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Abstract

Increasing power demands, aging infrastructure, and growth in renewable energy production

necessitate new strategies for grid operations. To achieve reliable operations in this setting, it is im-

portant to shift away from centralized control paradigms to distributed approaches that 1) allow for

quicker solution times by decomposing the problem to be solved in parallel and 2) avoid communi-

cation bottlenecks that result from all data and measurements being sent to a centralized location.

Since power systems are interconnected systems, decoupling such problems is challenging. This

dissertation studies how to improve monitoring and operation of networked systems, specifically

electric power grids, through distributed optimization and scientific computing.

The thesis focuses on two areas. In the first part, we design fully distributed algorithms for

power system state estimation under both linear and nonlinear measurement models. For the non-

linear setting, we develop a distributed Gauss-Newton method. The main computational burden is

solving a series of large, sparse linear systems. Iterative linear solvers based on matrix-splitting

techniques are developed to exploit the sparsity pattern induced by the underlying network struc-

ture and physical laws of power networks. In addition, a distributed unscented Kalman filter is

proposed to improve upon the state estimator by incorporating information from past measure-
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ments. Advantages of the proposed distributed approaches include increased scalability in terms

of both computation and communication.

The second part of this thesis concerns the operation of power grids, in particular how to deter-

mine the optimal set points for the system. The use of primal-dual interior point (PDIP) methods

for the optimal power flow (OPF) problem and the security-constrained OPF problem is studied.

We design domain decomposition techniques, as well as reduction and reordering schemes, to

parallelize the PDIP method by exploiting sparsity structure. Last, distributed energy resources

(DERs) subject to uncertainty and various dynamic constraints are increasingly participating in

electricity production and demand. A computationally tractable approximation for polyhedral pro-

jections is proposed to quantify the aggregate capability of distributed energy resources. This work

contributes to the question of how to utilize DERs to improve and support bulk grid operations.
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Chapter 1

Introduction

THIS DISSERTATION focuses on distributed algorithms for advancing monitoring capability

and operations of the electric power grid. The electric power grid is the critical backbone

upon which our water, fuel, and transportation networks depend. The U.S. electric power grid is

a complex, interconnected system, composed of over 6 million miles of transmission and distri-

bution lines responsible for delivering power to more than 143 million customers [1]. Increasing

power demands, aging infrastructure, and growth in renewable energy production necessitate new

strategies for grid operations [4]. At the same time, to ensure safe, reliable operations, electric grid

operators must maintain a delicate balance between supply and demand in real-time. Given the

size and complexity of the electric grid, such problems present one of the largest engineering chal-

lenges of the 21st century. The work of this thesis is motivated by the challenges and opportunities

facing the current and future electric grid.

An electric power system is composed of three main entities: the generating plants that produce

1
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electricity, the load or demand that consumes power, and the wires or grid that transports it [84].

The electric power grid is divided into two systems: the high-voltage transmission network and

a series of lower voltage distribution networks, also known as feeders, which deliver power to

customers. A rough dividing line between the two systems is 100 kV [84]. A substation serves as

the interconnection point between a distribution feeder and the bulk transmission system.

1.1 Enhancing Monitoring Capability: State Estimation

Since first introduced by Schweppe in 1970 [94], state estimation has played an important

role in the operation of power systems. State estimation provides a view of real-time power system

conditions for the system operator to efficiently and reliably operate the power grid [2]. Improving

state estimation advances the capability of online power dispatch, contingency analysis, frequency

control, and fault diagnosis. With the growing penetration of renewable energy, it is becoming

more demanding to estimate the system state promptly and accurately. There have been increasing

research efforts in developing and integrating new sensor technology to create a more advanced

state estimation system.

As computational demands increase with the availability of these new measurements, there is

a heightened need to develop distributed algorithms that allow each aggregate bus (i.e., points of

connection or nodes where power is drawn or injected into the grid [5]) or control area to have

its own processor for local state estimation [52]. Advantages of distributed approaches include in-

creased robustness as well as reduction in computation, communication, and memory requirements

2
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per area since each area requires only a subset of the global information. Whether trying to achieve

wide-area control between large interconnected areas of the power grid or at the micro-grid level,

robust and fully-distributed state estimation will be critical [40].

1.2 Improving Operations: Solving the Optimal Power Flow

Problem

The optimal power flow (OPF) problem is formulated as an optimization program that deter-

mines the amount of power to be generated from each power plant in order to minimize costs (e.g.,

generation costs, transmission costs, and CO2 production) under certain physical and operational

constraints. OPF is key to grid operations and is solved up to every 5 minutes for minute-ahead

planning [13]. The OPF problem was first proposed in 1962 by Carpentier [18]. Since then it

has been an active area of study in the power engineering and optimization community, and a va-

riety of approximations and special cases have been studied [73]. For example, one of the main

complications in solving OPF is the nonlinear constraints introduced by Kirchoff’s Laws.

To this day, there does not exist a method that quickly and robustly solves the full nonlinear

OPF problem. However, finding such a method could save on the order of ten billion dollars per

year [13]. Obtaining an accurate solution for OPF in quasi-real-time remains a challenge that

has been actively researched for over 50 years. Solution methods three to five times faster than

existing ones are needed [13]. Furthermore, grid operators must select set points that maintain safe

operations in the event of a contingency, or equipment failure. These extra security constraints

3
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lead to an even more computationally expensive optimization program, known as the security-

constrained optimal power flow (SC-OPF) problem. In order to achieve gains in computing

runtime, it is necessary to use parallel and distributed computing.

1.3 Future Outlook: Distributed Energy Resources

Operating the electric power grid under a high penetration of renewable energy poses chal-

lenges for grid operations due to the non-dispatchable, intermittent nature of wind and solar en-

ergy. Reliably operating the grid in this new setting is possible under increased ramping and

reserve capacity. Traditionally, the power grid is operated assuming little flexibility in the dis-

tribution system. One way of increasing reserve and ramping capability is through distributed

energy resources (DERs), such as storage, distributed generation, and responsive loads, at the

distribution-system level.

By aggregating the power savings due to many heterogeneous controllable devices (e.g., batter-

ies, rooftop photovoltaics, thermostatically controlled loads), distributed energy resources can con-

tribute significant flexibility to power grid operations [88]. The idea is to coordinate this network

of distribution system assets to function as a unified resource, or a virtual power plant (VPP) [76].

In order to utilize a distribution system as a VPP, the transmission system operators need to coor-

dinate the devices so that the aggregate net load (demand minus production) is controllable and

predictable (see Figure 1.1). This is challenging due to the large number of devices which have

varying dynamics, operating constraints, and controllability. Therefore, transformative changes
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are required in how we operate the power grid [84].

+	5%		
Target	
-	5%	

Distribu1on	System	with	DERs	

Time	

Substa1on	Net	Load	 Bulk	Transmission	System	

Aggrega1on	 VPP	

Source:	EPRI	 Source:	U.S.	DOE	

Figure 1.1: A distribution system with heterogeneous controllable devices can act as a virtual
power plant (VPP) if the devices can be coordinated so that the aggregated net load at the substation
(i.e., connection point between a distribution feeder and the bulk transmission system) stays within
a fixed percentage of the targeted value.

1.4 Distributed and Parallel Algorithms

One of the main themes of this dissertaiton is exploring how sparsity induced by the underlying

physics and limited connectivity of power networks can be utilized to design efficient distributed

algorithms in terms of computation and communication requirements. Distributed algorithms de-

compose a problem so that it can be solved across multiple computers [6]. It is challenging to

develop effective parallel algorithms for interconnected systems, such as electric grids, which do

not trivially decouple [95].

In Figure 1.2, a schematic is provided to demonstrate the difference between a centralized and

fully distributed communication scheme. In a centralized communication scheme, the centralized

controller receives data or measurements from individual control areas. The centralized controller

then performs a computation to solve an optimization problem or determine some control action

5
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Centralized	Communica0on	Scheme	

Fully	Distributed	Communica0on	Scheme	

Centralized	Controller	

Local	Control	Areas	

Figure 1.2: Centralized versus distributed communication schemes.

and finally broadcasts the result back to the local control areas. In contrast, in a fully distributed

communication setting, there is no centralized controller. Instead, control areas perform computa-

tions locally and rely on communication with their neighbors as shown in the connectivity network.

Hybrid communication structures are also possible, where control areas still do some local process-

ing while using a centralized controller to coordinate global information. We refer to algorithms

using such hybrid settings (with both local computation and communication, as well as central-

ized coordination) as parallel or semi-distributed algorithms. The designation semi-distributed is

used to signify that the main computational burden of the algorithm is fully distributed, while other

portions of the algorithm that are less computationally intensive utilize a centralized controller.

Advantages of distributed processing include scalability. For instance, if the number of neigh-

bors of any given control area stays roughly constant, then distributed methods are highly scalable
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as the size of the network grows since they utilize only neighbor-to-neighbor communication. Sec-

ond, distributed algorithms are flexible since they can be designed to allow control areas to pursue

local objectives. Lastly, distributed methods enhance reliability of systems since the control areas

depend on local and neighboring information rather than global information communicated via a

single control center that may experience interruptions in service. The main question addressed in

this thesis is how to apply these ideas to problems in power systems.

1.5 Outline of Thesis and Summary of Contributions

Part I: Distributed Monitoring in Electric Power Systems (Chapters 2, 3, 4)

Chapter 2 studies the state estimation problem for power systems under a linear measurement

model. A new fully distributed algorithm for power system state estimation is developed based on

matrix-splitting techniques. Analytical results include some insight on how to design an optimal

matrix splitting to improve convergence. The major merits of the algorithm include its convergence

speed and reduced memory requirements.

Chapter 3 extends the ideas developed for linear state estimation to a setting with a nonlinear

measurement model. A fully distributed Gauss-Newton algorithm is proposed that utilizes matrix

splitting to solve for the Gauss-Newton step, the main computational burden of the algorithm. An

implementation using the Message Passing Interface (MPI) [45] protocol is developed, demon-

strating the gain in runtime of our distributed algorithm over a centralized implementation.

Chapter 4 examines how to improve upon traditional static state estimators by including mea-
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surements from previous time instants. Changes in the system state are induced by changes in load

or demand. Unscented Kalman filter techniques are utilized to accomodate a nonlinear measure-

ment model. An approximation to the measurement covariance matrix is proposed to allow for a

fully distributed method with limited communication. Numerical experiments verify the advan-

tages of our distributed method in terms of accuracy and communication requirements.

Part II: Distributed Operation of Electric Power Systems (Chapters 5, 6, 7)

Chapter 5 focuses on the linearized optimal power flow (OPF) problem and the application

of primal-dual interior point (PDIP) methods. In particular, the problem of how to parallelize

PDIP methods to improve computational performance is considered. A semi-distributed PDIP

algorithm for the linearized DC OPF is proposed utilizing sparsity induced by the physical laws

of power networks. Simulations demonstrate the performance of the proposed method in terms of

convergence of the objective function and solution feasibility.

Chapter 6 extends the ideas developed for linear OPF to security-constrained OPF under vari-

ous power flow formulations. The use of domain decomposition techniques is studied to enhance

parallelization not only across buses in the power network but also across contingencies. Results

include estimation of the speed up of the proposed distributed method over the centralized setting.

Chapter 7 concerns the operation of distribution systems with distributed energy resources

(DERs), and in particular, how to describe their aggregate behavior and capability in terms of

the net load achievable at the substation. This problem is formulated in terms of a polyhedral

projection using ideas from computational geometry, and a tractable approximation for describing

the aggregate net load is proposed based on optimization techniques.
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Chapter 2

Fully Distributed Linear State Estimation

for Power Systems Using Matrix-Splitting

Methods

ACCURATE STATE ESTIMATION is critical for robust and secure operation of the electric

power grid. In order to efficiently operate the power grid, the system operator relies on

the output from state estimation to assess real-time operating conditions. Advancing state estima-

tion algorithms will facilitate further improvements in state-of-the-art system control functionali-

ties, such as fault diagnosis, oscillation damping, and online power dispatch. In order to realize an

electric grid with a high penetration of renewable energy sources, such advanced control capabil-

ities are increasingly important. At the same time, estimating the system state quickly with high

accuracy is challenging in such a setting. For these reasons, recently there has been significant
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interest in using advanced sensor technology to enhance state estimation. One such example is the

development of a Wide-Area Measurement System (WAMS) that uses Phasor Measurement Units

(PMUs) [22].

Processing these new measurements introduces additional computational demands, motivat-

ing the need for state estimation algorithms that execute in a distributed manner. A distributed

approach allows control areas, or geographically aggregated buses, to locally estimate their state

rather than require a central processer. Furthermore, since each control area utilizes a subset of

information from the global system, distributed algorithms increase robustness of state estimation

while reducing the computation and memory requirements within a control area. Fully-distributed

state estimation methods will be of great use for achieving wide-area control between large in-

terconnected areas of the power grid, as well as successfully monitoring down at the micro-grid

level [40].

There have been many research efforts in developing distributed state estimation methods for

electric power systems [35, 43, 71]. In hierarchical distributed approaches, state estimation is car-

ried out locally and then information is exchanged with a central processor that coordinates the

local estimates to produce a global state estimate. Hierarchical approaches to state estimation in

power systems are explored in [32, 34, 56, 57, 60, 61, 100, 109]. One disadvantage of requiring a

central coordinator is the potential for communication bottlenecks and reduced robustness.

In contrast, fully distributed state estimation utilizes neighbor-to-neighbor communication rather

than relying on a central coordinator. Of recent interest have been gossip-based algorithms for fully

distributed state estimation [51,70,108]. One potential shortcoming of such methods is that an es-
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timate of the global state is required at each area. For large networks, the memory requirements

can be prohibitive. Fully distributed methods requiring only local rather than global estimates per

area have recently been proposed: using decomposition methods [17, 19, 25]; applying alternating

direction method of multipliers (ADMM) [59]; and information filter-based techniques [97]. The

decomposition method in [19] lacks guarantees of the convergence of the distributed state estimates

to the estimates obtained by a centralized state estimator. The ADMM approach in [59] guarantees

asymptotic convergence. However, possible disadvantages include the computation and storage of

additional information in the form of Lagrange multipliers and complications in an asynchronous

setting. The method of [97] converges in finite iterations, but the network is assumed to be acyclic

and the iteration number for convergence increases linearly with the network size. For large-scale

networks, asymptotically convergent methods may be preferable, especially if convergence speed

scales independently of the network size.

In this chapter, we explore the use of matrix splitting techniques [102, 106] for developing a

new distributed state estimation algorithm that exploits inherent sparse structure in power systems.

As a preliminary step, we adopt a linear measurement model, also known as DC state estima-

tion [40]. In Chapter 3, we extend these results to a nonlinear measurement model. In the DC

setting, the optimal state estimation problem is equivalent to solving a system of linear equations.

Applying matrix splitting to solve this system of equations leads to an iterative solution to the

state estimation problem. The choice of matrix splitting is made to ensure convergence of the

distributed state estimates. In our algorithm, each bus calculates its own state estimate, and infor-

mation is exchanged between neighboring nodes. The contributions of this chapter include a new
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fully distributed method for power system linear state estimation with the following features:

1. The method combines the use of both traditional SCADA (supervisory control and data

acquisition) system measurements of power injections and flows with PMU measurements

of voltages.

2. The convergence of the distributed estimates to the optimal estimates obtained by a central-

ized algorithm is guaranteed analytically.

3. Each local bus or area only needs to hold an estimate of its own local states rather than an

estimate of the entire global state of the system. This frees up a large amount of communi-

cation and memory resources.

The chapter is outlined as follows. In Section 2.1, we provide the mathematical problem state-

ment and introduce the centralized state estimation problem. In Section 2.2, we present our dis-

tributed linear state estimation algorithm with analysis of its communication requirements and

convergence properties. In Section 2.3, numerical simulations demonstrate the effectiveness of our

method.

Notations: We use vk to denote the kth entry of a vector v. The (i, j)th entry of a matrix M is given

by Mij, and the ith row and jth column are given by [M]i and [M]j respectively. The transpose

of a vector or matrix X is denoted XT. The matrix inequality M > 0 is to be interpreted as each

element ofM being positive. In contrast, we useM � 0 to denote thatM is positive definite.
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2.1 Problem Statement

We consider an interconnected power network, denoted by an undirected graph (N , E) with a

set N , {1, 2, . . . , n} of buses and a set E ⊆ N ×N of transmission lines connecting the buses.

The goal of state estimation in power systems is to infer the unknown voltages (magnitude and

phase angle) at each bus from a set of measurements of the system. Figure 2.1 provides an example

of the IEEE 14-bus test system with different measurements. In this chapter, we consider the

linearized DC state estimation problem, which is a good approximation under the assumptions that

1) the voltage angle differences between neighboring buses are small, 2) the voltage magnitudes

are all close to 1 per unit (p.u.), and 3) the transmission lines have negligible resistance [40]. Thus

in the setting of this chapter, the voltage magnitudes are assumed to be 1 p.u., leaving only the

voltage phase angles, θ, as unknown variables. The objective of state estimation is to infer θ from

the measurements.

There are two typical power measurement systems. One is the traditional SCADA measure-

ments including power flows along transmission lines and power injections at buses; the other

system uses PMUs to measure the voltages and currents directly. Since we only consider the DC

state estimation where the voltage magnitudes are assumed to be 1 p.u., we assume that the power

flow measurements and current measurements are interchangeable and thus only consider power

flow measurements. Therefore, we consider the following three measurements: 1) a measurement

of power flow along the transmission line between buses, i and j, denoted by P̂ij , 2) a measure-

ment of power injection at bus i, denoted by P̂i, and 3) a measurement of phase angle at bus i,

denoted by θ̂i. The cost of measurement units is too prohibitive to deploy enough sensors to take

13



Chapter 2: Fully Distributed Linear State Estimation for Power Systems Using
Matrix-Splitting Methods

12# 13#

6# 11# 10#

14#

9#

1# 5#

2# 8#

4# 7#

3#

Power#Injec5on#Measurement#

Power#Flow#Measurement#

PMU#–#Phase#Angle#Measurement#

Figure 2.1: Schematic illustration of IEEE 14-bus test system with location and types of measure-
ments used.

all possible measurements of the system. We denote the set of measurements as Z and the ordered

vector of measurements as z. The DC model linearly relates the measurements z and unknown

voltage phase angles θ,

z = H θ + e, (2.1)

where e ∼ N (0,R). Let the neighbor set of node i be denoted Ni. Denote the susceptance of

the transmission line between nodes i and j as Bij . The entries of the measurement matrix H are

given as follows:
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1. If zk = P̂ij , then

Hkl =



Bij, l = i

−Bij, l = j

0, otherwise.

(2.2)

2. If zk = P̂i, then

Hkl =



∑
j∈Ni

Bij, l = i

−Bij, l = j, j ∈ Ni

0, otherwise.

(2.3)

3. If zk = θ̂i, then

Hkl =


1, l = i

0, otherwise.

(2.4)

Given an invertible matrix W that weights the measurements, we seek an estimate of θ that solves

the following optimization problem:

min
θ

(z−Hθ)TW(z−Hθ), (2.5)

where one possible choice for W is the inverse covariance matrix R−1. The following assumption

is made on the weighting matrix:

Assumption 2.1. The weighting matrix W is invertible and diagonal with entries Wkk ≡ wk > 0.

15



Chapter 2: Fully Distributed Linear State Estimation for Power Systems Using
Matrix-Splitting Methods

The solution to (2.5) is given by choosing an estimate θ∗C to satisfy the first-order optimality

conditions,

(HTWH)θ∗C = HTWz. (2.6)

We make the following assumption.

Assumption 2.2. (Observability) The measurement matrix H has full column rank.

With this, we can calculate the unique solution as

θ∗C = (HTWH)−1HTWz. (2.7)

Calculating the centralized solution θ∗C depends on full knowledge of H,W, and z. This requires

all measurements being sent to a central coordinator, as well as solving the system in (2.6), which

can be too large to be practical for wide-area control. These communication and computational

burdens present a difficulty for state estimation in large-scale power systems. To address this chal-

lenge, we propose a new distributed algorithm for state estimation that requires only local infor-

mation internal to the local control area of interest and information communicated from neighbors.

For ease of exposition, we assume that each bus is a control area with a local processor. Our

method can be extended to cases where a control area includes multiple buses in the network as

described in [43].

Assuming there is at least one phase angle measurement in the system, we formulate the state

estimation problem without using a reference bus as is done in [111]. The algorithm does not

require local reference phase angles in each control area since control areas share neighboring
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estimates. The algorithm does assume that all PMU measurements being used are taken at the

same time instant with respect to GPS.

2.2 Distributed Linear DC State Estimation Algorithm

We propose a new state estimation algorithm based on a matrix-splitting technique that allows

us to solve (2.6) in a distributed way. This method is inspired by the use of matrix-splitting for

developing a distributed Newton method for the Network Utility Maximization (NUM) problem

of Wei et al. in [106].

2.2.1 Matrix Splitting for Distributed DC State Estimation Problem

First, we introduce the idea behind matrix splitting for solving linear systems [102]. Given

a square linear system of n equations, Ax = y, we seek to write A as the sum of an invertible

matrix, M, and a matrix N, i.e. A = M + N. Then for an arbitrary x0 ∈ Rn, consider the

following iterative scheme:

xt+1 = −M−1Nxt + M−1y. (2.8)

The sequence {xt} converges to its limit x∗ as t → ∞ if and only if the spectral radius 1 of the

matrix M−1N is strictly less than 1 [102]. In the event that the sequence converges, the limit x∗ is

the solution of the system, i.e., Ax∗ = y.

1Let λ1, . . . , λn be the (real or complex) eigenvalues of a matrix A ∈ Cn×n. Then, define the spectral radius
ρ(A)

def
= max{|λ1|, . . . , |λn|}.
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To apply this to state estimation, we define

A
def
= HTWH. (2.9)

We can decompose A into the sum of a matrix containing its diagonal entries, D, and a matrix

containing its off-diagonal entries E. Specifically, let

Dij =


Aii, j = i

0, j 6= i

(2.10)

and

Eij =


Aij, j 6= i

0, j = i

(2.11)

yielding A = D + E. The main challenge is to identify matrices M and N such that A = M + N

and the spectral radius ρ(M−1N) < 1. To this end, we introduce a diagonal matrix Ē whose ith

diagonal entry equals:

Ēii ≡ α

n∑
j=1

|Eij|, (2.12)

for some positive constant α.

Proposition 2.1. Let M = D + Ē and N = E− Ē. Then, for α ≥ 1
2
, ρ(M−1N) < 1.

Proof. By Theorem 2.5.3 of [26], to prove that ρ(M−1N) < 1, it is sufficient to show that M + N

and M −N are positive definite. First, it is straightforward to verify that HTWH = M + N is

positive definite given Assumptions 1 and 2.
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Second, we show that M−N is positive definite. As a corollary to the Gershgorin Circle

Theorem [101], it is sufficient to show that M − N is strictly diagonally dominant with strictly

positive diagonal entries. A matrix A is diagonal dominant if |Aii| ≥
∑

j 6=i |Aij| ∀i. To show this,

we insert our choice for M and N to obtain M−N = D + 2Ē−E. By definition, D is a diagonal

matrix and Dii = (HTWH)ii > 0. Thus, given that α ≥ 1
2
,

(D + 2Ē− E)ii = Dii + 2Ēii − Eii (2.13a)

> 2 α
n∑
j=1

|Eij| − 0 (2.13b)

≥
∑
j 6=i

|Eij| (2.13c)

=
∑
j 6=i

|(D + 2Ē− E)ij|. (2.13d)

Therefore,M −N is a positive definite matrix.

2.2.2 Proposed Algorithm and Analysis of Information Communication Re-

quirements

We now study the information required to compute an individual phase angle estimate. Apply-

ing the iterative scheme of equation (2.8) to the state estimation problem with our choice of matrix

splitting, we obtain

θ(t+1) = −(D + Ē)−1(E− Ē)θ(t) + (D + Ē)−1HTWz (2.14)

Besides our choice of matrix splitting satisfying conditions necessary for convergence, we also

note that the only matrix to invert, namely (D + Ē), is diagonal and therefore easy to invert
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distributedly. In order to analyze the information communication of this iterative approach, we

study the expression for the estimate of the unknown phase angle at a specific bus. From equation

(2.14), we have

θ
(t+1)
i =

1

Dii + Ēii
(Ēiiθ

(t)
i − [E]iθ

(t) + [HTW]iz) (2.15)

We then utilize the particular structure of the power grid state estimation problem in order to verify

the information from neighboring areas needed to calculate θ(t+1)
i . Each node is assumed to know

measurements of its own phase angle, power injection, and local power flows. We introduce the

following quantities:

σij =


wk, zk = P̂ij

0, P̂ij 6∈ Z
, σi,P =


wk, zk = P̂i

0, P̂i 6∈ Z
, σi,θ =


wk, zk = θ̂i

0, θ̂i 6∈ Z
. (2.16)

In addition, we define the set of “1-hop" neighbor nodes of node i as nodes that are not direct

neighbors but share a common neighbor:

N †i ≡ {j | j 6∈ Ni,Ni ∩Nj 6= ∅}. (2.17)

By definition, we have that Ni ∩N †i = ∅. For notational simplicity in what follows, let

N ∗i = Ni ∪N †i . (2.18)

With this, we present the final expression for an estimate at an individual bus in terms of the local

information available and only the subset of external information needed.

Proposition 2.2. The updates to the distributed state estimates of equation (2.15) have the follow-
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ing form:

θ
(t+1)
i =

1

Aii + α
∑
j∈N ∗i

|Aij|

{
(α
∑
j∈N ∗i

|Aij|)θ(t)
i −

∑
j∈N ∗i

Aijθ
(t)
j + σi,P (

∑
j∈Ni

Bij)P̂i +

∑
j∈Ni

Bij(σijP̂ij − σjiP̂ji − σj,P P̂j) + σi,θ θ̂i

}
(2.19)

where the entries of Aij =

σi,θ +
∑
j∈Ni

(σij + σji + σj,P )B2
ij+

σi,P

(∑
j∈Ni

Bij

)2

, j = i

−(σij + σji)B
2
ij +

∑
l∈Ni∩Nj

σl,PBilBjl

−Bij

(
σi,P

∑
l∈Ni

Bil + σj,P
∑
l∈Nj

Bjl

)
, j ∈ Ni

∑
l∈Ni∩Nj

σl,PBilBjl , j ∈ N †i

0, else.

(2.20)

Proof. Expanding equation (2.15) using the definitions for matrices D,E, and Ē from equations

(2.10)-(2.12), we obtain an expression for θ(t+1)
i soley in terms of entries of the matrices H and

A = HTWH,

θ
(t+1)
i =

1

Aii + α
∑
j 6=i

|Aij|

{
(α
∑
j 6=i

|Aij|)θ(t)
i −

∑
j 6=i

Aijθ
(t)
j

+
m∑
k=1

Hkiwkzk

}
(2.21)
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Since W is diagonal, we have that

Aij =
m∑
k=1

wkHkiHkj. (2.22)

From equations (2.2)-(2.4), we see that the topology of the power grid network and the measure-

ment model induces a sparsity on the entries of A. We determine the entries Aij by considering

four cases.

1. Case 1: (i = j)

According to equations (2.2)-(2.3), for measurements of power flow on a line incident with

node i or a power injection at a neighboring node, Hki = ±Bij, so H2
ki = B2

ij. For measure-

ment of the power injection at node i, thenH2
ki = (

∑
j∈Ni

Bij)
2.According to equation (2.4),

for a measurement of the voltage phase angle at node i, H2
ki = 1. All other measurements

k in the network will not contribute to the sum in equation (2.22) since Hki = 0. There-

fore, we see that we need only consider measurements local to node i or power injections at

its neighbors. Since in general not all possible power flows, power injections, and voltage

phase angles are measured, we use the quantities defined in equation (2.16) to include only

the available measurements.

2. Case 2: (j ∈ Ni)

Similar logic applies as in Case 1 except in the instance of a power injection at node j, we

need the following information about node j’s incident edges,
∑

l∈Nj
Bjl. In addition, we

must include possible contributions from a power injection at a mutual neighbor of nodes i

and j, which does not require any communication of information that is neither local to node
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i nor to node j.

3. Case 3: (j ∈ N †i )

In this case, we consider “1-hop" neighbor nodes of i. If nodes i and j are not direct neigh-

bors but share a neighbor l with a power injection measurement k, then HkiHkl = BilBjl >

0, yielding a non-zero entry for Aij.

4. Case 4: Otherwise (j 6∈ N ∗i , j 6= i)

If j does not satisfy the conditions for the first three cases, then we must have either Hki or

Hkj be zero for all possible measurements.

With this, we obtain the entries of Aij in terms of the available measurements, their variances, the

network connectivity, and the bus susceptance parameters. Therefore in equation (2.21), instead of

requiring all entries {Aij|j 6= i}, we only require {Aij|j ∈ N ∗i }. Furthermore, the only measure-

ments that contribute to the term
∑m

k=1 Hkiwkzk are those locally available to node i and power

injections at its neighbors. These simplifications provide the final result in equation (2.19).

From this lemma, we know that if there are only power flow and phase angle measurements at

node i ( i.e. no power injection measurement), then node i needs to communicate only its current

estimate θ(t)
i to its neighbors. If there is a power injection measured at node i, then the following

additional information must be communicated to its neighbors:

1. Value of measured power injection, P̂i

2. The set of neighbors’ state estimates {θ(t)
j }j∈Ni

must be shared with each neighbor.
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Algorithm 2.1 Matrix-Splitting Based Distributed Linear State Estimation

1: Initialization : Node i has access to local measurements. ∀ 1 ≤ i ≤ n, θ
(0)
i = 0. If P̂i ∈ Z , node i

sends P̂i, wk|zk=P̂i
, and {Bij}j∈Ni

to nodes j ∈ Ni.

2: for t := 0 to T do

3: for i := 1 to n do

4: θ
(t+1)
i = f(θ

(t)
i , {θ(t)

j }j∈N ∗i ) from equation (2.19). Node i sends θ(t+1)
i to nodes j ∈ Ni.

5: end for

6: if P̂i ∈ {z} then

7: Node i sends {θ(t+1)
j }j∈Ni

to nodes j ∈ Ni.

8: end if

9: end for

It is noted that only the phase angle estimates change with time and need to be communicated at

each time step. Power injections are communicated once during initialization. The line susceptance

parameters and measurement weights are assumed to be known a priori.

We illustrate the information exchange for nodes with a power injection measurement using

the example in Figure 2.2. Power injections are measured at nodes i and l.

At initialization,

• Node i sends P̂i to its neighboring nodes j, k, and l.

• Node i receives P̂l from node l.
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k"

i"

j"

l" n"

m"

Figure 2.2: Example to illustrate information exchange of Algorithm 2.1. Neighboring nodes are
connected via an edge in the graph. There are power injection measurements at nodes i and l,
signified by a diamond-shaped sensor. Communication occurs directly between neighbors.

At iteration t, after each node has calculated its next estimate using equation (2.19),

• Node i sends θ(t+1)
i , θ

(t+1)
j , θ

(t+1)
k , and θ(t+1)

l to its neighboring nodes j, k, and l.

• Node i receives θ(t+1)
j , θ

(t+1)
l , and θ(t+1)

n from node l. Node i also receives θ(t+1)
k from node

k and θ(t+1)
j from node j.

2.2.3 Convergence Analysis

Under Assumption 2, there is a unique solution given by equation (2.7), which we denote

here as θ∗. In Proposition 1, we showed that ρ(M−1N) < 1. Because the iterative scheme in

equation (2.8) forms a discrete linear dynamic system, according to (Thm 6.1) [30], the iterative

scheme in (2.8) exponentially converges to the solution θ∗. The convergence speed is determined

by ρ(M−1N). Formally speaking, we have the following theorem about the convergence:

Theorem 2.1. The distributed state estimation scheme as described in Algorithm 2.1 exponentially
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converges to the optimal solution in (2.5). The convergence speed is determined by ρ(M−1N).

2.2.4 Proof of Some Properties of the Spectral Radius

As a starting point towards an analytical analysis of ρ(M−1N ), assume there are only power

flow and PMU measurements available. In this setting, we can show that ρ(M−1N ) is

1. an increasing function of α and

2. a decreasing function of the number of diagonal blocks in the splitting ofA.

Without power injection measurements, the entries ofA are given by

Aij =



σi,θ +
∑
l∈Ni

(σP (i,l)+σP (l,i))B
2
il , j = i

−(σP (i,j) + σP (j,i))B
2
ij , j ∈ Ni

0 , otherwise,

(2.23)

where Bij is the susceptance of the transmission line connecting buses i and j.

From this we see that A has positive diagonal entries and non-positive off-diagonal entries.

Furthermore, since A is symmetric and positive definite, A is a Stieljes matrix. Stieljes matrices

have the property that their inverses are non-negative,A−1 ≥ 0, (Cor. 3.24) [102]. From Definition

3.28 in [102], for n × n real matrices, A,M , and N ,A = M −N is a regular splitting of the

matrixA ifM is nonsingular withM−1 ≥ 0 andN ≥ 0.

Proposition 2.3. The splitting in Proposition 2.1 is a regular splitting for α ≥ 0.

26



Chapter 2: Fully Distributed Linear State Estimation for Power Systems Using
Matrix-Splitting Methods

Proof. Since A is a Stieljes matrix, D is also a Stieljes matrix. Upon adding a diagonal matrix

with strictly positive entries to a Stieljes matrix, the matrix remains Stieljes. Therefore, for α ≥

0,M = D + αĒ is a Stieljes matrix, and we haveM−1 ≥ 0 andN ≥ 0.

To show the desired properties of ρ(M−1N ), we utilize the following theorem from [102,

Theorem 3.32].

Theorem 2.2 (Varga). Let A = M1 −N1 = M2 −N2 be two regular splittings of A, where

A−1 ≥ 0. If 0 ≤N1 ≤N2, then

0 ≤ ρ(M1
−1N1) ≤ ρ(M2

−1N2) < 1. (2.24)

With this result, we have the following proposition that analytically characterizes the rate of

convergence with respect to the matrix splitting parameter α and with respect to block size.

Proposition 2.4. In the DC setting and when no power injection measurements are present, ρ(M−1N )

is an increasing function of α for α ≥ 0. The rate of convergence of the iterative algorithm in-

creases as block size increases or equivalently the number of blocks decreases.

Proof. Let 0 ≤ α < α′ and let N1 = αĒ − E and N2 = α′Ē − E, where Ē is defined as in

equation (2.12). Then, N1 < N2, so from Theorem 2.2 we have ρ(M1
−1N1) ≤ ρ(M2

−1N2).

This shows that the rate of convergence increases as α decreases. Consider a splitting withM 1 =

D+ αĒ andM 2 = D′ + αĒ′, where Ē′ is diagonal with entries given by Ē ′ii =
∑n

j=1 |A′ij|. Let
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D = diag(A11, . . . ,Aii, . . . ,ANN) andD′ = diag(A11, . . . ,A
′
ii, . . . ,ANN), where

Aii =

A
(1,1)
ii 0

0 A
(2,2)
ii

 , (2.25)

and

A′
ii =

A
(1,1)
ii A

(1,2)
ii

A
(2,1)
ii A

(2,2)
ii

 . (2.26)

Then, we have N 1 = A −D − αĒ and N 2 = A −D′ − αĒ′. Since the off-diagonal entries

of A are non-positive, by construction Aii ≤ A′
ii, so we have N 1 ≤ N 2. From Theorem 2.2,

we have ρ(M1
−1N1) ≤ ρ(M2

−1N2). From equations (2.25) and (2.26), we see that the splitting

A = M 1 +N 1 results from dividing a given block into two smaller blocks. Since the selection

of the blockA′
ii was arbitrary, we see that decreasing the block size or equivalently increasing the

number of blocks decreases the rate of convergence.

This shows an interesting connection between the rate of convergence and the communication

scheme, or degree to which the algorithm is distributed.

2.3 Numerical Results

We study the performance of our algorithm by calculating the error between the distributed

estimate and the centralized optimal estimate at each iteration t, δt ≡ ||θ(t)
d − θ∗c ||. Figure 2.3

demonstrates the exponential convergence of the distributed estimates for the IEEE 14-bus and

118-bus systems respectively. We study the convergence for different values of the parameter α
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Table 2.1: 118-bus measurement configuration. The power flow measurements are taken at all
branches except those listed as missing power flows.

Measurement Type Locations (Bus Index)

Missing Power Flows (2,12), (9,10), (24,72), (93,94)

Power Injections 1, 2, 3, 5, 18, 19, 21, 22, 25, 33, 34, 35,

36, 55, 56, 69, 71, 72, 77, 80, 81, 86, 88, 90,

98, 106,107 110, 114, 118

Missing voltage 3, 5, 14, 15, 18, 19, 20, 21, 26, 33, 38, 39, 41,

phase angles 44, 45, 51, 63, 64, 67, 68, 51, 63, 64, 67, 68,

63, 64, 67, 68, 69, 73, 74, 75, 76, 79, 82, 84,

89, 92, 94, 96, 97, 99, 100, 101, 105, 106, 107

in equation (2.12) and empirically find α = 1
2

to be optimal as expected from Proposition 2.4.

For the 14-bus system (a), using the measurement configuration in Figure 2.1 with α = 1
2
, the

convergence is exponential with rate determined by ρ(M−1N) = 0.64. For the 118-bus system

(b), using the measurement configuration in Table 2.1 with α = 1
2
, the convergence is exponential

with rate determined by ρ(M−1N) = 0.87.

The values of the power flows and power injections in the simulation are on the order of 10−1

p.u. The measurements are perturbed by additive zero-mean Gaussian noise N (0, σ2) with σ =

0.01. As stated in Theorem 2.1, the convergence of the distributed algorithm is governed by the

spectral radius, ρ(M−1N). The value of ρ(M−1N) is sensitive to the measurement configuration,
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the choice of weighting matrix W, and the parameter α of the matrix splitting. We used the identity

matrix for W in these tests. From Figure 2.3, it is demonstrated that the lower value of ρ(M−1N)

in the 14-bus system leads to faster convergence than in the 118-bus system.
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(a) 14-bus test system.
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(b) 118-bus test system.
Figure 2.3: Convergence is shown for different values of the parameter α from equation (2.12).
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2.4 Conclusion

In this chapter, we have proposed a new fully distributed state estimation algorithm based on a

matrix splitting iterative approach. Attractive features of the algorithm include the limited amount

of information that needs to be shared between neighboring nodes and that each node needs only to

store and compute its local estimate. Future research directions include analytically characterizing

the spectral radius associated with the matrix splitting in terms of the measurement configuration

and extending the algorithm to detect and identify bad data in a distributed manner. In the next

chapter, we will generalize the approach to the AC state estimation setting.
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Chapter 3

A Distributed Gauss-Newton Method for

Power System State Estimation

IN THIS CHAPTER, we extend the results for linear state estimation in Chapter 2 to a nonlinear

measurement model. There is substantial literature on developing distributed methods [82]

for general optimization problems, such as consensus-based and dual-based gradient and Newton-

type methods. However, there has been a lack of work on developing distributed Newton-type

methods for state estimation in power grids. Due to the nonconvexity of the power system state

estimation problem, we use the Gauss-Newton method [85]. In comparison to gradient-based

methods, Newton-type methods are advantageous with respect to convergence rate, which is usu-

ally quadratic. The difficulty is that Newton-type methods require solving a linear system at each

iteration. This presents a challenge for developing a distributed method since in general global in-

formation of the matrix entries is needed. Furthermore, when the system size is large, solving the
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set of linear equations may be time-consuming or even prohibitive. To overcome this challenge,

in our work we explore the use of matrix-splitting techniques [102, 106]. This allows us to exploit

inherent sparse structure in power systems in order to calculate the next Gauss-Newton iteration in

a distributed way.

A similar method in [72] uses an approximate block Jacobi method, a kind of matrix splitting,

for distributed state estimation. Our work is distinct in that we do not ignore the boundary terms

containing information about neighboring areas. Without such boundary terms, a distributed al-

gorithm does not require communication. Since the power network is an interconnected system,

ignoring such boundary terms leaves out important information. Furthermore, theoretical guaran-

tees for the convergence of the approximate block Jacobi iterative scheme are not provided. The

work in this chapter more fully explores some of the ideas first suggested in [72].

In our algorithm, each control area calculates the state estimates of its local buses, and commu-

nication is carried out only between neighboring areas. The contributions of this work include a

new fully distributed Gauss-Newton method for power system state estimation with the following

features:

1. The method incorporates both traditional SCADA (supervisory control and data acquisition)

system measurements of power injections and flows, as well as PMU measurements.

2. Each control area only requires local information and a limited exchange of information with

neighboring control areas in order to estimate its state, eliminating the need for a central

processor.
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3. Each control area only needs to hold an estimate toward its own state rather than an estimate

of the global state of the system. This saves a large amount of communication and memory

resources.

The principal intent of our algorithm is to be applied in a distributed computation environ-

ment with information being exchanged between different control areas across potentially large

geographic distances. Our algorithm is well-suited to such a setting since it utilizes only neighbor-

to-neighbor communication. However, the algorithm is also applicable for running on a parallel

computing environment, where measurements are aggregated at a central location [95]. Indeed to

test our algorithm, we use a computer cluster where each node in the cluster is treated as a control

area. In this case, the communication time is not reflective of a geographically dispersed setting,

but it gives a useful indication of how the communication and computation time requirements

scale.

The chapter is outlined as follows. In Section 3.1, we present the mathematical problem state-

ment and introduce the application of Newton’s method to power system state estimation. In Sec-

tion 3.2, we present our distributed state estimation algorithm with analysis of its communication

requirements. In addition, we discuss the convergence properties of our algorithm. In Section 3.3,

numerical simulations are used to demonstrate the effectiveness of our method.

Notations: We use vk to denote the kth entry of a vector v. The (i, j)th entry of a matrix M is

given by Mij. The transpose of a vector or matrix X is denoted by XT . The matrix inequality

M > 0 is to be interpreted as each element of M being positive. In contrast, we use M � 0 to

denote thatM is positive definite.
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3.1 Problem Statement

We consider a multi-area interconnected power network, denoted by an undirected graph (N , E)

with a set N , {1, 2, . . . , n} of buses and a set E ⊆ N ×N of transmission lines connecting the

buses. The goal of state estimation in power systems is to infer the unknown voltages (phase angle

and magnitude) at each bus, xT = [θ1 V1 . . . θn Vn], from a set of noisy measurements of the

system. The power network is partitioned into N non-overlapping regions, called control areas.

Decentralized state estimation allows each control area to estimate its local state by exchanging

information with neighboring control areas. Figure 3.1 provides an example of the IEEE 14-bus

test system under a particular control area partitioning and measurement configuration [61].

12# 13#

6# 11# 10#

14#

9#

1# 5#

2# 8#

4# 7#

3#

Area#A3# Area#A4#

Area#A1# Area#A2#

Power#Injec7on#Measurement# Power#Flow#Measurement#

PMU#–#Voltage#(Magnitude#&#Phase#Angle)#Measurement#

Figure 3.1: Multi-area IEEE 14-bus test system partitioned into N = 4 control areas with location

and types of measurements used [61].

There are two typical power measurement systems. One is the traditional SCADA measure-
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ments including power flows along transmission lines and power injections at buses; the other

system uses PMUs to measure the voltages and currents directly. We consider the following mea-

surements: 1) the real and reactive power flow along the transmission line between buses i and j,

denoted by P̂ij and Q̂ij; 2) the real and reactive power injection at bus i, denoted by P̂i and Q̂i; and

3) the voltage phase angle and magnitude at bus i, denoted by θ̂i and V̂i. Branch current phasor

measurements are also available from the PMUs. As a future enhancement, the branch current

measurements can be incorporated using techniques from [7,21,62] for developing hybrid state es-

timators that incorporate both voltage and current phasor measurements with traditional SCADA

measurements. SCADA scan rates are approximately once every 2-6 seconds, whereas PMU mea-

surements update about 30 times per second [41]. The intent of our algorithm is to use the most

recent measurements available from the PMUs and from the SCADA system for each state estima-

tion run. We consider a static setting rather than a dynamic one, treating each measurement set as

a separate snapshot in time. In Chapter 4, we consider the dynamic setting.

Due to the deployment cost of SCADA and PMU sensors, measurements of power flow, power

injection, and voltage phasors are only available at a subset of the buses and transmission lines in

the system. We denote the set of measurements as Z and the ordered vector of measurements as

z. The AC model relates the measurements z and the unknown state x,

z = h(x) + e, (3.1)

where e ∼ N (0,R) is zero-mean Gaussian random noise with covariance matrix R. AC state
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estimation solves the following optimization problem arg minx f(x), where

f(x)
def
= (z − h(x))TW (z − h(x)). (3.2)

The following assumption is made on the weighting matrix,W :

Assumption 3.1. The weighting matrixW is diagonal with entries Wkk
def
= wk > 0.

If the inverse covariance matrix is used as the weighting matrix, this is equivalent to assuming

that noise from different measurements is independent (i.e., R is diagonal). Our method can be

extended to a scenario where the noise values associated with measurements from within a single

control area have non-zero covariance.

Given an initial point, x(0), Newton’s method uses an iterative scheme to minimize f(x):

x(k+1) = x(k) −∆x(k). (3.3)

At each iteration k, Newton’s method minimizes the second-order approximation to f about x(k).

The Newton step, ∆x(k), is given by solving the following linear system

[∇2f(x(k))]∆x(k) = ∇f(x(k)), (3.4)

where ∇f and ∇2f are the Jacobian and Hessian functions of the objective function. Since f(x)

is a non-convex function, we use the Gauss-Newton method which employs a positive-definite

approximation to∇2f(x) [85]. We denote this by ∇̃2f(x) = JT (x)WJ(x), where the measure-
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ment Jacobian is given by

J(x) =


∂h1(x)
∂θ1

∂h1(x)
∂V1

. . . ∂h1(x)
∂θn

∂h1(x)
∂Vn

...
... . . . ...

...

∂hm(x)
∂θ1

∂hm(x)
∂V1

. . . ∂hm(x)
∂θn

∂hm(x)
∂Vn

 . (3.5)

Depending on the quality of the approximation to the Hessian, the Gauss-Newton method may not

have the same quadratic convergence properties as the Newton method. In cases where ∇̃2f(x)

approximates ∇2f(x) well, the Gauss-Newton method will show comparable performance to the

Newton method without the computational burden of calculating the full objective function Hes-

sian. Using the Gauss-Newton approximation, the Newton update (3.4) becomes

J(x)TWJ(x)∆x = −J(x)TW (z − h(x)), (3.6)

where we suppress iteration label k to lighten notation. Solving this linear system yields the Gauss-

Newton step, ∆x(k), needed to produce the next iterate in (3.3). For realistic power systems, this

results in a large linear system, that is challenging to solve in real-time. The goal of this work is

to solve the linear system (3.6) in a distributed way, utilizing the sparsity of the system to ensure

limited communication requirements.

3.2 Distributed Gauss-Newton Algorithm

3.2.1 Overview of Algorithm

The aim of distributed state estimation is for each control area to estimate its local state. This

requires a distributed solution to the linear system in (3.6). Rather than using standard direct matrix
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inversion methods, such as Gaussian elimination (i.e., LU factorization), Gauss-Jordan elimination,

or Cholesky factorization [49], we develop an iterative method based on matrix splitting [102].

At every iteration, each control area exchanges information about its local state estimate with

neighboring areas. The local state estimate is then updated based on information received from

neighboring areas. Though direct methods exactly solve linear systems, up to rounding error, in

a finite number of steps, for large systems, they often suffer from prohibitively large storage and

computation requirements. In contrast, iterative methods can have a significant advantage over

direct methods if they rapidly converge to a sufficiently accurate solution [49].

Control areas have access to their own local measurements and state estimates of local buses

but not to system-wide measurements and estimates. Measurements at neighboring buses in other

control areas will be relevant to the control area’s state estimation (i.e., the measurement has a non-

zero partial derivative with respect to at least one of the local states). In particular, a measurement

of power flow along a transmission line connecting two control areas requires those control areas

to share their bordering bus state estimates with one another. Likewise, for a bus with a power

injection connected to another control area, all of that buses neighbors’ estimates must be shared

with the neighboring control area.

3.2.2 Matrix Splitting for Distributed AC State Estimation

We propose a new multi-area state estimation algorithm based on a matrix-splitting technique

that allows us to calculate the Gauss-Newton step, ∆x, in a distributed way. This method is

inspired by the use of matrix-splitting for developing a distributed Newton method for the Network
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Utility Maximization (NUM) problem of Wei et al. in [106]. We introduce the following notation

A
def
= J(x)TWJ(x) (3.7)

b
def
= −J(x)TW (z − h(x)). (3.8)

As detailed in Chapter 2, writing the linear system in (3.6) as A∆x = b, the idea behind matrix

splitting is to write A as the difference of an invertible matrix, M , and a matrix N , (i.e., A =

M −N ) [102]. Recall for an arbitrary ∆x0 ∈ Rn, the following scheme provides an iterative

solution to solving (3.6):

∆xt+1 = M−1N∆xt +M−1b. (3.9)

Since the Gauss-Newton method is itself an iterative method for minimizing the weighted least-

squares objective function, matrix-splitting introduces an inner-loop of iterations t for each Gauss-

Newton (i.e. outer-loop) iteration k. Numerical tests in Section 3.3 demonstrate the favorable

runtime of our algorithm despite this nested loop structure. A flowchart providing a practical

overview of our algorithm is given in Figure 3.2.

Our contribution is to design the matrix splitting so that the iterative scheme in (3.9) converges

and is easily distributed. Recall from Chapter 2 the sequence in (3.9) converges if and only if

the spectral radius ρ(M−1N ) is strictly less than 1. For details of convergence, please see Section

3.2.4. To facilitate distributed processing, each control area should calculate its next Gauss-Newton

iterate using local information and a limited amount of communication with neighboring areas.

To this end, we consider a splitting of A into a block diagonal matrix, D, and an off-diagonal

matrix E. The entries of D correspond to local information, and the entries of E correspond to
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Initialize estimates         to flat start. x0
J

(Inner-loop) Matrix-Splitting iteration :
Calculate                  as in equation (3.16).

Communicate with neighboring control areas.
�xt+1,k

J

Is                 ? t < T

Is                 ? k < K

Terminate algorithm. 

(Outer-loop) Gauss-Newton iteration :
Calculate                                          .

Communicate with neighboring control areas.

Initialize Gauss-Newton step                to zero.   

No 

Yes 

No 

Yes 

�x
(0,k)
J

xk+1
J = xk

J ��x
(T,k)
J

Figure 3.2: Outline of proposed state estimation algorithm detailing inner- and outer-loop structure
for control area J .

information required from other control areas.

Let the number of buses in control area A1 be denoted n1, and without loss of generality, let

control area A1 contain buses with node labels S1 = {1, . . . , n1}. Similarly let the buses of control

area A2 have labels S2 = {n1 + 1, . . . , n1 + n2} and so forth for consecutive control areas. The

matrix A as defined in (3.7) can be decomposed into the sum of a block-diagonal matrix, D, and

a matrix containing the remaining off-diagonal entries E. The consecutive re-labeling of the node

indices described above allows for all entries ofA corresponding to buses within the same control

area to be contained within a single diagonal block. Given a row index i of x, we use n(i) to
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denote the underlying bus index.1 Specifically, let

Dij =



Aij if nodes n(i) and n(j)

belong to the same control area

0 otherwise

, (3.10)

Eij =



Aij if nodes n(i) and n(j)

belong to different control areas

0 otherwise

, (3.11)

yielding A = D +E. The key is to identify matrices M and N such that A = M −N and the

spectral radius ρ(M−1N ) < 1. To ensure convergence, we introduce a diagonal matrix Ē whose

ith diagonal entry equals

Ēii
def
=
∑
j 6=i

|Aij|. (3.12)

We propose the following matrix-splitting design

M = D + αĒ (3.13)

N = αĒ −E, (3.14)

where α is a scalar parameter. In Proposition 3.1, it is shown for α ≥ 1
2
, the matrix-splitting

1For example, in a two bus system, xT = [θ1 V1 θ2 V2], and

n(i) =

{
1 if i = 1, 2

2 if i = 3, 4
.
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iterative scheme in (3.9) converges to the centralized solution using the splitting designed in (3.13)-

(3.14). The centralized solution is given by directly, as opposed to iteratively, solving system (3.6).

3.2.3 Proposed Algorithm and Analysis of Information Communication Re-

quirements

Besides our choice of matrix splitting satisfying conditions necessary for convergence, we also

note that the only matrix to invert, namely (D + αĒ), is block diagonal and therefore can be

inverted locally within each area without any communication between neighboring control areas

since the inverse of a block diagonal matrix remains block-diagonal.

We address the question of which information needs to be communicated for each control area

to calculate its local Gauss-Newton update, ∆xt = [∆xt1 ∆xt2 . . . ∆xtN ], where there are a total

of N control areas. Similarly, we can partition b from equation (3.8) into different components

corresponding to each control area as b = [b1 . . . bN ]. To illustrate the local computation required

for the Gauss-Newton update, consider a network with two control areas. Then, the matrix-splitting

iterative updates in equation (3.9) become∆x
(t+1)
1

∆x
(t+1)
2

 =

M -1
1 0

0 M -1
2


N 11 N 12

N 21 N 22


∆x

(t)
1

∆x
(t)
2



+

M -1
1 0

0 M -1
2


b1

b2

 (3.15)
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In general, control area J has Gauss-Newton step update given by

∆xt+1
J = M−1

J

[ N∑
L=1

NJL∆xtL + bJ
]
. (3.16)

We already saw that M−1
J can be calculated independently in each control area. We consider

what information needs to be communicated in order to calculate the matrices {NJL} and bJ . Let

the set of border buses in control area J be denoted ΩJ . These are the buses with a neighbor in

another control area. Due to the locality of the measurement functions (whose functional form

is given in (3.20)-(3.25) for reference), the matrix NJL will be zero unless control areas J and

L are neighboring (i.e., there is a transmission line connecting a bus in J to a bus in L) and

otherwise sparse. Non-zero entries ofNJL can be attributed to measurements of power flow along

transmission lines connecting areas J and L and to measurements of power injections at border

buses. Similarly, such measurements are the only non-zero contributions to bJ from other control

areas. The sparseness of the NJL matrices allows for a limited communication of information

between neighboring control areas. We emphasize that the information needed from other areas to

calculate the matrices {NJL} and bJ is communicated only once per Gauss-Newton iteration.

The communication exchange is detailed in Algorithm 3.1. It is important to stress that the

centralized Gauss-Newton method consists only of the outer loop of Gauss-Newton iterations in

equation (3.3) which produces a sequence of estimates using the exact Gauss-Newton step obtained

from directly solving (3.6). We refer to these estimates as the centralized estimates, {x(k)
∗ }. In

contrast, our distributed method iteratively solves (3.6) using the matrix-splitting scheme (i.e. inner

loop) in (3.9). Let ∆x̃(t,k) be the approximation to the Gauss-Newton step at inner-loop iteration

t and outer-loop iteration k, and let the sequence of iterates produced by the distributed method
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using T inner-loop iterations be given by x̃(k+1) = x̃(k) −∆x̃(T,k).

Algorithm 3.1 Distributed Gauss-Newton Method for State Estimation

1: In parallel, each control area 1 ≤ J ≤ N does:

2: Initialization (Flat Start): x(0)
J = {θ(0)

J ,V
(0)
J } with θ(0)

J = 0 and V (0)
J = 1.

3: for k := 0 to K do

4: ∆x
(0,k)
J = 0

5: for t := 0 to T do

6: Calculate ∆x
(t+1,k)
J from (3.16).

7: for a ∈ ΩJ do

8: Send ∆x
(t+1,k)
a to neighboring nodes in other control areas.

9: if P̂a or Q̂a ∈ Z and finished receiving neighbors updates then

10: Send {∆x(t+1,k)
b } to neighboring nodes b ∈ Na in other control areas.

11: end if

12: end for

13: end for

14: x
(k+1)
J = xkJ −∆x

(k,T )
J

15: for a ∈ ΩJ do

16: Send x(k+1)
a to neighbors b ∈ Na in other control areas.

17: if P̂a or Q̂a ∈ Z and finished receiving neighbors estimates then Send {x(k+1)
b } to

neighboring nodes b ∈ Na.
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18: end if

19: end for

20: end for

We summarize the communication requirements of our algorithm. For clarity of exposition,

consider each bus to be a separate control area. Communication between buses in the same control

area is considered negligible compared to communication between buses in neighboring control

areas. If there are no power injection measurements present at node a, then node a needs to

communicate to its neighbors only its current state estimate x̃(k)
a at each outer-loop iteration and

its Gauss-Newton step estimate ∆x̃(t,k)
a at each inner-loop iteration. We illustrate the additional

information exchange for nodes with a power injection measurement using the simple example in

Figure 3.3.

k"

i"

j"

l" n"

m"

a b

c
d

e

f

Figure 3.3: Example to illustrate information exchange of Algorithm 3.1. There are power injection
measurements at nodes a and b, signified by a diamond-shaped sensor. Communication occurs
directly between neighbors.

Let power injections be measured at nodes a and b. At initialization of the Gauss-Newton

method,
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• Node a sends the value of its real and reactive power injection measurements, P̂a and Q̂a, to

its neighbors b, c, and d.

• Node a receives P̂b and Q̂b from node b.

At outer-loop iteration k,

• Node a sends {x̃(k)
a , x̃

(k)
b , x̃(k)

c , x̃
(k)
d } to its neighbors b, c, and d.

• Node a receives {x̃(k)
b , x̃(k)

c , x̃(k)
e } from node b. Node a also receives x̃(k)

c from node c and

x̃
(k)
d from node d.

At inner-loop iteration t,

• Node a sends {∆x̃(t,k)
a , ∆x̃

(t,k)
b , ∆x̃(t,k)

c , ∆x̃
(t,k)
d } to its neighbors b, c, and d.

• Node a receives {∆x̃(t,k)
b , ∆x̃(t,k)

c , ∆x̃(t,k)
e } from node b. Node a also receives ∆x̃(t,k)

c from

node c and ∆x̃
(t,k)
d from node d.

The distributed algorithm uses a finite number of matrix-splitting iterations, T, to calculate the

Gauss-Newton step. Due to truncation error, this will not be exactly equal to the Gauss-Newton

step, ∆x(k), given by directly solving (3.6). Therefore, we must distinguish between the central-

ized estimates, {x(k)
∗ }, and the distributed estimates, {x̃(k)}. Let y(k)

∗ be the solution of the linear

system

J(x̃(k))TWJ(x̃(k))y(k)
∗ = −J(x̃(k))TW (z − h(x̃(k))) (3.17)
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The iterative scheme in equation (3.9) forms a discrete linear dynamic system and therefore expo-

nentially converges to the solution y(k)
∗ of the linear system in equation (3.17) according to [30,

Theorem 6.1], provided ρ(M−1N ) < 1. The convergence speed is determined by ρ(M−1N ).

3.2.4 Proof of Matrix-Splitting Convergence

First, we note the following statements. The sequence {∆xt} in (3.9) converges to its limit

∆x∗ as t→∞ if and only if the spectral radius of the matrix M−1N is strictly less than 1 [102].

Furthermore, if the sequence converges, the limit ∆x∗ is the solution of the system, (i.e.,A∆x∗ =

b). In order to have the spectral radius ρ(M−1N ) < 1, it is sufficient to have A = M −N � 0

andM +N � 0 [26]. We have the following proposition that ensures convergence of the matrix-

splitting iterates in (3.9).

Proposition 3.1. Given a positive definite matrixA, letM = D+ αĒ andN = αĒ −E where

D, E, and Ē are given in equations (5.21)-(5.24). Then, for α ≥ 1
2
, ρ(M−1N ) < 1.

Proof. By Theorem 2.5.3 of [26], to prove that ρ(M−1N ) < 1, it is sufficient to show thatM−N

and M + N are both positive definite. Using the Gauss-Newton method, the formula for A =

M −N in (3.7) is positive definite by construction. We show that HTW−1H = (M + N) is

positive definite. Under Assumption 1, the weighting matrix W is real, symmetric, and positive

definite. By the spectral theorem, there exists an orthogonal matrixO and diagonal matrixD such

that W−1 = OTDO. Let Q = OH. Then, we see that for any x > 0,

xTHTW−1Hx = ||Qx||2D > 0, (3.18)
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where strict positivity comes from the fact that R is positive definite and thus all diagonal entries

of D are strictly positive. Thus, it is sufficient to show that M + N = D + 2αĒ − E is

positive definite. As a corollary to the Gershgorin Circle Theorem [101], we only need to show

thatD + 2αĒ −E is strictly diagonally dominant with strictly positive diagonal entries. 2 Given

that α ≥ 1
2
,

[D + 2αĒ −E]ii = Dii + 2αĒii

> 2α
∑
j 6=i

|Aij| (3.19a)

≥
∑
j 6=i

|[D + 2αĒ −E]ij|, (3.19b)

where (3.19a) follows from the definition of Ē and from the fact that Dii > 0. Since A is posi-

tive definite, its diagonal entries must be strictly positive. The inequality in (3.19b) follows from

(3.19a) since by construction the support of D and E are complimentary, meaning that for all i, j

if Dij is nonzero then Eij = 0 and vice versa. Furthermore, the contribution from 2αĒ in (3.19b)

is zero since the off-diagonal terms of Ē are zero.

3.2.5 Proof of Communication Requirements

The local nature of the measurement equations is key for allowing our algorithm to have limited

communication requirements. We introduce the following notations to denote different kinds of

measurement equations and emphasize which states that they depend upon. Let the neighbor set

of node a be denoted Na. The exact mathematical form of the non-linear measurement model

2A matrixA is strictly diagonal dominant if |Aii| >
∑

j 6=i |Aij | for all i.
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equations can be found in in [2].

1. If zk = P̂ab, then

hk(x) =hP (a,b)(θa, Va, θb, Vb). (3.20)

2. If zk = Q̂ab, then

hk(x) =hQ(a,b)(θa, Va, θb, Vb). (3.21)

3. If zk = P̂a, then

hk(x) =ha,P (θa, Va, {θb}b∈Na , {Vb}b∈Na). (3.22)

4. If zk = Q̂a, then

hk(x) =ha,Q(θa, Va, {θb}b∈Na , {Vb}b∈Na). (3.23)

5. If zk = θ̂a, then

hk(x) = hθ,a(θa). (3.24)

6. If zk = V̂a, then

hk(x) = hV,a(Va). (3.25)

Applying the iterative scheme of (3.9) to the state estimation problem with our choice of matrix

splitting, we obtain

∆x(t+1) = (D + αĒ)
−1 [

(αĒ − E)∆x(t) +∇f(x)
]
. (3.26)
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We denote the term within the bracket as:

y(t) def
= (αĒ − E)∆x(t) +∇f(x). (3.27)

In terms of the N control areas, equation (3.26) can be written in block-form as
∆x

(t+1)
1

...

∆x
(t+1)
N

 =


M̂ 1

. . .

M̂N




y

(t)
1

...

y
(t)
N

 , (3.28)

where M̂ 1, . . . ,M̂N are the diagonal blocks of (D+αĒ)−1 corresponding to the different control

areas. In the case that each bus is treated as a control area, the matrix inversion is reduced to the

inversion of a scalar number.

We utilize the particular structure of the power grid state estimation problem in order to verify

the information from neighboring areas needed to calculate the entries of ∆x(t). We introduce the

following quantities:

σP (a,b) =


wk zk = P̂ab

0 P̂ab 6∈ Z
, σQ(a,b) =


wk zk = Q̂ab

0 Q̂ab 6∈ Z
,

σa,P =


wk zk = P̂a

0 P̂a 6∈ Z
, σa,Q =


wk zk = Q̂a

0 Q̂a 6∈ Z
,

σa,θ =


wk zk = θ̂a

0 θ̂a 6∈ Z
, σa,V =


wk zk = V̂a

0 V̂a 6∈ Z
,
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where wk are the diagonal entries of the weighting matrix W (see Assumption 3.1). In addition,

we define the set of “1-hop" neighbor nodes as nodes that are not direct neighbors but share a

common neighbor, N †a
def
= {b | b 6∈ Na, Na ∩ Nb 6= ∅}. Let N ∗a

def
= Na ∪ N †a be the union of the

sets of direct and “1-hop" neighbors.

Lemma 3.1. Let a := n(i) be the node index corresponding to entry i of y(t), and let the set

xa = (θa, Va) refer to the set of estimates of both the voltage angle and magnitude at bus a at the

current Gauss-Newton iteration. The components of the updates to y(t) from equation (3.27) can

be reduced to the form given in equation (3.29) for a single bus:

y
(t)
i =α

( ∑
{j|n(j)∈N ∗a }

|Aij|
)

∆x
(t)
i −

∑
{j|n(j)∈N ∗a }

Eij∆x
(t)
j − 2

{
σa,θ(θ̂a − θa) + σa,V (V̂a − Va)

+
∑

{j|b≡n(j)∈Na}

[
σP (a,b)

∂hP (a,b)

∂xi

(
P̂ab − hP (a,b)(xa,xb)

)
+ σQ(a,b)

∂hQ(a,b)

∂xi

(
Q̂ab − hQ(a,b)(xa,xb)

)
+ σb,P

∂hb,P
∂xi

(
P̂b − hb,P (xb, {xc}c∈Nb

)
)

+ σb,Q
∂hb,Q
∂xi

(
Q̂b − hb,Q(xb, {xc}c∈Nb

)
)]

+ σa,P
∂ha,P
∂xi

(
P̂a − ha,P (xa, {xc}c∈Na)

)
+ σa,Q

∂ha,Q
∂xi

(
Q̂a − ha,Q(xa, {xc}c ∈ Na)

)}

(3.29)

Proof. We determine the sparsity pattern ofA as a function of the network connectivity. From the

AC measurement model equations, we have that

[J(x)TWJ(x)]ij =
m∑
k=1

wkJki(x)Jkj(x) (3.30)

is nonzero if and only n(j) ∈ N ∗a . The entries of equation (3.27) simplify to the expression in
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(3.29). We note that if power injection measurements are not present, the sparsity is reduced to Aij

being nonzero if and only if n(j) ∈ Na.

Furthermore, from the proof of Lemma 3.1, node a in control area J only needs information

from nodes in N ∗a to calculate entries of M̂J . This specifies the subset of external information

needed to calculate the updates to ∆x(t) in (3.28).

3.2.6 Distributed Implementation Using MPI

The Message Passing Interface (MPI) is a language-independent, standardized protocol that

allows one to write programs implementing algorithms that utilize communication of data, or mes-

sages, across multiple processors [45]. MPI was originally designed for distributed memory ar-

chitectures. Objects called communicators are used to specify which processors are allowed to

communicate with one another. Messages can be sent collectively to a single processor that acts

like a central coordinator, or messages can be sent point-to-point between any two processors.

Virtual topologies can be designed to specify which processors can communicate with each other.

We use the MPI graph topology functionality to create a communicator that has the same

topology as the control area network we consider for the power grid. A separate process is assigned

to each control area, and communication is allowed between two control areas if there is a tie-line

connecting them. For example, in Figure 3.1, Area 1 can send messages directly to Areas 2 and

3 but not to Area 4. This ensures the algorithm is fully distributed (i.e., that information local to

a control area is contained on a single processor and otherwise communicated only to processors

corresponding to neighboring control areas).
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In point-to-point communications, a message is passed between exactly two MPI processes.

The process sending information executes a send operation, and the process receiving information

executes a receive operation. There are a variety of such send and receive operations available in

MPI. These include blocking or synchronous send and receives, that wait to execute any further

instructions until the matching send and receive have been completed. There are also non-blocking

send and receive operations, that allow for continued execution on a process before the send and

receive have necessarily completed. Non-blocking communication is necessary in certain cases,

and care must be taken to ensure that the program is processing the correct data.

We now detail the use of point-to-point communication in Algorithm 3.1. In Steps 8 and 16,

areas need to send their border bus estimates, ∆x
(k+1)
a and border bus Newton step estimates,

x
(k+1)
a , to neighboring control areas. This communication is symmetric since every process send-

ing to another process is also receiving from that process. Therefore, we can use paired send and

receive operations (MPI_Sendrecv). For border buses with power injection measurements, extra

communication is required in Steps 10 and 17. In this case, the communication is no longer sym-

metric. In other words, each process sending to another process no longer necessarily receives a

message from that process. Since the send operations are no longer perfectly synchronized with

the corresponding receive operations, we utilize non-blocking communications (MPI_Isend and

MPI_Irecv).
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3.3 Numerical Results

We present our numerical results in three sections. First, we study the convergence properties

of the matrix-splitting (i.e., inner-loop iterations). Since we are using an iterative method to solve

for the Gauss-Newton step, it is important to see how this approximation numerically compares

to directly solving for the Gauss-Newton step. Second, we demonstrate the performance of our

algorithm in various settings, including a large-scale realistic system with 1,354 buses. Third, we

present results towards designing an optimal splitting with respect to the parameter α and to the

control area partitioning. Interesting open questions remain in this area.

3.3.1 Convergence of Matrix-Splitting Iterations

To study the convergence of the distributed algorithm with respect to the matrix-splitting (i.e.,

inner-loop) iterations, we calculate at each matrix-splitting iteration t, the error on the distributed

Newton step ||∆x̃(t,k) − ∆x
(k)
∗ ||. Figure 3.4 demonstrates the exponential convergence of the

distributed Gauss-Newton step to the centralized Gauss-Newton step for k = 1. The case studies

include the IEEE 14-bus and IEEE 118-bus systems. Additionally, we study the convergence

under two different communication schemes. In the (“Single-Node Control Area") scheme, each

node is considered its own control area. The single-node control area setting is a natural limit

for understanding the behavior of the algorithm in terms of the size of the control areas and the

degree to which the calculation is distributed. In the (“Multi-Node Control Area") setting, several

nodes are grouped into a single control area. From Figure 3.4 (b), the convergence of the (“Multi-

Node Control Area") setting is faster than the (“Single-Node Control Area") setting. However,
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Figure 3.4: These figures show the exponential convergence of the distributed Gauss-Newton step.
In (a), the convergence is shown for the Gauss-Newton step update of the phase angles at individual
buses. In (b), the convergence of the distributed Gauss-Newton step estimates to the centralized
exact Gauss-Newton step is faster in the (“Multi-Node Control Area") setting than in the (“Single-
Node Control Area") setting.
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each matrix-splitting iteration is computationally more costly for the (“Multi-Node Control Area")

setting, so there is a trade-off between required number of iterations and the computational cost of

each iteration.

We use the partitioning of the 14-bus system into the four control areas given in Figure 3.1 [61].

For the 118-bus system, we use the nine control area partitioning from [109]. For the 14-bus

system, the measurement configuration used is shown in Figure 3.1. The types and locations of

measurements used for the 118-bus system tests are given in Table 2.1. The measurements are

perturbed by additive Gaussian noise where the variance of the measurements used was taken

from [109]. The inverse covariance matrixR is used as the weighting matrixW .

As another measure of the convergence of the matrix-splitting iterations, it is interesting to ex-

amine the difference between the centralized and distributed estimates as a function of outer-loop

iterations. Figure 3.5 shows the error of the distributed estimates with respect to the centralized

estimates. The linear system in equation (3.6) is identical for the distributed and centralized ap-

proach only at the first Gauss-Newton (i.e., outer-loop) iteration. This is due to truncation error

resulting from using only a finite number, T, of matrix-splitting iterations. Despite propagating an

inexact Gauss-Newton step at each Gauss-Newton iteration, the distributed estimates agree with

the centralized estimates within several tens of iterations.

3.3.2 Performance

In Figure 3.6, we show the convergence of f(x(k)) as a function of the total number of iterations

(number of inner-loop iterations times number of outer-loop iterations) for the distributed Gauss-
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(b) Using T = 30.

Figure 3.5: These figures show the difference between the distributed and centralized estimates as
a function of the number of Gauss-Newton iterations. In (a), we study this for different values of
T, the number of matrix-splitting iterations, for the 14-bus system. We see that for T = 100, the
distributed and exact Gauss-Newton step agree up to machine precision for all iterations. In (b), we
use T = 30 iterations and and compare for different network sizes and communication schemes.
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Newton method and gradient method. In Figure 3.6 (a), we use the gradient method with a constant

step size, which can be implemented in a fully distributed way. The gradient method with constant

step size requires no inner iterations. For example, if T = 15 matrix-splitting iterations are used,

we compare the value of the objective function after X distributed Gauss-Newton iterations to the

value of the objective function after 15 ∗ X gradient iterations. In Figure 3.6 (b), we compare

the gradient method using a backtracking line search to determine the optimal step-size. We note

that the backtracking line search requires central coordination. These plots show the advantage of

Newton-type methods over gradient descent with respect to rate of convergence.

In addition, we compare our distributed Gauss-Newton method using the matrix-splitting based

solver to the Gauss-Newton method using the conjugate gradient algorithm to solve for the Gauss-

Newton step. The conjugate gradient algorithm is a direct method for solving linear systems requir-

ing n steps for solving an n× n system. However, it is also viewed as an iterative method since in

practice satisfactory accuracy can often be achieved in much fewer than n iterations. Furthermore,

for sparse systems, the matrix-vector multiplications that are the main computational burden of the

conjugate gradient algorithm can be reduced from O(n3) operations to O(m) operations, where m

is the number of nonzero entries. The convergence of the Gauss-Newton method using a conjugate

gradient solver for the Newton step is shown in Figure 3.6 (“Gauss-Newton with CG Solver").

We see that our proposed distributed Gauss-Newton solver achieves similar convergence as the

CG-based solver. In addition, since conjugate gradient involves dot products of global quantities,

a fully distributed implementation requires more significant communication overhead.

Next, we test the performance of our algorithm on a larger, more realistic system. The algo-
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(a) Gradient method with constant stepsize.

(b) Gradient method with backtracking step-size.
Figure 3.6: The convergence of the objective function for the 118-bus system is shown with respect
to the total number of iterations. In a), the gradient method uses a constant stepsize (i.e., no inner
iterations), and the distributed Gauss-Newton method and Gauss-Newton method with conjugate
gradient (CG) solver use T = 15 inner iterations per outer iteration. In b), the gradient method
uses a backtracking line search. This requires 30 inner iterations. To compare, we use T = 30

matrix-splitting iterations and 30 conjugate gradient iterations in b). Using a backtracking line
search, the gradient method is no longer a distributed method.
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rithm is implemented in C++ using MPI [45] to run over multiple processors. In Figure 3.7 (a), we

show the convergence of the objective function in terms of runtime in seconds for different control

area partitionings of the PEGASE 1,354-bus test system [39, 112]. The centralized scheme (using

a single control area) is notably slower. Increasing the number of control areas and hence degree

of distributivity decreases the runtime.

The breakdown of CPU time spent on computation and communication for a single distributed

Gauss-Newton iteration is provided in Figure 3.7 (b). As the number of control areas grows, com-

munication time remains constant as desired, while computation time decreases since the problem

solved by each processor is smaller. We expect this behavior since the neighborhood of a control

area remains roughly constant as the number of control areas increases. The relative time spent on

communication versus computation in Figure 3.7 depends on the network characteristics. For our

simulations we used the Blue Waters computing facility [9, 63], which has a peak node injection

bandwidth of 9.6 GB/s. If there is no power injection, at each inner iteration a node sends and

receives ∆θ and ∆V (two double precision numbers or 128 bits) to each of its neighbors, and at

each outer iteration each node exchanges θ and V , again 128 bits, with its neighbors. The number

of neighbors of a node is roughly 10. If there is a power injection, the bus sends its neighbors’

information to its neighbors. Therefore, it takes roughly 1280 bits * 1 s / (9.6 * 109 bits) = 1.33 *

10−7 s to communicate without power injections and 12,800 bits * 1s / (9.6 * 10−9 bits) = 1.33 *

10−6 s to communicate with power injections.

For the measurement configuration, we randomly place power injection measurements and

PMUs at 10% of the buses and 33% of the buses, respectively. Power flow measurements are
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Figure 3.7: For a system with 1,354 buses, in a) the convergence of the objective function f(x)

in terms of runtime in seconds is shown for different control area partitionings. With more con-
trol areas (higher degree of distributivity), the runtime needed to converge is smaller. In b), the
breakdown of time spent in a single outer-loop iteration for computation versus communication is
shown.
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Figure 3.8: Test performance of the 1,354-bus system in presence of communication failure be-
tween control areas.

taken at 90% of the transmission lines. To partition the 1,354-bus network into control areas as a

pre-processing step, we use a routine written by J. Hespanha [50], that clusters based on spectral

factorization.

Additionally, we study the robustness of our algorithm to communication failures between

control areas in Figure 3.8. The probability of failure pf is the probability that a communication

failure between two control areas will occur. We see that our algorithm is fairly robust under such

communication dropouts and demonstrates a decrease in the rate of convergence as the probability

of communication failure increases.
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3.3.3 Towards an Optimal Matrix Splitting

Recall from Section 3.2.3 that the convergence of the matrix-splitting iterations is determined

by the spectral radius ρ(M−1N ). The value of ρ(M−1N ) depends on the way the network is

partitioned into control areas and the value of the splitting parameter α from equations (3.13)-

(3.14). Optimizing the convergence rate with respect to the partitioning is an interesting open

question. Here we present some initial numerical results. Figure 3.9 (a) shows the dependence

of the spectral radius ρ(M−1N ) on the parameter α and the number of control areas used to

partition the network. There are a combinatorial number of ways to partition a network of n nodes

into N control areas. For each value of N, the values shown in Figure 3.9 are averaged over

all possible integer compositions of n into N parts. For N = 5, the control area partitioning

achieving the minimal spectral radius is shown in Figure 3.9 (b). It is interesting to note that the

optimal communication network is not necessarily the same as the underlying power grid structure

as evidenced by the disconnection of node 8 from the rest of its control area. We see that, for each

possible partitioning, the spectral radius is minimal at α = 1/2. As stated in Section 3.2.3, for

α ≥ 1
2
, we have ρ(M−1N ) < 1. We note that this is a sufficient and not necessary condition on

α, so one might want to try to tune α accordingly.
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Figure 3.9: (a) Dependence of ρ(M−1N ) on α and control area partitioning for the 14-bus test
case. Using N = 14 control areas, the algorithm is fully-distributed. Using a single control
area (N = 1), the algorithm is centralized. This plot exhibits the trade-off between the degree to
which the calculation is distributed and the rate of convergence. In addition, the minimal values
of ρ(M−1N ) are achieved at α = 1/2. (b) Configuration achieving minimal value of ρ(M−1N )

with N = 5 control areas is shown.
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3.4 Conclusion

In this chapter, we use matrix-splitting techniques to develop a new fully distributed Gauss-

Newton algorithm for power system state estimation. We consider the non-linear AC measurement

model and a multi-area setting. The method incorporates both traditional SCADA measurements,

as well as PMU measurements. The algorithm requires limited sharing of information between

neighboring control areas and allows for each control area to store and compute only its local esti-

mate. Numerical experiments verify the convergence properties of this algorithm and the advantage

of Newton-type methods for state estimation. Future research directions include investigating how

to incorporate distributed bad data detection and network observability into our algorithm.

67



Chapter 4

Distributed Load-Based Dynamic State

Estimation

IN THIS CHAPTER, we propose a fully-distributed algorithm for load-based dynamic state es-

timation in power systems. Unscented Kalman filter techniques are used to accommodate a

nonlinear measurement model. The method requires only local information and a limited amount

of information from neighboring areas rather than global, system-wide information. We propose

to use the local dependence of the power system measurement equations in order to achieve an

approximate decoupling of the load-based dynamic state estimation problem. Our method has

reduced computation and communication requirements compared to existing methods.

Accurate state estimation is an integral part of power system operations. In static state estima-

tion (SSE), the system state is inferred using only measurements from the current snapshot in time.

The motivation behind dynamic state estimation is to use information from prior measurements in
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addition to the most recent measurements to make an improved estimate. We consider the state to

be the voltage phasors at every bus, which change in time due to changes in load. We refer to this as

load-based dynamic state estimation (LB-DSE). The measurement equations relating power flows

and power injections to voltages are nonlinear under the AC power flow model. Recently, it has

been proposed to use the unscented Kalman filter (UKF) for nonlinear state estimation in power

systems [99]. The UKF is an extension of the Kalman filter for nonlinear systems that is based on a

statistical linearization proposed in [58]. In contrast to the extended Kalman filter (EKF), the UKF

is shown in [99, 105] to be favorable for power system state estimation for its low computational

complexity and improved accuracy.

As motivated in Chapter 3, given the large scale of power systems and the advent of wide-area

monitoring, distributed approaches to state estimation are increasingly important [95]. Distributed

algorithms allow for portions of the grid, referred to as control areas, to locally estimate their state

based on limited communication with neighboring control areas. For large enough systems, it can

be computationally prohibitive to solve the full centralized state estimation problem within real-

time constraints. Decentralized approaches alleviate the computational burden by decomposing

the problem into smaller problems per area, as well as improving the system’s robustness in the

event of communication failures.

The UKF algorithm uses a set of points, consisting of different possible values for the estimates,

that are propagated through the nonlinear dynamics. The algorithm relies on the sample covari-

ance of these points, which requires globally assessing all possible correlations between pairs of

variables. This makes developing distributed UKF algorithms a difficult problem. We propose a
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new fully-distributed UKF algorithm for LB-DSE. The main contributions of this work include:

1. The communication and computation requirements of our algorithm are reduced compared

to existing works for LB-DSE (e.g. [90, 92]). Control areas need only to communicate their

border buses’ estimates with neighboring control areas once per UKF iteration.

2. Each area only holds an estimate of its local state, reducing memory requirements.

3. Numerical experiments demonstrate competitive performance with respect to the centralized

UKF, as well as clear improvement over a distributed UKF with no communication allowed

between neighboring areas.

Fully-distributed UKF methods for tracking applications are presented in [104] using the infor-

mation filter and in [98] using consensus filters. Previous work on decentralized UKFs specifically

for power systems includes [90,92,96]. In [92], the authors advocate using the information form of

the Kalman filter as in [104]. The method in [104] relies on a centralized processor in the form of

an aggregation filter, which processes results from all local areas in order to obtain a single global

estimate. The algorithm in [96] proposes a decentralized algorithm for estimation of the generator

rotor angle and frequency, rather than the voltage phasors. This algorithm distributes the UKF by

considering certain measurements as pseudo-inputs. The authors in [90] apply a consensus-based

algorithm to develop a fully-distributed UKF for power system state estimation. At each time step,

the method in [90] requires each control area to complete two runs of a UKF with an iterative

consensus-based communication stage in between. There are two key differences between our

proposed method and that of [90]. First, in our method, communication is done in one-shot at each
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time step between neighboring areas, making the method highly scalable, and each area locally

runs its UKF only once per time step. Second, the communication requirements of our method

are not based on consensus. The advantage of our method lies in its reduced computation and

communication requirements.

4.1 Problem Statement

We consider a multi-area interconnected power network, denoted by an undirected graph (N , E)

with a set N def
= {1, 2, . . . , n} of buses and a set E ⊆ N × N of transmission lines connect-

ing the buses. We aim to estimate the voltage phase angle and magnitude at every bus, [xk]T =

[θk1 . . . θ
k
n V

k
1 . . . V

k
n ] at each time step k. The dynamics of the system are driven by changes in the

load. We consider the following measurements: the real and reactive power flows between buses i

and j, Pij and Qij; the real and reactive power injections at bus i, Pi and Qi; and the voltage phase

angle and magnitude at bus i, θi and Vi. The power flow and power injection measurements are ob-

tained using the SCADA system, and the voltage phasors are obtained using phasor measurement

units (PMUs). The AC power flow model nonlinearly relates the measurements to the underlying

state,

zk = h(xk) + ek, (4.1)

where ek is a zero-mean Gaussian noise vector with a diagonal covariance matrixR and zk ∈ Rm.

The goal of dynamic state estimation is to infer xk using past measurements up to and including

time step k.
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4.1.1 Preliminaries on System Dynamic Modeling and the Unscented Kalman

Filter (UKF)

As proposed in [99], the state vector at time k, xk, is updated according to a linear discrete-time

dynamic model

xk+1 = F kx
k + gk + qk, (4.2)

where qk is the process noise vector andF k and gk are constructed in an online fashion using Holt’s

exponential smoothing technique, which has been studied for state-forecasting in power systems

in [67]. The process noise vector qk is assumed to be zero-mean Gaussian with covariance matrix

Qk. Further details on construction of F k and gk can be found in [99]. The following assumption

used in [99] is also made here:

Assumption 4.1. The matrices F k andQk are diagonal.

A qualitative overview of the UKF algorithm is given in Figure 4.1. Like the traditional Kalman

filter, the unscented Kalman filter consists of a prediction stage based on the system dynamics and a

correction stage based on the measurements. However, unique to the UKF, these stages are applied

to a set of sigma points, representing different possible values for the estimated state. The set of

sigma points are generated from the current estimate, xk, as follows

[Xk]1 = xk, [Xk]i = xk + c[
√
P k]i−1, (i=2,. . . ,2n+1)

[Xk]i = xk − c[
√
P k]i−2n−1, (i=2n+2,. . . ,4n+1) (4.3)

where
√
P k is the Cholesky decomposition and c is an adjustable parameter [99].
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k
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Figure 4.1: Overview of the Unscented Kalman Filter.

4.2 Distributed Filtering Algorithm for Load-Based Dynamic

State Estimation

In this section, we present our distributed algorithm for load-based dynamic state estimation

(Algorithm 4.1) and detail its limited communication requirements. In each control area, we would

like to estimate the local state while still taking into account the effects from the rest of the inter-

connected power system. Measurements of power flows on tie-lines (i.e., a transmission line that

connects buses across two different control areas) and measurements of power injections at border
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buses (i.e., a bus with a neighbor in another control area) introduce couplings between different

control areas. The power network buses are partitioned into N control areas. We say i ∈ I if bus

i belongs to control area I. Let the number of buses in control area I be nI . Denote the neighbor

set of bus i as N (i), and similarily, let N (I) be the set of neighboring nodes connected to control

area I via a tie-line. We define the measurement set of control area I as follows

zI = {θi, Vi|i ∈ I} ∪ {Pij, Qij|i ∈ I or j ∈ I} ∪

{Pi, Qi|i ∈ I or i ∈ N (I)}. (4.4)

In words, the set of measurements relevant to a control area include voltage phasor measurements

at local buses, power flow measurements on internal lines and tie-lines, and power injection mea-

surements at local buses and neighboring buses connected via a tie-line. In sum, zI is the set of all

measurements whose measurement function involves states in xI = {(θi, Vi)|i ∈ I}. We develop

our distributed algorithm based on performing a local unscented Kalman filter in each area with

the following measurement set

zI = hI(xI ,xN ∗(I)) + eI , (4.5)

where the dependence of the measurements on the global state x can be simplified to those in

control area I and in

N ∗(I) ={j ∈ N (I)} ∪

{l ∈ N (j) | l 6∈ I, j ∈ N (I), Pj ∈ zI}. (4.6)

This is due to the functional form of the power system measurement equations, that can be found

in [2]. We note that the measurements in (4.5) are not a partitioning of the measurements in (4.1)
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since a measurement can appear in more than one control area’s measurement set (e.g., power flow

measurement of a tie-line). As detailed in Algorithm 4.1, each control area estimates its local

states, xI ∈ R2nI , and covariance P I ∈ R2nI×2nI . Due to the coupling from the measurements

described above, areas need to communicate estimates and measurements as detailed in Step 7 of

Algorithm 4.1. We stress that this communication occurs only once per time step in a non-iterative

fashion and scales in terms of the number of border buses in a control area.

Algorithm 4.1 Distributed Load Based-Dynamic State Estmimation Algorithm

1: Initialize with given state x0
I and covariance P 0

I

2: for k = 0 : K do

3: Calculate 2(2nI) + 1 sigma points:

[Xk
I ]1 =xkI ,

[Xk
I ]i =xkI + cI [

√
P k
I ]i−1, (i=2,. . . ,2nI+1)

[Xk
I ]i =xkI − cI [

√
P k
I ]i−2nI−1, (i=2nI+2,. . . ,4nI+1)

4: Propagate each sigma point through the system dynamics:

[X̂
k

I ]i = F k
I [X

k
I ]i + gkI , i = {1, . . . , 4nI + 1}

5: Calculate predicted state mean and predicted covariance:

x̄kI =

4nI+1∑
i=1

wm,Ii [X̂
k

I ]i

P̄
k
I = Qk

I +

4nI+1∑
i=1

wc,Ii [([X̂
k

I ]i − x̄kI )([X̂
k

I ]i − x̄kI )T ],

where weights wc,Ii and wm,Ii are designed as in [99].
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6: Calculate predicted sigma points:

[X̄
k
I ]1 =x̄kI ,

[X̄
k
I ]i =x̄kI + cI [

√
P̄
k
I ]i−1, (i=2,. . . ,2nI+1)

[X̄
k
I ]i =x̄kI − cI [

√
P̄
k
I ]i−2nI−1, (i=2nI+2,. . . ,4nI+1)

7: Communicate with neighboring areas to obtain xkN ∗(I) and {Pi, Qi|i ∈ N (I)}.

8: Evaluate measurement equations at each predicted sigma point and at neighboring esti-

mates:

[Ȳ
k
I ]i = hI

(
[X̄

k
I ]i,x

k
N ∗(I)

)
, i = {1, . . . , 4nI + 1}

9: Calculate the mean, measurement covariance, and measurement state cross-covariance:

µkI =

4nI+1∑
i=1

wm,Ii [Ȳ
k
I ]i

SkI = RI +

4nI+1∑
i=1

wc,Ii [([Ȳ
k
I ]i − µkI )([Ȳ

k
I ]i − µkI )T ]

Ck
I =

4nI+1∑
i=1

wc,Ii [([X̄
k
I ]i − x̄kI )([X̄

k
I ]i − x̄kI )T ]

10: Calculate the filter gain, state estimate, and state covariance at the next time step:

xk+1
I = x̄kI +Kk

I [z
k
I − µkI ], Kk+1

I = Ck
I [S

k
I ]
−1

P k+1
I = P̄

k
I −Kk

IS
k
I [K

k
I ]
T

11: end for
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4.2.1 Comparison to Centralized UKF Algorithm

In the centralized version of the UKF algorithm, the correlation between any pair of measure-

ments is calculated. Similar to Step 9 of Algorithm 4.1, the sample measurement covariance matrix

in the centralized setting is given by

Sk = R+
4n+1∑
i=1

wci [([Ȳ
k
]i − µk)([Ȳ k

]i − µk)T ]. (4.7)

However, due to the dependence of the power system measurement equations on a small number

of localized states, Sk exhibits a sparsity structure related to the underlying network structure. A

numerical example of the sample measurement covariance is given in Figure 4.2. The distributed

algorithm takes advantage of the lack of correlation between certain variables. To motivate this, we

characterize analytically the sparsity of the measurement covariance in the centralized setting under

a linear approximation to the measurement function. We stress that this is only an approximation

since the equations are nonlinear but find this to be well-verified in practice.

Due to space constraints, we exclude power injection measurements in this analysis. Define

the following set:

Ta
def
= { the set of state variables that the functional form

for measurement za depends upon.} (4.8)

For example, measurement function za = Pij(θi, Vi, θj, Vj) depends upon Ta = {xi,xj}.

Proposition 4.1. Under Assumption 4.1 and excluding power injection measurements, the sparsity
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Figure 4.2: Example demonstrating sparsity of the measurement covariance matrixSk on the IEEE
14-bus test system. Measurements shown include voltage phase angles (yellow diagonal), voltage
magnitudes (orange diagonal), and power flows (red diagonal).

of the linearized measurement covariance matrix, S∗, in the centralized setting is as follows:

[S∗]ab =


sab 6= 0 if Ta ∩ Tb 6= ∅

0 otherwise

, (4.9)

where entry [S∗]ab refers to the sample covariance between measurements za and zb.

Proof. Under Assumption 4.1, the process noise has a diagonal covariance matrix Qk, and the

true underlying state xk is a random vector with Gaussian distribution N (µkx,Q
k). Then, xk+1 =
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F kx
k + gk + qk remains an uncorrelated random vector, because from Assumption 4.1 the matrix

F k introduces no mixing among the components of xk. The quantity yk+1 = h(xk+1) is a non-

linear function of the random vector xk+1 and thus remains a random vector with some mean µy

and covariance S∗. By exploiting the functional form of the linearized power system measurement

functions we can characterize the sparsity pattern of S∗. The time-step index k is dropped for no-

tational convenience. Consider a first-order Taylor expansion of the measurement functions h(x)

about the point µx,

h̄(x;µx)
def
= h(µx) + J(µx)(x− µx), (4.10)

where the measurement Jacobian J(x) is given by

J(x)
def
=


∂h1(x)
∂θ1

. . . ∂h1(x)
∂Vn

... . . . ...

∂hm(x)
∂θ1

. . . ∂hm(x)
∂Vn

 . (4.11)

It is a well-known fact that a linear function of a Gaussian random vector remains a Gaussian

random vector. Let

ȳ = h̄(x;µx), (4.12)

then since x ∼ N (µx,Q), it follows that ȳ ∼ N (h(µx) + J(µx)µx,J(µx)QJ(µx)
T ). Note

that the rows of the measurement Jacobian refer to measurements and the columns refer to state

variables. Then, the quantity

[S∗]ab = [J(µx)QJ(µx)
T ]ab =

n∑
c=1

QccJac(µx)Jbc(µx) (4.13)

is nonzero if and only if Ta ∩ Tb 6= ∅.
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From Proposition 4.1, we expect the sample measurement covariance matrix to have a localized

covariance structure for power system state estimation since the set Ta includes at most a bus and its

2-hop neighbors. In our distributed method, we take advantage of this. We note that the distributed

algorithm remains an approximation to the centralized algorithm due to the inability to fuse sigma

points from different areas when evaluating the measurement function for tie-line power flows and

border bus power injections. Sigma points from different areas cannot be easily fused due to the

incompatibility in their dimension and sample covariances. However, as shown in the next section,

we can still achieve reasonable performance with respect to the centralized estimates while making

gains in computation time, scalability, and robustness.

4.3 Numerical Results

We compare our proposed distributed approach (‘Prop. Distr. UKF’) to the centralized UKF

(‘Centr.’) and to a distributed UKF that uses no communcation of estimates between neighboring

areas (‘Distr. UKF No Comm’). This is the same as the (’Distributed UKF without consensus

algorithm’) used as a benchmark in [90]. To facilitate comparison, we also use the same setup

as [90]: the IEEE 14-bus and 118-bus networks with the same control area topologies; simulations

of 150 time instants with a linear trend of 20% on all load buses from time instants 50-100, with

a random fluctuation of 3%; and the same noise and initialization. In our experiments, PMUs

are placed at the border buses and several internal buses. We expect the algorithm in [90] to be

more accurate than the proposed method at the cost of increased runtime and communication. As
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a performance metric, we consider the average absolute estimation error per control area. Let θ̂jI,k

and V̂ j
I,k be the estimate of the voltage phase angle and magnitude at bus j in control area I at time

step k. The average absolute estimation error for control area I is

ξZI =
1

K

1

NI

K∑
k=1

NI∑
j=1

|Ẑj
I,k − Zj

I,k|, (4.14)

where K is the total number of time steps, NI is the number of buses in control area I, and Z = θ

or Z = V.

The average absolute error for the 14-bus system with four control areas is given in Table 4.1,

and the average absolute error for the 118-bus system with 3 control areas is given in Figures 4.3-

4.5. We see that the performance of our method (‘Prop. Distr. UKF’) consistently outperforms

the (‘Distr UKF No Comm’) and matches well with the centralized solution for the phase angle

errors. For the voltage magnitude errors, our method sees an increase in error as the dynamics

start changing but recovers due to the exchange of neighboring estimates unlike (‘Distr. UKF No

Comm’). As expected, the centralized algorithm achieves the best performance since it has access

to all measurements. This comes at a high communication cost for large systems. Furthermore, we

find that the performance of our algorithm improves with the number of PMUs, unlike the (‘Distr.

UKF No Comm’) benchmark. Since PMUs are expected to become increasingly prevalent, this is

an attractive feature of our algorithm.
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Table 4.1: Average estimation errors for IEEE 14-bus system.

Distributed UKF No Communication Proposed Distributed UKF Centralized

ξθ1 0.0182 0.0048 0.0016

ξθ2 0.0177 0.0092 0.0047

ξθ3 0.0260 0.0087 0.0042

ξθ4 0.0269 0.0100 0.0048

ξV1 0.0097 0.0032 0.0012

ξV2 0.0088 0.0022 0.0020

ξV3 0.0077 0.0014 0.0008

ξV4 0.0070 0.0016 0.0010
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Figure 4.3: The average absolute error in voltage phase angle (a) and voltage magnitude (b) is
shown for the 118-bus system for control area 1 using the proposed method, the centralized UKF,
and a UKF with no communication.
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Figure 4.4: The average absolute error in voltage phase angle (a) and voltage magnitude (b) is
shown for the 118-bus system for control area 2 using the proposed method, the centralized UKF,
and a UKF with no communication.
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Figure 4.5: The average absolute error in voltage phase angle (a) and voltage magnitude (b) is
shown for the 118-bus system at control area 3 using the proposed method, the centralized UKF,
and a UKF with no communication.
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4.4 Conclusion

The proposed method is an approximation to the unscented Kalman filter that allows for quicker

computation time and fewer communication requirements than previous methods. The physics

of power systems, namely the localized dependence of the measurement equations on voltage

states, is utilized to approximately decouple the problem and motivate the use of local UKFs with

limited communication. Since our algorithm requires only communication of local information

with neighboring areas, the computation time scales very favorably with the network size as it

depends on the number of border buses within a control area and not on the total size of the

network. The physics of power systems, namely the localized dependence of the measurement

equations on voltage states, is utilized to approximately decouple the problem and motivate the

use of a decoupled UKF with limited computation and communication. Future research directions

include extending this method to the information-filter form and exploring approaches for fusing

sigma points for state estimates across control areas.
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Chapter 5

Semi-Distributed Algorithms for Linearized

Optimal Power Flow

OPTIMAL POWER FLOW (OPF) solves for the values of power generation and responsive

loads that optimize a particular objective, such as minimizing operation costs and maxi-

mizing user utility, subject to physical and operational constraints. In order for the grid operator to

respond immediately and efficiently to fluctuations in load and generation, especially when there

is a large penetration of renewable energy, a solution to OPF needs to be available on the order

of seconds or minutes. This demands new approaches to solving OPF, that allow for efficient

use of parallel computing systems. Such approaches provide a way for different control areas to

coordinate with limited and local communication.

Previous parallel approaches to the OPF problem are mostly first-order (i.e. gradient-based)

methods. As an example, in [66], the authors develop an algorithm based on primal and dual de-
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composition techniques as a distributed solution to OPF. In [28, 33, 74], the ADMM algorithm is

used as a distributed semidefinite programming solver, which is shown to have improved conver-

gence results compared to those in [66]. However, ADMM-based approaches usually achieve a

sublinear or linear convergence rate [10]. In [64], a fully distributed algorithm for OPF is proposed

based on proximal message-passing algorithm, a version of ADMM.

On the other hand, primal-dual interior point (PDIP) methods, which are Newton-based ap-

proaches, demonstrate fast convergence behavior on various optimization problems, including

OPF [54], [15]. In [53], a decentralized Newton-based approach based on the unlimited point

algorithm is presented. The unlimited point algorithm introduces slack variables whereas PDIP

methods successively solve a series of problems parameterized by an increasing barrier parameter.

In [53], each control area solves a local optimization problem. In contrast, we decompose the

global optimization problem across control areas.

PDIP methods usually achieve a superlinear convergence rate [107]. However, the primal-dual

interior point method requires solving a large, sparse linear system at each iteration to calculate

the search direction for updating the current estimate. For large systems, such as real-scale power

networks with thousands of buses, direct inversion can be prohibitive in terms of computation.

To solve these series of large, sparse systems, we propose iterative, distributed methods based

on matrix-splitting [102]. We design the matrix-splitting in order to exploit the sparsity and the

topology that are inherent to the problem and the power network structure. Iteratively solving for

the search direction introduces a set of inner iterations at each outer PDIP iteration. A centralized

controller is used to calculate the step length and termination criteria.
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As an initial step, we consider the linearized DC power flow model. In Chapter 6, we consider

the extension to nonlinear problem settings. The main contributions of this chapter include:

1. A parallel PDIP method for DC-OPF is proposed. Its convergence rate is demonstrated on

several systems and shown to scale favorably as the network size grows.

2. Local processing is used to limit communication requirements with the central processor.

The search direction, which is the main computational burden, is calculated in a fully dis-

tributed way.

Notations: We use vk to denote the kth entry of a vector v. The (i, j)th entry of a matrix M is

given byMij, and the ith row of a matrix is [M ]i. The transpose of a vector or matrixX is denoted

by XT . We use M � 0 to denote that M is positive definite. The n × n diagonal matrix formed

by placing the entries of a vector x ∈ Rn on the diagonal is diag(x). For a vector-valued function

f : Rm → Rn,

Df(x)
def
=

[
∇f1(x)T

...
∇fn(x)T

]
.

The neighbor set of node i is N (i), and the “1-hop" neighbor set (i.e., the neighbors of node i’s

neighbors that are not directly connected to node i) of node i isN †(i). The transmission line l from

bus i to bus j is written l(i, j). Let the subset of neighbors of bus i for which i is the “end-bus" of

the line be denoted NS(i)
def
= {j|l(j, i)}.
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5.1 Problem Statement

5.1.1 DC Power Flow Model

We consider a multi-area interconnected power network, denoted by an undirected graph (N , E)

with a set N , {1, 2, . . . , n} of buses and a set E ⊆ N ×N of transmission lines connecting the

buses. Let the total number of transmission lines be |E| = L. Let f denote the real power flow

along every branch in the power network f ∈ RL. The power injection profile, p ∈ Rn, is the

value of the net real power injection at every bus. A positive power injection denotes a genera-

tion bus, whereas a negative power injection denotes a demand bus. Let θ ∈ Rn−1 be the voltage

phase angle at each bus except bus 1 (the reference bus). In the DC Power Flow model, the power

injections and power flows are linearly related to the voltage phase angles [5, 40]:

p =Bθ (5.1)

f =DAθ. (5.2)

Let bl be the susceptance of line l(i, j) from bus i to bus j, and b the vector of all line susceptances.

The bus-susceptanceB matrix is

[B]ij =



−bl, if line l connects buses i and j

0, if buses i and j are not directly connected

−∑j 6=i[B]ij, if i = j.

(5.3)

The matrix B in (5.1) is obtained by removing the first column from B. This results from setting

the reference angle at bus 1 to 0. The matrix B encodes the network structure. The line-bus
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incidence matrix A to be of dimension m × n with [A]li = +1 and [A]lj = −1 if the start bus of

line l is i and the end bus of line l is j. The matrix A in (5.2) is A with the first column removed.

The matrixD in (5.2) is an (m×m)−matrix whose lth entry is bl.

5.1.2 DC-OPF Formulation

In order for our method to work well in a distributed setting (i.e., limited communication re-

quirements), it is important that the system for solving the Newton step has a sparse structure. At

the same time, the system matrix should be reasonably conditioned so that the iterative solver is

well-behaved. For these two reasons, we utilize the following formulation of DC-OPF:

min
θ

f0(θ) (5.4)

s.t. p ≤ Bθ ≤ p (5.5)

f ≤DAθ ≤ f . (5.6)

The optimization problem minimizes cost subject to line capacity and power injection constraints.

The decision variables θ are the voltage phase angles at each bus, excluding the reference bus. The

lower bound on the power flow ensures that it cannot be too large in either direction along a line.

We consider a differentiable, convex objective function. In our simulations in Section 5.3, we

use a quadratic cost function of the form

f0(θ) = (Bθ − p∗)TW (Bθ − p∗), (5.7)

where p∗ is a vector whose entries are the nominal power demand for demand buses and zero for

generation buses. The weighting matrix W is diagonal and allows to parametrize different gener-
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ator costs and demand utility functions. This choice of objective function reasonably describes the

cost behavior (e.g., deviation from the nominal demand is penalized). The inequality constraints

g(θ) ≤ 0 are linear and can be written asGθ ≤ 0 where:

G
def
=



B

−B

DA

−DA


. (5.8)

In summary, we have the following linear inequality constrained problem,

min
θ

f0(θ) (5.9a)

s.t. Gθ ≤ 0. (5.9b)

We propose using primal-dual interior point (PDIP) methods to solve the optimization problem

(5.9a)-(5.9b). First, we will provide a basic overview of interior-point algorithms and then present

our semi-distributed PDIP algorithm for DC-OPF.

5.1.3 Preliminaries on Interior-Point Methods for Linear Inequality Con-

strained Problems

Interior-point methods are used to solve optimization problems with inequality constraints and

often demonstrate superlinear convergence behavior [107]. To deal with the inequality constraints,

interior-point methods solve a series of equality-constrained problems that are a function of an

adaptively changing parameter γ > 0 [11]. As γ increases, the inequality constraints are more
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strictly enforced. For each value of γ, Newton’s method is applied to solve the modified Karush-

Kuhn-Tucker (KKT) equations. For the DC-OPF formulation in (5.9a)-(5.9b), the modified KKT

equations are given by

rγ(x,λ) =

rdual
rcent

 def
=

 ∇f0(θ) +Gλ

−diag(λ)Gθ − (1/γ)1

 , (5.10)

where the centrality variables λ are dual variables associated with the inequality constraints. Let

y
def
= (θ,λ), ∆y

def
= (∆θ,∆λ). (5.11)

Primal-dual interior-point methods utilize Newton’s method to solve the set of nonlinear equations

rγ(y) = 0 via the following first-order approximation:

Drγ(y
′)∆y = rγ(y

′), (5.12)

where y′ is the value of the previous PDIP iterate. The basic outline of an interior-point algorithm

is summarized below [11].
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Algorithm 5.1 DC-OPF Interior-Point Algorithm Overview [11]

1: Choose an initial feasible point for inequality constraints.

2: while termination critera unsatisfied do

3: Set parameter γ in terms of current iterate, y.

4: Compute the search direction, ∆y by solving the linear system (5.12).

5: Compute the step length, d.

6: Compute the next iterate, y+ = y + d∆y.

7: Evaluate termination criteria to measure feasibility and optimality of current solution, y+.

8: end while

5.2 Semi-Distributed Primal-Dual Interior-Point (PDIP) Method

for DC-OPF

Our aim is to develop a semi-distributed primal-dual interior-point (PDIP) algorithm for the

OPF formulation in (5.9a)-(5.9b) with limited communication. We partition the buses of the power

network into N control areas. There are three challenges to developing a distributed PDIP algo-

rithm for optimal power flow: 1) solving for the search direction ∆y in Step 4 of Algorithm 5.1, 2)

calculating the step length d in Step 5, and 3) evaluating the termination criteria in a parallel way

in Step 7.
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5.2.1 Fully Distributed Search Direction Calculation

Calculating the search direction involves solving the large, sparse linear system in (5.12). Fig-

ure 5.1 is an example of the system matrix for the Newton step calculation.

Figure 5.1: The sparsity pattern of the system matrix C̄ can be used to develop an efficient iterative
inversion method for DC-OPF. Here is an example for a 118-bus system.

Specializing (5.12) for DC OPF, the Newton step requires solving

C̄



∆θ

∆λp̄

∆λp

∆λf̄

∆λf


=



rdual

rcent,p̄

rcent,p

rcent,f̄

rcent,f


, (5.13)
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where the system matrix is

C̄
def
=


2BTWB BT −BT (DA)T −(DA)T

−diag(λp̄)B −diag(Bθ−p̄) 0 0 0

diag(λp)B 0 −diag(p−Bθ) 0 0

−diag(λf̄ )DA 0 0 −diag(DAθ−f̄) 0

diag(λf )DA 0 0 0 −diag(f−DAθ)

 . (5.14)

The dual variables associated with the upper bounds on the power injections, Bθ − p̄ ≤ 0, are

denoted λp̄. Similarily, the dual variables for the lower bounds on the power injections, upper

bounds on the power flows, and lower bounds on the power flows are denoted λp,λf̄ , and λf ,

respectively. The right-hand side quantities are

rdual = 2BTW (Bθ − p∗) +BT (λp̄ − λp) + (DA)T (λf̄ − λf ) (5.15)

rcent
def
=



rcent,p̄

rcent,p

rcent,f̄

rcent,f


=



diag(λp̄)(Bθ − p̄)− 1
γ
1

diag(λp)(p−Bθ)− 1
γ
1

diag(λf̄ )(DAθ − f̄)− 1
γ
1

diag(λf )(f −DAθ)− 1
γ
1


(5.16)

First, we reduce the system by eliminating the dual variables which only requires inverting a diag-

onal system and thus preserves sparsity. Eliminating the dual variables, the reduced system is

C∆θ = w, (5.17)

where the system matrix and right-hand side are

C = 2BTWB +GTdiag(−Gθ)−1diag(λ)G (5.18)

w = −rdual −GTdiag(Gθ)−1rcent. (5.19)
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Since diag(Gθ) is diagonal, C exhibits a sparse structure. A matrix-splitting scheme similar

to that developed for state estimation in Chapter 3 can be developed for C in (5.18). Consider

decomposing the matrix C into the difference of two matrices M and N . Provided the spectral

radius ρ(M−1N ) is less than one, let the fixed-point of the sequence

∆θt+1 = M−1N∆θt +M−1w, (5.20)

be ∆θ∗, then C∆θ∗ = w. The splitting (i.e. choice of M and N ) should be designed so that the

matrix-splitting iterates in (5.20) i) converge and ii) are easy to calculate in a distributed way. With-

out loss of generality, assume the bus indices are consecutively assigned across control areas. The

matrixC can be decomposed into the sum of a block-diagonal matrix,D, and a matrix containing

the remaining off-diagonal entriesE. The consecutive ordering of the bus indices described above

allows for all entries of C corresponding to buses within the same control area to be contained

within a single diagonal block. Specifically, let

Dij =



Cij if buses i and j

belong to the same control area

0 otherwise

, (5.21)

Eij =



Cij if buses i and j

belong to different control areas

0 otherwise

, (5.22)
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yielding C = D +E. We use the following matrix-splitting design

M = D + τĒ, N = τĒ −E, (5.23)

where τ is a scalar parameter and Ē is a diagonal matrix whose ith diagonal entry equals

Ēii
def
=
∑
j 6=i

|Aij|. (5.24)

This is a block-Jacobi scheme modified to be diagonally dominant. We have the following propo-

sition which ensures convergence of the matrix-splitting iterates in (5.20).

Proposition 5.1. Using the splitting in (5.23), for τ ≥ 1
2
, the iterative updates in (5.20) converge.

Proof. The sequence {∆θt} in (5.20) converges to its limit ∆θ∗ as t → ∞ if and only if the

spectral radius of the matrix M−1N is strictly less than 1 [102]. Furthermore, if the sequence

converges, the limit ∆θ∗ is the solution of the system, (i.e., C∆θ∗ = w). In order to have the

spectral radius ρ(M−1N ) < 1, it is sufficient to have C = M −N � 0 andM +N � 0 [26].

To show that C � 0, first we note that the Hessian of the objective function f0(θ)
def
= (Bθ −

p∗)TW (Bθ − p∗) is diagonal and assumed to have strictly positive entries. Then, it is sufficient

to show that 1) G has full column rank and 2) diag(−Gθ)−1diag(λ) has strictly positive entries.

Note from (5.8) thatG has full column rank by construction sinceB is the bus susceptance matrix

with the column corresponding to the reference angle eliminated. For each constraint i the entries

[diag(Gθ)−1diag(λ)]ii =
λi

−[G]iθ
> 0 (5.25)

since λi > 0 and [G]iθ < 0. Last,M +N is positive definite due to its construction which makes

it diagonally dominant. The remaining details follow as in the proof to Proposition 3.1 in Chapter

3.
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Control area I has its search direction update given by

∆θt+1
I = M−1

I

[∑
J 6=I

N IJ∆θtJ +wI

]
. (5.26)

The calculation for the search direction ∆y concludes by using back-substitution of ∆θ to calcu-

late ∆λ :

∆λ = diag(Gθ)−1diag(λ)(rcent +Gθ). (5.27)

In order to distribute the calculation, the dual variable [∆λf̄ ]l is assigned to bus i, the sending

end of line l(i, j). Recall the subset of neighbors of bus i, NS(i)
def
= {j|l(j, i)}. This is the set of

neighbors on lines for which i is the receiving end. The information exchange needed to calculate

the search direction in a fully-distributed way is summarized in the following proposition.

Proposition 5.2. In order to calculate ∆yt+1
I in a fully distributed way via (5.26) and (5.27), area I

must receive {θj, ∆θj | j ∈ N †(I)}, {[λp̄]j, [λp]j | j ∈ N (I)}, and {[λf̄ ]j, [λf ]j | j ∈ NS(I)}.

Proof. First, we analyze the communication requirements of the matrix-splitting iterations (5.26).

Introduce the following diagonal matrices:

W p̄
def
=diag(Bθ)−1diag(λp̄) (5.28)

W p
def
=diag(Bθ)−1diag(λp) (5.29)

W f̄
def
=diag(DAθ)−1diag(λf̄ ) (5.30)

W f
def
=diag(DAθ)−1diag(λf ). (5.31)

To characterize the sparsity of C, it is useful to consider the following equivalent expression to
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(5.18):

C = BT (W −W p̄ −W p)B −ATD(W f̄ +W f )DA. (5.32)

The (i, j)th entry of the first term

[BT (W −W p̄ −W p)B]ij =
n∑
k=1

[W −W p̄ −W p]k[B]ki[B]kj (5.33)

is nonzero only if i and j are at most “1-hop” neighbors sinceB has nonzero entries only for direct

neighbors. Similarily, since the sparsity pattern of A only has entries between direct neighbors,

the (i, j)th entry of the second term [ATD(W f̄ + W f )DA]ij is nonzero only if i and j are at

most “1-hop” neighbors. Since [C]ij 6= 0 only if j ∈ N (i) ∪N †(i),

∑
J 6=I

N IJ∆θtJ =
∑

J∈N (I)∪N †(I)

N IJ∆θtJ . (5.34)

Next, we analyze the communication requirements of the right-hand side term ωI in (5.19).

Following a similar argument as above, the term GTdiag(Gθ)−1rcent requires information of

the primal variables and their updates for at most “1-hop” neighbors. Therefore, area I requires

{θj, ∆θj | j ∈ N †(I)}. To calculate rdual, area I must receive in addition {[∆λp̄]j, [∆λp]j | j ∈

N (I)} and {[∆λf̄ ]j, [∆λf ]j | j ∈ NS(I)} due to the terms BT (λp̄ − λp) + ATD(λf̄ − λf )

in (5.15). Last, we note that there are no additional communication requirements for the back

substitution in (5.27).
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5.2.2 Parallel Step Length Calculation

Once the search direction ∆y has been calculated, the next iterate y+ is produced from the

current iterate y by

y+ = y + d∆y, (5.35)

where d is the step length (Steps 5 and 6, Algorithm 5.1). A full Newton step corresponds to a

step length of 1. In order to ensure feasibility (e.g., Gθ+ ≤ 0 and λ+ ≥ 0), the step length is in

general less than 1. One common approach to determining the step length is to use a backtracking

line search [11]. To facilitate parallelization of the backtracking line search, we introduce local

pre-processing schemes that

• Reduce the size of the information sent and the computation to be performed at the central

coordinator.

• Allow for increased privacy by disclosing a surjective function of each control area’s infor-

mation to the central coordinator.

Our proposed parallel backtracking line search is presented in Algorithm 5.2 and based on the

centralized one given in [11].

Algorithm 5.2 Parallel Backtracking Line Search Calculation

1: Each control area I calculates dImax = min{1,mini|λi∈yI{−λi/∆λi < 0}} and sends it to the

central coordinator.

2: Central coordinator calculates dmax := minI{dImax} and sends it to the control areas.
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3: Each area I sets dI := dmax.

4: whileGIθ
+ > 0 do dI := 0.99 ∗ dmax.

5: end while

6: Each area I sends dI to the central coordinator.

7: The central coordinator calculates d := minI{dI} and sends it to control areas.

8: Each area I sets dI := d.

9: while ||[rγ(y+)]I ||2 ≥ (1− αdI)||[rγ(y)]I ||2 do dI := βd

10: end while

11: Each area sends dI to the central coordinator.

12: The central coordinator calculates d := minI{dI} and sends it to all areas.

The parameters α and β are chosen a priori. The convergence of the centralized version of this

scheme in a finite number of steps is guaranteed in [11]. The convergence of the parallel scheme

follows easily. Beside communication with the central processor, we consider the neighbor-to-

neighbor communication of this algorithm. Information exchange between areas is used to calcu-

late the norm of the residuals in Step 9 of Algorithm 5.2. Let the residual equations local to area I

be [rγ(y)]I . The information exchange is summarized in the following proposition.

Proposition 5.3. To calculate [rγ(y)]I , area I must receive {θj| j ∈ N †(I)}, {[λp̄]j, [λp]j | j ∈

N (I)}, and {[λf̄ ]j, [λf ]j | j ∈ NS(I)}.

The residuals are contained in ωI and therefore the communication requirement analysis fol-

lows similarily to the proof of Proposition 5.2. Note that this information is already communicated

in calculating the search direction.
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5.2.3 Parallel Termination Checking

Criteria measuring the feasibility and optimality of the new iterate are evaluated to determine

whether to terminate the algorithm. Again, we consider how local pre-processing can be done

to more effectively parallelize the algorithm. Locally, at PDIP iteration k each area I calculates

η̂I = (GθkI )
TλkI in parallel. This is then sent to the central coordinator, which sums all con-

tributions to calculate η̂ =
∑N

I=1 η̂I . Each area has already calculated the squared norm of its

local residual vectors ||rpri,I ||2 and ||rdual,I ||2 during the backtracking line search in Section 5.2.2.

These values are sent to the central coordinator, which calculates ||rpri|| =
√∑N

I=1 ||rpri,I ||2

and ||rdual|| =
√∑N

I=1 ||rdual,I ||2. The central coordinator checks the termination criterion and

broadcasts whether or not to terminate to all control areas.

5.2.4 Overview of Parallel PDIP and Analysis of Communication Require-

ments

We detail the communication requirements for each of the steps in the proposed semi-distributed

PDIP-OPF in Algorithm 5.3.

Algorithm 5.3 Parallel PDIP-OPF for Control Area I

1: Initialization: Set feasible initial point for y0, and set ||rpri||2, ||rdual||2, and η̂ to 10 ∗

max(εfeas, ε).

2: while ||rpri||2 > εfeas, ||rdual||2 > εfeas, or η̂ > ε do

3: Calculate γk := µm/η̂
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4: CalculateM−1
I wI .

5: Initialize ∆θtI := 0

6: while ||∆θt+1
I −∆θtI || > δ do

7: Calculate ∆θt+1
I = M−1

I [wI +
∑

J 6=IN IJ∆θtJ ]

8: end while

9: ∆θkI := ∆θt+1
I

10: Substitute ∆θkI to calculate ∆λkI .

11: Coordinate with central controller to calculate step size dk using backtracking line search.

12: Calculate next PDIP iterate yk+1
I = ykI + dk∆ykI .

13: Coordinate with central controller to calculate η̂ = −(Gθk+1)Tλk+1.

14: end while

• In Step 1, no communication is required. The y variables are initialized to a point feasible

with respect to the inequality constraints. For example, we initialize the voltage phase angles

θ to zero and the λ centrality variables to small positive values. We assume each control area

is given the global initial starting point a priori.

• In Steps 2 and 3, no communication is needed. The values for the residuals and surrogate

duality gap, η̂, are either set at initialization or calculated below in the previous iteration.

The parameter µ is a constant, and m = 2(n+ L) is the number of inequality constraints.

• In Steps 5, 6, 9, and 12 all quantities are local, so no communication is needed.
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• In Step 7, at most “1-hop" neighbor communication is needed. A fully distributed scheme

for calculating Step 4 and its communication requirements (see Proposition 5.2) are given in

Section 5.2.1.

• In Step 10, no additional communication is needed as values were communicated at Steps 4

and 7.

• In Step 11, coordination with a central coordinator is required with local processing as de-

scribed in Algorithm 5.2. The neighbor-to-neighbor exchange is the same as required in

Proposition 5.2 and needs only to be done once per PDIP iteration.

• In Step 13, local pre-processing in Section 5.2.3 is used to reduce the communication and

computation with the central processor.

5.3 Numerical Results

In Figures 5.2 and 5.3, we study the performance of the parallel PDIP algorithm for two dif-

ferent size networks, the IEEE 14-bus and 118-bus systems [112]. The convergence using direct

inversion (i.e., “Centralized" method) to solve system (5.17) is compared to that using the iter-

ative inversion (i.e., distributed method). Both the centralized and distributed methods converge

within roughly 10 PDIP iterations. Moreover, as the network size grows, the number of PDIP

iterations needed remain roughly constant, and and the degree to which the network is partitioned

can tune the computational cost of each iteration. Using more control areas corresponds to a more
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distributed configuration with comparable performance. In the simulations, both networks are

partitioned into 4 control areas.

In Figures 5.2 and 5.3 (b), the convergence of the centrality residual ensures feasibility of

the inequality constraints. The values used for µ, α, and β are 10, 0.01, and 0.3, respectively.

The number of inner matrix-splitting iterations used in the distributed method is determined by the

following termination criterion, |∆θ+
I −∆θI | < δ,where δ = 10−10. For 118-bus system, between

105 and 106 matrix-splitting iterates are required per iteration. The modified block-Jacobi method

allows for a fully distributed calculation of the search direction. However, parallel direct inversion

methods for sparse matrices like multifrontal LU decomposition can be an attractive choice when

memory and centralized communication is not of high concern.
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(a) Convergence of Objective Function Relative Error: 14-Bus System

(b) Convergence of Residuals: 14-Bus Study

Figure 5.2: Results are demonstrated on the IEEE 14-bus test system. The relative error of the
objective function (a) and residuals (b) converge within 10 PDIP iterations.
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(a) Convergence of Objective Function Relative Error: 118-Bus System

(b) Convergence of Residuals: 118-Bus Study

Figure 5.3: Results are demonstrated on the IEEE 118-bus test system. The relative error of the
objective function (a) and residuals (b) converge within 13 PDIP iterations.
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5.4 Conclusion

We presented a semi-distributed primal-dual interior point method for the linearized optimal

power flow problem. The favorable convergence properties of PDIP are demonstrated through nu-

merical experiments, and the limited communication requirements for the Newton step computa-

tion are analyzed. While the number of inner-loop iterations required can be high, each inner-loop

iteration is a computationally inexpensive arithmetic calculation. If a fully distributed multi-agent

setting is of less interest than simply improving runtime, different solvers for the Newton step may

be advantageous. This motivates our work in the next chapter on developing parallelized methods

for the security-constrained optimal power flow problem.
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Parallel Algorithms for

Security-Constrained Optimal Power Flow

SECURITY-CONSTRAINED OPTIMAL POWER FLOW (SC-OPF) seeks an optimal operating

point that will be valid in the event of various contingencies, or equipment failures. In the

power industry, the “N-1” criteria is often utilized to ensure security of the OPF solution. The “N-

1” criteria requires the solution to OPF to be valid in the case of any single failure of equipment.

This greatly increases the computational complexity of the optimization problem with respect to

the non-security constrained OPF and further motivates the need for fast, robust algorithms.

There are two variations of SC-OPF. Preventive SC-OPF is utilized for optimizing over control

variables that are not able to automatically respond to contingencies, whereas the corrective SC-

OPF allows for re-dispatching of control variables. In our work, we consider the preventive SC-

OPF, where different contingencies are coupled via a common set of control variables.
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Early works introducing the SC-OPF problem include [3], in which a nonlinear programming

approach is developed; as well as [81], which proposes an algorithm based on mathematical de-

composition techniques for corrective SC-OPF that iteratively corrects the “base-case” solution

without contingencies. The use of interior point algorithms for SC-OPF was first proposed in [103].

The interior point method is used for solving successive linear programs and studies demonstrate

its advantage over the simplex method for SC-OPF.

More recently, there has been a research focus on overcoming the computational difficulties

associated with solving SC-OPF problems [14, 16], such as large memory requirements and pro-

hibitively long runtimes, due to the high-dimensionality of the problem. Since in practice only

a fraction of contingencies are binding at the optimal point, contingency filtering schemes have

been proposed to reduce the dimension of the problem by selecting a subset of contingencies to

include in the optimization problem. However, contingency filtering schemes can be difficult to

tune, and after filtering the problem may still remain too large to be solved efficiently [14]. Other

approaches based on ADMM [20, 87] and Benders decomposition [42] have been proposed to

break up the optimization problem into smaller optimization problems. In addition, in [8], the lin-

earized DC SC-OPF problem is decentralized by coordinating different area sub-problems through

a pricing mechanism based on the cost of electricity exchanges between adjacent areas.

Beyond ADMM and Benders decomposition, structure-exploiting interior point methods can

be devised to solve SC-OPF in a computationally efficient manner. The main computational burden

for interior point methods lies in calculating the Newton step or search direction, which involves

solving a large, linear system. The Newton step calculation can be effectively decomposed by uti-
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lizing structure from the underlying network connectivity, physical laws of power networks, and

SC-OPF problem formulation. In [23], the authors propose an interior point method for the lin-

earized DC SC-OPF with a special preconditioning scheme for iteratively solving the Newton step.

Similar to our work, they also investigate domain decomposition techniques in solving the Newton

step. In [91], the authors design a parallel algorithm for SC-OPF to decompose the computation

for subsets of post-contingency states using a GMRES iterative solver.

In this chapter, we present our parallel algorithm for SC-OPF. Our algorithm utilizes two layers

of parallelization: 1) across contingencies and 2) across buses. We utilize techniques inspired by

domain decomposition and reordering schemes that allow us to reduce the system matrix in parallel

while preserving sparsity.

Notations: The number of equality (and inequality) constraints for contingency case k is neq(k)

(and nineq(k)). The ith entry of a vector of equations h(x) is [h(x)]i. For a function h(x,u), the

gradient with respect to x is ∇xh(x,u).

6.1 Problem Statement

To introduce security-constrained OPF, consider the general structure of the OPF problem with-

out security constraints:

min
x,u

f0(x,u) (6.1a)

s.t. g(x,u) ≤ 0 (6.1b)

h(x,u) = 0, (6.1c)
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where x are state variables (e.g., bus voltages) and u are control variables (e.g., power injections).

The inequality constraints enforce operation constraints, such as transmission line and genera-

tion capacities, and the equality constraints enforce power balance at each bus. Under the AC

power flow model, the equality constraints are nonlinear. The general structure for the security-

constrained OPF is:

min
x(0),...,x(K),u

f0(u) (6.2a)

s.t. gu(u) ≤ 0 (6.2b)

For each contingency k = 0, . . . , K :

gk(x
(k)) ≤ 0 (6.2c)

hk(x
(k),u) = 0. (6.2d)

In our work, we consider line failure contingencies. A set of state variables and constraints are

introduced per contingency. For example, in the event of a line trip contingency, new power flows

and voltages result. The state variables x(0) correspond to the base case without any contingencies.

This is a preventative SC-OPF formulation as opposed to a corrective SC-OPF formulation since

it requires the state variables under any contingency to remain valid. The control variables u

couple the different contingencies. There are various models for the power flow equations leading

to different SC-OPF (and OPF) formulations. In the previous chapter, we considered only the

DC-OPF problem. In this chapter, we develop our algorithm under three different formulations:

1) DC SC-OPF (linear), 2) Branch Flow SC-OPF (or BR SC-OPF) (convex relaxation), and 3)

AC SC-OPF (nonconvex). For all formulations, we assume the objective function f0(p) is convex
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and a separable function of the power injections. We consider a multi-area interconnected power

network, denoted by an undirected graph (N , E) with a set N , {1, 2, . . . , n} of buses and a set

E ⊆ N ×N of m transmission lines connecting the buses. Under a single line failure contingency

k, the set of (m− 1) remaining operational lines is Ek.

6.1.1 DC SC-OPF

The DC SC-OPF formulation we consider is a linear optimization program with state variables

equal to the bus voltages x := θ (excluding the reference bus) and control variables set to the

power injections u := p. Since power injections do not ramp up or down power production or

consumption instantaneously, they will remain unchanged immediately after a contingency and

are therefore assigned in the control variables u 1. The equality constraints enforce power balance

at each bus, which are linear under the DC model, and the inequality constraints are limits on the

power injections and bidirectional power flows:

min
{θ(k)}Kk=0,p

f0(p) (6.3a)

s.t. p ≤ p ≤ p̄ (6.3b)

For each contingency k = 0, . . . , K :

Bkθ
(k) − p = 0 (6.3c)

f ≤DkAkθ
(k) ≤ f̄ , (6.3d)

1In this context, control variables are not controlled in real-time. Rather the optimization problem SC-OPF de-
termines the optimal set points for the control variable quantities. If a load power injection is not adjustable, this is
reflected in the tightness of the inequality constraints (6.3b).
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where the matricesAk,Bk, andDk are defined as in Section 5.1.1. These matrices depend on the

grid connectivity. Since we consider contingencies to be line trips, different contingencies corre-

spond to different line sets, Ek, and differentAk,Bk, andDk. Note that (6.3) is a specialization of

the general form (6.2).

6.1.2 Branch Flow (BR) SC-OPF

As a natural next step towards the full nonlinear AC SC-OPF problem, we consider the branch

flow (BR) SC-OPF problem. First, we present some preliminaries about the branch flow power

model. For radial power networks, the SC-OPF based on the branch flow model can be relaxed to

a convex problem through two relaxations. A relaxation is exact, if every solution of the relaxed

problem is a solution to the original problem and vice versa. The twice relaxed OPF is exact given

some mild conditions [37]. In this section, we introduce the angle-relaxed branch flow model [38].

For each branch (i, j) ∈ E the resistance is denoted, rij, and the reactance, xij, and for each

node i, the shunt conductance is denoted, gi, and the shunt susceptance, bi. The squares of the

voltage magnitudes at each bus are given by v = (v1, . . . , vn). Similarly, l = (lij, (i, j) ∈ E)

denotes the squares of the branch current magnitudes. Let P = (Pij, (i, j) ∈ E) denote the active

and Q = (Qij, (i, j) ∈ E) the reactive power flow from i to j. The active and reactive power

injections at each bus are given by p = (p1, . . . , pn) and q = (q1, . . . , qn). The state variables for

each contingency are x(k) =
(
v(k), l(k),P (k),Q(k)

)T
. The control variables are u = (p, q)T . We

refer to the following convex problem using the relaxation for the branch flow model as the BR
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SC-OPF:

min
{P (k),Q(k),l(k),v(k)}Kk=0,p,q

f0(p) (6.4a)

s.t. p ≤ p ≤ p̄ (6.4b)

q ≤ q ≤ q̄ (6.4c)

For each contingency k = 0, . . . , K :

∀j ∈ N :

− pj +
∑

l:(j,l)∈Ek

P
(k)
jl −

∑
i:(i,j)∈Ek

(
P

(k)
ij − rijl(k)

ij

)
+ gjv

(k)
j = 0, (6.4d)

− qj +
∑

l:(j,l)∈Ek

Q
(k)
jl −

∑
i:(i,j)∈Ek

(
Q

(k)
ij − xijl(k)

ij

)
+ bjv

(k)
j = 0, (6.4e)

∀(i, j) ∈ Ek :

− v(k)
j + v

(k)
i − 2

(
rijP

(k)
ij + xijQ

(k)
ij

)
+
(
r2
ij + x2

ij

)
l
(k)
ij = 0, (6.4f)

P 2
ij +Q2

ij

vi
− lij ≤ 0 (6.4g)

The inequality constraint (6.4g) is a relaxation of the equality constraint:

lijvi − P 2
ij −Q2

ij = 0. (6.5)

The inequality (6.4g) is convex for v(k)
i > 0. In our case, v(k)

i is always positive since it is the

squared magnitude of the voltage.

Note that (6.4) is a specialization of the general form in (6.2). The equality constraints (6.4d) -
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(6.4f) are linear in the decision variables and can be written as:

[
H(k)

x H(k)
u

]x(k)

u

 = 0. (6.6)

The linear inequality constraints (6.4b) - (6.4c) and the nonlinear inequality constraints (6.4g) can

be summarized asGuu ≤ 0 and gk(x(k)) ≤ 0, respectively.

6.1.3 AC SC-OPF

The AC SC-OPF is a nonconvex optimization program. Improving solutions to AC SC-OPF

remains one of the key challenges in power system operations [13]. The state variables are equal to

the bus voltage phase angles, θ, and magnitudes, |V |. The control variables are the real and reactive

power injections p and q. The conductance and susceptance of the transmission line between nodes

i and j are Gij and Bij, and Bsh
ij is the shunt susceptance. We consider the following formulation

of AC SC-OPF:

min
{θ(k),|V |(k)}Kk=0,p,q

f0(p) (6.7a)

s.t. p ≤ p ≤ p̄ (6.7b)

q ≤ q ≤ q̄ (6.7c)

For each contingency k = 0, . . . , K :

∀i ∈ N :∑
i,j∈Ni

|V |(k)
i |V |(k)

j (Gij cos(θ
(k)
i − θ(k)

j ) + Bij sin(θ
(k)
i − θ(k)

j ))− pi = 0 (6.7d)
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∑
i,j∈Ni

|V |(k)
i |V |(k)

j (Gij sin(θ
(k)
i − θ(k)

j )− Bij cos(θ
(k)
i − θ(k)

j ))− qi = 0 (6.7e)

∀(i, j) ∈ Ek :

fij ≤ −|V |(k)
i |V |(k)

j (Gij cos(θ
(k)
i − θ(k)

j ) + Bij sin(θ
(k)
i − θ(k)

j ))

+Gij(|V |(k)
i )2 ≤ f̄ij (6.7f)

qij ≤ −|V |(k)
i |V |(k)

j (Gij sin(θ
(k)
i − θ(k)

j )− Bij cos(θ
(k)
i − θ(k)

j ))

− (Bsh
ij +Bij)(|V |(k)

i )2 ≤ q̄ij (6.7g)

Power injection limits are (6.7b)-(6.7c), and power flow limits are (6.7f)-(6.7g). The inequality

constraints enforce power injection and power flow capacity limits. The equality constraints en-

force real (6.7d) and reactive (6.7e) power balance at each bus. The method we propose in the

next section can be applied to the AC SC-OPF problem. However, unlike the DC SC-OPF and BR

SC-OPF formulations, there are no convergence guarantees for the nonlinear AC SC-OPF.

6.2 Two Layer Parallel SC-OPF Algorithm

In SC-OPF, different contingencies are only coupled via the power injection control variables,

yielding a sparse system matrix. We design a domain decomposition technique based on this spar-

sity to parallelize the problem across different contingencies. For each sub-problem associated

with a given contingency, additional sparsity structure is given by the physical laws and limited

connectivity of power networks. Variable reordering schemes are introduced to reduce the system

in parallel while maintaining sparsity after each reduction. We design our method to utilize two
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24	

Con'ngency	1	 Con'ngency	K	

SC-OPF	

…...	

Control	Area	1	 Control	Area	N	 Control	Area	1	 Control	Area	N	…	…	

Figure 6.1: The SC-OPF is highly-parallelized, allowing a processor per control area and per
contingency.

layers of parallelism: 1) across contingencies and 2) across buses in the network. The paralleliza-

tion is effective due to the underlying sparsity patterns. A schematic of our parallelization strategy

is shown in Figure 6.1.

6.2.1 Preliminaries on Primal-Dual Interior Point (PDIP) Methods for SC-

OPF

In contrast to Chapter 5, where we applied PDIP methods to solve DC-OPF, the SC-OPF for-

mulations have both equality and inequality consrtaints. As detailed in Section 6.1.1, the DC SC-

OPF has linear equality and inequality constraints, whereas the BR SC-OPF has linear equality

and nonlinear inequality constraints (see Section 6.1.2). Last, the AC SC-OPF has both nonlin-

ear equality and inequality constraints (see Section 6.1.3). This leads to different derivations of the
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Newton step. We begin with the derivation for the most general case, AC SC-OPF, and show how it

specializes for the BR SC-OPF and DC SC-OPF problems. Simplified notation is introduced. For

details on the optimization program formulations, we refer the reader back to Sections 6.1.1-6.1.3.

Let

x =


x(0)

...

x(K)

 , g(x) =



g0(x(0))

...

gK(x(K))

gu(u)


, h(x,u) =


h0(x(0),u)

...

hK(x(K),u)

 , (6.8)

and yT =

[
xT uT

]
.

The modified KKT conditions ( [11], Section 11.7.1) for problem (6.2) are

rγ(y,λ,ν)
def
=


rdual

rcent

rpri

 =


∇f0(u) +Dg(x)Tλ+Dh(y)Tν

−diag(λ)g(x)− 1
γ
1

h(y)

 . (6.9)

Grouping together both primal and dual variables into z = (y,λ,ν) and ∆z = (∆y,∆λ,∆ν),

the Newton step is obtained by solving the linear equation, Drγ(z)∆z = −rγ(z) or
∇2f0(u) +

∑nineq

i=1 λi∇2gi(y) Dg(y)T Dh(y)T

−diag(λ)Dg(y) −diag(g(y)) 0

Dh(y) 0 0




∆y

∆λ

∆ν

 = −


rdual

rcent

rpri

 . (6.10)

For BR SC-OPF, the equality constraints are linear, and therefore the modified KKT conditions
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simplify to

rγ(y,λ,ν) =


∇f0(u) +Dg(y)Tλ+HTν

−diag(λ)g(y)− 1
γ

Hy

 . (6.11)

The Newton step calculation requires solving
∇2f0(u) +

∑nineq

i=1 λi∇2gi(y) Dg(y)T HT

−diag(λ)Dg(y) −diag(g(y)) 0

H 0 0




∆y

∆λ

∆ν

 = −


rdual

rcent

rpri

 . (6.12)

Last, for DC-SCOPF, both the equality and inequality constraints are linear, yielding,

rγ(y,λ,ν) =


∇f0(u) +GTλ+HTν

−diag(λ)Gy − 1
γ

Hy

 , (6.13)


∇2f0(u) GT HT

−diag(λ)G −diag(Gy) 0

H 0 0




∆y

∆λ

∆ν

 = −


rdual

rcent

rpri

 . (6.14)

6.2.2 Block-Bordered-Diagonal (BBD) Structure

The different contingencies are coupled only through their mutual dependence on the control

variable u. We will show that this kind of dependency leads to a block-bordered diagonal (BBD)
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matrix structure for solving the Newton step,

M C

CT Cu

 =



M (0) 0 . . . 0 C(0)

0 M (1) . . . 0 C(1)

... . . . ...

... M (K) C(K)

[C(0)]T [C(1)]T . . . [C(K)]T Cu


. (6.15)

We design a reordering by contingency and show how it leads to BBD structure. The original

ordering is according to (6.8). Let

∆z(k) =


∆x(k)

∆λ(k)

∆ν(k)

 , ∆z(u) =

 ∆u

∆λ(u)

 (6.16a)

M (k) =


∑nineq(k)

i=1 λ
(k)
i ∇2[gk(x

(k))]i [Dgk(x
(k))]T [Dxhk(y

(k))]T

−diag(λ(k))Dg(k)(x(k)) −diag(g(k)(x(k))) 0

Dxhk(y
(k)) 0 0

 , k = 0, . . . , K

(6.16b)

C(k) =


0 0

0 0

Duhk(y
(k)) 0

 , Cu =

∇2
uf 0(u) +

∑nineq(u)

i=1 λ
(u)
i ∇2g

(u)
i (u) [Dg(u)(u)]T

−diag(λ(u))Dg(u)(u) −diag(g(u)(u))

 ,

(6.16c)
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where Dxhk(y
(k)) is the matrix of gradients with respect to the state variables,

Dxhk(y
(k))

def
=


∇x[hk(y

(k))]T1

. . .

∇x[hk(y
(k))]Tneq(k)

 . (6.17)

Note that for the branch-flow and DC models, Dxhk(y
(k)) can be simplified to H (k)

x since the

equality constraints are linear. Similarily, for the DC model, Dgk(x(k)) can be simplified to Gk

since the inequality constraints are linear. Using the following reordering, (6.10) can be reordered

as a BBD matrix for the SC-OPF problem:

M (0) 0 . . . 0 C(0)

0 M (1) . . . 0 C(1)

... . . . ...

... M (K) C(K)

[C(0)]T [C(1)]T . . . [C(K)]T Cu





∆z(0)

∆z(1)

...

∆z(K)

∆z(u)


= −r∗, (6.18)

where

r∗ =



r0

r1

...

rK

ru


, rk =


r

(k)
dual

r
(k)
cent

r
(k)
pri

 =


[Dgk(x

(k))]Tλ(k) + [Dxhk(y
(k))]Tν(k)

−diag(λ(k))gk(x
(k))− 1

γ
1

[Dxhk(y
(k))]x(k) + [Duhk(y

(k))]u

 , k = 0, . . . , K

(6.19a)
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Figure 6.2: Sparsity pattern of Newton step system matrix (6.12) for an 880-bus system under the
BR SC-OPF formulation. There are nz = 183, 040 nonzero entries.

ru =

∇uf 0(u) + [Dgu(u)]Tλ(u) +
∑K

k=0 [Duhk(y
(k))]Tν(k)

−diag(λ(u))gu(u)− 1
γ
1

 . (6.19b)

As a numerical example, the sparsity pattern for the Newton step system matrix under the original

ordering (6.8) is shown in Figure 6.2 for an 880-bus system under the BR SC-OPF model. The

sparsity pattern under the BBD reordering is shown in Figure 6.3.

6.2.3 Layer 1: Parallelizing Across Contingencies

We exploit the BBD structure (6.15) in order to decompose the Newton step calculation into K

sub-problems, one for each contingency. The domain decomposition technique applied to solving

(6.18) is presented in Algorithm 6.1 [93].
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E

E(1)M(2) 

M 

C 

CT Cu 

Figure 6.3: Sparsity pattern of Newton step system matrix (6.12) for an 880-bus system under the
BR SC-OPF formulation using the Block-Bordered-Diagonal (BBD) reordering in (6.15). This
example uses 3 contingencies, plus the base case, leading to 4 diagonal blocks with repeated struc-
ture. There are nz = 183, 040 nonzero entries.

Algorithm 6.1 Block-Gaussian Elimination [93] for Solving 6.18

1: In parallel, for each contingency k : Solve M (k)C̃
(k)

= C(k) and M (k)r̃(k) = r(k) for C̃
(k)

and r̃(k).

2: Collect solution [C̃]T =
[
[C̃

(0)
]T . . . [C̃

(K)
]T
]

and [r̃]T =
[
[r̃(0)]T . . . [r̃(K)]T

]
at central pro-

cessor.

3: Compute r̃u = ru − [C̃]T r̃.

4: Compute S = Cu − [C]T C̃.

5: Solve S∆zu = r̃u for ∆zu.
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6: For each contingency k, compute ∆z(k) = r̃(k) − C̃(k)
∆zu.

The main computational burden of Algorithm 6.1 is Step 1. This step can be parallelized across

contingencies without any communication requirements. We do note the results are sent to a

centralized processor upon completion. The system in Step 5 is comparatively small compared to

the linear solve that is parallelized in Step 1. For example, in the 880-bus test system in Figure 6.3,

Step 5 requires solving a 1, 770× 1, 770 system, whereas Step 1 breaks down solving a 42, 212×

42, 212 system into four 10, 553× 10, 553 systems, that are solved in parallel. Furthermore, as the

number of contingencies increases, the size of Cu remains constant, while adding a processor per

contingency allows the runtime in Step 1 to remain roughly constant.

6.2.4 Layer 2: Parallelizing Across Buses for BR SC-OPF

The system M (k) is still large for power grids with many buses. Furthermore, since these

systems demonstrate nice sparsity structure, it is advantageous to exploit this to further increase

computational efficiency. The Layer 2 parallelization concerns how to parallelize solving sub-

problem k in Step 1 in Algorithm 6.1. For the DC SC-OPF, the techniques of Chapter 5 can be

applied to the kth subproblem since its sparsity is similar to that of the non-security constrained

OPF. Here we extend results from Chapter 5 to the branch flow model for radial, or tree-like,

networks. Parallelization across buses for the nonlinear AC model is a topic of future research.

The strategy is to design reordering schemes that 1) allow variable eliminations and back-

subtitutions with minimal communication and 2) that maintain sparsity. Instead of solving a large

sparse system, runtime is decreased by solving a smaller, still sparse system. From (6.16b), (6.16c),
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(6.19a), the kth sub-problem can be succinctly written as:

M (k)


C̃

(k)

dual r̃
(k)
dual

C̃
(k)

cent r̃
(k)
cent

C̃
(k)

pri r̃
(k)
pri

 =


0 −r(k)

dual

0 −r(k)
cent

H(k)
u −r(k)

pri

 (6.20)

The sparsity pattern forM (k) in the 880-bus example is shown in Figure 6.4.
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Figure 6.4: The sparsity pattern for the kth sub-problem system matrix M (k) (6.16b) for an 880-
bus radial test system under the branch flow model. There are nz = 43, 695 nonzero entries.

System Reduction 1: The first elimination is of the second set of equations for solving C̃
(k)

cent and

r̃
(k)
cent. The reduced system is: Qk [H(k)

x ]T

H(k)
x 0


C̃

(k)

dual r̃
(k)
dual

C̃
(k)

pri r̃
(k)
pri

 =

 0 b(k)

H(k)
u r

(k)
pri

 , (6.21)
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where

Qk =

nineq(k)∑
i=1

(
λ

(k)
i ∇2[gk(x

(k))]i −
λ

(k)
i

[gk(x
(k))]i

∇[gk(x
(k))]i[∇[gk(x

(k))]i]
T

)
(6.22)

b(k) = −r(k)
dual − [Dgk(x

(k))]Tdiag(gk(x
(k)))−1r

(k)
cent. (6.23)

This involves inverting a diagonal matrix, namely diag(gk(x
(k))), that is actually applicable under

all three models (DC, BR, AC SC-OPF) considered. Furthermore, this reduction step preserves

sparsity. The sparsity of the reduced system matrix (6.21) for the 880-bus test system is shown in

Figure 6.5.

Figure 6.5: The sparsity pattern for the kth sub-problem system matrix after one reduction (6.21)
for an 880-bus radial test system under the branch flow model. There are nz = 33, 403 nonzero
entries.

Reordering 1: We design a reordering scheme so that the upper-left block Qk in (6.21) is block-
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diagonal under the BR SC-OPF model.

Proposition 6.1. The decision variables x(k) can be reordered so that Qk in (6.22) is block-

diagonal under the branch flow model for radial networks. The upper bound for the dimension

of the blocks is 5 + 3maxi|Ci|, where Ci = {j|(i, j) ∈ Ek} are the children of node i.

Proof. Under the following reordering, the matrix Qk in (6.22) is block-diagonal. The decision

variables associated with a node (i.e., vi, pi, qi) are assigned to xi, and the decision variables

associated with an edge (i.e., lij, Pij, Qij) are assigned to the sending end of the edge. This

choice is not arbitrary but motivated by the fact that the inequality constraints of the form in

(6.4g) involve vi not vj. The reordered vector x = (x1, . . . ,xn)T contains n blocks of the form

xi = (vi, li, {P ij}j, {Qij}j, pi, qi). Let Ci = {j|(i, j) ∈ E} be set of children of node i. Each

block xi belongs to a control area and is of dimension 5 + 3|Ci|, and each control area can contain

one or more consecutive blocks. Apart from the inequality constraints (6.4g), all other inequalities

are simple upper and lower bounds of the form, x ≤ xi ≤ x̄. Since these inequalities are linear,

∇2gi = 0 for all i, and since they are separable, ∇gi∇gTi is a diagonal matrix. The inequalities

in (6.4g) are the only ones that couple different decision variables, and from the functional form

in (6.4g), they couple only the decision variables associated to the same node, xi. Therefore, we

have thatQk is block diagonal.

The sparsity pattern of the matrix (6.21) under the reordering scheme is shown in Figure 6.6.

System Reduction 2: After reordering, Qk is block-diagonal and can be inverted in parallel,

assigning a processor to one or multiple blocks. Furthermore, this allows for a second system
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Figure 6.6: The sparsity pattern for the kth sub-problem system matrix after one reduction (6.21)
and applying reordering for an 880-bus radial test system under the branch flow model. The upper-
left blockQK is block-diagonal. The blocks are small in size, so it appears almost diagonal. There
are nz = 33, 403 nonzero entries.

reduction while retaining sparsity by eliminating C̃
(k)

dual and r̃(k)
dual :

N k

[
C̃

(k)

pri r̃
(k)
pri

]
=

[
−H (k)

u ω(k)

]
, (6.24)

whereN k = H (k)
x [Qk]

−1[H(k)
x ]T (6.25)

ω(k) = [H(k)
x ][Qk]

−1b(k) + r
(k)
pri. (6.26)

The sparsity pattern of matrix (6.25) is shown in Figure 6.7. We see that this matrix exhibits a

sparse banded structure. Furthermore,N k is symmetric and positive definite. Different techniques

can be used to efficiently solve the remaining, reduced system, such as fully distributed matrix-
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Figure 6.7: The sparsity pattern for the kth sub-problem system matrix after two reductions (6.25)
and applying reordering for an 880-bus radial test system under the branch flow model. There are
nz = 30, 139 nonzero entries.

splitting solvers as in Chapter 5, sparse banded direct solvers [29], and red-black coloring [93].

Back-Substitution: To complete solving (6.20), back-substitution is used to calculate C̃
(k)

dual, C̃
(k)

cent, r̃
(k)
dual,

and r̃(k)
cent :

C̃
(k)

dual = −[Qk]
−1[H(k)

x ]T C̃
(k)

pri (6.27a)

r̃
(k)
dual = [Qk]

−1b− [Qk]
−1[H (k)

x ]T r̃
(k)
pri (6.27b)

C̃
(k)

cent = −[diag(g(k)(x(k)))]−1diag(λ(k))Dg(k)(x(k))C̃
(k)

dual) (6.27c)

r̃
(k)
cent = −[diag(g(k)(x(k)))]−1(−r(k)

cent + diag(λ(k))Dg(k)(x(k))r̃
(k)
dual) (6.27d)

For the 880-bus example in Figures 6.3 - 6.7, the dimension of the per-contingency problem is

130



Chapter 6: Parallel Algorithms for Security-Constrained Optimal Power Flow

reduced by a factor of 5 and the dimension of the overall SC-OPF problem is reduced by a factor

of 16. In addition, the original large, sparse system (see Figure 6.3) has 183, 040 entries, whereas

the reduced system (see Figure 6.7) has 30, 139 entries, showing that the reductions do not lead to

dense filled-in matrices.

6.3 Numerical Results

Figure 6.8: A 5-bus system based on [68,112] for toy studies of DC SC-OPF. Visualization gener-
ated using [83].

We evaluate the performance of our algorithm by studying the convergence of the relative

error of the objective function with respect to the true minimum. For the DC and BR SC-OPF

formulations, the global minimum is calculated using a convex solver, CVX [27], [44]. To ensure

the solution is feasible with respect to the constraints, the convergence of the residuals is also

shown. For a small 5-bus system (see Figure 6.8), the results using 6 contingencies are shown in

Figure 6.9. The contingencies considered are the failure of any one of the 6 transmission lines.
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(a)

(b)

Figure 6.9: Performance in terms of the convergence of the relative error of the objective function
and in terms of the residual is shown for the 5-bus system of Figure 6.8. The convergence of the
relative error is not monotonically decreasing since the intermediate solutions do not satisfy the
constraints. 132
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Figure 6.10: A 189-bus system based on [24,86] for larger scale studies of DC SC-OPF. Visualiza-
tion generated using [83]. The lightning bolts signify the 44 transmission line contingencies used
in the simulations.
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The convergence of the relative error and residuals is shown for an 189-bus system (see Figure

6.10) in Figure 6.11. Compared to the small test system that takes 9 iterations to converge, the

simulation scales well on the larger 189-bus system with 44 contingencies, requiring around 30

iterations.

Table 6.1: Runtime Scaling (s) for DC SC-OPF: 189-bus system with 44 contingencies plus base

case. Multiple processor runtime calculated without taking into account communication time.

Proposed Method: Layer 1 Single Processor 45 Processors∗ Speedup

Serial Part 24.83 24.83 1

Parallel Part 39.13 1.21 32.34

Total 63.96 26.04 2.46

Table 6.2: Runtime Scaling (s) for BR SC-OPF: 880-bus system with 3 contingencies. Multiple

processor runtime calculated without taking into account communication time.

Proposed Method: Layers 1&2 Single Processor 64 Processors∗ Speedup

Serial Part 40.10 40.10 1

Parallel Part 242.83 3.79 64

Total 282.93 43.89 6.4

In Table 6.1, the runtime scaling of the proposed method for computing the Newton step is

demonstrated. The parallel part refers to Step 1 of Algorithm 6.1, and the serial part of the method

refers to Steps 2 - 6 of Algorithm 6.1. The timing with 45 processors is identical to using a single
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(a)

(b)

Figure 6.11: Performance in terms of the convergence of the relative error of the objective function
and in terms of the residual is shown for the 189-bus system of Figure 6.10. The convergence of
the relative error is not monotonically decreasing since the intermediate solutions do not satisfy
the constraints. 135



Chapter 6: Parallel Algorithms for Security-Constrained Optimal Power Flow

processor for the serial part. For the parallel part, we use the maximum time over all contingencies.

The timing for multiple processors is estimated excluding communication time, although we note

that Step 1 of Algorithm 6.1 is perfectly parallelizable. The results must be synchronized before

proceeding to the next step, so we use the maximum time for the parallel part rather than the

average. The results in Table 6.1 are averaged across all of the PDIP iterations. We see that the

portion of the Newton step algorithm that is parallelizable is roughly 60%, and speedups of roughly

32 and 2.5 are achieved for the parallelizable and total parts, respectively. The timing results in

Table 6.1 consider only the Layer 1 parallelization.

Beyond the DC model, we also verify our performance on the BR model. Since the BR SC-

OPF is a convex program, we can calculate the global minimum and study convergence of the

relative error. In Figure 6.12, we show the convergence of the residual error and residuals, as

well as timing results in Table 6.2, for a 880-bus system with 3 contingencies. The timing results

in Table 6.2 include both Layer 1 and 2 parallelization. Comparing Tables 6.1 and 6.2, greater

speedups can be achieved for the BR SC-OPF since the larger system has greater computational

burden for the Newton step calculation, which is parallelized, and the BR SC-OPF allows for

further parallelization by exploiting the radial structure of the network.
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Figure 6.12: Performance in terms of the convergence of the relative error of the objective function
and in terms of the residual is shown for an 880-bus radial system under the branch flow model.
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6.4 Conclusion

In this chapter, we propose a highly scalable parallel primal-dual interior point (PDIP) method

for security-constrained optimal power flow (SC-OPF). We examine three different formulations

of SC-OPF: 1) the linearized DC model, 2) the convex relaxation of the BR (branch flow) model,

and 3) the nonlinear AC model and the implications these have for parallelization. Two layers

of parallelization for the PDIP search direction (Newton step) are designed across contingencies

and across buses. The parallelization across contingencies does not require communication and

is applicable to all three models. The parallelization across buses requires communication and is

specialized for radial power networks. The convergence and timing results demonstrate favorable

performance in terms of computational efficiency and accuracy.

138



Chapter 7

Aggregation of Distribution System-Level

Devices

DISTRIBUTED ENERGY RESOURCES (DERS) represent energy production that is connected

to the power grid via the distribution system. DERs present both challenges and opportu-

nities for future grid operations. As more and more DERs are connected to the distribution system,

there is a need to understand their impact on the operational state of the distribution system, as

well as the bulk transmission system. Furthermore, there is an interest to utilize DERs to provide

ancillary services and additional flexibility [65]. This includes peak load shedding [31] and volt-

age regulation [69]. In order to utilize DERs to achieve certain control objectives, their collective

behavior needs to be understood.

We propose to quantify this in terms of the net load achievable at the substation over time.

Given the feasible region for substation net load, grid operators can incorporate this information
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into a multi-period system-wide optimal power flow (OPF) to determine an optimal trajectory for

the distribution system to follow (see Figure 7.1). Here, the sense of optimal is determined by the

objective function of the OPF.

Time	

Achievable	Substa1on	
Net	Load	

INPUTS	

+	Transmission	System	
constraints	

…	1	 2	 3	 K	4	

Solve	Mul$-Period	OPF	

Time	

Op1mal	Substa1on	Net	
Load	

OUTPUTS	

+	Transmission	System	
op1mal	set	points	

Figure 7.1: The feasibility region is determined by an aggregation problem and utilized in a multi-
period OPF for optimizing overall grid operations.

Aggregation of DERs has gained recent interest in the power systems research community.

In [48], a set theoretic characterization bounds the aggregate flexibility of a population of het-

erogeneous thermostatically controlled loads (TCLs) between two different generalized battery

models. In [110], the aggregate flexibility of a population of heterogeneous TCLs is formulated as

the Minkowski sum of polytopes corresponding to the flexibility of each individual TCL, and linear

programs are proposed to approximate the intensive calculation of the Minkowski sum. R-C ther-

modynamic models are utilized in [75] to model the flexibility in power consumption of a group of

commercial building HVAC fans. In addition, a contract design based on economic MPC allows

groups of buildings to provide fast regulation services to the grid. In [12], polytopic projections

are used to produce a reduced set of constraints, depending only on deviations of tie-line flows, in
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order to determine and coordinate the flexibility that different TSOs can provide to one another. A

two-level hierarchical scheme for incorporating distribution-level resources in a multiple time step

OPF is proposed in [89]. The aggregate flexibility of the DERs is approximated by an ellipsoid at

each time step using data-driven identification techniques.

The contributions of our approach detailed in this chapter include:

1. Our formulation considers the feasible region over multiple time periods in order to include

dynamic and ramping/switching constraints.

2. Voltage constraints, which couple the different DER devices, are included to ensure that

the power profiles of the DERs satisfy operational safety considerations for the distribution

system.

3. The approach aggregates a general combination of devices whose constraints can be mod-

eled linearly, rather than considering the aggregation of a single kind of device (e.g., only

HVACs).

7.1 Problem Statement

Given constraints on both devices and the distribution system bus voltages, the aim is to deter-

mine which values for the substation net load are achievable. We formulate this as a problem of

polytope projection. Denote the real and reactive power injections at device i at bus j at time step

k, Pij(k) and Qij(k), respectively. The constraints can be organized into two categories: 1) device

constraints and 2) network constraints.
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• Device constraints include operational box constraints (e.g., a device can draw power within

a certain range),

P ij ≤ Pij(k) ≤ P̄ij, (7.1)

and physical dynamics (e.g., the state of charge of a battery is related to the amount of power

it draws or outputs at previous time steps). We assume linear models for the device dynamics.

Let the state variable of device i at bus j at time step k be denoted xij(k). For example, the

dynamic state could be the state of charge for a battery or the thermal energy for a TCL. The

value of the dynamic state variables depends on the power drawn by the device over time.

We assume a linear dynamic model:

xij(k + 1) = aijxij(k) + bijPij(k + 1). (7.2)

In Section 7.3.1, the coefficients aij and bij are identified for a battery and a TCL. In general,

there are also operational box constraints on the dynamic variables, xij ≤ xij(k) ≤ x̄ij

for each time step. Combining this with (7.2), the general form for the device dynamic

constraints is:

xij − akijxij(0) ≤
k∑

k′=1

ak−k
′

ij bijPij(k
′) ≤ x̄ij − akijxij(0), ∀k = 1, . . . , K. (7.3)

• Network constraints introduce coupling between the power injections at different devices.

This includes limits on the distribution system bus voltages and power balance at the substa-

tion. Linear models are used for both these constraints.

Power System Model. We consider a single-phase distribution feeder with a set N of (N + 1)

nodes and a set of edges E ⊂ N ×N . The zeroth node represents the substation bus that interfaces
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with the transmission system (i.e., the secondary of the step-down distribution transformer). The

set of all other buses in the feeder minus the substation bus is denoted N ′ = N \ {0}. The

voltage (in rectangular coordinates) and complex power injected at bus l is Vl = Vre,l + jVim,l and

Sl = Pl + jQl, respectively. Kirchoff’s Current Law gives a nonlinear relation between the bus

voltages and power injections. We utilize linear approximations for the voltage [46] and power

balance constraints [47]:

|V |l ≈ |V nom
l |+

∑
l′∈N ′

Rll′Pl′ +Xll′Ql′ , ∀l ∈ N ′ (7.4)

P0(k) ≈
∑
l∈N ′

φlPl(k) (7.5)

=
∑
l∈N ′

φl
∑
j

Plj(k), (7.6)

where |V |l is the magnitude of the complex voltage Vl. The power injected at a bus is the sum of

the power injections at all devices connected to that bus. The magnitude of the nominal voltage

(i.e., the point about which the linearization is taken) for bus l is denoted |V nom
l |. The coefficients

{Rll′} and {Qll′} are entries of the real and imaginary parts of the inverse bus admittance matrix,

Y −1 = R+ jQ. For details on the derivation and form of the {φl} coefficients, we refer the reader

to [47].

The linear approximation in (7.4) is used to represent the constraint on the voltage magnitude

at each bus in terms of the power injections:

|V l| − |V nom
l | ≤

∑
l′∈N ′

Rll′Pl′ +Xll′Ql′ ≤ |V̄l| − |V nom
l |, ∀l.ci (7.7)

Since we use linear models for the device and network constraints, the set of allowable power
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injections across all devices/buses and time steps can be described as a polyhedron:

S = {Pij(k), Qij(k), P0(k), Q0(k)| constraints (7.1), (7.3), (7.6), and (7.7) are satisfied}. (7.8)

In a setting with millions of devices and multiple time steps, S is a very high-dimensional

polyhedron with many constraints. It is preferable to provide the system operator a more man-

ageable summary of the capability of the distribution feeder. Towards this aim, we propose to

find the projection of S onto the set of power injections at the substation, {P0(k)}Kk=1, which is a

K-dimensional polyhedron, S ′. In practice, calculating the projection of high-dimensional poly-

hedrons is computationally intensive and not practical, especially for use in real-time operations

where the result is needed on a rolling basis approximately every 5 minutes. Therefore, tractable

approximation methods are needed.

7.2 Inner-Box Approximation

We propose a conservative inner-box approximation for the polyhedral projection S ′. The box

approximation is defined by a lower and upper bound at each time step:

P 0(k) ≤ P0(k) ≤ P 0(k), ∀k. (7.9)

Advantages of the box approximation are that decoupling time steps allows for easy interpretation

in terms of a “feasibility tube” as shown in Figure 7.2.

Let the vector x be the concatenation of the power injections across all devices and time steps.
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Figure 7.2: The lower and upper bounds of the inner-box approximation define a feasibility tube
in time for the real power at the substation.

The inner-box for one time step (K = 1) is found by solving the following optimization problem:

max
x,x̃,P 0(1),y

y (7.10a)

N∑
i=1

φi
∑
j

Pij(1) = P 0(1) (7.10b)

Ax ≤ b (7.10c)
n∑
i=1

φi
∑
j

P̃ij(1) = P 0(1) + y (7.10d)

Ax̃ ≤ b, (7.10e)

where the extra set of variables x̃ is included since it is necessary to find a set of power injections

satisfying the constraint at either vertex of the box (i.e.,P 0(1) and P 0(1) + y ) but not necessarily

of the same value. Since the constraints (7.1), (7.3), (7.7) are linear, they can be succinctly written

asAx ≤ b.

This is generalized to K time steps as,

max
K∑
k=1

ck ln y(k) (7.11a)

over {xv}v=1,...,2K , {P 0(k), y(k)}Kk=1 (7.11b)
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s.t. for each vertex v : (7.11c)

N∑
i=1

φi
∑
j

Pij(k) = v(k), k = 1, . . . , K (7.11d)

Axv ≤ b, (7.11e)

where the weights {ck} are designed to favor more flexibility at certain time steps. The volume of

the box is
∏K

k=1 y(k). To obtain an equivalent convex problem, we maximize the log of the volume.

There is a family of constraints and decision variables for each vertex of the box. There are 2K

vertices where the kth coordinate of a vertex v(k) ∈ {P 0(k), P 0(k)+y(k)}. In general, all vertices

of the box must be included to find the maximum-volume inner-box approximation, however in

practice, we find it is numerically sufficient to consider only the two extreme case vertices:

1. All lower bounds: v(k) = P 0(k), ∀k

2. All upper bounds: v(k) = P̄0(k), ∀k.

This leads to large computational savings.

7.3 Numerical Results

7.3.1 Simulation Setup

We consider a 13-bus (i.e., N = 13) radial network with 5 devices per bus:

1. thermostatically controlled load (TCL)

2. battery
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3. fixed/inflexible load

4. flexible load

5. solar panel.

We provide details on the models for the device-specific constraints.

• Thermostatically Controlled Load (TCL). Let device j at bus i be a TCL. The TCL devices’

power injections are constrained by box constraints of the form (7.1):

P TCL ≤ Pij(k) ≤ P TLC . (7.12)

In addition, the thermal energy of the TCL, xij(k), is related to the power drawn as [110]:

xij(k) = αxij(k − 1) + δ(Pij(k)− P 0,TCL
ij ), (7.13)

where α = e−aT , δ = (1 − e−aT )/a, T is the sampling period, and a = 1/(RthCth), with

Rth and Cth being the thermal resistance and capacitance. The nominal power, P 0,TCL
ij , is

defined as the amount of power needed to maintain the desired temperature, θr. The thermal

energy is constrained as:

xTCL ≤ xij(k) ≤ xTCL, ∀k. (7.14)

• Battery. Let device j at bus i be a battery. The battery is subject to box power constraints of

the form:

P battery ≤ Pij(k) ≤ P battery. (7.15)
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The state of charge of the battery, eij(k), is related to the power drawn by the battery as:

eij(k) = eij(k − 1) + ηPij(k), (7.16)

where η is the charging/discharging efficiency. This model is modified from [55] assuming

symmetric charging and discharging efficiencies. The state of charge is constrained as:

ebattery ≤ eij(k) ≤ ebattery, ∀k. (7.17)

• Limited-Flexibility Loads. Limited-flexibility loads only have the power box constraints in

(7.1). The fixed/inflexible load is modeled as a limited-flexibility load by choosing P ij :=

(1 − ε)P ∗ij and P ij := (1 + ε)P ∗ij for small ε, (e.g., ε = 0.01 was used in the simulations).

The flexible load is modeled similarly but with ε = 0.3. The solar panel is modeled as an

inflexible load with negative power injections.

One advantage of our method is that it allows for heterogeneous devices. In the simulations, we

randomize the device parameters by ±5% the base values provided in Tables 7.1 and 7.2. The

nominal voltage magnitude |V nom
l | = 1. The numerical values forR andX are from [36].

In Figure 7.3, the feasibility tubes for 3-bus and 13-bus networks (with 5 devices per bus as

described in Section 7.3.1) are shown. We examine three different cases for the objective function

weights {ck} in (7.11a): equal, increasing, and decreasing. As expected the flexibility tube width

is fairly uniform across time steps when equal weights are used. The tube width increases in time

with increasing weights and decreases in time with decreasing weights. The center of the tube is

between 20-40 KW for the 3-bus network, whereas the center is shifted to 100-200 KW for the
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Table 7.1: TCL Parameter Values

Parameter Value

P TCL 0 kW

P̄TCL 37 kW

Ta, ambient temp. 32 C

Customer max temp. 24 C

Customer min temp. 20 C

Rth, thermal resistance [48] 2000 C/MW

Cth, thermal capacitance [48] 0.01, MWh/C

ηTCL, performance coeff. [48] 2.5

Desired temperature 22 C

Table 7.2: Battery Storage System Parameter Values

Parameter Value

P battery 0 MW

ebattery [55] 32 MWh

P battery [55] 8 MW

ebattery 5 MWh

ηc, charging efficiency 1

ηd, discharging efficiency 1
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(a) 3-Bus Network

(b) 13-Bus Network

Figure 7.3: Comparing flexibility in 3-bus and 13-bus networks using different objective function
weight, {ck}, scenarios.
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13-bus network since there are more devices and thus more power utilized. To compare the amount

of flexibility in different cases, the areas of the tubes are given in Table 7.3.

Table 7.3: Area of Feasibility Tube (kJ)

Equal Weights Increasing Weights Decreasing Weights

3-Bus Network 81.03 87.00 83.28

13-Bus Network 361.44 366.06 370.77

The runtimes using CVX for different numbers of time steps, K, are compared for the 3-bus

and 13-bus networks in Table 7.4. Two different performance metrics are also reported. The vector

rineq is the residual of the inequality constraints, and its maximum entry should be non-positive.

The vector req is the residual of the equality constraints, and it should be close to zero (or machine

precision).

Table 7.4: Runtime Scaling

K Nbus Runtime(s) max(rineq) |req|

4 3 8.8200 0 3.8386e-14

13 14.8200 0 2.2433e-12

6 3 10.2000 0 2.3623e-13

13 20.0900 0 3.3915e-12

10 3 8.0900 0 3.0585e-12

13 38.1500 6.0863e-14 1.0007e-12
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7.4 Evaluating the Quality of the Inner-Box Approximation

To evaluate how conservative the inner-box approximation is, we use a three-stage approach:

1. Stage 1: Calculate the minimum-volume outer-box approximation.

2. Stage 2: Obtain a sample of points in the true polygon by sampling the from the outer box

approximation and checking if the sampled points lie in the polygon.

3. Stage 3: Obtain the subset of points that are both in the true polygon and in the inner box.

Stage	1	 Stage	2	 Stage	3	

Figure 7.4: In Stage 1, the outer-box approximation (blue box) to the polygon is calculated. In
Stage 2, the outer-box is sampled and tested for feasibility to obtain a sample of points from
the polygon (blue dots). In Stage 3, the ratio of number of points (red dots) in the inner-box
approximation (red box) to the number of points in the polygon is calculated.

This process is shown schematically in Figure 7.4 for a K = 3 time step example. The basic

idea is to see for a random sample of points from the true polygon what percentage falls within the

inner-box approximation. If the sampling is uniform and the percentage captured by the inner box

is high, we conclude the inner-box approximation performs well.

The first question is how to obtain a sample of points in the polygon. LetP 0 = [P0(1) . . . P0(K)]

be a trial vector for the values of the substation real power injection. Recall x is the vector of all
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the real and reactive power injections across all devices and buses. To verify ifP 0 is in the polygon

S ′ in (7.8), solving the following linear program checks for feasibility,

min
x

c (7.18a)

s.t. Ax ≤ b (7.18b)
n∑
i=1

φi
∑
j

Pij(k) = P0(k), k = 1, . . . , K (7.18c)

where c is some constant. How should one select the trial values forP 0? We calculate a minimum-

volume outer box approximation, sample points from this box, and use those points as our trial

points to test for feasibility in (7.5). The outer box is defined by upper and lower bounds at each

time step, {P 0 ∈ RK |l ≤ x ≤ u}, where

l(k) = arg min
{P0(k)}Kk=1,x

P0(k) (7.19a)

s.t. Ax ≤ b (7.19b)
n∑
i=1

φi
∑
j

Pij(k) = P0(k), k = 1, . . . , K (7.19c)

and u(k) is obtained similarly but taking the arg max . Let Nouter be the number of points sampled

from the outer box. Let Ninner be the number of points remaining from the sample that are con-

tained in the inner box, and let Npoly be the number of points remaining from the sample that are

contained in the polygon. The quantity

r =
Ninner

Npoly

(7.20)

is a measure of how conservative the approximation is, and

r′ =
Npoly

Nouter

(7.21)
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is a measure of how loose the outer-box approximation is. The evaluation results for the 3-bus

network with a single device at each bus and with 5 devices per bus are shown in Figure 7.5 and

Table 7.5. As expected, the quality of the inner-box approximation decreases as K increases.

Feasible	Points	
Inner	Approxima3on	

(a) 3-Bus Network, Single Device per Bus

Feasible	Points	
Inner	Approxima3on	

(b) 3-Bus Network, 5 Devices per Bus

Figure 7.5: The ratio of number of points in the inner approximation, Ninner (red dots), to the num-
ber of points in the polygon, Npoly (blue dots), is a measure of how conservative the approximation
is.
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Table 7.5: For a 3-bus network, the quality of the inner- and outer-box approximations is given by
r and r′, respectively. As more grid points (per dimension) are used, the error on these quantities
decreases. In the multiple devices per bus case, 5 devices are used as described in Section 7.3.1.

Time StepsK # of Grid Points Sampling Efficiency: r′ Inner-Box Quality: r

Single Device

3 25 0.3295 0.1864

4 12 0.1530 0.0567

4 15 0.1512 0.0627

Multiple Devices

3 25 0.5386 0.2280
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7.5 Conclusion

In this chapter, we developed a computationally tractable method for conservatively approxi-

mating the aggregate flexibility of distribution feeders. A main advantage of the inner-box approx-

imation is that it allows for an easy interpretation in terms of the feasibility tube by the system

operator. Future research directions include increasing the complexity of the modeling constraints

(e.g., asymmetric battery charging efficiencies) and the representation of the feasibility region.

An important open question is how to best utilize the characterization of the distribution feeder

capability within an online decision making framework for bulk grid operations.
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