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Monte Carlo simulation approaches to protein stability and aggregation prediction 

 
 

Abstract 
 
A protein’s sequence and set of covalent modifications determine its stability 

and aggregation propensity in a given environment. Given a change in sequence or 

covalent structure, we would like to be able to predict the change in stability and 

tendency to aggregate. Such knowledge would enable us to engineer more stable 

proteins and to better understand protein misfolding and aggregation diseases. In 

addition, knowledge of the protein folding pathway and aggregate structure could 

aid in structure-based design of therapeutics.  

 This thesis employs Monte Carlo simulations to predict protein stability, 

aggregation propensity, and aggregate structure. First, we describe the use of short 

unfolding simulations to predict stabilized mutants of the enzyme Dihydrofolate 

Reductase. Next, we describe a simple model of protein domain swapping that 

predicts the tendency of proteins to domain swap at intermediate temperature and 

predicts a concentration dependence where proteins domain swap at intermediate 

concentration but exhibit non-specific interactions between unfolded proteins at 

high concentration. Finally, we predict that cataract-associated mutations within 

γD-crystallin destabilize the protein and that these mutations, along with an 

experimentally observed disulfide bond, increase the protein’s propensity to 

aggregate. Based on two-molecule simulations, we propose an aggregation model 

whereby the N-terminal hairpin of one molecule forms antiparallel beta sheet 

interactions with the C-terminal domain of the next molecule. We also suggest a 
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mechanism by which the wild-type protein could accelerate mutant aggregation, an 

experimentally observed phenomenon. We expect our methods to be applicable to 

stability and aggregation prediction in other proteins. 
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1. Introduction 
 

 

Most proteins must fold stably into their specified three-dimensional 

structure in order to carry out their biological function. While much has been 

learned about the factors contributing to protein stability, we still cannot predict 

with full accuracy how a given mutation or a covalent modification will affect the 

folding stability of a protein or the propensity of the protein to aggregate. This limits 

our understanding of how proteins can evolve and how we might engineer a protein 

to be more stable and less aggregation prone. This thesis utilizes molecular 

simulation approaches to study protein stability and protein-protein interactions 

such as domain swapping and aggregation. In the Introduction, we outline basic 

concepts from studies of protein folding and aggregation. We then describe a 

computational tool that can be used to simulate protein dynamics, which is used in 

the work described in this thesis but was introduced in previous publications by 

other authors.  

 

1.1. Protein stability  
 
 Protein folding is a cooperative process, often approximated by a two-state 

model, where the protein resides either in the native (folded) or unfolded state 

(Privalov, 1979; Shakhnovich and Finkelstein, 1989; Zeldovich et al., 2007). The 

equilibrium stability of a protein is then quantified by the difference in free energy 
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between these states, ΔGeq (see Figure 1.1).  Proteins unfold at high temperatures, 

due to the higher entropy of the unfolded state. The temperature at which the folded 

and unfolded states are equally populated (ΔG = 0) is called the unfolding 

temperature, Tm. Mutations in protein sequence can either stabilize or destabilize 

the protein, and the change in stability is quantified by ΔΔG or ΔTm. 

 
Figure 1.1. Two-state model of protein stability. N represents the folded native 
state, TS the transition state, and U the unfolded state.  
 

The fraction of folded protein depends sigmoidally on the equilibrium 

stability, according to Boltzmann statistics, as shown in Figure 1.2.  A destabilizing 

mutation (ΔΔG > 0) can therefore reduce the amount of folded, functional protein at 

equilibrium. In addition, in the cellular environment, unfolded and partially 

unfolded proteins can aggregate or be degraded (Bershtein et al., 2013). A sufficient 

amount of folded protein must be present in order for a protein to carry out its 
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function (Goldstein, 2011; Wylie and Shakhnovich, 2011), and 

misfolded/aggregating proteins can themselves be deleterious to the cell 

(Drummond and Wilke, 2008). Protein stability therefore constrains protein 

evolution, avoiding mutational trajectories that would lead to unstable proteins.  

  

Figure 1.2. Fraction of folded protein as a function of equilibrium stability.  
 

Most of the possible single mutations in a biological protein will be 

destabilizing, with mutations in the protein core leading to a greater stability loss on 

average, compared with mutations at the protein surface (Tokuriki et al., 2007). A 

small fraction of mutations would stabilize the protein. These generally include 

mutation of an active site residue to a hydrophobic amino acid, which in addition to 

stabilizing the protein would render it inactive. Costs of high stability can include 

loss of the ability to efficiently regulate the amount of protein and, possibly, loss of 

functionally-relevant dynamics for overly-stable proteins (Beadle and Shoichet, 

𝟏 −
𝟏

𝒆−
∆𝑮
𝑹𝑻 + 𝟏
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2002; DePristo et al., 2005), although this thesis argues against the universality of 

this second type of stability-activity trade-off.   

The folding transition state is defined as the state or ensemble of states that 

is equally likely to proceed to the native state as it is to proceed to the unfolded state 

(see Figure 1.1). The height of the energy barrier at the transition state determines 

the rate of interconversion between native and unfolded states. A destabilizing 

mutation will generally increase the free energy of the native state by some amount 

ΔΔG and will increase the free energy of the transition state by some fraction of this 

amount. This fraction is quantified by a residue’s ϕ value, which describes the role 

of the residue in the transition state and thus the effect that a mutation will have on 

the folding and unfolding rates (Fersht and Sato, 2004; Matouschek et al., 1989). For 

ϕ = 1, the residue is folded in the transition state, so that ΔΔG#, or the change in 

energy difference between the native and transition state for a mutation, is zero. In 

this case, the rate of folding decreases, while the rate of unfolding remains the same. 

For ϕ = 0, the residue is unfolded in the transition state, so that ΔΔG# is equal to 

ΔΔGeq, and the rate of unfolding increases, while the rate of folding remains the 

same. More generally, for residue i,  

 

∆∆𝐺𝑖
# = (1 − 𝜑𝑖)∆∆𝐺𝑖

𝑒𝑞            (Equation 1.1) 

 

 where ΔΔG# is defined as the change in the free energy barrier height relative 

to the native state, as depicted in Figure 1.1.  
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 The validity of the two-state approximation to protein folding has been 

questioned in some cases, particularly for large proteins, with greater than about 

110 amino acids (Braselmann et al., 2013). Proteins may contain one or more 

folding intermediates, which may be on pathway to the folded state, or off pathway, 

producing a “misfolded” state. Intermediate species may be prone to aggregation or 

to degradation within the cell. The two-state model is also challenged in the case of 

intrinsically disordered proteins, and in rare cases where the protein may adopt 

multiple folds (Bryan and Orban, 2010).  

 

1.2. Protein folding in the cell  
 
 Models of protein folding in the cellular environment must be extended to 

include protein production and degradation, chaperones, and the potential for 

aggregation (Figure 1.3). It has been hypothesized that many proteins do not fully 

unfold in the cell but are degraded, sequestered by chaperones, or aggregate from 

their partially unfolded forms (Braselmann et al., 2013; Dobson, 2003). Chaperones 

can prevent aggregation of partially unfolded proteins and can help to restore 

proteins to their native state.  Chaperones therefore act to buffer deleterious 

mutations, allowing a larger number of destabilizing mutations to accumulate and 

speeding the rate of protein evolution (Tokuriki and Tawfik, 2009). At the same 

time, errors in protein production at the transcriptional or translational levels can 

increase the number of proteins that harbor destabilizing mutations. 
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Figure 1.3. A simple model of protein folding in the cell 
 

Molecular crowding, due to the high density of proteins and other 

biomolecules in the cell, can shift the population of folded vs. unfolded protein and 

can affect aggregation rate. For instance, excluded volume effects will stabilize the 

native state, which is more compact than the unfolded state. However, the nature of 

the interactions with surrounding molecules can also be important, and in some 

cases crowding can increase the population of the unfolded state (Danielsson et al., 

2015; Elcock, 2010; Kuznetsova et al., 2015). 

 

1.3. Domain swapping 
 
 Domain swapping is a type of protein-protein interaction in which a 

structural element is exchanged between proteins, such that native-like contacts are 

formed with the complementary portion of the other protein (Liu and Eisenberg, 

2002). An example of a protein that exhibits domain swapping, RNase A, is shown in 

Figure 1.4. The “swapped” region is often an alpha helix, beta strand, or beta hairpin, 

although it can be a larger structural element or an entire domain. The region of the 
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protein that changes conformation to allow partial unfolding of the monomer into 

an “open” state prone to domain swapping is known as the “hinge loop.”  

 
Figure 1.4. Protein domain swapping in RNase A (PDB structures 3BCM, 3BCO). The 
N-terminal alpha helix (black arrows) is exchanged between structures. A) Closed 
monomer. B) Open monomer from domain swapped structure. C) Domain-swapped 
dimer.  
 

 Many proteins have been crystallized as domain-swapped dimers, although 

the functional relevance of this interaction in most cases remains uncertain. One 

hypothesis is that “run-away” domain swapping may lead to aggregation (Rousseau 

et al., 2003). In this model, the first protein binds to the second protein, which binds 

to a third protein, etc., via domain-swap interactions. Domain swapping may also 

provide insight into protein folding pathways and intermediate folding states that 

may be involved in aggregation.  

A B 

C 

Exchanged 
helix 

Hinge 
loop 

Exchanged 
helix 
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1.4. Protein aggregation  
 
 Protein aggregation is usually categorized into two types: amyloid and 

amorphous. In amyloid aggregation, beta strands stack via hydrogen bonding 

interactions to form an ordered structure (see Figure 1.5), leading to the formation 

of long fibrils. By contrast, amorphous aggregates are less ordered, and it has been 

hypothesized that this type of aggregation involves the interaction of unfolded 

segments via non-specific contacts. However, there is evidence that amorphous 

aggregation may in fact involve specific interactions (Horwich, 2002; Speed et al., 

1996). As noted in the previous section, domain swapping has been proposed as a 

possible mechanism leading to aggregate formation.  

 
 
Figure 1.5. NMR structure of amyloid beta fibrils (PDB ID 5KK3). Left: side view. 
Right: Top-down view. 
 
 

1.5. Monte Carlo protein simulation 
 
 Molecular Dynamics (MD) and Monte Carlo (MC) simulations have been used 

extensively to study protein folding and dynamics. While both techniques make use 
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of simplified models to simulate molecular motion, they differ in their fundamental 

approach. Molecular dynamics simulations integrate classical equations of motion to 

predict the position of each atom as a function of time, given an initial set of 

positions and velocities. Monte Carlo simulations perform a set of moves, such as 

rotation about a torsional angle, which are accepted or rejected depending on the 

change in energy relative to the simulation temperature. The commonly-used 

Metropolis criterion for accepting a move is 

 

𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = {
1,         ∆𝐸 < 0

𝑒−
∆𝐸

𝑘𝑇, ∆𝐸 > 0
      (Equation 1.2)  

 

The Shakhnovich group has developed an all non-hydrogen atom Monte 

Carlo simulation program. The program is described in detail in previous 

publications (Xu et al., 2011; Yang et al., 2007; Yang et al., 2008). Briefly, the move 

set consists of rotations about torsional angles, with bonds and angles held fixed. 

The energy function is a sum of terms: 

 

𝐸 = 𝐸𝑐𝑜𝑛 + 𝑤𝑡𝑟𝑝𝐸𝑡𝑟𝑝 + 𝑤ℎ𝑏𝐸ℎ𝑏 + 𝑤𝑠𝑐𝑡𝐸𝑠𝑐𝑡 + 𝑤𝑡𝑟𝑝𝐸𝑡𝑟𝑝 + 𝑤𝑎𝑟𝑜𝐸𝑎𝑟𝑜        (Equation 1.3) 

 

where 𝐸𝑐𝑜𝑛 is the contact energy, 𝐸𝑡𝑟𝑝 represents the torsional preferences of amino 

acid triplets, 𝐸ℎ𝑏  is a directional hydrogen bonding term, 𝐸𝑠𝑐𝑡 represents side chain 

torsional preferences, and 𝐸𝑎𝑟𝑜 biases the relative orientations of aromatic residues 

towards the orthogonal direction. Two residues are said to be in contact if their 
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outer radii overlap. A “clash” occurs if inner radii overlap; in this case, the attempted 

move is rejected. The potential is knowledge based, with energies derived from 

statistics of real protein structures in the protein data bank. For instance, the 

contact energy between atom types A and B, 

 

𝐸𝐴𝐵 =
−𝜇𝑁𝐴𝐵+(1−𝜇)�̃�𝐴𝐵

𝜇𝑁𝐴𝐵+(1−𝜇)�̃�𝐴𝐵
     (Equation 1.4) 

 

where 𝑁𝐴𝐵 is the number of contacts observed between atom types A and B, �̃�𝐴𝐵 is 

the number of pairs not in contact, and 𝜇 is chosen so that the average value of 𝐸𝐴𝐵 

is zero.  

 The program outputs atomic coordinates, as well as simulation energy, 

number of contacts between atoms, and RMSD from the native structure, at 

frequencies specified by the user.  
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2. Predicting stabilized mutants of Dihydrofolate 
Reductase using Monte Carlo unfolding 
simulations 
 

 

Abstract  

 Mutations in amino acid sequence can alter protein stability, an important 

factor in protein evolution and protein design. Here we introduce a method based 

on Monte Carlo unfolding simulations to predict stability effects of mutations. We 

predict relative stabilities for all possible point mutants of the enzyme Dihydrofolate 

Reductase. We find good agreement between simulation-based predictions and 

experimental measurements (r = 0.68) for WT and 42 mutants. We identify 10 new 

stabilizing mutations, out of 23 experimentally tested mutations predicted to be 

stabilizing. The most stabilizing mutation, D27F, is located in the active site and 

renders the protein inactive. However, in general we see a positive correlation 

between stability and catalytic activity. By combining stabilizing mutations, we 

engineer a catalytically active DHFR mutant with experimental denaturation 

temperature 7.2 °C higher than WT. 

 

2.1. Introduction 
 
 Accurate prediction of protein stability is important in enzyme design, as 

well as in understanding aspects of protein evolution and human disease (Dobson, 

2003; Liberles et al., 2012; Serohijos and Shakhnovich, 2014; Shakhnovich, 2006). 
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While most mutations will be destabilizing for a biological protein, some will 

generally be stabilizing (Tokuriki et al., 2007). By stabilizing a protein, we increase 

the fraction of the protein that resides in the folded, functional state, while 

decreasing the propensity of the protein to aggregate from the unfolded or partially 

unfolded state. However, some stabilizing mutations will negatively affect protein 

function, including those in the active site of an enzyme, where specific residues are 

required for catalysis. The question of whether there exists a more general stability-

activity trade-off, due to a requirement that a protein must be sufficiently dynamic, 

is still debated (Adamczyk et al., 2011; Beadle and Shoichet, 2002; Bloom et al., 

2006; DePristo et al., 2005; Studer et al., 2014).  

Several computational methods to predict protein stability or stability 

change upon mutation have been developed and tested. However, the performance 

of these popular methods is still relatively low (Khan and Vihinen, 2010; Potapov et 

al., 2009; Thiltgen and Goldstein, 2012). While ideally, simulation-based prediction 

of protein stability would involve the simulation of multiple folding and unfolding 

events, this is not computationally feasible for moderate to large sized proteins. We 

propose a new method to predict stability change upon mutation, using Monte Carlo 

unfolding simulations. We use our method to predict relative melting temperatures 

of all possible point mutants of E. coli Dihydrofolate Reductase (DHFR), an essential 

enzyme that is an important target of antibiotics and chemotherapeutic drugs. For 

several mutants that are predicted to be stabilized relative to WT, we 

experimentally determine melting temperatures and catalytic activities. We find a 

small but significant positive correlation between stability and activity. Our 
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approach allows us to identify several stabilized mutants, and we obtain good 

agreement with experiments (r = 0.68), competitive with existing methods.  

 

2.2. Methods 
 
 Note: Experimental methods are described in (Tian et al., 2015), as this work 

was completed by other authors. Computational methods are described below. 

2.2.1. Monte Carlo simulations 

 Simulations were carried out using an all-non-hydrogen-atom Monte Carlo 

simulation program with a knowledge based potential, described in the Introduction 

section 1.5 of this thesis and in previous publications (Xu et al., 2011; Yang et al., 

2007; Yang et al., 2008). Mutations were generated using Modeller v9.2 (Eswar et 

al., 2006). Next, an energy minimization was carried out in NAMD (Phillips et al., 

2005) for 5,000 steps, using the default minimization algorithm and 

par_all27_prot_lipid.inp parameter file, without solvent. An additional minimization 

step was carried out by running the Monte Carlo simulation program at low 

temperature (T = 0.100 in simulation units) for 2,000,000 steps. A 2,000,000-step 

simulation was then run at each of 32 temperatures, averaging over the final 

1,000,000 steps and over 50 separate simulations to obtain Energy, RMSD, and 

number of contacts. Data was fit to a sigmoidal function to obtain the 

computationally-predicted melting temperature for each of Energy, RMSD, and 

number of contacts. Longer simulations of 20,000,000 steps were carried out on 

select mutants with 30 replications, averaging over the last 2,000,000 steps. 
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1,000,000 steps were completed in about one hour of simulation time on a single 

CPU.  

 

2.2.2. Bioinformatics Analysis 

 DHFR protein sequences from 290 bacterial species were aligned using the 

program MUSCLE and online server (Edgar, 2004). The MATLAB Bioinformatics 

Toolbox was used to create sequence logo representations and to determine the 

consensus sequence.  

  

2.2.3. Simulation analysis 

 Sigmoidal fits were performed using the module “Sigmoidal, 4PL” within the 

software program Prism 6. The sigmoid function has the form:  

 Y = Bottom + (Top-Bottom)/(1+10^((LogIC50-X)0HillSlope)) 

 

2.3. Results 
 
2.3.1. Theory justifying the use of non-equilibrium unfolding simulations to obtain 

equilibrium stability effects of mutations 

 We assume two-state folding kinetics, as described in the Introduction 

section 1.1 and Figure 1.1. The time spent in the native state waiting for sufficient 

thermal fluctuation to cross the unfolding free energy barrier is given by:  

𝜏𝑢
𝑓𝑝

= 𝜏0𝑒
∆𝐺#

𝑘𝑇         (Equation 2.1) 



 
 

 15 

where 𝜏𝑢
𝑓𝑝

 is the first-passage time from the folded to the unfolded state, ∆𝐺# is the 

free energy difference between the folded state and the transition state, and 𝜏0 is the 

elementary time constant. Unfolding is observed when the simulation time 𝜏𝑠𝑖𝑚 

approaches 𝜏𝑢
𝑓𝑝

. Therefore, the temperature at which unfolding events are observed 

in simulations depends on the simulation time according to:  

𝑘𝑇𝑚
𝑎𝑝𝑝

=
∆𝐺#

ln (
𝜏𝑠𝑖𝑚

𝜏0
)
           (Equation 2.2) 

Next, we introduce a relative melting temperature: 

 ∆𝑇𝑚
𝑟𝑒𝑙(𝑖) = (𝑇𝑚

𝑎𝑝𝑝(𝑖) − 𝑇𝑚
𝑎𝑝𝑝(𝑊𝑇)) / 𝑇𝑚

𝑎𝑝𝑝(𝑊𝑇)     (Equation 2.3) 

and use Equations 2.2, 2.3, and 1.1 to obtain 

∆𝑇𝑚
𝑟𝑒𝑙(𝑖) =

(1− 𝜑𝑖)∆∆𝐺𝑖
𝑒𝑞

∆𝐺#
          (Equation 2.4) 

A recent study demonstrated that most mutations have approximately the same 𝜑 

value (Naganathan and Muñoz, 2010), where 𝜑𝑖 ≈ 0.24. Therefore,  

∆𝑇𝑚
𝑟𝑒𝑙(𝑖) = 0.76

∆∆𝐺𝑖
𝑒𝑞

∆𝐺#
        (Equation 2.5) 

i.e., the relative unfolding temperature is independent of simulation time and 

proportional to the equilibrium free energy effect of mutation, provided that 

simulations have equilibrated in the native basin.  

 

2.3.2. Monte Carlo unfolding simulations 

 Unfolding simulations were performed on Dihydrofolate Reductase (PDB ID: 

4DFR) using Monte Carlo simulations. A sample unfolding trajectory for the WT 
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protein is shown in Figure 2.1. Unfolding tends to proceed by a single pathway, 

which begins at the C-terminal hairpin.  

 

Figure 2.1. DHFR unfolding trajectory from MC simulations.  

 

 As a preliminary test of the effect of mutation on unfolding in Monte Carlo 

simulations, we carried out five simulations for WT and destabilized mutants I155A 

and W133V/I91L. Figures 2.2 – 2.4 show that destabilized mutants appear to unfold 

more rapidly than WT, with the double mutant unfolding the fastest. For mutants 

and for WT, unfolding begins at the C-terminal hairpin, which detaches from the rest 

of the protein prior to the major unfolding event encompassing the rest of the 

structure.  

Figure 2.6 shows RMSD versus Monte Carlo step for the trajectories. While 

variation is seen among the trajectories, mutants appear to unfold before WT on 
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average. Table 2.1 shows estimated time of the first major unfolding event for each 

of the simulations. The mean time of the first unfolding event is found to be less for 

the double mutant than for WT (p = 0.03, T-test).  

To obtain simulated melting curves, DHFR was first subjected to a brief MD 

and MC energy minimization, followed by unfolding simulation at each of 32 

separate temperatures (see Methods section 2.2 for details). As expected, at higher 

temperatures the protein displayed higher RMSD from the initial structure, higher 

energy, and fewer contacts between atoms than at lower temperatures (Figure 2.7). 

Dependence on temperature was roughly sigmoidal, and Tm was calculated by fitting 

to a sigmoidal function, for each of RMSD, energy, and number of contacts.  

 

2.3.3. Computational prediction of stabilizing mutations 

 All 3,021 possible single point mutants of DHFR were simulated, and Tm was 

calculated as described above, using each of three metrics: energy, RMSD from the 

folded structure, and number of contacts. The values calculated using energy, RMSD, 

and contacts were highly correlated, as shown in Figure 2.8. 523 mutations (17.3%) 

were predicted to be stabilizing by all three metrics, while 42.1% of mutations were 

predicted to be destabilizing by all three metrics. The distribution of predicted 

melting temperatures averaged over the three metrics for all 3021 point mutants is 

shown in Figure 2.9. The majority of mutations are predicted to be destabilizing, in 

agreement with published experimental data and FoldX predictions (Tokuriki et al., 

2007; Zeldovich et al., 2007).  
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Figure 2.3. WT unfolding trajectories, T = 1.3, steps in units of 106. 



 
 

 19 

 

Figure 2.4. I155A unfolding trajectories, T = 1.3, steps in units of 106. 
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Figure 2.5. W133V/I91L unfolding trajectories, T = 1.3, steps in units of 106. 
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Table 2.1. Estimated time of first major unfolding event (units of 10^6 MC steps) 
simulation 1 2 3 4 5 mean < WT mean < I155A 

WT 2.6 1.9 2.5 4.5 2.9   

I155A 2.1 1.6 1.1 1.9 3.1 p = 0.07  

W133V/I91L 1.2 1.5 1.2 2.8 2.0 p = 0.03 p = 0.32 

 

 

RMSD vs. step A 

B 
 

C 

Figure 2.6. RMSD from initial 
folded structure versus timestep 
from DHFR unfolding simulations. 
A) WT. B) I155A muant. C) 
W133V/I91L mutant.  
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Figure 2.7. Plots of RMSD, total 
energy, and number of contacts as a 
function of temperature. Data is 
averaged over the final 1,000,000 
steps of the 2,000,000 step simulation 
and over 50 separate runs. Green x’s 
show data points, and the blue line 
shows the sigmoidal fit.  



 
 

 23 

 

Figure 2.8. Scatter plot of Tm values determined by energy (x-axis), RMSD (y-axis) 
and number of contacts (see color bar to right of plot). The green ball shows WT and 
the gold ball, I155A. The correlation coefficients of simulated Tm between RMSD 
and total energy, RMSD and Contact number, and Contact number and total energy 
were 0.68, 0.79 and 0.84, respectively. 

 

Figure 2.9. Histogram of Tm values, determined by averaging Tm values from energy, 
RMSD, and number of contacts. The vertical red line denotes WT Tm.  
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 We selected a subset of the mutations that were predicted to be stabilizing by 

all three metrics for in depth computational and experimental analysis. To achieve 

this, we first selected residue positions at which multiple mutations were predicted 

to be stabilizing. We then selected one of the most stabilizing mutations at each of 

these residue positions. This process yielded 23 point mutations predicted to be 

highly stabilizing, shown in Table 2.2. In addition, five stabilizing mutations at 

different sites in DHFR, shown in Figure 2.10, were combined to form the five 

multiple mutants shown in Table 2.3, which were also subjected to further 

computational and experimental analysis. We reasoned that combination of 

stabilizing mutations could result in a further stabilized enzyme.  

 

Figure 2.10. The structure of E. coli DHFR (PDB ID 4DFR), with residues that were 
altered in the stabilized quintuple mutant shown in blue.  
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Table 2.2. Simulated Tm values of selected point mutants and WT DHFR. 
Mutations Tm 

(RMSD) 

Tm 

 (Total Energy) 

Tm 

 (Contact Number) 

Average Tm 

WT 1.507 1.243 1.323 1.358 

D27F 1.525 1.261 1.351 1.379 

T113V 1.551 1.259 1.358 1.389 

Q108D 1.510 1.244 1.329 1.361 

S138Y 1.518 1.247 1.333 1.366 

D116F 1.525 1.248 1.334 1.369 

T68N 1.516 1.250 1.336 1.367 

E120P 1.519 1.257 1.337 1.371 

V119F 1.519 1.252 1.344 1.372 

S135I 1.527 1.248 1.340 1.371 

C152I 1.534 1.253 1.345 1.377 

H114R 1.506 1.249 1.342 1.366 

S49E 1.509 1.260 1.340 1.370 

H141F 1.536 1.264 1.351 1.384 

E157F 1.536 1.268 1.352 1.385 

G15W 1.513 1.261 1.342 1.372 

E154V 1.607 1.273 1.372 1.417 

L156Y 1.510 1.247 1.334 1.364 

E139V 1.548 1.271 1.355 1.391 

D87P 1.510 1.251 1.339 1.367 

G43P 1.510 1.263 1.336 1.370 

W74F 1.512 1.252 1.334 1.366 

G67H 1.515 1.254 1.339 1.369 

A6I 1.542 1.260 1.347 1.383 

Note: The data were simulated with 50 replications, for a total of 2,000,000 MC. The 
last 1,000,000 steps were used to calculate Tm. 
 

2.3.3. Computational test of theoretical analysis 

 We test computationally two predictions that emerge from the theoretical 

analysis of unfolding simulations. First, the apparent unfolding temperature should 

decrease as the length of the unfolding simulation increases. Second, the mutational 

change in relative apparent unfolding temperature (i.e., normalized to WT) should 

be robust with respect to simulation time, provided simulations have equilibrated in 

the native basin.  
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Table 2.3. Simulated and experimental results of selected mutants and WT DHFR. 

Mutations 

Tm 

(DSC

) 

Cm 

(CD) 
kcat 

kcat/K

m 

Simulated 

Tm 

WT 54.1 3.09 24.60 14.07 1.358 

T113V 58.0 3.28 13.67 10.86 1.389 

Q108D 55.7 3.18 24.60 10.35 1.361 

S138Y 55.6 3.33 24.51 9.33 1.366 

D116F 55.5 3.43 24.80 9.53 1.369 

T68N 55.5 3.26 29.36 13.32 1.367 

E120P 55.3 3.25 30.02 13.91 1.371 

T68N,Q108D,T113V,E120P,S138

Y 
61.3 3.52 32.63 12.20 1.400 

T113V,E120P,S138Y 58.5 3.49 31.13 13.10 1.384 

T68N,Q108D,E120P,S138Y 56.4 3.47 22.80 10.94 1.377 

T68N,Q108D 55.8 3.14 17.99 15.24 1.366 

E120P,S138Y 55.6 3.29 16.01 10.81 1.371 

Note: The data were averaged over 50 replications. 2,000,000 MC steps were 
simulated in total, and the last 1,000,000 steps were used to calculate Tm. 
Units:  Tm: °C , Cm: M,  kcat: s

−1,  kcat∕KM : s−1 μM−1 

 

 As a test of the theoretical predictions, we carried out two sets of 

simulations: 2,000,000 steps and 20,000,000 steps in length for the 23 predicted 

stabilizing mutants, 15 mutants studied previously by experiment, and the 5 

stabilizing multiple mutants in Table 2.3. We compared the predicted absolute and 

relative simulated unfolding temperatures from these simulations. We found that, 

consistent with predictions, apparent unfolding temperature decreases with 

simulation time (Figure 2.11) while the relative unfolding temperature is 

remarkably independent of simulation time (Figure 2.12). In what follows, we use 

relative melting temperature when comparing simulation results with experimental 

results, where Tm is averaged over that obtained using energy, number of contacts, 

and RMSD. 
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2.3.4. Experimental characterization of mutants 

 Experimental details are given in (Tian et al., 2015). Briefly, we found that 

the mutant E154V was aggregation prone and excluded it from subsequent analysis. 

All other mutants were catalytically active except for D27F; D27 is a key catalytic 

Figure 2.11. Tm 
calculated from 
simulation RMSD, for 
short (2,000,000-step) 
and long (20,000,000-
step) simulations. 
Simulation Tm is smaller 
for long simulations, in 
which the protein has 
more time to unfold. 
 

Figure 2.12. 
Relative Tm 
(normalized to 
WT), for short 
and long 
simulations. 
Remarkably, the 
points fall 
nearly on the 
line y = x, with a 
correlation of 
0.86, with the 
distinct outlier 
I155A. 
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residue of DHFR (Ohmae et al., 2013). 10 of 22 predicted point mutations were 

found to be stabilizing according to Tm values measured by DSC (Table 2.4). Since 

less than 18% of random mutations will be stabilizing (Tokuriki et al., 2007; 

Zeldovich et al., 2007), this result indicates that our method is effective in predicting 

stabilizing mutations (p = 0.002 under the null hypothesis that mutations are 

random). Predicted stabilizing mutations, with true stabilizing mutations colored 

orange, are shown in Figure 2.13.  

 

Table 2.4. Experimental results for point mutants of DHFR 
Mutation Tm(DSC) Cm(CD) kcat kcat/Km 

WT 54.1 3.09 24.60 14.07 

D27F 61.7 4.55 N.D. N.D. 

T113V 58.0 3.28 13.67 10.86 

Q108D 55.7 3.18 24.60 10.35 

S138Y 55.6 3.33 24.51 9.33 

D116F 55.5 3.43 24.80 9.53 

T68N 55.5 3.26 29.36 13.32 

E120P 55.3 3.25 30.02 13.91 

V119F 54.9 3.12 28.50 12.57 

S135I 54.8 3.33 33.35 16.66 

C152I 54.2 3.15 22.99 11.44 

H114R 54.1 3.07 28.31 14.06 

S49E 53.5 2.89 10.55 5.24 

H141F 53.0 2.94 12.07 6.00 

E157F 52.4 3.07 29.07 14.45 

G15W 52.3 3.07 10.55 5.24 

L156Y 51.3 2.62 6.02 3.00 

E139V 51.3 2.73 24.80 12.31 

D87P 51.0 2.88 25.73 13.18 

G43P 51.0 2.83 10.07 5.02 

W74F 50.5 2.96 3.44 1.71 

G67H 48.1 2.65 17.20 8.57 

A6I 47.2 3.05 19.66 9.79 

Units:  Tm: °C , Cm: M,  kcat: s
−1,  kcat∕KM : s−1 μM−1    
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 Combination of single stabilizing mutations led to more stable multiple 

mutants, as predicted by simulation. In particular, Tm of the quintuple mutant 

(T68N, Q108D, T113V, E120P, S138Y) was found to be 7.2°C higher than WT. All 

multiple mutants were catalytically active, and the quintuple mutant and triple 

mutant (T113V, E120P, S138Y) were found to be more catalytically active than WT. 

Figure 2.14 shows that the stability effects of mutations are less than additive. 

 

Figure 2.14. Change in 
experimental melting 
temperature relative to WT 
is predicted by summing 
melting temperature 
changes of individual 
mutants. This predicted ΔTm 
is plotted relative to the 
observed ΔTm (blue circles). 
r = 0.80, p = 0.06. Red line 
denotes predicted ΔTm = 
observed ΔTm. 
 

Figure 2.13. Locations of the 22 
predicted stabilizing mutations 
(sphere representation), with 
stabilizing mutations colored orange 
and destabilizing mutations colored 
blue. 
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 We compared computationally predicted and experimental unfolding 

temperatures. The correlation coefficient between experimental relative Tm and 

simulated relative Tm was 0.65 (Figure 2.15). Noting the theoretical prediction that 

simulated relative Tm should be proportional to equilibrium stability, we plotted the 

relation between simulated relative Tm and the equilibrium measurement of 

stability by urea denaturation (quantified by the mid-transition urea concentration, 

Cm). We observed a slightly higher correlation of r = 0.68 (Figure 2.16).  

 

  

Figure 2.15. Correlation between simulated and experimental relative Tm values. 
Values are from this study and from Bershtein et al. (Bershtein et al., 2012). Relative 
Tm was calculated by normalizing to WT: (Tm(mutant)-Tm(wild type))/Tm(WT). WT 
is shown as a blue triangle. r = 0.65, p = 3 x 10−6. 
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Figure 2.16. Correlation between simulated Tm and experimental Cm. r = 0.68.  
p = 6 x 10−7. 
 

 

We evaluated the effect of the number of replications and the number of MC 

steps on the performance of the method. Figure 2.17-A shows that prediction 

accuracy is sensitive to the number of replications, and we estimate that to achieve a 

reliable prediction of unfolding temperature, and least 20 replications should be 

used. We estimate from Figure 2.17-B that simulations should be run for at least 

200,000 steps; this may allow time for simulations to equilibrate in the native basin. 

We note that after 200,000 steps, longer simulations do not yield increased 

accuracy.  
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Figure 2.17. The effect of number of replications and number of MC steps on 
simulation accuracy. A) Correlation between simulate Tm and experimental Tm, 
averaging over different numbers of replications. Each protein was simulated for 
2,000,000 MC steps. B) Correlation between simulated Tm and experimental Tm 
with 50 replications and different numbers of MC steps. Each protein was first 
simulated for the number of steps given on the x-axis, and the next 100,000 steps 
were averaged in determining the simulated Tm.  
 

 

2.3.5. Stability and activity do not trade off for DHFR 

 It has been proposed that stability-activity tradeoffs prevent proteins from 

becoming overly stable (Beadle and Shoichet, 2002; DePristo et al., 2005; Studer et 

al., 2014). However, for DHFR we see a weak positive correlation between stability 

and activity, with the notable outlier D27F, where the mutation is made in the active 

site, rendering the protein inactive. Figure 2.18 shows experimental correlations 

between stability  (Tm) and activity (kcat and kcat/KM).  

A B 
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2.3.6. Evolutionary analysis 

 We determined the DHFR consensus sequence from an alignment of 290 

bacterial DHFRs (Figure 2.19). In 4/16 of the experimentally stabilizing mutations, a 

Figure 2.18. 
Correlation between 
DHFR stability and 
activity. WT is shown 
as a blue triangle, and 
D27F is shown as a 
red diamond at zero 
activity. A) Plot of kcat 
vs. experimental 
relative Tm. r = 0.46, p 
= 0.02 (excluding 
outlier D27F). B) Plot 
of kcat/Km vs. 
experimental relative 
Tm. r = 0.41, p = 0.03 
(excluding outlier 
D27F). 

A 

B 
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residue was changed to the consensus residue, while only 2/29 destabilizing 

mutations resulted from a change to consensus. Likewise, in 18/29 destabilizing 

mutations, a residue was changed away from the consensus residue, while this was 

true for only 5/16 of stabilizing mutations. 

 

Figure 2.19. Sequence alignment and sequence entropy for 290 bacterial DHFRs. 

 

2.3.7. Simulated melting temperature by residue 

 We compared the minimum and maximum simulated Tm values obtainable 

by mutating a single residue to any other amino acid (Figure 2.20-A). There is a 

weak positive correlation between minimum and maximum melting temperatures. 

This might be expected, since, for instance, a residue that is already near its most 

stabilizing amino acid variant cannot be stabilized much further by mutation. 

Outliers in the plot correspond to the loci with the strongest stabilizing and 

destabilizing effects of mutations. Interestingly, these outliers tend to fall on the 
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interface connecting the C-terminal hairpin with the rest of the protein (Figure 2.20-

B), which is the interface that is first to dissociate in simulations.  

 
 
Figure 2.20. Maximum stabilization and destabilization induced by mutations at 
each residue position. A) Plot comparing the minimum and maximum simulated Tm 
values for each residue across all 19 simulated mutants. Tm is normalized to WT by 
dividing each Tm value by the simulated WT value. Outliers are circled in purple 
(left), green (middle) and orange (right). B) DHFR with outlier residues colored 
according to the color scheme from A. Purple residues: F153, W30, Y111, L156, 
L110. Green: A107, I115, L112, H114. Orange: A6, E154. Excluding outlier residues, 
the C-terminal hairpin is colored yellow, and the rest of the protein is colored cyan.  
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2.4. Discussion 
 
 Ideally, estimates of protein stability could be obtained from long Molecular 

Dynamics (MD) simulations, allowing for multiple rounds of folding and unfolding of 

the protein. However, given the amount of computational resources required, this 

method would currently be prohibitive for all but the smallest proteins. We present 

a method for estimating the effect of a mutation on the equilibrium stability of a 

protein, using short unfolding simulations. While we use a Monte Carlo (MC) 

program to simulate unfolding, the method could be modified for use with MD 

simulations. It would be interesting to compare the accuracy of an MD-based 

approach with our MC-based results.  

 Protein stabilization can be achieved by slowing the rate of unfolding and/or 

accelerating the rate of folding. Our method based on unfolding simulations can be 

used to identify mutations that change the unfolding rate, which according to a 

recent study constitutes the majority of mutations (Naganathan and Muñoz, 2010), 

with 𝜑 roughly constant around 0.24. These mutations are located at residue 

positions that are unfolded in the transition state, meaning that they are relatively 

early to unfold. In fact, many of the experimentally verified stabilizing mutations in 

DHFR predicted by our method are found in the C-terminal beta hairpin region, 

which is the first to unfold in simulations. Interestingly, the source of ultra-stability 

in hyperthermophiles generally arises from slowing the unfolding rate, rather than 

increasing the folding rate (Luke et al., 2007).  
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 It has been hypothesized that a trade-off occurs between enzyme stability 

and activity due to a requirement that the enzyme must be sufficiently flexible to 

promote catalysis. This conclusion was based on exploration of the stability effects 

of mutations in the active sites of beta-lactamase, rubisco, and barnase (Beadle and 

Shoichet, 2002; DePristo et al., 2005; Studer et al., 2014). We observe a similar effect 

for the mutation D27F, which is located in the active site of DHFR and renders the 

protein inactive. Carving of an active site requires the specific selection of catalytic 

amino acids, which would be expected to have a destabilizing effect. However, we 

find that exploring only mutations in the active site provides a biased view of the 

relationship between stability and activity. Instead, we find that most mutations 

exhibit an opposite trend: a positive correlation between stability and activity. The 

lack of a global dynamics-driven tradeoff between stability and activity is an idea 

supported by other authors (Adamczyk et al., 2011; Bloom et al., 2006; Taverna and 

Goldstein, 2002).  

 A possible explanation for the positive correlation between stability and 

activity is that highly stable proteins have a greater effective concentration of 

protein available in the active form. We note that the correlation is only revealed 

when stabilizing mutants are included in the analysis; our earlier study (Bershtein 

et al., 2012) analyzed a smaller set of primarily destabilizing mutations and did not 

find any statistically significant trend between stability and activity for DHFR.  

 In conclusion, we developed a method to determine stability effects of 

mutations and to search for stabilized mutants using short Monte Carlo simulations. 

Our method shows good performance for the enzyme DHFR and for other proteins 
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(see (Tian et al., 2015)). We propose that this method could be useful as a technique 

for discovering the stability effects of mutations and for rationalizing these effects 

based on the protein structure and unfolding pathway.  

  

Contributions 

 This work is described in a recent publication (Tian et al., 2015). Jaie 

Woodard carried out preliminary simulations of DHFR and several mutants. Jian 

Tian carried out simulations on all mutants and performed experiments. Anna 

Whitney ran longer simulations on selected mutants. Jaie Woodard and Jian Tian 

analyzed computational and experimental data. Eugene Shakhnovich proposed the 

theory relating simulated melting temperature and experimental stability. Jaie 

Woodard, Jian Tian, and Eugene Shakhnovich wrote the paper. 
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3. A Simple Model of Protein Domain Swapping in 
Crowded Environments 
 

 

Abstract  

 Protein domain swapping is an intriguing structural phenomenon with 

possible relevance to protein aggregation and dimer evolution. However, the 

mechanism of domain swapping and its relevance within the crowded cellular 

environment are still not well understood. We propose a simple Monte Carlo model 

of domain swapping in two dimensions. The model allows for functional and non-

functional interactions between proteins, for partial unfolding of the protein, and for 

motion in continuous space. We find that domain swapping occurs at intermediate 

temperatures, and that torsional strain can promote domain swapping, consistent 

with experimental observations. In addition, we predict that non-specific 

interactions between unfolded proteins occur at intermediate temperature and high 

concentration, consistent with the Flory theorem for polymer chains. For folded 

proteins, we predict that functional interactions are strongest at intermediate 

temperature, while non-specific interactions become more common at low 

temperatures, matching previous computational results for 3D lattice proteins.  

 

3.1. Introduction 
 
 Domain swapping is a type of protein-protein interaction that requires at 

least partial unfolding of the protein. In this way, domain swapping is similar to 
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most forms of protein aggregation, and in fact some types of aggregates may be 

formed through the process of domain swapping (Rousseau et al., 2003). In a 

domain-swapped structure, a structural element such as a beta strand, an alpha 

helix, or an entire protein domain is exchanged between two proteins, such that 

each reconstituted monomer contains contributions from two separate chains 

(Bennett et al., 1995; Gronenborn, 2009; Liu and Eisenberg, 2002). An example is 

shown in Figure 1.4 in the Introduction section. The protein segment separating the 

two “domains” is called the hinge loop. This region of the protein changes 

conformation in the transition between the closed native state and the open form 

required for domain swapping.  

 Protein sequences and cellular abundances must evolve to promote folding 

and functional interactions while avoiding non-specific interactions. For instance, 

proteins that are highly abundant tend to have less sticky surfaces (Levy et al., 

2012), due to increased pressure to prevent non-specific interactions. Protein 

sequences also tend to evolve to avoid aggregation. However, the details of these 

processes have not yet been fully elucidated. 

 Lattice models and other coarse-grained models of proteins have been used 

extensively to study protein folding and protein-protein interactions (Abeln and 

Frenkel, 2008; Deeds et al., 2007; Ding et al., 2002; Lobkovsky et al., 2010; Mirny 

and Shakhnovich, 2001; Sali et al., 1994; Shakhnovich and Gutin, 1993). These 

simplified models allow for a greater sampling of the accessible conformational 

space within a given amount of computation time. In addition to simplifying the 

protein representation, many models contain fewer than the natural 20 amino acid 
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types (Li et al., 2008; Shakhnovich and Gutin, 1993; Straub and Thirumalai, 2011), 

reducing the number of possible sequences. 

 Here, we present a simple model of domain swapping in crowded 

environments. In this model, two-dimensional proteins are allowed to “unfold” 

partially by rotation of each the two domains about a hinge. With four residue types 

and one bead per residue, the model is designed to be a minimalistic model with the 

potential to reproduce the temperature dependence and sequence specificity of the 

domain swap interaction while allowing for specific and non-specific interactions 

between proteins. We find that domain swapping is promoted by a strong domain-

domain interaction combined with torsional strain favoring the open conformation. 

Domain swapping occurs at intermediate temperature and intermediate 

concentration, consistent with experiment, while non-specific interactions between 

unfolded proteins occur at intermediate temperature and high concentration. For 

folded proteins, functional interactions are most common at intermediate 

temperature, while promiscuous interactions become more common at low 

temperatures.  

 

3.2. Methods 
 
3.2.1. Model  

 Figure 3.1-A shows a single model protein in the folded state. The protein 

consists of two domains (residues 1-6 and 7-12). Each domain can individually 

rotate about the hinge, shown as a black +. Note that there is not a residue at the 

hinge position. A functional dimerization interface is defined as the four-residue 
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surface opposite the hinge (residues 3, 6, 9, and 12). The interaction potential is a 

step function centered at each residue, with a hard-sphere radius of 0.75 units and 

an interaction radius of 1.80 units. The spacing between residues is 2.0 units, as 

shown in Figure 3. 1-B. 

 

 

 

There are four residue types: hydrophobic, positively charged, negatively 

charged, and neutral. The interaction energy matrix is shown in Figure 3.1-C. 

Opposite charges attract, like charges repel, and hydrophobic residues attract. Units 

Figure 3.1. Model definition. 
A) A single protein in the 
folded state. Residues are 
numbered 1-12. The hinge is 
shown as a black +. The hinge 
position does not contain a 
residue. B) Interaction radii. 
C) Matrix of interaction 
energies between contacting 
residues. D) The three move 
types in the Monte Carlo move 
set: translation in any 
direction in two dimensions, 
clockwise or counter-
clockwise rotation of the 
whole protein, and clockwise 
or counter-clockwise rotation 
of a single domain.  
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of energy are defined such that the magnitude of these interactions equals 1. 

Hydrophobic and neutral residues repel charged residues by a smaller amount, 

reflecting phase separation. The electrostatic interaction is short-range, to represent 

screening by salt. Solvent is not explicitly included in this model.  

An additional energy term biases the two domains toward an open 

conformation. This bias reflects torsional strange within the hinge loop, which is 

present in many domain-swapping proteins. In our model, the energy is 

proportional to the angle between domains, where lowest energy occurs at 180° 

(the open, domain-swap-prone state).  

To represent the crowded cellular environment, which contains densely 

interacting proteins, multiple proteins are simulated at a range of concentrations, 

within a square cell. Periodic boundary conditions are employed. At the start of 

simulations, proteins begin in the folded state, evenly spaced within the cell. Protein 

concentration is adjusted by varying the cell size.  

 

3.2.2. Move set  

 Monte Carlo simulations are carried out on model proteins moving in two-

dimensions. Three possible moves are allowed: translation of the protein in a 

random direction, rotation of the protein either clockwise or counter-clockwise, and 

conformational change by rotation of a single domain about the hinge (Figure 3.1-

D). An additional move is included to allow two proteins to translate or rotate 

simultaneously (Deeds et al., 2007). The magnitude of the move is chosen randomly, 

according to a Gaussian distribution centered at 0 and with standard deviation 0.5 
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for translation, 0.3 for rotation of the full protein, and 0.2 for rotation of a domain 

about the hinge. The probabilities of each move are 0.2 for translation, 0.2 for 

rotation, and 0.6 for rotation of a domain about the hinge. If two proteins are 

interacting and a translation or rotation move is rejected for one of the proteins (i.e., 

the dimer does not dissociate), then there is a probably of 0.5 of attempting a two-

protein move. Moves are accepted or rejected according to the Metropolis criterion: 

𝑃𝑎𝑐𝑐𝑒𝑝𝑡 = min (𝑒−
∆𝐸

𝑘𝑇, 1)        (Eq. 3.1) 

where ∆𝐸 is the change in energy as a result of the proposed move, and a move is 

always rejected if interaction between inner radii occurs.  

 

3.2.3. Categories of protein-protein interaction  

 Numbers of folded monomers, unfolded monomers, folded functional dimers, 

domain-swapped dimers, unfolded proteins involved in non-specific interactions, 

and folded proteins involved in non-specific interactions were tracked over the 

course of the simulation. Figure 2 shows representative structures for each of these 

categories. The folded monomer contains interactions between residues 4 and 7, 5 

and 8, and 6 and 9, referring to the numbering shown in Figure 3.1-A. The unfolded 

monomer lacks at least one pair of folded-state interactions. We refer to this as the 

unfolded state, although in a fully unfolded biological protein individual domains 

would also unfold. The folded functional dimer contains two proteins in the folded 

state, with the interfaces opposite the hinge in contact, so that residue 9 of one 

protein contacts residue 6 of the other protein. The domain-swapped dimer 
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incorporates the same contacts as two folded monomers, but with domains 

exchanged between proteins (all six contacts must be present). Non-specific dimers 

contain at least four contacts between proteins but do not fall into the functional 

dimer or domain swapped categories. 

 

 

 The total number of proteins involved in each type of interaction was 

tabulated. For instance, an interaction between a folded protein and an unfolded 

protein would count as one non-specific folded interaction and one non-specific 

unfolded interaction. An unfolded protein bound to a functional dimer would count 

as two functional dimer interactions and one non-specific unfolded interaction. The 

average number of proteins in each state was computed to generate 2D histograms. 

Figure 3.2. 
Categories of 
protein folding and 
interaction.  
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A smoothing function was applied to each histogram, and histograms were 

combined to form phase diagrams.  

 

3.2.4. Sequence selection  

 Six sequences were chosen for simulation and analysis (Figure 3.3, residue 

types defined in Figure 3.1-C). These sequences were chosen to span a range of 

protein stabilities and protein-protein interaction propensities. Sequences 0, 1, 2, 

and 3 contain hydrophobic residues at the domain-domain interface. Sequence 0 

contains neutral residues elsewhere, so that the protein surface is partly neutral and 

partly hydrophobic. Sequence 1 contains a hydrophobic residue at the center of each 

3-residue surface, making the surface more hydrophobic. Sequence 2 contains four 

hydrophobic residues at the functional interface. Sequence 3 contains charged 

residues along the 3-residue surfaces, allowing for specific interactions between 

charges. Sequence 4 is similar to sequence 0, but with one neutral residue at the 

domain-domain interface, destabilizing the protein. Sequence 5 is like sequence 2, 

but with charged residues added outside of the functional interface, which also 

destabilizes the protein. The energy difference between folded and unfolded states 

(without the additional energy term biasing towards the unfolded state) is -7 for 

proteins 0, 1, 2, and 3; -5 for protein 4, and -4 for protein 5.  

 

Figure 3.3. The six protein sequences analyzed in this study. Residue types are 
defined in Figure 3.1 C.  
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3.2.5. Simulation protocol  
 
 Monte Carlo simulations were performed, starting from a square grid of 16 

equally spaced folded proteins. Periodic boundary conditions were employed, and 

concentration was adjusted by varying the cell length from 80 to 320 units. 

2,000,000 Monte Carlo steps were attempted per run, and statistics were averaged 

over the last 200,000 steps. The temperature ranged from kT = 0.2 to 2.0, in 

increments of 0.1 (we did not attempt a mapping of our simulation units to real 

temperatures). Simulations were carried out with and without a hinge energy 

biasing the protein toward the unfolded state. The biasing term had a magnitude of 

2 times the angle between domains, in radians. Results were averaged over 20 

separate runs.  

 

3.2.6. Energy diagrams 

 Plots of energy versus hinge angle for singe proteins were generated by 

sampling the angle at increments of 0.01 radians and calculating: (energy between 

domains) + (hinge energy). Plots of folded fraction versus kT were generated by 

calculating 𝑒−𝐸 𝑘𝑇⁄  at each angle and then calculating the sum over folded states 

divided by the sum over all states.  

 

3.2.7. Code 

 The complete code for our model can be found on the Shakhnovich group’s 

website: http://faculty.chemistry.harvard.edu/shakhnovich/software.  

http://faculty.chemistry.harvard.edu/shakhnovich/software
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 Additional analysis was performed in MATLAB (The MathWorks, Natick, 

MA). A smoothing function was applied to 2D histograms for phase diagrams and 

energy diagrams using gridfit.m by John D’Errico (available on the MATLAB Central 

File Exchange, http://www.mathworks.com/matlabcentral/fileexchange/), using a 

smoothness of 5.  

 

3.3. Results 
 
3.3.1. Simulation trajectories 

 In simulation trajectories, proteins begin in the folded monomeric state. As 

the simulation proceeds, proteins unfold, refold, and form interactions with other 

proteins. The total energy versus simulation step is shown in Figure 3.4, for a 

sample trajectory. We note that energy equilibrates by the end of the simulation, 

although there is still oscillation about the equilibrated value. Individual simulation 

frames are shown in Figure 3.5-A. The number of proteins in each interaction 

category as a function of Monte Carlo step are shown in Figure 3.5-B. Equilibrium 

between folded and unfolded monomers is established in the first 500,000 steps. 

Non-specific interactions involving folded and partially unfolded proteins appear 

early in the trajectory, while domain-swapped dimers appear later in the trajectory, 

becoming common after about 500,000 steps.  

http://www.mathworks.com/matlabcentral/fileexchange/
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A 

B 

Figure 3.4. Total simulation energy 
vs. Monte Carlo step from a single 
sample trajectory. Sequence: 0, hinge 
energy = -2 times the angle between 
domains, cell length = 113 units, kT = 
0.7.  
 

Figure 3.5. Sample 
simulation trajectory, 
with sequence 0, 
hinge energy = -2 
times the angle 
between domains, cell 
length = 113 units, 
and kT = 0.7. A) Four 
frames from the 
trajectory. Colored 
arrows point to a 
protein in each 
interaction category, 
as defined in the 
legends in (B). B) 
Plots showing the 
population of each 
interaction category 
versus Monte Carlo 
step.  
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3.3.2. Temperature and concentration dependence of oligomeric state 

 Statistics from trajectories were averaged over the last 200,000 steps and 

over 20 runs. Figure 3.6 shows results as a function of temperature for sequence 0. 

At high concentration and low temperature, most of the proteins are in folded 

dimeric states. As temperature increases, proteins dissociate into monomers and 

begin to unfold. A sample frame from simulations at high temperature and high 

concentration is shown in Figure 3.7-A. At lower concentrations, dimers dissociate 

more abruptly with increasing temperature, and protein-protein interactions are 

not seen at high temperatures.  

Hinge strain causes unfolding to occur at lower temperatures. In the 

presence of hinge strain, domain swapping occurs at intermediate temperature. 

Domain swapping is most prevalent at intermediate concentrations, while non-

specific interactions involving unfolded proteins increase at high concentrations. 

The domain-swap interaction falls off more rapidly with increasing temperature 

than the non-specific unfolded interactions, most likely due to the low entropy of 

the domain swapped state relative to the non-specific unfolded state.  

 Results as a function of temperature for sequence 1 are shown in Figure 3.8. 

As expected, non-specific interactions between folded proteins are more common 

than for sequence 0. The domain swap interaction at high concentration is also less 

for this protein, while non-specific interactions involving unfolded proteins are 

increased. As shown in Figure 3.7-B, non-specific interactions include a variety of 

interaction types involving both the protein surface and domain-domain interface 

residues. Figure 3.9 shows results for sequence 2. Specific interactions are common 
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at low to intermediate temperatures. For proteins without hinge energy at 

intermediate concentration (Figure 3.9 C), the amount of functional dimer depends 

non-monotonically on temperature. At intermediate temperatures, functional 

dimers are the most common species, while at low temperatures non-specific 

interactions between folded proteins become more common. As for sequence 1, for 

proteins with hinge energy at high concentration (Figure 3.9 B), there are few 

domain swapped dimers and many non-specific interactions involving unfolded 

proteins.  

 Results for sequence 3 are shown in Figure 3.10. Relative to sequence 0, for 

proteins without hinge energy at high concentration (Figure 3.10-A), there are 

fewer protein-protein interactions. At intermediate and high concentrations (Figure 

3.10-C, E), non-specific interactions between folded proteins are more common than 

functional interactions at low temperature, while functional interactions become 

more common at intermediate temperatures. Functional interactions are less 

common than for sequence 2 (note that residues interact on the diagonal, so the 

functional interface is not as strong). Domain swapping behavior is similar to 

sequence 0.  

 Results for sequences 4 and 5 are shown in Figures 3.11 and 3.12, 

respectively. Domain swapping occurs for both proteins at lower temperatures than 

for sequence 0, and sequence 4 exhibits more domain swapping than sequence 5. 

However, for both sequences, non-specific interactions between unfolded proteins 

are more common than domain swapping. For sequence 4 without hinge energy, 

functional interactions are less common at low temperature relative to sequence 0, 
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since the functional interface is weakened. Also, as expected, proteins unfold at a 

lower temperature, since the domain-domain interface is weakened. Sequence 5 

exhibits even more functional interaction at low temperature than sequence 2, since 

the sequence is designed to inhibit non-functional interaction between folded 

protiens. 

 Plots of energy versus angle between domains were constructed to better 

understand the temperature dependence of folding and oligomerization state 

(Figure 3.13). Note that the unfolded state (shown in black in Figure 3.13-A) is more 

entropically favored than the folded state (shown in red), since most angles 

correspond to the unfolded state. However, for all sequences with hinge energy 

equal to zero and for sequences 0, 1, and 2 with the hinge energy bias, the folded 

state is lower in energy. Therefore, for these proteins, the folded state will be 

favored at low temperature, while the unfolded state will become more common at 

high temperature (Figure 3.13-B, C). This is in fact what we see in simulations, for 

these sequences. Boltzmann weighting predicts that for sequences 3, 4, and 5, with 

hinge energy biasing towards the open state, the unfolded state will actually be 

more populated at low temperature. However, due to the fact that simulations begin 

with proteins in the folded state, kinetics and possibly interactions between folded 

proteins cause the folded state to be preferred at low temperature in simulations for 

these proteins as well.  
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Figure 3.6. Simulation statistics as a function of temperature for sequence 0. Colors 
represent interaction categories, as defined in Figure 3.5: green: folded monomers, 
cyan: folded proteins exhibiting non-specific interactions, black: domain swapped 
dimers, yellow: functional dimers, blue: unfolded monomers, red: unfolded proteins 
exhibiting non-specific interactions. Results are averaged over the final 200,000 
frames of a 2,000,000 step simulation and over 20 individual runs. Cell size = 80 
units for (A,B), 240 units for (C,D), and 320 units for (E,F). Hing energy = 0 for (A, C, 
E) and 2 times the angle between domains for (B, D, F).  
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Figure 3.7. Representative frames 
from simulations at high 
concentration. A) sequence = 0, 
hinge = 0, cell size = 80, temperature 
= 2.0. B) sequence = 1, hinge = 2 
times the angle between domains, 
cell size = 80, temperature = 1.0.  
 



 
 

 55 

 

Figure 3.8. Simulation statistics as a function of temperature for sequence 1. (See 
Figure 3.6 caption.)  
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Figure 3.9. Simulation statistics as a function of temperature for sequence 2. (See 
Figure 3.6 caption.) 
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Figure 3.10. Simulation statistics as a function of temperature for sequence 3. (See 
Figure 3.6 caption.) 
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Figure 3.11. Simulation statistics as a function of temperature for sequence 4. (See 
Figure 3.6 caption.) 
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Figure 3.12. Simulation statistics as a function of temperature for sequence 5. (See 
Figure 3.6 caption.) 
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Figure 3.13. Single protein energy landscapes and temperature dependence of 
folded fraction. A) Domain-domain interaction energy as a function of angle 
between domains (in degrees), for sequences 0-5. Hinge energy = 2 times angle 
between domains (in radians). The region defined as the folded state is colored red. 
B) Population of the folded state, calculated from intra-protein interaction diagrams 
with hinge energy = 0. The dotted line indicates an equal number of folded and 
unfolded proteins. C) Population of the folded state, calculated from intra-protein 
interaction diagrams with hinge energy = 2 times the angle between domains 
(shown in (A)).  
 
 
 
 
 
 
 
 
 



 
 

 61 

3.3.3. Phase diagrams 

 Phase diagrams showing the most prevalent protein species as a function of 

temperature and concentration are shown in Figure 3.14, for proteins without the 

hinge energy term. Non-specific interactions between folded proteins are most 

prevalent for sequence 1, which has hydrophobic residues at the top and bottom 

interfaces, while functional dimerization is most prevalent for sequences 2 and 5, 

for which all of the residues at the functional interface are hydrophobic. Note that 

functional dimerization, which was designed to be stronger than non-functional 

dimerization, persists out to higher temperatures. We see unfolding at high 

temperatures for sequences 4 and 5, consistent with predictions from single 

molecule energies shown in Figure 3.13 B. In general, folded dimers occur at low 

temperature and low concentration, while folded monomers occur at low 

concentration and higher temperatures. For destabilized proteins (those with a 

weaker domain-domain interaction interface), unfolded monomers occur at high 

temperature. Figure 3.15 shows that the lowest energy occurs in the folded dimeric 

region of the phase diagram for all six sequences.  
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Figure 3.14. Phase diagrams showing the most prevalent interaction category as a 
function of temperature and concentration. Hinge energy = 0. Temperature is given 
in simulation units of kT, and concentration is given in terms of area per protein, 
normalized by the length times the width of a single protein (72.96), with cell length 
ranging from 60 to 320 in simulation units. High concentration corresponds to low 
area per protein. Color (see Figure 3.6) denotes the most populated category, and 
shade indicates the population of this category, with darker shades corresponding 
to a greater number of proteins. Each plot represents a single protein. A) Sequence 
0. B) Sequence 1. C) Sequence 2. D) Sequence 3. E) Sequence 4. F) Sequence 5.  
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Figure 3.15. Total interaction energy from simulations as a function of cell area and 
temperature. Hinge = 0. Results are averaged over the final 200,000 frames and over 
20 individual runs. Dark red indicates the lowest energy, and dark blue indicates the 
highest energy. Color scales are normalized for each plot. A smoothing function was 
applied to each plot in two dimensions. A) Sequence 0. B) Sequence 1. C) Sequence 
2. D) Sequence 3. E) Sequence 4. F) Sequence 5.  
 
 
 Phase diagrams for proteins with a hinge energy term biasing the domains 

towards an open state are shown in Figure 3.16. Domain swapping is most common 

at intermediate temperatures and intermediate concentrations and is seen in the 

phase diagram for sequences 0, 1, 2, and 3. At intermediate temperature and high 

concentration, non-specific interactions between unfolded proteins become more 

common than domain swapping. Which region of phase space has lowest energy 

depends on the sequence. Figure 3.17 shows that the region favoring folded 
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dimerization has lowest energy for sequences 0 and 2, while the region favoring 

domain swapped dimerization has lowest energy for sequences 1 and 3. However, 

domain swaps do not occur at low temperature, most likely due to the kinetic 

barrier to unfolding. Similarly, the region that favors non-specific interactions 

between unfolded proteins has the lowest energy for sequence 4; however, folded 

dimers are seen at low temperature due to kinetic trapping.   

 
Figure 3.16. Phase diagrams showing the most prevalent interaction category as a 
function of temperature and concentration. Hinge energy = 2 times angle between 
domains. A) Sequence 0. B) Sequence 1. C) Sequence 2. D) Sequence 3. E) Sequence 
4. F) Sequence 5. 
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Figure 3.17. Total interaction energy from simulations as a function of cell area and 
temperature. Hinge = 2 times the energy between domains. 
 

 

In the plots shown above, a smoothing function was applied for ease of 

visualization (see Methods section 3.2). Raw phase diagrams, without smoothing or 

contour lines, are shown in Figure 3.18.  
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Figure 3.18. Raw phase diagrams, prior to applying the smoothing function to 
generate Figures 3.14 and 3.16. Hinge energy = 0 for (A-F). A) Sequence 0. B) 
Sequence 1. C) Sequence 2. D) Sequence 3. E) Sequence 4. F) Sequence 5. Hinge 
energy = 2 times angle between domains for (G-L). G) Sequence 0. H) Sequence 1.. I) 
Sequence 2. J) Sequence 3. K) Sequence 4. L) Sequence 5. 
 

3.4. Discussion 
 
 A key result of simulations that is consistent with experimental observations 

is the non-monotonic temperature dependence of domain swapping. Domain 

swapping occurs at intermediate temperatures. At low temperature, proteins are in 

the folded state, so they do not have the opportunity to domain swap. At 

intermediate temperatures, proteins begin to unfold due to the higher entropy of 

the unfolded and partially unfolded states. Proteins then populate the open, domain-

swap-prone state and are able to form domain swap interactions. At high 

temperatures, domain swapped dimers dissociate into unfolded monomers.  
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Another observation from simulations is that domain swapped dimers 

persist out to higher temperatures than monomers do at low concentration, creating 

a folded-like state at temperatures beyond where the monomer would unfold. This 

could explain the experimental observation that a mutant of the enzyme DHFR that 

exhibits dimerization at high temperatures shows a beneficial fitness effect when 

replacing the WT protein in E coli (Bershtein et al., 2012). Domain swapped 

dimerization in this case could rescue the folded state and prevent aggregation. In 

general, intertwining of protein chains has been proposed as a mechanism to 

increase protein stability (MacKinnon and Wodak, 2015; Wodak et al., 2015).  

 In many proteins, a single mutation is sufficient to induce the transition from 

monomer to domain swapped dimer (Chirgadze et al., 2004; O'Neill et al., 2001; 

Szymańska et al., 2012; Vottariello et al., 2011). We hypothesized that mutation at 

the domain-domain interface could increase the propensity for domain swapping. 

While such a mutation (e.g., protein 4) caused domain swapping to occur at lower 

temperatures, it increased the propensity for non-specific interactions at 

intermediate temperatures more than it increased domain swapping. Mutations 

within the hinge loop that increase hinge strain, or shortening or lengthening of the 

loop, can also lead to domain swapping in real proteins (Rousseau et al., 2003). We 

modeled hinge loop torsional strain as a bias favoring the open state, and we found 

that inclusion of hinge strain causes domain swapping in all six sequences. Our 

model suggests that modifying the hinge loop to favor domain swapping, while 

maintaining the primary interface, is the most effective strategy to promote domain 

swapping.  
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 For proteins without hinge bias, our model shows that the dimer dissociation 

temperature is highest for proteins with a large hydrophobic surface. In the model, 

the drop in dimeric protein with increasing temperature is most abrupt at lower 

concentrations. These dependencies can be predicted by considering a partition 

function accounting for the interaction between two folded proteins at each surface. 

For protein 2, which has a strong functional interface and the propensity to form 

non-functional interactions, functional interactions are most prevalent at 

intermediate temperatures, while non-functional interactions become more 

common at low temperatures and monomers dominate at high temperatures. This 

effect was noted previously for lattice proteins in three dimensions (Deeds et al., 

2007).  

 Another prediction of our model involves the concentration dependence of 

protein-protein interaction at intermediate temperatures. At low concentrations, 

monomers are most common, whereas at high concentrations non-specific 

interactions between unfolded proteins are most common; it is only at intermediate 

concentrations that domain swapped dimers are the most prevalent species. We 

hypothesize that this observation is an instance of the Flory theorem for polymer 

chains (Flory, 1953), which states that unfolded states become common at high 

concentrations due to the ability of unfolded polymers to form interchain 

interactions to replace intrachain ones while achieving high entropy. It will be 

interesting to test experimentally whether domain swapping and/or amyloid 

formation is decreased relative to amorphous aggregation and non-specific 

interactions at high concentrations or in crowded environments.  
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 We note that while we observe dimerization at low temperatures for all of 

our sequences, real proteins do not always dimerize at low temperature. The high 

surface area to volume ratios of our proteins, and our choice of sequences, could 

contribute to this bias. The lowest temperatures may also be said to occur below the 

physiological temperature range. Another potential caveat is that domain swapping 

may in some cases require complete unfolding of the protein, while only separation 

of domains is possible in our model. In the cell, where proteins are generally 

degraded before they achieve full unfolding (Bershtein et al., 2013), the mechanism 

of domain swapping is likely to involve only partially unfolded states.  

 In future work, it will be interesting to explore the phase behavior of 

additional protein sequences and to develop algorithms for the evolution of proteins 

towards desired interaction states. The results of such studies could suggest design 

strategies for producing proteins that are folded, dimeric, or domain swapped and 

may provide insight into dimer evolution. While our simplistic model allows for a 

large sampling of phase space and of different sequences in a short amount of 

computational time, it will also be important to study the mechanism of domain 

swapping with more detailed simulations. For instance, domain-swapped structures 

have been reproduced in simulations using a Go-like model (Ding et al., 2002; Ding 

et al., 2006; Yang et al., 2004). As another approach, the Shakhnovich group is 

currently developing a multichain all-atom Monte Carlo method which accounts for 

specific and non-specific interactions between protein molecules.  
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Contributions 

 This work is described in a recent publication (Woodard et al., 2016). Jaie 

Woodard developed the model and wrote a preliminary version of the simulation 

program in MATLAB. Sachith Dunatunga wrote the C++ version of the program. Jaie 

Woodard carried out simulations and analyzed data. Eugene Shakhnovich suggested 

the relevance of the Flory Theorem to simulation results. Jaie Woodard and Eugene 

Shakhnovich wrote the paper. 
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4. Stability, disulfide bonding, and aggregation in 
cataract-associated mutants of γD-crystallin 
 

 

Abstract  

 γD-crystallin is a highly stable two-domain protein that aggregates in human 

cataracts. Mutations at tryptophan residues within the protein core are known to 

accelerate aggregation. However, the mechanism of non-amyloid aggregation of 

these mutants is unknown. Also unknown is the mechanism of an experimentally 

observed “inverse prion” behavior of γD-crystallin, in which the WT protein 

promotes aggregation of the mutant. Here we use Monte Carlo simulations to 

predict the unfolding pathway and aggregate structures of γD-crystallin. We find 

that extrusion of the N-terminal hairpin is an early event in protein unfolding. We 

find in two-molecule simulations that this hairpin interacts with the C-terminal 

domain of the other protein to form an extended beta sheet in an interaction that 

resembles domain swapping, which could lead to aggregate formation. Cataract 

associated mutations and an experimentally observed disulfide bond promote 

unfolding and aggregation. A domain-domain interaction observed in simulations of 

WT and mutant proteins could explain how WT accelerates mutant aggregation.  

 

4.1. Introduction 
 
 Protein aggregation is implicated in several human diseases, including 

amyotrophic lateral sclerosis, Parkinson’s, and cataracts (Aguzzi and Calella, 2009; 
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Bartels et al., 2011; Bloemendal et al., 2004; Chiti and Dobson, 2009; Horwich, 

2002). Often, a mutation in protein sequence or a covalent modification such as a 

disulfide bond will increase aggregation propensity and speed onset of a disease. 

Such modifications can serve to increase the population of an aggregation-prone 

folding state relative to the native state.  

 Aggregation of crystallin proteins in the lens leads to human cataract 

(Michael and Bron, 2011; Serebryany and King, 2014). γD-crystallin has been 

studied extensively by experimental and computational methods. Its structure 

consists of two domains, each containing two Greek key motifs (Figure 4.1). Its 

folding has been studied in vitro, and it was found that the C-terminal domain helps 

to stabilize the less thermodynamically stable N-terminal domain (Flaugh et al., 

2005a, b; Flaugh et al., 2006). Several mutations and covalent modifications are 

known to destabilize γD-crystallin and increase its aggregation propensity. 

Mutations such as W42Q and W130E were designed to mimic oxidative damage that 

can lead to age onset cataract. Interestingly, the related mutation W42R was found 

to cause cataracts in humans (Wang et al., 2011).  

While non-amyloid aggregation is generally termed “amorphous,” evidence 

suggests that this type of aggregation may involve specific interactions between 

proteins (Horwich, 2002; Speed et al., 1996). One hypothesis is that aggregation 

may occur by run-away domain swapping (Guo and Eisenberg, 2006; Rousseau et 

al., 2003). However, the structure of amorphous aggregates is difficult to study 

experimentally, and few computational studies have sought to determine aggregate 

structure. One exception is a computational study by Das et al. (Das et al., 2011) of 
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γD-crystallin, in which molecular dynamics simulations were first used to unfold the 

N-terminal domain and then to simulate interaction of partially unfolded molecules.  

 

Figure 4.1. Structure of γD-crystallin. N-terminal domain is shown in blue, C-
terminal domain in red. A) Resdiues mutated in mutations are shown in sphere 
representation. B) Cysteine residues (sphere representation) are labeled. C) Strands 
within the N-terminal domain are numbered. D) Strands within the first Greek key 
motif. E) Contact map, where residues are in contact if their alpha carbons are 
within 10 Angstroms. 
 

 Working closely with experimental collaborators, we simulated unfolding of 

human γD-crystallin and several mutants using Monte Carlo simulations. We then 

simulated interaction of γD-crystallin molecules, starting from the native state but 

allowing for unfolding, by connecting two molecules by a flexible linker. We found 
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that cataract associated mutants and an experimentally observed disulfide bond 

promote non-amyloid aggregation involving interactions between specific beta 

strands. Based on simulations, we propose a mechanism for mutant aggregation, 

where the N-terminal hairpin binds to the C-terminal domain of the next protein. In 

addition, we propose a mechanism for the experimental observation that WT 

proteins can accelerate mutant aggregation, based on domain-domain interactions 

observed in simulations, where a half-domain-swap interaction promotes unfolding 

of the free domain.  

 

4.2. Methods 
 
4.2.1. Monte Carlo Simulation Program  

 Simulations were performed using the Shakhnovich group’s all-non-

hydrogen atom Monte Carlo program, described in the Introduction section of this 

thesis. To simulate disulfide bonding, a term proportional to (d – 2)2, where d is the 

distance in Angstroms between sulfur atoms, was added to the energy function.  

 

4.2.2. Unfolding simulations 

 The initial simulation structure for single molecule simulations was human 

γD-crystallin (PDB ID IHK0). For mutants W42Q, W42R, T4P, and W130E, the amino 

acid mutation was introduced using PyMOL. An initial 2,000,000-step simulation 

was run at low temperature (T = 0.150 in simulation units). The final structure of 

this simulation was used as input for a 60,000,000-step simulation, at each of 32 

temperatures ranging from T = 0.1 – 1.65, with 50 runs performed at each 
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temperature. The final frame was extracted from each run, and RMSD from the 

native structure was calculated separately for the N-terminal domain and C-

terminal domain and averaged over the 50 runs. Curves of RMSD vs. temperature 

were fit to a sigmoidal function, corresponding to a two-state model of unfolding. 

Contact maps were generated from final simulation frames for W42R, where a 

contact occurred if the residue-residue alpha-carbon distance was less than 10 

Angstroms. Maps were clustered using the MATLAB clusterdata function with a 

cutoff of 0.9, and representative images were generated for representative 

structures from the two most populated clusters. For W42R, 300 additional 

simulations were performed at T = 0.800, and these simulations were visually 

mined for misfolded structures.  

 

4.2.3. Two-molecule tethered simulations 

 Simulations were carried out in which two γD-crystallin molecules (PDB ID 

1HK0) were connected by a 12-residue linker (GSGSGSGSGSGS). The linker was 

generated in ModLoop (Fiser and Sali, 2003). 300 separate 80,000,000-step Monte 

Carlo simulations were run for WT, W42R, W42Q, and W42R with each possible 

disulfide bond (6 total) between cysteines in the N-terminal domain. Frames were 

extracted every 5,000,000 simulation steps. Contact maps were generated, where 

residues were said to be in contact of their alpha carbons were within 10 

Angstroms. A protein-protein interaction was said to occur if more than 50 pairwise 

residue-residue contacts occurred between proteins. Beta strand interactions were 

found by looking for diagonal lines on the contact map. An interaction was labeled 
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an antiparallel beta strand interaction if it included more than 6 residue pairs in a 

row in an antiparallel configuration. An interaction was labeled a parallel beta 

strand interaction if it included more than 6 residue pairs in a row in a parallel 

configuration. The interaction was labeled as native-like if more than 10 of the 

interactions were present between the domains of the native structure. For parallel 

and antiparallel beta strand interactions, we charted which beta strands were 

involved in the interaction.  

 

4.3. Results 
 
4.3.1. Unfolding pathway and folding intermediates 

 Unfolding of human γD-crystallin was simulated using the Shakhnovich 

group’s All-Atom Monte Carlo simulation program. Figure 4.2 shows a sample 

unfolding trajectory. The first major unfolding event is separation of the two 

domains. Next, the N-terminal hairpin of the N-terminal domain separates from the 

rest of the protein. In some trajectories, splitting of the N-terminal domain into two 

Greek keys is observed prior to detachment of the N-terminal hairpin. The N-

terminal domain then continues to unfold while the C-terminal domain begins 

unfolding, generally starting with detachment of the N-terminal hairpin within the 

C-terminal domain.  

Unfolding simulations were also carried out for the aggregation-prone 

mutant W42R, to determine partially-unfolded states that might be involved in 

aggregation. Two unfolding intermediates were identified using a clustering 

approach (Figure 4.3). In structure 4.3-A, the N-terminal hairpin is detached from 
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the rest of the protein, while the C-terminal domain and the second Greek key 

remain intact. We note that cysteines at residues 32 and 41 (i.e., cysteines 2 and 3) 

could easily come together to form a disulfide bond starting from this structure. In 

the second structure (4.3-B), the two Greek keys of the N-terminal domain are 

separated, while each Greek key individual remains intact, and the C-terminal 

domain remains folded. 

 

  

      

Figure 4.2. Simulated unfolding pathway of WT γD-crystallin. Separation of the two 
domains and detachment of the N-terminal hairpin are early events in the unfolding 
pathway.  
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Figure 4.3. Representative structures from W42R simulations at T = 0.800. A-B) 
Highly populated partially-unfolded structures. Cysteines 2 and 3 are shown in 
sphere representation. C-D) Misfolded structures.  
   

Off-pathway rearranged structures, which include contacts not found in the 

native structure, were also observed for W42R. Structure 4.3-C shows antiparallel 

hydrogen bonding of strand 1 to strand 8 (see labeling scheme in Figure 4.1-C) 

within the N-terminal domain, to form an extended beta sheet. Structure 4.3-D 

shows antiparallel hydrogen bonding between strand 1 and strand 14 (i.e., the 6th 

strand of the C-terminal domain). Such misfolded structures may be precursors in 

aggregate formation, or they may suggest intermolecular interactions that could be 

involved in aggregation. 

 

A 

B 

C 

D 
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4.3.2. Effects of mutation on stability 

 WT and mutants of γD-crystallin (W42Q, W42R, T4P, and W130E) were each 

simulated at several temperatures, to determine how mutation affects simulated 

melting temperature. RMSD from the folded state was plotted for the N-terminal 

domain and C-terminal domain separately, using the last step of simulations, 

averaged over 50 runs (Figure 4.4). In the WT protein, the N-terminal domain was 

found to unfold at a lower temperature than the C-terminal domain. Mutations 

W42Q and W42R destabilize the N-terminal domain, showing very similar apparent 

melting curves. T4P increases the N-terminal domain RMSD primarily at 

temperatures below the melting temperature for WT. This is likely due to 

detachment of the N-terminal hairpin from the rest of the N-terminal domain at 

relatively low temperatures. W130 is located within the C-terminal domain, and 

W130E in fact decreases the melting temperature of this domain. In general, 

mutants are found to destabilize the domain in which they are located, consistent 

with expectations and with experimental results (Serebryany et al., 2016a; 

Serebryany et al., 2016b). We do not find in our simulations that a mutation in one 

domain significantly affects the melting temperature of the other domain.  



 
 

 80 

 

 
4.3.3. Two-molecule simulations predict the dependence of aggregation propensity on 

mutation and disulfide bonding 

 In order to simulate the interaction of two protein molecules, two molecules 

were connected by a 12-residue glycine-serine linker. The linker served two 

purposes: first, it limited the distance between molecules to facilitate interaction, 

and second, it allowed us to simulate two γD-crystallin molecules using the singe-

chain Monte Carlo program. The initial structure for two-molecule simulations is 

shown in Fig. 4.5. It was found that the number of simulation frames that exhibited a 

A 

B 

Figure 4.4. Simulated 
unfolding curves for WT 
and mutants. A) N-terminal 
domain. B) C-terminal 
domain. 
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substantial number of protein-protein interactions was larger for mutants W42R 

and W42Q than for WT (Figure 4.6).  

 

Figure 4.5. Initial structure for two-molecule single chain simulations. N-terminal 
domains are shown in blue and C-terminal domains are shown in red. Molecule 2 is 
shown in darker colors than molecule 1. Cysteines 2 and 3 are shown in sphere 
representation.  

 

Figure 4.6. The percentage of frames showing protein-protein interactions, 
averaged over 300 trajectories.  
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 Intramolecular disulfide bonding was modeled by introducing a harmonic 

energy term dependent on the distance between sulfur atoms within cysteine 

residues. For the W42R mutant, we carried out simulations with each possible 

disulfide bond between cysteine residues in the N-terminal domain. The disulfide 

bond formed early in simulations, due to the strength of the energy term. Disulfide 

bonding was found to increase the amount of protein-protein interaction for 

disulfide bonds between adjacent cysteines (Figure 4.6). However, for non-adjacent 

cysteines, disulfide bonding actually decreased the amount of protein-protein 

interaction. Figure 4.7 shows structures of proteins exhibiting each possible 

disulfide bond. The adjacent disulfides tend to promote detachment of the N-

terminal hairpin from the rest of the N-terminal domain, leading to a more open 

structure with more solvent exposed residues. The non-adjacent disulfides, 

however, tend to promote more compact structures. For instance, the 1-4 disulfide 

creates a bond between cysteines that are nearby in the native structure, enforcing a 

structure that is native-like. In this case, the disulfide helps to lock the protein in a 

native-like conformation, decreasing the amount of protein-protein interaction.  

 

4.3.4. Two-molecule simulations predict aggregate structure 

 We noted three categories of protein-protein interaction in two-molecule 

simulations. First is a native-like interaction, in which the N-terminal domain of one 

protein forms native-like contacts with the C-terminal domain of the other protein 

(Fig. 4.8 A). Such an interaction does not require unfolding of either domain. Second 

is a parallel interaction between beta strands, which often occurs between strand 1 
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of each protein (Fig 4.8-B). Third is an antiparallel interaction between beta strands 

(Fig. 4.8 C-E). Which category is most prevalent depends on the mutant and the 

disulfide bond present (see Figure 4.6).  

A disulfide bond between the second and third cysteines was observed in 

vitro, as a requirement for aggregation of the W42Q mutant, and in vivo (Fan et al., 

2015; Serebryany et al., 2016b). Notably, the 2-3 disulfide led to the greatest 

number of antiparallel beta strand interactions in our simulations. For molecules 

containing the 2-3 disulfide, antiparallel beta strand interactions were far more 

common than native-like interactions or parallel beta strand interactions. 

For the W42R mutant with the 2-3 disulfide bond, we generated strand-

strand contact maps for beta strand interaction, in order to determine which 

strands are most often involved in interactions (Figure 4.9). The most common 

interaction was an antiparallel interaction between beta strands 1 and 14.  Next was 

an antiparallel interaction between strand 1 and strand 6, followed by an 

antiparallel interaction between strand 1 from each protein. Note that all three 

structures require dissociation of the N-terminal hairpin from the rest of the N-

terminal domain, although the hairpin itself can remain intact. The 1-6 and 1-14 

structures can be propagated (molecule A binds to molecule B, which binds to 

molecule C, etc.), while the 1-1 structure cannot.  
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Figure 4.7. Disulfide bonds affect protein conformation and propensity to 
aggregate. A) N-terminal domain with its four cysteines labeled and cysteine alpha 
carbons and sidechain heavy atoms shown in sphere representation. B) Sample 
structures from step 40,000,000 of 2-molecule simulations, for each possible 
disulfide bond.  
 

A 

B 
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Figure 4.8. Examples of protein-protein interaction from simulations. A) Native-like 
interaction between domains. B) Parallel interaction between strand 1 from each 
protein. C) Antiparallel interaction between strand 1 from each protein. D) 
Antiparallel interaction between strand 1 and strand 14. E) Antiparallel interaction 
between strand 1 and strand 6.  
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Figure 4.9. Strand-strand contacts from two-molecule simulations of W42R with 2-
3 disulfide. A) Strands 1, 6, and 14 are colored yellow. Residues contained in each 
strand are listed. B) Strand-strand contact maps for parallel and antiparallel 
interactions.  
 
 Based on the strand 1-strand 14 simulation structure, we propose a possible 

aggregation mechanism (Figure 4.10). First, the N-terminal hairpin detaches from 

the rest of the N-terminal domain. Next, a disulfide bond forms between the second 

and third cysteines of the N-terminal domain, stabilizing a partially unfolded 

intermediate state with the N-terminal hairpin accessible. Finally, strand 1 from the 

hairpin hydrogen bonds to strand 14 of the next protein, extending a beta sheet 

within the C-terminal domain. This structure can propagate indefinitely to form a 

non-amyloid aggregate.  
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Figure 4.10. Model of mutant aggregation. A) Simulation structure of W42R with 2-
3 disulfide, showing an antiparallel interaction between strand 1 and strand 14. B) 
Model of aggregation based on simulation structure.  

A 

B 
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 The major unfolding events that must take place in order for strand 1 to bind 

to strand 14 are the separation of the N-terminal domain and C-terminal domain 

and extrusion of the N-terminal hairpin. These are the first events observed in 

unfolding simulations (Figure 4.2). Figure 4.11 A-C show that other conformational 

changes that take place within the C-terminal domain upon binding to the N-

terminal hairpin are fairly subtle. Depicted in 4.11-D is a functional protein-protein 

interaction observed in nature, the PDZ domain binding to its ligand (Maisonneuve 

et al., 2016), which shows similarities to our proposed mechanism of γ-crystallin 

aggregation.  

 
 
Figure 4.11. Mechanism of protein-protein binding for the proposed aggregation 
mechanism. A) Isolated C-terminal domain in the native state. B) Misfolded 
intermediate, with strand 1 bound to strand 14 in an intramolecular interaction. C) 
Protein-protein interaction with strand 1 bound to strand 14 in an intermolecular 
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interaction. D) PDZ domain bound to its ligand: a functional example of beta-sheet 
completion to facilitate protein-protein interaction.  
 
 
 Figure 4.12 shows the interface between strand 1 and strand 14 in the 

predicted oligomerizing structure, in a sample frame from simulations. R141 

contacts E7, an interaction between a positively charged residue and a negatively 

charged residue. W156 occupies a hydrophobic surface created by residues within 

the two strands. The loop that contains W156 is distorted relative to the native 

structure.   

 

 
We further analyzed simulations to determine which residues are most often 

involved in protein-protein interactions, for each of the two proteins. In this 

analysis, we kept track of all protein-protein interactions, including those in the  

“native-like” and “other” categories. Results are shown in Figure 4.13.  Results 

depend somewhat on which molecule is considered, an artifact of the two-molecule 

tethered approach. Many of the residues exhibiting protein-protein interactions are 

near the interface between the N-terminal domain and C-terminal domain, which 

contains many hydrophobic residues that become solvent exposed upon separation 

Figure 4.12. Interactions between strand 1 
and strand 14 in a sample frame from 
simulations containing the predicted 
oligomer forming structure. E7 and R141 
are shown in sphere representation, and 
other residues at the interface are shown in 
stick representation.  
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of the two domains. The C-terminal tail, which contains a phenylalanine residue, 

also exhibits many interactions.   

 Residues within the N-terminal hairpin interact often with the other protein, 

particularly for the destabilized mutant. Residues F11 and L5 show many 

interactions, especially for molecule 2 within the W42R mutant with the 2-3 

disulfide bond imposed.  These may be key residues driving beta sheet completion 

interactions involving the N-terminal hairpin. For molecule 1, the WT protein shows 

few interactions involving the N-terminal hairpin, while the mutant protein and the 

mutant protein with the disulfide bond show more such interactions. In all, it is clear 

that mutation and disulfide bonding increase the amount of protein-protein 

interaction, and that the propensity to form interactions is residue-dependent for 

both the WT protein and the mutant.  

A residue-residue contact map was generated for the W42R mutant 

containing the 2-3 disulfide, using the final frames of the 300 simulations (Figure 

4.14). Strand-strand interactions are visible as short diagonal stretches within the 

map. Many interactions are between the N-terminal hairpin of molecule 2 and either 

the N-terminal hairpin of molecule 1 or regions of molecule 1 that are at the 

domain-domain interface of the folded molecule. In addition, several interactions 

are seen between the C-terminal tail of molecule 1 and residues within the N-

terminal hairpin of molecule 2 are seen.  
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Figure 4.13. The propensity of each residue to exhibit intermolecular interactions.  
Plots show the number of frames from step 80,000,000 of 300 simulations at T = 0.8 
that exhibit contacts between a given residue and any residue of the other protein. 
A) WT. B) W42R, no disulfide bonds. C) W42R with the 2-3 disulfide bond.  
 

A 

C 

B 
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Figure 4.14. Residue-residue contact map for W42R 2-3 disulfide, generated from 
step 80,000,000 of 300 simulations.  
 

4.3.5. Mechanism for WT acceleration of mutant aggregation 

 The WT protein was shown to promote aggregation of the W42Q mutant in 

vitro (Serebryany et al., 2016b). To investigate the mechanism of WT acceleration of 

mutant aggregation, we carried out simulations of one W42Q molecule linked to one 

WT molecule. To mimic experimental conditions, we included the 2-3 disulfide in 

the mutant and 5-6 disulfide (within the C-terminal domain) in the WT protein. In 

several simulations, we observed a structure in which the folded WT N-terminal 
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domain forms native-like interactions with the mutant C-terminal domain (Figure 

4.15). The mutant N-terminal domain is then no longer stabilized by its C-terminal 

domain and is more likely to unfold. We propose that partial or full unfolding of the 

mutant N-terminal domain, which may induce the formation of intramolecular 

disulfide bonds, could then accelerate aggregation of the mutant.  

 

 

Figure 4.15. Model of WT acceleration of mutant aggregation. A) Structure showing 
interaction of WT (right, darker red/blue) with W42Q, from two-molecule 
simulations. B) Model of how WT might accelerate mutant N-terminal domain 
unfolding, based on simulation structure.  
 

4.4. Discussion 
 

Our observation that detachment of the N-terminal hairpin is an early event 

in unfolding simulations is interesting for several reasons. First, the N-terminal 

domain is thermodynamically less stable than the C-terminal domain, which may be 

due to a faster unfolding rate, which we see in simulations. Second, many cataract-

linked mutations are at or near the interface between the N-terminal domain and 

A B 
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the rest of the protein (Serebryany and King, 2014). Mutation at this interface may 

further reduce the relatively weak interactions holding the hairpin to the rest of the 

domain, thereby accelerating unfolding or leading to a partially-unfolded 

intermediate that is prone to aggregation. Third, single molecule pulling 

experiments suggest that a domain swap may occur between N-terminal hairpins in 

vitro (Garcia-Manyes et al., 2016). Finally, swapping of terminal hairpins is common 

in domain swapped structures, and interaction between hairpins is sometimes seen 

in amyloid fibrils, suggesting that interactions involving terminal hairpins may be a 

common means of protein-protein interaction and aggregation.  

Chapter 2 of this thesis describes the use of All-Atom Monte Carlo unfolding 

simulations to predict relative stabilities of mutants of the protein DHFR and shows 

that this approach yields good agreement with experiment. Our γD-crystallin 

simulations further validate this approach, predicting that cataract-linked mutations 

destabilize the domain of which they are a part. In addition to predicting stability 

effects of mutations, we identify folding intermediates, including misfolded 

structures, that may be prone to aggregation and/or promote intramolecular 

disulfide bonding that locks an aggregation-prone conformation into place.  

We found that disulfide bonding between adjacent cysteines increased the 

amount of protein-protein interaction, while disulfide bonding between non-

adjacent cysteines decreased the amount of protein-protein interaction. This is 

consistent with a previous study of disulfide bonding in lattice proteins (Abkevich 

and Shakhnovich, 2000). Simulations with a disulfide bond between cysteines 2 and 

3, the experimentally observed disulfide bond, particularly showed a large number 
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of antiparallel interactions between beta strands. Analysis of simulations showed 

that such interactions were especially long-lived, although other types of 

interactions between proteins were also seen. It is interesting to note that the 

interfaces involved in intermolecular hydrogen bonding interactions, on strands 1, 

6, and 14, are buried in the crystal structure, but become exposed early in unfolding 

simulations. We might expect from the unfolding simulations alone that these 

strands could be involved in intermolecular interactions.  

The two-molecule Monte Carlo simulations used in this study contained a 

peptide linker (GS x6) connecting the two molecules. This linker has experimental 

relevance as the sequence used in single-molecule pulling experiments of γD-

crystallin (Garcia-Manyes et al., 2016). Other computational studies have made use 

of a flexible linker to constrain the distance between interacting monomers (Levy et 

al., 2005; Levy et al., 2004). Alternative approaches to mimic finite protein 

concentration in simulations are to use periodic boundary conditions or to 

introduce an energy term constraining the distance between proteins. A version of 

the Monte Carlo program incorporating the second approach is being developed 

within the Shakhnovich group.  

Run-away domain swapping has been proposed as a mechanism for 

aggregate formation (Rousseau et al., 2003). We do not observe conventional 

domain swapping in our simulations. However, Horwich (Horwich, 2002) 

hypothesized that in some cases domain swapping may act to reconstitute a 

kinetically-stable misfolded intermediate, rather than the native state. Given that 

strand 1 binds to strand 14 in some single-molecule simulations, our hypothesized 
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structure for the formation of aggregates is an example of this type of domain swap 

to reconstitute a misfolded state.  

In our structure, the N-terminal hairpin extends a beta sheet already present 

in the C-terminal domain. A similar mechanism of beta sheet completion is seen in 

the binding of PDZ domains to their ligands (Maisonneuve et al., 2016). Our 

mechanism of aggregation is somewhat similar to that proposed by Das et al. (Das et 

al., 2011), in which an unfolded N-terminal domain interacts with strands 13-15. 

However, our mechanism involves hydrogen bonding interactions between beta 

strands and only partial unfolding of the N-terminal domain.  

It is interesting to note the homology between strands 1 and 13, which are 

both the first strands of a Greek key motif. Therefore, in our predicted oligomerizing 

structure, strand 14 is located between two homologous strands: one from the 

native structure (strand 13) and one from the N-terminal hairpin of another protein 

(strand 1). Contacts that stabilize the aggregate are therefore similar to contacts 

that stabilize the native structure, a feature that is shared with domain swapping 

mechanisms, although in our proposed mechanism the contacts are similar but not 

identical to those formed in the native structure.  

Future experiments will test our hypothesis of aggregate structure and the 

mechanism by which the WT protein accelerates mutant aggregation. Based on our 

studies, it may eventually be possible to design therapeutics that slow the formation 

of cataract. For instance, drugs may be designed that interfere with specific binding 

to beta strand 14 within the C-terminal domain, or which stabilize the native 

structure to prevent unfolding. In general, our approach may be used to study 
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protein aggregation involved in other diseases, leading to better understanding of 

disease and ultimately to novel treatments.  

 

Contributions 

 Much of this work is described in a recent publication (Serebryany et al., 

2016b). Jaie Woodard performed all Monte Carlo simulations and simulation 

analysis and edited the MC code to introduce an energy term dependent on the 

distance between sulfur atoms, representing a disulfide bond. Eugene Serebryany 

suggested mining single-molecule simulations to look for rearranged structures and 

suggested that the concept of “domain swapping” to reconstitute a misfolded 

intermediate may be applicable. Eugene Shakhnovich noted the relevance of 

disulfide bonding of adjacent and non-adjacent disulfide cysteines to a previous 

publication.  
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5. Conclusions 
 

 

Computer simulations have become popular as a means of studying the 

structure, dynamics, and interactions of biological molecules. The importance of this 

development was recently highlighted in the awarding of the 2013 Nobel Prize in 

Chemistry to Martin Karplus, Michael Levitt, and Arieh Warshel, pioneers of 

molecular dynamics simulation and computational chemistry. As computers become 

more powerful, it becomes possible to simulate larger systems at increasing levels 

of detail, over longer time scales than ever before. However, as we develop more 

accurate simulation methods, there is still room to develop and to utilize more 

simplified models, which yield answers in a shorter amount of time and with less 

use of computational resources, and which may be simpler to use, to understand, 

and to trouble-shoot in cases where results do not agree with expectations from 

experimental research.  

In this thesis, we pose the question of whether short unfolding simulations 

can be used to predict the change in stability upon mutation. Theoretically, we find 

that the answer is yes, given a two-state model of unfolding and the assumption of 

constant ϕ values across residues. Simulating every possible mutant of the enzyme 

DHFR using an all non-hydrogen atom Monte Carlo simulation program, we find a 

good correlation between predicted and experimental stability changes, and we are 

able to identify several mutations that stabilize the protein.  
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We take a different approach in the case of the cataract-associated protein 

γD-crystallin, studying selected mutants in greater detail. We find that extrusion of 

the N-terminal hairpin is an early event in unfolding, and that cataract-linked 

mutants within the N-terminal domain destabilize this domain in unfolding 

simulations. Current models of non-amyloid aggregation prior to our studies 

include: 1. aggregation by non-specific association of hydrophobic residues within 

unfolded protein segments, and 2. aggregation by run-away domain swapping. 

Based on our simulations, we propose a model distinct from these two, in which 

hydrogen bonding occurs between specific beta strands. The model can also be 

viewed as a domain swap to reconstitute a misfolded intermediate structure. We 

plan to work with collaborators to test this model experimentally using NMR and 

other techniques.  

Finally, we introduce a new simplified model in which proteins can unfold 

and domain swap. This model allows us to predict the temperature and 

concentration dependence of protein-protein interactions such as functional 

dimerization, domain swapping, and amorphous aggregation. In particular, we 

recover the result that domain swapping occurs at intermediate temperature. 

Future theoretical and experimental studies within protein biophysics will help to 

reveal the relevance of domain swapping within biological systems, its contribution 

to the process of protein evolution, and the insights that domain swapped structures 

can provide into the folding pathways and folding intermediate structures of 

proteins.   
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We hope that the methods developed here will be useful in the study of other 

protein systems, that their application has yielded meaningful insights into the 

systems we have presented here, and that our in silico experiments, analysis, and 

discussion will prompt further ideas, observations, and debate within the field of 

protein biophysics. We believe that computational methods will continue to play an 

important role in the study of molecular disease, protein evolution, protein design, 

and the development of novel therapeutics, and we look forward to progress in the 

years ahead.  
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