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Abstract

Organisms respond to environmental changes using complex signaling networks, whose

evolution has been studied by comparing their structure and function in related organ-

isms. We complemented this approach by using experimental evolution in the budding

yeast, Saccharomyces cerevisiae, to explore how existing response networks change under

selection. We selected for cell cycle arrest in response to an environmental change by

alternating between an environment that favors cell proliferation and one that contains

high salt (0.5 M NaCl) and hydroxyurea, a replication inhibitor that kills a genetically en-

gineered ancestor if it attempts DNA replication. This selection yielded strains that arrest

division in high NaCl. Causal mutations were identified by whole-genome sequencing and

confirmed by genetic reconstruction. We identified four different forms of rewiring: mu-

tations that alter three different hexose transporters, allowing them to admit sodium ions

into cells; inactivation of HAL5, which encodes a protein kinase that regulates potassium

channels; inactivation of HOG1, which encodes a MAP kinase that detects high external

osmolarity; and loss-of-function mutations in IMP2 ′, a poorly characterized transcrip-

tional activator also implicated in ion homeostasis.
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Weinstein, and particular thanks to David Nelson for lessons in how to structure presen-

tation slides. Enormous thanks to Sri and Bryan for their help writing scripts for the

Odyssey cluster and developing the programs described in Appendices B and C. You were

both selfless with your time and enthusiastic about helping, and you made my first major

foray into coding less intimidating and more fun. Thank you also to Bryan for helping

me set up LATEX for writing my dissertation (much to Andrew’s chagrin).

I am so fortunate to have been supported in my work by the highly capable team

of Beverly Neugeboren and Linda Kefalas. Thank you to Beverly for everything you

have done for me – providing training, resources, and counsel – while somehow doing

everything for everyone else, too, with patience and caring. Thank you to Linda for

always wrangling a time to meet in Andrew’s schedule when I needed one and for helping

manage the behind-the-scenes support that research requires. Thank you to Sara Amaral

for support with lab materials that made my work easier: I used a lot of media and a lot

of plates, and you made them all.

Thank you to members of the Desai lab for helpful discussions and guidance, in

viii



particular Dan Rice and Elizabeth Jerison for sequence analysis and Michael McDonald

for library prep. Thank you to Michael Desai for always being in such good humor; our

brief chats in the tea room never failed to brighten my day.

Thank you to my MCO classmates who made the first year courses, countless happy

hours, volleyball games, and department retreats so much fun, especially Chewie, Iris,

Sara, Fred, Phil, Eddie, Nick W., Alicia, Ezgi, Patrick, Lukas, Olga, and Monique. Thank

you to Michael Lawrence, whose excellence in organizing the MCO program provided an

anchor within the Harvard bureaucracy. Thank you to Bodo Stern, whose work for the

FAS Center for Systems Biology created a community in which I was exposed to so

much amazing science, including the career-launching work of many Bauer Fellows. The

engagement with research mediated by the CSB helped me become a more knowledgeable

scientist and more critical thinker.

I owe thanks to many good friends and my family for the company and support

during my journey to and through graduate school. Silvia, Katy, Allison, Wren, Lee, A.J.,

Catherine, Caroline, and David – we’ve now known each other for what is really becoming

an unreasonable number of years, and I am so thankful for our constant friendship. Thank

you to Jill for helping Dan and me make a new home in Boston. Thank you to my parents

and my brothers for always being enthusiastic supporters of my educational pursuits. And

finally, thank you to the one person I can never thank enough: Daniel Wespe.

ix



List of Figures

2.1 Mechanism of hydroxyurea lethality in mec1− sml1− yeast . . . . . . . . . 21

2.2 Alternating selective environments to evolve a regulated response. . . . . . 22

2.3 Hydroxyurea survival of mec1− sml1− yeast . . . . . . . . . . . . . . . . . 25

2.4 Hydroxyurea survival with cell cycle arrest . . . . . . . . . . . . . . . . . . 26

2.5 Hydroxyurea survival with osmotic stimuli . . . . . . . . . . . . . . . . . . 28

2.6 Selection cycle using NaCl and hydroxyurea . . . . . . . . . . . . . . . . . 29

2.7 Testing cln3∆ and gpd1∆ mutants in hydroxyurea survival . . . . . . . . . 30

2.8 Estimated survival of evolving populations . . . . . . . . . . . . . . . . . . 33

2.9 Hydroxyurea survival of evolved clones . . . . . . . . . . . . . . . . . . . . 35

2.10 Growth rates and dynamics of ancestor strains . . . . . . . . . . . . . . . . 39

2.11 Growth rates of evolved clones in NaCl . . . . . . . . . . . . . . . . . . . . 40

2.12 Growth rates of evolved clones and their direct ancestors . . . . . . . . . . 42

2.13 Growth curves of evolved clones and their direct ancestors in NaCl . . . . . 43

2.14 Growth curves of evolved clones in NaCl and standard media . . . . . . . . 44

x



2.15 Linear growth curves of evolved clones in NaCl media. . . . . . . . . . . . 47

3.1 Diagram of bulk segregant analysis . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Sequencing coverage of clones and pools . . . . . . . . . . . . . . . . . . . 58

3.3 Top candidate mutations from bulk segregant analysis . . . . . . . . . . . . 69

3.4 Linkage to HXT7 mutation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Allele frequencies in final populations . . . . . . . . . . . . . . . . . . . . . 74

3.6 Genetic diversity in final evolved populations . . . . . . . . . . . . . . . . . 75

3.7 Strain constructions to test causality of mutations . . . . . . . . . . . . . . 79

3.8 Growth rates of HAL5 constructed strains . . . . . . . . . . . . . . . . . . 83

3.9 Growth rates of HXT1 constructed strains . . . . . . . . . . . . . . . . . . 86

3.10 Growth rates of HXT3 constructed strains . . . . . . . . . . . . . . . . . . 88

3.11 Growth rates of HXT7 constructed strains . . . . . . . . . . . . . . . . . . 89

3.12 Growth rates of HOG1 constructed strains . . . . . . . . . . . . . . . . . . 90

3.13 Growth rates of IMP2 ′ constructed strains . . . . . . . . . . . . . . . . . . 94

4.1 Diagrams of strain construction. . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Diagram of hydroxyurea survival assay. . . . . . . . . . . . . . . . . . . . . 115

4.3 Blank calculation for growth curve assay . . . . . . . . . . . . . . . . . . . 120

4.4 Calibration for high OD values . . . . . . . . . . . . . . . . . . . . . . . . 122

xi



List of Tables

2.1 Hydroxyurea survival of evolved clones . . . . . . . . . . . . . . . . . . . . 36

2.2 Hydroxyurea survival of more evolved clones . . . . . . . . . . . . . . . . . 37

3.1 Sequencing coverage of clones and pools . . . . . . . . . . . . . . . . . . . 60

3.2 Mutations segregating above 80% in NaCl/HU-selected pools . . . . . . . . 64

3.3 Mutations in non-mutator evolved clones . . . . . . . . . . . . . . . . . . . 73

3.4 Candidate causal mutations in all sequenced clones. . . . . . . . . . . . . . 76

3.5 Hydroxyurea survival of allele-replaced strains . . . . . . . . . . . . . . . . 80

3.6 Hydroxyurea survival of deletion and diploid strains . . . . . . . . . . . . . 80

4.1 Strains used in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.2 Evolved clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3 Strains used in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4 Diploid strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



Chapter 1

Introduction

Organisms respond to environmental changes

The ability to respond to changes in the environment is a defining feature of all organ-

isms. In order to survive and reproduce, organisms must adjust their physiology to match

external conditions, and they have evolved complex methods to do so in regulated and de-

fined ways. Such responses include restoring balance after a stress, adjusting metabolism

to the presence of a new nutrient, or defending against a detected predator. For example,

the lac operon in the bacterium Escherichia coli is regulated to express its gene products,

enzymes required for lactose utilization, in the presence of lactose and absence of glucose.

Information about the status of lactose and glucose in the environment is relayed by a

network of interactions among sugars and other small molecules, proteins, and DNA, the

architecture of which has been studied for over half a century [1, 2].

A large part of research in biology has been focused on determining the structure

of such modern-day cellular response networks to address the fundamental question of

1



how organisms function. At the same time, scientists have also worked to understand its

immediate corollary: in the words of scientist Barry Hall, “How did they get to be that

way?” [3]. Information in different biological networks is physically transduced using

a common language of interactions among proteins, DNA, RNA, and small molecules,

including such activities as phosphorylation, localization, steric hindrance, synthesis and

degradation. While the downstream targets of pathways provide the physical changes or

components required for the response, the upstream components are messengers that may

not have structural characteristics specific to the stimulus. This language of interactions

makes it possible to imagine how networks evolve: components of networks are altered by

mutations to form new or different interactions. In this chapter, I will discuss how response

networks and their evolution have been investigated, recent work identifying “predictive”

networks in microorganisms, and finally, how this work inspired the approach I took to

study the evolution of response networks in the budding yeast, Saccharomyces cerevisiae.

Interaction networks have evolved specific responses

An important characteristic of cellular responses is specificity: organisms have dis-

tinct responses to different environmental changes. Specificity is important because al-

terations to cellular activity have a cost, whether it be the energy expenditure from gene

transcription and protein translation or the time spent in adjustment, during which other

cellular processes may be paused and competing organisms consume valuable resources

[4, 5]. Unnecessary or inappropriate responses could reduce fitness, leading to the re-

finement of responses over generations by mutation and selection. Specificity in network

structure comes from limiting promiscuous interactions with components outside of the
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network. For example, Zarrinpar and colleagues investigated the specificity of the yeast

kinase Pbs2 for the protein-binding SH3 domain of its biological partner Sho1 [6]. The

binding of a non-yeast SH3 domain to Pbs2 in vitro was highly correlated with its abil-

ity to functionally substitute for the Sho1 SH3 domain in vivo. None of the 26 other

SH3 domains found in the yeast proteome could bind Pbs2 or functionally replace the

Sho1 SH3 domain, and altering the amino acid sequence of Pbs2 to generate non-specific

interactions reduced strain fitness, providing evidence for evolutionary selection against

promiscuous interactions, rather than just for increased affinity within the network.

This specificity can be achieved by inherent structural characteristics of two inter-

acting partners. For example, bacterial two-component signaling systems consist of pairs

of interacting proteins: a histidine kinase (HK) and its target response regulator (RR).

Skerker and colleagues identified amino acid residues responsible for conferring the phos-

photransfer specificity of an HK for its RR and demonstrated that mutating these residues

can switch specificity to a different RR [7]. In other network interactions, specificity is

achieved by controlling context via scaffolding or localization. Protein phosphatases with

promiscuous catalytic subunits are given substrate specificity in vivo through complexing

with diverse regulatory subunits [8]. In another example from bacterial two-component

signaling systems, hybrid kinases, which contain both kinase and receiver domains in the

same protein, rely on this proximity rather than binding-site specificity to limit cross-talk.

In a phospho-relay system in Myxococcus xanthus, the full-length version of a hybrid HK

shows phosphotransfer preference for its internal domain, overriding the kinetic preference

of its isolated kinase domain for a separate RR [9]. The same phenomenon was observed

for many of the hybrid kinases from Caulobacter crescentus, whose isolated kinase domains

showed much broader substrate activity in vitro than typical, non-hybrid HKs [10].
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Not only can non-specific interactions produce unfit responses, but they can affect

regulatory behavior of the network itself, such as by reducing the free concentrations of

protein components. But because networks have evolved their functions in the milieu of

other cellular components, the presence of non-specific interactions can be as important

to the behavior of a network as the absence. For example, binding of the repressor LacI

to the lac operator sequence is reduced by its non-specific interactions with the rest of the

genome; without these sites, modeling predicts that derepression of the operon would not

occur [11]. As organisms adapt to the challenges of their environment, they necessarily

do so within their existing system of interactions.

Research approaches to network evolution

A variety of research approaches have been taken to explore cellular response net-

works, including genetic analysis, the use of “omics” datasets, evolutionary comparisons,

synthetic biology, experimental evolution, and combinations thereof. In particular, Sac-

charomyces cerevisiae, as a lab-adapted, genetically-tractable eukaryotic microorganism,

has been a workhorse in systems-level analysis of response networks [12]. Profiling of

the yeast transcriptome has surveyed the genes expressed under different environmental

conditions [13, 14, 15, 16]. Identification of physical protein-protein interactions, first

from yeast two-hybrid screens and then from affinity purification and mass spectrometry,

has placed proteins into interaction networks [17, 18, 19, 20]. Components of response

networks have been identified from data collected over a time period after an environmen-

tal change, and regulatory relationships have been inferred from comparisons between

wild-type and defined mutants [14, 21, 22]. Alongside the massive increase in the size
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of datasets, sophisticated computational analyses have been required to derive network

information from gene expression patterns [23, 24].

The “omics” revolution in molecular biology has enabled the collection of vast amounts

of data not only for select model organisms but also for many others with a wide range

of evolutionary relationships, enabling analysis of how networks differ between species

and giving insight into their evolution [25]. Comparisons between organisms has revealed

instances of “rewiring” events, in which features of a defined interaction, like binding

specificity, differ between homologous proteins [26, 27, 28, 29]. They have also enabled

calculations of the relative rates of rewiring in different types of networks [30, 31, 32].

While comparisons between organisms can yield clues to the evolutionary history of these

networks and the genetic events that have altered them, they create hypotheses about a

single evolutionary trajectory and the selective forces that favored it rather than directly

revealing the diversity of potential solutions to a particular selective pressure.

Experimental evolution to study biology

Experimental evolution provides a method to explore the genetic basis of adaptation

to specific environmental challenges. Microorganisms can be passaged for hundreds or

thousands of generations, such as in the Long Term Evolution Experiment (LTEE) being

conducted by Lenski and associates since 1988, currently at over 66,000 generations [33].

Such experiments have described population-level characteristics such as the rate of mean

fitness increase and the dynamics of selective sweeps and clonal interference [34, 35, 36].

They have also examined the genetic changes underlying adaptation in a variety of selec-

tion conditions, which can be identified by directly comparing the genome sequences of

5



ancestral and evolved populations [37, 38]. Analysis of replicate cultures can reveal the

potential diversity of genetic mechanisms for creating the same phenotype [39].

Most laboratory evolution experiments have focused on adaptation in constant en-

vironments and generally use a single metric, competitive fitness, to evaluate evolved

strains. Some experiments have directly tackled the evolution of complex behaviors, such

as multicellularity and periodic oscillation [40, 41, 42]. Scientists have also combined

synthetic biology with experimental evolution to test predictions about the adaptation of

regulatory networks to defined selection regimes [43]. In one of many examples, a syn-

thetic gene circuit, producing both fitness costs and benefits in a manner dependent on

the addition of drugs to the environment, was engineered into S. cerevisiae and evolved

under different drug combinations to examine the mutational pathways to improved fit-

ness [44]. Similar work using a synthetic gene circuit in E. coli characterized the evolution

of its regulatory behavior in variable environments with trade-offs in fitness [45].

Predictive behavior in response networks

Signaling requires sensing an environmental variable and then mounting an appropri-

ate response. Because the molecular events in signal detection, processing, and response

all take time, there is an inevitable delay between signal and response. If one stimulus

repeatedly occurs before another, organisms can eliminate the delay by adapting so that

the first stimulus induces the response normally elicited by the second. In the lifetime

of an organism, this change is classical or Pavlovian conditioning, and a similar change

over evolutionary time has been called “adaptive prediction” due to the fitness benefit of

responding before rather than after an environmental change [46, 47]. Classical condition-
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ing in animals involves changes in the wiring of the nervous system, whereas prediction

requires rewiring signaling networks to form new connections between a specific stimulus

and response. The difference between predictive and direct responses is the temporal

relationship between the organism’s response and the fitness gained by that response. A

fitness benefit from prediction accrues when a second change occurs; it is also contingent

on the second change occurring.

I will also define here a difference between prediction and non-predictive cross-

protection. For both of these, an organism’s fitness in a second environment is increased

if it is exposed to a first, different environment. For example, yeast exposed to a heat

shock exhibit resistance to otherwise lethal doses of ionizing radiation and ultraviolet light

[48, 49]. In non-predictive cross-protection, a response increases fitness in both the envi-

ronment eliciting the response and the second environment; therefore, loss of the response

would decrease fitness in both environments. In contrast, a predictive behavior exists

when the response in the first environment yields a neutral or negative fitness effect if the

organism does not experience the second environment; loss of the response would have no

effect on fitness in the first environment.

Distinguishing between these requires the ability to test the relative fitness of an

organism lacking the response in each environment, a challenging feat when the response

involves expression changes of several hundred genes. The measurement of gene expression

changes in S. cerevisiae upon transfer to many different stresses identified a block of 500

to 900 genes which undergo similar changes in all tested stress conditions [14, 16]. This

group of gene induction and repression activities was termed the environmental stress

response (ESR) and includes the previously-identified “general” stress response of about

50 genes controlled by the transcription factors Msn2 and Msn4. However, subsequent

7



profiling of the yeast deletion collection showed very little overlap between genes induced

in a stress condition and genes whose deletions conferred a fitness defect in that condition

[50]. Work by Berry and Gasch demonstrated that neither protein synthesis nor Msn2/4

was required for tolerance of an initial stress but was required for acquired protection

against a subsequent stress, indicating that much of the environmental stress response

may be preparation for future conditions [51].

As one example of predictive behavior in microorganisms, Schild and colleagues in-

vestigated the role of genes expressed by the bacterial pathogen Vibrio cholerae during

late stages of infection [52]. In this work, they describe a class of genes that are not

required for infection but contribute to fitness in the post-infection aquatic environment.

Strains lacking one of these late-induced genes show no fitness defect during host infection

but are out-competed in an aquatic environment similar to that which bacteria experi-

ence subsequent to expulsion from the host. The fitness defect is eliminated if the tested

strains (both mutant and the wild-type competitor) are not passaged through a host

mouse before incubation in the aquatic environment. The authors speculate that gene

induction in the host may allow the bacteria to gather resources from the host that are

scarce in the aquatic environment. This could also indicate that gene expression in direct

response to the environmental change is insufficient or does not occur. In either case, the

gene expression profile described is predictive as defined above, in that the fitness benefit

accrued from the late-induced gene expression is dependent on the bacteria entering an

aquatic environment.

This pattern of regulatory behavior was first described as predictive by Tagkopolous

and colleagues in 2008, who presented an in silico demonstration of the capacity for net-

works to evolve prediction in correlated variable environments [46]. Based on knowledge of
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E. coli life history, they then looked for and found correlations in gene expression changes

between responses to increased temperature and decreased oxygen, which co-occur upon

entry to the mammalian gastrointestinal tract. In order to distinguish between cross-

protection and prediction, they evolved E. coli in varying conditions with the opposite

correlation: an increase in temperature was followed by increased oxygen. They observed

large fitness gains in evolved strains and a “decoupling” of the original transcriptional

responses as measured by transcriptome profiles.

A similar study was conducted by Mitchell and colleagues to look specifically for

asymmetric anticipation, in which change A induces preparation for change B but not

vice versa [47]. They examined a different correlation in E. coli ecology, that of the

stereotypical order of carbon sources in the mammalian intestine: lactose precedes maltose

in the digestive tract. E. coli induced expression of maltose genes after lactose exposure

and pre-exposure to lactose improved fitness in maltose, demonstrating characteristics

of adaptive prediction in the regulation of maltose. Also, evolution in constant lactose

resulted in reduced expression of maltose genes in response to lactose, indicating a fitness

cost of the original response. They also tackled the complexities of the yeast stress

response by quantifying survival in pairs of sequential stresses. They found that most

stress pairs are not symmetrically cross-protective, and the strength of cross-protection

correlated with the typical order of stresses experienced by yeast during wine fermentation.

Neither Tagkopolous et al. nor Mitchell et al. sequenced the evolved E. coli strains to

identify mutations responsible for the decoupling.

More recently, Dhar and colleagues examined adaptation to changing environments

by experimentally evolving S. cerevisiae in alternating exposures to salt stress and oxida-

tive stress every 10 generations [53]. They also evolved yeast in constant environments of
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each stress and in no stress. They found fitness increases of all evolved populations when

tested in all conditions (salt stress, oxidative stress and no stress), with their relative

increases only partly related to their evolved condition. Based on the relative magni-

tudes of fitness increases, they identify stress-specific adaptation in the salt-evolved (S)

and oxidation-evolved (O) populations (i.e., salt-evolved strains are fitter than oxidation-

evolved strains in salt) as well as cross-stress adaptation of the O, but not the S, popula-

tions. Based on their fitness data, they conclude that the O and alternating-evolved (SO)

populations evolved cross-protection against salt stress. Unfortunately, their analysis

conflates the asymmetry of the cross-stress adaptation with asymmetric temporal cross-

protection (like that seen by Mitchell et al.), and they do not perform the experiments

required to clearly demonstrate temporal cross-protection.

Dhar et al. also measured gene expression changes of the evolved populations after 20

minutes in each of the three conditions, and use the relative numbers of overlapping genes

with expression changes to claim evidence for asymmetric anticipatory regulation. Their

argument is as follows: the SO populations change some number of genes in response

to salt that overlap with the genes the O populations change in response to oxidative

stress. If this overlap is greater than that between O populations in oxidative stress and S

populations in salt, the difference represents O-specific genes that SO populations change

in response to salt. In this analysis, they only include genes that changed in regulation

(e.g., have increased induction) relative to the ancestor, not all genes that change expres-

sion in these conditions. They do find a difference in the number of genes that changed

regulation and conclude that the SO populations evolved salt-induced anticipation of ox-

idative stress. They concede that they “have not been able to disentangle the effects of

cross-protection and anticipation on fitness in the cycling SO populations.”
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Experimental evolution of predictive behavior

To directly probe the evolution of response networks, I exploited the logic of pre-

dictive behavior to select for a new connection between an environmental stimulus and

a cellular response. I devised a selection for a connection between cell cycle arrest and

an environmental change. Cell cycle arrest is a physiological state characterized by the

absence of progression through the processes necessary to replicate a cell. This was chosen

because it is a phenotype that can be selected both for and against. Selection against

arrest occurs in an environment that is permissive for proliferation, as arrested cells are

outcompeted by replicating cells. Selection for arrest occurs by making replication lethal

to the organism. I engineered budding yeast so that I could use a small molecule (hy-

droxyurea) to kill replicating cells (described in detail in Chapter 2).

Yeast were alternately exposed to two selective environments: replication-permissive

and replication-lethal. As a signal of the upcoming change to replication-lethal, sodium

chloride was added to the media. In each round of selection, cells were allowed to pro-

liferate in standard media, then placed in high-salt media before being exposed to hy-

droxyurea, selecting for cells that arrested their cell cycle in response to high salt. I

characterized clones from the evolved populations by hydroxyurea survival and popula-

tion growth in various media. Using genetic tricks, whole-genome sequencing and the

extensive database of genomic data available for budding yeast, I identified mutations in

the evolved strains and verified causality by engineering the mutations into the ances-

tral strain. I also sequenced the final populations to characterize their genetic diversity.

I assayed the hydroxyurea survival and population growth of the engineered strains to

determine the genetic contributions to the evolved phenotypes.
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In Chapter 2, I describe preliminary testing of the selection with defined mutants, the

execution of the evolution, and the phenotypes of clones from replicate evolved popula-

tions. In Chapter 3, I describe the causal mutations identified by whole-genome sequencing

and confirmed by strain engineering and the phenotypes conferred by these mutations.

Chapter 4 contains details on the experimental procedures used in Chapters 2 and 3.

Chapter 5 presents a summary of the results, analysis of the approach and suggestions for

refinement, and future applications of this selection in studying the evolution of response

networks.
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Chapter 2

Selection for Altered Regulation of

Cellular Response Networks

2.1 Abstract

I set out to create a selection for a new or altered connection between an environ-

mental change and cellular response using the budding yeast, Saccharomyces cerevisiae.

The scheme exploits the ability to select on two different states of the cell cycle, repli-

cating and arrested. In the selection, yeast are exposed to two alternating environments:

the first selects against cell cycle arrest by being permissive for growth, and the second

selects for cell cycle arrest by killing cells that are replicating their DNA. I added 0.5 M

NaCl as an environmental change to signal the upcoming switch. Cells that arrest the

cell cycle during exposure to high salt are protected from death in the second environ-

ment. To kill replicating cells, I used mec1∆ sml1∆ yeast, which are deficient in the DNA

replication checkpoint and thus susceptible to the drug hydroxyurea. Eleven populations
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were passaged through the selection cycle, and clones from each final population were

assayed for their ability to survive hydroxyurea. Evolved clones have differing specificity

for environmental signals and distinct population growth dynamics in high salt despite

having similar levels of survival, implying diversity in the underlying genetic causes.

2.2 Introduction

The selective pressure for organisms to match their activities to environmental condi-

tions has resulted in complex regulatory behaviors. Direct regulation involves an organism

first sensing a stimulus or a change in the environment and then mounting an appropri-

ate response. However, the time required for sensing and responding results in a delay.

Environmental variation at regular intervals selects for organisms that match their phys-

iological regulation to the cycle, thereby reducing the delay. An example is the circadian

clock, which regulates physiology in sync with the 24-hour day/night cycle. Recent work

has demonstrated that, in environments where changes in two or more variables are cou-

pled, a change in one variable can induce a transcriptional response for the other variable

in microorganisms [1, 2]. In other words, single-celled organisms can encode information

about correlations in their environment within their gene regulatory networks. This phe-

nomenon has been termed “adaptive prediction” due to the fitness benefit of responding

before an environmental challenge.

The research described here seeks to better understand the genetic events that enable

this information about the environment to become encoded in the genome by directly

evolving a new connection between an environmental stimulus and a cellular response.
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Here, I describe an experimental evolution setup that uses the logic of adaptive prediction

to select for altered regulation of cellular processes in the single-celled eukaryote Saccha-

romyces cerevisiae (budding yeast). The budding yeast is well-suited for experimental

evolution: it combines a short generation time, ease of culturing, well-characterized cell

biology, and sophisticated tools for genetic analysis [3, 4].

To select for a connection between a stimulus and a response, I needed a response

phenotype that provided a fitness benefit in an manner dependent on the environment,

such as gene transcription to enable utilization of a carbon source or resistance to a

noxious agent. To be selected against, the response would also have to create a fitness

burden in a different environment. I was skeptical that the fitness effect of such behaviors

may not be large enough to effectively select against a constitutive response in a short

laboratory evolution experiment, and so I chose to select on the state of the cell division

cycle. The cell cycle is a well-studied cellular behavior that has many points of regulation,

responding to both internal and external factors [5, 6]. A growth-permissive environment

selects strongly against cell cycle arrest, as arrested cells are outcompeted by replicating

cells1. Cell cycle arrest can be selected for by killing replicating cells; this requires using

known yeast mutants that are drug-sensitive during replication.

To kill replicating cells, we took advantage of the importance of cell division cycle

checkpoints in maintaining viability when crucial cellular processes are perturbed [7]. Cells

with mutations in a cell cycle checkpoint will proceed through cell division in inappropriate

conditions. The failure to stop can be fatal, creating a strong selection for cell cycle arrest

by another mechanism. For example, the DNA replication checkpoint prevents cells from

1Indeed, a permanent cell cycle arrest is equivalent to inviability.
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Figure 2.1 Mechanism of hydroxyurea lethality in mec1− sml1− yeast.

(A) The DNA replication checkpoint blocks progression to M phase until the genome is
fully replication. Checkpoint-competent yeast extend S phase in the presence of hydrox-
yurea, a replication inhibitor, to complete replication before entering mitosis.
(B) The DNA replication checkpoint protein Mec1 is dispensible in the absence of Sml1
for most replication cycles. In the presence of hydroxyurea, checkpoint-deficient yeast will
proceed to mitosis without a fully replication genome, resulting in death of the cell.

entering mitosis until the genome is fully replicated (Figure 2.1A) [8]. Wild-type cells

treated with hydroxyurea (HU), a DNA replication inhibitor, trigger this checkpoint to

stabilize stalled replication forks and extend S phase. HU exerts its inhibitory effect on

DNA replication by inactivating ribonucleotide reductase (RNR), the enzyme complex

that generates deoxyribonucleotides from ribonucleotides, thereby interfering with the

production of raw material for DNA synthesis [9]. Mec1 is an essential protein involved

in activating the checkpoint and preventing the collapse of stalled replication forks [10,

11, 12, 13]. Yeast lacking Mec1 function are viable if Sml1, a repressor of RNR, is also

absent; however, mec1− sml1− yeast die if DNA replication is perturbed by treatment

with HU (Figure 2.1B) [11, 14]. Lethality results from the irreversible collapse of stalled
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Figure 2.2 Alternating selective
environments to evolve a regulated
response.

(A) Environment 1, without HU, se-
lects for cell growth and division.
Environment 2, containing HU (blue
shading), selects for cell cycle arrest.
(B) Cells are passaged through mul-
tiple cycles of alternating selection
for and against cell cycle arrest; se-
lection for arrest is preceded by the
addition of a signal.
(C) The goal of the selection is for
evolved cells to survive HU by arrest
only in the presence of the signal.

replication forks followed by entering mitosis with unreplicated DNA. I used the lethal

effects of HU on mec1− sml1− yeast to select for cells with the cell cycle arrested.

With a selection both for and against a given phenotype, I can subject yeast to

two environments with opposite selective pressures: a replication-permissive environment

selecting for cell growth and division, and a replication-lethal environment selecting for

cell cycle arrest (Figure 2.2A). The selection cycle couples the alternation of selective

pressure with the addition of a signal before the change in environment (Figure 2.2B).

The selection cycle is designed to evolve cells that arrest in the presence of the signal

(Figure 2.2C). Another option that would also pass the selection is for evolved cells to
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survive HU regardless of the signal, either by arresting directly in response to HU or by

attaining resistance in a way that enables continued replication. However, no resistance of

checkpoint-deficient cells to HU has been previously described. A third option would be

for evolved cells to stochastically switch between replicating and arrested states, thereby

increasing population heterogeneity to always have a subset of cells that could survive

HU. This option, known as “bet-hedging,” was described to explain the phenomenon of

bacterial persistance, in which part of the population is slow-growing and resistant to

antibiotics [15, 16].

As a stimulus, I chose 0.5 M NaCl, an osmotic and ionic stress that yeast respond

to using known response networks. In yeast, an increase in osmolarity is detected and

transduced via the HOG (High Osmolarity Glycerol) pathway, one of several mitogen-

activated protein kinase (MAPK) pathways [17]. Mutations in HOG1 and PBS2, two

components of the osmolarity response network, were previously shown to yield cross

talk between the osmolarity and mating response signaling pathways due to a shared

upstream component [18]. Because part of the mating response is cell cycle arrest in G1

phase, loss-of-function mutations in either HOG1 or PBS2 were predicted to be selected

in the evolution.

Replicate cultures of mec1∆ sml1∆ yeast were passaged through multiple cycles

alternating selection for and against cell cycle arrest; selection for arrest was preceded by

the addition of NaCl to 0.5 M. The evolving populations had rapid increases in fitness,

as monitored by cell number after each cycle. Clones characterized from the evolved

populations produced different solutions to this selection, evidenced in this chapter by

variety in the stimulus specificity of the phenotype and in the population growth dynamics

of the clones in high salt.
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2.3 Design and tests of the selection cycle

Selection against replicating cells

To select against replicating cells, I constructed a DNA replication checkpoint-deficient

strain susceptible to hydroxyurea (HU) treatment by deleting MEC1 and SML1. Survival

after HU treatment was determined by counting colony-forming units in a culture before

and after exposure (see 4.3 for details). A crucial aspect of killing cells by HU is that cells

that are genetically dead at the end of treatment may not be physiologically dead. This

precludes use of a live/dead cell staining method to measure survival, instead requiring

a colony growth assay. The mec1∆ sml1∆ strain had similar levels of survival after HU

treatment as an existing mec1-1 sml1-1 strain (Figure 2.3). This same treatment had

no effect on the viability of checkpoint-competent cells. All hydroxyurea survival exper-

iments were performed on the mec1∆ sml1∆ strain or a derivative of it. Survival was

determined for a range of concentrations and exposure times (Figure 2.3). Exposure to

50 mM HU for four hours, which killed over 99% of the starting population, was used

in the evolution experiment. Experiments without error bars were typically performed

once; data represent averages of technical duplicates. The level of survival was consistent

for similar conditions across experiments testing different variables (e.g., concentration

versus time); because these were considered pilot experiments to decide parameters for

the evolution, they were not repeated.

Arresting the cell cycle in G1 phase or mitosis before exposure to HU enabled survival

of the checkpoint-deficient strain (Figure 2.4). Yeast were arrested in G1 by exposure to

the pheromone alpha factor for two hours before adding HU, then plated for survival four

24



Figure 2.3 Hydroxyurea survival of mec1− sml1− yeast.

(A) Cultures of each strain were plated after incubating in media with different concen-
trations of HU for 4 hours. Survival was determined by dividing the number of CFUs
after treatment by the number of cells before treatment. Both mec1-1 sml1-1 and mec1∆
sml1∆ strains had survival of less than 1% for all concentrations shown here.
(B) Cultures of mec1∆ sml1∆ yeast were plated after incubating in media with 50 mM
HU for different times and survival was determined as in (A). Survival is graphed on a log
scale to better display low values. Survival rapidly decreases to below 1% after 2 hours
of exposure. See section 4.3.1 for more experimental details.

hours later. To arrest cells in mitosis, I used a strain lacking CDC26, which displays a

temperature-sensitive mitotic arrest. CDC26 is a gene whose function in the anaphase-

promoting complex is essential only at high temperatures; shifting cdc26∆ cells to 37oC

causes arrest at metaphase [19]. Yeast were arrested in mitosis by incubating at 37 oC for

two hours before adding HU, then assayed for survival four hours later. Both experiments

were internally controlled by co-culturing with a strain that could not arrest, either a

ste2∆ strain, which lacks the alpha factor receptor, or a CDC26 strain, which continues

growth at 37oC.
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Figure 2.4 Hydroxyurea survival
with cell cycle arrest.

For G1 arrest, mec1∆ sml1∆ yeast
were exposed to alpha factor for two
hours before adding HU, then plated
for survival four hours later. For mi-
totic arrest, mec1∆ sml1∆ cdc26∆
yeast were incubated at 37oC for two
hours before adding HU, then plated
for survival four hours later. Arrest
in either stage greatly increased sur-
vival.

Testing sodium chloride as a stimulus

The stimulus chosen for the first evolution experiment was 0.5 M sodium chloride

(NaCl). This creates a moderate level of osmotic and ionic stress and is known to induce

a transient pause in the cell cycle while cells adjust their physiology. Mutations in HOG1

and PBS2, two components of the osmolarity response network, were previously shown

to yield cross talk between the osmolarity and mating response signaling pathways [18].

One potential solution to our selection is loss of signaling through the osmolarity response

network leading to induction of the mating response, which includes cell cycle arrest in G1,

and therefore to increased survival in hydroxyurea. I tested whether a hog1∆ mutant had

increased HU survival when exposed to an increase in osmolarity. Survival did increase

in a manner dependent on the presence of NaCl, for a range of NaCl concentrations and

pre-exposure times (Figure 2.5A-C). Sorbitol, a nonionic osmolyte, was also tested as a

stimulus and resulted in even higher survival than NaCl for hog1∆ yeast (Figure 2.5C).

However, a stock solution of sorbitol in standard media could only be made to 2 M, forcing
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a 1/2 dilution of cultures upon adding the stimulus, whereas NaCl stock solution could

be made to 4 M, resulting in a 7/8 dilution of cultures for the equivalent osmotic stress.

In order to avoid yeast responding to the possible repletion of nutrients along with the

stimulus, I wanted to add the lowest volume of media as possible; this was the primary

reason for choosing NaCl as a stimulus instead of sorbitol. The preliminary experiments

in Figure 2.5 aided in determining the parameters to be used in the evolution experiment.

I aimed to maximize the fold-increase in survival of the hog1∆ mutants over the wild-type,

so I chose to use a stimulus of 0.5 M NaCl with a pre-exposure time of two hours. The

full selection cycle is depicted in Figure 2.6.

I tested whether the full selection cycle, including growth in the absence of salt,

would enrich for hog1∆ mutants by selecting on a large population of wild-type cells

containing a small number of mutant cells. The ratio was measured by plating a sample

of the culture after each NaCl/HU treatment, followed by replica-plating to determine the

fraction of hog1∆ cells. As expected, the relative number of hog1∆ cells in the population

increased after treatment with NaCl and HU (Figure 2.5D). However, hog1∆ cells did not

completely take over the population over several rounds of selection. This is probably due

to the slower growth rate of hog1∆ cells in rich media (see section 3.6). During the growth

phase of each cycle, the relative number of hog1∆ cells in the population would decrease.

For the survival and time parameters of the selection cycle, the increase in survival was

roughly balanced by the slower growth over 18 hours. This indicated that while loss of

Hog1 function may be one solution to the selection, it was not an “optimal” solution due

to the fitness tradeoff between the two selection phases.
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Figure 2.5 Hydroxyurea survival with osmotic stimuli.

(A) Cultures of mec1∆ sml1∆ (“wild-type”) and mec1∆ sml1∆ hog1∆ yeast were placed
in media with the indicated concentration of NaCl for 1.5 hours before adding HU.
(B) Cultures were placed in YPD media and NaCl was added to 0.5 M at the indicated
times before adding HU. Data for (A) and (B) are averages of technical duplicates.
(C) Cultures were placed in media with either 0.5 M NaCl, 1 M sorbitol, or no additional
solute for 2 hours before adding HU. Data are averages of two experiments with technical
replicates; error is the sample standard deviation.
(D) mec1∆ sml1∆ hog1∆ cells were mixed with mec1∆ sml1∆ cells at 1:100 and passaged
through multiple NaCl/HU cycles, using 0.5 M NaCl with a 2-hour pre-exposure, sepa-
rated by overnight growth periods. The fraction of hog1∆ cells was determined by plating
after each NaCl/HU treatment. Data are shown separately for two technical replicates,
A and B. All samples in (A)-(D) were plated for survival four hours after adding HU.
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Figure 2.6 Selection cycle using
NaCl and hydroxyurea.

For each passage, cells growing in ex-
ponential phase in standard media
(YPD) were exposed to 0.5 M NaCl
for two hours. HU was then added to
a final concentration of 50 mM. After
four hours in NaCl/HU media, cells
were transferred into fresh YPD, di-
luted and cultured for 18 hours.

Testing other possible solutions to the selection

Before beginning the selection, I tested two other potential mechanisms of increasing

survival. The first was to increase the length of G1 phase relative to the entire cell cycle

by deleting CLN3, a cyclin governing the G1/S transition [20]. Deletion of CLN1 and

CLN2, the two other main G1 cyclins, had been reported to rescue mec1 lethality in cells

with SML1 [21]. This was posited to be due to prolonged expression of RNR1, one of

many genes that are upregulated at the G1/S transition, leading to an increase in dNTP

levels before the onset of S phase. The cln3∆ strain had increased HU survival relative

to the CLN3 strain in both no-solute and NaCl treatment conditions, and its survival in

NaCl was almost as high as the hog1∆ strain (Figure 2.7A).

The second mechanism tested was to disrupt the ability to physiologically adapt to

the osmotic stress by deleting GPD1, a glycerol-3-phosphate dehydrogenase important in

restoring osmotic balance by producing glycerol [22]. GPD1 expression is upregulated by

Hog1 upon osmotic shock and its activity is important for growth in high osmolarity. The
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Figure 2.7 Testing cln3∆ and gpd1∆ mutants in hydroxyurea survival.

(A) Cultures of mec1∆ sml1∆ and mec1∆ sml1∆ cln3∆ yeast were placed in media with
the indicated solute for 2 hours before adding HU. Data are averages of two experiments
with technical replicates; error is the sample standard deviation.
(B) Cultures of mec1∆ sml1∆ and mec1∆ sml1∆ gpd1∆ yeast were placed in media
with the indicated solute for 2 hours before adding HU. Data are averages of technical
duplicates. Note that the scales for (A) and (B) are different.

gpd1∆ strain had no discernable increase in HU survival in treatment conditions with

either no solute or an added osmolyte (Figure 2.7B).

Use of mutator ancestral strain

The strain of yeast used here has a basal mutation rate of about 5 x 10 -3 mutation

per genome per division, or one mutation every 200 divisions [23]. To increase the genetic

diversity of the populations undergoing selection, I constructed a version of the mec1∆

sml1∆ strain with a “mutator” phenotype. I used an allele of POL3, the catalytic sub-

unit of DNA polymerase δ, which was reported to elevate the mutation rate 100-fold,

to about 0.5 mutation per genome per cell division [24]. The Pol3-L523D mutant has
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reduced 3′ → 5′ exonuclease activity, involved in proofreading, without an impact on

its polymerase activity. However, this polymerase’s processivity is strongly inhibited by

nucleotide imbalances, which result in increased misincorporation. The mec1∆ sml1∆

pol3-L523D strain had a strong growth defect and often had variable overnight growth

after back-dilution. This is consistent with synthetic effects from a possible imbalance

in nucleotide pools (due to reduced regulation of RNR activity) leading to reduced poly-

merase activity (due to increased misinsertion) combined with an inability to compensate

for slower DNA synthesis (due to the absence of the replication checkpoint). However,

this strain retained its sensitivity to HU.

Because of its growth defect, the mutator ancestor was pre-cultured for several days

in standard medium to improve growth before being used in the experimental evolution.

The consequences of using such an impaired strain were not appreciated at the time; in

future experiments, the mutator ancestor proved to be ill-suited for use as an experimental

control because of difficulty in achieving consistent overnight culture growth and high

variability in HU survival. It was also refractory to further genetic modifications and

was not used in later testing of causal mutations by strain engineering. However, as will

be discussed in Chapter 3, mutator populations yielded similar genetic solutions as non-

mutator populations, and the evolved phenotypes of mutator clones were not dependent

on the mutator allele. Subsequent to the evolution experiments, additional populations

of the mutator ancestor were passaged in standard medium and found to have decreased

HU survival concomitant with increased growth rate, indicating that the strain’s survival

in some assays may be due to its slow growth rate and/or variability in growth rate.
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2.4 Evolution of salt-dependent arrest

Eleven cultures, each with an effective population size of 5 x 105 cells, were passaged

through the selection cycle (Figure 2.6, see section 4.2 for more details). For each passage,

cells in standard media were exposed to 0.5 M NaCl for two hours. HU was then added to a

final concentration of 50 mM. After four hours in NaCl/HU media, cells were transferred

into standard media, diluted to permit exponential growth and cultured for 18 hours.

This procedure was repeated for a total of 24 NaCl/HU exposures for three populations

(Evolved 1 to 3) and 10 exposures for eight populations (Evolved 4 to 11), with roughly

18-hour growth periods between each exposure to NaCl and HU. Populations 1 through

6 were of the mec1∆ sml1∆ pol3-L532D mutator strain, and populations 7 through 11

were of the mec1∆ sml1∆ strain.

The levels of HU survival in the evolving populations were tracked by extrapolation

from the amount of overnight growth following each NaCl/HU treatment (Figure 2.8).

The number of cells in the culture each morning results from the number of cells before

treatment multiplied by the (unknown) survival rate, the dilution level after treatment,

and the exponential growth factor dependent on the number of doublings (based on time

elapsed). Given a known number of cells before treatment, the survival rate can be de-

termined. This calculation requires several assumptions: overnight growth is exponential,

the doubling time is known and constant, and the period of exponential growth is known.

The estimations of survival in Figure 2.8 assume that no growth occurs during the 6-hour

NaCl/HU period and use a doubling time of 120 minutes for the mutator populations and

100 minutes for the non-mutator populations. Based on these estimations, all evolving

cultures quickly reached moderate-to-high levels of HU survival. The drop in survival in

32



Figure 2.8 Estimated survival of evolving populations.

A rough estimate of survival was extrapolated from cell counts before and after each cycle
by dividing the actual cell number after a cycle by the cell number expected from 100%
survival, calculated from the starting cell count, the number of doublings in the growth
phase, and any dilutions made. See section 4.2 for more details. Populations 1-3 were
passaged through 24 cycles (A), and populations 4-11 were passaged through 10 cycles
(B)-(C).
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round 16 for Evolved 1 to 3 was due to a failure to promptly return treated cultures to

the roller drum at 30oC; luckily, the cultures and the project withstood this error.

In most evolution experiments, fitness is a direct outcome of an organism’s ability to

proliferate, and an increase in fitness occurs by increasing the number of replication cycles

in a given period of time. In this selection cycle, the rate of proliferation contributes to

fitness in only part of the cycle, and drug survival determines fitness in the other part.

To measure fitness of the evolved clones, I will primarily focus on their survival in HU,

since this is the part of the selection cycle in which a new stimulus-response connection

is expected to provide a fitness benefit.

Clones were picked by plating samples of each evolved population after the final

selection cycle. Three or more clones from each final population were assayed for their

ability to survive HU by plating culture samples before and after HU treatment. Clones

were evaluated for survival on a scale from - to +++, and a clone was considered to

survive if it had a score of ++ or +++; see section 4.3 for details on how the survival

score was determined. Phenotypic and genetic analyses focused primarily on one clone

with salt-dependent survival from each population (Figure 2.9 and Table 2.1). Subsequent

to the genetic characterization of these clones, more clones were assayed for survival and

sequenced to better understand the diversity of the final evolved populations (Table 2.2). 2

All populations contained clones whose increased survival depends on exposure to NaCl,

and populations 9 and 11 also contained clones that survive HU regardless of NaCl.

To characterize the specificity of the response, HU survival was also assayed in the

2No additional clones were sequenced from populations 1 and 10, because none were isolated that
lacked the known causal mutation. Only sequenced clones have phenotypic data listed in Tables 2.1 and
2.2.
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Table 2.1 Hydroxyurea survival1 of evolved clones.

Strain Standard Media 0.5 M NaCl 0.5 M KCl 1 M sorbitol

Non-mutator Ancestor - - - -

Evolved 1-1 - + + + - -

Evolved 2-1 - + + + - -

Evolved 3-1 - + + + - -

Evolved 4-1 - + + + + + + + +

Evolved 5-1 - + + + - -

Evolved 6-1 + + + + + + + + + +

Evolved 7-1 - + + + - -

Evolved 8-1 - + + + - -

Evolved 9-1 - + + - +

Evolved 10-1 - + + + +

Evolved 11-1 - + + + + +

1Survival was determined on a scale of -/+/+ +/+ + + as described in section 4.3.
Examples of raw data are in Figure 2.9. Data are averaged from six or more total
replicates, from at least three separate experiments.

presence of either 0.5 M KCl or 1 M sorbitol, a non-ionic osmolyte. These solutes increased

survival for the first clones assayed from populations 4 and 6, and for one clone later

assayed from population 5. However, not all clones from populations 4, 5, and 6 survived in

the other osmolytes, demonstrating phenotypic diversity in these populations (Figure 2.9

and Tables 2.1 and 2.2). The specificity of survival of the rest of the clones indicates that

their survival is not based on a response to hyperosmolarity, but rather to an increase in

the level of sodium ions.
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Table 2.2 Hydroxyurea survival1 of more evolved clones.

Strain Standard Media 0.5 M NaCl 0.5 M KCl 1 M sorbitol

Evolved 2-2 - +++ - -

Evolved 2-3 - +++ - -

Evolved 2-4 - +++ - -

Evolved 3-2 + +++ + +

Evolved 3-3 - +++ + +

Evolved 3-4 - +++ - -

Evolved 4-2 - +++ - -

Evolved 4-3 - +++ - +

Evolved 5-3 - +++ - -

Evolved 5-4 - +++ +++ +++

Evolved 5-5 - +++ + -

Evolved 6-2 - +++ + +

Evolved 6-3 - ++ - -

Evolved 6-4 - +++ - -

Evolved 7-2 - ++ - -

Evolved 7-3 - +++ - -

Evolved 7-4 - +++ - -

Evolved 8-2 - +++ - -

Evolved 8-3 - +++ - -

Evolved 9-2 +++ +++ n.d.2 n.d.

Evolved 9-3 - ++ + +

Evolved 11-2 +++ +++ n.d. n.d.

Evolved 11-3 - +++ n.d. n.d.

Evolved 11-4 +++ ++ n.d. n.d.

1Survival was determined on a scale of -/+/+ +/+ + + as described in section 4.3.
Examples of raw data are in Figure 2.9. Data are averaged from six or more total
replicates, from at least three separate experiments.
2n.d.: No data were collected for these strains and conditions.
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2.5 Phenotypes of evolved clones

Population growth rates

Population growth rates of the ancestor strains and evolved clones were measured

from changes in optical density (OD) after transfer into either standard media or 0.5 M

NaCl. Cultures growing in exponential phase in standard media (YPD) were divided and

combined 1:1 with either YPD or YPD plus 1 M NaCl (final concentration of 0.5 M).

The OD600 was measured every ten minutes, and an “effective” growth rate3 for the time

period of two to six hours after transfer, equivalent to the timing of HU treatment in

the selection,4 was calculated by fitting an exponential curve to the data (see section 4.4

for more details). If the population reached saturation before six hours, the rate was

calculated for data between hour two and the saturation time. Analysis of this time

period also removed the confounding factor of the initial decrease in OD upon transfer to

NaCl media, which reverses within the first hour after NaCl addition5 (for example, see

plots in Figure 2.10C). This decrease is most likely due to a decrease in individual cell

size, as OD is dependent on cell size as well as cell number.

All ancestor strains have a reduced growth rate in NaCl media relative to standard

media (Figure 2.10A). The ancestor strains also show some differences from each other

in their growth rates in NaCl, which correlate with their relative growth rates in stan-

3I use the term “effective” to distinguish from other methods of calculating growth rates.

4No HU was added to the media for experiments measuring population growth.

5I refer to the time before increasing OD as a “lag” period, but it is not meant to imply equivalence
to the lag period typically seen in microbial growth curves of cells coming out of saturation phase.
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Figure 2.10 Growth rates and dynamics of ancestor strains.

(A) The starting strains for the evolved populations differed from each other in growth
rate. The effective growth rate of each strain was calculated for the period of 2 to 6 hours
after transfer into 0.5 M NaCl media or standard media, or from hour 2 until saturation
if reached before hour 6. Rates were determined from six or more biological replicates.
All mutator strains were derived from non-mutator strain A.
(B) The growth rates of the ancestor strains in NaCl media correlated with their rates in
standard media. Points are mean values of the same experimental data plotted in (A) and
error bars are standard deviations. The dotted line is a linear least-squares regression.
The correlation coefficient (Pearson’s r) is 0.81.
(C) Averaged growth curves show details of population growth dynamics not captured by
the effective growth rate. Raw data were calibrated by a blank value and transformed to
account for the non-linearity above OD 0.6 before normalizing by initial OD. Lines are
mean values from six or more replicates and shaded bands are bootstrap 95% confidence
intervals. All strains decreased in OD from the initial value, which reversed within the
first hour after NaCl addition.
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Figure 2.11 Growth rates
of evolved clones in NaCl.

All clones have a decreased
rate of growth two to six
hours after transfer into me-
dia with 0.5 M NaCl, but
three clones (Evolved 8, 9,
and 10) have slight decreases
while the other seven have
large decreases. Rates plot-
ted are the effective growth
rates as described in Fig-
ure 2.10A. No HU was in the
media. The ancestor strain
shown is non-mutator A.

dard media (r=0.81, Figure 2.10B). Multiple experiments were averaged together after

normalization to initial OD to display the growth curve traces over time (Figure 2.10C).

All growth curves are shown with log-transformed data, in which a straight line indicates

exponential growth. These curves show that the population dynamics for the ancestor

strains differ primarily in the rate of growth after adaptation to the NaCl, when OD

begins increasing. There may also be slight differences in the time to increasing OD, but

all strains show steady increases after 40 minutes.

The same population growth measurements were made for the primary clone from

each evolved population (e.g., Evolved 1-1) except 11. Growth of Evolved 11-1 could

not be assayed by OD600 due to its flocculation phenotype, which alters the relationship

between cell number and optical density and results in significant settling of the cells in

culture during the experiment. Slower population growth in NaCl media was observed

for all clones to varying degrees (Figure 2.11). All mutator clones and one non-mutator
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clone (Evolved 7) had population growth at a doubling time of greater than four hours

(rate equal to 0.0029), while three of the non-mutator clones slowed to a doubling time

of about three hours (rate equal to 0.0039).

Growth rates of the evolved clones are compared to their direct ancestors in Fig-

ure 2.12. The growth rates in NaCl from Figure 2.11 and in both media from Figure 2.10A

are reproduced in Figure 2.12A and B with the data arranged by ancestor strain. The

three mutator clones from the first evolution experiment show no growth rate changes in

standard media, in contrast to the mutator clones from the second experiment: Evolved

4 and 6 have lower growth rates in standard media than their ancestors, while Evolved

5 has a higher growth rate than its ancestor (Figure 2.12C). The non-mutator evolved

clones have no growth rate changes from their ancestors in standard media, and Evolved

9 and 10 maintained the elevated rate of their ancestor, non-mutator B, relative to the

non-mutator A strain (Figure 2.12D).

Averaged growth curves after transfer to NaCl show that all evolved clones have

altered population dynamics from their ancestors to some degree (Figure 2.13). Mutator

evolved clones show differences in the decrease from initial OD as well as a slower rate of

growth after the decrease (Figure 2.13A). Evolved 4, 5, and 6 are particularly divergent

from their ancestors in the first hour. In contrast, the non-mutator clones all resemble

their ancestors in the initial decrease, but have different growth dynamics afterwards

(Figure 2.13B). Evolved 7 shows a longer “lag” period before increasing in OD, and

then shows growth similar to the mutator evolved clones. Evolved 8 shows only a slight

difference from its ancestor. Evolved 9 and 10 have growth curves identical to each other

but distinct from their ancestor and from all other clones: they appear to have faster

than, as opposed to slower than, exponential growth, as indicated by an upward bend in

41



Figure 2.12 Growth rates of evolved clones and their direct ancestors.

(A) All mutator clones evolved to have a similarly low growth rate in NaCl despite deriving
from different immediate ancestors. Rates plotted are the effective growth rates for 2 to
6 hours after media transfer, as described in Figure 2.10A.
(B) Only one of the four non-mutator clones has a growth rate in NaCl as low as the
mutator clones; the other three have smaller decreases in growth rate.
(C) Mutator evolved clones from the first experiment (1, 2, and 3) have no change from
their ancestor in standard media. The clones from the second experiment (4, 5, and 6)
do show differences from their respective ancestors.
(D) The growth rates of non-mutator clones in standard media do not differ from their
respective ancestors.
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Figure 2.13 Growth curves of evolved clones and their direct ancestors in NaCl.

(A) All mutator clones evolved lower growth rates in NaCl despite deriving from different
immediate ancestors. Evolved clones 4, 5 and 6 also show differences from their ancestors
in the initial decrease in OD within the first hour. Growth curves from multiple exper-
iments were aggregated after normalizing by initial OD, as described in Figure 2.10C.
Lines are mean values from six or more replicates and shaded bands are bootstrap 95%
confidence intervals. Clones from mutator ancestor A also have greater experimental
reproducibility, as evidenced by the thinner shaded bands.
(B) Evolved 7 has the lowest level of growth of any evolved clone and the greatest difference
from its ancestor, and Evolved 8 has the least difference in growth from its ancestor as
measured at hour 6. Evolved 9 and 10 have identical population growth profiles that are
distinct from their ancestor and from the other evolved clones.
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Figure 2.14 Growth curves of evolved clones in NaCl and standard media.

Growth curves were aggregated after normalizing by initial OD, as described in
Figure 2.10C. Parts A, C, D and E display the same data as Figure 2.13, but without
the ancestor data and with the clones grouped into low (A, C, D) vs. high (E) growth
rate. Parts C and D are enlargements of A. Lines are mean values from six or more
replicates. Shaded bands represent 68% confidence intervals instead of 95% to more
easily distinguish between the clones, and axis scales were varied to highlight
intra-group differences.

(A) The low-growth rate clones have slower than exponential growth in NaCl media,
evidenced by downward arcs of the log-transformed data. Evolved 7 has the lowest OD
at hour 6 and the longest “lag” time before increasing OD after transfer to NaCl media.
(B) Evolved 1 through 7 have steady exponential growth in standard media, though at a
range of rates.
(C) A closer look at the first two hours better illustrates the variety in dynamics among
the low-growth rate clones after transfer to NaCl media, and reveals that Evolved 4 and
6 do not experience a decrease in OD, although they do have a “lag” period before OD
increases.
(D) The trajectories look similar after the first 2 hours; most of the difference in the
clones’ ODs at hour 6 is due to differences in their early trajectories, with slight
differences in growth rates as reflected by the data in Figure 2.11.
(E) Evolved 8 has slower than exponential growth, similar to the low-growth rate clones
but differing in degree. In contrast, Evolved 9 and 10 have qualitatively different
dynamics: their curves show faster than exponential growth.
(F) Evolved 8, 9 and 10 have steady exponential growth in standard media until
saturation is reached.
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Figure 2.14 (continued)
Growth curves of evolved clones in NaCl and standard media.
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the log-transformed data.

The growth curves of the evolved clones are compared to each other in Figure 2.14,

grouped by effective growth rate. All mutator clones have slower than exponential growth,

evidenced by the downward arcs of the log-transformed data, but have steady exponential

growth in standard media (Figure 2.14A, B). The non-mutator strain Evolved 7 has the

most severe growth phenotype, with the lowest OD at hour 6 and the longest “lag” time

before increasing OD after transfer to NaCl media. The mutator clones show greater

differences from each other in their trajectories in the first two hours (Figure 2.14C) than

from hours two to six (D). The slight differences in their growth after hour 2 are accurately

reflected by the calculated effective growth rates (Figure 2.11). Evolved 4 and 6 do not

have a decrease in OD upon transfer to NaCl media, in contrast to their ancestors and

all other evolved clones, although they still have a “lag” period before OD increases.

Among the higher growth rate strains, Evolved 9 and 10 have very different growth

dynamics from Evolved 8, despite have nearly identical effective growth rates from hours

two to six (Figure 2.14E). Evolved 8 has a downward arc, like Evolved 1-7, but Evolved 9

and 10 have upward arcs, indicating an increasing rate of population growth over time. No

differences are seen in the growth of Evolved 8, 9, and 10 in standard media (Figure 2.14F).

The downward arcs of the log-transformed data for Evolved 1 to 8 indicate that their

culture densities are not increasing exponentially. In plots of averaged growth curves

without log transformation, the increase in OD appears to be linear for these strain, or

possibly even sub-linear for Evolved 5 and 7; exponential growth is seen after an initial

period of linear growth for Evolved 9 and 10 (Figure 2.15). The implications of this are

examined in the discussion.
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Figure 2.15 Linear growth curves of evolved clones in NaCl media.

Averaged growth curves without log transformation show linear, or possibly sub-linear,
growth for Evolved 1 through 8, in contrast to the exponential growth seen for Evolved 9
and 10. Clones are divided into two plots according to their effective growth rates.

2.6 Discussion

In this chapter, I described how I created a selection scheme for adaptive predic-

tion and executed it for parallel populations of Saccharomyces cerevisiae. By using the

genetically-altered mec1∆ sml1∆ strain lacking the DNA replication checkpoint, I admin-

istered the replication inhibitor hydroxyurea (HU) as a selection for cell cycle arrest. I

demonstrated that replicating cells died at a very high level when treated with HU, and

cells arrested in G1 or M phase survived. With the ability to select both for and against

cell cycle arrest, I could then add a cue to alert cells to the change in selection. The

addition of sodium chloride was chosen as an environmental change to which yeast could

respond. I also created a version of the mec1∆ sml1∆ strain with an elevated mutation

rate to select on populations with greater genetic diversity.

I passaged eleven separate populations of yeast through cycles of HU treatment and

standard media, adding 0.5 M NaCl before and during the time HU was present. Each
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population had rapid increases in their survival of HU. From the final populations, I se-

lected clones which individually showed high survival when treated with HU plus NaCl.

All eleven populations contained clones with survival dependent on the presence of NaCl.

Two populations also had clones with NaCl-independent survival, demonstrating hetero-

geneity within the final populations. Investigating the specificity of the survival phenotype

revealed more diversity among the clones, as clones from three populations survived with

any osmolyte present, whereas the remainder survived only with NaCl. These three popu-

lations all contained clones with both specificity phenotypes, further indicating population

heterogeneity.

After characterization of HU survival phenotypes, the clones can be grouped into

three classes. Class I clones, which have sodium-specific survival, were found in every

population, and from six of the eleven populations (three mutator, three non-mutator)

only Class I clones were isolated.6 Class II clones, with osmolyte-dependent survival,

were found in three mutator populations. Class III clones, which survive HU regardless

of osmolyte presence, were found in two non-mutator populations. Although this is a

small number of populations from which to generalize, I can speculate that NaCl-specific

survival is the phenotype with the largest target size, and that the relative fitness of

other survival phenotypes may have some dependence on the background of the ancestor

(mutator versus non-mutator).

The selection using hydroxyurea was intended to select for cell cycle arrest upon

exposure to NaCl, and survival phenotypes were tested as a proxy for arrest. To examine

whether the evolved strains replicate during exposure to NaCl, I measured population

6It is possible that other survival phenotypes were present but not identified; fewer than ten clones
were assayed from each population.
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growth by optical density of exponentially growing cultures after the addition of NaCl.

All mutator clones and one non-mutator clone have a reduced rate of population growth

equal to a doubling time of four hours or longer during the period two to six hours after

NaCl addition. In other words, their populations undergo one doubling or less than one

doubling during the time period equivalent to hydroxyurea treatment in the selection.

The culture ODs increase linearly, indicating a constant number of replicating cells and

therefore a decreasing fraction of the population that is replicating.

Yeast cells arrested in the cell cycle can continue to grow in size, depending on the

nature of the arrest. It is unknown to what extent an increase in individual cell size

contributes to the increase in culture OD of the evolved strains in NaCl media. Cells with

greater volume have fewer cells per OD unit [25], which means that cell growth without

division could account for some or all of the OD increase. More precise data on the increase

in cell number could be collected using a particle counter instead of a spectrophotometer;

this data is more challenging to collect, as it is destructive to the measured sample and is

not currently in a high-throughput format. Growth curves conducted by particle counts

of Evolved 1 clones showed an increase of less than 50% in the cell number over six

hours in NaCl media, versus an average 110% increase in OD; these experiments were not

replicated in favor of the OD method with higher throughput and higher time resolution.

Therefore, it remains unclear to what extent the OD increases for Evolved 1 through 7

represent cell division versus cell size increases.

The relationship of culture OD to individual cell size could also explain the phe-

nomenon of decreasing OD at early times after transfer to NaCl media. Within the first

hour, the ancestor strains and most of the evolved strains show decreases of up to 20%

from the initial OD. The two exceptions, Evolved 4 and 6, are also two evolved clones
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that demonstrate osmolyte-dependent survival (Class II); all other assayed clones are

Class I. This will be explored further in Chapter 3, when the genetic causes of the evolved

phenotypes are elucidated.

Three of the non-mutator clones have an effective growth rate in NaCl roughly equal

to that of the mutator ancestors A and B, but have higher survival in hydroxyurea. This

indicates that this metric is not sufficient to predict higher survival nor to explain it for

these evolved clones. The clear differences in population growth dynamics of Evolved 9

and 10 versus Evolved 8 illustrate the inadequacy of a single parameter, effective growth

rate, for comparing growth phenotypes. This inadequacy is also true of the experimental

method in general: a measurement of a population does not necessarily reflect single-

cell behavior. To visualize growth dynamics at a single-cell level, time-lapse microscopy

experiments were performed for the evolved clones 1, 2, and 3, in which individual cells

appeared to arrest. However, the small sample size and lack of automated analysis made it

difficult to discern whether cells were proceeding very slowly or arresting, and if arresting,

at what stage in the cell cycle. Efforts were instead focused on elucidating the genetic basis

of the evolved phenotypes, detailed in Chapter 3. Alternative methods to molecularly

characterize the cell cycle arrest of the evolved clones will be discussed in Chapters 3 and

5.
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Chapter 3

Identification and Confirmation of

Causal Mutations

3.1 Abstract

To identify mutations causing the evolved phenotype, clones with NaCl-dependent

HU survival from each population were analyzed by whole-genome sequencing. Addition-

ally, bulk segregant analysis was performed for one clone from each mutator population.

Putative causal mutations in the mutator strains were identified based on segregation fre-

quency, the annotated function of the affected gene and any notable mutant phenotypes.

Candidate causal mutations were tested by allele replacement, both by engineering the

mutation into the ancestor background and by reversion of the mutation to wild-type in

the evolved clone. We confirmed causality of nine mutations in six different genes that

encode the following proteins: two protein kinases (Hal5 and Hog1), a transcriptional

regulator (Imp2’), and three hexose transporters (Hxt1, Hxt3, and Hxt7). The muta-
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tions in the hexose transporters are gain-of-function mutations whereas those in the other

genes inactivate their protein products, demonstrating that both altering and eliminating

protein function can rewire the cellular response to environmental stimuli in a way that

produces adaptive prediction.

3.2 Introduction

In this chapter, I describe genetic characterization of the evolved strains presented in

Chapter 2 and the survival and growth phenotypes caused by evolved mutations. Labo-

ratory evolution enables identification of the genetic changes causing a new phenotype by

(1) comparing the genomes of ancestral and evolved populations and (2) testing the effect

of candidate mutations. The development of “next-generation” sequencing and its analy-

sis have made the first part both precise and affordable [1, 2]. With sufficient sequencing

depth, heterogeneous populations can also be sequenced and analyzed for mutation fre-

quency [3]. The second part, confirmation of causality through strain engineering, is

possible in S. cerevisiae due to its native DNA repair machinery: an exact mutation,

including deletion or addition of DNA, can be engineered at the endogenous locus via

homologous recombination [4, 5, 6]. In my evolution experiments, a mutator strain was

used as the ancestor for six populations. Sequencing the evolved clones would yield dozens

or hundreds of mutations, so the more sophisticated “bulk segregant” analysis was also

done for these strains.

Bulk segregant analysis assists the identification of causal mutations in a genetic

background with neutral or deleterious mutations (Figure 3.1A) [7, 8]. This method takes
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Figure 3.1 Diagram of bulk segregant analysis.

(A) Bulk segregant analysis identifies causal mutations by mating the evolved strains to
the ancestor, sporulating, and selecting for haploid recombinants that demonstrate the
evolved phenotype. Non-causal mutations are reduced to an average frequency of 50% in
the selected recombinants, whereas mutations required for the phenotype are present at
high frequency.
(B) After mating and sporulation, the population of haploid recombinant spores was split
into three pools. One was immediately prepared for sequencing and two were passaged
in media before sequencing: one in standard media and one through five rounds of the
NaCl/HU selection cycle.

advantage of laboratory control over the yeast life cycle and the ability to collect a great

number of offspring from the same set of parents. In this method, a haploid strain con-

taining unknown mutations of interest is mated to a haploid strain of the opposite mating

type lacking those mutations to generate a heterozygous diploid cell. In experimental

evolution, this pair typically consists of an evolved haploid strain and an ancestor strain

that has had its mating type switched or a similar non-evolved strain. Mutations in the

diploid parent are randomly distributed to offspring by the processes of chromosomal re-

combination and independent segregation that occur during meiosis. Four spores result

from the meiosis of a single diploid cell. By first growing the parental diploid cell to a large
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population, spores are obtained from many independent sporulation events of the same

parent strain. These haploid recombinant spores are then passaged through selection for

the phenotype of interest. Population frequencies of mutations change during the selec-

tion based on the fitness benefit or deficit they confer. The frequency of a mutation in the

selected pool is determined by preparing genomic DNA from the pool of cells, sequencing

it by next-generation technology, and calculating the fraction of independent reads con-

taining the mutation. Mutations required for the phenotype are present at high frequency

in the selected pool while neutral mutations are reduced to an average frequency of 50%

and deleterious mutations are at low frequency.

In this work, the method of bulk segregant analysis was extended by sequencing two

additional pools: the initial pool of spores before selection, and a pool subjected to a

separate selection by culturing in standard media (Figure 3.1B). These additional pools

aided in determining whether a mutation’s high frequency in the NaCl/HU pool was

due to a high initial frequency, a contribution to fitness in standard culture conditions,

or a contribution to the evolved survival phenotype. These are not mutually exclusive

options; however, the additional evidence was used to prioritize the list of top candidate

mutations. Candidate mutations were then tested for causality by genetically altering

the ancestor and evolved strains in several ways. Allele replacements, both putting the

mutation in the ancestor at the endogenous locus and reverting it in the evolved clone,

tested for sufficiency and necessity. Deleting the mutated gene in both backgrounds

determined whether the mutation was loss- or gain-of-function, and testing the phenotype

of heterozygous diploid strains determined dominance. The population growth curves of

reconstructed strains were measured as in Chapter 2 to test the relationship between

genotype and the “extended” phenotype of growth dynamics.
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3.3 Sequencing for putative causal mutations

Sequencing of evolved clones and populations

To identify mutations causing the evolved phenotypes, clones with NaCl-dependent

HU survival from each population were analyzed by whole-genome sequencing (see sec-

tion 4.6 for method details). Mutator clones were mated to a non-mutator mec1∆ sml1∆

strain and subjected to bulk segregant analysis to aide in distinguishing causal from non-

causal mutations (Figure 3.1). After initially sequencing one clone from each population

and engineering strains to test the causality of identified mutations, Sanger sequencing

revealed that most final populations were heterogeneous for the causal mutations (dis-

cussed in section 3.4.1). Therefore, additional clones from each population that did not

contain the known causal mutations were sequenced along with the frozen glycerol stocks

of the final evolved populations to identify other potential causal mutations; no strain

engineering was done to test causality of these mutations.

Three separate rounds of whole-genome sequencing were performed. The target level

of coverage was 30x for clones and 50x for pools (i.e., heterogeneous populations), and

the total number of bases sequenced for each sample was generally close to or above this

target (Figure 3.2A, Table 3.1). However, coverage by the number of aligned bases was

lower than expected due to short insert sizes in the library preparations. If the insert

size is less than twice the read length (e.g., <300 bp for 150-bp reads), the second read

of paired-end sequencing will overlap the first read, resulting in some bases being read

twice. This double-reading can reduce the rate of false positives arising from sequencing

errors [9]. However, it also creates false coverage because the information is not from
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Figure 3.2 Sequencing coverage of clones and pools.

(A) Target coverage was 25-30x for clones and 50x for pools; however, short insert sizes
in the library preparations resulted in discrepancies between the total bases sequenced
and non-overlapping aligned bases for each sample.
(B) Circles show data for individual samples of clones and pools. Almost all samples had
coverage sufficient for analysis despite being lower than desired in rounds 1 and 2.
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two independent pieces of DNA. In a haploid or homozygous clonal sample, all readings

of the same location in the genome are expected to be the same, and variants present

at low frequencies are assumed to be from errors in the sequencing process or mutations

acquired during culturing of the clone in preparation for sequencing. In a heterozygous or

mixed population sample, readings of the same location can have variants as a result of

mutations. Higher coverage – more readings of the same location – increases the confidence

that the proportion of a mutation in a population has been determined accurately, and

that a variant present at low frequency represents a real mutation instead of a sequencing

error. This confidence depends on independent random sampling of the DNA; because

overlapping reads of the same insert are not independent, the overlaps were excluded from

analysis.

The first round included one clone from each of the first three evolved populations,

their mutator ancestor clone, and their respective NaCl/HU-selected pools for bulk seg-

regant analysis. Sequencing coverage averaged 25.7 for the four clones and 39.0 for the

three pools but with wide variation (Figure 3.2B, Table 3.1). This first round of sequenc-

ing yielded an obvious top candidate mutation for Evolved 1 but inconclusive results for

Evolved 2, due to low coverage, and Evolved 3, due to a large number of mutations linked

to the mating locus. These clones were resequenced in the second round, and the bulk

segregant analysis was entirely redone with new diploid strains and more rounds of se-

lection. The analysis presented below is based on the sequencing results from the second

bulk segregant analysis.

The second round of sequencing included one clone from each of the eleven evolved

populations, five different ancestor clones, three pools for each bulk segregant analysis

of six mutator clones, and additional clones and pools. Coverage averaged 13.4 for 22
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Table 3.1 Sequencing coverage of clones and pools.

Round 1 Clones

Sample Coverage

Mutator ancestor A 22.2

Evolved 1-1 46.0

Evolved 2-1 16.6

Evolved 3-1 17.9

Average 25.7

Round 2 Clones

Sample Coverage

Ancestor A 12.8

Ancestor B 13.8

Mutator ancestor A 16.2

Mutator ancestor B 12.8

Mutator ancestor C 14.3

Evolved 1-1 14.6

Evolved 2-1 13.9

Evolved 3-1 16.5

Evolved 4-1 12.6

Evolved 5-1 15.1

Evolved 5-2 12.5

Evolved 6-1a 13.8

Evolved 6-1b 13.9

Evolved 7-1 12.9

Evolved 8-1 12.8

Evolved 9-1 12.2

Evolved 10-1 13.6

Evolved 11-1 11.2

Evolved 11-2 11.2

Mut. anc. A evolved in YPD 13.5

Mut. anc. B evolved in YPD 11.7

Mut. anc. C evolved in YPD 12.1

Average 13.4

Round 3 Clones

Sample Coverage

Evolved 2-2 29.6

Evolved 2-3 35.7

Evolved 2-4 37.6

Evolved 3-2 28.5

Evolved 3-3 33.7

Evolved 3-4 34.6

Evolved 4-2 33.5

Evolved 4-3 34.4

Evolved 4-4 18.6

Evolved 5-3 30.0

Evolved 5-4 31.5

Evolved 5-5 25.2

Evolved 6-2 28.2

Evolved 6-3 30.3

Evolved 6-4 29.5

Evolved 7-2 31.3

Evolved 7-3 25.9

Evolved 7-4 34.1

Evolved 8-2 38.2

Evolved 8-3 27.0

Evolved 9-2 36.2

Evolved 9-3 37.0

Evolved 11-3 31.6

Evolved 11-4 35.5

Average 31.6
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Table 3.1 (continued) Sequencing coverage of clones and pools.

Round 1 Pools

Sample Coverage

Evolved 1 NaCl/HU 40.9

Evolved 2 NaCl/HU 15.6

Evolved 3 NaCl/HU 60.6

Average 39.0

Round 2 Pools

Sample Pool Coverage

Evolved 1 spores Initial 26.0

NaCl/HU 30.6

YPD 18.9

Evolved 2a spores Initial 24.6

NaCl/HU 29.6

YPD 6.6

Evolved 2b spores Initial 23.8

NaCl/HU 54.6

YPD 31.3

Evolved 3 spores Initial 40.5

NaCl/HU 32.2

YPD 4.0

Evolved 4 spores Initial 23.7

NaCl/HU 28.3

YPD 20.3

Evolved 5-1 spores Initial 24.7

NaCl/HU 32.8

YPD 26.1

Evolved 5-2 spores Initial 21.7

NaCl/HU 28.5

YPD 16.8

Evolved 6 spores Initial 26.3

NaCl/HU 29.5

YPD 50.4

Round 2 Pools (continued)

Sample Pool Coverage

Mut. anc. A
spores

Initial 18.9

NaCl/HU 28.9

YPD 25.5

Mut. anc. C
spores

Initial 25.6

NaCl/HU 33.7

YPD 48.2

Mut. anc. A
(evolved in YPD)
spores

Initial 22.2

NaCl/HU 25.1

YPD 19.8

Mut. anc. C
(evolved in YPD)
spores

Initial 22.8

NaCl/HU 24.8

YPD 27.6

Average 27.1

Round 3 Pools

Sample Coverage

Evolved 3 spores
YPD (redo)

31.7

Final Population 1 28.8

Final Population 2 41.2

Final Population 3 44.5

Final Population 4 34.3

Final Population 5 42.8

Final Population 6 51.1

Final Population 7 29.6

Final Population 8 49.3

Final Population 9 42.4

Final Population 10 78.9

Final Population 11 52.2

Average 43.9
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clones and 27.1 for 36 pools (Figure 3.2B). Two pools in the second round were too low

for analysis; one was resequenced in round 3 and the other was redundant. The final

evolved populations were sequenced in the third round, along with additional clones from

each population that did not contain the known causal mutations identified by round 2.

Coverage averaged 31.6 for 24 clones and 43.9 for 12 pools (Figure 3.2B).

Bulk segregant analysis of mutator clones

Bulk segregant analysis was performed for one clone from each mutator population,

Evolved 1 to 6 (Figure 3.1). The clones used for bulk segregant analysis are those denoted

as clone 1 in Chapter 2. To identify causal mutations for NaCl-dependent survival as well

as mutations improving growth in standard media, pooled haploid cells were split into

two cultures and subjected to five rounds of NaCl/HU selection or to continuous growth

in standard media (Figure 3.1B). Genomic DNA was prepared from the final cultures and

sequenced by Illumina sequencing (see section 4.6 for methods). The frequency of each

mutation in the pool was determined from the numbers of independent reads with and

without the mutation. Mutations were only considered for causality if they were present

in the evolved clone but not in the direct ancestor. The mutations segregating above 80%

in the NaCl/HU-selected pool for each clone are listed in Table 3.2. Mutations are listed

by their position in the genome to better illustrate linkage. Only mutations that occur in

open reading frames (ORFs) or promoter regions are listed; promoter regions were defined

as the 500 bp upstream of an ORF. Regions with mutations not listed include terminators,

autonomous replicating sequences (ARS), and small nucleolar RNAs (snoRNAs). Only

one affected region is listed per mutation; where a mutation occurs in more than one
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region (e.g., the ORF of one gene and the promoter of an adjacent gene), the region

to be listed was determined by the following order of priority: ORF (nonsynonymous),

Promoter, ORF (synonymous).

Genomic DNA from the initial pool of spores was also sequenced to account for biases

in initial frequencies, which can result from close linkage to a locus used in the selection

for haploid spores (see section 4.5 for more details on spore selection). Our method of

selecting for haploid spores used genetic markers, specifically the mating locus from the

evolved clone and the URA3 locus from the (mating-type switched) ancestor clone, to

select for MATa haploids. Therefore, any mutations in the evolved clone linked to the

MATa locus (chromosome 3, position 198671 - 201177) would be enriched and those linked

to the URA3 locus (chromosome 5, position 116167 - 116970) would be depleted in the

initial pool. Indeed, all six evolved clones have one or more mutations whose presence in

the top 80% of segregants could be explained by linkage to the mating locus (Table 3.2).

The top four segregating mutations in the analysis of Evolved 3-1 are above 85% in all

three pools and are located within 27 kb of the MATa locus.1 I further evaluated the

mutations in Evolved 3-1 by testing linkage of the evolved phenotype to mating type.

Spores from dissected tetrads were genotyped for mating type and tested for HU survival.

The absence of linkage eliminated these mutations from consideration.

1One centiMorgan (cM) in yeast is 3 kb on average, i.e., mutations within 3 kb are separated in 1%
of meioses.
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3.4 Determining candidate causal mutations from se-

quence data

Putative causal mutations in the mutator strains were identified based on segregation

frequencies in the three pools, the annotated function of the affected gene and any notable

mutant phenotypes. In Evolved 1-1, 14 mutations segregate above 90% in the NaCl/HU

pool. However, HAL5 and CPS1 are the only mutations segregating above 90% in the

NaCl/HU pool that are also at initial frequencies below 90%. The other 12 mutations,

present at or close to 100% in all three pools, likely owe their high frequencies to mitotic

gene conversion events in the diploid prior to expansion of the culture for sporulation.

HAL5 encodes a putative protein kinase with a previously-described role in salt tolerance,

and CPS1 encodes a vacuolar carboxypeptidase. These genes lie within 10 kb of each

other in the genome, and the mutation in HAL5 was determined more likely to be causal

due to its reported NaCl-related mutant phenotypes. This analysis process was repeated

for each mutator clone; the results are summarized in Figure 3.3.

All mutations considered here had high representation in the bulk segregant analysis

NaCl/HU pool. For Evolved 2-1, two diploid cells were separately sporulated and sub-

jected to bulk segregant analysis, providing experimental replicates for these data. The

mutation in RPD3, encoding a histone deacetylase, was considered for causality due to

the previously described involvement of Rpd3 in potassium transport. The HXT1 muta-

tion in Evolved 2-1 is identical to that in Evolved 5-1 and therefore was considered very

likely to be causal for both clones, despite no clear role for Hxt1, a hexose transporter, in

salt or osmotic stress response. Evolved 4-1 and 6-1 each contain a mutation in HOG1,

68



Figure 3.3 Top candidate mutations from bulk segregant analysis.

The top candidate mutations from the bulk segregant analysis of each evolved clone
were chosen based on having frequencies above 90% after passage through the NaCl/HU
selection cycle and initial frequencies around 50%. While not a criterion for candidacy,
almost all showed decreases in standard media from their initial frequencies.
1Frequencies are from Evolved 2-1b analysis because it had higher coverage than 2-1a.
2Frequencies for HXT7 are estimated from reads mapping to both HXT6 and HXT7.

which encodes a protein kinase that is a key transducer of the osmotic stress response.

The survival of a hog1∆ strain was previously described in section 2.3 (see Figure 2.5

for data). Consistent with a hog1 loss-of-function phenotype, clones Evolved 4-1 and 6-1

also survive HU treatment with the osmolytes KCl and sorbitol (Figure 2.9, Table 2.1),

providing further evidence that the HOG1 mutations are causal.

In selecting clones from population 5, the clones displayed varying survival pheno-

types: Evolved 5-1 had NaCl-dependent survival, while 5-2 had NaCl-independent survival

of HU. However, Evolved 5-2 was not retested to confirm this result, and no other clones
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analyzed from this population showed NaCl-independent survival. The only mutation

segregating at above 80% in the NaCl/HU pool of Evolved 5-2 is in UPC2, which encodes

a transcriptional activator of sterol biosynthesis genes. The Evolved 5-2 clone could not

be retested because the original evolved clones used in the bulk segregant analysis for

Evolved 4, 5, and 6 were unfortunately not saved for future work. Genomic DNA from

the Evolved 5 clones was sequenced, but DNA samples for the Evolved 4 and 6 clones

were unavailable. Instead, the diploid strains used for their bulk segregant analysis were

sequenced and analyzed using different parameters to account for heterozygosity of the

evolved mutations present. These analyses still gave clear results for the causality of the

HOG1 mutations.

Besides the mutations linked to the mating locus, the top segregants in Evolved 3-1

are a nonsynonymous mutation in RPH1, encoding a histone demethylase, and a mutation

in the promoter of VPS74. The promoter mutation was considered unlikely to be causal,

and the search for a causal mutation in Evolved 3-1 was renewed after strain engineering

showed that RPH1 was not causal (results described in section 3.5). The search focused

on the region around VPS74, with the reasoning that the high frequency of its promoter

mutation could be due to a linked causal mutation. After much consternation, a mutation

in HXT7, another hexose transporter gene, was discovered. This mutation was undetected

in earlier analyses because of the uncertainty inherent in the process of mapping very

short reads to duplicated regions in the genome. HXT7 has 99% sequence identity with

the adjacent2 ORF HXT6 : there are only 3 mismatches over their coding regions of

2The adjacency of the ORFs did not contribute to the uncertainty in mapping, but it did cause Sanger
sequencing to be required for determining which ORF was affected, since a mutation in either would show
similar linkage to VPS74. It also, however, made it easier to identify the clonal heterogeneity at both
sites in the sequence files.
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Figure 3.4 Linkage to HXT7
mutation.

The mutation in HXT7 (at position 0)
was calculated to be at a frequency of
about 50% in the evolved clone and
thus went undetected in initial
analyses. The high frequency of the
mutation in the VPS74 promoter
region in NaCl/HU pool 2 (arrow) led
to closer examination of this region in
the variant detection step of the
sequencing pipeline. NaCl/HU pools 1
and 2 are from the first and second
bulk segregant analyses of Evolved
3-1, respectively. The Initial and
Standard media pools were done
concurrently with NaCl/HU pool 2.

1713 bp plus 83 bp upstream. Therefore, Illumina sequencing reads (150 bp) cannot be

unambiguously assigned to one region over the other. In our sequence analysis pipeline,

reads with multiple matches were randomly assigned to one matching location. This

resulted not only in the reported mutation frequency being lower than its true frequency

in the sequenced pools, but also in the mutation not being detected in the evolved clone:

our analysis used a threshold of 90% read frequencies for mutations in a clone, whereas

the HXT7 mutation was at a frequency close to 50% (Figure 3.4). Examination of the

variant detection files revealed mutations present at heterogeneous levels in the evolved

clone, and running the analysis with a lower threshold for clone mutations yielded the

information on mutations in HXT6 and HXT7 listed in Table 3.2. Sanger sequencing

with primers outside of the identical regions determined that this mutation is in HXT7.

The frequencies for this mutation depicted in Figure 3.3 were estimated by doubling the

proportion of variant reads out of all reads mapped to both of the HXT6 and HXT7 loci.

Clones from the non-mutator evolved populations were sequenced without back-
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crossing; each contains fewer than ten mutations. All mutations in coding regions resulting

in nonsynonymous changes and in promoter regions are listed in Table 3.3. Parallelism

in the genes mutated aided in identifying mutations as potentially causal. The clones

from populations 7 and 8 contain mutations in HXT genes: for Evolved 7, a mutation

in HXT3, and for Evolved 8, a mutation in HXT1 different from the mutation seen in

Evolved 2 and 5. Evolved 9 and 10 each have a mutation in IMP2 ′, which encodes a

protein characterized as a transcriptional activator. Initial characterization of population

11 yielded clones with two different survival phenotypes, and one clone of each type was

sequenced. Evolved 11-1 has NaCl-dependent survival, and the nonsynonymous mutation

in TUP1, encoding a transcriptional repressor, was judged the most likely to be causal.

Evolved 11-2 is a clone with NaCl-independent survival of HU, and its single mutation

is in ERG10, an essential gene that encodes an enzyme in the ergosterol biosynthesis

pathway. Candidate mutations were confirmed by Sanger sequencing before commencing

with strain construction.

Genetic diversity of final populations

The frequencies of candidate causal3 mutations in the final populations were measured

by Sanger sequencing of the final population and of ten newly-selected clones from the

final population (Figure 3.5). Allele frequencies in the final populations were determined

from relative peak heights of the Sanger traces from the population sample. In most but

not all cases, the number of the ten sampled clones with the mutant allele approximated

the frequencies calculated by peak heights. Surprisingly, known causal mutations were

3By this point, most of the causal mutations had been confirmed by strain construction.
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Table 3.3 Mutations in non-mutator evolved clones.

Evolved 7

Chrom. Position Type Anc. Evo. Gene Region

41 1163347 SNP G A HXT3 ORF (nonsynonymous)

7 1039999 SNP C A TAF1 ORF (nonsynonymous)

10 56922 SNP C T ACO2 ORF (nonsynonymous)

Evolved 8

Chrom. Position Type Anc. Evo. Gene Region

8 291541 SNP T C HXT1 ORF (nonsynonymous)

15 574117 SNP A C VPS17 ORF (nonsynonymous)

Evolved 9

Chrom. Position Type Anc. Evo. Gene Region

9 54095 SNP A C IMP2′ ORF (nonsynonymous)

10 356959 SNP G C SDH1b ORF (nonsynonymous)

Evolved 10

Chrom. Position Type Anc. Evo. Gene Region

9 54651 SNP C A IMP2′ ORF (nonsynonymous)

Evolved 11-1

Chrom. Position Type Anc. Evo. Gene Region

2 473142 SNP G C LYS2 ORF (nonsynonymous)

3 262417 SNP A T TUP1 ORF (nonsynonymous)

10 585961 SNP C G STE18 Promoter

15 424744 SNP T C YOR050C Promoter

16 292186 SNP T C SPP1 ORF (nonsynonymous)

Evolved 11-2

Chrom. Position Type Anc. Evo. Gene Region

16 498488 SNP C G ERG10 ORF (nonsynonymous)

1Mutations listed in bold were tested for causality by strain engineering.
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Figure 3.5 Allele frequencies in
final populations.

Allele frequencies were determined
by Sanger sequencing (blue),
sampling ten clones (green) and
whole-genome sequencing (WGS,
orange). Peak heights of Sanger
sequence traces were compared using
QSV Analyzer. Ten clones from the
final population were selected from a
plated sample and genotyped by
Sanger sequencing. Read frequencies
from whole-genome sequencing were
determined from numbers of
independent reads.
x: clone genotyping was not
performed for HXT7-G84D in
population 3 clones.

at 10% or less in five of the eleven final populations. Only one population had a causal

mutation at 100%.

Due to this heterogeneity, all final populations were analyzed by whole-genome se-

quencing, along with clones not containing the candidate causal mutations. The fre-

quencies determined by whole-genome sequencing closely matched those from the Sanger

sequencing (Figures 3.5). Sequencing clones that lacked the initially identified muta-

tions revealed other instances of HXT1-S333Y, HXT7-G84D, and TUP1-L12Q, early stop

codon mutations in HAL5 and HOG1, and three mutations in other HXT genes (Figure

3.6, Table 3.4).

The multiple instances of the same mutations arose independently, rather than as

a result of contamination between populations, evidenced by each clone sharing muta-

tions with other members of its population that are not found in other populations (data
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Figure 3.6 Genetic diversity in final evolved populations.

In five of eleven final populations, mutations that were confirmed to be causal (blues)
account for 50% or more of the population. Greens represent “likely causal” mutations
based on similarity to causal mutations or other parallelism. Including these still leaves
most populations with a substantial fraction of cells with unidentified causal mutations
(gray). Capitalization of gene names is not meant to indicate functional effect of
mutation.
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Table 3.4 Candidate causal mutations in all sequenced clones.

Causal Mutations

Pop. Ancestor Clone Confirmed Likely Other Mutations

1 Mut. ancestor A 1 HAL5-G515W

2 Mut. ancestor A

1 HXT1-S333Y RPD3-D201V

2
HXT7-G84D3

4

3 Mut. ancestor A

1 HXT7-G84D RPH1-H248Y

2
HXT4-G136D,
TUP1-L12Q3

4

4 Mut. ancestor A

1 HOG1-A166V

2 HXT4-G184D

3
HAL5-N580T,
HAL5-Q376*

4 HOG1-A166V

5 Mut. ancestor B

1 HXT1-S333Y

2 UPC2-L855I

3 GRS2-L263P

4 HOG1-C205*

5 HXT1-S333Y

6 Mut. ancestor C

1 HOG1-G175D CTI6-P83L

2
HXT5-A298S PPZ1-D597V

3

4
PSR2-L166P,
CMK1-R331S

Asterisks (*) denote early stop codons. Capitalization of gene names is not meant to
indicate the functional effect of the mutation; it is used for consistency to avoid
assumptions about untested mutations.
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Table 3.4 (continued) Candidate causal mutations in all sequenced clones.

Causal Mutations

Pop. Ancestor Clone Confirmed Likely Other Mutations

7 Ancestor A

1 HXT3-A438V

2 HAL5-L541T*14

3 HXT1-S333Y BZZ1-A385T

4 HXT3-A438V

8 Ancestor A
1 HXT1-T362A VPS17-K315T

2
SNQ2-A1233D,
EGT2-delC246

3 TUP1-C348R

9 Ancestor B
1 IMP2′-L309R

2 ERG10-R132C

3 IMP2′-L309R

10 Ancestor B 1 IMP2′-E124*

11 Ancestor B

1 TUP1-L12Q

2 ERG10-R132G

3 TUP1-L12Q

4 ERG10-R132G

Asterisks (*) denote early stop codons. Capitalization of gene names is not meant to
indicate the functional effect of the mutation; it is used for consistency to avoid
assumptions about untested mutations.
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not shown). Also notable are the ERG10-R132C and ERG10-R132G mutations from

populations 10 and 11, respectively (Table 3.4). All clones with one of these mutations

had NaCl-independent HU survival (9-2, 11-2 and 11-4 in Table 2.2). The population

frequencies of these “likely causal” mutations are depicted in Figure 3.6 as well. Despite

including these, most populations still have a substantial fraction (10 to 65%) of cells

with unidentified causal mutations. Some best guesses are included in Table 3.4 under

“Other Mutations” based on gene associations with stress response and/or salt homeosta-

sis (PPZ1-D597V in Evolved 6-1, PSR2 and CMK1 in Evolved 6-4) or their prominence

in the final population (SNQ2 and EGT2 in Evolved 8-2). These guesses in mutator

clones should be taken with many grains of salt, as these clones typically had over 100

mutations identified by the sequencing pipeline.

3.5 Strain engineering to test causality

Candidate causal mutations were tested by allele replacement, both by engineering

the mutation into the ancestor background (“reconstruction”) and by reversion of the

mutation to wild-type in the evolved clone (Figure 3.7). By these methods, I confirmed

mutations in six different genes that individually confer increased salt-dependent HU

survival (Table 3.5). Mutations in the genes RPD3 from Evolved 2-1, RPH1 from Evolved

3-1, and ACO2 from Evolved 7-1 were also tested and found to be non-causal (data not

shown). All of the mutations tested were single nucleotide changes resulting in either an

amino acid substitution or an early stop codon.

I tested the survival phenotypes of gene deletions in both the ancestor and evolved
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Figure 3.7 Strain constructions to test causality of mutations.

Mutations identified in the evolved clones were engineered into an ancestral strain (non-
mutator A) to test their sufficiency for conferring survival in hydroxyurea. Mutations
in the evolved clones were reverted to the wild-type allele to test necessity. Whether
the mutations constituted a loss or gain of function of the encoded protein was deter-
mined by comparing the phenotype of deletion strains of both backgrounds to the evolved
phenotype. Dominance was determined from the phenotype of the heterozygous diploid.

backgrounds (Table 3.6). Gene deletions mimic the phenotype of the evolved mutations

in HAL5, HOG1, and IMP2 ′, indicating loss-of-function mutations. For mutations in

HXT1, HXT3 and HXT7, gene deletions do not confer survival and deleting the gene in

the evolved clones results in loss of survival, indicating that these mutations are gain-of-

function. Dominance of the mutations was evaluated by testing HU survival of heterozy-

gous diploids made from mating evolved clones with a non-evolved strain4 (Table 3.6). The

loss-of-function mutations in HAL5, HOG1, and IMP2 ′ are recessive; the gain/change-of-

function mutations in HXT genes are dominant except for HXT1-T362A.

Deletion of TUP1 confers salt-independent HU survival (Table 3.6). This deletion

also results in robust flocculation; the evolved clones with the TUP1-L12Q mutation

show mild flocculation, indicating that this mutation is likely hypomorphic (partial loss-

4This actually tests whether the evolved phenotype is dominant or recessive. A direct test of the
mutation would be to use a diploid made from the reconstructed strain and the ancestor, with no other
evolved mutations present. Ancestor-Evolved diploid strains were used for expediency.
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Table 3.5 Hydroxyurea survival of allele-replaced strains.

Evolved Clone Reconstruction Reversion

Gene Mutation Strain Std. NaCl Std. NaCl Std. NaCl

HAL5 G515W 1-1 - + + + - + + - -

HOG1
A166V 4-1 - + + + - + + - +

G175D 6-1 - + + + - + - -

IMP2′
E124* 10-1 - + + + + + + - -

L309R 9-1 - + + - + + + - -

HXT1
S333Y

2-1 - + + +
- + + +

- -

5-1 - + + + - +

T362A 8-1 - + + + - + + - +

HXT3 A438V 7-1 - + + + - + + + - +

HXT7 G84D 3-1 - + + + - + + + - -

Table 3.6 Hydroxyurea survival of deletion and diploid strains.

Anc. Deletion Evo. Deletion Diploid

Gene Mutation Strain Std. NaCl Std. NaCl Std. NaCl

HAL5 G515W 1-1 - + + - + + + - -

HOG1
A166V 4-1

- + + +
- + + + - -

G175D 6-1 - + + + - -

IMP2′
E124* 10-1

+ + + +
+ + + - -

L309R 9-1 + + + + + - -

TUP1 L12Q 11-1 + + + + + + n.t.1 n.t.1 - -

HXT1
S333Y

2-1
- -

- - - + +

5-1 - + - + + +

T362A 8-1 + + - -

HXT3 A438V 7-1 - - - + - + +

HXT7 G84D 3-1 - - - - - + + +

1n.t.: Not tested; the evolved clone 11-1 with TUP1 deleted was not constructed.
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of-function). The diploid did not have any survival, so it is recessive. The mutation

was not tested by reconstruction due to the salt-independent survival phenotype of the

deletion; early assays with the evolved clone also showed variable results, with some salt-

independent survival.

Five of the nine reconstructed strains survived in HU as well as or better than the

evolved clone. Oddly, the reconstructed strains containing IMP2 ′ mutations survived

better than Evolved 9-1 and 10-1. The deletion strains also showed some increase in

survival without NaCl. These differences imply the presence of phenotype-modifying

mutations in the evolved clones, possibly acquired by their common ancestor, Non-mutator

Ancestor B. The four strains whose reconstructions survived worse than their evolved

clones contain mutations in HAL5, HOG1, and HXT1. The hog1-G175D mutation was

found to be necessary but not sufficient; the reconstructed strain had only a slight increase

in survival whereas Evolved 6-1 had no survival when the mutation was reverted. The

hog1-A166V mutation also conferred a survival level lower than its evolved clone, Evolved

4-1. Because the ancestor deletion strain shows a stronger survival phenotype, these

mutations are probably hypomorphic instead of a full loss of function, and Evolved 4-1

and 6-1 may have secondary mutations contributing to their survival.

Both the hal5-G515W mutation and deletion of HAL5 conferred survival higher

than the ancestor but lower than the evolved clone, indicating the potential presence of

secondary mutations. Evolved 1-1 also contains a mutation in VHS3, which has a reported

salt-sensitive null phenotype, that segregated at 80% in the bulk segregant analysis. The

HXT1-T362A reconstructed strain also has lower survival than Evolved 8-1. The only

other mutation in Evolved 8-1 is in VPS17 ; many VPS genes, involved in vacuolar protein

sorting, have salt-sensitive null phenotypes but none has been reported for VPS17 [10].
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3.6 Phenotypes of reconstructed strains

Population growth phenotypes of reconstructed strains were measured as in sec-

tion 2.5 (see section 4.4 for experimental details). These are compared to the phenotypes

of the evolved clones from Chapter 2, grouped by the mutated gene. All allele replace-

ments and deletions in an ancestor background were constructed using the same ancestor

strain, non-mutator A, in order to compare phenotypes betweeen mutations. Thus, ev-

ery “Ancestor” in the following charts is the non-mutator ancestor A. For comparisons

between evolved clones and their direct ancestors, see section 2.5. Because population

growth is a phenotype not dependent on the mec1∆ sml1∆ background, this was also as-

sayed for reconstructed strains in a MEC1 SML1 background (i.e., the typical lab strain).

This is presented for all genes at the end to compare the mutant phenotypes to each other.

HAL5

The growth phenotypes of HAL5 constructed strains closely match their levels of HU

survival: the ancestor reconstruction and the ancestor deletion strains both have lower

survival and higher growth rates in NaCl media than the Evolved 1-1 clone (Figure 3.8A).

This again indicates the likely contribution of a second mutation to the evolved pheno-

type. However, reversion of HAL5 completely restores the growth rate of the evolved

clone in NaCl. The HAL5 mutation appears to not greatly impact growth in standard

media; the lower growth of Evolved 1 and the reverted strain is likely due to their mutator

ancestor background (Figure 3.8B). The main function described for Hal5 is upregulat-

ing activity of the K+ transporters Trk1 and Trk2 in response to salt stress [11, 12]. I
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Figure 3.8 Growth rates of HAL5 constructed strains.

(A) Reconstruction and deletion strains have reduced growth in NaCl media, but not to
the level of Evolved 1-1. Deletion of TRK1 matches the rate of the hal5-G515W and
hal5∆ strains. The effective growth rate of each strain was calculated for the period of 2
to 6 hours after transfer into 0.5 M NaCl media, or from hour 2 until saturation if
reached before hour 6. Rates were determined from six or more biological replicates.
(B) Deletion of TRK1 confers a large growth defect in standard media, but deletion or
mutation of HAL5 does not. Growth rates are as in (A) except with standard media.
(C) Growth dynamics reflect the rate differences seen in (A) and (B). Raw data were
calibrated by a blank value and transformed to account for the non-linearity above OD
0.6 before normalizing by initial OD. Lines are mean values from six or more replicates
and shaded bands are bootstrap 95% confidence intervals.
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tested HU survival of a strain lacking TRK1, the dominant transporter, and found it to

be indistinguishable from the survival of strains containing the hal5∆ and hal5-G515W

mutations in the ancestor background (- in standard media and ++ in NaCl), indicating

that the hal5 phenotypes are likely due to reduced activity of Trk1. This also indicates

that the unknown secondary mutation in Evolved 1-1 is not exerting its effect through

further suppression of Trk1 activity. A major difference between the hal5 and trk∆ strains

is seen in their growth rates in standard media (Figure 3.8B). Deletion of TRK1 confers

a strong defect in standard media, implying a need for Trk1 function in standard media

conditions that does not depend on activation by Hal5.

HXT genes

Of the four different HXT mutations tested for causality by strain construction, three

conferred a high level of hydroxyurea survival, and HXT1-T362A conferred a moderate

level of survival. It is also the only recessive HXT mutation, despite all HXT mutations

being gain-of-function. The growth phenotypes of the three HXT genes with mutations

tested by strain construction are considered separately. The two alleles of HXT1 have

very different effects on growth rate in NaCl media; each matches the growth rate of

its corresponding evolved clone(s) (Figure 3.9A). The HXT1-S333Y evolved clones and

reconstructed strain have much lower growth rates than the HXT1-T362A strains. Growth

deficits of the evolved clones in NaCl are eliminated by reverting the HXT1 mutation.

There is no strong defect in growth rates in standard media (Figure 3.9B).

For strains testing the HXT1-S333Y allele, the dynamics in NaCl media after the first

hour segregate according to the strains’ HXT1 genotypes, matching the effective growth
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rate calculations (Figure 3.9C). However, Evolved 2-1 shows different early dynamics that

cannot be attributed its HXT1 mutation; both it and the reverted strain have a slightly

faster resumption of OD increase than Evolved 5-1 and the HXT1-S333Y reconstruction

strain, indicating the possible contribution of a second mutation. Growth dynamics of

these strains in standard media segregate by background, not the HXT1 allele; this is more

apparent from the aggregated growth curves than the effective growth rate (Figure 3.9B,

C). For strains testing the HXT1-T362A allele, growth dynamics in NaCl media are

initially identical for all strains, with a small degree of separation between hours 2 and 6

(Figure 3.9D). No differences are seen in standard media.

Evolved 7-1, which contains the HXT3-A438V allele, had the lowest growth rate

in NaCl of the characterized evolved clones; this low rate is precisely matched by the

reconstructed strain (Figure 3.10). The growth deficit of Evolved 3-1 in NaCl is also

matched by its reconstructed strain containing the HXT7-G84D mutation (Figure 3.11).

Two features of the growth dynamics of the HXT7 strains suggest the influence of another

mutation on the evolved clone’s phenotype. The first is the faster resumption of OD

increase in the evolved strain relative to the reconstructed strain. The second is the

growth defect in standard media conferred by reverting the HXT7 mutation, a result not

seen in any other reverted strain.

HOG1

Two mutations in HOG1 were tested for causality: A166V conferred a moderate

level of HU survival, and G175D conferred a low level. This difference is reflected in the

growth rates of the reconstructed strains in NaCl media: the lower-survival hog1-G175D
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Figure 3.9 Growth rates of HXT1 constructed strains.

(A) The HXT1-S333Y evolved and reconstructed strains have very low growth rates in
NaCl media, in contrast to the HXT1-T362A strains. For the ancestor reconstruction
strains, HXT1-1 indicates the HXT1-S333Y allele and HXT1-2 indicates the
HXT1-T362A allele. The effective growth rate of each strain was calculated as described
in Figure 3.8A. Rates were determined from six or more biological replicates.
(B) No strong growth defects are seen in standard media. Growth rates are as in (A)
except with standard media.
(C) Growth dynamics in NaCl media show early recovery of Evolved 2-1 independent of
its HXT1 mutation; growth after the first hour segregates by HXT1 genotype. Growth
in standard media segregates by strain background, not the HXT1 genotype. Growth
curves are as described in Figure 3.8C. Lines are mean values from six or more replicates
and shaded bands are bootstrap 95% confidence intervals.
(D) Growth dynamics reflect the small but reproducible and HXT1 -dependent growth
deficit of HXT1-T362A strains in NaCl media. This deficit is not seen in standard
media.
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Figure 3.9 (continued) Growth rates of HXT1 constructed strains.
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Figure 3.10 Growth rates of HXT3 constructed strains.

The ancestor containing the HXT3-A438V allele perfectly matches both the growth rate
and dynamics of the evolved clone in NaCl media. No differences are seen in standard
media. Growth rates in (A) and (B) and aggregated growth curves in (C) are as
described in Figure 3.8.
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Figure 3.11 Growth rates of HXT7 constructed strains.

(A) The ancestor containing the HXT7-G84D allele matches the decreased growth rate
of the evolved clone in NaCl media. Reversion of the mutation eliminates the deficit.
(B) The HXT7 mutation does not impact growth rate in standard media, but reversion
of the mutation confers a growth defect.
(C) The reconstructed strain has a longer lag before increasing OD than the evolved
strain. After the first hour, dynamics correlate with HXT7 genotype. The reverted
strain’s growth defect in standard media is clearly seen in the growth curves.
Growth rates in (A) and (B) and aggregated growth curves in (C) are as described in
Figure 3.8.
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Figure 3.12 Growth rates of HOG1 constructed strains.

(A) The A166V but not the G175D mutation confers a growth rate as low as its evolved
clone of origin in NaCl media; none are as low as a hog1∆ strain. For the ancestor
reconstruction strains, hog1-1 indicates the hog1-A166V allele and hog1-2 indicates the
hog1-G175D allele. The effective growth rate of each strain was calculated as described
in Figure 3.8A. Rates were determined from six or more biological replicates.
(B) Loss of HOG1 function imparts a small growth deficit, but growth defects of the
evolved clones in standard media are not greatly improved by reverting the HOG1
mutations. Growth rates are as in (A) except with standard media.
(C) Growth dynamics in NaCl of strains testing A166V segregate by HOG1 genotype
but show small differences at later times. Growth curves are as described in
Figure 3.8C. Lines are mean values from six or more replicates and shaded bands are
bootstrap 95% confidence intervals.
(D) Growth dynamics in NaCl media show early recovery of Evolved 6-1 independent of
its HOG1 mutation; growth of Evolved 6-1 after the first hour resembles the hog1∆ but
not the reconstructed hog1-G175D strain.
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Figure 3.12 (continued) Growth rates of HOG1 constructed strains.
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reconstructed strain has a higher growth rate (Figure 3.12A). However, both Evolved

4-1 and Evolved 6-1 had a high level of survival. Evolved 6-1 has a much lower growth

rate than the hog1-G175D reconstructed strain, but Evolved 4-1 does not have a big

difference from the hog1-A166V strain. Oddly, the G175D allele confers a larger growth

deficit in standard media than A166V and has about the same rate as the hog1∆ strain

(Figure 3.12B). The growth rates of the reverted strains in standard media remain low;

they are closer to, but still lower than, the growth rates of their mutator ancestor strains.

Evolved 4-1 and 6-1 were the only evolved strains to not show a decrease in OD

after the addition of NaCl. Examining the growth curves of HOG1 constructed strains

demonstrates that the absence of a dip in OD right after NaCl addition is caused by

hog1 loss of function. The early growth dynamics of Evolved 4-1 in NaCl media can

be accounted for by its hog1-A166V mutation; the difference at later times between

the ancestor and the HOG1 -reverted strain indicates the existence of a second mutation

affecting growth in NaCl (Figure 3.12C). By contrast, Evolved 6-1 shows a distinct early

trajectory that is not related to the HOG1 mutation (Figure 3.12D). Both the evolved

clone and the reverted strain have a faster resumption of OD increase than the ancestor

reconstruction and deletion. Its rate at later times matches that of the hog1∆ strain but

not the reconstructed strain, suggesting a continued influence of a secondary mutation on

growth dynamics.

IMP2 ′

The reconstructed strains containing evolved alleles of IMP2 ′ had higher survival

than the evolved clones with those mutations, a trend not seen with any other mutation
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tested. The growth dynamics of Evolved 9-1 and 10-1 were also different from all other

evolved clones: they showed exponential rather than linear growth in NaCl media. The

growth phenotypes of the strains testing the imp2′-L309R allele closely match those of

the corresponding strain testing the imp2′-E124* allele (Figure 3.13). The reconstructed

strains have substantial growth defects in NaCl media, much lower than the evolved clones

and close to the imp2 ′∆ strain (Figure 3.13A). Loss of IMP2 ′ function has no effect in

standard media; differences in growth rates are likely related to the higher growth rate

of non-mutator ancestor B, the direct ancestor of Evolved 9-1 and 10-1 (Figure 3.13B).

IMP2 ′ loss-of-function strains have exponential growth at a low rate in NaCl media;

Evolved 9-1 and 10-1 show an initially similar rate but increase their exponential growth

rate over the first six hours in NaCl media (Figure 3.13C, D).

3.7 Discussion

Finding causal mutations

In this work, I sequenced and analyzed whole-genome sequencing data to determine

the genetic basis of NaCl-dependent HU survival in evolved strains. Evolved strains had

been passaged through either ten or twenty-four rounds of selection. Assuming growth

only in standard media, evolving strains grew for about ten to twelve generations per cycle,

and 100 to 120 (Evolved 4-11) or 240 to 288 (Evolved 1-3) generations total. Consistent

with these estimates and assumed mutation rates, non-mutator evolved strains had only

a few mutations per clone while mutator strains typically had over 100 mutations per

clone. Therefore, I used bulk segregant analysis to determine causal mutations in mutator
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Figure 3.13 Growth rates of IMP2 ′ constructed strains.

(A) The reconstructed strains have substantial growth defects in NaCl media, much
lower than the evolved clones and close to the imp2 ′∆ strain. The effective growth rate
of each strain was calculated as described in Figure 3.8A. Rates were determined from
six or more biological replicates.
(B) Growth rates in standard media segregate by background; strains derived from
non-mutator ancestor A (Ancestor, reconstructions, and deletion) have lower rates than
strains derived from ancestor B (Evolved 9 and 10 and their reversions). Growth rates
are as in (A) except with standard media.
(C) Growth dynamics in NaCl media differ based on both the IMP2 ′ genotype and the
strain background. Evolved 9 shows increasing exponential growth over the first six
hours. Growth curves are as described in Figure 3.8C. Lines are mean values from six or
more replicates and shaded bands are bootstrap 95% confidence intervals.
(D) Growth dynamics of Evolved 10 and the strains testing imp2′-E124* closely match
the corresponding strain in (C) testing the imp2′-L309R allele.
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Figure 3.13 (continued) Growth rates of IMP2 ′ constructed strains.
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evolved strains. I extended the typical analysis to account for initial frequency in the

pool of spores and for mutations that improved or diminished growth in the absence of

HU selection. This method was very successful at identifying single causal mutations

of large effect for the six mutator clones analyzed. Whole-genome sequencing without

back-crossing was sufficient to identify causal mutations in the non-mutator clones, and

was aided by a high degree of parallelism between independent populations.

Additional evolved clones and the final populations were sequenced after preliminary

work showed low final frequencies for several confirmed causal mutations. This work

confirmed the genetic basis for the phenotypic heterogeneity described in Chapter 2:

most final populations contained multiple independent causal mutations. Often, evolution

experiments involve sequencing end populations but not individual clones to identify

causal mutations. Experiments that take advantage of the “fossil record” - frozen samples

of the population at time points - have identified subpopulations by grouping together

mutations that have correlated changes in frequency over time; they also use this data to

distinguish low-frequency mutations from sequencing errors [3]. In the absence of time

series information, determining whether mutations are in the same genome is impossible

without additional manipulations [13]. The approach I took to identify causal mutations,

sequencing clones with the desired phenotype, was because of my interest in the genetic

basis of the phenotype rather than the dynamics of evolution. This approach turned out

to be essential to identifying causal mutations. Sequencing the final populations revealed

that only two populations (2 and 10) had causal mutations at over 90%. Notably, the

HOG1 mutations found in populations 4, 5, and 6 were all at very low frequencies (<10%)

and might not have been identified by sequencing populations.

Sequencing both populations and multiple clones from each population not only re-
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vealed the genetic heterogeneity of final populations but also uncovered a high level of

genetic parallelism between populations. From these two characteristics, I infer that there

is a relatively small number of single, large-effect mutations, and that these were selected

in populations with high initial diversity. The high degree of parallelism is surprising

in light of the many, many genes that have been reported to have salt-sensitive pheno-

types. In the Saccharomyces Genome Database, 449 genes have been annotated with

“decreased hyperosmotic stress resistance” and 172 genes with “decreased ionic stress re-

sistance,” with an overlap of 67 genes [14, 15]. HAL5, HOG1, and IMP2 ′ all appear in

this overlapping set.

Among eight evolved populations, there were ten independent instances of HXT mu-

tations, seven of which were confirmed to be causal. The large number of such mutations

is reminiscent of the “duplication and divergence” model of gene evolution, except that

many duplicate copies already exist in genome. Redundancy and feedback regulation of

expression means that one non-glucose-transporting HXT gene would likely not impose

a fitness cost, and the large number of HXT genes increases the target size for mutations

that would otherwise seem rare.

Even with the high level of parallelism among evolved populations, there were differ-

ences between populations evolved from different ancestors. Surprisingly, the differences

in the types of genes mutated were not between mutator and non-mutator strains, but

between those derived from different non-mutator ancestors. HAL5 and HOG1 muta-

tions account for about 20%5 of the eight final populations evolved from the non-mutator

ancestor A or its derived mutators (Evolved 1-8), and change-of-function mutations in

5Percents were calculated by adding the percents from each population and dividing by the number
of populations.
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HXT genes account for nearly half (43%) of these final populations. Conversely, no mu-

tations in any of these genes were found in the non-mutator B populations (Evolved 9-11).

Instead, IMP2 ′ mutations account for about 60% of Evolved 9 through 11, and ERG10

mutations conferring NaCl-independent survival account for another 27%. The only gene

found mutated in populations from both ancestors is TUP1, with the L12Q allele found in

both Evolved 3 and 11, and C348R found in Evolved 8. Analysis of the final populations

is of course biased by knowledge of causal mutations in the subset of analyzed clones;

roughly 25% of the final populations is composed of clones without a mutation in one of

these genes and whose causal mutations remain unknown.

Connecting genotype to phenotype

In the discussion in Chapter 2, clones from the evolved populations were grouped

into three classes based on their HU survival phenotype. Considering these classes after

sequencing, I can now assign genetic causes to the different phenotypes. The class I

clones, which demonstrate NaCl-specific survival, are dominated by mutations in HXT

genes, HAL5, and IMP2 ′. All of the class II clones (osmolyte-dependent survival) have

mutations in HOG1, which matches with its described role in osmotic stress response

independent of the nature of the osmolyte. The two class III clones, which have NaCl-

independent survival, both have mutations in the same residue of ERG10. ERG10 is an

essential gene encoding an enzyme required for ergosterol biosynthesis, and heterozygous

null mutants show increased sensitivity to hydroxyurea [16, 17]. These are therefore likely

to be hypomorphic alleles that result in cell cycle arrest in the presence of HU in a

manner independent of the DNA replication checkpoint, through inhibition of ergosterol
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biosynthesis.

Genetic reconstructions demonstrated that most clones contained a single mutation

with a large effect on HU survival and that these mutations decrease population growth

rate in NaCl media. However, differences were found in either HU survival level, growth

dynamics, or both between most clones and their reconstructed strains, providing evidence

for secondary mutations. For example, the reversion of the hog1-G175D mutation in

Evolved 6-1 revealed its contribution to the late, but not early, growth dynamics in NaCl

media. Some differences could also be due to background effects: a single non-mutator

ancestor, not each direct ancestor, was used to test reconstructions of mutations. This

is most likely the cause of differences between Evolved 9-1 and 10-1 and the IMP2 ′

reconstructed strains. Both Evolved 7-1 and 8-1 were evolved from non-mutator ancestor

A, the exact strain used for reconstruction, which could account for the relative precision

in matching growth dynamics between the evolved clones and their reconstructed strains,

and between the reverted clones and the ancestor. The remaining difference between the

HXT1 -reverted Evolved 8-1 and its ancestor is additional evidence for a second mutation.

Mechanisms of action

The mutations described above lead to the hypothesis that the evolved clones survive

HU in NaCl media due to an inability to properly regulate or restore Na+ ion balance

and are therefore inhibited in passage through the cell cycle. Alkali cation regulation is

important for many aspects of cellular physiology, including membrane potential, cell vol-

ume, intracellular pH, and signaling [18]. Cells maintain a high intracellular concentration

of K+ ions, necessary for several processes, and a low concentration of Na+ ions, which
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are toxic to cells. Measurements of intracellular ion concentrations in high NaCl indicate

that the ratio of K+ to Na+ ions, rather than the absolute concentration, is important for

cellular function [11]. In S. cerevisiae, Trk1 and Trk2 are channels responsible for uptake

of K+ ions, and their activity is upregulated by Hal5 [11]. The membrane channels Ena1

and Nha1 pump Na+ ions out of the cell, powered by ATP hydrolysis and H+ antiport

respectively [19, 20].

The simplest interpretation of our results is that cell cycle progression is dependent

on a proper ion balance, and the evolved strains are defective in creating this balance

in the presence of high NaCl. While many genes in S. cerevisiae have been implicated

in ion homeostasis and salt-sensitive mutants often having overlapping defects with other

cellular processes, little is known about the regulatory connection between ion homeostasis

and the cell cycle. Some evidence for the dependence of the cell cycle on ion homeostasis

comes from the complete G1/S blockage in a sit4− hal3− mutant background that is

rescued by overexpression of genes involved in ion transport and regulation [? ]. Also,

mutants with increased salt tolerance (ppz1,2−) show accelerated adaptation to α-factor

pheromone arrest in G1 in a manner dependent on the Trk1,2 K+ transporters [21]. This

latter evidence argues for a role for ion regulation in a typical cell cycle, not just for the

sensitivity of cellular processes to ion imbalance.

Loss of Hal5 function causes salt sensitivity by removing the upregulation of Trk1,2

K+ ion channels [11, 12]. Loss of Imp2′ function has been found to cause defects in

many cellular processes6, among which is monovalent and divalent cation homeostasis

6To quote directly from the IMP2′ SGD webpage: “null mutant exhibits slow growth, impaired en-
docytosis, large cell size, abnormally round buds, decreased life span, and is sensitive to osmotic stress,
metals, heat, radiation, dessication, antimalarial chloroquine, various mutagens, and various antibiotics.”
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[22]. Imp2′ has been characterized as a transcriptional regulator but its targets remain

unknown.

In contrast to the hal5 and imp2 ′ mutations, the HXT mutations conferred salt

sensitivity through gain/change of function. The HXT genes encode hexose transporters

with high homology to each other and to several other hexose transporter genes [23]. All of

the evolved mutations are single amino acid changes that affect putative transmembrane

residues. Three of the confirmed causal mutations (HXT7-G84D, HXT1-S333Y, HXT3-

A438V ) and one untested mutation (HXT4-G184D) are analogous to mutations in HXT1

and HXT3 that were found in a selection for mutations that enabled trk1,2− cells to

grow in K+-limited medium [? ]. The mutations enabled growth by allowing the ion

to enter through the altered hexose transporter. These mutations also caused sodium

sensitivity, most likely by being permeable to Na+ as well as K+ ions and thus increasing

the internal sodium concentration. Mutations in HXT genes created some of the strongest

growth defects in NaCl media found in this study. The difference in growth rates between

the HXT1-S333Y and HXT1-T362A mutants is probably due to differences in the ion

permeability created by the amino acid change.

Mutations in TUP1 were found in clones from three evolved populations. Tup1

complexes with Cyc8 to repress transcription of over 180 genes and of large subtelomeric

regions; the repression of subsets of these genes is mediated by different sequence-specific

repressor partners [24]. This complex is converted from repressive to activating in the

Hog1-mediated transcriptional response to osmotic stress [25]. Genes repressed by Tup1-

Cyc8 include osmotic stress response genes, such as the Na+ exporter ENA1, but also

DNA damage response genes, including RNR2 and RNR3. Because the tup1∆ strain

showed NaCl-independent survival and early assays with Evolved 11-1 produced variable

101



survival results, its evolved allele TUP1-L12Q was not tested by reconstruction. All TUP1

mutant clones also displayed some flocculation, a phenotype that has been demonstrated

to protect cells from various stresses in a non-specific way [26].

As an osmostress-activated MAP kinase, Hog1 has been extensively studied in its

capacity to effect broad transcriptional changes and impinge on cell cycle checkpoints

[27, 28, 29]. Hog1 has been reported to phosphorylate the cyclin-dependent kinase (CDK)

inhibitor Sic1 and repress cyclin transcription in G1 and to inhibit CDK activity in G2

after transfer to 0.4 M NaCl [30, 28, 31]. However, cell cycle delays still occur in hog1∆

strains [32]. Hog1 also mediates an immediate, non-transcriptional response to NaCl

stress by activating ion channel Nha1 [27]. Sudden NaCl stress causes dissociation of

proteins from chromatin, and the absence of the Hog1/Nha1 initial response delays the

resumption of transcription for over 10 minutes [27]. However, a delay in adaptation does

not account for the sustained growth defect of hog1∆ yeast in NaCl media.

While a persistant imbalance in ion levels might explain the salt sensitivity of the

hog1 mutants, it does not account for their survival in sorbitol. This survival could be

due to either a similar inhibition by osmotic stress or cross talk with the pheromone

response, another MAPK pathway [33]. This cross talk arises from the common function

of Ste11, the MAPKKK, in both pathways: Ste11 is activated by Ste20 in response

to either stimulus, and phosphorylates either Pbs2 or Ste7, depending on the stimulus

[34]. The downstream specificity of these signals despite having a shared component has

been extensively examined, and is thought to occur through “insulation” of the signal by

scaffolding proteins and cross-inhibition [35, 36]. Osmotic stress applied to yeast lacking

Hog1 or Pbs2 function induce transcription of a pheromone-responsive gene [33]. Whether

or not they also arrest the cell cycle via the pheromone-specific CDK inhibitor Far1 has,

102



to my knowledge, not been characterized; studies of the cell cycle in hog1∆ yeast have

focused on identifying the interactions of Hog1 itself with cell cycle machinery. Testing

of the hog1− phenotype in a strain also lacking FAR1 is planned.

103



References

[1] D. R. Smith, A. R. Quinlan, H. E. Peckham, K. Makowsky, W. Tao, B. Woolf,

L. Shen, W. F. Donahue, N. Tusneem, M. P. Stromberg, D. A. Stewart, L. Zhang,

S. S. Ranade, J. B. Warner, C. C. Lee, B. E. Coleman, Z. Zhang, S. F. McLaughlin,

J. A. Malek, J. M. Sorenson, A. P. Blanchard, J. Chapman, D. Hillman, F. Chen, D. S.

Rokhsar, K. J. McKernan, T. W. Jeffries, G. T. Marth, and P. M. Richardson, “Rapid

whole-genome mutational profiling using next-generation sequencing technologies.,”

Genome Research, vol. 18, pp. 1638–1642, Oct. 2008.

[2] C. L. Araya, C. Payen, M. J. Dunham, and S. Fields, “Whole-genome sequencing of

a laboratory-evolved yeast strain.,” BMC Genomics, vol. 11, p. 88, Feb. 2010.

[3] G. I. Lang, D. P. Rice, M. J. Hickman, E. Sodergren, G. M. Weinstock, D. Botstein,

and M. M. Desai, “Pervasive genetic hitchhiking and clonal interference in forty

evolving yeast populations.,” Nature, vol. 500, pp. 571–574, Aug. 2013.

[4] A. Hinnen, J. B. Hicks, and G. R. Fink, “Transformation of yeast.,” Proceedings of

the National Academy of Sciences of the United States of America, vol. 75, pp. 1929–

1933, Apr. 1978.

[5] S. Scherer and R. W. Davis, “Replacement of chromosome segments with altered

DNA sequences constructed in vitro.,” Proceedings of the National Academy of Sci-

ences of the United States of America, vol. 76, pp. 4951–4955, Oct. 1979.

[6] Z. Moqtaderi and J. V. Geisberg, “Construction of mutant alleles in Saccharomyces

cerevisiae without cloning: overview and the delitto perfetto method.,” Current Pro-

tocols in Molecular Biology, vol. 104, p. Unit 13.10C, Oct. 2013.

[7] M. J. Brauer, C. M. Christianson, D. A. Pai, and M. J. Dunham, “Mapping novel

traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae.,” Ge-

netics, vol. 173, pp. 1813–1816, July 2006.
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[24] T. M. Malavé and S. Y. R. Dent, “Transcriptional repression by Tup1-Ssn6.,” Bio-

chemistry and Cell Biology, vol. 84, pp. 437–443, Aug. 2006.

[25] M. Proft and K. Struhl, “Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex

into an activator that recruits SAGA and SWI/SNF in response to osmotic stress.,”

Molecular Cell, vol. 9, pp. 1307–1317, June 2002.

[26] S. Smukalla, M. Caldara, N. Pochet, A. Beauvais, S. Guadagnini, C. Yan, M. D.

Vinces, A. Jansen, M. C. Prevost, J.-P. Latgé, G. R. Fink, K. R. Foster, and K. J.

Verstrepen, “FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Coop-

eration in Budding Yeast,” Cell, vol. 135, pp. 726–737, Nov. 2008.

[27] M. Proft and K. Struhl, “MAP kinase-mediated stress relief that precedes and reg-

ulates the timing of transcriptional induction.,” Cell, vol. 118, pp. 351–361, Aug.

2004.
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Chapter 4

Materials and Methods

4.1 Yeast culturing and strain construction

Media and materials

Yeast were grown and handled using standard techniques [1, 2]. Yeast were cultured

in the complete medium YPD (1% yeast extract, 2% peptone and 2% dextrose). Liquid

cultures were grown at 30oC on a roller drum. Glycerol stocks were made by combining

a culture 1:1 with 30% (w/v) glycerol in ultrapure water and stored at -80 oC. Strains

were sporulated by culturing overnight in YEPA (1% yeast extract, 2% peptone and 2%

potassium acetate), then washing twice and resuspending in ultrapure water containing

2% potassium acetate. Sporulating cultures were incubated at 25oC on a roller drum for

2-7 days. Spores were treated with zymolyase and separated by micromanipulator for

tetrad analysis.

Stock solutions of sodium chloride, potassium chloride and sorbitol were made by
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dissolving the solute in YPD and filtering with 0.22 µm pore vacuum filters (Corning).

Hydroxyurea was dissolved in ultrapure water at 2 M, filtered with a 0.22 µm pore sy-

ringe filter (Pall), aliquoted and stored at -20oC. To use, aliquots were thawed at 25 to

65oC, then vortexed to ensure full dissolution. All media components and chemicals were

purchased from Sigma-Aldrich (www.sigmaaldrich.com) unless otherwise indicated.

Zymolyase was purchased from Zymo Research.

Strain construction

Strain genotypes are listed in Tables 4.1, 4.4, and4.3 in section 4.8. All strains

used in this study were derived from the W303 background (ura3-1 ade2-1 his3-11,15

leu2-3,112 trp1-1 can1-100 ) and are MATa haploid unless otherwise indicated. Genetic

modifications were made using standard techniques [3]. Gene deletions were constructed

by PCR-mediated one-step gene disruption (Figure 4.1A). DNA products used in trans-

formations, consisting of a selectable gene and 100 to 300 bp of flanking homology, were

constructed using fusion PCR. Allele replacements were constructed by transformation

with a linear DNA fragment containing a region of the gene to be replaced, including

the mutation and continuing through the terminator, fused with the Kluyveromyces lac-

tis URA3 cassette including its native promoter and terminator regions (Figure 4.1B).

The K. lactis URA3 locus was amplified from the plasmid pBS1369 [4]. Gene deletion

and allele replacement transformants were screened by colony PCR and verified by PCR

from genomic DNA. Allele replacements were also verified by Sanger sequencing of the

mutation region.

The mec1∆ sml1∆ strain (yNMC006) was constructed by first deleting sml1∆ by

109

file:///Users/nwespe/Documents/NMW%20Thesis/www.sigmaaldrich.com


Figure 4.1 Diagrams of strain construction.

(A) Genes were deleted by one-step replacement with a selectable gene cassette
(typically KANMX ) using a linear construct containing the cassette flanked by 100-300
bases of homology. The cassette contains its own promoter and terminator.
(B) Allele replacements were done by one-step replacement of a region of the gene of
interest, mediated by a downstream selectable gene cassette containing its own promoter
and terminator. This technique was chosen for expediency over the more commonly used
two-step methods, as there was no need to reuse the selectable marker.
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replacement with KANMX6, followed by deleting mec1∆ by replacement with HIS3MX6.

The POL3-L523D mutator strain (yNMC028) was constructed using the URA3 loopout

strategy with plasmid PY24D. The plasmid was linearized before transformation with

restriction enzyme Eag1 (New England Biolabs). Both the initial plasmid integration and

the nucleotide substitutions after loopout were confirmed by Sanger sequencing.

The strain yNMC047, the MATα version of yNMC006, was constructed by mating-

type switching. Strain yNMC006 was transformed with plasmid pJH1912 carrying PGAL1-

HO, cultured in galactose media to induce HO expression and plated onto YPD agar [5].

The haploid MATα strain was isolated from the resulting colonies by sporulation and

tetrad dissection. Strain yNMC063 was created to enable selection of haploid spores in

bulk segregant analysis (see section 4.5). This strain was derived from yNMC047 by

integrating NATMX6-PSTE2-URA3 at the endogenous URA3 locus.

Diploid strains were constructed by mixing together strains of opposite mating types

on an agar plate, incubating at 30oC, and selecting zygotes by micromanipulation. Diploids

were confirmed by complementation mating test and by sporulation.

4.2 Experimental evolution

Two clones of yNMC006 (mec1∆ sml1∆ ) and three clones of yNMC028 (mec1∆

sml1∆ POL3-L523D, all derived from yNMC006A) were used as ancestors for one or more

evolved populations. See Table ?? for the specific ancestor for each evolved population.

Clones A and B of strain yNMC006 are independent transformants of the initial sml1∆

gene deletion.
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Each population was inoculated from a single colony of the ancestral strain into a

small 3-ml culture, then diluted for overnight growth. From the 8-ml overnight culture, 1

ml was removed, of which 100 µl was used for cell counts and the remainder frozen as a

glycerol stock. Then, 1 ml of 4 M NaCl in YPD was added to 7 ml of culture for a final

concentration of 0.5 M. Two hours after adding NaCl, 205 µl of 2 M hydroxyurea (HU)

was added for a final concentration of 50 mM. Four hours after adding HU, the entire

culture was transferred to a plastic 14-ml conical tube and centrifuged at 1800 RPM for

3 minutes. The supernatant was decanted and the pellet resuspended in 800 µl of YPD.

A varying amount (2-400 µl) from the ten-fold concentrated cells was diluted into 8 ml

of YPD for overnight growth. A glycerol stock was made of 500 µl of the remaining

concentrated cells. The goal of overnight dilution was to achieve a mid-log phase culture

(i.e., not exceed 107 cells/ml) 18 hours later from an unknown number of viable cells.

Thus, the dilution level was varied between cultures and between rounds of selection.

The level of overnight dilution for each culture was determined based on the growth of

the culture from the previous round’s dilution. In early rounds, the dilution level was

from 1/2 to 1/20, and in late rounds, the dilution level was from 1/100 to 1/400.

The estimated survival of a culture was determined after each round by comparing

the number of cells after the overnight growth phase with the expected number based on

the number of cells before NaCl/HU treatment. The equation used is

survival =
actual cell count

expected cell count
=

CE

CS × dilutions × 2t/τ

where CS and CE are the starting and ending cell counts, respectively, t is the length of

time the culture was in the growth phase, and τ is the doubling time. Dilutions are the
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dilution factors used after the NaCl/HU treatment (e.g., 1/400) and occasionally again

in the morning to keep the cultures in exponential growth. For the estimated values in

Figure 2.8, τ =120 minutes for the mutator populations and 100 minutes for the non-

mutator populations. The result was multiplied by 100 for percent survival.

In the first evolution (February-March 2013), three cultures were passaged through a

total of 24 NaCl/HU exposures with overnight growth periods in between each exposure

to HU. These became strains yNMC033, 034 and 035. In the second evolution (August

2014), the cultures were passaged through five rounds of selection, placed at 4 oC for

about 24 hours, then passaged through another five rounds for a total of ten rounds.

These cultures became strains yNMC110 to 117. Concurrently with the second evolution,

three cultures of the yNMC028 ancestors (one each of clones A, B, and C) were passaged

through growth in YPD without exposure to NaCl or HU. Cultures were diluted once

per day in the evening, 1/400 to 1/4000, and mostly reached late-log phase or saturation.

These became strains yNMC107, 108, and 109.

4.3 Hydroxyurea survival and analysis

The general scheme for a hydroxyurea survival assay is depicted in Figure 4.2. For

each experiment, strains were inoculated in duplicate into a starter culture 24 hours

in advance of the experiment, and diluted for overnight growth. The growth phase of

the culture was important to achieve accurate and consistent results; a culture close to

stationary phase would have higher survival due to having fewer growing cells in the

population. Details specific to either the colony-counting version or the high-throughput
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dilution spot version are below.

Colony-counting survival assay

Cultures were grown in YPD liquid media at 30oC on a roller drum. Each strain to

be tested was inoculated in duplicate into 2 to 5 ml YPD one day before the experiment,

then back-diluted (1/100 to 1/2000 depending on strain) into 5 to 10 ml for overnight

growth. For the experiment, cultures were diluted to 2×106 cells/ml in 4 ml of Start

and end samples were plated in triplicate onto YPD agar and colonies were counted two

days later. An ImageJ macro was written to aid in counting colonies on agar plates. See

Appendix A for a more detailed description.

The first executions of the colony-counting assay, in which a single strain was tested

in a range of conditions, did not include plating a start sample; instead, survival was

calculated based on the number of cells in the starting culture as determined by Coulter

counter. In most other colony-counting assays, a knock-out strain containing a drug

selection gene was combined with a control strain in the same tube, treated together,

then distinguished in the start and end samples by replica-plating. However, a large

difference in survival made it difficult to accurately assay survival for both strains in a

tube. Later assays were done with strains cultured individually.

High-throughput survival assay

Cultures were grown in a 2-ml deep 96-well plate (“deep-well” plate, VWR Cat.

89237-526) covered with a breathable rayon sealing film (VWR Cat. 60941-086). Each
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Figure 4.2 Diagram of hydroxyurea survival assay.

(A) General scheme of survival assay. Each strain to be assayed is inoculated in
duplicate, grown to exponential phase, then passaged through the NaCl/HU selection
analogous to that used in the evolution experiment. A no-stimulus control for each
strain is always included.

(B) To quantify percent survival, start and end samples are plated in triplicate onto
YPD agar and colonies are counted two days later. In some assays, two strains differing
by a single gene deletion were co-cultured; the YPD plates were counted for the total
number of cells, then replica-plated to a drug selection plate to count the number of
deletion cells.
(C) To determine the order of magnitude of survival, start and end samples are serially
diluted and spotted onto YPD agar. Spots from start and end are compared as
described in section 4.3.3.
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strain to be tested was inoculated in duplicate into 400 µl YPD one day before the

experiment, then back-diluted (1/100 to 1/2000 depending on strain) into 400 µl for

overnight growth. For the experiment, each culture was diluted into 300 µl YPD plus 300

µl of 2x test media in a deep-well plate. Then, 200 µl of each sample was transferred to a

96-well plate for the “start” plating, leaving 400 µl in each well. The plate was incubated

at 30oC on a roller drum for two hours, then 10 µl of 2 M HU (final concentration 50

mM) was added to each well and the plate was incubated for another four hours. 200

µl of each sample was transferred to a 96-well plate for the “end” plating. Each 200-

µl sample culture was serially diluted 1/10 three times by transferring 20 µl into wells

containing 180 µl YPD. Cultures were spotted onto YPD agar plates using a replica

plater (Sigma-Aldrich). Each plate contained 48 spots: 12 samples with 4 serial dilution

spots per sample (undiluted, 1/10, 1/100, and 1/1000). Plates were grown at 30 oC for

two days before imaging. Each agar plate was imaged with a gel imager (AlphaImager

HP, AlphaInnotech) using reflective white light with no filter, at the following settings:

aperture 8.00, zoom 25, exposure 75 ms.

Hydroxyurea survival analysis

A suite of ImageJ macros and Python programs was written to automatically analyze

the plate images acquired in the HU survival assays. See Appendix A for more detailed

description of scripts. First, images were adjusted, cropped and split into series of spots

for individual samples using batch plate cropper.py. Then the start and end images for

each sample are combined into one file using batch montage.py. Montage images for

a single experiment were placed into one PDF document using combine experiment.py.
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The images were checked by eye for contamination and low starting growth, and these

samples were excluded from analysis. If the negative control strain (yNMC006) showed

high survival, the entire experiment was excluded from analysis.

Each experimental sample was matched to the strain and media used and placed into

a folder for that strain using strain sorter.py. Each image of serial dilution spots was

converted to a binary image and the pixel area of each spot measured and recorded using

batch survival strain.py. Next, the end/start pixel area ratio for each dilution level was

calculated and the highest dilution level determined for which this ratio was at least 0.5

using HU strain analysis.py. The dilution levels were assigned values of 0, 1, 2, 3, and 4

for calculating a mean. A survival category (-/+/++/+++) for the strain and condition

was assigned based on the mean maximum dilution level from at least six replicates (three

separate experiments with two replicates each).

4.4 Growth curve assays and analysis

Growth curve acquisition

Experimental growth curves were conducted using the BioTek PowerWave 340 with

shaking at 30oC. The optical density at a wavelength of 600 nm (OD600) was recorded

every 10 minutes. The first time point was recorded 10 minutes after the start of the

experiment to account for settling during plate setup. Each strain to be tested was

inoculated in duplicate into 400 µl YPD in a deep-well one day before the experiment,

then back-diluted (1/100 to 1/2000 depending on strain) into 400 µl for overnight growth.

For the experiment, strains were diluted to OD600 0.1 in 100 µl YPD in a flat-bottom 96-
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well plate (Falcon Cat. 353072) and the plate was covered with a permeable, transparent

film (Breathe-Easy, Diversified Biotech). A growth curve was recorded for 2 to 3 hours

to assure exponential growth (“pre-incubation”). Then, the plate was removed, 20 µl of

YPD was added to each well, and 50 µl was transferred from each well to a well containing

50 µl of either YPD or YPD with 1 M NaCl. A film was applied and growth was recorded

for 18 hours.

Data calibration

The raw OD600 values were calibrated by subtracting a value from each well to ac-

count for the optical density of the plate, culture media and cover film. Two factors

affected the accuracy of this “blank” value (Figure 4.3). It was determined that the ma-

chine in use had consistent between-row variation in measurement, and this was accounted

for by using separate blank values for each row. The permeable film used to cover the

wells had an inconsistent contribution to the optical density, and this was accounted for

by using an average value from several plates with films. Because the optical density

contributed by the plate and culture media were highly consistent, the same blank values

were used for every experiment.

The blank-subtracted OD600 values were also calibrated to account for the nonlin-

earity of optical density reads above 0.6 (Figure 4.4). The equation was determined by

comparing measured OD600 with the expected OD600 of a dilution series. I created sepa-

rate dilution series of a log phase culture and a saturated culture1, then measured OD600

1The saturated culture had lower OD600 values than the log phase culture for the same number of
cells, probably due to smaller cell size.
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(without film) of all samples in a 96-well plate. I plotted the relative dilution versus

OD600 (minus blank OD600) for the saturation phase cultures below OD 0.6 to get the

linear regression: y = 1.28x + 0.0162 (R2 = 0.985) (Figure 4.4A). I used this equation to

determine the expected OD for values greater than 0.6. I did the equivalent analysis for

the log phase data, using the fit line for low OD log phase to determine expected OD for

high OD log phase (Figure 4.4B). I combined the expected versus measured OD data for

both phases above 0.6 (Figure 4.4C). I used the exponential fit equation y = 0.2141e1.7935x

to adjust OD values above 0.6 during data analysis.

Growth analysis and plots

The Python program growth curve analysis.py was written in collaboration with

Bryan Weinstein, with input from Yu-Ying Phoebe Hsieh and Marco Fumasoni, to anal-

yse parameters of growth curves. For a description of the script and how to use it, see

Apppendix B. The effective growth rate for a defined time interval (i.e., 0 to 6 hours)

was calculated by fitting a linear regression to all of the data points for the time inter-

val. If the culture reached saturation during the time interval, only the data points prior

to saturation were used for the linear regression. Saturation points were determined by

growth curve analysis.py using an approximation of the second derivative.

Aggregated growth curves were created by plotting the mean values of six or more

normalized growth curves for each strain. Data were normalized by calibrating the raw

OD600 values as described above and dividing by the initial value. Natural log trans-

formations of the data were applied after normalization. Plots were created using the

Seaborn (version 0.7.1) data visualization package for Python (seaborn.pydata.org). See
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Figure 4.3 Blank calculation for growth curve assay.

(A) Measurement of only media in a 96-well plate on three different experiment dates
showed row-to-row variation but date-to-date consistency in media absorbance values.

(B) Measurement of media in plates sealed with a permeable, transparent film showed
that the film creates noise in the measurement in addition to the row-to-row variation.
(C) Row averages were calculated from the five plate measurements in (B); the gray
lines indicate the standard deviation of the 60 measurements for each row (5
measurements of 12 wells per row). These row averages were used as the “blank” values
in the analysis of all growth curve data.
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Figure 4.3 (continued) Blank calculation for growth curve assay.
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Figure 4.4 Calibration for high OD values.

(A) and (B) Separate dilution series of an exponential phase culture and a saturated
culture were measured without film. The relative dilution vs. OD - blank OD for the
saturation phase (A) and exponential phase (B) cultures below OD 0.6 were plotted and
a linear regression equation determined for each.

(C) These equations were used to calculate the expected OD for values above OD 0.6.
The resulting values were plotted against the measured OD and used to determine an
exponential fit equation, which was used to adjust experimental OD values above 0.6 in
the analysis of all growth curve data.
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Appendix B for a description of the Python code used to generate boxplots and aggregate

growth curve plots.

4.5 Bulk segregant analysis

One or more clones from each evolved population was mated to yNMC063 (MATα

mec1∆ sml1∆ NATMX6-PSTE2-URA3 ) and sporulated for several days as described in

section 4.1 until spores were observed. The sporulation culture was pelleted, resuspended

in 50 µl of zymolyase (diluted 1/10 in ultrapure water), and incubated at 30oC for one

hour. Then, 400 µl water and 50 µl 10% Triton X-100 was added. The mixture was

sonicated for five seconds then pelleted at 6000 RPM for one minute. The cells were

resuspended in 100 µl water and plated onto synthetic complete medium minus uracil

to select for haploid MATa cells. Once colonies were visible, the plate was rinsed with

media to pool cells. The pooled cells were split into three parts. The “initial” pool

was used directly to prepare genomic DNA (see section 4.7.2). The “YPD” pool was

cultured in YPD with dilution once per day for 5 days, then processed for genomic DNA.

The “NaCl/HU” pool was passaged through 5 rounds of the full selection cycle (see

Figure 2.6), then processed for genomic DNA.

4.6 Whole-genome sequencing and analysis

Libraries were prepared for sequencing using the Illumina Nextera kit and a pro-

tocol modified for smaller volumes [6]. Library concentrations were quantified using a
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Qubit Fluorimeter and Agilent TapeStation 2200. Sequencing was performed by the Har-

vard Bauer Core Facility on the Illumina HiSeq 2500 using a Rapid Run flow cell. All

sequencing reactions were 150-bp paired-end reads.

Sequence data were analyzed by a modified version of the procedure described in

[7]. The FASTQ files were first processed for adapter trimming using cutadapt 1.8.1

(cutadapt.readthedocs.io/en/stable/index.html) [8]. Reads were aligned to the S288c ref-

erence genome R64 (downloaded from the Saccharomyces Genome Database, accessible

at www.yeastgenome.org) by the Burrows-Wheeler Alignment tool BWA-MEM (version

0.7.9a) (bio-bwa.sourceforge.net) [9, 10]. The resulting SAM (Sequence Alignment/Map)

file was converted to a BAM (binary SAM) file, sorted and indexed with samtools 1.3.1

(www.htslib.org) [10]. Insertions and deletions (indels) were realigned using the IndelRe-

aligner tool of the Genome Analysis Toolkit 3.3.0 (software.broadinstitute.org/gatk) [11].

Overlapping bases, which result from short inserts of paired-end reads, were removed

from analysis using the clipOverlap function of bamUtil 1.0.13 (genome.sph.umich.edu/

wiki/BamUtil: clipOverlap) before creating the pileup file with samtools mpileup. All

variant detection (SNP, indel and copy number) was performed using VarScan 2.4.1

(dkoboldt.github.io/varscan/) [12]. Sequencing coverage was determined using the func-

tion CollectAlignmentSummaryMetrics from Picard Tools 1.119 (broadinstitute.github.io/

picard). Coverage reported is the number of aligned bases, not including overlapping

bases, divided by the genome size (12,157,105 bp; nuclear and mitochondrial genome

lengths of S288c reference genome, www.yeastgenome.org/genomesnapshot).

SNPs and indels detected by VarScan were further analyzed using the mutantanal-

ysis.py program written by a previous Murray lab member, John Koschwanez (available

at github.com/koschwanez/mutantanalysis) [7]. This program was modified slightly for
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use with ClustalW 2.0.12. The exact version used for the analysis presented here was run

with Python 2.7.6, pysam 0.6 and Biopython 1.63 and is available at github.com/nwespe/

sequence analysis. Copy number variation determined by VarScan was visualized with a

script written by Daniel Rice, with modifications by Phoebe Hsieh, Marco Fumasoni, and

me, and expanded for multiple samples by me. These scripts (plot copynumber.py and

batch plot copynumber.py) are available at github.com/nwespe/sequence analysis.

I wrote a suite of Python and Bash scripts to automate and parallelize execution of

the sequence analysis pipeline on the Harvard Research Computing Odyssey cluster. See

Appendix C for a full description of scripts, which are available at github.com/nwespe/

sequence analysis.

4.7 Molecular biology protocols

Protocols used frequently in this work are presented here in full. The yeast transfor-

mation and genomic DNA preparation protocols were obtained from Murray lab members

and have minor modifications. The colony PCR protocol was personally developed after

intermittant success with other methods; it has proven successful in the hands of several

rotation students and beginning bench scientists.
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Yeast transformation

Protocol modified from Gottschling Lab.

1. Grow yeast to exponential phase in 5-10 ml YPD.

2. Spin down culture 3 min at 1800 rpm and discard supernatant.

3. Resuspend pellet in 1 ml PBS to wash, then spin down again.

4. Discard supernatant and resuspend pellet in 100 µl 0.1 M LiAc/1x TE. Transfer to

Eppendorf tube.

5. Add 240 µl 50% PEG (MW 3350), 36 µl 1 M LiAc, 10 µl ssDNA, X µl insert DNA,

and 74-X µl H2O.

6. Vortex briefly to combine.

7. Place tube in 42oC water bath for 30 to 90 min.

8. Spin down tube 3 min at 1800 rpm.

9. Decant supernatant.

10. For auxotrophic selection, resuspend gently in 300 µl PBS and plate directly onto

selection plate. For drug selection, resuspend gently in 300 µl YPD and plate onto

YPD plate. Replica-plate 24 hours later onto selection plate.

126



Genomic DNA preparation

Protocol modified slightly from Gregg Wildenberg.

1. Grow yeast to saturation in 1-5 ml YPD. I generally use 1.5 ml; for larger volumes, I

double the amount of the reagents in steps 2-6.

2. Spin down culture 3 min at 1800 rpm and discard supernatant.

3. Add 50 µl 0.5 M EDTA (pH 7.5 – 8.0), 200 µl dH2O, and 2.5 µl zymolyase. Mix by

inversion and incubate 30-60 min at 37oC.

4. Add 50 µl of “miniprep mix” (0.2 M EDTA pH 8.0, 0.4 M Tris-Cl pH 8.0, 2% SDS).

Mix by inversion and incubate 15-30 min at 65oC.

5. Add 63 µl 5 M KAc. Mix by inversion and incubate 15-30 min on ice.

6. Spin down 10 min maximum speed. Transfer supernatant to a new tube.

7. Add 720 µl ice-cold 100% ethanol. Mix by inversion and spin down 5-10 min.

8. Discard supernatant. Add 130 µl dH2O or elution buffer and 1 µl RNase A to pellet.

Incubate at 37oC for 60 min.

9. Add 2 µl Proteinase K (20 mg/ml) and incubate at 37oC for 2 hours (omit this step

unless sample is for sequencing).

10. Add 130 µl 100% isopropanol. Mix by inversion and spin down 5-10 min. Discard

supernatant.

11. Add 500 µl 70% ethanol. Mix by inversion and spin down 5-10 min. Discard super-

natant.

12. Dry pellet 5 min at 65oC. Resuspend in 100-500 µl of 10 mM Tris-Cl pH 8.0. Incubate

at 50-65oC to speed up dissolving.
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Colony PCR

Nichole’s protocol, adapted from freeze-thaw and boil-in-base methods. This protocol

regularly yielded PCR products of up to 4.5 kb with enough product for Sanger sequencing

and no gel purification required (used spin column or magnetic bead purification).

1. Aliquot 20 µl of 20 mM NaOH into a PCR tube for each colony.

2. Using a sterile toothpick, pick a colony and smear onto a selective plate. Swish the

same toothpick around in a PCR tube containing NaOH to transfer cells. Stabbing up

and down works well. The liquid should appear slightly cloudy. With a fresh toothpick,

streak out from each smear for future colonies of the clone.

3. Vortex tubes well for 30 seconds (seriously, count to 30).

4. Heat at 100oC for 20 minutes using a PCR block.

5. Vortex tubes again for 30 seconds.

6. Place in a -80oC freezer for 10+ minutes.

7. Microwave for 2 minutes.

8. Vortex again. Optional : do another freeze-thaw cycle (steps 6-8).

9. Use 1 µl of the NaOH-colony solution in a 25 µl reaction (sufficient for checking for a

band); use 2 µl in a 50 µl reaction if purifying product for further use.

10. Store at -20oC if you want to do PCR from the same prep again. It’s important to

not let the colony prep sit at room temperature. If not using immediately after step

8, keep at -20oC and thaw right before using.

Pro tip: Each toothpick has a thin end and a thick end. I use the thin end for picking

the colony and swishing in the NaOH because the thick end wicks out too much of the

liquid. I use the thick end (of a different toothpick!) for streaking out because the thin
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end tears into the agar more easily.

PCR mix for 50 µl reaction:

27.5 µl H2O

10 µl reaction buffer

3.5 µl DMSO

5 µl primers (2.5 µl each of 10 nM stock)

2 µl colony prep

1 µl dNTPs

1 µl polymerase

Troubleshooting : If your PCR yields no product, try the following:

1. Test the reaction with a control DNA sample. If your PCR doesn’t work on good

genomic DNA, it’s not going to work on a colony prep. Go redesign your primers.

2. Repeat the reaction in parallel with control DNA. Maybe you forgot something.

3. Use more or less of the colony prep in the PCR. There is a Goldilocks amount of

template, particularly with colony PCR because other cellular matter can interfere

with the reaction. The streaking of the colony before adding it to the NaOH tends to

achieve this level more robustly but it’s not perfect.

4. Redo the colony prep, from a fresh colony if possible.

5. If you did a 25-µl reaction, try a 50-µl reaction.

6. Did you use DMSO? Use DMSO.

7. Alter your PCR program parameters (annealing temperature, extension time).

8. Do you really need this product? If so, looks like you’re just going to have to do a

genomic DNA prep (see section 4.7.2).
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4.8 Strains

All strains used in this study were derived from the W303 background (ura3-1 ade2-1

his3-11,15 leu2-3,112 trp1-1 can1-100 ) and are MATa haploid unless otherwise indicated.

Table 4.1 Strains used in Chapter 2.

Description in Text Systematic Name Relevant Genotype

mec1-1 sml1-1 yBS101 mec1-1 sml1-1

mec1∆ sml1∆ yNMC006A mec1∆::HIS3 sml1∆::KANMX

cdc26∆ yNMC025 yNMC006 cdc26∆::HPHMX

ste2∆ yNMC022 yNMC006 ste2∆::HPHMX

hog1∆ yNMC014 yNMC006 hog1∆::HPHMX

cln3∆ yNMC019 yNMC006 cln3∆::HPHMX

gpd1∆ yNMC016 yNMC006 gpd1∆::HPHMX

Ancestors

Description in Text Systematic Name Relevant Genotype

Non-mutator ancestor A yNMC006A mec1∆::HIS3 sml1∆::KANMX

Non-mutator ancestor B yNMC006B mec1∆::HIS3 sml1∆::KANMX

Mutator ancestor A yNMC028A yNMC006A pol3-L523D

Mutator ancestor B yNMC028B yNMC006A pol3-L523D

Mutator ancestor C yNMC028C yNMC006A pol3-L523D

1This strain contains alleles referenced in [13].

130



Table 4.2 Evolved clones.

Mutator evolved clones

Description in Text Systematic Name Direct Ancestor

Evolved 1-1 yNMC033B yNMC028A

Evolved 2-1 yNMC034A yNMC028A

Evolved 2-2 evo 2-01 yNMC028A

Evolved 2-3 evo 2-02 yNMC028A

Evolved 2-4 evo 2-10 yNMC028A

Evolved 3-1 yNMC035C yNMC028A

Evolved 3-2 evo 3-01 yNMC028A

Evolved 3-3 evo 3-04 yNMC028A

Evolved 3-4 evo 3-06 yNMC028A

Evolved 4-1 yNMC110-c4 yNMC028A

Evolved 4-2 evo 4-01 yNMC028A

Evolved 4-3 evo 4-02 yNMC028A

Evolved 4-4 evo 4-04 yNMC028A

Evolved 5-1 yNMC111-c3 yNMC028B

Evolved 5-2 yNMC111F yNMC028B

Evolved 5-3 evo 5-05 yNMC028B

Evolved 5-4 evo 5-08 yNMC028B

Evolved 5-5 evo 5-09 yNMC028B

Evolved 6-1 yNMC112E yNMC028C

Evolved 6-2 evo 6-02 yNMC028C

Evolved 6-3 evo 6-07 yNMC028C

Evolved 6-4 evo 6-08 yNMC028C

Mut. anc. A evolved in YPD yNMC107 yNMC028A

Mut. anc. B evolved in YPD yNMC108 yNMC028B

Mut. anc. C evolved in YPD yNMC109 yNMC028C
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Table 4.2 (continued) Evolved clones.

Non-mutator evolved clones

Description in Text Systematic Name Direct Ancestor

Evolved 7-1 yNMC113A yNMC006A

Evolved 7-2 evo 7-02 yNMC006A

Evolved 7-3 evo 7-03 yNMC006A

Evolved 7-4 evo 7-05 yNMC006A

Evolved 8-1 yNMC114A yNMC006A

Evolved 8-2 evo 9-01 yNMC006A

Evolved 8-3 evo 9-09 yNMC006A

Evolved 9-1 yNMC115A yNMC006B

Evolved 9-2 evo 10-04 yNMC006B

Evolved 9-3 evo 10-08 yNMC006B

Evolved 10-1 yNMC116A yNMC006B

Evolved 11-1 yNMC117D yNMC006B

Evolved 11-2 yNMC117I yNMC006B

Evolved 11-3 evo 12-04 yNMC006B

Evolved 11-4 evo 12-06 yNMC006B
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Table 4.3 Strains used in Chapter 3.

Description in Text Systematic Name Relevant Genotype

n/a yNMC0471 MATα mec1∆::HIS3 sml1∆::KANMX

MATα mating strain yNMC063 yNMC047 NATMX-pSTE2-URA3@URA3

n/a yNMC0512 mec1∆::HIS3 sml1∆::NATMX

Ancestor trk1∆ yNMC130 yNMC051 trk1∆::KANMX

Reconstructed strains

Description in Text Systematic Name Relevant Genotype

Ancestor hal5-G515W yNMC213 yNMC006A hal5-G515W; Kl-URA3

Ancestor hog1-A166V yNMC247 yNMC006A hog1-A166V; Kl-URA3

Ancestor hog1-G175D yNMC212 yNMC006A hog1-G175D; Kl-URA3

Ancestor imp2′-L309R yNMC191 yNMC006A imp2′-L309R; Kl-URA3

Ancestor imp2′-E124* yNMC219 yNMC006A imp2′-E124*; Kl-URA3

Ancestor HXT1-S333Y yNMC169 yNMC006A HXT1-S333Y; Kl-URA3

Ancestor HXT1-T362A yNMC170 yNMC006A HXT1-T362A; Kl-URA3

Ancestor HXT3-A438V yNMC228 yNMC006A HXT3-A438V; Kl-URA3

Ancestor HXT7-G84D yNMC258 yNMC006A HXT7-G84D; Kl-URA3

Ancestor deletions

Description in Text Systematic Name Relevant Genotype

Ancestor hal5∆ yNMC096 yNMC006A hal5∆::URA3

Ancestor hog1∆ yNMC014 yNMC006A hog1∆::HPHMX

Ancestor imp2′∆ yNMC208 yNMC006A imp2′∆::NATMX

Ancestor hxt1∆ yNMC157 yNMC051 hxt1∆::KANMX

Ancestor hxt3∆ yNMC246 yNMC006A hxt3∆::NATMX

Ancestor hxt7∆ yNMC252 yNMC006A hxt7∆::NATMX

1This strain was made by converting the mating type of yNMC006A.
2This strain was made from yNMC006A by swapping the sml1∆ selective marker. It
was used for the trk1∆ and hxt1∆ strains.
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Table 4.3 (continued) Strains used in Chapter 3.

Reverted strains

Description in Text Systematic Name Relevant Genotype

Evolved 1 HAL5+ yNMC188 yNMC033B HAL5+; Kl-URA3

Evolved 2 HXT1+ yNMC215 yNMC034A HXT1+; Kl-URA3

Evolved 3 HXT7+ yNMC256 yNMC035C HXT7+; Kl-URA3

Evolved 4 HOG1+ yNMC248 yNMC110-c4 HOG1+; Kl-URA3

Evolved 5 HXT1+ yNMC255 yNMC111-c3 HXT1+; Kl-URA3

Evolved 6 HOG1+ yNMC217 yNMC112E HOG1+; Kl-URA3

Evolved 7 HXT3+ yNMC229 yNMC113A HXT3+; Kl-URA3

Evolved 8 HXT1+ yNMC216 yNMC114A HXT1+; Kl-URA3

Evolved 9 IMP2′+ yNMC209 yNMC115A IMP2′+; Kl-URA3

Evolved 10 IMP2′+ yNMC210 yNMC116A IMP2′+; Kl-URA3

Evolved deletions

Description in Text Systematic Name Relevant Genotype

Evolved 1 hal5∆ yNMC097 yNMC033B hal5∆::URA3

Evolved 2 hxt1∆ yNMC194 yNMC034A hxt1∆::NATMX

Evolved 3 hxt7∆ yNMC253 yNMC035C hxt7∆::NATMX

Evolved 4 hog1∆ yNMC261 yNMC110-c4 hog1∆::HPHMX

Evolved 5 hxt1∆ yNMC254 yNMC111-c3 hxt1∆::NATMX

Evolved 6 hog1∆ yNMC262 yNMC112E hog1∆::HPHMX

Evolved 7 hxt3∆ yNMC245 yNMC113A hxt3∆::NATMX

Evolved 8 hxt1∆ yNMC193 yNMC114A hxt1∆::NATMX

Evolved 9 imp2′∆ yNMC205 yNMC115A imp2′∆::NATMX

Evolved 10 imp2′∆ yNMC206 yNMC116A imp2′∆::NATMX

134



Table 4.4 Diploid strains.

Diploids of evolved clones

Heterozygous diploid of: Systematic Name yNMC063 mated with:

Ancestor A yNMC266 yNMC006A

Mutator ancestor A yNMC144 yNMC028A

Mutator ancestor B yNMC145 yNMC028B

Mutator ancestor C yNMC146 yNMC028C

Evolved 1-1 yNMC066 yNMC033B

Evolved 1-1 yNMC119 yNMC033B

Evolved 2-1 yNMC067 yNMC034A

Evolved 2-1a,b yNMC152(A,B) yNMC034A

Evolved 3-1 yNMC068 yNMC035C

Evolved 3-1 yNMC121 yNMC035C

Evolved 4-1 yNMC122 yNMC110 clone

Evolved 5-1 yNMC151 yNMC111G

Evolved 5-2 yNMC150 yNMC111F

Evolved 6-1 yNMC123 yNMC112 clone

Evolved 7-1 yNMC267 yNMC113A

Evolved 8-1 yNMC268 yNMC114A

Evolved 9-1 yNMC220 yNMC115A

Evolved 10-1 yNMC221 yNMC116A

Evolved 11-1 yNMC222 yNMC117D

Evolved 11-2 yNMC223 yNMC117I

Mut. anc. A evolved in YPD yNMC147 yNMC107

Mut. anc. B evolved in YPD yNMC148 yNMC108

Mut. anc. C evolved in YPD yNMC149 yNMC109

All diploid strains above were constructed by mating with yNMC063: MATα
mec1∆::HIS3 sml1∆::KANMX NATMX-pSTE2-URA3@URA3
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Chapter 5

Conclusions and Future Directions

5.1 Summary of major results

I designed a selection cycle to evolve NaCl-dependent cell cycle arrest, using hy-

droxyurea lethality as a selective pressure. Every evolved population yielded clones with

NaCl-dependent survival of HU; of these clones, the majority have drastic reductions in

population growth in NaCl media, consistent with some or all of the cells arresting the

cell cycle. Growth defects in standard media were not observed in evolved clones rela-

tive to their direct ancestors with one exception, Evolved 4-1. Phenotyping of the evolved

clones was extended beyond fitness in the selection conditions and included examining the

specificity of HU survival and growth dynamics in both NaCl and standard media. The

population growth measurements of evolved clones revealed several features of growth

dynamics not captured by a single growth rate parameter, such as differences between

early (0-2 hours) and late (2-6 hours) times after the addition of NaCl1.

1Population growth by OD was recorded for 18 hours, but dynamics after 6 hours were not discussed.
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Causal mutations were identified by whole-genome sequencing and confirmed by

strain construction. Evolved clones contained single mutations with large effects on HU

survival, and reconstruction provided evidence for secondary mutations that influence HU

survival and/or dynamics of growth in NaCl. The final evolved populations contained

subpopulations with different causal mutations and a high degree of parallelism between

independent populations. The genes repeatedly mutated were HAL5 (3), HOG1 (3),

IMP2 ′ (2), TUP1 (3), ERG10 (2), and several HXT genes (10 in total). In section 3.7, I

discuss hypotheses about the molecular basis of HU survival based on the identified muta-

tions, evidence from prior literature, and the “extended” phenotypes (survival specificity,

growth dynamics) of the evolved clones.

One prediction before our experiment was that cross talk in MAPK signaling path-

ways resulting from mutations in HOG1 and PBS1 could increase survival in hydroxyurea.

Preliminary work using a hog1∆ strain demonstrated that loss of HOG1 increases sur-

vival in hydroxyurea in a high-osmolarity environment, but a growth defect in standard

media inhibited its enrichment in a cycling population. Mutations in HOG1 were identi-

fied in evolved clones but were not dominant in the final populations, which aligns with

expectations from preliminary work.

5.2 Further experiments with evolved strains

Molecular characterization of cell cycle arrest

As discussion in section 2.6, the measurement of population growth by OD can pro-

vide only a rough indication of the behavior of individual cells. Examination of single
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cells can be done by time-lapse microscopy, which was performed for three evolved clones,

and by flow cytometry to analyze certain cellular features. DNA content can be used

as an indicator of cell cycle stage and measured by flow cytometry for large numbers of

individual cells in a population. Early experiments showed that Evolved 1-1 maintained

arrest in G1 when released from α-factor into NaCl media. Recent attempts to replicate

and extend these experiments have been stymied by laboratory equipment issues, but

these experiments are planned for a small number of strains.

As discussion in section 3.7, the sustained low growth rate of hog1− cells could be

related to activation of Far1, the pheromone-responsive CDK inhibitor. Strains to test

whether deletion of FAR1 alters the HU survival and growth phenotypes of hog1− mutant

strains are under construction. The absence of a dip in initial OD upon transfer to NaCl

media, a feature unique to the hog1− mutant strains, indicates a basal difference in the

physiology of hog1− strains growing in standard media that impacts their response to

salt stress. To my knowledge, this has not been described before, and deserves further

investigation.

Identification of secondary mutations

Almost all of the evolved clones characterized had single mutations of large effect.

However, I described evidence from both survival and growth phenotypes that some

evolved clones may have secondary mutations contributing to their phenotype. I have

listed the mutations I think are most likely to be contributors in Table 3.4, but they

remain to be characterized as such. Not every sequenced evolved clone was characterized

by growth curves; other evolved clones containing apparent loss-of-function mutations in
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HAL5 could be assayed and compared to Evolved 1-1, which could help clarify whether

the difference between Evolved 1-1 and the reconstructed strain is due to its initial genetic

background or a secondary mutation. The RPD3 mutation in Evolved 2-1 and the RPH1

mutation in Evolved 3-1 were not found to affect HU survival, but could contribute to the

differences in growth dynamics not explained by their causal mutations in HXT genes.

Assuming that replication continues to be lethal in the presence of HU, the selective

pressure in environment 2 (with HU) has a cap of 100% survival. The selective pressure in

the cycle would then shift to environment 1 (no HU) and additional gains in fitness would

come from increased growth rate in standard media and/or delayed response to the signal,

depending on the time parameters. In sequence analysis of the mutator evolved clones, the

bulk segregant pool was also passaged in standard media; the results were not analyzed

for this particular purpose but could provide evidence of adaptation to environment 1.

However, adaptive mutations could be specifically mitigating the fitness defect of the

pol3-L523D mutator allele; a non-mutator strain was used for the back-crossing, so these

mutations would not necessarily be enriched in the pool.

5.3 Variations on the selection cycle

By using 50 mM hydroxyurea, the evolved cultures were subjected to very strong

selective pressure to survive. Combined with the moderate stress from 0.5 M NaCl, the

cultures repeatedly gave rise to clones with single, large-effect mutations. A lower level

of salt stress could result in a diminished effect from the same mutations, leading to

evolved clones with multiple beneficial mutations. A lower concentration of hydroxyurea
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or shorter exposure time would decrease the selective pressure, thereby allowing mutations

that would otherwise have a small effect to potentially be more competitive against those

of large effect. The relative effect size of a mutation could be quantified by assaying

survival under conditions more challenging than the evolution experiment.

One obvious extension of this experimental setup is the use of other environmental

changes to signal the change in selective pressure. A summer undergraduate student,

Frances Diehl, undertook one such selection using a shift in temperature to 37 oC, with

all other parameters being the same as the NaCl experiment. Cultures of both mutator

and non-mutator mec1∆ sml1∆ strains achieved moderate increases in survival over ten

rounds of selection. Clones with survival phenotypes were sequenced by whole-genome

sequencing but not further analyzed; unfortunately, most samples had very low coverage.

A more challenging evolution would be to add a substance that does not typically induce

a stress response as the signal, such as a nutrient. The selection was designed with the

idea that the signal would be something that a yeast cell already “detects” but this need

not be a criterion.

A similar selective pressure for cell cycle arrest can be imposed by abolishing the

spindle checkpoint through mutations in MAD1, MAD2, or MAD3. When treated with

microtubule-destabilizing drugs such as benomyl, these mutants proceed through mitosis

without properly segregating their chromosomes and die [1]. This could also be a strategy

to avoid resistance to HU; by using a strain with defects in both checkpoints and alternat-

ing treatments of HU and benomyl, there is reduced selective pressure for drug-specific

resistance/survival.

Another extension of this experimental evolution includes altering the time parame-
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ters of the selection. Our experimental setup creates the ability to introduce a time gap

between exposure to stimulus and treatment with HU. This strategy exploits the fact

that the factor triggering the cellular response (salt stress) is different from that provid-

ing the selective pressure (HU). Because of this decoupling of the environmental change

from selective pressure, we can administer them separately. With a time gap between

the presence of stimulus and addition HU, the optimal strategy for a cell is to continue

cell replication until the HU is present, using the earlier presence of the stimulus as an

indicator of timing. This line of experiments would potentially evolve cells that exhibit

a phenomenon more similar to “prediction”. A version of this selection was performed,

using a one-hour exposure to NaCl followed by one hour in standard media before adding

HU. Cultures of the mutator ancestor strain and of Evolved 1-1, 1-2, and 1-3 (i.e., pre-

evolved to arrest in NaCl) were passaged through rounds of this selection cycle. However,

these experiments quickly yielded strains that survive HU with or without exposure to

NaCl, implying the development of drug resistance. Further versions of this experiment

were not pursued.

5.4 Closing remarks

This system has several features that make it well-suited to probing evolutionary

dynamics: the ability to control the degree of selective pressure used during evolution,

to determine the relative effect size of mutations by altering selective pressure in assays

of evolved strains, and to separately measure contributions to fitness in the two selective

environments. The success of a strain in the full selection cycle depends both on its sur-

vival in hydroxyurea and its proliferation in another environment. The physical features
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of each environment can be varied without changing their basic selective pressures (arrest

or growth), permitting the simultaneous evolution of different responses to environmental

changes and imposing selection against trade-offs.

This execution of experimental evolution was not designed to determine the full target

size of genetic adaptations to the selection nor their the relative likelihood. It was also

not a goal to determine the “best” adaptation(s), although this could be tested for a

subset of mutations by directly competing the evolved strains. The evolving populations

were not passaged through hundreds of generations for an in-depth analysis of selective

sweeps and clonal interference, although there are hints of both phenomena in the genetic

profiles of the final populations. What this experiment did do was reveal change-of-

function genetic adaptations that would not have been identified using a screen of the

deletion collection or via transposon mutagenesis, which also predominately generates

loss-of-function mutations.

In addition to the study of evolution as a process, experimental evolution provides a

different way to approach the study of cellular physiology. Future experiments with the

evolved strains described here could aid in clarifying the regulation of arrest under ionic

stress and in characterizing the consequences of proceeding through the cell cycle with

ion imbalance. This unique method of probing the cell cycle in general could reveal new

characteristics of biological networks in a manner complementary to large-scale methods.
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Introduction

In the course of this project, it was frequently necessary to analyze very large datasets

in a reproducible manner, and I wrote computer programs to automate these analyses. I

created several ImageJ macros to aid in analyzing data from hydroxyurea survival experi-

ments, including a colony-counting program with broad applications. They are described

in Appendix A. In collaboration with Bryan Weinstein, I wrote a growth curve analysis

program to calculate growth parameters from time courses of OD600 measurements, de-

scribed in Appendix B. In order to efficiently analyze genomic sequencing data, I created

programs to execute existing software functions for large numbers of files in parallel on

the Harvard Odyssey research computing cluster. These are explained in Appendix C.

These projects have so far enabled others in my research group to quickly analyze their

data as well. The open-source code for these programs is currently available online at

https://www.github.com/nwespe.
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Appendix A

ImageJ Macros

The ImageJ macros and Python files described in this appendix are available at

https://github.com/nwespe/ImageJ functions. To install the macros, copy the files to

the ImageJ or Fiji application plugins folder and restart the application.

A.1 Colony counting

1. Take images of plates facing up with trans-illuminating white light. Settings used on

Gel-Doc: aperture = 8.00, zoom = 25, focus = 2.0, exposure = 75 ms.

2. In ImageJ/Fiji, run “auto count” from Plugins folder. Select folder containing plate

images.

3. Run “manual count” from Plugins folder, selecting same folder as before. Click on un-

marked colonies, typically around the edge of the plate. Colony counts (auto, manual,

and total) are saved in a text file in the folder selected before.
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Colony counting: “auto count” processing steps

Input image: “somecolonies.tif”

Convert to 8-bit, duplicate as mask and
auto-threshold to find plate. Fit circle and
shrink to define area for auto particle
analysis.

Subtract background of original image and
add circle selection defined above.

Clear outside and convert to binary. Run
Watershed algorithm.
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Colony counting: “auto count” processing steps (continued)

Run “Analyze particles.”

Colony counting: “manual count” processing steps

Add outlines of auto-counted colonies to
original image and ask user to click on
uncounted colonies.

Save original image with overlay of
auto-counted and manually counted
colonies.

Save text file with auto, manual and total
counts for all images: “Colony counts.txt”
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A.2 Frogger sample splitting

1. Take images of plates facing up with trans-illuminating white light. Settings used on

Gel-Doc: aperture = 8.00, zoom = 25, focus = 2.0, exposure = 75 ms. The next three

steps are run directly from ImageJ/Fiji.

2. Place plate images in a folder. Select “batch plate cropper” from Plugins folder. Select

folder with images. Move yellow box to be centered over samples.

Subroutine information: batch plate cropper.py calls plate cropper.py, which calls save -

roi.ijm.

3. Select “batch montage” from Plugins folder. Select “Individual” folder created by

“batch plate cropper” in first step. Select destination folder.

Subroutine information: batch montage.py calls create montage.ijm.

4. Select “combine experiment” from Plugins folder. Select “Montages” folder created by

“batch montage” in second step. Select destination folder.

Subroutine information: combine experiment.py calls place image.ijm.

The strain sorting functions below are run from the command line or an ipython

notebook and require a CSV file containing information about each sample.

5. strain sorter.py: The montage files are copied to a folder created for each strain and

named with the information provided. This program could be modified to sort by and

include any information, not just strain and medium.

6. strain report.py: All montage image files in a folder created by strain sorter.py are

compiled into a single PDF file.
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Frogger sample splitting: “batch plate cropper” processing steps

Input image: “20161026 AB 1-6 Start.tif”

Adjust brightness and contrast.
Ask user to move selection box to be
centered over samples.

Crop image and save in “Adjusted” folder.

Select regions of individual dilution series
and save as separate files in “Individual”
folder.

, , , , ,
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Frogger sample splitting: “batch montage” processing steps

Input images: “20161026 A1 Start.tif” and
“20161026 A1 End.tif.” Program matches each start
image with its corresponding end image.

,

Rotate each image, combine into one image
file, and save in “Montages” folder.

Frogger sample splitting: “combine experiment” processing steps

All montage images from
one experiment are
arranged in a single PDF
document.
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Frogger sample splitting: sorting and compiling results

Sort montage image files
into folders by strain or
other characteristic.

Compile report of samples
for each strain.
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A.3 Evaluating hydroxyurea survival

The first step is run directly from ImageJ/Fiji and operates on the montage images

created by the frogger splitting functions described above.

1. a. Select “batch survival strain” from Plugins folder. Select folder containing

subfolders with montage images for each strain.

Subroutine information: batch survival strain.py calls analyze pixels.ijm.

Output: strainid pixel analysis.csv file for each strain; “Regions” folder in each strain

folder containing copy of each montage image with regions marked.

b. Alternatively, select “batch survival expt” to run analysis on a single experiment

instead of on images grouped by strain.

Output: one pixel analysis.csv file; “Regions” folder containing copy of each montage

image with regions marked.

2. HU strain analysis.py is run from the command line. This uses the pixel analysis files

generated in step 1. This program computes end to start area ratios and determine the

maximum dilution at which the pixel ratio is at least 0.5. This program also creates

graphs displaying the maximum dilution results grouped by media condition.

Output: one summary file plus three files for each strain: strainid ratios.csv, strainid -

max dilutions.csv, and strainid HU survival.png.
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Hydroxyurea survival: “batch survival strain” processing steps

Input image:
“20160518 E1 114 YPD.jpg”

Select first dilution series in montage,
duplicate, threshold, and convert to mask.

Select region containing first spot,
duplicate, invert, and measure pixel area.

Repeat for each spot.

, ,

Repeat process for second dilution series in
montage. Mark spot selection regions on
dilution series image and save in “Regions”
folder.

Save CSV file containing area
measurements.
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Hydroxyurea survival: “HU strain analysis” example output

The start and end area
measurements for each sample are
matched, and the end/start ratio is
calculated.

The maximum dilution level at
which the ratio is still at least 0.5
is determined.

Maximum dilutions are compiled
by strain and condition, and a
survival level is assigned based on
the mean value.

Maximum dilutions are also
graphed by condition for each
strain.
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Appendix B

Growth Curve Analysis

A Python script was written to automate analysis of growth curves, and ipython

notebooks were developed to plot the data and analysis results from multiple experiments.

See Section 4.4 for details on how data are collected and calibrated. The files described

in this appendix are available at https://github.com/nwespe/OD growth finder/.

B.1 Population growth rates from OD curves

This program was written to extract growth rate parameters from optical density

time series readings of samples in a 96-well or 384-well plate. The program determines

maximum growth rate, lag time and saturation time, as well as an “effective” growth

rate for any specified time period. The program can be run from the command line or

an ipython notebook; examples of running the program are shown in notebook format.

Formatting of input files, program options, and examples of output are described below.
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Growth rates: input files

The raw data file contains timepoint information in the first column and optical
density values in each subsequent column. The first row contains headings with well
labels. Timepoints can be formatted as HH:MM:SS or as a number indicating
minutes elapsed (e.g., 0, 10, 20). The input file can be an Excel (.xlsx), CSV or
tab-delimited text file.

An optional plate layout Excel file can contain any metadata describing the well
contents; these will be associated with each sample in the results output. The first
column contains the well labels, and subsequent columns contain sample
information.

Blank values are essential for accurately calculating growth rate. These can be
input in several ways: as a single value; as one or more wells, in which case the
average value over all timepoints is used as the blank value; or as an Excel file
containing a single value for each well. The last option enables the use of a different
blank value for different wells, as in the case of using multiple media types with
different background optical densities in the same experiment.
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Growth rates: running the program

Here is how to run the main analysis in an ipython/Jupyter notebook. The
analyze experiment function creates an output Excel file, a summary text file, and,
if sample plots = True, an image file for each sample with the fit parameters plotted
onto the raw data. The make plots function generates a histogram and a heatmap
displaying a summary of the entire experiment.

Below is an example of running the “effective growth rate” method, with input
options for start and end times in minutes.
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Growth rates: example output

The output Excel file lists the
calculated growth rate and
details of this calculation for
each sample.

The output file also includes
lag time, saturation time, and
maximum OD reached.

The last columns in the output
file include information from
the optional plate layout file.

If sample plots = True, an
SVG file is created for each
sample showing the calculated
parameters plotted with the
raw data.
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Growth rates: example output (continued)

Any numeric column of the output file can be plotted in a histogram or heatmap
using the function “make plots.” The histogram shows the distribution of values of a
given output parameter for the experiment. The default parameter is doubling time.
Other parameter options include growth rate, lag time, saturation time, and max OD.

The heatmap shows values of a given output parameter for each well in the
experiment. The default parameter is growth rate. Here, the usage of duplicate wells
for each strain can be clearly seen, especially in rows E through H.
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Growth rates: input options

Parameter Description Default value

data file file containing OD data None (required)

plate layout file containing sample metadata None

blank blank value 0

blank file file containing blank value by well;
overrides blank

None

method see descriptions in separate table ‘sliding window’

out dir destination for output files current directory ‘./’

window size number of OD values used in sliding
window to fit linear regression

9

sample plots create sample plots (adds significantly to
runtime)

False

droplow drop very low values from analysis (below
-4.6 after calibration, equal to OD 0.01)

False

start start time for “effective growth rate” 0

end end time for “effective growth rate” None (uses last point)

saturation use saturation point as end time for
“effective growth rate” if sample saturates
before specified end (recommended)

False

correction parameters for correcting non-linearity of
OD readings; input as list [A, B, C] where
A is OD value above which correction will
be applied, and B and C are from the
exponential fit y = B * exp(C*x) of
measured vs. expected OD values,
e.g., [0.6, 0.2141, 1.7935]

None
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Growth rates: calculation method options

Method Description

‘sliding window’ (default) Finds maximum growth rate. First uses a sliding window
to find the maximum slope of the log-transformed data.
Calculates maximum growth rate as slope of linear
regression fit to all points whose sliding-window slopes
were within 90% of the maximum.

‘smooth n slide’ Fits a spline to all data points, then finds maximum
growth rate using a sliding window as above. Used
internally by ‘sliding window’ method for samples whose
r-squared value is below 0.9 in initial calculation.

‘spline’ Fits a spline to all data points; maximum growth rate is
the maximum derivative of spline. Faster but less
accurate than sliding window methods.

‘effective growth rate’ Calculates growth rate by fitting an exponential curve to
all data points within specified start and end times.
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B.2 Plotting growth rates results

An ipython notebook was developed to generate boxplots summarizing the growth

rate results from multiple experiments. The input files for this notebook are the results

Excel files created by the program growth curve analysis.py described in Section B.1. The

key steps executed by this notebook are described below.

All results to be plotted are first imported and compiled into a single dataframe. User
specifies a subset of the data to be plotted using a list of identifiers.

The results for a given metric are grouped by identifier, segregated by condition, and
plotted onto a boxplot.

The metric (y) can be any numeric column of the results file (e.g., saturation time,
lag time). The identifier (x) and condition (col) are descriptors from the plate
layout file.
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B.3 Aggregate growth curve plots

An ipython notebook was developed to create aggregate curves using the seaborn

(version 0.7.1) data visualization package for python (seaborn.pydata.org). The input

files for this notebook are the same as for growth curve analysis.py. See seaborn.tsplot

for more details. The key steps executed by this notebook are described below.

The raw data and plate layout information are imported for each experiment.

To plot data from multiple wells and experiments together, the data are normalized
by dividing each OD value by the initial OD. Dataframes are created of the
normalized data and the log-transformed normalized data.

User specifies a subset of the data to be plotted using either a single identifier or a
list of identifiers, e.g., strain names. The first example is a plot for a single strain
with data separated by media type.

The data are plotted with a light line for each replicate and a dark line representing
the mean value of the replicates at each timepoint with interpolation between the
timepoints.
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Aggregate growth curve plots (continued)

The following examples are plots of data for multiple strains. A time subset of the
data can also be used; e.g., the first 6 hours of an 18-hour timecourse.

In the figure above, data for different media are separated onto two plots. These
can also be plotted onto a single figure as shown below. Shaded regions around the
lines show 95% confidence intervals.
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Appendix C

Sequence Analysis

Python and shell scripts were written to execute a sequence analysis pipeline on the

Harvard University Odyssey research computing cluster. Scripts were also written to find

genomic copy number variations and plot the results. The details of what these scripts

do and how to run them are described below. The files described in this appendix are

available at https://github.com/nwespe/sequence analysis/.

C.1 Analysis pipeline

The pipeline is executed by a series of commands in the Bash script “segtools” written

by John Koschwanez, which was modified to include additional processing steps and to

accommodate parallel sample analysis. The execution of these commands was divided

into three parts to enable parallel processing. The first part takes raw FASTQ files as

received from the Bauer Sequencing Core Facility, i.e., already demultiplexed, and aligns
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the sequence data to a reference genome, generating pileup files. The second part identifies

mutations by comparing the pileup files to a reference genome. The third part locates the

mutations relative to known features on the reference genome using a script written by

John Koschwanez, “mutantanalysis.py.” The software used, the input files, and the output

files are described below for each part. The method of running this analysis pipeline using

the Python scripts I wrote is described in Section C.2.

Potential future updates to the pipeline include updating the versions of the software

programs used and adding a step to remove PCR duplicates from the analysis. There is

room for improvement in the handling of sequences that map to more than one location

in the reference genome; see Section 3.4 for the trouble that can arise from this. Detection

of structural variation is absent from the pipeline described here; Miguel Coelho has used

the program SoftSV to analyze chromosome rearrangements and this step could be added

to the existing pipeline. Programs for running SoftSV and Breseq in parallel on the cluster

were written and used by others but not extensively tested and are not described here.

I. Generate alignment

Input. The FASTQ data file contains four lines of information for each read; one
example is rearranged into numbered lines below. Each read has a unique identifier
including information on the machine used to generate the data and the adapter
sequence used for multiplexing (lines 1-2). Following that is the sequencing read
(lines 3-5) and the associated quality score for each base read (lines 7-9), separated
by a line containing a ‘+’ symbol. More information on the FASTQ format can be
found in online resources.

1 @ILLUMINA-D00365:412:HCMTVADXX:2:1116:17461:37814 1:N:0:TAG
2 GCATGGTAAGGAG
3 CCAAAGACAATAGAAGCTTCAAAAGAGTCACTTAAACCGACAGCCTGGAAAACAATGGT
4 ACCGTAGTAGAAGAAATAGTTATCACCAGTTAATTGTTGTAGAGATTGAATCATGATAC
5 CCATCATAGTACGTTGAAACATGGCTGGTTTA
6 +
7 CCCFFFFFHHGHHJJJJJJJJJJJIJJHHIJJJJJJJJJGIIIIIIJJJJJJJJJJJJJ
8 HIJHHHGEFFFFFEEEEEDDEEEDEDDDDCDDEEEDCDDDDDACDDDDDDDCDDDDDDC
9 CDDDDDDDDEEEDDDBDDDDDDCCDDDDDDBD
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I. Generate alignment (continued)

Step 1: adapter trimming. The cutadapt program searches each read for
sequences matching the adapters used to generate the library and removes these
bases, and any following bases, from the read. The adapter sequences are
hard-coded into the segtools program and can be changed there if necessary. This
step generates a new FASTQ file for each file analyzed and a report for each file or
pair of files, in the case of paired-end reads; a part of the report is excerpted below.

Total read pairs processed: 1,315,728
Read 1 with adapter: 728,181 (55.3%)
Read 2 with adapter: 725,430 (55.1%)

Pairs written (passing filters): 1,315,728 (100.0%)

Total basepairs processed: 394,718,400 bp
Read 1: 197,359,200 bp
Read 2: 197,359,200 bp

Total written (filtered): 329,882,059 bp (83.6%)
Read 1: 164,886,064 bp
Read 2: 164,995,995 bp

Step 2: quality control. The FastQC program generates an HTML report
providing an overview of several quality checks of the read data, such as per-base
sequence quality, sequence length distribution and overrepresented sequences. A
version of this report is also provided by the Bauer Core Facility with the FASTQ
files, so it is possible to compare this information before and after adapter trimming.

Image from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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I. Generate alignment (continued)

Step 3: alignment to reference. The program used for aligning the sequence
reads to the reference genome is BWA-MEM. The output is piped directly into
several functions in SAMtools for sorting and indexing, which produces a sorted
BAM (Binary sequence Alignment/Map) file. The sorted BAM file is processed by
the ‘IndelRealigner’ function from the Genome Analysis ToolKit to improve
alignment around insertions and deletions; this produces another BAM file. In
SAM/BAM format, each read occupies one line; one example is rearranged into
numbered lines below. The reads are ordered according to the reference coordinates
of their primary alignment.

1 ILLUMINA-D00365:412:HCMTVADXX:2:2101:4568:67853 163
2 ref|NC_001133| 531 60 150M = 565 184
3 CATCATTATGCACGGCACTTGCCTCAGCGGTCTATACCCTGTGCCATTTACCCATAAC
4 GCCCATCATTATCCACATTTTGATATCTATATCTCATTCGGCGGTCCCAAATATTGTA
5 TAACTGCCCTTAATACATACGTTATACCACTTTT
6 CCCFFFFFGHHHHJJJJIJJJJJIJJGIIIHHIIIJJIJIJHIJJFJJJJJIJJJJJJ
7 JJHHFFFFEEEEDEEDDDDFEDBDDFDFEFFEEFDDEEEEDBBDDBDBDCDDDEEECC
8 DDEDCDDDDDDCDEDDCDDCDCCDBDCCDDDDDD
9 XA:Z:ref|NC_001135|,+828,150M,5; MC:Z:150M MD:Z:150
10 RG:Z:028A NM:i:0 MQ:i:60 AS:i:150 XS:i:125

The read information begins (lines 1-2 above) with the unique identifier from the
FASTQ file followed by a bitwise FLAG value (163), the reference coordinate
(ref|NC_001133| 531 indicates Chromosome 1, base 531) and the mapping
quality (60). Next is a CIGAR sequence (150M) that describes the alignment; in
this case, the entire read of 150 bases was aligned (M denotes match/mismatch).
The next part, = 565 184, indicates the coordinates of either the next read or the
mate read (same chromosome, base 565) and the observed template length (i.e.,
insert length) determined from the mate’s relative alignment (184). This
information is followed by the sequence (lines 3-5), the base quality scores (lines
6-8), and a series of optional fields (lines 9-10). For interpretation of the bitwise
FLAG value and the optional fields, see other SAM documentation.

In paired-end sequencing data, each read has a mate. The first part of the read
information for mate of the example above is shown below.

1 ILLUMINA-D00365:412:HCMTVADXX:2:2101:4568:67853 83
2 ref|NC_001133| 565 60 150M = 531 -184

The template length of the mate is given the opposite sign (-184). Because each
read is 150 bases, a template length of less than 300 indicates that some bases of
the template were read twice. This is accounted for by the next processing step.
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I. Generate alignment (continued)

Step 4: soft-clip overlapping bases. For paired-end data, the realigned
BAM file is passed to the ‘clipOverlap’ function from BamUtil; this function
identifies bases that were sequenced in both reads of a pair and ‘soft-clips’ one read
to exclude the overlapping bases from downstream analysis. A new BAM file is
created in which the CIGAR sequence for the read has changed to indicate which
bases were clipped. In the example below, the 150 aligned bases are now 34 aligned
bases followed by 116 soft-clipped bases. The BAM file still contains the sequence
and quality data for these bases, but they will not be used to generate the pileup
file in the next step.

Before clipping:

1 ILLUMINA-D00365:412:HCMTVADXX:2:2101:4568:67853 163
2 ref|NC_001133| 531 60 150M = 565 184

After clipping:

1 ILLUMINA-D00365:412:HCMTVADXX:2:2101:4568:67853 163
2 ref|NC_001133| 531 60 34M116S = 565 184

Step 5: generate pileup file. The final BAM file is processed by the SAMtools
‘mpileup’ function to create a pileup file. This file compiles the bases mapped to
each location in the reference. Four lines are excerpted from a pileup file below.

ref|NC_001133| 534 C 50
,,.,................,..,.,,............,$,,,.,....ˆK,
FJCIDDCEEFFFFHJJJJJJDIJDJJBJGGJJIJIGJIJBJHCGHFFCCC

ref|NC_001133| 535 A 49
,,.,................,..,.,,............,,,.,....,
FJCGCDEECFFEEHIJJJGIFHJDJIBJIIIJJJGEJJGIHCHEFFCCC

ref|NC_001133| 536 T 49
,,.,................,..,.,,............,,,.,....,
FJCIDDDDEFFEEHIIHJIGDIIDJIBJIGIJIJIIJJIGDAHEDFFFC

ref|NC_001133| 537 T 49
,cCc.....CC...CC.C.C,..,.cc..CCCCC.....,cc.c....c
FJDFEEEEEFFEEFIJHJJHDJJDIJFJJJIJJJJIJJIHGCHIFFFFC

Each line begins with the reference sequence coordinate (in this case, Chromosome
1, bases 534 through 537) followed by the reference base and the number of reads
mapped to that location. The string of symbols indicates whether the mapped read
is a match to the forward (.) or reverse (,) strand, or a mismatch to the forward
(ACTGN) or reverse (actgn) strand. The symbol ˆ marks the beginning of a read,
the character following it indicates the read’s mapping quality, and the symbol $
marks the end of a read. The string of letters are the corresponding base qualities.
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II. Find mutations

Find mutations in clones. The analysis pipeline finds mutations in clones using
the VarScan ‘somatic’ function. VarScan was written to find sequence variants
(SNPs and indels) between normal and tumor samples, and it classifies variants as
either germline (both samples differ from the reference genome) or somatic (only
the tumor differs). When identifying mutations in evolved strains, the evolved clone
is considered the tumor sample and the ancestor is the normal sample. The first 15
columns of three lines are excerpted from a VarScan .snp file below.
normal/tumor_reads1 and reads2 are the reads with the reference (ref) and
variant (var) base, respectively; normal/tumor_gt is the consensus genotype.

chrom position ref var normal_reads1 normal_reads2
ref|NC_001133| 537 T C 29 20
ref|NC_001133| 610 G A 18 13
ref|NC_001142| 107919 C A 14 0

normal_var_freq normal_gt tumor_reads1 tumor_reads2 tumor_var_freq
40.82% Y 36 26 41.94%
41.94% R 26 32 55.17%
0% C 0 14 100%

tumor_gt somatic_status variant_p_value somatic_p_value
Y Germline 3.7752715862120977E-17 0.5304477608132048
R Germline 1.4812831017457745E-17 0.16669057568084028
A Somatic 1.0 2.4927336813189342E-8

Find mutations in populations. The analysis pipeline finds mutations in
populations using the VarScan ‘pileup2snp’ and ‘pileup2indel’ functions, which
compare a single pileup file to a reference genome. This function outputs similar
information as the VarScan ‘somatic’ function but cannot distinguish pre-existing
mutations from evolved mutations (i.e., germline versus somatic). These files are
used in conjunction with the ancestor-versus-evolved clone VarScan files generated
by the ‘somatic’ function to identify evolved mutations present at high frequency in
either a back-crossed pool or an evolving population. Thirteen columns of three
lines are excerpted from a VarScan .snp file below.

Chrom Position Ref Cons Reads1 Reads2 VarFreq Strands1
ref|NC_001133| 537 T Y 77 42 35.29% 2
ref|NC_001133| 610 G R 40 28 41.18% 2
ref|NC_001142| 107919 C A 0 39 100% 0

Strands2 Qual1 Qual2 Pvalue ... VarAllele
2 38 38 2.750496826499323E-15 ... C
2 36 36 1.1003828151779401E-10 ... A
2 0 37 3.6741722220670473E-23 ... A
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III. Match mutations to known features

Classify mutations. The final step of the automated pipeline uses the
“mutantanalysis.py” script written by John Koschwanez. This script matches the
sequence variants identified by VarScan to annotated features on the reference
genome. It determines whether the mutation affects coding or non-coding DNA
and, if in a coding region, the effect of the mutation on the amino acid sequence. It
outputs this information in an HTML file with links to the Saccharomyces Genome
Database and in two text files that list the information by gene and by mutation. It
also compiles the reads from the BAM file that overlap the mutated region and
enables viewing them in the HTML file.

Tabbed output by gene:

gene_name sgdid chr_num position sample_name snp_indel
HAL5 S000003701 10 107918 033B snp
WHI2 S000005569 15 412304 033B snp
IRC23 S000005570 15 412304 033B snp

ref read fraction tot_reads mutation_type
C A 100 14 nonsynonymous
A G 100 10 nonsynonymous
A G 100 10 promoter

Tabbed output by mutation:

chr_num position snp_indel seg_percent genes sample_name
10 107918 snp 100 HAL5 033B
15 412304 snp 77 WHI2,IRC23 033B

Determine likelihood of causality. This is where the human analysis takes
over. The user must evaluate the likelihood of the identified mutations to cause the
phenotype of interest. This analysis could take into consideration the effect of the
mutation on the amino acid sequence, the previously-described function of the gene
product, and any phenotypes associated with mutations in the locus. In the case of
bulk segregant analysis, it is important to consider whether there is linkage to other
loci under selection, e.g., a locus used to generate the pool of spores.
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IV. Additional analyses of sequence data

Measure copy number variation. The script “copynumber.py” finds
differences in copy number between two pileup files using the VarScan ‘copynumber’
function. Three lines are excerpted from a resulting .copynumber file below.

chrom chr_start chr_stop num_positions
ref|NC_001133| 9372 9471 100
ref|NC_001133| 9472 9571 100
ref|NC_001133| 9572 9671 100

normal_depth tumor_depth log2_ratio gc_content
28.7 22.1 -0.376 39.0
27.2 21.3 -0.352 37.0
20.4 24.0 0.232 32.0

Visualize copy number variation. The copy number data can be visualized
using the script “plot copynumber.py” for one sample or the script
“batch plot copynumber.py” for multiple samples. Each plot displays read depth
normalized to the entire genome versus chromosome position. The resulting plots
for all chromosomes of a sample are saved in a single PDF. The script generates one
file for each sample plus one file for each comparison (e.g., ancestor versus evolved)
listed in the input text file; for the latter, the read depth of the evolved sample is
divided by that of the ancestor.

Read depth of a single sample:

Read depth relative to ancestor:
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IV. Additional analyses of sequence data (continued)

Evaluate alignment. The picard-tools function ‘Collect Alignment Summary
Metrics’ yields information about the alignment of reads in a SAM/BAM file, such
as the numbers of aligned reads and aligned bases and the mean read length. These
metrics can be collected for each sample by the script “picard align report.py” and
then collated for many samples by the script “compile picard report.py.” Snippets
of the individual sample report and the compiled report are below.

Picard alignment summary metrics:

CATEGORY TOTAL_READS PF_READS PCT_PF_READS PF_READS_ALIGNED ...
PAIR 2631456 2631456 1 2626143 ...

Compiled metrics:

sample total_reads aligned_reads percent_reads_aligned ...
033B 2516654 2411302 0.958138 ...
119_NaCl_HU 6532322 6229601 0.953658 ...
028A 2631456 2626143 0.997981 ...

C.2 Executing the pipeline

The user runs three scripts from the command line, corresponding to parts I-III

of the analysis described in Section C.1. The user must be logged into the Harvard

Odyssey Research Computing cluster, access to the cluster requires registration and must

be arranged through Research Computing. The user’s main folder on the cluster must

contain the appropriate Bash profile, which loads the modules required for executing

the pipeline software programs. An example of this Bash profile is available on the lab

server in /murraylab/Sequencing/Scripts/Instructions. The modules required

include: Anaconda (for Python), cutadapt, FastQC, BWA, SAMtools, bamUtil, bam-

tools, VarScan, ClustalW, and Picard-tools. Also, the environmental variables GATK,

VARSCAN, and PICARD should be set to the respective paths for these programs. For
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the versions of these programs used in this dissertation’s analysis, see Section 4.6.

The complete file tree for running the pipeline is shown in the image below. The

programs simply titled “script1.py,” “script2.py,” and “script3.py” are executed by the

user in that order; the “segtools” program and files in the “array scripts” and “mu-

tantanalysis” directories are called by these programs. The programs “copynumber.py,”

“plot copynumber,” “batch plot copynumber,” “picard align report.py,” and “compile -

picard report.py” are for analyses described in part IV in Section C.1.

All three scripts take as input (1) a directory where the FASTQ, pileup or BAM files

are located, (2) an output directory, and (3) a CSV file containing names of the samples to

be analyzed, with ancestors, clones and pools listed in separate columns. Each script first

checks whether the files it will create already exist and whether the input files it needs are

in the directory provided. It then submits this information to the cluster as a separate job

for each sample to be run in parallel, using the relevant array script to execute functions

either from “segtools” or from “mutantanalysis.py.” The required inputs and the format

for command-line execution for each script are detailed below.
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I. Required input

FASTQ files. The original FASTQ files can be placed in the lab server’s
“Sequencing” directory. No analysis files should be written to this directory. I
recommend storing the files in a directory tree that enables other lab members to
easily discern the relevant experiment, such as:

/murraylab/Sequencing/Original_Fastq_Files/Nichole/2015-01-15/

CSV file. Execution of the analysis pipeline requires a CSV file containing sample
names that uniquely identify the corresponding FASTQ files. In the examples
below, there are samples named “006A” and “006B;” an entry of “006” will find the
FASTQ files for both samples and result in an error. These sample names should be
arranged in two or more columns according to the comparisons to be made and the
headings must follow one of the four formats below.

For single clone analysis: For multi-clone analysis:

Ancestor Clone Ancestor Clone1 Clone2 Clone3 ...
006A 113 028A 033A 034A 035A ...
006A 114 006A 113 114 ...
006B 115 006B 115 116 117 ...

For segregant analysis: For segregant analysis with multiple pools:

Ancestor Clone Pool Ancestor Clone Pool1 Pool2 ...
028A 033A 066 028A 033A 119_Initial 119_NaCl ...
028A 034A 067 028A 034A 152_Initial 152_NaCl ...
028A 035A 068 028A 035A 121_Initial 121_NaCl ...

Files could contain just two columns (Ancestor and Clone) or many columns for
clones or pools. The analysis to be run – segregant analysis with clone (sawc) or
comparing multiple clones (cmc) – is determined from the column headings; e.g., a
“Pool” column indicates that segregant analysis should be run. In multi-clone
analysis, each clone in a row is compared to the ancestor, and the results for all
clones in the row are output into a single set of files. For segregant analysis with
multiple pools, each ancestor-clone-pool trio will have its own output.

Output directory. The output directory should be given as a full path to the
user’s folder on the lab server; i.e., :

/murraylab/Users/nmcollin/Sequencing/2015_Seq_Data/
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II. Script execution

script1.py. The first script finds FASTQ files for the samples listed in the CSV
file and creates pileup files. All output files are placed into a new folder with the
sample name in the given output directory. The script determines whether FASTQ
files are present as single or paired-end reads and uses either the ‘singlef2p’ or the
‘pairedf2p’ function from the “segtools” script to generate pileup files.

input: python /full/path/to/script1.py
-i /full/path/to/fastq_files/
-d /full/path/to/output_directory/
-f /full/path/to/csv_file.csv

output: /output_directory/alignment_files/sample/sample.pileup

An output pileup file is created for each individual sample listed in the CSV file.
The output folder will also contain other files created in pileup process, including
the FastQC HTML report, the cutadapt summary file, and the BAM file required
for script 3.

script2.py. The second script finds pileup files for the samples listed in the CSV
file and creates .snp and .indel files for each ancestor-clone pair and for each pool.
All output files are placed into the relevant subdirectory of a new directory
“varscan files.” The VarScan files are created by calling the ‘varscan clone’ or
‘varscan pool’ function from “segtools.” These are submitted as two separate array
jobs to the cluster: one for ancestor-clone pairs and one for pools. If -d is omitted,
the directory is assumed to be the same one specified by -i.

input: python /full/path/to/script2.py
-i /full/path/to/pileup_files/
-f /full/path/to/csv_file.csv

[-d /full/path/to/output_directory/] (optional)

output: /output_directory/varscan_files/anc_vs_clone/...
...anc_vs_clone.snp
...anc_vs_clone.indel

/output_directory/varscan_files/pool/pool.snp
/output_directory/varscan_files/pool/pool.indel
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II. Script execution (continued)

script3.py. The third script finds BAM files created by script 1 and .snp and
.indel files created by script 2 and submits these to the “mutantanalysis.py” script
to obtain the comparison output for each ancestor-clone-pool or ancestor-clone
(-clone...) group. The user can provide separate paths to the BAM and VarScan
files, or a single path that encompasses both. If -v and/or -d are omitted, the
directories are assumed to be the same one specified by -b. The optional parameters
-m and -s are integers between 0-100 that indicate the percent of reads needed to
call a mutation (m) or segregant (s). Defaults are m=90 and s=70. Recommended
usage for diploid clones is m=35 or lower. The output for each comparison is placed
into the relevant subdirectory of a new directory “filename-p-m%-s%” where
filename = name of CSV file, p = pipeline (sawc or cmc), m% = mutation percent,
and s% = segregation percent.

input: python /full/path/to/script3.py
-b /full/path/to/bam_files/
-f /full/path/to/csv_file.csv

[-v /full/path/to/varscan_files] (optional)
[-d /full/path/to/output_directory/] (optional)
[-m mutation percent cutoff] (optional; default: 90)
[-s segregation percent cutoff] (optional; default: 70)

output: /output_directory/csv_file-sawc-m90-s70/anc_clone_pool/...
...compare.html
...tabbed_output_by_gene.txt
...tabbed_output_by_mutation.txt

Other output files present in this folder are used by the HTML file for viewing
aligned reads and FASTA and protein sequence alignments.

email notification.sh. When a script executes successfully, it returns a job ID
number. The user will be prompted with the option to have an email notification
sent once the executed program is completed. To use this option, the user must
copy the “email notification.sh” script from the common directory to their own
directory, open the script and change the email address in line 8 to their own.
Then, type the following into the command line, with the job ID in the brackets:

input: sbatch --dependency=afterok:[JOB ID #]
/full/path/to/email_notification.sh

To check the status of an executed job, type the following into the command line,
substituting the relevant information in the brackets:

input: squeue -u [username] -j[JOB ID #]
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II. Script execution (continued)

copynumber.py. This script is similar to “script2.py.” This script finds pileup
files for the samples listed in the csv file and creates .copynumber files for each
ancestor-clone pair. All output files are placed into the relevant subdirectory of a
new (or existing) directory “varscan files.” The VarScan files are created by the
‘varscan copynumber’ function from “segtools.”

input: python /full/path/to/copynumber.py
-i /full/path/to/pileup_files/
-f /full/path/to/csv_file.csv
[-d /full/path/to/output_directory/] (optional)

output: /output_directory/varscan_files/anc_vs_clone/...
...anc_vs_clone.copynumber

To visualize the results of the copynumber analysis, run “plot copynumber.py” for
one sample or run “batch plot copynumber.py” for multiple samples using a CSV
file as input. These files create PDF files with plots of copy number for each
chromosome.

plot copynumber.py. This script takes a single .copynumber file as input and
generates three PDF files: one for the ancestor, one for the clone, and one for the
clone normalized by the ancestor.

input: python /full/path/to/plot_copynumber.py
-f /full/path/to/anc_vs_clone.copynumber
-d /full/path/to/output_directory/

output: /output_directory/anc_copynumber.pdf
/output_directory/clone_copynumber.pdf
/output_directory/anc_vs_clone_copynumber.pdf

batch plot copynumber.py.This script takes a CSV file as input and generates
one PDF file for each individual sample and one for each ancestor–clone
comparison, in which the clone’s coverage is normalized by the ancestor’s coverage.
The format of the CSV file should match one of the formats described in part I.

input: python /full/path/to/batch_plot_copynumber.py
-i /full/path/to/copynumber_files/
-f /full/path/to/csv_file.csv

[-o /full/path/to/output_directory/] (optional)
[-w window size for smoothing] (optional; default: 1000)

output: /output_directory/anc_copynumber.pdf
/output_directory/clone_copynumber.pdf
/output_directory/anc_vs_clone_copynumber.pdf
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II. Script execution (continued)

picard align report.py. This script executes the ‘Collect Alignment Summary
Metrics’ function from Picard tools on the BAM file of each sample listed in the
CSV file.

input: python /full/path/to/picard_align_report.py
-d /full/path/to/bam_files/
-f /full/path/to/csv_file.csv

output: /full/path/to/bam_files/alignment_files/sample/sample_asm.txt

This script could be modified to execute any of the functions in the Picard tools
package on sample BAM files by replacing the function name in the
“picard report.sh” array script.

compile picard report.py. This script takes the alignment summary files
generated by the function above and compiles this information into a single text
file. The output file includes computations of coverage levels using a yeast genome
size of 12,157,105 bases.

input: python /full/path/to/compile_picard_report.py
-d /full/path/to/bam_files/
-f /full/path/to/csv_file.csv

output: /full/path/to/bam_files/csv_file_alignment_data.txt
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