-segregation 
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(A) Plots show log2 ratios of the relative protein abundance of a strain harboring chronic disomy 

IV (A24367) grown in YEP-D at 30°C compared to wild-type cells (A38452) from the 5-hour 

time-point in (D). (B) Experimental setup used for the experiment shown in (C,D). Mother cells 

were isolated by sorting for biotin-labeled cells (1 hour; C) and then grown in YEP-D at 30°C for 

4 hours (5 hours; D). (C,D) Log2 ratios of the relative protein abundance of disome IV cells 

(A38455) compared to wild-type cells (A38452) 1 hour (C) and 5 hours (D) following 

chromosome mis-segregation. Proteins encoded on chromosome IV are in red. (E-F) Cells were 

grown in YEP-R and then switched to YEP-RG and grown at 30°C for 160 minutes to induce 

chromosome mis-segregation. Mother-daughter pairs of cells that had just completed a cell 

division were separated and placed side-by-side on YEP-D plates. Colony area was measured 

after growth at 30°C for 40-48 hours. Euploid colonies were grown on the same plate and were 

either from a wild-type strain or from cells in the experimental strain that did not missegregate a 

chromosome. Disome (blue), trisome (green), and monosome (red) colony size is shown as a 

ratio of aneuploid to euploid colony area as a function of the number of open reading frames 

(ORFs) on the aneuploid chromosome(s). Error bars indicate standard deviation. Linear 

regressions are shown for disomes (r2 = 0.71, excluding disome VI due to lethality of excess 

TUB2), trisomes (r2 = 0.70, excluding trisome VI), and monosomes (r2 = 0.93, for colonies with 

aneuploid to euploid ratios > 0.015). Abbreviations: WT, wild-type; Dis, disome; Nul, nullisome; 

Tri, trisome; Mono, monosome; Chr, chromosome; SD, standard deviation; A/E, aneuploid to 

euploid colony size; m, slope. See also Figure S3.1. 

In cells induced to mis-segregate chromosome IV, 67% of cells were disomic for chromosome 
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IV, 20% euploid, and 13% cells lacked chromosome IV one hour following chromosome mis-

segregation. Five hours later, the population was comprised of 61% disomes, 34% euploid cells, 

and 5% nullisomes. Based on these distributions we calculated the log2 ratio of the expected 

protein abundance ratio to be 0.12 at 1 hour and 0.28 at 5 hours in the extreme where proteins are 

only diluted by proliferation and 0.27 at 1 hour and 0.28 at 5 hours in the other extreme where 

protein turnover is instantaneous (see Supplemental Experimental Procedures). Our experimental 

analysis revealed that one hour following chromosome mis-segregation, proteins encoded on 

chromosome IV were elevated compared to proteins encoded by the euploid chromosomes, with 

a mean log2 protein abundance ratio of 0.21 for proteins on chromosome IV and of 0.32 five 

hours following chromosome mis-segregation (Figure 3.1B-D). These results argue that protein 

composition had not quite adjusted to the genome composition of the disome IV cells within one 

hour of chromosome mis-segregation, but protein composition is effectively equivalent to a 

chronic disome by five hours. We conclude that chromosome mis-segregation leads to a rapid 

remodeling of the proteome to reflect the cell’s genetic makeup. 

3.3 Chromosome gains and losses cause defects in cell division 

Given that chromosome mis-segregation results in the rapid adjustment of the cell’s proteome to 

the new aneuploid karyotype (Figure 3.1B-D), we next investigated how quickly aneuploidy-

associates stresses such as cell proliferation defects arise following chromosome mis-

segregation. To measure cell proliferation following chromosome mis-segregation, we first 

examined colony formation 40-48 hours following chromosome mis-segregation, when colony 
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size was still increasing exponentially (Figure 3.1E). This analysis led to two conclusions. First, 

the growth defects observed in monosomes were more severe than the growth defects observed 

in disomes and trisomes (Figures 3.1F, B.1B; Supplemental Experimental Procedures). Second, 

colony size was inversely correlated with the degree of aneuploidy (Figure 3.1F). The 

observation that the negative fitness slope of trisomes is less steep than that of disomes further 

indicates that it is the relative ratio of aneuploid to euploid gene dosage that is in large part 

responsible for the observed fitness defects. Doubling the gene dosage relative to base ploidy of 

the cell, as occurs in the disomes, is proportionally more detrimental than increasing the gene 

dosage by 50 percent relative to base ploidy, as occurs in the trisomes. We conclude that (1) both 

chromosome gain and loss impair cellular fitness; (2) changes in relative expression levels of 

genes are responsible for the fitness defects observed in cells with chromosome gains; and (3) 

the fitness defect of monosomes is likely a composite of aneuploidy-associated stresses and 

haploinsufficiency. 

To more carefully define the cell cycle defects caused by chromosome loss, we analyzed cell 

cycle progression following chromosome loss by time-lapse microscopy. We used mCherry-

Cdc3 and Spc42-dsRed or Spc42-GFP fusion proteins along with GFP dots on the mis-

segregating chromosome(s) to follow cell cycle progression. Cdc3 is a component of the septin 

ring that forms at the site of bud formation from the time of entry into the cell cycle until exit 

from mitosis [16]. Thus, the time during which a cell lacks a Cdc3 ring at the plasma membrane 

estimates the time a cell spends in G1. Spc42 is a component of the spindle pole body (SPB; 

[17]. The distance between SPBs and the separation of sister chromatids as analyzed by GFP dot 
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separation indicates anaphase onset. 

Doubling-time measurements revealed that cell proliferation was delayed in all monosomic 

strains analyzed (Figure 3.2A). This analysis agreed with our colony size measurements but was 

not perfectly correlated (i.e. monosomes XII and XIV) because the doubling time measurements 

do not take into account cells that stop dividing, which is a frequent occurrence in some 

monosomic strains. We further observed that the cell cycle delay and number of cells that did not 

divide at all increased with degree of monosomy (Figure 3.2A). Note, however, that strains with 

the highest degree of monosomy appeared to have less of a cell cycle delay than strains 

harboring lower levels of monosomy. This is because cells that stop dividing, which are a 

frequent occurrence in strains with multiple monosomies (Figure 3.B.2A), cannot be included in 

the doubling time measurements. 
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Figure 3.2 Chromosome loss leads to cell cycle delays and cell-to-cell variability 

(A-F) Cells were grown to mid-log phase in SC-R and then switched to SC-RG for 160 minutes 

to induce chromosome mis-segregation. Cells were then plated on SC-D solid medium and 

imaged every 5 minutes for 8-10 hours at 25°C. Division time (A) was calculated for 

monosomes and normalized to euploid cells imaged during the same time-lapse. Euploid cells 

were either from the wild-type control strain or from cells in the experimental strain that did not 

mis-segregate a chromosome. Log2 transformed aneuploid to euploid ratios are plotted. Lines are 

at the mean. Numbers in parentheses on the x-axis labels indicate number of open reading frames 
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on the aneuploid chromosome(s). Standard deviations for euploid (WT; black bars in B,C and 

grey points in D,E) and monosome (grey bars in B,C and blue points in D,E) populations were 

measured and an F-test was used to test for equality of variance between the monosome and the 

euploid population from the same experiment (** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 

0.0001). (F) The number of most slowly dividing cells (as percent of the total population) that 

need to be excluded from the monosome population to obtain equal variance with the euploid 

populations is shown for G1 (black bars) and S+early M phase (grey bars). Note that we did not 

analyze strains harboring multiple monosomies. Such cells essentially only undergo one or two 

cell divisions before arresting—the duration of which underreports on variability because long 

lived proteins have not yet adjusted to the monosomic state and become limiting. Abbreviations: 

AC, arrested cells; WT, wild-type; Mono, monosome. See also Figure S3.2. 

Next we examined the effects of monosomies on specific cell cycle stages. This analysis 

revealed that 14 of 15 monosomes analyzed exhibited a G1 delay that increased with degree of 

monosomy (r2 = 0.89; Figure S3.2B,E). Delays in other cell cycle stages were also common 

(Figure S3.2C,D). We conclude that loss of most chromosomes impacts multiple cell cycle 

stages. 

Our live-cell analyses also revealed that monosomic cells of the same karyotype exhibited 

dramatic cell-to-cell variability in cell cycle duration (Figure 3.2A-C; B.2B-D). To quantify this 

heterogeneity, we determined the standard deviation of G1 duration and of the time it took cells 

to go through S phase and early mitosis (bud emergence to anaphase onset, henceforth S+early 

M phase). This analysis revealed high variability in these two cell cycle periods (Figure 3.2B-E; 
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S2B,C). Furthermore, we found variability in G1 duration to increase with degree of monosomy 

(Figure 3.2B). S+early M phase duration variability appeared less correlated with degree of 

monosomy, but this appearance is misleading as cells harboring multiple monosomies only 

undergo one or two cell divisions before arresting in G1 (Figure S3.2A). Variabilities in the first 

and second divisions following chromosome mis-segregation are likely smaller than they would 

be in later divisions, were complex monosomies to continue to divide, because levels of long-

lived proteins have not yet adjusted to the monosomic state and have not yet become limiting. 

To determine whether variability was driven by a small number of extremely slowly dividing 

cells or it reflected increased variability amongst all members of the population, we asked how 

many of the most slowly dividing cells had to be eliminated from monosomic cell populations 

for variance of the monosome population to resemble that of euploid control cells (Figure 3.2F). 

This analysis revealed that variability in S+early M duration in half of the monosomes was 

driven by few cells with extreme cell cycle delays (Figure 3.2F). In the other half of monosomes, 

a higher percentage of the population (approximately 20 percent) conferred heterogeneity. A 

similar fraction of cells was responsible for the variability in G1 duration in most monosomes 

(Figure 3.2F). We conclude that monosomy interferes with multiple aspects of cell proliferation 

and that the degree of the defect varies greatly among cells harboring the same monosomy. 

To determine whether cell-to-cell variability in cell cycle duration was specific to chromosome 

loss, we examined cell cycle kinetics immediately following chromosome gain(s) in haploid 

cells. Consistent with previous results, we found cell division to be slowed in all disomes, with 

most disomes exhibiting delays in both G1 and S+early M phase (Figures 3.3A, S3.3A-C). 
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Interestingly, like cells carrying monosomies, disomic cells exhibited significant cell-to-cell 

variability in G1 length and S+early M phase duration that increased with degree of disomy 

(Figure 3.3B, C; S3.3D). In the majority of strains harboring single chromosome gains, 

variability in S+early M and G1 length was driven by 20 percent of the population or less (Figure 

3.3D). In strains harboring multiple disomes, variability reflected increased variability among the 

entire population (Figure 3.3D). 
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Figure 3.3 Chromosome gain leads to cell-to-cell variability that is partially attenuated by 

increased ploidy 

Cells were grown and imaged as described in legend to Figure 3.2. Disome division times (A) 

and standard deviations (B,C,I-K) and trisome division times (E) and standard deviations (F,G,I-

K) were calculated as described in Figure 3.2 (** = p ≤ 0.01, *** = p ≤ 0.001, **** = p < 

0.0001). The number of most slowly dividing cells (as percent of the total population) that need 

to be excluded from the disome (D) or trisome (H) population to obtain equal variance with the 

euploid population is shown for G1 (black bars) and S+early M phase (grey bars). Plots in I-K 

show only common aneuploidies between disomes and trisomes (chromosomes I, II, IV, V, X, 

XI, XII, XIV, and V+X). See also Figure S3.3. 

Most phenotypes associated with aneuploidy are attenuated when base ploidy is increased—that 

is, they are more severe in disomes than in trisomes [6]. To some extent, increased ploidy also 

buffered against cell cycle duration heterogeneity (Figure 3.3; S3.3). Variability in total cell 

cycle length and S+early M phase duration was partially attenuated by increased ploidy, but 

variability in G1 length was not (Figure 3.3I-K). Our data demonstrate that increased cell-to-cell 

variability with regards to cell cycle progression is a universal feature of the aneuploid state in 

yeast. Our data further indicate that this heterogeneity is caused in part by the amount of 

overproduced protein with respect to base ploidy and implicate overexpressed proteins or 

proteins that are not correctly assembled into their biological complexes as contributing to non-

genetic variability seen in aneuploid cells. 
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What are the origins of the high cell-to-cell variability in cell cycle duration in aneuploid cells? 

Although aneuploid cells are genomically unstable [18–22], mutation-induced population 

heterogeneity is an unlikely cause. The system we employ examines the immediate effects of 

mis-segregating a specific chromosome, precluding the accumulation of suppressor mutations. 

Nevertheless, to exclude the possibility that heterogeneity is due to genetic or perhaps epigenetic 

changes, we examined whether cell cycle timing was consistent from one division to the next. 

We measured division time of individual cells during two consecutive cell divisions following 

chromosome mis-segregation for cells disomic for chromosomes I, II, V, VIII, or XIV. This 

analysis revealed that a substantial delay during one cell cycle was not predictive of a slow 

subsequent cell cycle, as single-cell division times in two consecutive divisions were not 

correlated (r2 ≤ 0.019; Figure S3.4A-E). Little correlation between consecutive division times 

was also observed in euploid cells [23]. We conclude that neither genetic nor epigenetic changes 

cause population heterogeneity in aneuploid cells. 

3.4 Stochastic DNA damage contributes to population heterogeneity in 

aneuploid strains 

If genetic and epigenetic alterations are not responsible for cell-to-cell variability, stochastic 

events must be the source of heterogeneity. To test this idea we first asked whether stochastic 

DNA damage could explain aspects of the observed cell-to-cell variability, as a previous study 

had shown that yeast strains harboring chronic disomies experience increased DNA damage [18]. 

We deleted RAD9, a gene encoding a component of the DNA damage checkpoint pathway that is 
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responsible for delaying cell cycle progression in response to DNA damage (Figure 3.4). 

Deletion of RAD9 decreased cell-to-cell variability in S+early M phase duration in wild-type 

cells (Figure 3.4G). This is not surprising because even wild-type cells experience DNA damage, 

especially during live-cell microscopy. The effects of deleting RAD9 were even more dramatic in 

disomes and monosomes. Cell-to-cell variability in S+early M duration was dramatically 

decreased in all strains except monosome XI (Figure 3.4F). Deletion of RAD9 only caused a 

minor decrease in G1 length variability in some aneuploid strains (Figure 3.4D,E). This minor 

effect on G1 duration variability is not surprising given that DNA damage is predominantly 

repaired in S phase and G2 in yeast [24]. We conclude that stochastic DNA damage is largely 

responsible for variability in S+early M phase length in all but one aneuploid strain analyzed. 
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Figure 3.4 Cell-to-cell variability is in part due to stochastic DNA damage 

Cells were grown and imaged as described in legend to Figure 3.2. Division time (A), G1 

duration (B), and S+early M duration (C) were calculated as described in Figure 3.2. Standard 

deviations for euploid control populations (WT; E,G) and aneuploid (D,F) populations were 

measured and an F-test was used to test for equality of variance between RAD9 (black bars, D-G) 

and rad9Δ (grey bars, D-G) populations (* = p ≤ 0.05, (** = p ≤ 0.01, *** = p ≤ 0.001, **** = p 

< 0.0001). The data for strains harboring a wild-type RAD9 gene are the same data as shown in 

Figures 3.2 and 3.3 and are duplicated here for comparison to rad9Δ. 

Deletion of RAD9 not only decreased variability in S+early M phase length, it also slightly 

decreased average S+early M duration in some aneuploid strains (Figure 3.4C). To determine 

whether accelerating cell proliferation per se led to a decrease in cell-to-cell variability, we 

examined the consequences of deleting UBP6 on cell cycle length heterogeneity. Deletion of 

UBP6 attenuates levels of proteins whose abundance changes the most in disomic yeast strains 

and increases proliferative potential of most chronic disomes at 37°C and of three disomes (V, 

VIII, and XI) at 25°C [13,14]. Deletion of UBP6 also decreased average G1 length immediately 

following mis-segregation of chromosomes V, VIII and XI but it did not affect cell cycle 

duration variability (Figure B.4F-L). Our results indicate that increased variability in cell cycle 

duration in disomic yeast strains is not solely a consequence of increased cell cycle length. Based 

on the observation that deletion of UBP6 attenuates levels of the proteins most mis-regulated in 

the disomes yet does not affect variability, we further conclude that cell cycle length variability 



 

 

 

 

63 

is not caused by the most extremely deregulated genes in disomes. 

The heterogeneity in cell cycle duration immediately following chromosome mis-segregation 

was dramatic, ranging in some instances from near wild-type division times to permanent cell 

cycle arrest in others. Is this heterogeneity maintained as cells continue to divide with an 

unbalanced karyotype? To address this question we measured cell cycle duration in chronic 

disomes. 

Disomy of chromosome I, VIII, XIV or XVI causes significant variability in G1 and S+early M 

duration immediately following chromosome mis-segregation (“Acute Disomes”; Figure 3.5). 

Variability in G1 duration was attenuated in three of the four corresponding chronic disomic 

strains (Figure 3.5). Variability in S +early M phase was only attenuated in chronic disome I. We 

conclude that cell-to-cell variability in G1 duration is initially high following chromosome mis-

segregation but is attenuated upon continuous selection for an aneuploid karyotype. These 

findings further suggest that G1 heterogeneity is selected against. Identifying the genetic and 

perhaps epigenetic alterations that reduce G1 variability in the chronic disomes will be of great 

interest. 
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Figure 3.5 G1 length variability is attenuated in yeast strains harboring chronic disomies 

Chronic disomes were grown to mid-log phase in SC-D and then plated on SC-D solid medium 

and imaged as described in legend to Figure 3.2. Division time (A), G1 duration (B), and S+early 

M phase duration (C) were measured as described in legend to Figure 3.2. Standard deviations 

for control euploid (WT; E,G) and disome (D,F) populations were measured and an F-test was 

used to test for equality of variance between the inducible (black bars, D-G) and chronic (grey 

bars, D-G) populations (* = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, **** = p < 0.0001). The 

data shown for acute disomes are the same as in Figure 3.3. However, only data from the second 

cell division and beyond were included in this analysis to eliminate variation due to the carbon 

source switch used to induce chromosome mis-segregation, which was not done in the analysis 

of the chronic disomes. 

3.5 Aneuploidy causes increased variability in the response to environmental 

perturbations 

Next we wished to determine whether aneuploidy also causes increased cell-to-cell variability in 

other biological processes. We analyzed the response of disomes I, II, VIII, IX, XI, XIII, and 

XVI to three perturbations: galactose, DTT, and heat shock. Strains were analyzed at single-cell 

resolution (by flow cytometry) with fluorescent reporter fusions that are responsive to each 

perturbation (see Supplemental Experimental Procedures; Figure 3.6), as gene expression is a 

classic model in the study of population heterogeneity [25]. Additionally, disomes V, X, XII, and 

XIV were analyzed in a subset of the three environments (Figure B.5). Strains with GAL1pr-YFP 
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were grown in medium containing 0.25% galactose with no other sugars—a maximally inducing 

condition (Figure 3.6A-B). Strains with heat shock element (HSE) motifs (P4xHSE-YFP), which 

are controlled by the Hsf1 transcription factor, were grown at 39°C (a temperature where most 

euploid cells robustly responded to heat-shock with minimal cell death; Figures 3.6C-D and 

S3.5A-B). Strains with a promoter containing four unfolded protein response element (UPRE) 

motifs, which are regulated by Hac1 (P4xUPRE-GFP) were grown in medium containing 0.625mM 

DTT, a concentration where cells robustly respond (Figures 3.6E-F and S5C-D). While the mean 

significantly varied in 14 of the 26 strain condition pairings (p-values < 0.05 by Wilcoxon rank 

sum test; Figures 3.6A,C,E and B.5A,C) there was no generic pattern of whether the mean 

increased or decreased (Table S3.1). The standard deviation on the other hand increased in all 18 

experimental-condition pairs where variation in the standard deviations was observed (p-values < 

0.05 by Wilcoxon rank sum test; Figures 3.6B,D,F and S3.5B,D and Table S3.1). The fold 

increases in standard deviation varied from 1.03 to 1.5-fold. In total, our results indicate that 

aneuploidy leads to an increase in cell-to-cell variability in a number of different biological 

responses. 



 

 

 

 

67 

 

Figure 3.6 Disomes show increased cell-to-cell variability in response to environmental 

perturbations 

Mean (A,C,E) and standard deviation (B,D,F) of GAL1pr-YFP (A-B), P4xHSE-YFP (C-D), and 

P4xUPRE-GFP (E-F) expression at steady-state in conditions that robustly induce each reporter 

construct. Error bars represent the standard error of the mean (n=4).  
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(G) Six strains were constructed that contained both a GAL1pr-YFP and a TDH3pr-mCherry 

construct. The correlation between the two fluorescent signals was calculated (n=4). All 

measurements (A-G) were normalized to SSC to account for differences in cell size. Asterisks 

(*) in A-G indicate statistical significance between the disome and euploid populations by 

Wilcoxon rank sum test. Abbreviations: WT, wild-type; Dis, disome; Glu, glucose; Gal, 

galactose. See also Figures B.5, B.6 and Table S3.1. 

In addition to variations in the maximal response, variations can also exist in the kinetics of 

response to a signal and the concentration at which cells respond. Therefore, we titrated glucose 

concentrations to measure the concentration of glucose at which cells repress the GAL1pr-YFP 

reporter construct in medium that contains a constant amount of 0.25% galactose (Figure S3.6). 

We found that all disomes were more sensitive to glucose inhibition (p-values < 0.05 by 

Wilcoxon rank sum test; Figure S3.6B). In addition, we measured the time to induce GAL1pr-

YFP following shift from raffinose to galactose (time = 0 in Figure S3.6C-D). All disomic 

populations, except for disome I, harbored a substantial fraction of cells that were delayed in 

induction of GAL1pr-YFP compared to euploid populations (Figure S3.6C-D). The time for all 

cells to completely induce the GAL response also varied among the disomes, in some cases 

increasing and in others decreasing. Together, these results support that the vast majority of 

disomes are more variable in their response to galactose. 

The increase in standard deviation of the response could result from pathway specific increases 

in variation (intrinsic) or global increases in variation (extrinsic). Because we had measured a 

number of the strains harboring extra chromosomes under multiple conditions we were able ask 
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whether an increase in variation in response to one stimulus was correlated with an increase in 

variation in a second stimulus. The results suggest both extrinsic and intrinsic components. The 

extrinsic component is supported by several strains having higher standard deviations in all 

conditions (Figure 3.6B,D,F; significance of 0.06 by Wilcoxon rank sum test). The intrinsic 

component is supported by strains such as disome VIII that had increased variation in two 

conditions but not in a third (Figure 3.6B,D,F). 

As an alternative way to assess the degree of intrinsic versus extrinsic noise, we created a wild-

type and five disomes containing both a GAL1pr-YFP and a TDH3pr-mCherry construct. The 

correlation in expression of the two promoters in a single cell could then be assessed across the 

six strains (Figure 3.6G). After binning for cell size (see Supplemental Experimental 

Procedures), two of the strains had an increased correlation while three of the strains had a 

decreased correlation (p-values < 0.05 by Wilcoxon rank sum test). Our data show that aneuploid 

cells exhibit increased variability in their response to multiple different environmental stimuli 

caused by both intrinsic and extrinsic sources of variation. 

3.6 Aneuploidy causes increased phenotypic variability in mammals.  

Is increased population heterogeneity a unique feature of aneuploid budding yeast strains or a 

more general property of the aneuploid state? To address this question we examined the effects 

of chromosome gain on phenotypic variability in inbred mouse strains. We used Robertsonian 

translocations that were backcrossed at least 10 times into the C57BL/J6 background to generate 

isogenic euploid, trisomy 13, and trisomy 19 embryos [7,26]. In crosses involving Robertsonian 
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translocations, litter size is usually small and trisomic embryos represent less than 16% of the 

offspring [27], severely limiting the number of animals we were able to analyze. It was 

nevertheless evident that phenotypic variability was high among trisomy 19 embryos compared 

to isogenic euploid littermate controls. We observed variability in facial morphology, degree of 

nuchal edema and hemorrhaging at embryonic day 15.5 (Figure 3.7A). To quantify this 

variability we measured the maximal width of nuchal translucency, a classic prenatal test to 

assess degree of nuchal edema, which is an indicator of chromosomal abnormalities in human 

pregnancies. This analysis revealed that variability in nuchal edema thickness was significantly 

higher in trisomy 19 embryos than euploid control animals (p<0.05 by permutation analysis and 

p<0.005 by F-test on the variance; Figure 3.7B). Variability in morphology was also observed 

among trisomy 13 embryos even though we were only able to obtain one litter harboring trisomy 

13 embryos (Figure 3.7C). We conclude that aneuploidy causes phenotypic variability in inbred 

trisomy 19 embryos and likely also in trisomy 13 embryos. 
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Figure 3.7 Non-genetic individuality in trisomic mice 

(A) Images of trisomy 19 embryos and their representative euploid littermates at gestational 

stage E15.5. Bar, 10 mm. (B) Thickness of nuchal edema in wild-type and trisomy 19 E15.5 

embryos shown in (A). (C) Images of trisomy 13 embryos and a WT littermate at E15.5. Bar, 10 

mm. 

3.7 Discussion 

Phenotypic differences in genetically identical populations have been observed in a variety of 

experimental settings [23,25,28]. Variability can arise from stochastic synthesis and degradation 
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of molecules [29,30] as well as binomial partitioning at cell division [31]. Fluctuations are 

exacerbated when molecules are at low copy number or are segregated as a unit [32,33]. 

Mechanisms have been described that counteract these fluctuations to make biological processes 

robust (reviewed in [34], but when buffering mechanisms are perturbed, regulatory networks can 

exhibit alternate behaviors [35]. We show here that chromosome-scale changes in gene dosage 

severely impact the robustness of every biological network that we analyzed. We propose that 

this universal characteristic of the aneuploid state could help explain the variability in 

presentation and treatment responses of diseases caused by karyotypic abnormalities. 

Aneuploidy decreases robustness of biological networks 

Recent work has shown that karyotypically heterogeneous populations of aneuploid S. cerevisiae 

and C. albicans cells exhibit a wide range of phenotypes, particularly while under stress, and that 

this range of phenotypes is beneficial in adaption of the population to different environments 

[36,37]. To our knowledge, our work is the first to report that karyotypically homogeneous 

populations of aneuploid cells exhibit increased phenotypic variation as compared to euploid 

cells. All chromosome gains and losses that we analyzed cause a dramatic increase in variance in 

G1 and/or S+early M phase duration, with increases in both cell cycle stages for many 

aneuploidies. Two lines of evidence indicate that this variability is not due to genetic 

heterogeneity. First, the inducible system to generate aneuploid cells has the advantage that 

strains are propagated in the euploid state and are acutely induced to mis-segregate specific 

chromosomes, which avoids the accumulation of genetic alterations selected for by an aneuploid 

karyotype. Second, we find that cell cycle delays observed in an individual cell are not consistent 
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from one division to the next, indicating that the delays are caused by stochastic and not heritable 

events. 

Heterogeneity in cell cycle duration was also observed in strains with chronic aneuploidies. 

Strains harboring chronic aneuploidies are variable for a number of different cellular responses 

in addition to cell cycle timing. We found that population variation in gene expression increased 

in multiple aneuploid strains in response to an alternate carbon source and in response to two 

different cellular stresses: heat shock and DTT. This increase in variability occurred across all 

tested conditions that led to a response in our reporters. Together, these results lead to the 

unanticipated conclusion that aneuploidy causes an increase in non-genetic variability in many 

different cellular responses. In fact, unaffected pathways may be in the minority. 

Origins of non-genetic individuality 

How does aneuploidy cause increased cellular variability? Previous studies suggested that 

deterministic processes are responsible for cell-to-cell variability in cell cycle progression in 

wild-type cells [38]. Our analyses indicate that stochastic DNA damage, which leads to 

activation of the DNA damage checkpoint pathway, is a significant source of heterogeneity in 

S+early M duration. The subtle S phase defects and genomic instability that aneuploid cells 

experience [18,21,22] are likely the cause for activation of the DNA damage checkpoint pathway 

in a fraction of aneuploid cells. 

In contrast to variability in S+early M duration, inactivation of the DNA damage checkpoint 

pathway had little effect on G1 length heterogeneity in most aneuploid strains. What additional 
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factors contribute to the variability in this cell cycle stage remains to be determined. It is 

however worth noting that most stress response pathways delay cells in G1 [39] and cellular 

stresses have been shown to increase phenotypic variability under some conditions [40]. We 

propose that various stresses associated with the aneuploid state, such as protein folding, 

metabolic and oxidative stress, could contribute to the G1 length variability we observe in 

aneuploid strains. We further note that many different aneuploidies interfere with macromolecule 

biosynthesis [41], which controls G1 length (reviewed in [42]. Cell-to-cell variability in 

biosynthetic rates could thus also contribute to G1 length variability in aneuploid strains. 

We also do not yet know how aneuploidy causes heterogeneity in gene expression. While change 

in gene dosage might affect a response—for instance disome XIII might affect the response to 

galactose by changing the dosage of the Gal80 repressor encoded on chromosome XIII—it is 

unclear why dosage changes would lead to an increase in population variability. Instead, the 

increase in variability may be caused by an indirect source such as cellular stress, which is a 

universal feature of the aneuploid state. Previous studies showed that environmental stresses 

cause a decrease in growth rate. This decreased growth rate can lead to lower levels of 

expression of some transcription factors, increasing their variability and thereby the variability of 

the responses they control [43]. In microorganisms, multiple lines of evidence support the idea 

that variability in response to cellular stress is advantageous [28]. Given that aneuploidy causes a 

variety of cellular stresses, this alone is likely to be a key contributor to the increased cell-to-cell 

variability that we observe. We also note that multiple lines of evidence indicate that phenotypic 

heterogeneity allows populations to bet-hedge under stressful situations, which decreases the 
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mean fitness of the population but increases the geometric mean of the population, thereby 

allowing cells to survive in extreme situations [44–49]. The increased variability in aneuploid 

cells could also be related to this phenomenon. 

Ultimately, general features of the aneuploid state are likely to be the source of population 

heterogeneity. Many aneuploid yeast strains experience decreased protein synthesis rates [41] 

which could lead to decreased production of rare proteins. Unequal partitioning of such rare 

proteins could cause phenotypic variability. Changes in relative ratios of gene products also 

contribute to cell-to-cell variability. Higher base ploidy partially buffers against aneuploidy-

induced cell-to-cell variability in S+early M phase. We do not yet know which genes decrease 

robustness upon doubling or halving of gene dosage. Very few genes exist in yeast that cause 

substantive cell cycle defects when their gene dosage is altered by the addition of a single extra 

copy [50] and haploinsufficiency is equally rare [51]. Subtle changes in the dosage of network 

nodes, such as transcription factors or regulatory enzymes (i.e. protein kinases) may nevertheless 

have wide-spread effects on the activity of the biological pathway that they control [35,52], 

making cells more susceptible to intracellular and extracellular noise. 

Implications for cell-to-cell variability in wild-type populations 

Fluctuations in mRNA synthesis, protein synthesis and degradation, and unequal segregation of 

proteins have all been implicated in producing cells with alternate fates in populations of 

genetically identical cells [29,31,53,54]. Our analyses of aneuploid cells are consistent with 

variability in these processes being sources of biological noise. Our data furthermore lead to the 
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remarkable conclusion that subtle changes in gene expression (50% decreases or increases) can 

cause significant cell-to-cell variability when they occur on a chromosome-wide scale. In 

contrast, changing the dosage of a single gene by 50% usually has little effect on the robustness 

of biological networks. In other words, simultaneously changing multiple nodes of a biological 

network in subtle ways can make the behavior of a pathway unpredictable. We propose that 

simultaneous subtle fluctuations in the levels and activities of network components could 

contribute to heterogeneity observed in wild-type cells. 

Implications for disease presentation and treatment 

Phenotypic variability is not confined to aneuploid yeast strains. Trisomic embryos obtained 

from crosses of inbred mouse strains exhibit variability in embryonic morphology. Based on this 

observation, we propose that non-genetic heterogeneity could contribute to the dramatic 

phenotypic variability seen in constitutional aneuploidies in humans and, of course, cancer. 

Comparing phenotypic variability between inbred and outbred aneuploid yeast strains may in 

fact provide an opportunity to assess the degree of variability conferred by the aneuploid state 

itself and allelic variation in the population. 

Non-genetic heterogeneity could also provide an explanation for why aneuploidy is such a 

frequent occurrence in experimental evolution. The phenotypic variability associated with the 

aneuploid state could well provide opportunity for adaptation. In this regard, it is interesting to 

note that increased variance has the potential to enhance population fitness in euploid 

populations [23]; therefore, it is possible that aneuploidy occurs in evolution as a mechanism to 
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further increase population variance. 

We note that aneuploidy-associated non-genetic variability has profound implications for 

aneuploidy as a therapeutic target in cancer and fungal infections. Non-genetic heterogeneity 

could make therapies targeting specific aneuploidies difficult. Treatments that target general 

features of the aneuploid state may thus be more likely to be effective. In summary, our results 

indicate that decreased robustness of many, if not all, biological processes is a general feature of 

the aneuploid state. It will be interesting to determine how increased variability in single cell 

behavior leads to increased variability of multicellular processes. 

 

AUTHOR CONTRIBUTIONS 

R.B., C.R., B.H., C.B., C.M., P.H., R.S., M.S. and A.A. designed the experiments. R.B, C.R., 

B.H., C.B., C.M., P.H. and R.S. performed the experiments and analyzed results. R.B., C.R., 

B.H., C.B., C.M., P.H., R.S., M.S. and A.A. wrote the manuscript. All authors read and approved 

the final manuscript. 

ACKNOWLEDGEMENTS 

We thank Kirk Anders, Doug Koshland and David Pincus for reagents. This work was supported 

by the National Institutes of Health (CA206157-22 to A.A.), the Curt Marble Cancer Research 

Fund (to A.A.), in part by the Koch Institute Support Grant P30-CA14051, National Science 

Foundation Graduate Research Fellowships (C.R., C.M.) and a National Science Foundation 

grant 1349248 (M.S. and B.H.). A.A. is an investigator of the Howard Hughes Medical Institute 



 

 

 

 

78 

and of the Glenn Foundation for Biomedical Research. 

 

Method 

Yeast strains, plasmids and growth conditions 

Yeast strains were generated and manipulated as described previously (Guthrie and Fink, 1991). 

All yeast strains used in this study are listed in Table S2.2. Cells were grown at 30°C in YEP 

supplemented with 2% raffinose (YEP-R), 2% raffinose + 2% galactose (YEP-RG), or 2% 

glucose (YEP-D). For live-cell imaging, cells were grown in synthetic complete medium at 25°C 

supplemented with 2% raffinose (SC-R), 2% raffinose + 2% galactose (SC-RG), or 2% glucose 

(SC-D). Growth conditions for individual experiments are described in the Figure legends. 

Mis-segregation frequency of non-targeted chromosomes 

After mis-segregation in SC-RG, cultures were released into SC-D and fixed with 3.7% 

formaldehyde after 3 and 5 hours of growth at room temperature. The number of GFP dots per 

cell was counted for 100 unbudded cells at each time point. Unbudded cells containing 2 GFP 

dots were classified as having mis-segregated the GFP marked chromosome. 

Galactose and stress response reporter analyses 

All GAL1pr-YFP, UPRE-GFP, and HSE-YFP reporter experiments were performed in synthetic 

dropout medium containing 1.7g/L yeast nitrogen base (BD Difco), 1g/L monosodium 

glutamate, 200µg/mL Geneticin (G418), and histidine dropout complete supplement mix 
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(Sunrise Science), plus carbon sources. In the galactose response experiments, outgrowth 

cultures were grown in synthetic dropout medium supplemented with 2% raffinose, and 

induction assays were performed in synthetic dropout base supplemented with 0.25% galactose 

and a two-fold gradient of glucose ranging from 1.0%-0.002% (including a 0% condition). For 

the stress response experiments, all cultures were grown in synthetic dropout medium 

supplemented with 2% glucose. All 30ºC incubations for the GAL1pr-YFP, UPRE-GFP, and 

HSE-YFP reporter experiments were performed in a humidified incubator (Infor Multitron) with 

rotary shaking at 230 rpm (tubes and flasks) or 999 rpm (deep 96-well plates). Higher-

temperature incubations were conducted in an incubating microplate shaker (VWR) with rotary 

shaking at 1000rpm.  

Construction of conditional centromere strains 

Strains with conditional centromeres were constructed using a PCR-based method [9,56]. 

Briefly, the conditional centromere construct was amplified from plasmid p1888 using primers 

designed to target the conditional centromere construct to a particular. Strain A2587 was 

transformed with the conditional centromere constructs as previously described [56]. We 

replaced the endogenous centromere with the conditional centromere construct for every single 

chromosome (I-XVI). With the exception of cells harboring a conditional centromere on 

chromosome XV, all strains containing the conditional centromere construct exhibited doubling 

times equal to that of wild-type cells when grown in medium containing glucose (data not 

shown). We also generated strains harboring multiple conditional centromeres. This allowed us 

to examine the consequences of mis-segregating multiple (up to 8) chromosomes. Importantly, 
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this system also enabled us—for the first time—to systematically analyze the consequences of 

chromosome losses on yeast cell physiology. 

CEN-LacO plasmid construction 

To follow chromosome mis-segregation, we introduced a lac operator (E. coli, lacO) array near 

the centromere of the chromosome harboring the conditional centromere (Figure S3.1A). When a 

GFP-LacI fusion protein is expressed in these cells, it binds to the lacO sequences and forms a 

GFP dot at lacO array sites visible by fluorescence microscopy [12]. 

Plasmids targeting the LacO array to various chromosomes (CEN-LacO plasmids;) were 

constructed by cloning a homology region to the specific target site with XhoI restriction sites 

into the SalI cut plasmid p1499 (pCM40). Plasmids were integrated at the target site by 

restriction enzyme digest using the enzymes. Transformants were screened for gain of 

nourseothricin resistance (100 µg/ml). All plasmids containing the LacO array were propagated 

in Max Efficiency Stbl2 competent cells (Life Technologies, Grand Island, NY) due to the high 

propensity of the LacO array to recombine. All enzymes used for cloning were obtained from 

New England BioLabs (Ipswich, MA). 

HYGRO-LacO plasmid construction 

A plasmid targeting the LacO array to the hph hygromycin B resistance gene (HYGRO-LacO) 

was constructed in the same way as the Cen-LacO plasmids, using homology to the hph 

hygromycin B resistance gene. Integration of the HYGRO-LacO plasmid used a two-step 

process. First, the hph hygromycin B resistance gene was integrated into the desired site in the 
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genome using a PCR-based method [56]. Second, the HYGRO-LacO plasmid was integrated at 

the hph site by EagI digest. Transformants were screened for loss of hygromycin resistance and 

gain of nourseothricin resistance. 

GFP dot strain construction 

Strains containing the LacO array integration were crossed to a strain containing the GFP-LacI 

fusion protein. To integrate the GFP-LacI construct into the genome, plasmid p1801was 

linearized with NheI and transformed into A2587 cells as previously described (Guthrie and 

Fink, 1991). 

Other constructs 

 Spc42-dsRed and Spc42-GFP were constructed by PCR-based methods [56]. mCherry-Cdc3 

was constructed using the YIp211-CDC3-mCherry integrating plasmid [57]. The GAL1pr-YFP 

reporter was integrated at the HO locus [58]. The P4xHSE-YFP and P4xUPRE-GFP reporters were 

constructed from a single-integrating plasmid [59]. To make the dual YFP-mCherry reporter for 

the assays described in Figure 3.6G, a constitutively-expressed TDH3pr-mCherry construct was 

integrated in tandem with the GAL1pr-YFP reporter at the HO locus. 

Fluorescence microscopy 

For GFP dot imaging, cells were either imaged live or fixed in 3.7% formaldehyde for 15 

minutes at room temperature and then resuspended in 0.1 M potassium phosphate (KPi pH 

6.4)/1.2 M sorbitol. To visualize biotin labeling, cells were fixed in 3.7% formaldehyde for 15 

minutes at room temperature and then resuspended in 0.1 M potassium phosphate (KPi pH 
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6.4)/1.2 M sorbitol with 1 µg/ml streptavidin conjugated to Alexa 568 fluorophore (Molecular 

Probes). Cells were then washed once in 0.1 M potassium phosphate (KPi pH 6.4)/1.2 M 

sorbitol. Cells were imaged using a Zeiss Axioplan 2 microscope (Carl Zeiss) and a Hamamatsu 

OCRA-ER digital camera (Hamamatsu).  

Biotin labeling and sorting 

Cells were arrested with α-factor in YEP-R medium at 30°C and labeled with biotin [60]. Upon 

release from the G1 arrest, cells were switched to medium containing galactose (YEP-RG) to 

inactivate CEN4. Cells were then transferred to YEP-D medium at 30°C to stop further 

chromosome mis-segregation and grown for 1 or 5 hours. To purify populations of disomic cells 

for proteomic quantification following chromosome mis-segregation, we used a previously 

described method to purify mother cells [60]. Cells were grown to mid log phase in YEP-R and 

then arrested in G1 with the yeast mating pheromone α-factor (5 µg/ml). Following G1 arrest, 

cells were washed 3 times in phosphate buffered saline (PBS) pH 8.0 and labeled with EZ-Link 

Sulfo-NHS-LC-Biotin (1 mg biotin in PBS pH 8.0 per 1 OD600 unit of cells; Thermo Fisher 

Scientific) at 4°C for 30 minutes. Biotin forms permanent amide bonds with primary amines on 

cell surface proteins, thus labeling the cell wall of the G1 arrested cells. As the cell wall is built 

de novo during budding, release from the G1 block in the absence of biotin results in the mother 

cell being labeled with biotin while the bud is not labeled. Following biotin labeling, cells were 

washed 4 times with PBS pH 8.0/100 mM glycine to remove excess biotin. 

After biotin labeling, cells were transferred into YEP-RG medium to induce chromosome mis-



 

 

 

 

83 

segregation. Cells were grown for 120 minutes in YEP-RG at 30°C (one cell division). After 

nearly all cells had finished dividing, cells were transferred to YEP-D and grown for 1 hour. To 

purify biotin labeled cells, cells were first washed with PBS pH 7.4/0.5% bovine serum albumin 

(BSA) and then incubated with anti-biotin magnetic beads (Miltenyi Biotec) in PBS pH 7.4/0.5% 

BSA for 15 minutes at 4°C. Cells were washed once more with PBS pH 7.4/0.5% BSA and then 

resuspended in PBS pH 7.4/0.5% BSA and run over LS columns on a QuadroMACS separator 

(Miltenyi Biotec) to retain biotin-labeled cells. Biotin labeled cells were eluted from the columns 

with PBS pH 7.4/0.5% BSA following removal from the QuadroMACS separator. Cells were 

then washed once with PBS pH 7.4 and resuspended in YEP-D and grown at 30°C. Samples for 

analysis were taken at times indicated in Figure 3.1B. 

Protein quantification by mass spectrometry 

Preparation of protein extracts was adapted from Dephoure et al. (2014). Briefly, cells were 

lysed using a FastPrep-24 (MP Biomedicals) in a buffer containing 8 M urea, 75 mM NaCl, and 

50 mM Tris-Cl pH 8.2 using 3-6 cycles of 45 s at 4°C separated by 5 minute incubations at 4°C. 

Samples were broken until ~70% of cells had lysed as confirmed by light microscopy. Lysates 

were cleared by centrifugation at 14,000xg for 15 minutes at 4°C. Protein concentrations were 

determined using the Bradford protein assay (Bio-Rad). Further sample preparation, TMT 

labeling, and sample fractionation was performed as described in Dephoure et al. (2014). 

Samples were run with 3 technical replicates on a Thermo QExactive mass spectrometer 

(Thermo Fisher Scientific). Database searching was conducted using Mascot (Matrix Science). 
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Protein ratios were normalized to account for minor variations in sample mixing by centering the 

log2 protein abundance ratio distribution over zero, as described in Dephoure et al. (2014). When 

calculating the normalization factor, proteins on the disomic chromosomes were excluded. We 

expect most proteins (except those on the disomic chromosome) to be present at a one-to-one 

ratio. 

Calculation of expectation value for protein abundance ratio after chromosome mis-segregation. 

While mis-segregation occurs in many of the cells in the population, mis-segregation itself and 

the isolation of disomic cells are not fully efficient. One hour following chromosome mis-

segregation, the culture contained 67% cells disomic for chromosome IV, 20% euploid cells, and 

13% cells lacking chromosome IV (nullisomes). Five hours following chromosome mis-

segregation, the population was comprised of 61% disomes, 34% euploid cells, and 5% 

nullisomes. The slight decrease in the proportion of disomic cells at the 5 hour time point 

compared to the 1 hour time point is likely due to the reduced proliferation rate of disome IV 

cells compared to euploid cells. 

The expected ratio of proteins encoded on chromosome IV from disome IV and euploid control 

strains depends on two factors: 1) the percent of disomes, euploid cells, and nullisomes, and 2) 

the rate of protein turnover from degradation versus dilution. Given the measured percent of each 

karyotype at one and five hours, an expected value for the protein abundance ratio can be 

calculated for different models of protein turnover. In the extreme where proteins are only 

diluted by proliferation (using proliferation rate measured in Figure 3.3A and correcting for the 
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ratio compression; see below) one would expect a log2 protein abundance of 0.12 at 1 hour and 

0.28 at 5 hours. In the other extreme where protein turnover is instantaneous, the expectation is a 

log2 protein abundance of 0.27 at 1 hour and 0.28 at 5 hours. One hour following chromosome 

mis-segregation, proteins encoded on chromosome IV were elevated compared to proteins 

encoded by the euploid chromosomes, with a mean log2 protein abundance ratio of 0.21 for 

proteins on chromosome IV, compared to a mean of 0 for proteins on all other chromosomes 

(Figure 3.1C). Levels of chromosome IV-encoded proteins increased further to a mean log2 

protein abundance ratio of 0.32 five hours following chromosome mis-segregation (Figure 3.1D).  

Calculation of expected ratios:  

Given that previous work had shown that proteins encoded on disomic chromosomes exhibit a 

protein ratio of 2:1 versus proteins encoded by euploid chromosomes [13], we assumed that the 

observed log2 protein abundance ratio of 1.4 for proteins encoded on disomic chromosome IV 

was due to ratio compression. We can therefore calculate a ratio compression factor for our 

samples which when can then be use to calculate the actual ratio using the following formula 

 which yields a ratio compression factor (x in the equation) of 1.66.   

To calculate the expected log2 protein abundance ratio we first used the following relationship:
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When protein turnover is high this relationship simplifies to: 
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The expectation value for the log2 protein abundance ratio is calculated with the following 

formula 
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Aneuploid fitness colony measurements 

Cells were grown in YEP-R and then transferred to YEP-RG for 160 minutes to induce 

chromosome mis-segregation. Cells were then plated on YEP-D agar plates. Mother-daughter 

pairs that had just completed a cell division were separated by micromanipulation and allowed to 

grow into colonies at 30°C. Colony size was measured 40 – 48 hours later when colony size was 

still increasing exponentially. Colony area was measured using ImageJ. 

To calculate aneuploid to euploid colony area ratio, euploid colony area was measured and 

averaged per plate, with a separate average for euploid mothers and euploid daughters. Euploid 

cells on the same plate as the aneuploid cells were used for analysis to control for plate-to-plate 

variability. A value for each individual aneuploid colony was calculated as a ratio of the 

aneuploid colony area to the mean euploid colony area for euploid cells. For disomes and 

trisomes, the mean colony area for euploid mothers was used. For monosomes, the mean colony 

area for euploid daughters was used. Each circle in Figure 3.1F represents the mean of all 
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aneuploid/euploid ratios for a particular karyotype. Error bars indicate the standard deviation of 

the aneuploid/euploid ratios, not accounting for error propagation from euploid cells. 

Chromosome mis-segregation was confirmed by determining whether colonies could grow on 

plates lacking uracil. The inducible chromosome is marked with URA3 at the conditional 

centromere, so colony pairs in which one colony (arising from the daughter cell) is auxotrophic 

for growth on uracil and the other colony (arising from the mother cell) is prototrophic for 

growth on uracil indicates a chromosome mis-segregation event. For aneuploid strains with 

severe fitness defects, colonies were grown at 30°C until colonies were large enough to test for 

uracil prototrophy via replica-plating. Colonies were also tested for growth on plates containing 

glycerol as the sole carbon source. Colonies that did not grow on this medium were excluded 

from analysis as they are respiratory deficient, which causes slow growth. Rarely, the inducible 

chromosome was segregated into the daughter cell instead of the mother; these mis-segregation 

events were excluded from analysis.  

The colony mis-segregation assay in haploid cells was used to determine the chromosome mis-

segregation rates presented in Figure S3.1B. The growth defects observed in monosomes were 

more severe than the growth defects observed in disomes and trisomes (Figures 3.1F, S3.1B). 

While the sizes of many monosomic colonies were less than 1% of the sizes of colonies formed 

by euploid cells after ~48 hours of growth, nearly all monosomic strains eventually formed 

colonies after many days of growth. The only monosome that was inviable was chromosome 

XIII monosomy, due to monosomy of TUB1 which is lethal [61]. Disomy and trisomy were 

better tolerated than monosomy, with the exception of disomy VI and trisomy VI. These 
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chromosomal gains are inviable due to an increase in TUB2 copy number [61].  

Differentiating aneuploid from euploid cells in live-cell cell cycle analysis 

For cell cycle analysis, aneuploid cells were differentiated from euploid cells by counting the 

number of GFP dots present in a cell. In all euploid strains, 1 GFP dot per cell indicates 

euploidy. For disomes and trisomes of single chromosomes, the presence of 2 GFP dots in the 

cell indicates disomy or trisomy while 1 GFP dot indicates euploidy. For disomes and trisomes 

of 2 chromosomes, 4 GFP dots indicates disomy or trisomy. For disomes and trisomes of 3 

chromosomes, cells with 4, 5 or 6 GFP dots were scored as disomes and trisomes, as it was 

difficult to accurately count GFP dots at numbers greater than 4 dots per cell. For all monosomes 

(single or multiple chromosomes), 0 GFP dots per cell indicates monosomy. In all analyses 

euploid cells were either from the wild-type control strain or from cells in the experimental strain 

that did not mis-segregate a chromosome. 

Cell cycle analysis image acquisition 

For inducible aneuploids, cells were grown in SC-R to mid-log phase then transferred to SC-RG 

and grown for 160 minutes to induce chromosome mis-segregation. Chronic disomic strains 

were grown in SC-D medium to mid-log phase. Then, for both inducible aneuploids and chronic 

disomes, cells were transferred to SC-D and layered on an agar pad (2% agarose, SC-D) affixed 

to a glass slide and covered with a cover slip. Cells were imaged at 5-minute intervals for 8-10 

hours using a Zeiss Axio Observer-Z1 with a 63x objective (Carl Zeiss), equipped with a Zeiss 

Definite Focus module (Carl Zeiss) and a Hamamatsu ORCA-AG digital camera (Hamamatsu). 
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9 Z-stacks (0.6 microns apart) were acquired and maximally projected. MetaMorph software 

(Molecular Devices) was used for image acquisition and processing. 

Cell cycle analysis data processing 

For cell cycle analyses of aneuploid cells, approximately 20 aneuploid cells and 10 euploid cells 

were scored per experiment. G1 duration, S+early M phase duration, anaphase onset to 

cytokinesis duration, and division time (cytokinesis to cytokinesis) were measured for each cell 

following chromosome mis-segregation. Analyses of cells started either at bud emergence or at 

anaphase onset in the first division following chromosome mis-segregation. We were not able to 

image cells during the first G1 phase following chromosome mis-segregation because of the time 

needed to prepare the cells for imaging. Thus, division time analyses start in the second division 

following chromosome mis-segregation. 

At the end of the time-lapse, cells that were in G1 and had spent at least 100 minutes in G1 were 

scored as arrested and included in G1 duration calculations. Cells that were in G1 at the end of 

the time-lapse and had spent less than 100 minutes in G1 were not considered arrested and 

excluded from analysis for calculating G1 duration. At the end of the time-lapse, cells that had 

passed bud emergence but had not reached anaphase onset and had spent at least 200 minutes in 

that stage were scored as arrested and included in S+early M phase duration calculations. Cells 

that had passed bud emergence at the end of the time-lapse and had not reached anaphase onset 

but had spent less than 200 minutes in this stage were not considered arrested and excluded from 

analysis for calculating S+early M phase duration. 
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To calculate standard deviation of cell populations and compare variance using the F-test, raw 

data (in minutes) were used (Figures 3.2B-E, 3.3B,C,F,G,I-K, 3.4D-G, 3.5D-G, and S3.4I-L). 

These analyses were done on the combined data from all divisions measured following 

chromosome mis-segregation for all cells of a given karyotype for a particular cell cycle stage 

(G1, S+early M phase, or division time duration). Aneuploid cells were compared to euploid 

cells from the same experiment to account for minor day-to-day variability. 

In Figures 3.2A, 3.3A,E, 3.4A-C, 3.5A-C, S3.2B-D, S3.3A-C,E-G, and S3.4F-H, cell cycle 

measurements for aneuploid cells were normalized to euploid cells from the same experiment to 

allow us to compare cell cycle measurements among experiments. Each aneuploid cell 

measurement for G1 duration, S+early M phase duration, anaphase duration, or total division 

time was taken as a ratio of the mean of all euploid cells for the same measurement from the 

same division. For example, the G1 duration measurement for an inducible aneuploid cell in its 

third division following chromosome mis-segregation would be normalized to the mean of the 

G1 duration for all euploid cells in the third division following chromosome mis-segregation. 

Normalization to the euploid strain controls for day-to-day variability in experiments as well as 

changes in cell cycle durations upon shift from raffinose+galactose (SC-RG) as the carbon 

source to glucose (SC-D) as the carbon source. In the same manner, measurements of cell cycle 

duration in chronic disomes were normalized to euploid controls by cell cycle stage and division. 

Log2 transformed aneuploid to euploid ratios are plotted in the figures. 

In Figures 3.2F and 3.3D,H, the longest G1 or S+early M phases were removed from the 

aneuploid data set until the standard deviation of the aneuploid cell cycle stage was equal to that 
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of the corresponding euploid cell cycle stage in the same experiment. Standard deviations were 

considered equal when no longer significantly different by F-test. The percent of the total 

number of measured cell cycle stages (G1 or S+early M phase) that were removed to equalize 

standard deviations of euploid and aneuploid data is reported.  

Galactose response assays 

Strains were inoculated from colonies streaked on a G418/-his plate into liquid dropout medium 

supplemented with 2% glucose and incubated at 30ºC for 24 hours until cultures reached 

saturation. Cultures were diluted 1:100-1:400 into medium containing 2% raffinose and grown 

for 16-18 hours. For the steady-state glucose gradient assay, raffinose cultures at a final OD600≤ 

0.1 were pelleted, washed twice, and then resuspended 1:1 in synthetic dropout medium without 

carbon and diluted 1:100 into the glucose gradient to measure expression of the GAL1 reporter. 

For the kinetic response assays, raffinose cultures with a final OD600 0.1-0.3 were selected; a 0 

hour time point of the raffinose culture was harvested by addition of a concentrated TE/sodium 

azide 'stop solution' to a final (1X) concentration of 0.1% sodium azide. The remaining culture 

was pelleted, washed twice, and then resuspended at a 1:4 dilution into G418/-his liquid medium 

supplemented with 2% galactose. Aliquots were harvested every 30 min for up to 8 hours after 

the medium switch, and at 9 and 10 hours post medium switch. 

Dual-reporter noise assay 

Strains bearing a tandem GAL1pr-YFP-TDH3pr-mCherry reporter were inoculated from colonies 

streaked on a G418/-his plate into liquid dropout medium supplemented with 2% glucose and 
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incubated at 30ºC for 24 hours until cultures reached saturation. Cultures were diluted 1:200 into 

medium supplemented with 2% galactose and grown to saturation. Cultures were then diluted 

1:10 into fresh 2% galactose medium and grown for 8 hours before they were analyzed by flow 

cytometry. Each strain was measured in eight replicates. 

Stress response assays 

Strains were inoculated from colonies streaked on a G418/-his plate into liquid G418/-his 

medium and incubated at 30ºC for 24 hours until cultures reached saturation. Cultures were 

diluted 1:100-1:400 and grown for 8-12 hours until they reached an OD600 of ~0.1-0.2.  

For the heat-shock experiment, the outgrowth cultures were diluted 1:50 into pre-warmed 

medium in a 96 deep well plate, and grown for 4 hours with rotary shaking at the specified 

temperature. After incubation, cultures were pelleted by centrifugation, washed twice, and 

resuspended in Tris-EDTA pH 7.5 (TE) before analysis on the flow cytometer.  

For the DTT stress response experiments, the outgrowth cultures were diluted 1:4 into medium 

containing a final concentration of either 0.625mM DTT or a 2-fold serial dilution ranging from 

10-0.0098mM (including a 0mM condition). All cultures were grown for 4 hours at 30ºC before 

being harvested by addition of concentrated TE/sodium azide 'stop solution' to a final (1X) 

concentration of 0.1% sodium azide. 

Flow cytometry and data analysis 

All samples were run on a Stratedigm S1000EX cytometer with FSC/SSC thresholds set to 200. 

PMT gain settings of FITC 0.5%, FSC 34.3%, SSC 40.0% were used for the dual-reporter noise 
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assay. PMT gain settings of FITC 2.0%, FSC 33.5%, SSC 55.3% were used for all other assays.  

Flow cytometry data were analyzed using custom MATLAB code 

(https://github.com/springerlab/Flow-Cytometry-Toolkit). As a general workflow, raw FCS data 

were processed by gating out debris and bacterial contamination events based on FSC/SSC 

measurements, normalizing the YFP values to cell size by dividing by SSC values, rescaling the 

values by an arbitrary factor of 103.5 for visualization purposes, and computing population 

statistics, expression histograms, and other metrics of induction from the log10-transformed data. 

For the steady-state galactose and stress response experiments, induced fractions were calculated 

relative to the probability distribution of cells grown only in glucose-containing medium in the 

absence of stressors. Separate “off”, “inducing”, and “on” fractions were similarly defined 

relative to the probability distributions from maximally induced and uninduced conditions (see 

diagram), with threshold concentrations being calculated from a cubic spline (MATLAB 

function csaps with smoothing parameter of 0.9) that was fit to the data by interpolating between 

consecutive points of normalized log-transformed YFP values plotted against concentration 

(glucose or DTT). 

Statistical significance testing 

For analyses conducted in Figure 3.6A-F (all galactose induction and stress response assays), 

statistical significance of variability between wild-type and aneuploid was assessed by two-sided 

Wilcoxon rank sum tests on the values of each given metric (mean expression level and standard 

deviation of the expression level). Results of the significance testing are summarized in Table 



 

 

 

 

94 

S3.1. 

For the dual-reporter variability assay (Figure 3.6G), data were analyzed using customized 

MATLAB code. For each sample, all events were equally binned into 30 bins by SSC, as a proxy 

for cell size. Events from each bin were treated as if they were from cells with similar cell sizes. 

The Pearson correlation coefficients between mCherry and YFP were calculated for events in 

each SSC bin, and averaged among bins representing intermediate cell sizes, defined as 40~60 

percentile. 

To determine whether the difference in variance in nuchal edema thickness (Figure 3.7B) was 

statistically significant, we performed two statistical tests: 1) we calculated an F-statistic on the 

variance (p<0.005) and 2) we permuted all the nuchal edema thickness values, randomly split 

them into two groups - 'wt' and 'trisomy 19' - and determined whether the variance was at least as 

large as observed in the real data (39500 out of 1,000,000, or p = 0.0395). 

Mouse embryo imaging and analysis 

Trisomic embryos were generated by crossing C57BL/6J mice with congenic mice heterozygous 

for two Robertsonian chromosomes [7,62]. The following Robertsonian fusion chromosome 

were used for these crosses: B6.Cg-Rb(11.13)4Bnr/JAmonJ; B6.Cg-Rb(13.16)1Mpl/JAmonJ; 

B6.Cg-Rb(16.17)7Bnr/JAmonJ; B6.CgRb(5.19)1Wh/JAmonJ; B6Ei.Cg-Rb(9.19)163H/J. 

To isolate embryos of a certain gestational stage, the day on which a copulatory plug was 

observed was defined as embryonic day E0.5. Embryos were collected at the indicated 

gestational stages. Amniotic membranes and portions of the umbilical cords were carefully 
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removed, then rinsed twice with PBS before placing on a 10-cm petri dish for imaging. A Canon 

EF 100mm f/2.8L Macro IS USM lens was used to attain the close-up magnification of 1x at the 

closest focusing. Aperture-stop was chosen to cover sufficient depth of field while keeping the 

macrophotography diffraction limited. Thickness of the nuchal edema, defined as the translucent 

region in the neck and head region, was measured in the region of the embryo, where the width 

was maximal.  The nuchal edema thickness of an embryo, in pixel number, was calculated using 

the Ruler Tool of Adobe Photoshop 6.0, and then converted to metrics given the pixel pitch of 

the camera sensor. 
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Chapter 4. Conclusion 

The genetic architecture of a quantitative trait often refers to the number and identity of causal 

genetic variants in a natural population, as well as the interaction among them. While many 

methods have been used to identify such variants in nature, most methods like GWAS and 

linkage analysis require testing a large number of genetic variants. This makes the identification 

of small effect-size variants difficult. In this thesis, by experimentally testing the effects of 

individual genetic changes, either single gene knockout (in Chapter 2) or adding a whole 

chromosome (in Chapter 3), we were able to unbiasedly measure the impact of many mutations 

on multiple quantitative traits. We found that the number of genes that are capable of affecting 

quantitative traits is large (a quarter to half of assayed non-essential genes), and many of such 

genes are functionally related to core cellular processes. These observations lead to a few 

interesting research directions that I would like to present in this chapter. 

The work presented in Chapter 2 suggests a necessity to understand quantitative traits in the 

context of an interconnected genetic interaction network, i.e. genes outside of canonical 

signaling pathway can also influence quantitative traits. A limitation of this work is that all 

analyses were conducted using traits in yeast, which is a relatively simple organism compared to 

higher eukaryote systems. Given the current advances in gene editing technologies, like 

CRISPR, it would be interesting to perform similar quantitative screens in a more complex 

system, in order to examine the generality of the conclusion. Such efforts would be one step 

closer to elucidate the genetic architecture of important traits in humans. 
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While this work tried to uncover all the important non-essential genes that have the potential to 

affect quantitative traits, the actual genetic variants in a natural population might only be a subset 

of what we uncovered in this work. This is especially important as 1) it is possible that many 

genes that are involved in core cellular processes are more conserved than other genes, given 

their functional importance, and 2) it is unclear how genetic changes on essential genes affect 

quantitative traits. The exact identity of genetic variants in a natural population depends on 

selection and genetic drifts, and hence may be difficult (if not impossible) to understand. It 

would be interesting to conduct lab evolution experiments on quantitative traits, with controlled 

selection conditions and population history. By examining the genetic differences between 

evolved strains and parental strain, especially those genetic variants of small effects, it would be 

interesting to understand which genes actually carry mutations that affect quantitative traits. 

Another observation from this work is that the effect size distributions of all genes that have 

measurable effects on quantitative traits are close to an exponential distribution. It is unclear if 

this is a coincidence or not. It would be interesting to examine what are the necessary and 

sufficient conditions to get an exponentially-distributed effect size distribution. More 

specifically, it would be interesting to set up a model that consist of interactions similar to known 

biological networks, like metabolic network, and examine the effect size of each node in the 

network by simulating the impact on the network after removing that node. By changing the 

network structure/topology and the function form of these interactions, one could examine the 

conditions under which the effect size distribution is similar to those observed experimentally. 

How do the genes identified in Chapter 2 affect each of the studied quantitative traits? The 
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answer to this question might seem trivial as these core cellular processes are expected to affect 

many biological processes. However, we often observed that perturbing a particular cellular 

process only affects specific traits. It would be interesting to study how this is achieved from a 

mechanistic perspective. 

Finally, it would also be interesting to ask if signaling pathway can make better decisions by 

taking inputs from those identified core processes. Cells need to make decisions in complicated 

environments, where multiple conditions can change simultaneously. It is hence possible that by 

integrating additional information from those core processes, signaling pathways can make 

smarter decisions and hence gain fitness advantages in complex environments. 
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Appendix A: Supplementary material for Chapter 2 

Supplemental figures and legends 

 

Figure S2.1. Determining modes of response with principal component analysis 

After data segmentation, histograms of GAL1pr-YFP for the mutant and reference strain for each 

sample were normalized, concatenated, and then analyzed using principal component analysis. 

(A) The fraction of variation explained by the first ten principal components. (B-C) Effects on 

GAL1pr-YFP distribution by the top two principal components. The average GAL1pr-YFP 

distribution of all reference and mutant strains are concatenated (gray). The principal component 
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(blue) from the PCA analysis is the deviation from this average profile due to mutant effects. The 

horizontal line y=0 means no effects; i.e. the behavior of the wild-type strain. Note that the first 

two principal components correspond to biological properties, i.e. the induced fraction and 

induction level. 

 

 

Figure S2.2. Effect size distribution versus measurement noise for four traits 

As many mutants have effect sizes that are close to or smaller than average measurement noise, 

the total number of genes that affects each quantitative trait was estimated by comparing the 

measured effect size distribution (red) and measurement noise effect size distribution (black). 
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The measurement noise effect size distribution is the distribution of measurement noises between 

all replicated samples. The total number of genes that affect each trait was estimated from the 

number of genes in the shaded region. 

 

Figure S2.3. Reanalysis of two screens confirms that a large number of genes quantitatively 

affect yeast galactose response 

Data from two deletion studies [5,6], one on growth rate in rich medium and one on the unfolded 

protein response (UPR), were reanalyzed. Both the effect size distribution (A-B) and explained 

heritability (C-D) were calculated as in Figure 2.2 and 2.3. Fit of the significant genes to an 
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exponential (dashed line) has an R^2 of 0.91 for growth rate (A) and 0.94 for UPR (B). The fit of 

the full data to an exponential plus noise had an R^2 of 9.2 (A) and 0.95 (B). (C-D) The 

contribution to explained heritability, as calculated in 2.3A, from UPR genes (red) or all genes 

(black) for growth rate in rich media (C) and UPR (D). 

  

Figure S2.4. Affecting growth rate is not the sole mechanism for significant mutants to 

affect yeast GAL response and unfolded protein response 

(A) Two alternative models of how quantitative traits can be affected by gene deletion. In the 

growth rate-dependent model (left), mutants affect growth rate that in turn affects other traits. In 

the growth rate-independent model (right), mutants directly affect quantitative traits including 

growth rate. These two models can be distinguished by determining whether mutant effects on 
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growth rate and other traits are correlated. (B-D) Mutant phenotypes for the unfolded protein 

response (B), GAL induced fraction (C) and GAL induction level (D) are plotted against the 

growth rate data reported by Breslow et al. Mutants were segmented into four quadrants based on 

whether the mutant had a significant effect (based on 0.5% FDR cut-off) on growth rate and non-

growth rate trait: growth rate (blue), other non-growth rate trait (green), both (red), neither 

(gray). A linear fit of the points that are significant for both traits (red) is plotted (orange line).  

 

Figure S2.5. The difference of effects on GAL and PHO response by deleting genes involved 

in protein synthesis 

For each of the 95 mutants we tested that are involved in protein synthesis, the mutant effects on 

the induction level were quantified for the PHO (blue) and GAL (red) responses. The effect size 

distribution was smoothened with kernel smoothing with a bandwidth of 0.05. The two 

distributions are extremely unlike to have results from noise in a single distribution (p-value 

3*10-10, two-tailed t-test). The magnitude of the average difference in effect size between the two 
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distributions is 3 fold.  

 

Figure S2.6. Data segmentation example 

An example is shown here using data from the first replicate sample for mutant yal068c∆. Cell 

debris is filtered from the raw data using a FSC/SSC gate, and the mCherry vs. YFP values of 

remaining events are plotted. Data is segmented on the mCherry channel to separate reference 

and mutant strain, and on the YFP channel to separate the induced cells and uninduced cells. The 

horizontal and vertical dashed lines show the threshold used for segmentation. 

  



 

 

 

 

110 

Supplemental tables and legends 

Table S2.1. Enriched Gene Ontology for genes that significantly affect all four yeast traits 

GO TermFinder [4] was used to analyze GO enrichment. The p-values are corrected for multiple 

hypotheses. Significant GOs are defined by the ones with corrected p-value less than 0.01. 

Table S2.1 (Continued) 

GO ID GO Term Corrected P-
Value 

GO:0010467 gene expression 9.1E-21 

GO:0016070 RNA metabolic process 2.1E-15 

GO:0034641 cellular nitrogen compound metabolic process 2.8E-14 

GO:0006807 nitrogen compound metabolic process 2.4E-13 

GO:0090304 nucleic acid metabolic process 5.8E-13 

GO:0044260 cellular macromolecule metabolic process 1.6E-12 

GO:0044271 cellular nitrogen compound biosynthetic process 2.2E-12 

GO:0043170 macromolecule metabolic process 9.1E-12 

GO:0034645 cellular macromolecule biosynthetic process 1.2E-10 

GO:0009059 macromolecule biosynthetic process 1.8E-10 

GO:0006139 nucleobase-containing compound metabolic process 4.2E-10 

GO:0043933 macromolecular complex subunit organization 2.3E-09 

GO:0046483 heterocycle metabolic process 3.1E-09 

GO:0006725 cellular aromatic compound metabolic process 4.2E-09 
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Table S2.1 (Continued) 

GO ID GO Term Corrected P-
Value 

GO:1901360 organic cyclic compound metabolic process 1.4E-08 

GO:0044238 primary metabolic process 2.7E-08 

GO:0006396 RNA processing 1.2E-07 

GO:0044237 cellular metabolic process 1.2E-07 

GO:0044249 cellular biosynthetic process 3.1E-07 

GO:0002181 cytoplasmic translation 3.5E-07 

GO:0006355 regulation of transcription, DNA-templated 3.8E-07 

GO:1903506 regulation of nucleic acid-templated transcription 3.8E-07 

GO:2001141 regulation of RNA biosynthetic process 3.8E-07 

GO:0071824 protein-DNA complex subunit organization 4.1E-07 

GO:0010468 regulation of gene expression 5.8E-07 

GO:0044267 cellular protein metabolic process 6.7E-07 

GO:0051252 regulation of RNA metabolic process 7.2E-07 

GO:1901576 organic substance biosynthetic process 8.1E-07 

GO:0006351 transcription, DNA-templated 8.8E-07 

GO:0032774 RNA biosynthetic process 8.8E-07 

GO:0097659 nucleic acid-templated transcription 8.8E-07 

GO:2000112 regulation of cellular macromolecule biosynthetic process 1.2E-06 

GO:0071704 organic substance metabolic process 1.3E-06 
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Table S2.1 (Continued) 

GO ID GO Term Corrected P-
Value 

GO:0010556 regulation of macromolecule biosynthetic process 1.7E-06 

GO:0019219 regulation of nucleobase-containing compound metabolic process 2.0E-06 

GO:0009058 biosynthetic process 2.0E-06 

GO:0019538 protein metabolic process 2.1E-06 

GO:0031326 regulation of cellular biosynthetic process 4.3E-06 

GO:0009889 regulation of biosynthetic process 5.1E-06 

GO:0022613 ribonucleoprotein complex biogenesis 6.2E-06 

GO:0034654 nucleobase-containing compound biosynthetic process 7.4E-06 

GO:0051171 regulation of nitrogen compound metabolic process 8.4E-06 

GO:0006325 chromatin organization 9.1E-06 

GO:0008152 metabolic process 1.3E-05 

GO:0006412 translation 1.3E-05 

GO:0060255 regulation of macromolecule metabolic process 1.8E-05 

GO:0043043 peptide biosynthetic process 1.8E-05 

GO:0018130 heterocycle biosynthetic process 2.8E-05 

GO:0034728 nucleosome organization 3.3E-05 

GO:0043604 amide biosynthetic process 3.9E-05 

GO:0034660 ncRNA metabolic process 3.9E-05 

GO:0019438 aromatic compound biosynthetic process 4.0E-05 
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Table S2.1 (Continued) 

GO ID GO Term Corrected P-
Value 

GO:0019222 regulation of metabolic process 6.8E-05 

GO:0034622 cellular macromolecular complex assembly 6.9E-05 

GO:0080090 regulation of primary metabolic process 8.8E-05 

GO:1901362 organic cyclic compound biosynthetic process 9.1E-05 

GO:0034470 ncRNA processing 9.3E-05 

GO:0016568 chromatin modification 1.0E-04 

GO:0042254 ribosome biogenesis 1.1E-04 

GO:0051276 chromosome organization 1.1E-04 

GO:0006364 rRNA processing 1.2E-04 

GO:0031323 regulation of cellular metabolic process 1.3E-04 

GO:0043486 histone exchange 1.3E-04 

GO:0006518 peptide metabolic process 1.4E-04 

GO:0071840 cellular component organization or biogenesis 2.4E-04 

GO:0030490 maturation of SSU-rRNA 3.5E-04 

GO:0016072 rRNA metabolic process 4.7E-04 

GO:0071822 protein complex subunit organization 4.8E-04 

GO:0043603 cellular amide metabolic process 7.3E-04 

GO:0065003 macromolecular complex assembly 1.1E-03 

GO:0044085 cellular component biogenesis 1.1E-03 



 

 

 

 

114 

Table S2.1 (Continued) 

GO ID GO Term Corrected P-
Value 

GO:0043044 ATP-dependent chromatin remodeling 1.3E-03 

GO:0010629 negative regulation of gene expression 1.7E-03 

GO:0045892 negative regulation of transcription, DNA-templated 2.0E-03 

GO:0051253 negative regulation of RNA metabolic process 2.0E-03 

GO:1902679 negative regulation of RNA biosynthetic process 2.0E-03 

GO:1903507 negative regulation of nucleic acid-templated transcription 2.0E-03 

GO:0000462 maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-
rRNA, 5.8S rRNA, LSU-rRNA) 2.1E-03 

GO:0006338 chromatin remodeling 3.7E-03 

GO:0042274 ribosomal small subunit biogenesis 3.8E-03 

GO:0010558 negative regulation of macromolecule biosynthetic process 4.0E-03 

GO:2000113 negative regulation of cellular macromolecule biosynthetic 
process 4.0E-03 

GO:0016569 covalent chromatin modification 5.0E-03 

GO:0016570 histone modification 5.0E-03 

GO:0006357 regulation of transcription from RNA polymerase II promoter 5.7E-03 

GO:0051172 negative regulation of nitrogen compound metabolic process 8.8E-03 

GO:0031327 negative regulation of cellular biosynthetic process 9.4E-03 

GO:0045934 negative regulation of nucleobase-containing compound metabolic 
process 9.6E-03 
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Table S2.2. The number of genes that affect growth rate and each of the three non-growth 

traits 

Genes that significantly affect the unfolded protein response, induced fraction (GAL), and 

induction level (GAL) were compared to the genes that significantly affect growth rate. The total 

number of genes that were measured in both growth rate and the other trait is listed. Of this total 

number, the number that significantly affected growth rate, significantly affected the non-growth 

rate trait, and significantly affected both traits is listed. 

 
No. genes also 

assayed in growth 
rate screen 

No. genes 
significantly affect 

growth rates 

No. genes 
significantly affect 

the non-growth 
rate trait 

No. genes 
significantly affect 

both 

Unfolded protein 
response 4152 779 594 369 

Induced fraction 
(GAL) 3869 634 595 254 

Induction level 
(GAL) 3869 634 744 316 

 

Table S2.3. Significantly spatially clustered Gene Ontology 

For each Gene Ontology that is spatially clustered, the direction in the four-trait space is shown. 

Significant GOs were defined by FDR < 0.01. 
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Table S2.3 (Continued) 

GO ID GO Term 

Effect direction 

Growth 
rates 

Unfolded 
protein 

response 

GAL 
induced 
fraction 

GAL 
Induction 

level 

GO:0000027 ribosomal large subunit 
assembly -0.39 -0.63 -0.13 -0.66 

GO:0000030 mannosyltransferase 
activity -0.03 0.78 0.42 0.45 

GO:0000070 mitotic sister chromatid 
segregation -0.63 -0.23 0.66 0.33 

GO:0000153 cytoplasmic ubiquitin 
ligase complex 0.01 0.99 0.04 0.09 

GO:0000280 nuclear division -0.85 -0.24 0.42 0.21 

GO:0000462 

maturation of SSU-
rRNA from tricistronic 
rRNA transcript (SSU-

rRNA, 5.8S rRNA, 
LSU-rRNA) 

-0.67 -0.5 0.22 -0.5 

GO:0000470 maturation of LSU-
rRNA -0.36 -0.64 0.11 -0.67 

GO:0000479 

endonucleolytic 
cleavage of tricistronic 
rRNA transcript (SSU-

rRNA, 5.8S rRNA, 
LSU-rRNA) 

-0.59 -0.5 0.12 -0.62 

GO:0000812 Swr1 complex -0.36 0.18 -0.55 -0.73 

GO:0000819 sister chromatid 
segregation -0.7 -0.26 0.61 0.27 

GO:0000839 Hrd1p ubiquitin ligase 
ERAD-L complex 0.01 0.99 0.04 0.09 

GO:0001300 chronological cell aging -0.1 0.02 0.99 0.08 
GO:0002181 cytoplasmic translation -0.49 -0.57 0.14 -0.65 
GO:0003723 RNA binding -0.69 -0.55 0.19 -0.42 

GO:0003735 structural constituent of 
ribosome -0.55 -0.57 0.18 -0.58 

GO:0005198 structural molecule 
activity -0.62 -0.55 0.18 -0.52 
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Table S2.3 (Continued) 

GO:0005730 nucleolus -0.72 -0.62 -0.01 -0.3 
GO:0005740 mitochondrial envelope -0.64 -0.05 0.76 0.08 

GO:0005743 mitochondrial inner 
membrane -0.49 -0.09 0.86 0.05 

GO:0005746 mitochondrial 
respiratory chain -0.18 -0.1 0.95 0.24 

GO:0005768 endosome -0.93 0.33 0.17 -0.03 
GO:0005770 late endosome -0.9 0.39 0.12 -0.14 
GO:0005777 peroxisome -0.97 -0.09 0.23 -0.06 
GO:0005778 peroxisomal membrane -0.97 -0.16 0.14 -0.09 
GO:0005794 Golgi apparatus -0.69 0.63 0.26 0.23 
GO:0005829 cytosol -0.71 -0.37 0.04 -0.6 
GO:0005840 ribosome -0.64 -0.53 0.14 -0.54 
GO:0005856 cytoskeleton -0.72 0.28 0.6 0.21 
GO:0006099 tricarboxylic acid cycle -0.12 -0.11 0.98 -0.07 
GO:0006101 citrate metabolic process -0.12 -0.11 0.98 -0.07 
GO:0006364 rRNA processing -0.66 -0.58 0.22 -0.43 

GO:0006407 rRNA export from 
nucleus -0.54 -0.63 0.15 -0.54 

GO:0006412 translation -0.57 -0.56 0.2 -0.57 
GO:0006486 protein glycosylation -0.02 0.83 0.34 0.44 

GO:0006487 protein N-linked 
glycosylation -0.01 0.8 0.35 0.48 

GO:0006490 
oligosaccharide-lipid 

intermediate 
biosynthetic process 

0.04 0.94 0.22 0.25 

GO:0006605 protein targeting -0.97 0.11 0.15 -0.17 

GO:0006623 protein targeting to 
vacuole -0.88 0.42 0.23 0.02 

GO:0006625 protein targeting to 
peroxisome -0.96 -0.18 0.17 -0.14 

GO:0006629 lipid metabolic process -0.58 0.6 0.48 0.28 

GO:0006886 intracellular protein 
transport -0.95 0.26 0.17 -0.09 

GO:0007031 peroxisome organization -0.96 -0.05 0.14 -0.24 
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Table S2.3 (Continued) 

GO:0007034 vacuolar transport -0.9 0.37 0.22 -0.02 
GO:0007059 chromosome segregation -0.75 -0.27 0.53 0.28 

GO:0007062 sister chromatid 
cohesion -0.63 -0.18 0.7 0.28 

GO:0007064 mitotic sister chromatid 
cohesion -0.6 -0.18 0.7 0.33 

GO:0007126 meiotic nuclear division -0.91 -0.27 0.24 0.18 
GO:0007127 meiosis I -0.92 -0.28 0.27 0.11 
GO:0008104 protein localization -0.94 0.25 0.22 -0.06 
GO:0009055 electron carrier activity -0.1 -0.13 0.94 0.29 
GO:0012505 endomembrane system -0.71 0.65 0.26 0.08 
GO:0015031 protein transport -0.93 0.33 0.18 -0.04 
GO:0015934 large ribosomal subunit -0.49 -0.65 0.13 -0.56 
GO:0015935 small ribosomal subunit -0.66 -0.48 0.21 -0.55 
GO:0016072 rRNA metabolic process -0.67 -0.59 0.26 -0.38 

GO:0016192 vesicle-mediated 
transport -0.82 0.48 0.26 0.17 

GO:0016197 endosomal transport -0.94 0.31 0.17 -0.02 

GO:0016558 protein import into 
peroxisome matrix -0.97 -0.17 0.14 -0.12 

GO:0016758 
transferase activity, 
transferring hexosyl 

groups 
-0.19 0.73 0.45 0.47 

GO:0017183 
peptidyl-diphthamide 
biosynthetic process 

from peptidyl-histidine 
-0.27 0.04 -0.7 -0.66 

GO:0019843 rRNA binding -0.63 -0.48 0.22 -0.57 

GO:0022618 ribonucleoprotein 
complex assembly -0.64 -0.59 -0.08 -0.49 

GO:0022625 cytosolic large 
ribosomal subunit -0.44 -0.64 0.06 -0.63 

GO:0022626 cytosolic ribosome -0.56 -0.57 0.1 -0.6 

GO:0022627 cytosolic small 
ribosomal subunit -0.64 -0.47 0.2 -0.58 

GO:0030490 maturation of SSU-
rRNA -0.7 -0.53 0.2 -0.44 
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Table S2.3 (Continued) 

GO:0030529 
intracellular 

ribonucleoprotein 
complex 

-0.71 -0.52 0.1 -0.46 

GO:0030684 preribosome -0.67 -0.55 0.1 -0.49 

GO:0030687 preribosome, large 
subunit precursor -0.52 -0.66 0.01 -0.54 

GO:0032266 phosphatidylinositol-3-
phosphate binding -0.94 0.11 0.31 0.03 

GO:0033365 protein localization to 
organelle -0.96 0.19 0.2 -0.09 

GO:0034613 cellular protein 
localization -0.95 0.22 0.23 -0.07 

GO:0034728 nucleosome organization -0.39 0.29 -0.45 -0.75 

GO:0042175 
nuclear outer membrane-
endoplasmic reticulum 

membrane network 
-0.37 0.89 0.19 0.2 

GO:0042254 ribosome biogenesis -0.63 -0.59 0.14 -0.48 
GO:0042255 ribosome assembly -0.52 -0.6 0.06 -0.6 

GO:0042273 ribosomal large subunit 
biogenesis -0.42 -0.66 -0.03 -0.63 

GO:0042274 ribosomal small subunit 
biogenesis -0.72 -0.51 0.23 -0.4 

GO:0043043 peptide biosynthetic 
process -0.57 -0.55 0.2 -0.57 

GO:0043044 ATP-dependent 
chromatin remodeling -0.34 0.23 -0.61 -0.68 

GO:0043486 histone exchange -0.42 0.19 -0.59 -0.67 

GO:0043603 cellular amide metabolic 
process -0.61 -0.52 0.22 -0.56 

GO:0044255 cellular lipid metabolic 
process -0.57 0.61 0.49 0.26 

GO:0044743 intracellular protein 
transmembrane import -0.93 -0.2 0.16 -0.26 

GO:0045184 establishment of protein 
localization -0.92 0.33 0.21 -0.04 

GO:0048193 Golgi vesicle transport -0.7 0.64 0.18 0.26 
GO:0070469 respiratory chain -0.16 -0.08 0.96 0.21 
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Table S2.3 (Continued) 

GO:0072665 protein localization to 
vacuole -0.89 0.4 0.23 -0.01 

GO:0097502 mannosylation 0.01 0.89 0.32 0.33 

GO:0098588 bounding membrane of 
organelle -0.76 0.56 0.31 0.12 

GO:0000028 ribosomal small subunit 
assembly -0.62 -0.55 0.23 -0.51 

GO:0000329 fungal-type vacuole 
membrane -0.94 0.12 0.3 -0.09 

GO:0005788 endoplasmic reticulum 
lumen -0.01 0.96 0.16 0.24 

GO:0005789 endoplasmic reticulum 
membrane -0.34 0.89 0.19 0.22 

GO:0006892 post-Golgi vesicle-
mediated transport -0.85 0.46 0.23 0.08 

GO:0007067 mitotic nuclear division -0.67 -0.22 0.63 0.31 
GO:0016050 vesicle organization -0.94 0.28 0.17 0.08 
GO:0031090 organelle membrane -0.78 0.37 0.48 0.12 
GO:0031491 nucleosome binding -0.28 0.22 -0.51 -0.78 

GO:0032527 protein exit from 
endoplasmic reticulum -0.1 0.95 0.16 0.23 

GO:0045324 late endosome to 
vacuole transport -0.92 0.25 0.29 0 

GO:1990415 Pex17p-Pex14p docking 
complex -0.95 -0.25 0.16 0.14 

GO:1990429 peroxisomal importomer 
complex -0.95 -0.25 0.16 0.14 

GO:0000001 mitochondrion 
inheritance -0.88 0 0.48 -0.03 

GO:0000460 maturation of 5.8S 
rRNA -0.67 -0.54 0.2 -0.46 

GO:0000466 

maturation of 5.8S 
rRNA from tricistronic 
rRNA transcript (SSU-

rRNA, 5.8S rRNA, 
LSU-rRNA) 

-0.67 -0.54 0.2 -0.46 

GO:0000469 cleavage involved in 
rRNA processing -0.67 -0.54 0.2 -0.46 
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Table S2.3 (Continued) 

GO:0006644 phospholipid metabolic 
process -0.56 0.56 0.55 0.26 

GO:0006650 glycerophospholipid 
metabolic process -0.5 0.66 0.49 0.26 

GO:0007005 mitochondrion 
organization -0.58 -0.12 0.8 0.06 

GO:0007131 reciprocal meiotic 
recombination -0.92 -0.12 0.37 0.06 

GO:0008610 lipid biosynthetic 
process -0.61 0.43 0.6 0.29 

GO:0031966 mitochondrial 
membrane -0.67 -0.03 0.75 0.01 

GO:0000725 recombinational repair -0.89 -0.33 0.32 -0.07 
GO:0005783 endoplasmic reticulum -0.43 0.85 0.29 0.08 
GO:0006334 nucleosome assembly -0.46 0.43 -0.27 -0.73 
GO:0006396 RNA processing -0.72 -0.5 0.05 -0.47 
GO:0006810 transport -0.94 0.17 0.29 0.01 
GO:0043248 proteasome assembly -0.33 -0.35 -0.62 -0.61 

GO:0046488 phosphatidylinositol 
metabolic process -0.44 0.79 0.23 0.36 

GO:0090305 
nucleic acid 

phosphodiester bond 
hydrolysis 

-0.8 -0.42 0.14 -0.41 

GO:0090502 
RNA phosphodiester 

bond hydrolysis, 
endonucleolytic 

-0.58 -0.42 0.14 -0.68 

GO:0000291 
nuclear-transcribed 
mRNA catabolic 

process, exonucleolytic 
-0.45 -0.8 0.02 -0.4 

GO:0032008 positive regulation of 
TOR signaling -0.74 0.11 0.39 -0.54 

GO:0034427 

nuclear-transcribed 
mRNA catabolic 

process, exonucleolytic, 
3'-5' 

-0.45 -0.8 0.02 -0.4 
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Table S2.3 (Continued) 

GO:0043928 

exonucleolytic nuclear-
transcribed mRNA 
catabolic process 

involved in 
deadenylation-dependent 

decay 

-0.45 -0.8 0.02 -0.4 

GO:0070478 

nuclear-transcribed 
mRNA catabolic 

process, 3'-5' 
exonucleolytic 

nonsense-mediated 
decay 

-0.45 -0.8 0.02 -0.4 

GO:0005935 cellular bud neck -0.77 0.28 0.41 0.39 

GO:0006643 membrane lipid 
metabolic process -0.48 0.69 0.38 0.39 

GO:0006896 Golgi to vacuole 
transport -0.89 0.27 0.36 0.07 

GO:0055085 transmembrane transport -0.9 -0.02 0.44 0 
GO:0030686 90S preribosome -0.85 -0.37 0.19 -0.31 

GO:0034975 protein folding in 
endoplasmic reticulum -0.13 0.75 0.13 0.63 

GO:0006281 DNA repair -0.91 -0.32 0.14 -0.24 

GO:0006302 double-strand break 
repair -0.93 -0.3 0.18 -0.09 

GO:0016757 
transferase activity, 
transferring glycosyl 

groups 
-0.28 0.66 0.44 0.54 

GO:0044271 
cellular nitrogen 

compound biosynthetic 
process 

-0.77 -0.38 0.11 -0.5 

GO:0000724 
double-strand break 

repair via homologous 
recombination 

-0.88 -0.35 0.31 -0.09 

GO:0001104 
RNA polymerase II 

transcription cofactor 
activity 

-0.76 -0.27 -0.15 -0.58 

GO:0010008 endosome membrane -0.93 0.3 0.19 -0.11 
GO:0046907 intracellular transport -0.95 0.13 0.25 -0.11 
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Table S2.3 (Continued) 

GO:0043628 ncRNA 3'-end 
processing -0.69 -0.48 0.23 -0.49 

GO:0005933 cellular bud -0.79 0.23 0.37 0.42 
GO:0006310 DNA recombination -0.9 -0.28 0.28 -0.16 

GO:0006448 regulation of 
translational elongation -0.75 -0.4 -0.07 -0.52 

GO:0006913 nucleocytoplasmic 
transport -0.67 -0.61 0.13 -0.4 

GO:0006807 nitrogen compound 
metabolic process -0.83 -0.31 0.22 -0.4 

GO:0015629 actin cytoskeleton -0.68 0.44 0.56 0.14 
GO:0000139 Golgi membrane -0.64 0.63 0.25 0.36 

GO:0000184 

nuclear-transcribed 
mRNA catabolic 

process, nonsense-
mediated decay 

-0.52 -0.69 0.17 -0.48 

GO:0000278 mitotic cell cycle -0.87 -0.01 0.49 0.07 

GO:0035091 phosphatidylinositol 
binding -0.93 0.2 0.26 0.16 

GO:0005934 cellular bud tip -0.82 0.26 0.15 0.49 

GO:0042147 retrograde transport, 
endosome to Golgi -0.91 0.34 0.12 0.2 

GO:0071555 cell wall organization -0.62 0.51 0.46 0.38 
GO:0005938 cell cortex -0.68 0.44 0.47 0.35 

 

 

 

 

 



 

 

 

 

124 

Table S2.4. Quantitative screens that are analyzed for gene effect size distribution 

We manually scanned over 200 published deletion library screens to identify datasets that could 

be reanalyzed to potentially determine an effect size distribution. Of these 200 papers, we found 

only 6 that contained datasets in a form that was suitable for our reanalysis. 

First author, 
publication 

year 
Trait # 

Genes 
Source of 

published data Reference 

Breslow, 
2008 

Growth 
rate 4204 Supplementary 

table S5 

Breslow, D. K. et al. A comprehensive 
strategy enabling high-resolution 

functional analysis of the yeast genome. 
Nat. Methods 5, 711–718 (2008). 

Schluter, 
2008 

Endosom
al protein 

sorting 
4814 Supplementary 

table 1 

Schluter, C. et al. Global analysis of 
yeast endosomal transport identifies the 
vps55/68 sorting complex. Mol. Biol. 

Cell 19, 1282–1294 (2008). 

Vizeacoumar
, 2010 

Spindle 
morphog

enesis 
4286 Supplementary 

table S6 

Vizeacoumar, F. J. et al. Integrating 
high-throughput genetic interaction 

mapping and high-content screening to 
explore yeast spindle morphogenesis. J. 

Cell Biol. 188, 69–81 (2010). 

Cooper, 
2010 

Amino 
acid 
level 

4382 Supplementary 
table 4 

Cooper, S. J. et al. High-throughput 
profiling of amino acids in strains of the 

Saccharomyces cerevisiae deletion 
collection. Genome Res. 20, 1288–1296 

(2010). 

Jonikas, 
2009 

Unfolded 
protein 

response 
4563 Supplementary 

table 1 

Jonikas, M. C. et al. Comprehensive 
characterization of genes required for 

protein folding in the endoplasmic 
reticulum. Science 323, 1693–1697 

(2009). 

Hillenmeyer, 
2008 

Chemical 
genomic 
profile 

5337 

http://chemoge
nomics.stanfor
d.edu/supplem
ents/global/do
wnload.html 

Hillenmeyer, M. E. et al. The chemical 
genomic portrait of yeast: uncovering a 
phenotype for all genes. Science 320, 

362–365 (2008). 
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Supplemental Text 

Re-analysis of previous quantitative screening using yeast deletion collections 

Since the release of the yeast deletion collection, a large number of studies have been performed 

[7] potentially providing a rich source to understand the quantitative effects of gene deletions on 

traits. Unfortunately, the raw data was not published and readily available for all but a small 

handful of these studies (Table S2.4). 

Data from each screen in the Table S2.4 was analyzed using the following method: 1) download 

raw data; 2) determine the measurement error; 3) calculate p value for each gene by comparing 

effect size measurement to measurement error (two-tailed t-test, assuming measurement error is 

Gaussian distributed); 4) correct the p values for multiple hypothesis tests by calculating false 

discovery rate; 5) identify the number of significant genes as ones with FDR<0.5%. 

The measurement error for individual assays were determined as below. We assume that the true 

effects of deleting the N>O gene is @4. The two independent measurements, @4,Q = @4 + S4,Q for T =

1,2, where Ɛ is the measurement noise term. Assuming that measurement noise follows a 

Gaussian distribution, i.e. S4,Q~V(0, X). The difference of the two measurements on the identical 

strain will reveal information about the standard deviation of measurement noise. Specifically, 

since  

@4,Y − @4,#~V(0, 2X) 

we can derive the following estimate of the standard deviation of measurement noise: 
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X =
∑ @4,Y − @4,#

#

2 ∗ (V9?:? − 1)
 

This method was applied to the raw data from the six assays in Table S2.4. Breslow et al. had 

different number of replicates [5], and hence the measurement error for the individual mutants 

varied depending on the number of replicates. Specifically, among 4204 assayed genes, 2809 

genes have one measurement, 874 genes have two replicates and 521 genes have at least three 

replicates. To avoid this complication, we only used the data from the first measurements and 

used the remaining data to estimate the measurement error. We first estimated the measurement 

error by applying the equation above to the replicate measurements of 874 strains with two 

measurements and determined measurement error as 0.015. Then we calculate the measurement 

error the 521 strains for which three measurements had been made. This yielded a measurement 

error of 0.017. As these two estimations are close, we use the average (0.016) as the 

measurement error for the assay. We observed that the measurement noise tends to be larger for 

strains with large effect size, which means that most strains with moderate effect sizes probably 

have smaller than estimated measurement error. Hence, we do not believe that this method will 

overestimate the number of genes affecting the growth rate trait. 

Similarly, mutants in Jonikas et al. had different numbers of replicates [6]. Measurement noise 

decreased as the number of replicate increased. As a conservative estimate of effect size 

measurements, we treated all measurements as if they had only two replicate data. To estimate 

the measurement error, we used the data from 541 strains with exactly two replicate data. In the 

original paper, the standard deviation of measurements for each strain was reported. Since there 
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were only two measurements for these strains, the standard deviation equals the half of the 

difference between two measurements. Assuming that measurement noise of each replicate data 

followed V	(0, X), the expectation of the half of the difference of two independent measurements 

is X/√^. When plotting the histogram of this data, we found that a number of measurement have 

exceptionally large measurement error, which artificially increased our estimation. After 

removing strains with measurement error larger than 0.5, the resulting measurement standard 

deviation has an average as 0.0678. Hence, we estimated the measurement noise as _
#
=

0.0678 ∗ d

#
= 0.085. 

Mutants in Schluter et al. were assayed in replicates for both haploid and diploid strains[8]. We 

applied the equation above to this data and determined that the measurement error was 0.027 for 

the MATa, haploids, 0.021 for the MATalpha haploids, and 0.042 for diploids. We used the 

average of these three to estimate measurement error (0.030). Vizeacoumar et al. provided p 

values for each mutants in the assay [9]. We convert the p value back to a z-score using Matlab 

function norminv(). While Copper et al. published raw data, they did so for only one replicate 

and hence we did not proceed with further analysis on this data set [10]. 

Furthermore, we analyzed the raw data from Hillenmeyer by comparing the measured effect 

sizes in independent experiments using the same condition (drug name, dosage and the duration 

to apply the drug) in separate batches [11]. We found a large variation of the reproducibility 

between these replicates, determined as the pair-wise Pearson correlation coefficient (ranging 
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from -0.2 to 0.99 with a median of 0.36 depending on the condition used). Hence we did not 

analyze the data further more. 

To evaluate the number of gene deletions that significantly affected each of the quantitative trait, 

we first considered a null model where all gene deletions had no effects on the assayed traits. We 

expected the measured effect sizes to follow a normal distribution determined by measurement 

noise, i.e. ~V(0,measurement	noise). However, we found this was not the case for all the traits 

that we analyzed. To better illustrate this, we re-scaled the effect sizes by measurement error for 

each trait, and plotted the histograms of the re-scaled effect sizes for the gene deletions that have 

effect sizes at least 3-fold of the estimated measurement noise in Figure S2.2. We found the 

distributions were continuous. Note that only about (1-99.7%)*5000=15 genes were expected 

from the noise distribution. This suggests that the measured effects of most of the plotted genes 

were not from the measurement noise. Note that the data from Vizeacoumar was not shown here 

as the majority of genes have effects that are within three-fold of measurement noise. 

To identify assays that are sensitive enough the measure the effect sizes of as many genes as 

possible. We estimated the number of genes that significantly affect each of the analyzed traits 

by comparing the measured effect sizes to measurement noise. Using a cutoff of FDR < 0.5%, 

we determined that two screens by Jonikas et al. and Breslow et al. are suitable for effect size 

distribution analysis as they have smallest measurement errors. 

Flow cytometry data processing 

Raw data was exported from an LSRII or Stratedigm in fcs3.0 file format. All data was loaded 
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using customized MATLAB code. In briefly, data from each sample was first filtered on 

FSC/SSC channel to remove cell debris, and on SSC channel to normalize for cell size. The 

FSC/SSC gates were drawn manually on pooled samples. The SSC gate was determined to 

include events between the 25th to 75th percentiles of the pooled sample. Pooled samples were 

also used to find thresholds on YFP and mCherry channels to segment induced vs. uninduced 

cells, and reference vs. mutant cells (Figure S2.6 as an example). Mutants were filtered to ensure 

that there are at least 700 events for both reference and mutant cells in at least one biological 

replicates. Mutants in twelve plates in replicate one of the GAL screen have higher induced 

fraction than the reference strain in the same sample. Data from the second replicate were used 

for these mutants in the future analysis. For the PHO screen, we calculated the standard deviation 

of the effect size differences between two replicates for each of the three traits. The effect size 

measurements for fourteen mutants are greater than five-fold of these standard deviations. These 

strains were filtered from future analysis. 

Principal component analysis on reporter expression distribution of the entire deletion 

collection 

Yeast responds to a mixture of glucose and galactose in a bimodal way. We measured expression 

level of GAL1pr-YFP in single cells for each of the mutant strain in the deletion collection. We 

generally observed that the reproducibility was higher when normalizing the distribution by 

comparing the mutant distribution to the reference distribution in the same well (see the section 

Data Normalization for details); as opposed to analyzing the mutant data directly. This is 

presumably due to slight variation between wells, plates, and days.  
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To find appropriate metric by which to analyze the mutant strains, we performed PCA analysis. 

We did this by pooling reference and mutant YFP distribution from two replicates. After data 

segmentation, the GAL1pr-YFP distributions of both reference strain and mutant strain were 

binned into 92 equally size log2 bins ranging from the maximum to minimum value. Data was 

normalized to probability distribution, separately for reference strain and mutant strain in each 

sample. PCA results were shown in Figure S2.1. The first three principle components explain ~ 

60% variation. By manually examining the shape of each principle component, we could provide 

a plausible biological explanation for the major components. The first vector affects the induced 

fraction without affecting the expression level. The second vector has two effects, shifting the 

expression level of induced cells as well as changing the fraction of induced cells. The third 

vector change the expression level of both uninduced cells (basal level) and induced cells. In 

further analysis, we found that the expression level of uninduced cells could not be accurately 

determined for the majority of strains in our assay for GAL1pr-YFP reporter, and hence only the 

induced fraction and the induction level are used in the main text. This third metric was used for 

analysis of the PHO response. 

Data normalization 

The induced fraction and induction level traits were calculated for each mutant strain using the 

following method. First, the induced fraction and induction level were calculated for reference 

strains and query strain in each sample. The induced fraction was calculated as the ratio of the 

number of induced events over the number of all events. The induction level was calculated as 

the average level of YFP of the induced cells. For both traits, the mutant value was regressed 
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against the reference value using the Matlab function robustfit(). The residual of each 

measurement from the fit was averaged between two replicates to determine the final values of 

the induced fraction and the induction level. 

Estimate the number of genes that affect yeast quantitative traits 

The noise distribution determined from measurement noise estimation was overlaid with the 

actual effect size measurements. Both curves were normalized to the total number of genes. The 

area of the region where the actual effect size distribution was outside the measurement noise 

distribution was determined for estimating the number of genes that affected each of the four 

yeast traits (Figure S2.2).  

Compare the number of detected mutants by using induced fraction and induction level vs. 

average expression level 

Our screening data on the yeast galactose response provided a test for estimating the total 

number of significant mutants using different metrics. This is interesting as many biological 

traits could usually be defined in different ways, yet it was unclear to our knowledge how much 

potentially subtle differences in metric could influence genes identified. Here when we are 

referring to different metrics it is probably easiest to think of them as different sub 

measurements. For example, if one measured standing height as opposed to sitting height, would 

one uncover different sets of genes. In our case, the effect of gene deletion on galactose response 

can be represented as the two GAL traits as used in the main text, or alternatively we could 

simply use the average YFP level as used in Jonikas et al [6]. To estimate such effects, we re-
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analyzed our data by quantifying not just the two GAL traits, but also the average YFP level. 

After applying the same method to detect mutants that significantly affect yeast GAL response, 

we found that the two-traits method detected more mutants (1104) than the average YFP method 

(593). In addition, the one-trait method could not reveal the distinct modes by which different 

mutants worked; i.e. 50% reduction in average can come because 50% of cells don't induce or 

100% of cells are 50% less induced. Hence our data suggested that, biological meaningful 

decomposition of a complex trait will increase detection sensitivity, and provides new biology 

insights to understand traits.  

Genes that saturated our assay 

Our GAL assay was designed to detect genes of small effect size, and as a result, ten genes of 

larger effect size saturated our assay. These genes were manually verified by inspecting the YFP 

distribution of the raw data. These genes are: GAL4 (YPL248C), GCN4 (YEL009C), GAL80 

(YML051W), GAL1 (YBR020W), SNF3 (YDL194W), STI1 (YOR027W), REG1 (YDR028C), 

GAL3 (YDR009W), SNF2 (YOR290C), HSC82 (YMR186W). This is important when calculating 

the explained heritability for top N genes (see main text). One of our main arguments is that the 

number of genes that affect a quantitative trait is around 8% of the genome. If the true effects of 

these ten genes is much larger than what we estimated, the number of genes that affect a 

quantitative trait could be smaller. 

When using the nominal values of the measurements as effect sizes of these genes, we 

determined that the total contribution of these genes are 25.2% and 7.5% for induction level and 
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induced fraction respectively. As another way to estimate the effect sizes of these genes, we 

randomly sampled the effect size distribution. The average contribution of these genes is 27.8% 

and 10.5% respectively, suggesting that this alternate method does not strongly affect 

conclusion. 

Overlapping among genes that are significant for each of the four studied traits 

We examined the overlap between significant genes that affect growth rate and ones that affect 

each of the three other non-growth traits. To do so, genes with missing data in one of the data 

sets were removed. The result is in Table S2.2. The p-value was calculated between each pair of 

growth rate and non-growth rate trait, using a hypergeometric test (one-tailed).  

Compare the effects on GAL and PHO response by deleting genes involved in protein 

synthesis 

For 95 genes involved in protein synthesis, we compared their effects on GAL and PHO traits in 

the main text and Figure S2.5 using t-test (two-tailed). The average difference between the 

effects on GAL and PHO is 0.15. The standard deviations of effects on GAL and PHO are 0.21 

and 0.10. As an alternative method to test for significance, we pooled the measured effects on 

GAL and PHO response and randomly split the pooled data into two groups for 1,000,000 times 

and calculated the difference between two groups. The observed difference (0.15) is not 

observed in the randomized sample. Hence we determined that p < 10-6 using this method. 

Canonical genes involved in galactose signaling and unfolded protein response 

Glu/Gal gene list: GPB2, IRA1, TOS1, GLK1, GPA2, GAL83, SAK1, GLC7, YCK1, BCY1, 
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RGT1, ELM1, TPK3, HXK1, GPR1, RGT2, SNF3, REG1, MTH1, MSN5, SIP1, SNF1, MIG1, 

SNF4, SIP2, PDE1, HXK2, CYR1, TPK1, GRR1, SDC25, CDC25, SIP5, RAS2, YCK2, IRA2, 

STD1, RAS1, RGS2, PDE2, GPB1, TPK2, GAL1, GAL3, GAL80, GAL4, SNF2, GCN4, 

HSC82, STI1 

Gene localized in ER, Golgi, and early Golgi are (298 genes): YEL031W, YJR117W, YFL025C, 

YJL062W, YML012W, YAL023C, YJR118C, YML055W, YML013W, YOR002W, YGL084C, 

YCR044C, YER122C, YNL219C, YNR030W, YDL095W, YML115C, YGL020C, YGL054C, 

YIL039W, YEL036C, YPL227C, YOL013C, YMR022W, YMR161W, YKL212W, YDL192W, 

YLR110C, YGL167C, YMR264W, YAL058W, YER083C, YDR027C, YLR372W, YCR094W, 

YLR268W, YNL238W, YMR307W, YJL029C, YBR171W, YDL100C, YGL226C-A, 

YBR106W, YJR073C, YNL322C, YGR229C, YGR284C, YJR010C-A, YML128C, YFR041C, 

YNL323W, YEL042W, YMR123W, YBR015C, YJR075W, YBR162W-A, YCR067C, 

YJL004C, YCR017C, YAL026C, YOR216C, YIL090W, YAL007C, YNL041C, YJL123C, 

YIL040W, YBR164C, YCL045C, YNL051W, YIR004W, YPL050C, YPL051W, YGL126W, 

YCR034W, YMR292W, YDR233C, YNL297C, YGL005C, YDR245W, YBR036C, 

YDR221W, YPL192C, YLL014W, YDR508C, YEL001C, YER005W, YDR137W, YDL099W, 

YGL231C, YHR108W, YMR238W, YAL053W, YIL027C, YER072W, YML038C, YER120W, 

YEL027W, YIL030C, YDR492W, YJR131W, YMR010W, YHR181W, YPR063C, YIL124W, 

YLR350W, YJR088C, YBL011W, YML048W, YNL044W, YDR358W, YOR311C, YDR411C, 

YMR272C, YNL049C, YMR015C, YDL052C, YJR134C, YKL096W, YNL280C, YLR194C, 

YER113C, YDR077W, YDR055W, YNR021W, YNL327W, YLR130C, YNR039C, YJL099W, 
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YKL146W, YPR003C, YHL017W, YOR245C, YER166W, YBR132C, YOR016C, YPR090W, 

YNL300W, YLR250W, YGR038W, YPL259C, YPR071W, YKL065C, YKL046C, YPL274W, 

YEL048C, YOR317W, YDR100W, YNL146W, YMR253C, YJR031C, YER011W, YJL078C, 

YIL016W, YML037C, YGR247W, YFL004W, YBR023C, YIL044C, YMR052W, YDL204W, 

YBR067C, YDR153C, YIL043C, YNL095C, YDR476C, YOR307C, YOR321W, YCR011C, 

YMR237W, YMR071C, YER004W, YPR028W, YGL255W, YPL170W, YKL063C, YJL044C, 

YLR023C, YMR215W, YMR251W-A, YGR261C, YPR091C, YDR056C, YLL028W, 

YLR330W, YBL010C, YNR019W, YGL124C, YDR294C, YNL046W, YDR519W, YKR088C, 

YLR042C, YKL094W, YCR048W, YCR043C, YDR084C, YKR067W, YJL196C, YLL061W, 

YML101C, YDL232W, YOL030W, YMR054W, YDR410C, YBR273C, YLR120C, 

YHR110W, YOR044W, YDL137W, YJL171C, YOR285W, YMR029C, YLR064W, YPL137C, 

YOR092W, YBR159W, YGL083W, YNL156C, YDL128W, YBR296C, YOR175C, YJL198W, 

YOL101C, YHL019C, YJL117W, YGR263C, YML059C, YOR214C, YNR013C, YOR087W, 

YJL192C, YGR177C, YBL102W, YPL195W, YLL052C, YLR390W-A, YDR264C, 

YOR299W, YMR152W, YLL055W, YDR424C, YBR287W, YEL040W, YNL125C, 

YHL003C, YBR283C, YDL121C, YHR045W, YNR075W, YOR377W, YHR039C, YGL010W, 

YCL025C, YNR044W, YLR050C, YOL137W, YOL107W, YDL018C, YDR307W, YDR297W, 

YNL190W, YDR503C, YBR177C, YGR266W, YER019C-A, YLR034C, YOR322C, 

YGR260W, YDR349C, YJR015W, YPL246C, YMR058W, YBR290W, YLL023C, YDR205W, 

YHR123W, YJL024C, YJL212C, YLR292C, YPL207W, YKR027W, YIL076W, YBR288C, 

YJL183W, YKL008C, YJL207C, YML067C, YGR089W, YOR291W, YNL111C, YEL043W, 
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YPL234C, YLR056W, YKL096W-A, YGR157W, YHR060W, YLR039C, YHR079C 
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Appendix B: Supplementary material for Chapter 3 

 

Glucose
pGAL1 OFF

Galactose
pGAL1 ON

X

Proper segregation during mitosis Chromosome mis-segregation

pGAL1 LacO arrayCEN

GFP-LacIGFP-LacIGFP-LacIGFP-LacIGFP-LacI

pGAL1 LacO arrayCEN

GFP-LacIGFP-LacIGFP-LacIGFP-LacIGFP-LacI

pGAL1 LacO arrayCEN

GFP-LacIGFP-LacIGFP-LacIGFP-LacIGFP-LacI

B

A

Colony size measurements and mis-segregation rates for inducible aneuploidies   

Inducible 
Chromosome(s) ORFs 

Percent 
Mis-segregation* 

Disome / Euploid
Colony Area 

Trisome / Euploid
Colony Area 

Monosome / Euploid
Colony Area 

  
 Mean SD** n Mean SD** n Mean SD** n 

1 117 86 0.837 0.086 14 1.012 0.029 16 0.793 0.020 16 
2 456 76 0.844 0.045 22 0.997 0.052 25 0.000 0.000 25 
3 183 73 0.941 0.063 15 1.112 0.047 20 0.409 0.035 20 
4 836 67 0.060 0.036 15 
5 323 73 0.483 0.036 18 0.908 0.042 27 0.174 0.016 27 
6 141 70 0.000 0.000 13 0.016 0.025 19 0.629 0.033 19 
7 583 70 0.410 0.085 10 0.885 0.152 30 0.000 0.000 30 
8 321 69 0.795 0.048 13 1.054 0.036 25 0.081 0.020 25 
9 241 83 0.886 0.041 22 1.059 0.028 31 0.305 0.023 31 
10 398 86 0.669 0.047 19 0.899 0.035 22 0.000 0.000 22 
11 348 77 0.770 0.040 23 0.936 0.048 29 0.019 0.004 29 
12 578 93 0.111 0.041 21 0.800 0.056 27 0.001 0.005 27 
13 505 80 0.466 0.050 22 0.962 0.046 28 0.000 0.000 28 
14 435 70 0.392 0.042 18 0.883 0.029 24 0.001 0.001 24 
16 511 82 0.540 0.032 24 0.913 0.059 26 0.000 0.000 26 
1+2 573 NA 0.880 0.095 12 0.000 0.000 12 
5+10 721 NA NA 0.744 0.058 8 0.010 0.003 8 
2+5+10 1177 NA 0.656 0.076 18 0.000 0.000 18 
1+5+10 838 NA 0.762 0.043 9 0.012 0.011 9 
1+2+10 971 NA 0.759 0.114 14 0.000 0.000 14 

 * Percent mis-segregation calculated in haploid strains (disomes)   
** SD = standard deviation 
NA = not analyzed

NA NA NA 
NA NA 

NA 
NA 
NA 

NA 
NA 
NA 

NA 
NA 
NA 

0.465 0.102 26 0.001 0.002 26 

C

Inducible 
Chromosome ORFs 

Percent ChrIV 
Mis-segregation 

(3 hours) 

Percent ChrIV 
Mis-segregation 

(5 hours) 

Percent ChrV
Mis-segregation 

(3 hours) 

Percent ChrV 
Mis-segregation 

(5 hours) 
1 117 0 0 1 0 
2 456 0 0 0 0 
8 321 0 0 0 0 
9 241 0 0 0 1 
11 348 0 0 0 0 
13 505 0 0 0 0 

Mis-segregation rates of chromosomes IV and V in inducible aneuploidies

Chr = chromosome
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Figure S3.1 A conditional centromere system to induce chromosome mis-segregation. 

(A) Schematic of the inducible aneuploidy system. The GAL1 promoter was inserted adjacent to 

the CEN sequence on a particular chromosome. In medium containing glucose, the GAL1 

promoter is repressed and chromosome segregation occurs faithfully. In medium containing 

galactose, the GAL1 promoter is activated, and transcription through the CEN sequence prevents 

kinetochore assembly, leading to chromosome mis-segregation. (B) Percent mis-segregation 

rates for each chromosome in a haploid cell and colony area measurements for disomes, trisomes 

and monosomes (normalized to euploid colony sizes). Data obtained for these measurements 

were obtained from the experiment shown in Figure 3.1F. Strains used in this assay: haploid 

wild-type (A2587), diploid wild-type (A16629); disomes I (A38370), II (A38372), III (A38374), 

IV (A38376), V (A38378), VI (A38380), VII (A38382), VIII (A38384), IX (A38386), X 

(A38388), XI (A38390), XII (A38392), XIII (A38394), XIV (A38396), and XVI (A38398); 

trisomes and monosomes I (A38401), II (A38402), III (A38403), IV (A38404), V (A38405), VI 

(A38406), VII (A38407), VIII (A38408), IX (A38409), X (A38410), XI (A38411), XII 

(A38412), XIII (A38413), XIV (A38414), and XVI (A38415). Trisomes and monosomes I+II 

(A38753), V+X (A38755), II+V+X (A38756), I+V+X (A38758), and I+II+X (A38759) were 

used in this assay with a different wild-type strain (A38751). (C) Mis-segregation rates (in 

percent) for chromosome IV and chromosome V following chromosome mis-segregation of 

chromosomes I, II, VIII, IX, XI, and XIII. Cells were grown to mid-log phase in SC-R and then 

transferred into SC-RG for 160 minutes to induce mis-segregation of the inducible chromosome. 

Cells were then transferred to SC-D, and mis-segregation frequencies of chromosomes IV or V 
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(not inducible chromosomes in these strains) were determined 3 and 5 hours after mis-

segregation.  

 

 

Figure S3.2 Chromosome loss increases duration and variability of multiple cell cycle 
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stages. 

Cells were grown to mid-log phase in SC-R, then transferred to SC-RG for 160 minutes to 

induce chromosome mis-segregation and then plated on SC-D solid medium and imaged every 5 

minutes for 8-10 hours at 25°C to monitor mCherry-Cdc3 to measure the time from bud 

emergence to cytokinesis, Spc42-dsRed or Spc42-GFP to monitor anaphase onset, and GFP dots 

to monitor chromosome mis-segregation. (A) Durations of cell cycle stages for single cells 

following chromosome missegregation are shown for euploid cells (black lines) and cells 

monosomic for chromosomes II+IV+V+VIII+X+XIV (red lines, left panel) and 

IV+V+VIII+XIV (red lines, right panel). Each line represents a single cell. An “X” indicates that 

the cell arrests for the remainder of the movie. (B-D) G1 duration (B), S+early M phase duration 

(C), and anaphase duration (D) were calculated for monosomes and normalized to euploid cells 

imaged during the same time-lapse. Log2 transformed aneuploid to euploid ratios are plotted. 

Lines shown are at the mean. Numbers in parentheses on the x-axis labels indicate number of 

open reading frames on the aneuploid chromosome(s). rDNA copy number is estimated at 150 

copies in the W303 strain background. Euploid cells were either from the wild-type control strain 

or from cells in the experimental strain that did not mis-segregate a chromosome. (E) G1 

duration correlates with the degree of monosomy. Mean G1 lengths are plotted as a function of 

the degree of aneuploidy (calculated by number of open reading frames encoded by the mis-

segregating chromosome(s); linear regression, r2 = 0.89, p<0.0001). 
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Figure S3.3 Chromosome gain increases duration and variability of multiple cell cycle 

stages.  

Cells were grown to mid-log phase in SC-R and then transferred into SC-RG for 160 minutes to 

induce chromosome mis-segregation. Cells were then plated on SC-D solid medium mounted on 

a slide. Cells were imaged every 5 minutes for 8-10 hours at 25°C to monitor mCherry-Cdc3 to 

measure the time from bud emergence to cytokinesis, Spc42-dsRed or Spc42-GFP to monitor 

anaphase onset, and GFP dots to monitor chromosome mis-segregation. G1 duration (A, E), 

S+early M phase duration (B, F), and anaphase duration (C, G) were calculated for disomes and 

trisomes and normalized to euploid cells imaged during the same time-lapse. Log2 transformed 

aneuploid to euploid ratios are plotted. Lines shown are at the mean. Numbers in parentheses on 

the x-axis labels indicate number of open reading frames on the aneuploid chromosome(s). 

rDNA copy number is estimated at 150 copies in the W303 strain background. Euploid cells 

were either from the wild-type control strain or from cells in the experimental strain that did not 

mis-segregate chromosomes. The graph in (D) shows that variabilities in G1 (left panel) and in 

S+early M phase duration (right panel) correlate with the degree of disomy. Mean G1 lengths are 

plotted as a function of the degree of aneuploidy (calculated by number of open reading frames 

encoded by the mis-segregating chromosome(s); linear regression, r2 = 0.57 , p = 0.0008; r2 = 

0.62 , p = 0.0003). Abbreviations: Dis, disome; Tri, trisome. 
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Figure S3.4 Cell division length variability is stochastic and not affected by deletion of 
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UBP6. 

(A-E) Cell cycle duration of the second and third cell divisions following chromosome 

missegregation from live-cell imaging analyses shown in Figure 3.3A. r2 values shown are from 

linear regression analyses. Strains used for this analysis are: disomes I (A38660; A), II (A38662; 

B), V (A38666; C), VIII (A38668; D), and XIV (A38678; E). (F-L) Cells were grown to mid-log 

phase in SC-R and then transferred into SC-RG for 160 minutes to induce chromosome mis-

segregation. Cells were then plated on SC-D solid medium mounted on a slide. Cells were 

imaged every 5 minutes for 8-10 hours at 25°C to monitor mCherry-Cdc3 to measure the time 

from bud emergence to cytokinesis, Spc42-dsRed or Spc42-GFP to monitor anaphase onset, and 

GFP dots to monitor chromosome mis-segregation. Division times (F), G1 durations (G), and 

S+early M phase durations (H) were calculated for disomes and normalized to euploid cells 

imaged during the same time-lapse. Log2 transformed aneuploid to euploid ratios are plotted. 

Lines in F-H are at the mean. Standard deviations for euploid (WT; J,L) and disomic (I,K) 

populations were measured (in minutes), and an F-test was used to test for equality of variance 

between the UBP6 (black bars, I-L) and ubp6Δ (grey bars, I-L) populations. Asterisks (*) in I-L 

indicate statistical significance between UBP6 and ubp6Δ population variances as calculated by 

an F-test (** = p ≤ 0.01, **** = p ≤ 0.0001). The data for strains harboring a wild-type UBP6 

gene shown here are the same data as shown in Figure 3.3 and are duplicated here for 

comparison to ubp6Δ.  
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Figure S3.5 Disomes show increased cell-to-cell variability in response to DTT and heat 

shock. 

(A-B) Mean (A) and standard deviation (B) of P4xHSE-YFP expression in steady-state heat shock 

conditions (39ºC). Points indicate individual biological replicates (n=8), and the asterisks (*) 

represent statistical significance between the disome and euploid populations as calculated by 

Wilcoxon rank sum test (p<0.05). Strains used: wild-type (A38735) and disome V (A38737). (C-

D) Mean (C) and standard deviation (D) of P4xUPRE-GFP expression in steady-state oxidative 

stress conditions (growth in the presence of 0.625mM DTT for 4hrs). Points indicate individual 

biological replicates (n=21-22), and the asterisks (*) represent statistical significance between the 

disome and euploid populations as calculated by Wilcoxon rank sum test (p<0.05).  
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Figure S3.6 GAL1 induction is variable in aneuploid cells. 

 (A-B) GAL1pr-YFP expression in disomes grown at multiple glucose concentrations in a 

background of 0.25% galactose. The induced fraction is computed by estimating the YFP 

fluorescence probability distribution for each well (black histogram trace) and calculating the 

fraction of area outside the probability distribution of fully repressed cells (far right; Escalante-

Chong et al., 2015). Range of response in (B) is calculated from cubic spline curve fitting to the 

induced fraction values across all glucose concentrations, and is the range from which 10% to 

90% of the population is induced (n=4). Data from one representative dataset are shown, and 

data for all replicates are available on Dryad (identifier number will be provided). (C-D) Kinetics 

of induction of the galactose pathway when switched from raffinose (non-repressed but 

uninduced) to galactose medium. Here, the relative percentage of three different population 

fractions are computed from the YFP probability distribution at each time point: the “on” 

fraction - the fraction of the area that overlaps with probability distribution at full induction 

(t=10hr time point); the “off” fraction - the fraction of the area that overlaps with the probability 

distribution at the uninduced (t=0hr time point); and the “inducing” fraction - the remaining 

fraction of the area besides the “on” and “off” fractions that corresponds to an intermediate state 

of induction. The ranges for beginning induction in (D) are calculated based on cubic spline 

curve fitting to “off” fraction measurements and defined as the time range over which the 

fraction in the “off” state goes from 90% to 10%; similar fitting is done with “on” fraction 

measurements to estimate the range for finishing induction (n=3). Strains used in these assays: 

wild-type (A38340); disomes I (A38341), II (A38342), VIII (A38343), IX (A38344), XI 
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(A38345), XIII (A38346), and XVI (A39284). Abbreviations: WT, wild-type; Dis, disome; Glu,  

glucose; Gal, galactose. 

Table S3.1: Related to Figure 6. The effects of aneuploidy on the mean and standard 

deviation of three reporter constructs.  

Strains containing an extra copy of chromosome I, II, V, VIII, IX, X, XI, XII, XIII, XIV, or XVI 

were monitored by single cell fluorescent reporters in galactose, heat shock, and/or DTT (Figure 

6, Figure S5). Reporter levels were normalized by SSC as a proxy for cell size, scaled by an 

arbitrary factor of 103.5 for visualization purposes, and log10-transformed. Shading indicates 

statistically significant increase (red) or decrease (green) from WT (p<0.05) by Wilcoxon rank 

sum test. 

  

Strain Galactose Heat shock DTT 

Mean p SD p Mean p SD p Mean p SD p 
WT 3.224 1.0000 0.1708 1.0000 2.423 1.0000 0.1156 1.0000 1.236 1.0000 0.1568 1.0000 
Dis I 3.205 0.8857 0.1666 0.8857 2.286 1.55E-04 0.1285 0.0104 1.457 2.12E-07 0.1617 0.2805 
Dis IX 3.186 0.8857 0.2414 0.0286 2.405 0.1605 0.1656 1.55E-04 1.192 0.0237 0.1856 2.12E-07 
Dis VIII 3.165 0.4857 0.2329 0.0571 2.452 0.0499 0.2035 1.55E-04 1.287 0.0378 0.1538 0.2962 
Dis XI 3.236 0.8857 0.1772 0.8857 2.384 1.86E-03 0.1112 0.5737 1.408 3.97E-07 0.1555 0.4688 
Dis II 2.527 0.0286 0.2961 0.0286 2.275 1.55E-04 0.2355 1.55E-04 1.268 0.1785 0.1778 2.08E-06 
Dis XIII 2.854 0.0286 0.3550 0.0286 2.342 1.55E-04 0.2309 1.55E-04 0.955 2.12E-07 0.1769 2.12E-07 
Dis XVI 3.217 1.0000 0.2277 0.0571 2.604 1.55E-04 0.1404 0.0281 1.321 1.13E-04 0.1985 1.44E-08 
Dis V  2.527 1.55E-04 0.2260 1.55E-04 0.976 1.44E-08 0.1794 1.89E-08 
Dis X 

 
1.300 1.80E-03 0.1646 0.0425 

Dis XIV 1.069 6.29E-08 0.1845 2.48E-08 
Dis XII 1.094 4.78E-07 0.1942 2.48E-08 
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Appendix C: Other publications from my graduate study 

 

Wang, J., Atolia, E., Hua, B., Savir, Y., Escalante-Chong, R., & Springer, M. (2015). Natural 

variation in preparation for nutrient depletion reveals a cost–benefit tradeoff. PLoS Biol, 13(1), 

e1002041.  


