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Mod-p isogeny calsses on Shimura varieties with parahoric level structure

Abstract: We study the special fiber of the integral models for Shimura varieties of Hodge type

with parahoric level structure constructed by Kisin and Pappas in [18]. We show that when the

group is residually split, the points in the mod p isogeny classes have the form predicted by the

Langlands Rapoport conjecture in [24].

We also verify most of the He-Rapoport axioms for these integral models without the residually

split assumption. This allows us to prove that all Newton strata are non-empty for these models.
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1. Introduction

An essential part of Langlands’ philosophy is that the Hasse-Weil zeta function of an algebraic

variety should be a product of automorphism L-functions. In [21], [22], [23], Langlands outlined

a program verify this for the case of Shimura varieties, for which an essential ingredient was to

obtain a description of the mod-p points of a suitable integral model for the Shimura variety. Such a

conjectural description first appeared in [21], and was later refined by [24], [19] and [29]. To explain

it, we first introduce some notations.

Let (G,X) be a Shimura datum and Kp ⊂ G(Qp) and Kp ⊂ G(Apf ) compact opens where Apf

are the finite adeles with trivial component at p. We assume Kp is a parahoric subgroup of G(Qp).

For Kp suffiecntly small we have the Shimura variety ShKpKp(G,X) which is an algebraic variety

over the reflex field E. We will mostly be considering Shimura varieties of Hodge-type in which

case ShKpKp(G,X) can thought of as a moduli space of abelian varieties equipped with some cycles

in its Betti cohomology. Let p be a prime and v|p a prime of E, then conjecturally there should

exist an integral SKpKp(G,X)/OE(v) for ShKpKp(G,X) satsifying certain good properties. When

the group is unramified and Kp is hyperspecial there is a characterization of such an integral model,

however for general parahorics such a characterization is not known. However as long as the integral

model has good local properties (more precisely, one desires that its nearby cycles are amenable to

computation) and one can obtain some global information about the Fq rational points, then this is

already enough for many applications such as the computation of the local factor for the Hasse-Weil

zeta function of the Shimura variety.

We consider also the inverse limit of integral models

SKp(G,X) := lim
←Kp

SKpKp(G,X)

Then conjecturally there should be a bijection (see [24], [29]):

SKp(G,X)(Fp) ∼=
∐
φ

S(φ)
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where

S(φ) = lim
←Kp

Iφ(Q)\Xp(φ)×Xp(φ)/Kp

When SKpKp(G,X) arises as a moduli space of abelian varieties, this represents the decomposition

of the special fiber into disjoint isogeny classes parametrised by φ. The individual isogeny class S(φ)

breaks up into a prime to p part Xp(φ) and p-power part Xp(φ), and the Iφ(Q) is the group of

self-isogenies of any member of the isogeny class S(φ). For general G, the objects appearing are

approriate group theoretic analogues of the objects described.

The bijection should satisfy compatibility conditions with certain group actions on either side.

For example, on S(φ) one can define an operator Φ, and this should correspond under the above

bijection to the action of Frobenius on SKp(G,X)(Fp). Using this, one obtains a completely group

theoretic description of the Fq points of the Shimura variety.

The first major result in this direction was obtained by Kottwitz [19] who gave a description

of the Fp points for PEL-type Shimura varieties (more precisely the moduli spaces he considered

are actually a union of Shimura varieties, but for the application to computing the zeta function,

this was not an issue). In this case, the integral models of Shimura varieties are moduli spaces of

abelian varieties with extra structure, so one ends up counting such abelian varieties. Then after

constructing good integral models for Shimura varieties of abelian type in [17], Kisin proved the

conjecture for these integral models. In that case the integral models are no longer moduli spaces

and many new ideas were needed. In both these works, the authors worked with hyperspecial level

structure at p, in particular this meant the Shimura varieties had good reduction. In constrast, when

considering arbitrary parahoric level structure, the integral models will not in general be smooth

and this presents many new difficulties in proving such result. However, if one is to get a complete

description of the zeta function of the Shimura variety, then knowledge of the places of bad reduction

are stil needed. Moreover, understanding the cohomology of these spaces at places of bad reduction

has many other important applications, such as the local langlands correspondences [8].

We assume now that p > 2. Let (G,X) be Shimura datum of Hodge type such that GQp is tamely

ramified, p - |π1(Gder)| and Kp is a connected parahoric1 (we will refer to these assumptions as (*)).

1A connected parahoric is one which is equal to the Bruhat-Tits stablizer scheme
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With these assumptions Kisin and Pappas have constructed good integral models SKp(G,X) for

the Shimura varieties associated to the above data. These integral models satisfy the correct local

properties, in the sense that there exists a local model diagram as in [5, §6]. The main result of this

paper is then the following.

Theorem 1.1. Let (G,X) be Shimura datum of Hodge type as above. We assume GQp is residually

split at p. Then the isogeny classes in SKp(G,X)(Fp) have the form

lim
←Kp

Iφ(Q)\Xp(φ)×Xp(φ)/Kp

ii) Each isogeny class contains a point x which lifts to a special point in ShKP (G,X).

Let us first explain what we mean by an isogeny class. We assume for simplicity that Kp = G(Zp),

where G is an Iwahori group scheme for the rest of the introduction. It follows from the construction

of the integral models, that to each x ∈ SKp(G,X)(Fp), one can associate an abelian variety Ax

with G structure. This means Ax is equipped with certain tensors in its étale and crystalline

cohomologies, whose stabilizer subgroups are related to the group G. This leads to a natural notion

of the isogeny class of x, which breaks up into a prime to p part and p-power part. We then obtain a

decomposition of the special fiber into disjoint isogeny classes as in the conjecture, and to prove the

conjecture in full one needs therefore a description of points in an individual isogeny class, and then

also an enumeration of the set of all isogeny classes. In this paper we focus on the first problem.

The key ingredient needed for the enumeration of the set of all isogeny classes is part ii) of the above

theorem, this allows one to relate the set isogeny classes to some data on the generic fiber where

one has a good description of the points. Note that part ii) of the Theorem has been announced in

[26], here we provide a different proof more along the line of [15, §2]. To go from the above theorem

to the conjecture in full requires some technical comptations involving Galois cohomology, which

the author intends to return to in a future work. The above then can really be thought of as the

arithmetic heart of the conjecture of [24].

Let us now give some details about the theorem and its proof. The general strategy follows that

of [15], however there are many obstructions to adapting the proof over directly for the case of
3



general parahorics. As was mentioned above, each isogeny class decomposes into a p-power part and

a prime-to-p part; describing the p-power part is the most difficult part of the problem.

To an x as above we can associate an Xp(φ) which is a union of affine Deligne-Lusztig varieties.

By the construction of these integral models, one has a map

SKp(G,X)→ SK′p
(GSp(V ), S±)⊗OE(v)

where SK′p
(GSp(V ), S±) is an integral model for the Siegel Shimura variety, defined as a moduli

space for abelian varieties with polarization and level structure. Using Dieudonné theory it is possible

to define a natural map

ĩx : Xp(φ)→ SK′p
(GSp, S±)(Fp)

one would like to show this lifts to a well-defined map

ix : Xp(φ)→ SKp(G,X)(Fp)

satisfying good properties, the image of the map will then be the p-power part of the isogeny class

for d. This is carried out in two steps. One can show that Xp(φ) has a geometric structure as a

closed subscheme of the Witt vector affine flag variety of [33] and [1]. In particular there is a notion

of connected components for the Xp(φ).

1) Show that if ix is defined at a point of Xp(φ) then it is defined on the whole connected

component containing the point.

2) Show that every connected component of Xp(φ) contains a point at which ix is well-defined by

lifting isogenies to characteristic 0.

For part 1), one uses an argument involving deformations of p-divisible groups. The analogous

argument in [15] uses Grothendieck-Messing theory, in our context this is not possible since the test

rings one needs to deform to are no longer smooth. Hence we use a new argument using Zink’s

theory of displays.

To carry out 2), an essential part is to get a description of (or at least a bound on) the connected

components of Xp(φ). Such a bound is obtained in [11]. The bound obtained there is somewhat more
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complicated than the description for the case of hyperspecial level. This necessitates an improvement

in the argument for lifting isogenies to characteristic 0. The main new innovation here is that one

can move about through different Levi-subgroups of G using characteristic 0 isogenies.

Note that the bound obtained in [11], is only good enough to carry out the argument for groups

which are residually split at p. However part 1) of the argument goes through in the more general

setting. This already allows us to deduce the following interesting corollary.

By construction of SKp(G,X), we have a well-defined map

δ : SKp(G,X)(Fp)→ B(G,µ)

called the Newton stratification. Here µ is the inverse of the Hodge cocharacter and B(G,µ) ⊂ B(G)

consists of the set of neutral acceptable σ-conjugacy classes as in [32], it is the group theoretic

analogue of the set of isomorphism classes of isocrystals satisfying Mazur’s inequality. In the case

G = GSp, the integral model is a moduli space for polarized abelian varieties and this map sends an

abelian variety to the isomorphism class of the associated isocrystal. The following result can then

be thought of as a generalization of the classical Manin’s problem, which asks whether a p-divisible

with symmetric slopes arises from an abelian variety up to isogeny.

Theorem 1.2. Let (G,X) and Kp satisfy the assumptions (∗). Then δ is surjective.

This is proved by verifying some of the He-Rapoport axioms for integral models of Shimura

varieties in [10]. In work in progress of [26], the authors have shown surjectivity of this map for

groups which are quasi-split at p using a different method. There is an obstruction to their technique

working for non quasi-split groups. In contrast, our proof works for non quasi-split groups. For this it

is essential to be able to work at Iwahori level. The key part is to prove non-emptiness of the minimal

Kottwitz-Rapoport stratum at Iwahori level, this shows the surjectivity at Iwahori level. This allows

one to deduce the surjectivity statement for all parahoric levels by using suitable comparision maps

between models with different levels. However, one major input to the proof is the non-emptiness

of the basic locus, which is proved in [26].
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Let us give a brief outline of the paper. In section 2 we recall some preliminaries on Bruhat-Tits

buildings and Iwahori Weyl groups associated to a p-adic group. In section 3 we recall the construc-

tion of local models of Shimura varietes in [28] and prove certain results about their embeddings

into Grassmannians. In section 4 we recall the construction in [18] of the universal p-divisible group

over the completion of an Fp-point of the Shimura variety. We construct in Propistion 4.8 a specific

lifting which will be needed in the lifting isogenies argument. Section 5 is the technical heart of the

paper. We recall the bound on the connected components of affine Deligne-Lusztig varieties obtained

in [11] and show that for the basic case, enough isogenies lift to characteristic 0. In section 6 we

put the results together to deduce the existence of the required map from Xp(φ) into the integral

model when the level Kp is Iwahori, this is Proposition 6.4. In section 7 we deduce the existence of

good maps between Shimura varieties of different level which allows us to use the case of Iwahori

level to deduce the result for other parahorics. This also verifies one the He-Rapoport axioms for

these integral models. The rest of the axioms are verified in section 8 which allows us to deduce the

non-emptiness of Newton strata. Finally in section 9 we prove the main Theorem.
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2. Preliminaries

Let p > 2 be a prime. Let F be a p-adic field with ring of integers OF and residue field Fq. Let

L be the completion of the maximal unramified extension Fur of F and OL its ring of integers. Fix

an algebraic closure F of F and let Γ := Gal(F/F ). We also write ΓL for the absolute Galois group

of L which can be identified with the inertia subgroup Gal(F/Fur) of Γ. We let σ ∈ Gal(Fur/F )

denote the Frobenius automorphism.

Let G be a conneceted reductive group over F . We assume G splits over a tamely ramified ex-

tension of F . Let B(G,F ) be the (extended) Bruhat-Tits building of G(F ). For any x ∈ B(G,F ),

there is a smooth affine group scheme Gx over OF such that Gx(OF ) can be identified with the

stabililzer of x in G(F ). The connected component G◦x of Gx is the parahoric group scheme corre-

sponding to x. We can also consider the corresponding objects over L. Then for x ∈ B(G,L), we

have G◦x(OL) = Gx(OL) ∩ kerκG where

κG : G(L)→ π1(G)ΓL

is the Kottwitz homomorphism, cf. [10, Prop. 3 and Remarks 4 and 11]. Thus if x ∈ B(G,F ),

G◦x(OF ) = Gx(OF ) ∩ kerκG. We say a parahoric subgroup G◦x is connected if G◦x = G◦. When G is

unramified or semi-simple and simply connected, every parahoric is connected.

Let S ⊂ G be a maximal L split torus defined over F and T its centralizer. Since G is quasi-split

over L by Steinberg’s theorem, T is a maximal torus of G. Let a denote a σ-invariant alcove in the

apartment V associated to S. The relative Weyl group W0 and the Iwahori Weyl group are defined

as

W0 = N(L)/T (L) W = N(L)/T0(OL)
7



where N is the normalizer of T and T0 is the connected Neron model for T . These are related by

an exact sequence

0→ X∗(T )I →W →W0 → 0

For an element λ ∈ X∗(T )I we write tλ for the corresponding element in W , such elements will be

called translation elements.

Let S denote the simple reflections in the walls of a. We let Wa denote the affine Weyl group, it

is the subgroup of W generated by the reflections in S. Wa has the structure of a coxeter group and

hence a notion of length and Bruhat order which extends to W in the natural way. The Iwahori

Weyl group and affine Weyl group are related via the following exact sequence.

0→Wa →W → π1(G)I → 0

The choice of a induces a splitting of this exact sequence and π1(G)I can be identified with the

subgroup Ω ⊂W consisting of length 0 elements.

Now let {µ} be a geometric conjugacy class of homomorphisms in G. Let µ denote the image

in X∗(T )I of a dominant (with respect to some choice of Borel defined over L) representative of

µ ∈ X∗(T ) of {µ}. The µ-admissible set is defined to be

Adm({µ}) = {w ∈W |w ≤ tx(µ) for some x ∈W0}

Note the admissible set has a unique minimal element denoted τ{µ}; it is the unique element of

Adm({µ}) ∩ Ω.

Now let K ⊂ S be a σ stable subset. The corresponding parahoric subgroup G is define over OF .

Let WK denote the subgroup of W generated by K . We then set AdmG({µ}) to be the image of

Adm({µ}) in WK\W/WK . This subset only depends on the parahoric G and not on the choice of

alcove a. We sometimes write AdmG
G ({µ}) if we want to specify the group G we are working with.
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We have the Iwahori decomposition. For w ∈ W , we write ẇ for a lift of w to N(L). Then the

map w 7→ ẇ induces a bijection:

WK\W/WK
∼= G(OL)\G(L)/G(OL)

Finally we recall the definition and some properties of σ-straight elements. The Frobenius σ

induces an action on W and Wa which preserves S.

Definition 2.1. We say an element w is σ-straight if nl(w) = l(wσ(w)...σn−1(w)) for all n.

For w,w′ ∈W and s ∈ S we write w ∼s w′ if w′ = swσ(s) and l(w) = l(swσ(s)). We write w ∼ w′

if these exists a sequence w = w1, ..., wn ∈ W , s1, ..., sn−1 ∈ S and τ ∈ Ω such that wi ∼si wi+1 for

all i and we have τ−1wnσ(τ) = w′. We have the following which is [13, Theorem 3.9].

Theorem 2.2. Let w,w′ ∈W be straight elements such that there exists x ∈W with xwσ(x) = w′.

Then w ∼ w′.

We will also need the following property of the Iwahori double coset corresponding to straight

elements.

Theorem 2.3 ([12] Proposition 4.5). Let w be σ-straight and I the Iwahori subgroup correspondig

to a. Then for every g ∈ I(OL)ẇI(OL) there exists i ∈ I(OL) such that i−1gσ(i) = ẇ.

3. Local models of Shimura varieties

3.1. In this section we recall the construction of the local models of Shimura varieties and prove

certain results concerning their embeddings into Grassmannians. As before F denotes a finite exten-

sion of Qp and L/F the completion of the maximal unramified extension of F . Fix π a uniformizer

of F .

We start with a local Shimura datum, consisting of a triple (G,G, {µ}) where:

• G is a connected reductive group over F which splits over a tamely ramified extension of F .

• G is a connected parahoric group scheme associated to a point x ∈ B(G,F )

• {µ} is a conjugacy class of minuscule geometric cocharacters of G.
9



We will only need the case when G is quasi split, so for the rest of this section we will make this

assumption. We also assume G is the parahoric group scheme associated to a subset K ⊂ S.

Let E be the field of definition of the conjugacy class {µ}. In [28] there is a construction of a

reductive group scheme G over OF [u±] := OF [u, u−1] which specializes to G under the map OF [u±]

given by u→ π. There is also the construction of a smooth affine group scheme G over OF [u] which

specialises to G under the map OF [u] → OF → F given by u → π. Moreover the specialization fo

Gxk((t)) of G under the map OF [u]→ k[[t]] given by u 7→ t, is a parahoric subgroup of Gk((t)).

Using these groups, there is constructed the global affine Grassmanian GrG,X overX := Spec(OF [u])

which, under the base change OF [u] → F given by u 7→ π, can be identified with the affine Grass-

manian GrG,F for G. Recall GrG,F is the ind-scheme which represents the fpqc sheaf associated to

the functor on F algebras R 7→ G(R((t))/G(R[[t]]) (the identification is given by t = u− π).

Let Pµ−1 be the parabolic corresponding to µ−1, the homogeneous space GQp/Pµ−1 has a canonical

model Xµ defined over E. We may consider µ as a Qp((t))-point µ(t) of G which gives a Qp point

of GrG,X . As µ is minuscule, the action G(Qp[[t]]) on µ(t) factors through G(Qp[t]])→ G(Qp) and

the image of the stabilizer of µ(t) in G(Qp) is equal to Pµ−1 . Thus the orbit of µ(t) in GrG,X can

be equivariantly identified with Xµ.

Definition 3.1. The local model M loc
G,µ is defined to be the Zariski closure of Xµ in GrG,X ×X

Spec(OE).

We will usually write M loc
G for M loc

G,µ when it is clear what the cocharacter µ is. By its construction

M loc
G is a projective scheme over OE admitting an action of G×OF OE . The following is [28, Theorem

8.1]

Theorem 3.2. Suppose p does not divide the order of π1(Gder). Then the scheme M loc
G is normal,

the geometric special fibre is reduced and admits a stratification by locally closed smooth strata; the

closure of each stratum is normal and Cohen-Macaulay.

Example 3.3. Let G = GLn and we let µ = diag(1r, 0n−r). Let e1, ..., en be the standard basis for

Fn, and GL the Iwahori subgroup which is the stabilizer of the standard lattice chain Λ0 ⊃ Λ1 ⊃
10



... ⊃ Λn−1 where

Λi := span〈πe1, ..., πei, ei+1, ..., en〉

(Note this convention differs from most previous works since we will be working with the “cohomo-

logical” construction of the local model diagram)

The local model in this case agrees with that considered in [30], as mentioned in [28, §6.b.1]. In

this case there is the following description. Given an OF scheme S, we let Mloc
GL(S) denote the set

of isomorphism classes of commutative diagrams:

Λ0,S < Λ1,S < ... < Λn−1,S

F0

∧

< F1

∧

< ... < Fn−1

∧

where Λi,S := Λi ⊗OF S and Fi is a locally free OS module of rank r and Fi → Λi,S is an inclusion

which locally on S is a direct summand of Λi,S .

Let us explain how this description is related to the M loc
GL considered by [28] and which was

described in the last section.

Convention regarding filtrations: Let V be a finite dimensional vector space over F or a

finite free OF -module. Then a cocharacter µ : Gm → GL(V ) induces a grading V =
⊕

i∈Z Vi where

Gm acts on Vi by the character z 7→ zi. It induces the filtration on V given by F i :=
⊕

j≥i Vj . The

stabilizer of this filtration is given by the parabolic subgroup Pµ associated to µ, whose Lie algebra

p is the subspace of gln where µ acts by weights ≥ 0.

From the description of Mloc
G above, it’s generic fiber can be identified with the homogeneous space

GLn/Pµ. Indeed when π is inverted, all the Λi coincide and the choice of F0 ⊂ Λ0,F determines the

other Fi.

In the construction of M loc, we must therefore take the defining cocharacter to be µ−1. In

this case the stabilizer of the point of GLn(Qp((t)))/GLn(Qp[[t]]) corresponding to µ−1 is Pµ,

hence the generic fiber is identified with GLn/Pµ as above. The special fiber is the union of the

Schubert varieties in GLn(k((t)))/GL(k[[t]]) corresponding to the µ−1-admissible set Adm({µ−1}).

11



Here GL(k[[t]]) is the Iwahori subgroup of GLn(k((t))) which stabilizes the standard lattice chain

Λ′0 ⊃ Λ′1 ⊃ ... ⊃ Λ′n−1 in k((t))n, where

Λ′i := span〈te1, ..., tei, ei+1, ..., en〉

The identification of Mloc
GL(k) and M loc

GL(k) follows from the identifications of the special fibers

of Λi and Λ′i via the choice of standard basis. Given a point of Mloc
GL(k), we obtain a filtration

F i ⊂ Λ′i ⊗ k via the above identification, where F i is of dimension r. The preimages Li of F i in Λi

corresponds to a lattice chain of the same type as Λ′i and hence a point of x ∈ GLn(k((t)))/GL(k[[t]]).

The corresponding point of M loc
GL(k) is given by xt−1.

The same consideration apply when consider parahorics of GLn which contain the Iwahori. These

parahorics are the stabilizers of subchains of the standard lattice chain considered in the example.

3.2. Let ρ : G → GL2n be a closed group scheme immersion over F such that ρ ◦ µ is in the

conjugacy class of minuscule cocharacter diag(0n, (−1)n). Suppose also that ρ satisfies the following

conditions:

• ρ extends to a closed group scheme immersion G → GL(W•), where W• is a “lattice chain” in

OF [u]2n as in [28, 6.b.1].

• The Zariski closure of G ⊗OF [u] k((u)) in GL(W• ⊗OF [u] k[[u]]) is a smooth group scheme P ′

whose identity component can be idenitified with Gxk((t)) .

Then it is shown in [28, Proposition 7.1] that extending torsors along G → GL induces a closed

immersion:

ι : M loc
G →M loc

GL ⊗OF OE

where GL is the parahoric subgroup of GL2n corresponding to the lattice chain W• ⊗Zp[u] OF .

We will need a more explicit description of this map on the level of k points which we now explain.

3.3. Let ρ : G → GSp(V ) be local Hodge embedding, in particular we assume G contains the

scalars in GL(V ). If G is a parahoric group scheme, as explained in [18, 2.3.7], there is an embedding

G → GL(W•) satisfying the above conditions and hence an embedding of local models. Base changing
12



to OL[u±] we obtain an embedding G → GL(Λ) where Λ is a free module over OL[u±] and is the

common generic fibre of W•. The fiber over L of this embeddding is given by ρ and we denote the

fibers over κ((u)), where κ = k, L by ρκ((u)). As shown in [18, §1.2], these maps induce embeddings

B(G,L)→ B(GL2n, L)

B(G, κ((u)))→ B(GL2n, κ((u)))

where κ = k or L. These embeddings satisfy the following property: There is a choice of a

maximal OL[u±] split torus S of G and a choice of basis b for Λ such that the above embeddings of

buildings induce embeddings of the corresponding apartments

(3.3.1) A(G,S, L)→ A(GL2n, S
′, L)

(3.3.2) A(Gκ((u)), Sκ((u)), κ((u)))→ A(GL2n, S
′, κ((u)))

The choice of b determines an isomorphism of GL(Λ) with GL2n and S′ is the diagonal torus of

GL2n.

The choice of S and b also give identifications

A(G,S, L) ∼= A(Gκ((u)), Sκ((u)), κ((u)))

and

A(GL2n, S
′, L) ∼= A(GL2n, S

′, κ((u)))

Moreover there is an identification of Iwahori Weyl group for the different group over the fields L

and κ((u)) and the identification of apartments is compatible with the actions of these groups, see

[28, §3.a.1]. The maps (3.1) and (3.2) are compatible with these identifications.

Let x ∈ A(G,S, L) be a point corresponding to the parahoric G over OL (S can always be chosen in

this way), and let xκ((u)) ∈ A(Gκ((u)), Sκ((u)), κ((u))) be the corresponding points. Then the images

13



of x (resp. xκ((u))) under the above embeddings give points y (resp. yκ((u))) whose corresponding

parahoric is the stabilizer of the base change of W• to L (resp. κ((u))).

3.4. The image of a under the embedding of apartments A(G,S, L) → A(GL2n, S
′, L) determines

an alcove in the apartment for GL2n and let S′ denote the corresponding set of simple reflec-

tions. Then GL corresponds to J ⊂ S′ and we may apply the constructions in §2 to GL to obtain

AdmGL2n

J ({µ}GL2n
), this is a subset of W ′J\W ′/W ′J where W ′ denotes the Iwahori subgroup for

GLn and {µ}GL2n denotes the GL2n conjugacy class of cocharacters induced by {µ}.

By [28, Theorem 8.3], we have

M loc
G (k) ⊂ G(k((u)))/G(k[[u]])

is the union over the Schubert varieties Sw where w ∈ AdmG({µ}). By definition, the Schubert

variety Sw is the closure of the G(k[[u]]) orbit of the point ẇ. Similarly

M loc
GL(k) ⊂ GL2n(k((u)))/GL(k[[u]])

is the union of SGL2n
w for w ∈ AdmGL2n

GL ({µ}GL2n
).

On the level of k points the embeddings M loc
G (k) ↪→M loc

GL2n
(k) is induced by the map G(k((u)))→

GL2n(k((u))). On the other hand, the choice of basis b gives an embedding

M loc
GL(k) ⊂ GL2n(L)/GL(OL)

Indeed the choice of basis gives an identification between the special fibers of the lattice chains

W• ⊗ k[[u]] and W• ⊗OL. Then as in Example 3.3 a k-point of M loc
GL corresponds to a filtration on

each of the k vectors spaces W•⊗ k. If g ∈ GLn(k((u)))/GL(k((u))) lies in M loc
GL(k), the filtration is

induced by reducing the image of the lattice chain ugW•⊗ k modulo u. Taking the preimage of this

filtration in W• ⊗OL, we obtain a lattice chain of type W• ⊗OL which corresponds to an element

GL2n(L)/GL(OL).

3.5. Assume from now on that G is a connected parahoric, i.e. that G := G◦x = Gx and that G ⊂

GL(V ) contains the scalars; we let λ : Gm → G denote the cocharacter giving scalar multiplication.
14



Proposition 3.4. Let g ∈ G(L) with

g ∈ G(OL)ẇG(OL)

Then the image ρ(g) of ρ(g) in GL2n(L)/GL(OL) lies in M loc
G (k) if and if and only if w ∈ AdmG({λµ}).

Proof. Let g1ẇg2 in the Bruhat decomposition G(OL)ẇG(OL). Since G(OL) maps to GL(OL), we

may assume g = g1ẇ. Also M loc
G is equipped an action by G. Under the inclusion M loc

G (k) ⊂

GL2n(L)/GL(OL), this is given by multiplication on the left by G(OL). Note that this action factors

throught G(k). Indeed since the conjugacy class {µ}GL2n is minuscule, the action of GL(OL) on

M loc
GL(k) ⊂ GL(L)/GL(OL) factors through GL(k), hence the same is true for G(OL). Thus we may

assume g = ẇ.

Since the embedding of apartments (3.1) and (3.2) over L and k((u)) is compatible with the

identification of apartments

A(G,S, L) ∼= A(Gk((u)), Sk((u)), k((u)))

respecting the action of Iwahori Weyl groups, we see that ρ(g) corresponds to the point ρk((u))(ẇ) ∈

GL2n(k((u)))/GL(k[[u]]), where here w denotes the corresponding element in the Iwahori Weyl group

of Gk((u)). Thus by the description of M loc
G (k) above, we see that ρ(g) ∈M loc

G (k) if and only if t−1
λ w

lies in AdmG({µ}). �

Corollary 3.5. Let g ∈ G(OL)ẇG(OL) with w ∈ AdmK({µ}), then

ρ(g) ∈ GL(OL)ẇ′GL(OL)

for some ẇ′ ∈ AdmGL2n

JGL ({µ}GL2n
).

Proof. This follows from Proposition 3.4 and the description of M loc
GL(k) as a subset ofGL2n(L)/GL(OL).

�

3.6. As explained in [18, 2.3.15], we may compose ρ : G → GSp(V,Ψ) with a diagonal embedding

to obtain a new minuscule Hodge embedding ρ′ : GSp(V ′,Ψ′) with dimV ′ = 2n′ such that there
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is a lattice V ′Zp ⊂ V ′ and the above embedding of buildings takes x to the hyperspecial point

y ∈ B(GL(V ′), L) corresponding to V ′Zp ⊗Zp OL. V ′Zp constructed is contructed by taking the direct

sum of the lattices in the lattice chain corresponding to GL. Then ρ′ factors through a diagonal

embedding GL(V )→ GL(V ′). In this case we obtain an embedding of local models:

M loc
G → Gr(V ′Zp)⊗Zp OE

where Gr(V ′Zp) is the smooth grassmannian parametrising dimension n′ sub-bundles F ⊂ V ′Zp ⊗Zp S.

Choosing a basis b as above, we obtain an embedding

M loc
G (k) ↪→ GL2n′(L)/GL′(OL)

where GL′ is the hyperspecial subgroup stabilising V ′Zp . Let T ′ ⊂ GL′(V ′) denote a maximal torus

whose apartment contains the hyperspecial vertex corresponding to GL′.

Corollary 3.6. Let g ∈ G(OL)ẇG(OL) ⊂ G(L) with w ∈ AdmG({µ}), then

ρ(g) ∈ GL′(OL)µ′GL(p)GL′(OL)

where µ′GL is a representative of {µ}GL(V ′).

Proof. Under the diagonal embedding GL(V )→ GL(V ′), we have that Adm
GL(V )
GL ({µ}GL(V )) maps

to Adm
GL(V ′)
GL ({µ}GL(V ′)) (this follows for exampe by the equality Adm({µ}) = Perm({µ}) for

general linear groups, see [6]). Since GL′ is hyperspecial, Adm
GL(V ′)
GL′ ({µ}GL(V ′)) is just the one

element tµ, hence the result follow from Corollary 3.5. �

4. p-divisible groups

In this section we review the theory of S-modules and its applications to deformation theory of

p-divisible groups equipped with a collection of crystalline tensors. The main result is the construc-

tion of a certain deformation of such a p-divisible group in Proposition 4.8 which is needed in the

arguments of §5.
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4.1. We now let F = Qp so that L = W (Fp)[ 1
p ]. For K/L a finite totally ramified extensions, let ΓK

be the absolute Galois group of K. Let Repcris denote the category of crystalline ΓK representations,

and Rep◦cris the category of ΓK representations in finite free Zp modules which are lattices in some

crystalline representation of ΓK . For V a crystalline representation of ΓK , recall Fontaine’s functors

Dcris, DdR:

Dcris(V ) = (V ⊗Qp Bcris)
ΓK DdR(V ) = (V ⊗Qp BdR)ΓK

Fix a uniformizer π for K and let E(u) be the Eisenstein polynomial which is the minimal

polynomial of π. Let S = OL[[u]], we equip this with a lift ϕ of Frobenius given by the usual

Frobenius on OL and u 7→ up. We write D× for the scheme SpecS with its closed point removed.

Let ModϕS denote the category of finite free S modules M equipped with ϕ-linear isomorphism:

1⊗ ϕ : M⊗S,ϕ S[1/E(u)]→M[1/E(u)]

Let BTϕ denote the subcategory of ModϕS consisting of M, such that 1⊗ϕ maps ϕ∗(M) into M

and whose cokernel is killed by E(u).

Given M ∈ ModϕS we equip ϕ∗(M) with the filtration:

Filiϕ∗(M) = (1⊗ ϕ)−1(E(u)iM) ∩ ϕ∗(M))

Let OE denote the p-adic completion of S(p); it is a discrete valuation ring with uniformiser p and

residue field k((u)) and let E denote its fraction field. We equip OE with the unique Frobenius ϕ

which extends that on S, and let ModϕOE denotes the category of finite free OE -modules M equipped

with a Frobenius semilinear isomorphism:

1⊗ ϕ : ϕ∗(M)→M

There is a functor ModϕS → ModϕOE given by

M 7→M⊗S OE
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with the Frobenius on M⊗S OE induced by that on M.

Let OÊur denote the p-adic completion of a strict Henselization of OE . We have the following

which is Theorem 3.3.2 of [18]:

Proposition 4.1. There is a fully faithful functor

M : Rep◦cris → ModϕS

which is compatible with the formation of symmetric and exterior products and is such that Λ 7→

M(Λ)|D× is exact. If Λ is in Rep◦cris, V = Λ⊗Qp and M = M(Λ)

i) There are canonical isomorphisms

Dcris(V ) ∼= M/uM[
1

p
] and DdR(V ) ∼= ϕ∗(M)⊗M K

the first being compatible with ϕ and the second being compatible with filtrations.

ii) There is a canonical isomorphism

Λ⊗Zp OÊur
∼= M⊗S OÊur

4.2. For an R-module M , we let M⊗ denote the direct sum of all R-modules obtained from M by

taking duals, tensor products, symmetric and exterior products.

Let Λ ∈ Rep◦cris and suppose sα,ét ∈ Λ⊗ are a collection of ΓK-invariant tensors whose stabilizer

is a smooth group scheme G over Zp with reductive generic fiber G. Since the sα,ét are ΓK-invariant,

we obtain a representation:

ρ : ΓK → G(Zp)

We may think of each sα,ét as a morphism in Rep◦cris from the trivial representation Zp to Λ⊗.

Applying the functor M to these morphisms gives us ϕ-invariant tensors s̃α ∈M(Λ)⊗.

18



Proposition 4.2. Suppose that the special fiber of G is connected and H1(G, D×) = 1. Then there

exists an isomorphism.

Λ⊗Zp S
∼= M(Λ)

taking sα,ét to s̃α.

Proof. This is a special case of [18, 3.3.5], indeed with our assumptions, G = G◦. �

4.3. For a p-divisible group G over a scheme where p is locally nilpotent we write D(G ) for it’s

contravariant Dieudonné crystal. We let TpG be the Tate module of G and TpG ∨ the linear dual of

TpG . We will apply the above to Λ = TpG ∨.

Let R be a complete local ring with maximal ideal m and residue field k. We let W (R) denote

the Witt vectors of R. Recall [34] we have a subring Ŵ (R) = W (k) ⊕ W(m) ⊂ W (R), where

W(m) ⊂ W (R) consists of Witt vectors (wi)i≥1 with wi ∈ m and wi → 0 in the m-adic topology.

Then Ŵ (R) is preserved by the Frobenius ϕ on W (R) and we write V for the Verschiebung. We

have IR := V Ŵ (R) is the kernel of the projection map Ŵ (R) → R. Fix a uniformizer π of K and

write [π] ∈ Ŵ (OK) for its Teichmuller representative. Recall the following definition from [34].

Definition 4.3. A Dieudonné display over R is a tuple (M,M1,Φ,Φ1) where

i) M is a free Ŵ (R) module.

ii) M1 ⊂M is a Ŵ (R) submodule such that

IRM ⊂M1 ⊂M

and M/M1 is a projective R-module.

iii) Φ : M →M is a ϕ semi-linear map.

iv) Φ1 : M1 →M is a ϕ semi-linear map whose image generates M as a Ŵ (R) module and which

satisfies

Φ1(V (w)m) = wΦ(m), for w ∈ Ŵ (R),m ∈M
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Let G be a p-divisible group over R. Then D(G )(Ŵ (R)) naturally has the structure of a Dieudonné

display, and by the main result of [34] the functor G 7→ D(G )(Ŵ (R)) is an anti-equivalence of

categories between p-divisible groups over R and Dieudonné displays over R.

4.4. If G is a p-divisible group over OK , then by [18, Theorem 3.3.2] there is a canonical isomorphism

D(G )(Ŵ (OK)) ∼= M⊗S,ϕ Ŵ (OK)

where M = M(TpG ∨) and the tensor product is over the map given by composing the map S →

Ŵ (OK), u 7→ [π] with ϕ. Moreover the induced map

D(G )(OK) ∼= ϕ∗(M)⊗S OK → DdR(TpG
∨ ⊗Zp Qp)

respects filtrations and we have a canonical identification

D(G0)(OL) ∼= ϕ∗(M/uM)

where G0 := G ⊗OK k.

If sα,ét ∈ TpG ∨,⊗ are a collection of ΓK invariant tensors, we let

sα,0 ∈ Dcris(TpG
∨ ⊗Zp Qp)

denote the ϕ-invariant tensors corresponding to sα,ét under the p-adic comparison isomorphism. We

assume from now on that the stabilizer of sα,ét is of the form Gx for x ∈ B(G,Qp), where G is a

tamely ramified reductive group containing no factors of type E8. The following is [18, 3.3.8]

Proposition 4.4. sα,0 ∈ D(G0)(OL)⊗ where we view D(G0)(OL)⊗ as an OL-submodule of Dcris(TpG ∨⊗Zp

Qp)⊗. Moreover the sα,0 lift to ϕ-invariant tensors s̃α ∈ D(G )(Ŵ (OK))⊗ which map to Fil0D(G )(OK)⊗,

and there exists an isomorphism:

D(G )(Ŵ (OK)) ∼= TpG
∨ ⊗Zp Ŵ (OK)
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taking s̃α to sα,ét. In particular, there is an isomorphism

D(G0)(OL) ∼= TpG
∨ ⊗Zp OL

taking sα,0 to sα,ét.

4.5. Now let G0 be a p-divisible group over k and suppose (sα,0) ∈ D⊗, where D := D(G0)(OL)

are a collection of ϕ-invariant tensors whose image in D(G0)(k) lie in Fil0. We assume that the

stabilizer of the sα,0 is a connected Bruhat-Tits parahoric group scheme, i.e. GOL = Gx = G◦x for

some x ∈ B(G,L) as above and also that G contains the scalars.

Let P ⊂ GL(D) be a parabolic subgroup lifting the parabolic P0 corresponding to the filtration on

D(G0)(k). Write M loc = GL(D)/P and SpfA = M̂ loc the completion at the identity. We write M1

for the universal filtration on D⊗OL A. Let y : A→ K ′ be a map such that sα,0 ∈ Fil0D⊗OL OK′

for the filtration induced by y on D ⊗OL K ′. By [16, Lemma 1.4.5], the filtration corresponding to

y is induced by a G-valued cocharacter µy.

Let G.y be the orbit of y in M loc ⊗OL K ′ which is defined over the reflex field E, and we write

M loc
GOL

for the closure of this orbit in M loc. By [18, Proposition 7.1], M loc
GOL

can be identified with

the local model for GOL and the conjugacy class of cocharacters {µ−1
y } considered in §3.

Definition 4.5. Let G be a p-divisible group over OK whose special fiber is isomorphic to G0. We

say G is (GOL , µy)-adapted if the tensors sα,0 extend to tensors s̃α ∈ D(G )(Ŵ (OK))⊗ such that the

following two conditions hold:

1) There is isomorphism D(G )(Ŵ (OK)) ∼= D⊗OL Ŵ (OK) taking s̃α to sα,0.

2) Under the canonical identification D(G )(OK) ⊗OK K ∼= D ⊗OL K, the filtration on D ⊗OL K

is induced by a G-valued cocharacter conjugate to µy.

Remark 4.6. It can be checked from the construction in [18], that the notion of (GOL , µy) adapted

liftings only depends on the G conjugacy class of µy and the specialization of the filtration induced

by µy.

Let E be the field of definition for the conjugacy class {µy}.
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Proposition 4.7. Let SpfA denote the versal deformation space of G0. Then there is a versal

quotient AG of A⊗OL OE such that for any K as above, a map $ : A⊗OL OE → K factors through

AG if and only if the p-divisible group G$ induced is (G, µy) adapted.

Proof. This is [18, Prop. 3.2.17]. Indeed it is clear from their construction that the p-divisible group

G$ induced by a map $ : AG → K is (G, µy) adapted. The Proposition 3.2.17 in loc. cit. provides

the converse. �

4.6. Now assume there is a Zp-module U and an isormorphism U ⊗Zp OL ∼= D such that sα,0 ∈ U⊗.

Then the stabilizer of sα,0 in U⊗ is a group G over Zp such that G ⊗Zp OL ∼= GOL . We assume G is

of the form Gx for some x ∈ B(G,Qp). Since the sα,0 are ϕ-invariant, we have ϕ is of the form bσ

for some b ∈ G(L).

Under these assumptions one can make the following construction of a certain (GOL , µy) lift,

which will be needed in §5 for the reduction to Levi subgroups argument

Proposition 4.8. There exists a (GOL , µy)-adapted deformation of G such that sα,0 ∈ D⊗ corre-

spond to tensors sα,ét ∈ TpG ∨ and such that there exists an isomorphism:

TpG
∨ ⊗Zp OL ∼= D

taking sα,ét to sα,0.

Proof. Let M := D ⊗σ−1,OL S, then σ∗(M) ∼= D ⊗W S. Let y∗(M1) ⊂ D ⊗OL OK′ denote the

filtration induced by y : A → OK′ and let F ⊂ σ∗(M) denote be the premiage of y∗(M1). By [18,

Lemma 3.2.6], F is a free S module and sα,0 ∈ F , moreover the scheme Isomsα,0,S
(F, σ∗(M)) of

S-isomorphisms which respect the sα,0 is a G torsor. The Frobenius ϕ on D induces a map

D1
'−→ D

∼=−→ σ−1∗D

Here D1 is the preimage of the filtration on D(G0)(k), the first arrow is given by σ−1(b/p) and the

second isomorphism is induced by the identity on U . The specialization of F at u = 0 is identified

with D1, then since G contains the scalars, σ−1(b/p) preserves sα,0 and hence corresponds to a point
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Isomsα,0,S
(F, σ∗(M))(W ). By smoothness of G, this lifts to an isomorphism

Θ : F
∼−→ σ∗(M)

respecting sα,0. Let c = pE(u)
E(0) . The morphism

ϕ : σ∗(M)
×c−−→ F

Θ−→ σ∗(M)→M

where the last map is induced from the identity on U , gives M the structure of an element of BTϕ,

and hence corresponds to a p-divisible group G over OK deforming G0.

Since ϕ preserves sα,0, these give Frobenius invariant tensors in s̃α ∈ D(G )(Ŵ (OK))⊗, and by

construction, we have an isomorphism D(G )(Ŵ (OK)) ∼= D⊗OL Ŵ (OK) taking s̃α to sα,0. Moreover

under this isomorphism, the filtration on D⊗OL K is given by µy. The natural isomorphism

D(G )(OK)⊗OK K ∼= D⊗OL K

takes s̃α to sα,0 by [18, Lemma 3.2.13], hence the natural filtration on D⊗OL K is induced by a G

cocharacter conjugate to µy. Thus G is a (G, µy) adapted deformation, and since s̃α ∈M⊗, we have

sα,ét ∈ TpG ∨ by the fully faithfulness of M in Proposition 4.1.

We now show that there exists an isomorphism TpG ∨ ⊗Zp OL ∼= D respecting tensors. Let

P ⊂ Isom(TpG ∨ ⊗Zp OL,D) be the isomorphism scheme taking sα,ét to sα,0. By construction we

have an isomorphism M(TpG ∨) ∼= D⊗σ−1,OL S
∼−→ D⊗w S taking sα,ét to sα,0. By Proposition 4.1

there is a canonical isomorphism

TpG
∨ ⊗Zp OÊur ∼= M(TpG

∨)⊗S OÊur

and this isomorphism takes sα,ét to s̃α. Thus there is an isomorphism TpG ∨⊗ZpOÊur ∼= D⊗OLOÊur

taking sα,ét to sα,0, i.e. P ⊗W OÊur is a trivial G torsor. Since OL → OÊur is faithfully flat, P is a

G torsor which is necessarily trivial since G is smooth and OL is strictly henselian.

�
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5. Affine Deligne Luzstig varieties

This section forms the main part of the local argument for the description of the isogeny classes.

It is used for the argument in §6 of lifting isogenies to characteristic 0. An essential part is a bound

on the connected components of affine Deligne-Lusztig varieties obtained in [11], which is recalled

here.

5.1. Let G be a reductive group over F which splits over a tamely ramified extension. Recall S is

a maximal L split torus and T its centralizer. We have fixed a σ-invariant alcove in the apartment

corresponding to S which induces a length function and ordering on the affine Weyl group Wa and

hence on the Iwahori Weyl group W . We also fix a special vertex s (not necessarily σ-invariant)

which determines a Borel B of G defined over L.

Let b ∈ G(L), we denote by [b] = {g−1bσ(g)|g ∈ G(L)} its σ-conjugacy class. Let B(G) be the

set of σ-conjugacy classes of G(F ). We let ν be the Newton map:

ν : B(G)→ X∗(T )+
I,Q

where X∗(T )+
I,Q is the intersection of X∗(T )I ⊗ZQ with the dominant chamber determined by B.

We let

κ : B(G)→ π1(G)Γ

denote the map induced by composition of κ̃ : G(L)→ π1(G)I with the projection π1(G)I � π1(G)Γ.

By [19, §4.13] the map

(ν, κ̃) : B(G)→ X∗(T )+
I,Q × π1(G)Γ

is injective.

5.2. Let K ⊂ S be a σ-invariant subset and WK the group generated by the reflection in K. Let G

denote the associated parahoric group scheme over OF . For b ∈ G(L) and w ∈WK\W/WK

XK,w(b) := {g ∈ G(L)/G(OL)|g−1bσ(g) ∈ G(OL)ẇG(OL)}
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It is known that XK,w(b) has the structure of a perfect scheme over k, for example by [1] (see

also [33]). When K = ∅ and G is an Iwahori subgroup, we write Xw(b) for the corresponding affine

Deligne-Lusztig variety.

Let {µ} be a geometric conjugacy class of cocharacters for G and let µ be the image in X∗(T )I

of a dominant representative µ in X∗(T ). Recall we have associated to this data the µ admissible

set AdmG({µ}) ⊂WK\W/WK .

Let

X({µ}, b)K := {g ∈ G(L)/G(OL)|g−1bσ(g) ∈
⋃

w∈AdmG({µ})

G(OL)ẇG(OL)}

=
⋃

w∈Adm({µ})

XK,w(b)

As before, when G is the Iwahori subgroup we write X({µ}, b) for this union of affine Deligne-Lusztig

varieties. For notational convenience will also consider the sets

X(σ({µ}), b)K := ∪w∈Adm({µ})KXK,σ(w)(b)

It can be identified with the set X({σ′(µ)}, b) where σ′ ∈ Gal(F/F ) is a lift of Frobenius. The map

g 7→ bσ(g) defines a bijection from X({µ}, b) to X(σ({µ}), b).

We recall the definition of the neutral acceptable set B(G, {µ}) in [32]. For λ, λ′ ∈ X∗(T )⊗ZQ be

dominant, we write λ ≤ λ′ if λ′−λ is a non-negative rational linear combination of positive coroots.

Set

B(G, {µ}) = {[b] ∈ B(G) : κ([b]) = µ\, ν([b]) ≤ µ}

where µ\ is the common image of µ ∈ {µ} in π1(G)Γ, and µ denotes the Galois average of a dominant

representative of the image of an element of {µ} in X∗(T )Q with respect to the L-action of σ on

X∗(T )+
Q .

5.3. The following result on the non-emptiness pattern of the X({µ}, b)K was conjectured by Kot-

twitz and Rapoport in [20] and proved by He in [9].

Theorem 5.1 ([9]). 1) The set X({µ}, b)K 6= ∅ if and onliy if [b] ∈ B(G, {µ}).
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2) For K ⊂ K ′ σ invariant with associated parahoric G′. The natural projection G(L)/G′(OL)→

G(L)/G(OL) induces a surjection

X({µ}, b)K′ � X({µ}, b)K

We will need the following two results which is proved in [11].

Theorem 5.2. i) Let Y ⊂ X({µ}, b) be a connected component, then Y ∩ Xw(b) 6= ∅ for some

σ-straight element w ∈W .

ii) Assume Gad is Qp simple. If µ is not central, then the Kottwitz homomorphism induces an

isomorphism:

π0(X({µ}, τ̇{µ}))
∼−→ π1(G)σI

and if µ is central, X({µ}, b) is discrete and we have a bijection

X({µ}, b)'G(Qp)/G(Zp)

Now assume G is residually split. To any straight element w one may associate a vector νw ∈

X∗(T )I ⊗Q, its non-dominant Newton vector. Explicitly, we let n be sufficiently large such that σn

acts trivially and wσ(w)...σn−1(w) = tλ with λ ∈ X∗(T )I and we define

νw :=
tλ
n

We have an associated semistandard Levi subgroup Mνw which is generated by T and the roots

subgroups Ua such that 〈a, νw〉 = 0. The alcove a determines an alcove for M and hence an Iwahori

subgroupM. Explicitly,M(OL) = G(OL)∩M(L). This induces a Bruhat order and length function

on WM . Then it is known that w lies in WM and is a length 0 element, i.e. ẇM(OL)ẇ−1, cf [27,

Theorem 1.3]. Hence ẇ is a basic element in M(L).
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Theorem 5.3. There is a map

∐
w∈W,w a straight element with ẇ∈[b]

XMνw ({λw}Mνw
, ẇ)→ X({µ}, b)

which induces a surjection

∐
w∈W,w a straight element with ẇ∈[b]

π0(XMνw ({λw}Mνw
, ẇ))→ π0(X({µ}, b))

Here {λw}Mνw
is a certain Mνw conjugacy class of cocharacters of Mνw which maps to {µ}.

5.4. Now let G0 be a p-divisible group over k = Fp and write D(G0) for D(G0)(OL). Let sα,0 ∈ D(G0)⊗

be a collection of ϕ-invariant tensors such that sα,0 lie in Fil0D(G0)(k) and let GOL ⊂ GL(D(G0))

denote their stabilizer. Assume that there is a free Zp-module U together with an isomorphism

U⊗ZpW
∼= D(G0)⊗ such that sα,0 ∈ U⊗. Assume also that the stabilizer G ⊂ GL(U) of these tensors

is a connected parahoric group scheme corresponding to K ⊂ S. Then we have an isomorphism

G ⊗Zp OL ' GOL so that GOL is also parahoric group scheme over OL. If U ′ is another such Zp

module, the scheme of isomorphisms U ′
∼−→ U taking sα,0 to sα,0 is G torsor, which is necessarily

trivial since G is smooth and has connected special fiber. Let G denote the generic fibre of G which

is reductive group over Qp.

Since the sα,0 are ϕ invariant, we can write ϕ = bσ for some b ∈ G(L), and the choice is

independent of the choice of U up to σ-conjugation by an element of G(OL). We pick a filtration on

D(G0)⊗OL K ′ lifting the one on D(G0)(k) as in §4.1 so that sα,0 ∈ Fil0D⊗OL K ′. This filtration is

defined by a G-valued cocharacter µy and we have the inclusion of local models M loc
GOL
⊂M loc ⊗OL

OE , where the defining cocharacter for M loc
GOL

is given by Proposition 5.9

The filtration on D(G0)⊗ k = D(G0)(k) is by definition the kernel of ϕ, thus the preimage of the

filtration in D(G0) is given by

{v ∈ D(G0)|bσ(v) ∈ pD(G0)}
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This is precisely the sub OL lattice in D(G0) corresponding to σ−1(b−1)pD(G0). By Proposition

3.4 we have

σ−1(b−1) ∈
⋃

w∈AdmK({µ−1
y })

G(OL)ẇG(OL)

i.e., 1 ∈ X({σ(µy)}, b)K . Let K/L be a finite extension. By Proposition 4.8, there exists a (GOL , µy)

adapted lifting G such that if sα,ét ∈ TpG ∨ ⊗ Qp denotes the tensors corresponding to sα,0 under

the p-adic comparison isomorphism, then we have sα,ét ∈ TpG ∨ and we have an isomorphism

TpG
∨ ⊗Zp S

∼= M(TpG
∨)

taking sα,ét to s̃α, which induces an isomorphism

TpG
∨ ⊗Zp W ' D(G0)

taking sα,ét to sα,0. As in §4, s̃α denotes the functor M applied to sα,ét.

5.5. Now suppose M ⊂ G is a closed reductive subgroup defined over Qp such that b ∈ M(L).

Suppose that M(L)∩G(OL) is the OL points of a parahoric subgroupM of M , thenM is a defined

over Zp. Since b ∈ M(L), we may extend the tensors sα,0 ∈ U⊗ to ϕ-invariant tensors tβ,0 whose

stabilizer is M. We make the following assumption:

(*) The filtration on D(G0) ⊗OL k lifts to a filtration on D(G0) ⊗OL K which is induced by an

M -valued cocharacter µ′y which is conjugate µy in G.

We have the local model M loc
M,µ−1

y′
which is defined over OE′ where E′ is the local reflex field for

{µ′y}. Then there is an embedding

M loc
M,µ−1

y′
↪→M loc

GL ⊗OF OE′

which factors through a closed embedding M loc
M,µ−1

y′
↪→M loc

G,µ−1
y
⊗OE′ .

Now by Proposition 4.5,there exists a (M, µy′)-adapted lifting G of G0 such that there is an

isomorphism

(5.5.1) TpG
∨ ⊗Zp S

∼= M(TpG
∨)
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such that if tα,ét denotes the tensors corresponding to tα,0 under the p-adic comparison isomor-

phism, then tα,ét ∈ TpG ∨,⊗ and the above map takes tα,ét to t̃α. In particular since tα,0 extends

sα,0, it takes sα,ét to sα,0. Note that since µ′y is G-conjugate to µy, any (M, µy′)-lifitng is also a

(G, µy)-adapted lifting of G0. Fixing such an isomorphism as above, we may take U to be TpG ∨.

Since the notion of (G, µy)-adapted lifting only depends on the G-conjugay class of µy and its spe-

cialization, we may replace µy with µy′ (see Remark 4.6). We relabel this µy, thus µy is an M valued

cocharacter inducing the filtration on D(G0)⊗K.

5.6. Let g ∈ G(Qp), then there is a finite extension K ′/K for which gTpG is stable by ΓK′ in

TpG ⊗Zp Qp hence corresponds to a p-divisible group G ′ over K ′, which is isogenous to G . Let

M′ := M(TpG ′∨) and M := M(TpG ∨), then the quasi-isogeny θ : G → G ′ induces an identification

θ̃ : M(TpG
′∨)[1/p]

∼−→M(TpG
∨)[1/p]

so that M′ = g̃M for some g̃ ∈ GL(M[1/p]).

Proposition 5.4. i) g̃ can be taken to be in G(S[1/p]) under the above identification

TpG
∨ ⊗Zp S

∼−→M

ii) We have g̃ ∈M(O
Êur

)gG(O
Êur

).

Proof. i) Since sα,ét are fixed by G(Qp), we have sα,ét ∈ TpG ′∨⊗, and we have the stabiliser of sα,ét

in TpG ′∨⊗ is a parahoric subgroup of G. Thus by Proposition 3.2. there is an isomorphism:

TpG
′∨ ⊗Zp S

∼= M′

taking sα,ét to s̃. Under the identification TpG ∨⊗Zp S
∼= M, we have g̃ is given by the composition:

(5.6.1) TpG
∨ ⊗Zp S

g−→ TpG
′∨ ⊗Zp S

sα−→M′
θ̃−→M[1/p]

tα−→ TpG
∨ ⊗Zp S[1/p]

where the
sα−→, tα−→ means that map preserves tensors of that type. Thus the composition preserves,

s̃α and we have g̃ ∈ G(S).
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ii) Over O
Êur

there are canonical identifications:

TpG
∨ ⊗Zp OÊur

∼= M⊗S OÊur

TpG
′∨ ⊗Zp OÊur

∼= M′ ⊗S OÊur

the first one taking tα,ét to t̃α and the second taking sα,ét to s̃α. Thus, if we identify TpG ∨ with

TpG ′∨ via g, these isomorphisms differ from the ones above by elements of M(O
Êur

) and G(O
Êur

)

respectively. Since g̃ is identified with the map:

TpG
∨ ⊗Zp OÊur

g−→ TpG
′∨ ⊗Zp OÊur

can−−→M′ ⊗S OÊur

θ̃
Êur−−−→M⊗S[1/p] Ê ur can−−→ TpG

∨ ⊗Zp Ê ur

we have g̃ ∈M(O
Êur

)gG(O
Êur

).

�

We will apply the above Proposition in the cases M ⊂ G is a Levi subgroup or if we are in the

situation of Proposition 5.7.

5.7. Using the canonical identification D(G0) with ϕ∗(M/uM), we have θ̃ induces an isomorphism

D(G0)[1/p]
∼−→ D(G ′)[1/p]. Then D(G ′0) can be identified with g0D(G0) for g0 = σ−1(g̃)|u=0 ∈ G(L).

Proposition 5.5. The association g 7→ g0 induces a well-defined map.

G(Qp)/G(Zp)→ X(σ({µy}), b)

and we have κ(g) = κ(g0) ∈ π1(G)I .

Remark 5.6. g0 and b ∈ G(L) both depend on the choice of the isomorphism 5.5.1. Modifying the

isomorphism by h ∈ G(OL) conjugates g0 by h and σ-conjugates b by h, so that

(hg−1
0 h−1)(hbσ(h−1))σ(hg0h

−1) = hg0bσ(g0)σ(h−1)

In particular, the part of the Iwahori decomposition it lies in is independent of the choice of 5.5.1.
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Proof. We identify D(G ′0)⊗OL L with D(G0)⊗OL L, so that we consider

D(G ′0) = g0D(G0) ⊂ D(G0)⊗OL L

Under this identification, we have sα,0 ∈ D(G ′0)⊗ and the stabilizer of these tensors in D(G ′0) can be

identified with g0GOLg−1
0 .

By [18, Crollary 3.3.8], there exists a G-valued cocharacter µ′y defined over K ′′ such that G ′ is a

(g0GOLg−1
0 , µ′y) adapted-lifting of G ′0⊗OKk. We have three filtrations on D⊗OLK: the one induced by

µy, the canonical filtration corresponding to the Galois representation TpG ∨⊗Zp Qp ∼= T ′pG
∨⊗Zp Qp

and the one induced by µ′y. The second filtration is induced by G-valued cocharacters µ and µ′

which are conjugate to µy and µ′y respectively. The same proof as in [15, Lemma 1.1.9], shows that

µ and µ′ are G-conjugate, hence µy and µ′y are G-conjugate.

Thus g−1
0 µ′yg0 induces a filtration on D ⊗OL K ′′ corresponding to a point in M loc

G,µy (K ′′). The

specialization of this point gives a filtration on D(G0)⊗OK k which lies in M loc
G,µy (k). This filtration

is given by the reduction of g−1
0 σ−1(b−1g0)p mod p, hence by Propositon 3.4 we have

g−1
0 bσ(g0) ∈ G(OL)σ(ẇ)G(OL)

where w ∈ AdmK({µy}), i.e. g0 ∈ X(σ({µy}), b).

To show κG(g) = κG(g0), note that g̃ gives a k[[u]]perf point of GrG , where GrG is the Witt vector

affine flag variety, see [33], [1]. For k a perfect field of characterstic p, we have

κG : GrG(k)→ π1(G)I

and this induces an isomorphism π0(GrG) ∼= π1(G)I . In particular, κg is a locally constant function.

Let h ∈ GrG(k((u))) be the generic point of g̃, then by Proposition 7.3 ii), we have κG(h) = κG(g),

hence κG(σ−1(g0)) = κG(g). Since g is σ-invariant, we hav κG(g0) = κG(g).

�

Proposition 5.7. Let f : G → H be a surjection of parahoric subgroups such that the following two

conditions hold:
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i) The composition of f with ΓK → G factors through the center ZH of H.

ii) The connected component of the identity of f−1(ZH) is a parahoric subgroup of its generic

fibre.

Then we may choose the isomorphism 5.5.1 so that have

f(g) = f(g0) ∈ H(L)/H(OL)

Proof. We write G′ for the connected component of the identity of f−1(ZH). By assumption G′

is a parahoric subgroup of its generic fibre G′. Upon extending K by a finite extension, we may

assume ΓK → G(Zp) factors through G′(Zp), and we may extend sα,ét ∈ TpG ∨,⊗ to a set tβ,ét of

ΓK-invariant tensors whose stabilizer is G′. By Proposition 6.7, we obtain tensors tβ,0 ∈ D(G0)⊗

whose stabilizer G′OL can be identified with G′⊗Zp OL. By [18, Corollary 3.3.10] there is a G′-valued

cocharacter µ′y satisfying the conditions in (*), hence we may apply the construction in 7.3. We fix

a S-linear bijection

TpG
∨ ⊗Zp S

∼= M(TpG
∨)

taking tβ,ét to t̃β .

Let g ∈ G(Qp), applying the previous construction we obtain g̃ ∈ G(S[1/p]) and by Proposition

7.3 we have g̃ = hgi where h ∈ G′(O
Êur

) and i ∈ G(O
Êur

). Since G′ ⊂ f−1(ZH), we have f(g−1hg) =

f(h), so

p := g−1hgh−1 ∈ P(Ê ur)

where P := ker(f : G → H).

Thus f(g̃) = f(gphi) = f(g)f(hi), and we obtain

f(hi) ∈ H(O
Êur

) ∩H(S[1/p]) = H(S)

Since S is strictly henselian, f : G(S)→ H(S) is surjective, so let m ∈ G(S) such that f(m) = hi.

Thus f(phim−1) = 0, and we have

phim−1 ∈ P(Ê ur) ∩ G(S[1/p])
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but this last group is just P(S[1/p]). Thus g̃ = g(phim−1)m ∈ gP(S[1/p])G(S), and hence

g0 = σ−1(g̃)|u=0 ∈ gP(L)G(OL)

so that f(g0) = f(σ(g)) = f(g) ∈ H(L)/H(OL). �

Lemma 5.8. i) The map κG|G(Qp) : G(Qp)→ π1(G)σI is surjective.

ii) Let gad ∈ Gad(Qp). Suppose the image of gad under κGad lifts to an element of π1(G)σI , then

the image of gad in G(Qp)/G(Zp) is in the image of

G(Qp)/G(Zp)→ Gad(Qp)/Gad(Zp)

Proof. i) The Kottwitz homomorphism induces an exact sequence:

0→ T ◦(OL)→ T (L)
κG−−→ π1(G)I → 0

where T ◦ is the connected Neron model of T . Since H1(T ◦,Zp) = 0 we have

κG|T (Qp) : T (Qp)→ π1(G)σI

is surjective, hence κG|G(Qp) is surjective.

ii) By part i), there exists g ∈ G(Qp) which such that κG(g) ∈ π1(G)σI lifts κGad(gad). Replacing

gad with gadg
−1, we may assume κGad(gad) is trivial.

By the Iwahori decomposition there exists wad ∈ W σ
ad, g1, g2 ∈ G(Zp) such that gad = g1ẇadg2.

Changing our choice of torus T with T ′ := g1Tg
−1
1 we may assume gad = ẇadg2. Since κGad(g)

is trivial, wad lies in the affine Weyl group Wa,ad of Gad. But the natural projection induces an

isomorphism Wa
∼= Wa,ad hence, wad lifts to an element w of W σ

a . �

With the above notations we have the following

Proposition 5.9. Let b = σ(τ̇{µy}). Then then there exists a (G, µy)-adapted lifting such that the

map
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G(Qp)/G(Zp)→ π0(X(σ({µy}), σ(τ̇µy ))), g 7→ g0

defined above is surjective.

Proof. We let µady denote the cocharacter Gad induced by µy. Let Gad = G1×G2 where µady induces

the trivial cocharacter of G1 and induces a non-trivial cocharacter in every Qp-factor of G2. We

write G1 × G2 for the parahoric in Gad corresponding to G. By Theorem 4.1, we have

π0(X({µady }, τ̇µady )) ∼= G1(Qp)/G1(Zp)× π1(G2)σI

We pick the isomorphism 5.5.1 so that the conclusion of Proposition 5.7 holds for the projection

G → G1.

Let h ∈ X(σ({µy}), σ(τ̇µy )), g ∈ G(Qp) and had the image of h in π0(X(σ({µady }), σ(τ̇µady ))), then

by Lemma 5.8 i), there exists gad ∈ Gad(Qp) mapping to had. Since κGad(gad) lifts to the element

κG(h) ∈ π1(G)σI , we have by Lemma 5.8 ii) that gad lifts to an element g ∈ G(Qp). By Proposition

5.7 and 5.9, the image of g0 is equal to the image of h in π0(X({µady }, τ̇µady )). By [11], there exists

z ∈ Z(Qp) such that g0z = h. By the functoriality of the construction, (gz)0 = g0z0 = g0z = h. �

6. Shimura varieties

6.1. We recall the construction of the integral models of Shimura varieties of Hodge type in [18].

Let G be a reductive group over Q and X a conjugacy class of homomorphisms

h : S := ResR/CGm → GR

such that (G,X) is a Shimura datum in the sense of [4].

Let c be complex conjugation, then ResC/R(C) ∼= (C⊗R C)× ∼= C× × c∗(C×) and we write µh for

the cocharacter given by

C× → C× × c∗(C×)
h−→ G(C)

We set wh := µ−1
h µc−1

h .
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Let Af denote the ring of finite adeles and Apf the subring of Af with trivial p-component. Let

Kp ⊂ G(Qp) and Kp ⊂ G(Apf ) be compact open subgroups and write K := KpK
p. Then for Kp

sufficiently small

ShK(G,X)C = G(Q)\X ×G(Af )/K

has the structure of an algebraic variety over C, which has a model over the reflex field E := E(G,X),

which is a number field and is the field of definition of the conjugacy class of µh.

We will also consider the pro-varieties

Sh(G,X) := lim
←K

ShK(G,X)C

ShKp(G,X) := lim
←Kp

ShKpKp(G,X)C

6.2. Let V be a vector space over Q equipped with an alternating bilinear form ψ, we write VR =

V ⊗Q R for an Q algebra R. Let GSp = GSp(V, ψ) denote the corresponding group of symplectic

similitudes, the Siegel half space is defined to be the set of homomorphisms h : S→ GSpR such that:

1) The Hodge structure on VC induced by h is of type (−1, 0), (0,−1), i.e.

VC = V −1,0 ⊕ V 0,−1

2) (x, y) 7→ ψ(x, h(i)y) is positive or negative definite on VR.

For the rest of this section we assume there is an embedding of Shimura data ι : (G,X) →

(GSp, S±). We sometimes write G for GQp when there is no risk of confusion. For the rest of this

section we assume the following condition holds

(6.2.1) G splits over a tamely ramified extension of Qp and p - π1(Gder)

Let G be a connected parahoric subgroup of G, i.e. G = Gx = G◦x for some x ∈ B(G,Qp). By [18,

2.3.15], upon replacing ι by another symplectic embedding, there is a closed immersion G → GSP ,
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where GSP is a parahoric group scheme of GSp corresponding to the stabilizer of a lattice VZp ⊂ V .

Upon scaling VZp , we may assume V ∨Zp ⊂ VZp and we let pd = |VZp/V ∨Zp |.

This induces a closed immersion of local models

M loc
G,µ−1

h

→M loc
GSP,µ−1

h

⊗OEv

6.3. Let VZ(p)
= VZp ∩ V , we write GZ(p)

for the Zariski closure of G in GL(VZ(p)
), then GZ(p)

⊗Z(p)

Zp ∼= G. The choice of VZ(p)
gives rise to an interpretation of ShK′(GSp, S

±) as a moduli space of

abelian varieties and hence an integral model over Z(p) which we now describe.

We let K′ = K′pK
′p where K′p = GSP(Zp) and K′p ⊂ GSp(Apf ) is a compact open.

Let A be an abelian scheme of dimension 2g = dimV over a scheme T . We write

V̂ (A) = lim
←p-n

A[n]

Consider the category obtained from the category of abelian varieties by tensoring the Hom groups

by Z(p), an object in this category will be called an abelian variety up to prime to p isogeny. An

isomorphism in this category will be called a prime to p′-isogeny.

Let A be an abelian variety up to prime to p isogeny and let A∗ be the dual abelian variety, by a

weak-polarization we mean an equivalence class of quasi-isogenies λ : A → A∗ such that pd exactly

divides deg λ and some multiple of λ is a polarization. Two such quasi-isogenies are equivalent if

they differ by a multiple of Z×(p).

Let (A, λ) be a pair as above, we write Isomλ,ψ(V̂ (A), VApf ) for the (pro)-étale sheaf of isomor-

phism V̂ (A) ∼= VApf which preserves the pairings induced λ and ψ up to a Ẑ×p scalar.

We write Ag,d,K′(T ) for the set of triples (A, λ, εp) consisting of an abelian variety up to prime

to p-isogeny A over T together with a weak polarization λ : A → A∗ and a global section

εp ∈ Γ(T, Isomλ,ψ(V̂ (A), VApf )/K′p)

For K′p sufficiently small, Ag,d,K′ is representable by a quasi-projective scheme over Z(p) which

we denote by SK′(GSp, S
±).
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6.4. For the rest of this paper we fix an algebraic closure Q, and for each place v of Q an algebraic

closure Qv together with an embedding Q→ Qv.

By [16, Lemma 2.1.2], we can choose K′ such that ι induces a closed immesion:

ShK(G,X) ↪→ ShK′(GSp, S
±)

defined over E. The choice of embedding E → Qp determines a place v of E. Write OE,(v) for the

localisation of OE at E and OE,v for its completion. We define SK(G,X)− to be the Zariski closure

of ShK(G,X) inside SK′(GSp, S
±)⊗Z(p)

OE,(v), and SK(G,X) to be its normalization.

Under these assumptions we have the following.

Theorem 6.1 ([18] Theorem 4.2.2, Theorem 4.2.7). ) The OE,(v) scheme SKp(G,X) is a flat

G(Apf )-equivariant extension of ShK′p
(G,X).

ii) Let Ûx be the completion of SKp(G,X)− at some k-point x, there exists a point x′ ∈M loc
G,X(k)

such that the irreudicible components of Ûx are isomorphic to the completion M̂ loc
G,X at x′. Moreover

SKp(G,X) fits in a local model diagram:

S̃Kp(G,X)

SKp(G,X)

q

<
M loc
G,X

π

>

where q is a G-torsor and π is smooth of relative dimension dimG.

6.5. We will need a more explicit description of Ûx and this local model diagram for the next section.

To do this we will need to introduce Hodge cycles.

By [16, 1.3.2], the subgroup GZ(p)
is the stabilizer of a collection of tensors sα ∈ V ⊗Z(p)

. Let

h : A → SKp(G,X) denote the pullback of the universal abelian variety on SK′p
(GSp, S±) and let

VB := R1han,∗Z(p), with han is the map of complex analytic spaces associated to h. We also let

V = R1h∗Ω
• be the relative de Rham cohomology of A. Using the de Rham isomorphism, the sα

give rise to a collection of Hodge cycles sα,dR ∈ V⊗C , where VC is the complex analytic vector bundle
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associated to V. By [16, §2.2.], these tensors are defined over E, and in fact over OE,(v) by [18,

Proposition 4.2.6].

Similarly for a finite prime l 6= p, we let Vl = R1hét∗Ql and Vp = R1hη,ét∗Zp where hη is the

generic fibre of h. Using the étale-Betti comparison isomorphism, we obtain tensors sα,l ∈ V⊗l and

sα,p ∈ V⊗p .

For ∗ = B, dR, l and x ∈ SKp(G,X)(T ), we write Ax for the pullback of A to x and sα,∗,x for

the pullback of sα,∗ to x.

As in [16, 3.4.2.], if x ∈ SKp(G,X)(T ) corresponds to a triple (Ax, λ, ελK′), then ελK′ can be

promoted to a section:

ελK ∈ Γ(T, Isomλ,ψ(V̂ (A), VApf )/Kp)

moreover ελK takes sα,l to sα (l 6= p).

6.6. Recall k is an algebraic closure of Fq and L = W (k)[1/p]. Let x ∈ SKp(G,X)(k) and x ∈

SK(G,X)(OK) a point lifting x, where K/L is a finite extension.

Let Gx denote the p-divisible group associated to Ax and Gx,0 its special fiber. Then TpG ∨x is

identified with H1
ét(Ax,Zp) and we obtain ΓK-invariant tensors sα,ét,x ∈ TpG ∨⊗ whose stabilizer can

be identified with G. We may thus apply the constructions of section 3 and we obtain ϕ-invariant

tensors sα,x,0 ∈ D(Gx,0) whose stabilizer group GOL can be identified with G ⊗Zp OL. The filtration

on D ⊗OL K corresponding to Gx is induced by a G-valued cocharacter conjugate to µ−1
h . By [18,

Proposition 3.3.8], there is an isomorphism:

D(Gx)(OK) ∼= D(Gx,0)⊗OL OK

taking sα,dR,x to sα,0,x lifting the identity modπ. Thus there is a G-valued cocharacter µy which

is G-conjugate to µ−1
h and induces a filtration on D(Gx,0) lifting the filtration on D(Gx,0). Thus we

have notion of (GOL , µy)-adapted liftings as in section 3 and by definition Gx is a (GOL , µy)-adapted

lifting.
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As before we let P ⊂ GL(D) be a parabolic lifting P0. We obtain formal local models M̂ loc
µ−1
y

= SpfA

and M̂ loc
G,µ−1

y
= SpfAG , and the filtration corresponding to µy is given by a point y : AG → OK .

Proposition 6.2. Let Ûx be the completion of S −K (G,X) at x.

i) Ûx can be identified with a closed subspace of SpfA containing SpfAG.

ii) Let x′ ∈ SK(G,X)(OK′) whose special fibre x′ maps to the image of x in S −K (G,X). Then

sα,0,x′ = sα,0,x ∈ D(Gx,0) if and only if x and x′ map to the same irreducible component of SK(G,X).

ii) A deformation G of Gx,0 corresponds to a point on the same irreducible component of Ûx if

and only if G is GOL-adapted

Proof. This is effectively [18, Proposition 4.2.2] we recall the argument for the reader’s convenience.

Recall we assumed that G splits over a tamely ramified extension of Qp. Moreover GOL ⊗OL

L ⊂ GL(D(Gx,0)) contains the scalars, since it contains the image of wh. Thus we may apply the

construction of section 3 to the tensors sα,0,x; we may equip SpfA with the structure of a versal

deformation space for Gx,0 and the subspace SpfAG is such that $ : A⊗ZpOE,v → K factors through

AG if and only if the induced p-divisible group G$ is (GOL , µy)-adapted, where GOL is the stabilizer

of sα,0,x and µy is G-conjugate to µh−1 .

The p-divisible over Ûx is induced by pullback from a map Ûx → SpfA which is a closed immersion

by the Serre-Tate theorem. Let Z ⊂ Ux be the irreducible component containg x. Let x′ ∈ Z(K ′),

the same arguement as in [16, 2.3.5] shows that sα,0,x′ = sα,0,x, hence we obtain one direction in

ii) and x′ ∈ SpfAG since the filtration on D ⊗OL K ′ corresponding to Gx′ is given by a G-valued

cocharacter conjugate to µ−1
h . Since this holds for all x′ ∈ Z(K ′), we have Z ⊂ SpfAG and hence

they are equal since they have the same dimension. We thus obtain iii) and the other implication

in ii).

�

6.7. The previous proposition shows that the tensors sα,0,x are independent of the choice of x ∈

SKp(G,X) lifting x, thus we denote them by sα,0,x. The following is then immediate.

Corollary 6.3. Let x, x′ ∈ SK(G,X)(k) be points whose image in SKp(G,X)−(k) coincide. Then

x = x′ if and only if sα,0,x = sα,0,x′ .
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6.8. We would like to show the isogeny classes in SK(G,X)(k) admit maps from X(σ({µy}), b).

We will show this when G is residually split at p and in general for the basic case.

Let x ∈ SK(G,X)(k) and x ∈ SK(G,X)(K) a point lifting x. Let GOL denote the stabilizer

sα,0,x. By the above Gx is a (GOL , µy)-adapted lifting of x and we have an OL-linear bijection

TpG
∨
x ⊗Zp OL ∼= D(Gx)

taking sα,ét,x to sα,0,x. We fix an isomorphism V ∗Zp
∼= TpG ∨x taking sα,0 to sα,ét,x, this identifies the

stabilizer GOL of sα,ét,x with G ⊗Zp OL. Let us first assume G is an Iwahori subgroup.

Since the sα,0,x are ϕ-invariant, we may write ϕ = bσ for some b ∈ G(L) which is independent of

the above choices up to σ conjugation by elements of G(OL).

Fix S a maximal L-split torus in G with centralizer T as in section 5 so that G corresponds to an

alcove in the apartment A(G,S,Qp). As in §5.4, we have

b ∈
⋃

w∈Adm({µy})

G(OL)σ(ẇ)G(OL)

Write µ ∈ X∗(T ) for the dominant (with respect to a choice of Borel defined over L) representative of

{µy} = {µ−1
h }, and µ its image in X∗(T )I . With the notation of section 5, we have 1 ∈ X(σ({µ}), b).

Recall X(σ({µ}), b) is equipped with an action Φ given by

Φ(g) = (bσ)r(g) = bσ(b)...σr−1(b)σr(g)

where r is the residue degree of OE,v/Zp. We have

Φ(g)−1bσ(Φ(g)) = σr(g−1bσ(g)) ∈
⋃

w∈Adm({µ})

G(OL)σr+1(ẇ)G(OL)

By [29, Lemma 5.1], Adm({µ}) is stable under σr, hence Φ(g) ∈ X(σ({µ}), b) and Φ is well defined.

Pick a basis for VZp compatible with S as in section 3, this is equivalent to the choice of a

maximal split torus T ′ ⊂ GL(VZp). By corollary 3.6, for g ∈ X(σ({µ}), b)) we have g−1bσ(g) ∈

GL(OL)vGL(p)GL(OL) where vGL is the cocharacter (1(n), 0(n)). Thus the Hodge polygon of the

F -crystal gD(Gx) has slopes 0,1 hence corresponds to a p-divisible group Ggx which is isogenous to
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Gx and hence to an abelian variety Agx isogenous to Ax. Agx is equipped with a prime to p level

structure corresponding to the one on Ax. Since g(sα,0,x) = sα,0,x, we have sα,0,x ∈ D(Ggx).

Since g ∈ GSp(L) the weak polarisation on λx induces a weak polarisation on Agx.Thus we obtain

a map

i′x : X(σ({µy}), b)→ SK(G,X)(k)

The main result of this section is the following:

Proposition 6.4. Let G be residually split or suppose b is basic. Then there exists a unique map

ix : X(σ({µy}), b)→ SK(G,X)(k)

lifting i′x such that sα,0,ix(g) = sα,0,x. Moreover we have

Φ ◦ ix = ix ◦ Φ

where Φ acts on SK(G,X)(k) via the geometric Frobenius.

The rest of this section will be devoted to the proof of Proposition 6.4.

6.9. The uniqueness follows from Corollary 6.3. The same proof as in [16, §1.4.4] shows the compt-

ability with Φ. Thus it remains to show the existence of ix. The strategy follows [16, §1.4]; the first

step is to show that if g ∈ X(σ({µy}), b) can be lifted, then every point on the connected compo-

nent of X(σ({µy}), b) containing g also lifts. The second step is to show that for every connected

component of X(σ({µy}), b) contains a point which lifts, this is done by showing the quasi-isogeny

Agx → Ax lifts to characteristic 0.

We recall some definitions from [11, Appendix A], see also [3].

Definition 6.5. Let R be k algebra. A frame for R is a p torsion free, p-adically complete and

separated OL algebra R equipped with an isomorphism R ∼= R/pR and a lift (again denoted σ) of

the the Frobenius σ on R.

Let R be as above and fix R a frame for R. We write RL for R[ 1
p ]. If κ is any perfect field of

characteristic p and s : R→ κ is a map, then there is a unique σ-equivariant map R → W (κ), also
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denoted s. If R → R′ is an étale map, then there exists a canonical frame R′ of R′ and a unique

σ-equivariant lifting R → R′.

Let g ∈ G(RL). For C ⊂W , we write

SC(g) =
⋃
w∈W
{s ∈ SpecR|s(g−1bσ(g)) ∈ G(W (κ(s)))wG(W (κ(s)))}

where κ(s) is an algebraic closure of residue field k(s) of s. Note that this only depends on the image

of g ∈ G(RL)/G(R), hence we can define SC(g) for any element of g ∈ G(RL)/G(R). For b ∈ G(L),

we define the set

XC(b)(R) = {g ∈ G(RL)/G(R)|SC(g) = SpecR}

When C = Adm({µ}) we write X({µ}, b)(R) for XC(b)(R). Similarly when C = σ(Adm({µ})) we

write X(σ({µ}), b)(R).

Definition 6.6. For g0, g1 ∈ X({µ}, b) and R a smooth k-algebra with connected spectrum and

frame R, we say g0 is connected to g1 via R if there exists g ∈ X({µ}, b)(R) and two k-points s0, s1

of SpecR such that s0(g) = g0 and s1(g) = g1.

We write ∼ for the equivalence relation on X({µ}, b) generated by the relation g0 ∼ g1 if g0 is

connected to g1 via some R as above, and we write π′0(X({µ}, b)) for the set of equivalence classes.

By [11, Theorem A.4], we have

π′0(X({µ}, b)) = π0(X({µ}, b))

Let g ∈ G(RL) be a lift of some element of X(σ({µ}), b))(R). By Corollary 3.6, for all s ∈ SpecR,

we have g(s) ∈ GL(OL)µGL(p)GL(OL). Then since GL is hyperspecial, by [3, Lemma 2.1.4] there is

an étale covering R→ R′ with canonical frame R → R′ such that

g ∈ GL(R′)µGL(p)GL(R′)

Here µGL is an appropriate representative of the GL conjugacy class of cocharacters induced by

{µ}. For n ≥ 1 we write Rn for the ring R considered as a R-algebra via σn : R → R. By [17,
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Lemma 1.4.6], there exists n ≥ 1 and a p-divisible group Ggx over Rn together with a quasi isogeny

Ggx → Gx ⊗Rn which identifies D(Ggx)(R′n) with gD(Gx) ⊂ D(Gx)⊗OL R′nL. We relabel R′n as R,

we thus obtain a an abelian variety Agx over SpecR.

Since g ∈ GSp(RL), λx induces a weak polarization λgx on Agx, and Agx is also equipped with

a prime to p level structure. Hence g gives a map

(6.9.1) SpecR→ SK′(GSp, S
±)

Since g ∈ G(RL), we have sα,0,x = g(sα,0,x) ∈ D(Ggx)(R).

Proposition 6.7. Suppose there is a point xR ∈ SpecR(k) such that x∗R(g) = 1. Then there is a

unique lifting iR : SpecR→ SK(G,X)(R) of 6.9.1 such that

i∗R(sα,0) = sα,0,x

Proof. The uniqueness can be checked on k points, hence this follows from Corollary 6.3.

To show existence, we first claim 6.9.1 factors through S −K (G,X). Let R̂ denote the completion

of R at xR, since R is integral, it suffices to prove the claim for R̂.

Note that the filtration induced by g−1bσ(g) gives an R point of the local model M loc
GL . For all k

points s : R → k, we have g−1bσ(g) ∈
⋃
w∈Adm({µ}) G(OL)σ(ẇ)G(OL). By Corollary 3.6, the map

SpecR→M loc
GL factors through M loc

G . Taking completions at the image of xR, we obtain a map

ψ : AG → R̂

Since the k[[t]] points of R̂ are dense, we may assume wlog. R̂ ∼= k[[t]].

We have a p-divisible group over k[[t]], we would like to use the map ψ to deform this p-divisible

group to G̃ over a ring in characteristic 0, such that the pullback to every OK point satisfies the

condition in Definition 4.5, i.e. is (GOL , µy)-adapted. The ring we will deform to is AG [[t]].

We have a map AG [[t]] � k[[t]] induced by ε : AG → k[[t]] and t 7→ t, this induces a surjection

Ŵ (AG [[t]])� Ŵ (k[[t]]).
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Let us write ĝ for the image of g inG(R̂) and Gĝx for the induced p-divisible group, then D(Gĝx)(R̂)

can be identified with ĝD(Gx). We may use ĝ−1 to identify D(Gĝx)(R̂) with D(Gx) ⊗OL R̂ as a R̂-

module. Under this identification the Frobenius is given by ĝ−1bσ(ĝ). It follows that the Dieudonné

display D(Gĝx)(Ŵ (k[[t]])) can be identified with D ⊗OL Ŵ (k[[t]]) and the Frobenius Φ preserves

sα,0,x.

Let SpfA be the completion of M loc
GL,µ−1

h

at the image of xR, then D ⊗OL A is equipped with

universal filtration M1 ⊂ D ⊗OL A. We let M1 denote the preimage of M1 in M := D ⊗OL Ŵ (A).

Let M̃1 denote the image of the map φ∗M1 → φ∗M .

By construction, the pushforward of M1 along A → AG → k[[t]] is the filtration on D ⊗OL k[[t]]

induced by ĝ−1bσ(ĝ). Therefore by [18, Lemma 3.1.5] the structure of display on D ⊗OL Ŵ (k[[t]])

corresponding to Gĝx is given by an isomorphism

Ψk[[t]] : M̃1,k[[t]] → D⊗OL Ŵ (k[[t]])

where for any ring R with A → R, we write M̃1,R for the base change M̃1 ⊗Ŵ (A)
Ŵ (R). Since

A→ k[[t]] factors through AG it follows from [18, Corollary 3.2.11] that sα,0,x ∈ M̃1,k[[t]], and since

ĝbσ(ĝ) preserves sα,0,x we have Ψk[[t]](sα,0,x) = sα,0,x.

By [18, Corollary 3.2.1], the scheme

T = Isomsα,0,x
(M̃1,AG ,M ⊗Ŵ (A)

Ŵ (AG))

is a G-torsor. Base changing to AG [[t]] we obtain a G-torsor

TAG [[t]] = Isomsα,0,x
(M̃1,AG [[t]],M ⊗Ŵ (A)

Ŵ (AG [[t]]))

By smoothness of G, Ψk[[t]] lifts to an isomorphism

Ψ : M̃1,AG [[t]]
∼−→M ⊗

Ŵ (A)
Ŵ (AG [[t]]))

By [18, Lemma 3.1.5], this corresponds to a display over AG [[t]] deforming the D(Gĝx)(Ŵ (AG)), and

hence a p-divisible group G̃ deforming Gĝx.
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Let $ : AG [[t]] → OK be any map and G̃$ the p-divisible group over OK obtained by pullback.

By construction we have an isomorphism

ι : D(G̃$)(Ŵ (OK)) ∼= D⊗OL Ŵ (OK)

thus sα,0,x give Φ-invariant tensors in D(G̃ )(Ŵ (OK))⊗. Moreover, under the canonical identification

D(G̃$)(OK)⊗OK K ∼= D⊗OL K, the filtration is induced by G-valued cocharacter conjugate to µy.

Indeed the composition

D⊗OL OK
ι−→ D(G̃$)(OK)⊗OK K

∼−→ D⊗OL K

where the second map is the canonical isomorphism takes sα,0,x to itself. Since the filtration on the

left is induced by the map A → AG → AG [[t]] → OK , it corresponds to a point of the local model

M loc
G hence is induced by a G-valued cocharacter conjugate to µy. Thus G̃$ is (GOL , µy)-adapted as

desired.

Let Û ′x denote the completion of SK′(GSp, S
±) at the image of x. Then the p-divisible group

G̃ corresponds to a map ε− : SpfAG [[t]] → Û ′x. Let Ẑ ⊂ Ûx denote the completion at x of the

irreducible component containing x. By the previous paragraph, for any $ : AG [[t]] → OK , the

induced point of Û ′x lies in Ẑ by Proposition 6.2 iii). Since this is true for any OK point, ε− factors

though Ẑ. Thus iR factors through S −K (G,X).

Since AG [[t]] is normal, the map ε− : SpecAG [[t]]→ S −K (G,X) lifts to

ε : AG [[t]]→ SK(G,X)

and this lift is unique since SK(G,X) → S −K (G,X) is an isomorphism on the generic fibre. We

write ε for the induced map

ε : Speck[[t]]→ SK(G,X)

We thus have a diagram:
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Speck[[t]]
ε
> SK(G,X)

SpecR
∨

iR
> S −K (G,X)

∨

Since R is integral, the map R→ k[[t]] is injective, in particular, the above diagram induces:

SpecFrac(R) > SK(G,X)

SpecR
∨

iR
> S −K (G,X)

∨

By Lemma 6.8, there exists a unique lift iR : SpecR→ SK(G,X).

To show the compatibility of this map with the tensors sα,0x, we let M denote the Dieudonné

F -crystal over SKp(G,X) associated to the universal p-divisible group, and M[ 1
p ] the corresponding

F -isocrystal. We have by [26, Corollary A.7], there exists sections:

sα,0 : 1→M[
1

p
]⊗

such that for all x′ ∈ SKp(G,X)(k), sα,0,x′ pulls back to sα,0,x′ ∈ D(Gx′)[
1
p ]⊗.

Thus pulling back to SpecR, we obtain sα,0,R ∈ D(Ggx)(R)[ 1
p ]⊗ such that for all z : R → k, the

pullback coincides with sα,0,ιR(z). Now by construction sα,0,x ∈ D(Gĝx)(R)⊗ are parallel for the

connection and coincide with sα,0,R at the point xR. Hence since R is integral, we have sα,0,R =

sα,0,x.

�

Lemma 6.8. Let Y be a reduced scheme and Y n it’s normalization. Let X be a normal integral

scheme with generic point SpecK(X). Suppose we have a diagram:

SpecK(X) > Y n

X
∨

f
> Y
∨

Then f lifts to a unique map f ′ : X → Y n
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Proof. By uniqueness we may assume X = SpecR and Y = SpecS is affine, then Y n = SpecSint

where Sint is the integral closure of S in K(Y ) := Frac(S). Thus it suffices to show the induced

map Sint → K(X) factors through R. But this follows since R is integrally closerd in K(X). �

Proof of Proposition 6.4. By uniqueness, there is a maximal subset X(σ({µy}, b)◦ ⊂ X(σ({µy}), b)

which lifts to a map:

ix : X(σ({µy}), b)◦ → SK(G,X)(k)

By Proposition 3.4 X(σ({µy}), b)◦ is a union of connected components.

Assume first that b is basic. By Theorem 5.2 i) there exists g0 ∈ Xσ(τ{µ})(b)∩X(σ({µy}), b)◦, i.e.

ix(g0) lifts to a point x′ ∈ SKp(G,X)(k). We may apply the above construction with x replaced by

x′. Then b is replaced by b′ := g−1
0 bσ(g0), and we have a map

i′x′ : X(σ({µy}), b′)→ SK′(GSp, S
±)(k)

which is identified with the map ix under the identification

X(σ({µy}), b′) ∼= X(σ({µy}), b)

given by h 7→ g−1
0 h. Therefore upon replacing x by x′ we may assume b ∈ G(OL)τ̇{µ}G(OL). By

Theorem 2.3, upon changing the isomorphism

V ∗Zp ⊗Zp OL ∼= D(Gx)

by an element of G(OL),, we may assume b = τ̇{µ}. Let K be a finite extension of L, and let Gx be

a GOL -adapted lifting of Gx to OK as in Proposition 5.9. Then by Proposition 6.2, Gx corresponds

to a K point of SK(G,X). Fix the isomorphism TpG ∨x ⊗Zp OL ∼= D(Gx) taking sα,ét,x to sα,0,x

compatibly with isomorphism V ∗Zp ⊗Zp OL ∼= D(Gx) above. We may now apply the construction of

5.1.
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Let g ∈ G(Qp)/G(Zp) and g0 the corresponding element in X({µ}, τ̇{µ}). Upon replacing K

by a finite extension, gTpGx corresponds to a p-divisible group G ′ over OK together with a quasi-

isogeny G ′ → Gx which identifies D(G ′) with g0D(Gx). This corresponds to a quasi-isogeny A′ → Ax

which respect sα,ét,x and hence to a point gx ∈ ShK(G,X)(K) which lifts i′x(g0). Therefore g0 ∈

X(σ({µy}), b)◦.

By Proposition 5.9, g 7→ g0 induces a surjection G(Qp)/G(Zp) � π0(X(σ({µy}), b)), hence

X(σ({µy}), b)◦ = X(σ({µy}), b). This proves the proposition when b is basic in G.

Now assume GQp is residually split. In this case σ acts trivially on W , hence Adm({µ}) =

σ(Adm({µ})). Recall by Theoream 5.3, there is a map

(6.9.2)
∐

w∈W,w a straight element with ẇ∈[b]

XMνw ({λw}Mνw
, ẇ)→ X({µy}, b)

which induces a surjection

∐
w∈W,w a straight element with ẇ∈[b]

π0(XMνw ({λw}Mνw
, ẇ))→ π0(X({µy}, b))

It thus suffices to show for each w ∈ Adm({µ}) straight, that each connected component of

XMνw ({λw}Mνw
, ẇ) contains an element whose image in X({µy}, b) lifts to SK(G,X) satisfying the

above properties.

Step 1 : Recall by our assumptions 1 ∈ X({µy}, b). There exists a straight element w and

g0 ∈ Xw(b) with 1 ∼ g0. By Proposition 6.7, i′x(g0) lifts to a point x′ ∈ SK(G,X)(k). As above,

upon replacing x by x′, we may assume b ∈ G(OL)ẇG(OL). By Theorem 2.3, we may change the

isomorphism V ∗Zp ⊗Zp OL ∼= D(Gx) by an element of G(OL) and assume b = ẇ.

Let M := Mνw denote the semistandard Levi subgroup corresponding to νw. Then M(L)∩G(OL)

is an Iwahori subgroup of M which is defined over Zp, we writeM for the associated group scheme.

Let WM denote the Iwahori Weyl group of M , then w ∈WM and by [11], ẇM(OL)ẇ−1 =M(OL).

We equip WM with the Bruhat order ≤M induce by the Iwahori subgroup M, then w is a basic

element of WM . If w = w0tλ for some w0 ∈WM,0 the relative Weyl group and λ ∈ X∗(T )I , we have
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tλ ∈ Adm({µ}) by [11, 7.1 b)]. By Lemma 9.3, there exists a cocharacter λw ∈ X∗(T ) which lifts λ

and whose image in G conjugate to µ. Thus since w ≤M tλ, we have w ∈ AdmM ({λw}). Therefore

by Proposition 3.4, there is an M valued cocharacter conjugate to λw such that the induced filtration

on D⊗OL K specializes to the one on D(Gx)⊗OL k. We may thus apply the construction of §5.4.

Since ẇ ∈M(L), we may extend the tensors sα to tensors tα ∈ V ⊗Zp whose stablizer is the Iwahori

M. We obtain an embedding of local models M loc
M,λ−1

w
⊂M loc

GL,µ−1 ⊗OE′
v′

. Since ẇ ∈ AdmM ({λw})

the filtration on D(Gx) ⊗ k gives a point in the local model M loc
M (k). Replacing λw by an element

in its M -conjugacy class, we may assume λw is defined over a finite extension K/L and the induced

filtration lifts the filtration on D(Gx).

Let G̃ denote an (MOL , λw)-adapted lifting of Gx satisfying the conditions in Proposition 4.8.

Note that any (MOL , λw)-adapted liifting is also (GOL , µy)-adapted, hence corresponds to a point

x ∈ SK(G,X)(OK). We may thus apply the construction of section 5 to Gx, and we obtain a map

M(Qp)/M(Zp)→ XM ({λw}, ẇ)

Since ẇ is basic in M(L), we have by Proposition 5.9 that this induces a surjection

M(Qp)/M(Zp)→ π0(XM ({λw}, b))

It follows that X({µy}, b)◦ contains the image of XMνw ({λw}, ẇ).

Step 2 : Now suppose there exists s ∈ S such that w′ = sws and l(w′) = l(w). Assume b = ẇ

for a straight element w, then w′ is also a straight element and w′ ∈ Adm({µ}) by [5, Lemma 4.5].

Thus ṡ ∈ X({µy}, b). We show that s ∈ X({µy}, b)◦. Recall G̃ is an (MOL , λw)-adapted lifting. We

fix the isomorphism

TpG̃
∨ ⊗Zp OL ∼= D(G̃ )

taking tα,ét to tα,0,x. Upon replacing K by a finite extensions, we have sTpG̃ corresponds to a p-

divisible group G̃ ′ equipped with a quasi isogeny G̃ ′ → G̃ . This identifies M(TpG̃ ′∨) with s̃M(TpG̃ ∨)

for some s̃ ∈ G(S[1/p]). We also obtain a quasi-isogeny G̃ ′ → G over k which identifies D(G ′) with

s0D(G ) where s0 = σ−1(s̃)|u=0. By Proposition 7.3 we have s = ms̃g where m ∈ M(O
Êur

) and
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g ∈ G(O
Êur

). Using the natural map L → S[1/p], we may consider ẇ ∈ G(L) as an element of

G(S[1/p]). Then we have

s̃−1ẇσ(s̃) = g−1sm−1ẇσ(m)sσ(g)

Without loss of generality assume l(sw) = l(w) + 1. Since w is basic in WM , we have

m′ := m−1ẇσ(m)ẇ−1 ∈M(O
Êur

)

Thus since M(O
Êur

) ⊂ G(O
Êur

) and l(sw) = l(w) + 1, we have

s̃ẇσ(s̃) = g−1sm′ẇsσ(g) ∈ G(O
Êur

)sẇsG(O
Êur

)

We consider s̃ẇσ(s̃) as a k[[u]]perf point of FL. The above calculation shows that the generic fiber

of this point lies in the the Schubert variety Sw′ ⊂ FL. Since the Schubert variety Sw′ is closed,

the special fiber also lies in Sw′ . Hence we have

s0ẇσ(s0) ∈ G(OL)ẇ′′G(OL)

for some w′′ ≤ w′. By Lemma 6.9 below, we have w′ = w′′ and s0 ∈ Xw′(b). As above, this

implies s0 ∈ X({µ}, b)◦. Upon replacing x by ix(s0), and applying step 1 to ix(s0), we obtain

XMν
w′ ({λw′}, ẇ′) ⊂ X({µ}, b)◦.

Step 3: Suppose b = ẇ is a straight element and τ ∈ Ω. Then τwτ−1 ∈ Adm({µ}) again by [5,

Lemma 4.5]. Therefore τ̇ ∈ X({µ}, b). As before let G̃ be an (MOL , λw)-adapted lifting of Gx to

OK and apply the construction of Proposition 5.5 to τ̇ , we obtain an element τ̃ = mṡg ∈ G(S[ 1
p ]

with m ∈M(O
Êur

) and g ∈ G(O
Êur

). Since τ̇G(O
Êur

)τ̇−1 = G(O
Êur

), we have

τ̃−1ẇτ̃ = g−1τ̇−1m−1ẇσ(m)τ̇σ(g) ∈ G(O
Êur

)τ̇−1ẇτ̇G(O
Êur

)

As in Step 2, this implies τ̇0 ∈ Xτ−1wτ (ẇ) ∩X({µ}, ẇ)◦.

Step 4: For any two straight element w,w′, we have w ∼ w′, so that we have a sequence s1, ..., sn ∈

S and straight elements w = w0, ..., wn ∈ W such that wi ∼si+1
wi+1 and τ−1wnτ = w′ for some

τ ∈ Ω. Applying Step 3 to each wi in turn and Step 4 to wn, we see that X({µ}, b)◦ contains an
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element of g0 ∈ Xw′(b). Applying Step 1 to the lift of ι(g0) in SKp(G,X)(k), we have X({µ}, b)◦

contains the image of X({λ− w}, ẇ′). Hence by Theorem 5.3 X({µ}, b)◦ = X({µ}, b). �

Lemma 6.9. Let w ∈W be a straight element and g ∈ G(L) such that g−1ẇσ(g) ∈ G(OL)ẇ′G(OL)

with w′ ≤ w. Then w′ = w.

Proof. By [12, §3], there exists w′′ ∈ W σ-straight such that l(w′′) ≤ l(w′) and [g−1ẇσ(g)] = [ẇ′′].

By [12, Theorem 3.7] w and w′′ lie in the same σ-conjugacy class in W , in particular l(w′′) = l(w).

Thus l(w) = l(w′) and since w′ ≤ w, we have w = w′. �

6.10. Recall the local model diagram:

SKp(G,X)
q←− S̃Kp(G,X)

π−→M loc
G

This induces the Kottwitz Rapoport stratification on S (G,X)⊗ k. We thus have a map

λ : SKp(G,X)(k)→ Adm({µ})

Let x ∈ SKp(G,X)(k) and ix : X(σ({µ}), b)→ SKp(G,X)(k) the map defined in Proposition 6.9.2

when GQp is residually split or b is basic.

Proposition 6.10. Let g ∈ Xw(b) for some w ∈ σ(Adm({µ})). Then λ(ix(g)) = σ−1(w)

Proof. Recall how the map λ is defined. Let x ∈ SKp(G,X)(OK) be a point lifting x. The

torsor S̃Kp(G,X) is constructed by taking triviliazations of the relative de Rham cohomology which

respects the cycles sα,dR. We have an isomoprhism

V ∗Zp ⊗Zp OK ∼= D(Gx)(OK)

taking sα to sα,dR,x. We have the local model M loc
G ⊂M loc

GL⊗OE , where M loc
GL classifies sub-modules

of V ∗Zp . The pullback of the Hodge filtration on D(Gx)(OK) which lies in the local model M loc(OK).

We obtain a point x̃ ∈ M loc
G (k) which lies in G(k[[t]])ẇ/G(k[[t]]) for some w ∈ Adm({µ}). Then

λ(x) = ẇ.
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There is an isomorphism D(Gx)(OK) ∼= D(Gx)⊗OK lifting the identity modp and taking sα,dR,x

to sα,0,x. Thus if we fix an isomorphism

V ∗Zp ⊗OL ∼= D(Gx)

taking sα to sα,0,x, then the pullback of the filtration on D(Gx)(k) to V ∗Zp differs from the one above

by translation by an element of G(OK). We thus obtain a point on x̃′ ∈ M loc
G (k) which lies in the

Schubert variety Sw. Thus λ(x) can also be computed by a trivialization of D(Gx).

Now fix an isomorphism V ∗Zp ⊗ OL ∼= D(Gx). Let g ∈ Xw(b), then D(Gix(g)) is identified with

gD(Gx). We may trivialize D(Gix(g)) ∼= V ∗Zp ⊗ OL by composing the trivilization V ∗Zp ⊗ OLD(Gx)

with the element g. The filtration modp on V ∗Zp is then induced by the element g−1bσ(g). By the

identification of apartments and Iwahori Weyl group in §3.3, this filtration corresponds to a point

M loc
G (k) which lies in G(k[[t]])σ−1(ẇ)/G(k[[t]]). Hence λ(ix(g)) = w. �

6.11. Now assume GQp is residually split. Since SKp(G,X) is equipped with an action of G(Apf ),

ix extends to a map:

ix : X({µ}, b)×G(Apf )→ SKp(G,X)(k)

As in [17, Corollary 1.4.13], this map is equivariant for the action of Φ × ZG(Qp)×G(Apf ).

Definition 6.11. Let x, x′ ∈ SKp(G,X)(k). We say x and x′ are in the same isogeny class if

there exists a quasi-isogeny Ax → Ax′ respecting weak polarizations such that the induced maps

D(Gx′)→ D(Gx) and V̂ p(Ax)→ V̂ p(Ax′) take sα,0,x to sα,0,x′ and {sα,l,x}l 6=p to {sα,l,x′}l 6=p.

Proposition 6.12. x and x′ lie in the same isogeny class if and only if x′ lies in the image of

ix : X({µ}, b)×G(Apf )→ SKp(G,X)(k).

Proof. The proof is the same as [17, Corollary 1.4.12], we recall the argument for the convenience

of the reader. Suppose x and x′ lie in the same isogeny class. The composition

VApf
∼−→
εx

V̂ (Ax)
∼−→ V̂ (Ax′)

∼−−→
εx′

VApf
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takes sα to sα, hence upon replacing x′ by a translate under G(Apf ), we may assume the quasi

isogeny Ax → Ax′ is compatible with εx and εx′ .

Recall there are isomorphisms

D(Gx)
∼−→ V ∗ ⊗Z OL

∼−→ D(G ′x)

taking sα,0,x to sα,0,x′ . Thus D(Gx) corresponds to gD(Gx) for some g ∈ G(L). By the same proof

as Proposition 5.5, we have g ∈ X({µ}, b) hence x′ lies in the image of ix.

The converse is clear. �

7. Maps between Shimura varieties

In this section we show that the Shimura varieties associated to different parahorics levels admit

maps between them with good properties. This will allow us to deduce the description of the isogeny

classes for general parahorics from the result for Iwahori subgroups proved in the previous section.

This also verifies one of the axioms of [10] for integral models of Shimura varieties with parahoric

level.

7.1. We keep the notations from the previous section, so that ρ : G → GSp(V, ψ) is a hodge

embedding. Let Kp be a connected parahoric subgroup of G(Qp) and let G denoted the corresponding

group scheme over Zp. Let K′p ⊂ G(Qp) be another connected parahoric subgroup such that Kp ⊂

K′p. If Kp and K′p have corresponding facets f and f′, then this is equivalent to f lying in the closure

of f′.

By the construction in the previous section we have integral models SK′(G,X) and SK(G,X),

where K′ = K′pK
p and K = KpK

p for some sufficiently small Kp.

Theorem 7.1. i) For sufficiently small Kp, there exists a map

πKp,K′p : SK(G,X)→ SK′(G,X)

ii) The induced map

SK(G,X)(k)→ SK′(G,X)(k)
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is compatible with isogeny classes.

7.2. Let g be a facet in B(GSp(VQp),Qp) and let GSP denote the associated parahoric. Then g

corresponds to a lattice chain Λ1 ⊂ Λ2 ⊂ ... ⊂ Λr in VQp . Let V ′Qp = ⊕ri=1VQp , then V ′ is equipped

with an alternating form ψ′ given by the direct sum of ψ. We have the lattice Λ′ = ⊕ri=1Λi ⊂ V ′Qp

and we write GSP ′ for the associated parahoric.

We have a map

GSp(V, ψ)→ GSp(V ′, ψ′)

which factors through the subgroup H :=
∏′r
i=1GSp(V, ψ) where

∏′
denotes the subgroup of the

product
∏r
i=1GSp(V, ψ) consisting of elements (g1, ..., gr) such that c(g1) = ... = c(g2), where

c : GSp(V, ψ) → Gm is the multiplier homomorphism. The conjugacy class of cocharacters S± for

GSp(V, ψ) gives rise to a H(R) conjugacy class of homomorphisms T from S into HR and (H,T ) is

a Shimura datum. We write Hp and Jp for the stabilizer of the lattice Λ′ in H(Qp) and GSp(V ′Qp)

respectively. We obtain a map of Shimura varieties

i : ShHpHp(H,T )→ ShJpJp(GSp(V ′, S′±))

which is a closed immersion. Here Hp ⊂ H(Apf ) and Jp ⊂ GSp(V ′ ⊗ Apf ) are sufficiently small

compact opens.

This sub-Shimura variety admits a moduli interpretation over Z(p) which we will now explain.

For T a Z(p)-scheme, we consider the set of tuples (Ai, λi, εpi )i=1,...,r, where:

i) Ai is an abelian variety over i up to prime to isogeny.

ii) λi is polarization such that deg λi is exactly divisible by |Λi/Λ∗i |.

iii) εpi : V̂ (Ai)
∼−→ V ⊗Q Apf is an isomorphism which takes the Riemann form on V̂ (Ai) to a

multiple of ψ on V ⊗Q Apf . This multiple is required to be independent of i.

We obtain an integral model SHp(H,T ) of ShHp(H,T ).

Proposition 7.2. For sufficiently small Jp, the embedding i extends to a closed embedding

i : SHpHp(H,T )→ SJpJp(GSp(V ′), S′±)
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Proof. By the moduli interpretations we have a natural map i : SHpHp(H,T )→ SJpJp(GSp(V ′Qp), S′±)

given by sending (Ai, λi, εpi )i=1,...,r to the product A1 × ... × Ar, together with the product polar-

ization and level structure.

As in[16, 2.1.2], see also [4, 1, 1.5], it suffices to show

i : SHp(H,T )→ SJp(GSp(V ′Qp), S′±)

is a closed immersion. It suffices to show i is proper and an injection on points. The injectivity

follows from the moduli interpretations of the integral models.

To check properness, we apply the valuative criterion. Let R be a discrete valuation ring with

fraction field K. We must show for any diagram

SpecK > SHp(H,T )

SpecR
∨

> SJp(GSp(V ′), S′±)
∨

there exists a unique lift SpecR→ SH̊p
(H,T ). Rephrasing in terms of the moduli interpretation,

we must show for a triple (A, λ, εp) over R, such that over K this data decomposes into a product

coming from (Ai, λi, εi)i=1,...,r, then the triple over R decomposes. This follows by properties of

Neron models. �

7.3. Recall we have an embedding of buildings, i : B(G,Qp) → B(GSp(VQp),Qp). Let f be a

facet in B(G,Qp) with associated connected parahoric group scheme G. Let i(z) be contained in

a facet g of B(GSp(VQp),Qp) corresponding to Λ1 ⊂ ... ⊂ Λr. Let (H,T ) and V ′ be as above,

we obtain a new embedding of Shimura datum (G,X) → (GSp(V ′, ψ′), S′±) which factorises as

(G,X)
ρ−→
′

(H,T ) → (GSp(V ′, ψ′), S′±). Let Hp and Jp be as above and let Hp and Jp be as in

Proposotion 7.2. We obtain maps of Shimura varieties

ShKpKp(G,X)→ ShHpHp(H,T )→ ShJpJ′p(GSp(V ′), S
′±)

and each of these maps are closed immersions. Recall S −KpKp(G,X) was defined to be the closure

of ShKpKp(G,X) in SJpJp(GSp(V ′), S′±).
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Corollary 7.3. S −Kp(G,X) is the closure of ShKpKp(G,X) in SHpHp(H,T ).

Proof. Immediate from Proposition 7.2. �

Now suppose f′ is a facet of B(GSp(VQp),Qp) such that f′ lies in the closure of f. Then f′

corresponds to a lattice chain Λi1 ⊂ ... ⊂ Λis , where {i1, ..., is} ⊂ {1, ..., r}. Let (H ′, T ′) be the

Shimura datum obtained from the above construction applied to g′, i.e. H ′ =
∏′s
j=1GSp(V

′), and

H′p the parahoric of H(Qp) stabilizing ⊕sj=1Λij . We obtain a morphism of Shimura data (H,T ) →

(H ′, T ′), hence choosing suitable levels Hp and H′p away from p, we obtain a morphism of integral

models.

$H,H′ : SHpHp(H,T )→ SH′pH′p(H ′, T ′)

Proof of Theorem 7.1 i). Recall f′ is a facet of B(G,Qp) such that f lies in the closure of f′. Let

z ∈ f and let z′ ∈ f′ be a point sufficiently close to z such that if g and g′ denotes the facets of

B(GSp(VQp), S′,Qp) containing i(z) and i(z′), we have g lies in the closure of g′. Applying the above

constructions we obtain a diagram:

S −KpKp(G,X) > SHpHp(H,T )

S −K′pK′p(G,X) > SH′pH′p(H ′, T ′)

$H,H′∨

On the generic fiber, this can be completed to a diagram

ShKpKp(H,T ) > ShHpHp(G,X)

ShK′pK′p(G,X)
∨

> ShH′pH′p(H ′, T ′)

$H,H′∨

hence by Corollary 7.3, we obtain a map S −KpKp(G,X)→ S −K′pK′p(G,X), and taking normalizations

we obtain:

πKp,K′p
: SKpKp(G,X)→ SK′pK′p(G,X)
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The above maps then induce by passage to the limit, a map between the pro-varieties

πKp,K′p
: SKp(G,X)→ SK′p

(G,X)

7.4. Now we relate the isogeny classes on SKp(G,X) and SK′pKp(G,X). Let x ∈ SKpKp(G,X)

and y = πKp,K′p(x). Let Ix and Iy denote the isogeny classes of x and y. Then x corresponds to

a collection (Ai, λi, εpi )i=1,...,r and y corresponds to (Aij , λij , ε
p
ij

)j=1,...,s and we have inclusion and

projection maps

i : ⊕sj=1D(Gij )→ ⊕ri=1D(Gi) p : ⊕ri=1D(Gi)→ ⊕sj=1D(Gij )

We writeG′Z(p)
andGZ(p)

the groups over Z(p) given by the Zariski closures of G inGL(⊕sj=1Λij ,Z(p)
)

and GL(⊕ri=1Λi,Z(p)
). Here we write Λi,Z(p)

for the Z(p) module V ∩Λi. Then G′Z(p)
is the stabilizer

of a collection of tensors sα ∈ (⊕sj=1Λij ,Z(p)
)⊗. We have the two maps

i : ⊕sj=1Λij ,Z(p)
→ ⊕ri=1Λi,Z(p)

and p : ⊕ri=1Λi,Z(p)
→ ⊕sj=1Λij ,Z(p)

given by the inclusion and projection. These induce maps

ι⊗ : (⊕sj=1Λij ,Z(p)
)⊗ → (⊕ri=1Λi,Z(p)

)⊗ and ρ⊗ : (⊕ri=1Λi,Z(p)
)⊗ → (⊕sj=1Λij ,Z(p)

)⊗

such that p⊗ ◦ ι⊗ is the identity. Note that since (⊕sj=1Λij ,Z(p)
)⊗ involves taking duals, one needs

to use p in the definition of the map i⊗. These maps exhibit (⊕sj=1Λij ,Z(p)
)⊗ as a direct summand

of (⊕ri=1Λi,Z(p)
)⊗

Lemma 7.4. The ι⊗(sα) are fixed by GZ(p)

Proof. It suffices to check this after inverting p. Then the stabilizer of the tensors sα in V ⊗ can be

identified with the diagonally embedded ′G in GL(⊕sj=1V ). Similarly the generic fiber of GZ(p)
is

identified with the diagonally embedded G in GL(⊕ri=1V ). Under this identification, the actions of

G on ⊕sj=1V and on ι⊗(⊕sj=1V ) can be identified, so that GZ(p)
fixes ι⊗(sα). �
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We may extend ι⊗(sα) to a collection of tensors tβ ∈ (⊕ri=1Λi,Z(p)
)⊗ whose stabilizer is GZ(p)

. We

fix an isomorphism

(⊕ri=1Λi)
∗ ⊗Zp OL ∼= ⊕ri=1D(Gi)

taking tβ to tβ,0. Since Kp ⊂ ⊕ri=1GL(Λi), this isomorphism respects the product decompositions

on either side, and hence the natural projections induce an isomorphism

(⊕sj=1Λij )
∗ ⊗Zp OL ∼= ⊕sj=1D(Gij )

By functoriality of the construction of sα,0, this isomorphism takes sα to sα,0. The following

result gives part ii) Theorem 7.1.

Proposition 7.5. The map πKp,K′p takes Ix to Iy.

Proof. Suppose x′ ∈ Ix, then we have the triple (Ax′ , λx′ , εpx′) corresponding to x′ and there exists

a quasi-isogeny θ : Ax → Ax′ taking tβ,l,x to tβ,l,x′ for l 6= p and tβ,0,x to tβ,0,x′ . Since Ax and Ax′

arises as products
∏r
i=1Ax,,i and

∏r
i=1Ax′,,i coming from points on SHp(H,X), the quasi-isogeny

θ decomposes as a product of quasi-isogenies θi : Ax,i → Ax′,i.

By construction p⊗ ◦ i⊗(sα,0,x) = sα,0,x and similarly for sα,0,x′ . Thus

s∏
j=1

θij :

s∏
j=1

Ax,ij → Ax,ij

takes sα,0,x to sα,0,x′ . By a similar argument, it also takes sα,l,x to sα,l,x′ for l 6= p, hence πKp,K′p
(x′)

lies in Iy. �

7.5. We now use the description of the isogeny classes on the Iwahori level Shimura variety to

deduce the description for arbitrary parahoric level. Thus suppose Kp is an Iwahori subgroup and

K′p is a parahoric whose corresponding facet lies in the closure of the alcove corresponding to Kp.

The projection map ⊕ri=1Λi → ⊕sj=1Λij induces a map Kp → K′p which is the identity on the

generic fiber. Thus if x ∈ SKp(G,X) and y = πKp,K′p
(x), we obtain an element b ∈ G(L) giving the

Frobenius on both D(Gx) and D(Gy).
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Fix the choice of maximal L-split torus S which is compatible with the choice of parahorics. We

assume K ′p corresponds to the subset K ′ ⊂ S of simple reflections. We have the affine Deligne-

Lusztig varieties X({µ}, b) and X({µ}, b)K′ associated to the parahorics Kp and K′p respectively.

The natural projection G(L)/G(OL)→ G(L)/G′(OL) induces a surjection

X({µ}, b)→ X({µ}, b)K′

by the main result of [9]. As in 6.13 we obtain a map

i′x : X({µ}, b)→ SKp(GSp(V ′), S±)(k)

which factors through SHp(H,T )(k). Similarly we obtain a map

i′y : X({µ}, b)K′ → SH′p
(H ′, T ′)(k)

which fits in a commutative diagram:

X({µ}, b) > SHp(H,T )(k)

X({µ}, b)K′
∨

> SH′p(H ′, T ′)(k)
∨

Proposition 7.6. The map i′y lifts to a unique map iy : X({µ}, b)K̆′ → SKp(G, x)(k) taking

sα,0,iy(g) = sα,0,y.

Proof. By Proposition 5.9, the map i′x lifts to a map ix : X({µ}, b) → SKp(G,X)(k) satisfying

tβ,0,x = tβ,0,ix(g). By commutativity of the above diagram, we have i′y factors through SK′p
(G,X)−(k).

Since tβ extends i⊗sα, we have that i′y lifts to iy : X({µ}, b)K′ → SK′p
(G,X)(k) with sα,0,iy(g) =

sα,0,y. �

As before, iy extends to a map

ix : X({µ}, b)K′ ×G(Apf )→ SK′p
(G,X)(k)
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The same proof as in Proposition 6.12 shows that Iy can be identified with the image of iy, and

this map is equivariant for the action of Φ × ZG(Qp)×G(Apf ).

8. He-Rapoport axioms

In this section, we verify the axioms of He-Rapoport in [10]. We keep the assumptions of §6, so

that (G,X) is Hodge type and GQp splits over a a tame extension. We have fixed a base alcove a

in the apartment corresponding to some Qp split S. We write I for the Iwahori group scheme and

Ip = I(Zp). For K ⊂ S̃ a σ-invariant subset, we write G for the parahoric group scheme over Zp

and Kp = G(Zp). As before all parahorics will be assumed connected.

Theorem 8.1. Most of the five Axioms in [10] apart hold for SKp(G,X)

The axioms we are unable to verify as of yet is 4b) and 4c) of loc. cit. To verify these would require

a better understanding of the isogeny classes in SKpKp(G,X). However for the main application to

non-emptiness of Newton strata, these results are not necessary (see the remark in [10] after 3.7).

Axiom 1: (Compatibility with change in parahoric) The compatability with the change in para-

horics follows from Theorem 7.1. To show the map πKp,K′p
is proper, we may apply a similar

argument to the one in Theorem 7.1 to reduce to the case of GSp(V ) consider in [11]. Indeed let f, f′

denote the facets corresponding to Kp, g
′ respectively and let g and g′ the facets in B(GSp(V ),Qp)

containing the images of f and f′. Then g and g′ corresponds to the lattice chains in VQp

L := {Λ1 ⊂ Λ2 ⊂ ... ⊂ Λr}

L′ := {Λi1 ⊂ Λi2 ⊂ ... ⊂ Λis}

We write Mp and M′p for the stabilizer of these lattice chains in GSp(VQp) and fix a suffienciently

small compact open Mp ⊂ GSp(V ⊗ Apf ). As in [10], we may consider the moduli problem which

associates to a Z(p) scheme S the triple:

i) An L-set of abelian varieties

ii) A polarization of the L-set of abelian varieties as in [10, §7].
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iii) A prime to p level structure on the common rational Tate module away from p of the L-set

εp ∈ Isom(V̂ (Ai), V ⊗ Apf )/Mp

compatible with the Riemann form on V̂ (Ai) and ψ on V ⊗ Apf .

We refer to [10, §7] for the precise definitions of an L-set and a polarization. This moduli functor

is representable by a scheme SMpMp(GSp(V ), S±) and we have a natural map

SMpMp(GSp(V ), S±)→ SHpHp(H,T )

where H is the group considered in §7. The same proof as in Theorem 7.1 shows that for sufficently

small Hp, the above map is a closed immersion. It follows as in Corollary 7.3 that if we take a closed

embedding ShKpKp(G,X)→ ShMpMp(H,X), we have a closed immersion

SKpKp(G,X)− → SMpMp(GSp(V ), S±)

and hence a finite map

SKpKp(G,X)→ SMpMp(GSp(V ), S±)

We may apply the same considerations to g′ and M′; we obtain a commutative diagram:

SKpKp(G,X) > SMpMp(GSp(V ), S±)

SK′pKp(G,X)

πKp,K′p∨
> SM′pMp(GSp(V ), S±)

∨

The horizontal maps are finite hence proper. The vertical map on the right is proper by [10,

§7], hence πKp,K′p
is proper. Since the map πKp,K′p

is surjective on the generic fiber, πKp,K′p
is also

surjective.

Axiom 2: (Local Model diagram) As in [18] we have a diagram:

SKpKp(G,X)
π←− S̃KpKp(G,X)

q−→M loc
G
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where π is a G-torsor and q is a smooth map equivariant for the action of G. By [28, Theorem 8.3],

M loc
G has a stratification by Adm({µ})K , and this diagram induces a stratification

λKp : SKp(k)→ Adm({µ})K

Axiom 3: (Newton Stratification) By 6.13, to every x ∈ SKpKp(G,X), we obtain a b ∈ G(L)

well defined up to σ-conjugation by G(OL). We have σ−1(b) ∈
⋃
w∈Adm({µ}) G(OL)ẇG(O), hence

b ∈ B(G, {{µ}). We thus obtain a

δ : SKp(k)→ B(G, {µ})

To show that δ induces a stratification on SKp , we must show this map arises from an isocrystal

with G-structure. This follows from [26, Corollary A7].

Axiom 4: (Joint stratification) a) Let G(L)/G(OL).σ denote the set of G(OL) conjugate classes

of in G(L). We have natural projection maps

dKp : G(L)/G(OL).σ → B(G) and lKp : G(L)/G(OL).σ → G(OL)\G(L)/G(OL)

Let x ∈ SKp(k), then we have an isomorphism

V ∗Zp ⊗OL ∼= D(Gx)

taking sα to sα,0,x. Then we obtain b ∈ G(L) well-defined up to σ-conjugation by G(OL). The

map ΥKp : SKp(k) → G(L)/G(OL).σ is defined by ΥKp(x) = [σ−1(b)]. It is clear by definition

that dKp ◦ ΥKp = δKp . By definition of the local model diagram and Proposition 3.3, we have

lKp ◦ΥKp = λKp .

Axiom 5: (Basic non-emptiness) Let Ip denote the Iwahori subgroup of G(Qp). Let τ{µ} denote

the unique minimal element of Adm({µ}). We need to show λ−1
Ip

(τ{µ}) 6= ∅.

By [26], there exists x ∈ SIp(k) such that δIp = [b]basic. Let g ∈ Xσ(τ{µ})(b) ⊂ X(σ({µ}), b).

By Prop 5.9, the map ix : X(σ({µ}), b) → SIp is well defined. Then by Proposition 6.10, ix(g) ∈

λ−1
Ip

(τ{µ}).
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The main application of the above results is the non-emptiness of Newton strata.

Theorem 8.2. λKp and δKp are surjective.

Proof. Since the πKp,K′p are compatbile with the maps δ and λ it suffices to prove the result when

Kp is Iwahori. Since q is a smooth map, hence open, the image of q is an open mapping. Thus q⊗ k

is surjective, in particular λIp is surjective.

It follows from [10] that δ is also surjective. Indeed it is proved in loc. cit. that for each

[b] ∈ B(G,µ), there exists w ∈ Adm({µ}) σ-straight such that λ−1(w) ⊂ δ−1([b]). �

9. Lifting to special points

9.1. In this section we show that every isogeny class in SKp(G,X) admits a lift to a special point

of ShKp(G,X). We assume the group GQp is residually split, in particular it is quasi-split. The

proof follows ideas from [15, §2], the main new input for being a generalization of the so called

Langlands-Rapoport lemma, see [15, Lemma 2.2.2]. This allows us to associate a Kottwitz triple to

each isogeny class, a key ingredient needed to enumerate the set of isogeny classes. A proof of this

result has also been annouced in [14] using a different method.

We first recall some notation from [15]. As before (G,X) is of Hodge type and Kp = G(Zp) is a

connected parahoric subgroup corresponding to K ⊂ S, but now k ⊂ Fp will denote a finite extension

of the residue field kE of OE(v)
. We write r for the degree of k over Fp, and write W := W (k), and

K0 = W (k)[ 1
p ].

9.2. For x ∈ SKp(G,X)(k) we write x for the Fp point associated to x. Recall we have an associated

abelian variety Ax together with Frobenius invariant tensors sα,l,x ∈ H1
ét(Ax,Ql)⊗ whose stablizer in

GL(H1
ét(Ax,Ql)) can be identified with GQl via the level structure εp. Since the sα,l,x are invariant

under the action of the geometric Frobenius γl on H1
ét(Ax,Ql), we may consider γl as an element of

G(Ql). We let Il/k denote the centralizer of γl in G(Ql) and Il the centralizer of γnl for n sufficiently

large, cf. [15, §2.1.2].

We also fix an identification

D(Gx)⊗W K0
∼= V ∗Zp ⊗Zp K0
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taking sα,0,x to sα. The Frobenius on D(Gx) is of the form ϕ = δσ for some δ ∈ G(K0) and we γp

for the element δσ(δ)...σr−1(δ) ∈ G(K0).

Let Ip/k denote the group over Qp whose R points are given by

Ip/k(R) = {g ∈ G(K0 ⊗Qp R)|g−1δσ(g) = δ}

Clearly Ip/k ⊂ Jδ. We have γp ∈ Ip/k(Qp) and we have Ip/k⊗Qp K0 is identified with the centralizer

of γp in GK0
.

For n ∈ N, we write kn for the degree n extension of k, and Ip/kn the group over Qp defined as

above with K0 replaced with W (kn)[ 1
p ]. Ip will then denote the Ip/kn for sufficiently large n.

Finally we let AutQ(Ax) denote the group over Q defined by

AutQ(Ax)(R) = (EndQ(Ax)⊗Z R)×

where EndQ(Ax) denotes the set of endomorphisms of Ax viewed as an abelian variety up to isogeny

defined over k. We write I/k ⊂ AutQ(Ax) for the subgroup of elements which preserve the tensors

sα,l,x for l 6= p and sα,0,x. We obtain maps I/k → Il/k for all l (including l = p).

Similarly we write I ⊂ AutQ(Ax ⊗ Fp) for the subgroup which fixes sα,l for all l 6= p and sα,0,x.

Again we have maps I → Il for all l.

9.3. By the argument in Proposition 7.5 the projection maps πKp,K′p
are compatible with the

construction of δ and γl. Thus the above definitions are independent of level structure, i.e. for

x ∈ SKp(G,X)(k) and y = πKp,K′p
(x), the construction above give rise to the same groups Il/k, Ip/k

and I.

The same proof as in [15, 2.1.3 and 2.1.5] gives us the following proposition:

Proposition 9.1. i) The map ix of Proposition 5.9 induces an injective map

ix : I(Q)\X({µ}, δ)K ×G(Apf )→ SKp(G,X)(Fp)

ii) Let Hp =
∏
l 6=p Il/k(Ql) ∩Kp and Hp = Ip/k ∩ G(W (k)). The map in i) induces an injective

map:
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I/k(Q)\
∏
l

Il/k(Ql)/Hp ×Hp → S (G,X)(k)

iii) For some prime l 6= p, the connected component of IQl = I ⊗Q Ql contains the connected

component of the identity in Il. In particular the ranks of I and G are equal.

Part i) of the Proposition shows that the non-injectivity of the map ix is due to the action of

I(Q). To relate this the formulation to that in the Langlands-Rapoport conjecture, one needs to

determine the group I in terms of a certain Kottwitz triple, which we do in Corollary 9.6.

9.4. The next lemma is the key technical ingredient needed for the existence of CM lifts, for this

we need to recall some group theoretic preliminaries. Recall W is Iwahori Weyl group of G and S

is set of simple reflections in W corresponding to a choice of base alcove. We write K ⊂ S for the

subset of reflections fixing the special vertex corresponding to a choice of special parahoric G. Let

WK be the group generated by the reflections in K, it is identified with the relative Weyl group

N(L)/T (L). By [10], we have an identification

G(OL)\G(L)/G(OL) ∼= WK\W/WK

and this latter set can be identified with X∗(T )I/WK . The choice of alcove determines a chamber V+

in V := X∗(T )I ⊗R and a Borel subgroup B of G defined over L. We now describe the relationship

between V+ and B more explicitly.

Let 〈 , 〉 : X∗(T )×X∗(T )→ Z be the natural pairing and we use the same symbol to denote the

scalar extension to R. We let Ψ ⊂ X∗(T ) denote the set of roots, then B determines a system of

positive roots Ψ+ ⊂ Ψ. Now for K/L a finite Galois extension over which T splits, we have a norm

map

Nm : X∗(T )I → X∗(T )I

given by

µ 7→
∑

σ∈Gal(K/L)

σ(µ)
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where µ ∈ X∗(T )I and µ ∈ X∗(T ) is a lift. This extends linearly to a map V → X∗(T )I ⊗ R. Then

V+ can be identified with the subset of V consisting of x such that 〈Nm(x), α〉 ≥ 0 for all α ∈ Ψ+.

We write X∗(T )I,+ for the subset of X∗(T )I which mapsto V+, then WK\W/WK can be identified

with X∗(T )I,+.

Now recall we have the affine Weyl group Wa ⊂W . By [2], there is a reduced root system Σ such

that

Wa
∼= Q∨(Σ) nW (Σ)

where Q∨(Σ) is the coroot lattice of Σ and W (Σ) is its Weyl group. The roots in Σ are proportional

to the roots in the relative root system of G over L, however the root systems themselves may not

be proportional. The choice of Borel B, then determines an ordering of the roots in Σ.

We thus have identifications X∗(Tsc)I ∼= Q∨(Σ) and WK
∼= W (Σ). The length function and

Bruhat order on W is determined by Wa and hence by Σ. For λ, µ ∈ X∗(T )I,+, we write λ 4 µ if

µ−λ is a positive linear combination of positive coroots in Q∨(Σ) with integral coefficients. By [25,

§2] applied to the root system Σ, we have

tλ ≤ tµ ⇔ λ′ 4 µ′

where λ′ and µ′ are the dominant representatives of λ and µ respectively.

9.5. The following is a generalization of [15, 2.2.2] to residually split groups. Recall we have the

Newton cocharacter νδ : D→ G, which is central in Jδ and hence central in Ip.

Lemma 9.2. Let Tp ⊂ Ip be a maximal torus defined over Qp. Then there exists a cocharacter

µT ∈ X∗(T ) such that:

i) Considered as a G valued cocharacter, µT is conjugate to µ.

ii) µTT = νδ

Proof. Let T ′ ⊂ Tp denote the maximal Qp split subtorus. The same proof as [15, Lemma 2.2.2]

shows upon changing the isomorphism D(Gx)⊗K0
∼= V ∗Zp ⊗K0, we may assume T ′ commutes with
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δ. Since Qp structure on the image of TK0
in GK0

differs by the one on T by conjugation by δ, we

may consider T ′ as a subtorus of G. Let M denote the centralizer of T ′ in G, we have δ ∈M(K0).

Let T ′ ⊂ T ′2 be a maximal Qp split torus in G, and T2 it’s centralizer; it is a maximal torus since G

is quasi split. Then T2 ⊂M . Let P be a parabolic subgroup containing M with unipotent radical N .

Let g ∈ X({µ}, δ)K which exists since δ ∈ B(G, {µ}). Then there exists µ
1
∈ X∗(T )I with tµ

1
≤ tµ

such that g−1bσ(g) ∈ G(OL)ṫµ
1
G(OL). Note that when G splits over an unramified extension, µ

is minuscule and hence µ
1

= µ, this is not true in general. By the Iwasawa decomposition, we

may assume g = nm for n ∈ N(L),m ∈ M(L). Let M(OL) = M(L) ∩ G(OL) a special parahoric

subgroup of M defined over Zp.

Then we have

m−1δσ(m) ∈M(OL)ṫλM(OL)

for some λ ∈ X∗(T )I . Let m−1δσ(m) = m1ṫλm2 in the decomposition above. Now

g−1δσ(g) = ñm−1σ(m)δσ(m) = ñm−1δσ(m)

for some ñ ∈ N(L). Thus

(m−1
1 ñm1)tλm2 ∈ N(L)tλM(OL) ∩ G(OL)tµ

1
G(OL)

hence by [7, Lemma10.2.1] we have tλ ≤ tµ
1
≤ tµ.

By Lemma 9.3, below we have there exists a lift of λ to v2 ∈ X∗(T2) which is conjugate to µ in

G. Then δ ∈ B(M, {v2}M ) by [9], hence v2 has the same image as νδ in π1(M)Q.

Now let µTp ∈ X∗(T ) be cocharacter conjugate to v2 in M . Then since conjugate cocharacters

have the same image in π1, we have µMTp = νδ ∈ π1(M), where µMTp , denotes the Galois of average

µTp computed as a cocharacter of M . Then as before, since the two Qp structures on image on the

image of TK0
differ by conjugation by δ, we have µ

Tp
Tp

= µMTp ∈ π1(M)Q.

Now as µ
Tp
Tp

is defined over Qp, hence we may consider it as an element of X∗(T
′)Q. We have

σ(νδ) = δ−1νδδ, hence νδ is defined over Qp and we have νδ ∈ X∗(T ′)Q. Since T ′ ⊂ M is central,

we have νδ = µ
Tp
Tp

.
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Lemma 9.3. Let µ be a minuscule cocharacter of G and tλ ∈ X∗(T )I whose image in WK\W/WK

lies in Adm({µ})K . Then there exists a cocharacter v2 ∈ X∗(T ) lifting λ which is conjugate to µ in

G.

Proof. Let λ ∈ X∗(T )I,+ denote the dominant representative of λ for our choice of Borel B. By

[25], tλ ∈ Adm({µ})K implies tµ − tλ is a positive linear combination of coroots in Σ (Recall µ is

the image of a dominant representative of {µ} in X∗(T )). Note that in general µ being minuscule

in G does not imply µ is minuscule for the root system Σ, so that it is possible that tλ 6= tµ.

Since W0 = N(L)/T (L) is a subgroup of the absolute Weyl group it suffices to prove the result for

λ. By Stembridge’s Lemma [31, Lemma 2.3] there exists a sequence of positive coroots α∨1 , ..., α
∨
n ∈

Σ∨ such that

µ− α∨1 − ...α∨i ∈ X∗(T )I

is dominant for all i and µ− α∨1 − ....− α∨n = λ. We prove by induction on i that

λi := µ− α∨1 − ...− α∨i ∈ X∗(T )I

admits a lifting λi ∈ X∗(T ) which is conjugate to µ.

Suppose we have shown the existence of λi. Let α∨i+1 ∈ X∗(Tsc) be a positive coroot lifting α∨i .

Then since λi+1 is dominant, we have 〈λi+1, α
∨
i+1〉 ≥ 0 and hence 〈λi, αi〉 = 〈λi+1 + α∨i+1, αi〉 > 0.

Letting K/L be a finite Galois extension over which T splits, we have by definition

〈λi, αi+1〉 =
1

n

∑
σ∈Gal(K/L)

〈σ(λi), αi+1〉

Since 〈σ(λi), αi+1〉 = 〈λi, σ(αi+1)〉, upon replacing αi+1 by σ(αi+1), we may assume 〈λi, αi+1〉 > 0.

By assumption λi is minuscule hence 〈λi, αi+1〉 = 1. We set λi+1 = sαi+1
(λi) = λi − αi+1 where

sαi+1
is the simple reflection corresponding to αi+1. Then λi+1 is minuscule since it is the Weyl

conjugate of a minuscule cocharacter, and λi+1 is a lift of λi+1. �
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Theorem 9.4. Let x ∈ SK(G,X)(k). The isogeny class of x contains a point which lifts to a special

point on ShKp(G,X).

Proof. Let K/K0 be the field of definition of µT . Consider the filtration induced by µT on D(Gx)⊗K,

then by [30, Prop 1.21], this filtration is admissible. As µT is conjugate to µ, the filtration has weight

0, 1 hence by [16, 2.2.6], there exists a p-divisible group G̃ ′ over OK with special fiber G ′, such that

we have an identification D(G ′)⊗K0
∼= D(Gx)⊗K0. This induces a quasi-isogeny θ : Gx → G ′.

Let x̃ ∈ SK(G,X)(OK′) be a point lifting x, sα,ét,x̃ ∈ TpG ∨,⊗x̃ and sα,0,x ∈ D(Gx)⊗ the corre-

sponding crystalline tensors. Let sα′ ∈ TpG̃ ′∨,⊗ the tensors corresponding to the sα,0,x under the

p-adic comparison isomorphism. As in [15, 1.1.19], there exists a Qp-linear isomorphism

TpG
∨
x̃ ⊗Qp ∼= TpG̃

′∨ ⊗Qp

taking sα,ét,x̃ to sα′ . Upon making a finite extension of K, we may assume the image of TpG ∨x̃ in

TpG̃ ′∨ ⊗Qp is stable under the Galois action. Upon replacing G̃ ′ by an isogenous p-divisible group,

we may assume there is an isomorphism

TpGx̃ ∼= TpG̃
′

taking sα,ét,x̃ to sα′ .

By Proposition 6.7, we have sα,0,x ∈ D(G ′)⊗ and we have a sequence of isomorphisms

D(Gx) ∼= TpGx̃ ⊗Zp OL ∼= TpG̃
′ ⊗Zp OL ∼= D(G ”)

which preserve sα,0,x. We may thus identify D(G ′) with gD(Gx) for some g ∈ G(L). As in Proposition

5.4, the filtration induced by g−1bσ(g)x is the specialization of a filtration induced by a G valued

cocharacter conjugate to µy. Hence the filtration corresponds to point of the local model M loc
G (k)

and we have g−1bσ(g) ∈ Adm({µ}), i.e. g ∈ X({µ}, b).

Thus upon replacing x by ix(g) ∈ SK(G,X), we may assume there is a deformation G̃ of Gx to

OK , such that the coorresponding filtration on D(G ) ⊗K is induced by µT . Since µT is conjugate

to µ−1
h , G̃ corresponds to a point x̃ ∈ SK(G,X)(OK) by Proposition 6.2.
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That x̃ is a special point of ShK(G,X) now follows from the same proof as [15, 2.2.3]. Indeed

since I and Ip have the same rank we may assume T comes from a maximal torus in I also denoted

by T . Then T ⊂ I ⊂ AutQ(Ax) is compatible with filtrations and hence lifts to the isogeny category.

As T fixes sα,0,x, it fixes sα,p,x̃ and hence also sα,B,x. Thus T is naturally a subgroup of G and is

a maximal torus by Proposition 9.1. The Mumford-Tate group is a subgroup of G which commutes

with T , hence is contained in T . Hence x̃ is a special point. �

As in [15, §2.3], we may use the above to associate an element γ0 ∈ G(Q) to each isogeny class

such that:

i) For all l 6= p, γ0 is G-conjugate to γl in G(Ql).

ii) γ0 is stably conjugate to γp in G(Qp)

iii) γ0 is elliptic in G(R).

i.e. (γ0, (γl)l 6=p, δ) form a Kottwitz triple. Indeed using Theorem 9.4, we may assume there x lifts

to a special point x̃ ∈ SK(G,X)(OK) such that the action of T ⊂ AutQAx lifts to AutQAx̃.

Lemma 9.5. The Frobenius element γ ∈ I(Q) lies in T (Q).

Proof. Recall under the inclusion I(Q) 7→ Ip(Qp), γ maps to γp = δσ(δ)...σr−1(δ). We have fixed

the isomorphism D⊗W (k) K0 ⊗ V ∗Zp ⊗K0 so that the Qp structure on T differs from the one on the

image of TK0
↪→ GK0

by conjugation by δ. It we let σ′ denote the Frobenius on T , we have for

α ∈ T (K0),

α = σ′r(α) = γpσ
r(α)γ−1

p = γpαγ
−1
p

Thus γp lies in the centralizer of T ⊂ Ip, which is just T since it is a maximal torus. Thus

γ ∈ T (Q). �

Now γ lifts to an element γ̃ ∈ T (Q) ⊂ AutQAx̃. If we let γ̃ act on the Betti cohomology of Ax̃,

then γ̃ fixes sα,B,x̃ since it fixes sα,ét,x̃. We thus obtain an element γ0 in G(Q) which is conjugate

to (γl)l 6=p by the étale Betti comparison. Similarly γ0 and γp are conjugate over G(C) by the

comparision isomorphisms between crystalline de Rham and Betti cohomology.
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By the positivity of the Rosatti involution, T (R)/wh(R×) is compact, and hence γ0 is elliptic.

The following version of Tate’s theorem, as well as the structural result on the group I, can be

deduced in the same way as [15, Cor. 2.3.2, 2.3.5].

Corollary 9.6. i) For every prime l the natural maps

I/k,Ql
∼= I/k ⊗Q Ql → Il/k

IQl = I ⊗Q Ql → Il

are isomorphisms.

ii) Let I0 denote the centralizer of γ0. Then I is the inner form of I such that for each place l,

IQl
∼= Il.
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6. Thomas J. Haines and Ngô Bao Châu, Alcoves associated to special fibers of local models, Amer. J. Math. 124

(2002), no. 6, 1125–1152. MR 1939783 (2003j:14027)

7. Thomas J. Haines and Sean Rostami, The Satake isomorphism for special maximal parahoric Hecke algebras,

Represent. Theory 14 (2010), 264–284. MR 2602034

8. M. Harris and R. Taylor, The geometry and cohomology of some simple shimura varieties., Annals of Mathematics

Studies 151 (2001).

9. X. He, Kottwitz-rapoport conjecture on unions of affine deligne-lusztig varieties, preprint.

10. X. He and M. Rapoport, Stratifications in the reduction of shimura varieties, preprint.

11. X. He and R. Zhou, On the connected components of affine deligne-lusztig varieties, preprint.

71



12. Xuhua He, Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. of Math. (2) 179

(2014), no. 1, 367–404. MR 3126571

13. Xuhua He and Sian Nie, Minimal length elements of extended affine Weyl groups, Compos. Math. 150 (2014),

no. 11, 1903–1927. MR 3279261

14. M. Kisin, Honda-tate theory for shimura varieties of hodge type, Oberwolfach reports (2015).

15. M. Kisin, Modp points on shimura varieties of abelian type, preprint, J.A.M.S., To appear.

16. , Crystalline representations and F -crystals, Algebraic geometry and number theory, Progr. Math., vol.
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