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Abstract

Recent developments have uncovered a deep relationship between sof theorems in quantum

eld theories and asymptotic symmetries. We investigate ve explicit examples wherein these connec-

tions are studied and veri ed.

First, we show that the Weinberg’s sof -photon theoremmay be recast as the Ward identity for

CPT -invariant largeU(1) gauge transformations that asymptotically approach an arbitrary func-

tion ε of the conformal sphere at null in nity, but are independent of retarded time. The symme-

tries for which ε ̸= constant are spontaneously broken in the perturbative quantum eld theory

vacuum and the associated Goldstone modes are the zero-momentum photons. These comprise a

U(1) boson living on the conformal sphere.

Second, we generalize the construction to non-abelian gauge theories with gauge group G and

show that the massless tree-level sof -gluon theorem is the Ward identity of a holomorphic two-

dimensional G-Kac-Moody symmetry acting on these correlation functions. Holomorphic Kac-

Moody current insertions are positive helicity sof -gluon insertions. These symmetries are also spon-

taneously broken and the sof -gluons are the Goldstone modes.

Third, we generalize to supersymmetricN = 1 abelian gauge theories with massless charged
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matter and establish the existence of in nitely many fermionic asymptotic symmetries at null in n-

ity, parametrized by a function on S2, whose Ward identities give rise to the sof photino theorem.

Unlike large gauge transformations, these symmetries are not manifest at the level of the Lagrangian.

They are spontaneously broken, and the sof photinos are the associated Goldstone fermions. Un-

broken global supersymmetry relates this fermionic charge to theU(1) large gauge charge.

Fourth, we consider gravitational theories and show that Weinberg’s sof -graviton theorem is

the Ward identity corresponding to a certain in nite-dimensional “diagonal” subgroup of BMS

supertranslations acting on past and future null in nity (I − andI +). The sof -gravitons are the

Goldstone bosons of spontaneously broken supertranslation invariance.

Finally, we use the sub-leading sof -graviton theorem to construct an operator Tzz whose inser-

tion in the four-dimensional tree-level quantum gravity S-matrix obeys the Virasoro-Ward identities

of the energy momentum tensor of a two-dimensional conformal eld theory (CFT2). The celestial

sphere at Minkowskian null in nity plays the role of the Euclidean sphere of the CFT2, with the

Lorentz group acting as the unbroken SL(2,C) subgroup.
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1
Introduction

Quantum eld theory is the central mathematical framework that is used in modern day particle

physics research. The StandardModel, which is a particular quantum eld theory, describes the

dynamics and interactions of all known elementary particles. It is one of the most widely and accu-

rately tested theories to date (the other being Einstein’s General Theory of Relativity). Experimen-

tal veri cations of the StandardModel typically come from scattering experiments. In a scattering
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experiment, two or more collimated beams of particles are accelerated to very high energies and col-

lided. The immense energy released in the collision process is almost instantaneously converted into

a plenitude of new particles which are then collected and their properties measured by particle detec-

tors. By studying the type and amount of each particle that is released as well as their momenta, one

can obtain information of the structure of the subatomic world as well as the laws that govern it. In

general, these processes are exceedingly complicated and a lot of incredible theoretical, experimental

and technological ideas are needed to extract useful information from these collisions.

The fundamental quantity that theoretical physicists like to use to describe scattering processes is

called the scattering amplitude or scattering matrix or S-matrix or of en, simply amplitude. The S-

matrix is de ned as the overlap between the quantum state before the collision | in ⟩ (the incoming

or in state) and a possible quantum state af er the collision | out ⟩ (the outgoing or out state), i.e.

Aout,in = ⟨ out | in ⟩ .

The S-matrix amplitudeA is a function of all the quantum numbers that describe the in and out

states, e.g. the momentum, spin, charge, avor, color, etc of each particle. It describes almost all

aspects of the collision process and consequently, it is extremely vital that we have a good under-

standing of the structure of the S-matrix and more importantly, how it is determined in quantum

eld theory. A large part of particle physics research in the past 80 years has been devoted to this

endeavor.

Despite being incredibly complicated in general (as expected from the complexity of the collision

process it describes), there are certain limits in which the S-matrix simpli es. These simpli cations
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are of en due special properties of the S-matrix or of the underlying quantum eld theory such

as unitarity, locality, causality, Poincaré invariance, etc. In this thesis, we will study a particularly

interesting kinematic limit of the S-matrix known as the soft limit, in which the energy of one or

more of the massless particles involved in the collision is taken to be small compared to the energy

or masses of the other particles in the process. It has been well known since the work of Bloch and

Nordseick [6], Low [7, 8], Yennie, Frautschi and Suura [9] andWeinberg [10] that the S-matrix

factorizes in this limit into a so-called soft-factor and another S-matrix that involves fewer particles.

Roughly

An
soft-limit−→ Sm ·An−m .

Here,An denotes the S-matrix of a collision process involving a total of n particles (incoming +

outgoing),m is the number of sof -particles and Sm is the soft-factor which may be a number, a

matrix or di ferential operator that depends, in general, on the precise structure ofAn. There are,

however, certain aspects of this sof factor that are independent of these details and are therefore

universal. The leading, subleading or in some cases, the subsubleading terms in the sof expansion

(expansion in the energies of all the sof particles) of Sm are universal! Sof limits which extract these

universal structures are referred to as soft theorems.

Sof theorems characterize universal properties of S-matrices. They of en imply severe con-

straints on the amplitude, such as conservation of (color) charge, momentum and angular momen-

tum [10, 11]. They additionally imply that long range interactions cannot be mediated by particles of

helicity |s| > 2 [10]. They also ensure infrared niteness of cross sections and decay rates [6, 12, 13],
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which are directly measured at colliders. Despite their immense usefulness, the origin of sof theo-

rems has not been clear. They are of en determined, as in the case of [6–10], by an explicit compu-

tation of sof -limit in each case. This case-by-case derivation makes it di cult to understand when

sof theorems may exist in general. For instance, while the leading sof -photon and sof -graviton the-

orems were known since 1965 due to seminal work of Weinberg [10], the subleading sof -graviton

theorem was derived only as recently as 2014 [11].

Recent developments in this area, which form the central topic of this thesis, have shown that

sof theorems are consequences of in nite-dimensional symmetries of the S-matrix. In some cases,

these in nite-dimensional symmetries have been connected to previously known symmetries and

in other cases have turned out to be completely new! Once established, this connection allows us to

deduce new in nite-dimensional symmetries from sof theorems and vice versa. In fact, the sublead-

ing sof -graviton theorem was conjectured to exist only by rst connecting it to a previously known

symmetry known as superrotations.

The in nite-dimensional symmetries referred to above are known as asymptotic symmetri .

These are exact symmetries of the theory which are highly non-trivial in the bulk of spacetime,

but take on a rather simpli ed form at in nity. From the perspective of the scattering amplitudes,

these are symmetries that act in a simple way on the S-matrix but in a non-trivial way on the action.

Asymptotic symmetries have been studied in the context of general relavity for a long time, starting

from the work of Bondi, van der Burg, Metzner and Sachs in the early 60s [14, 15]. The authors were

interested in understanding the structure of gravitational waves at in nity, i.e. far away from any

sources. In particular, they were interested in determining the symmetry group that acts on such
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gravitational waves and expected to nd the Poincaré group – since general relativity ought to re-

duce to special relativity when spacetime is weakly curved. However, what they surprisingly found

instead was the so-called BMS group, an in nite-dimensional extension of the Poincaré group. At

the time, most were puzzled by the result and strived to impose stronger constraints than the ones

BMS used to reduce the asymptotic symmetry group down from BMS to Poincaré. On the other

hand, there signi cant interest in the the structure of the BMS group and its implications on grav-

itational physics, and in particular the gravitational S-matrix (see [16–26] and references therein.).

However, it wasn’t until quite recently [4, 27] that the consequences of the BMS group on the

S-matrix were understood. The study of asymptotic symmetries and their consequences on the

S-matrix in non-gravitational systems such as QED or non-abelian gauge theories is more recent

[1, 28–31] and is a subject of ongoing research [32–39].

Sof theorems and asymptotic symmetries have been independently studied over the past 60

years with signi cant developments in both. The language and notation employed in these distinct

elds have been wildly di ferent and yet – as we will argue in this thesis – they are in fact completely

equivalent. This equivalence will come in the form of conservation laws. In particular, due to the

seminal work of Noether [40], it is known that the existence of symmetries implies conservation

laws or Ward identities for the S-matrix. We will show, in several examples, that the Ward identities

corresponding to these asymptotic symmetries are precisely the sof -theorems in quantum eld

theory.

The implications of the new found connection between sof theorems and asymptotic symme-

tries are deep.
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Firstly, connecting two disparate elds is of en in and of itself a useful development. Results in

one eld can be translated into potentially new results in the other eld. The connection opens up

the possibility of new calculational techniques and new insights into physical phenomena.

Secondly, it is known that sof theorems constrain the IR dynamics of a quantum eld theory

which therefore implies that the IR sector is governed by in nitely many symmetries! This may pro-

vide new light into infrared problems in quantum eld theory, which currently is treated technically

by introducing a IR cuto f and then removing it at the end of the calculation. This procedure explic-

itly breaks these symmetries and obscures the interesting physics. In particular, it is not clear with

this technique how to de ne an IR nite S-matrix in gauge theories (the cuto fs are removed from

decay rates and cross-sections, but cannot be removed from the S-matrix.). In fact, as we will see, in

theories with such in nite dimensional asymptotic symmetries, the vacuum is not unique so that a

basic assumption of perturbative quantum eld theory breaks down. It is believed that this in nite

vacuum degeneracy might be the cause of IR divergences.

Thirdly, such a connection implies deep insights on the long-sought-af er at space holography,

i.e. a holographic description of quantum gravity in asymptotically at spacetimes. With the ad-

vent of AdS/CFT [41, 42], substantial progress was made in understanding quantum gravity in AdS

spacetimes by holographically mapping it to a conformal eld theory in one lower dimension. Var-

ious attempts to extrapolate this holographic principle to Minkowski spacetime have been made

by taking the in nite radius limit of AdS [43, 44], but not much progress has been made on this

front. For instance, while it has been possible to recover the three-dimensional BMS group by tak-

ing such a limit, attempts to recover BMS4 have failed. Nonetheless a quantum theory of gravity
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in at space is much desired and one may begin to answer this question holographically by study-

ing the asymptotic symmetries of a spacetime. It was recently noted [45] that the original analysis

of BMvS allows for another in nite-dimensional extension of the four-dimensional Lorentz group

SO(1, 3) ∼= SL(2,C) to the local two-dimensional Virasoro group. Existence of the local two-

dimensional conformal group implies a possibility of the description of quantum gravity in at

spacetimes in terms of a CFT2. We are still in the process of understanding how such a holographic

correspondence would come about and we will touch upon some developments on this front in this

thesis.

Another interesting motivation to study this subject lies in understanding the so-calledmiracl of

N = 4 supersymmetric Yang-Mills theory. Detailed calculations of the S-matrix in this complicated

theory show that while intermediate steps of the calculation are of en intricate, there are miraculous

cancellations so that the nal answer is exceedingly simple. There is no apriori explanation for these

simpli cations. One possible suggestion, and the one we advocate, is that the cancellations occur

due the asymptotic symmetries discussed here. Using a recently developed technique called inverse

sof [46], one is able to construct a large class of amplitudes inN = 4 SYMwith the knowledge of

only the sof theorems. It is then natural to suspect that the same symmetries that constrain the sof

sector also have implications for hard amplitudes.

Finally, another interesting application of this connection that has emerged due to the work of

Hawking, Perry and Strominger [47, 48] is to the black hole information paradox. It turns out that

the same in nite-dimensional asymptotic symmetries that BMvS obtained by studying the structure

of asymptotically at spacetimes at in nity appear also on the horizon of black holes and therefore
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constrain the formation and evaporation of a black hole. In particular, complete speci cation of a

black hole now requires not only the mass, charge and angular momentum (as dictated by the no-

hair theorem), but also these in nitely many charges. In other words, black holes have in nitely

many hair! This idea is intriguing and seems to signi cantly a fect the original argument of the infor-

mation paradox [49]. However, it is not clear if this resolves the paradox or simply reformulates it.

The answer to this question is currently being investigated [47, 48, 50–66].

While the connection between sof theorems and asymptotic symmetries is interesting and rich

enough, it has additionally been revealed that these two elds are related to a third eld, namely the

study ofmemory. A memory e fect is a change in the average value of some quantity before and af er

a certain process occurs. The rst instance of memory was understood in 1974 in the context of grav-

itational physics in [67–71] known as the Christodoulou memory. The Christodoulou memory ef-

fect describes the net change in the geodesic distance between two inertial detectors before and af er

a gravitational wave passes through. In other words, when a gravitational wave passes through two

inertial detectors, there is a temporary oscillation while the wave passes, followed by a permanent

relative displacement of the two detectors. This net change in the distance is a DC e fect captures

important non-radiative data about the passing wave. It is now understood that the Christodoulou

memory e fect is related to the BMS group [72] and therefore also to the corresponding sof theo-

rem. In particular, the formula that relates the DC shif to the gravitational wave is simply a Fourier

transform of the sof theorem. The DC shif can also be understood as a transition between the in-

nitely degenerate vacua of systems with asymptotic symmetries. These relationships are concisely

portrayed in the so-called infrared triangle shown in Figure 1.1. Similar memory e fects and their
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Figure 1.1: The Infrared Triangle: The triangular equivalence of three phenomena that characterize the infrared
structure of all theories.

relationships to sof theorems and asymptotic symmetries have now been shown to exist for gauge

theories [73, 74] as well as new ones in gravity [75–84].

Instances of the infrared triangle appear ubiquitously in all physical systems – gauge, gravita-

tional or supersymmetric theories and in all dimensions. They are present in classical theories as well

as in quantum theories. Further, there is a version of this triangle corresponding to all types of sof

theorems – leading, subleading, subsubleading, double sof theorems, etc. Current research is slowly

uncovering various instances of this triangle in di ferent theories. In many cases, only one vertex of

the triangle is known which can be used to deduce the remaining two vertices.

In this thesis, we will discuss the detailed relationship between asymptotic symmetries and sof

theorems. It is organized as follows. In Chapter 2, we present a basic introduction to elds in at
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space and their asymptotic structure. This chapter sets up the notations and conventions that we

use in the rest of the thesis and introduces all preliminary material. In Chapter 3, we study asymp-

totic symmetries in massless QED and relate it to the leadingWeinberg’s sof -photon theorem. In

Chapters 4 and 5, we generalize the discussion of Chapter 3 to non-abelian gauge theories and super-

symmetric theories respectively. In Chapter 6, we move away fromMinkowski space and consider

gravitational uctuations thereof. We show that the asymptotic symmetries derived by BMvS [14, 15]

are related toWeinberg’s sof -graviton theorem. Finally, in Chapter 7, we discuss a recently proposed

in nite-dimensional extension of the BMS group – the extended BMS group. The extended BMS

group includes a Virasoro subgroup which is shown to be related to a newly discovered subleading

sof -graviton theorem [11] and we construct the corresponding two-dimensional stress tensor.

10



2
Asymptotics of Minkowski Spacetime

In this chapter, we study the geometric structure of Minkowski space. In particular, we will be in-

terested in the asymptotic structure of Minkowski space. We also discuss free elds and their asymp-

totic structure. A lot of the discussion in this chapter is found in quantum eld theory and general

relativity textbook, albeit in a slightly di ferent form. We reproduce it here to setup our notations

and conventions.
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2.1 Causal Structure

A useful representation of the asymptotic structure of a (d + 2)-dimensional Lorentzian spacetime

(M, g) is given by the Penrose diagram (or more precisely, the Penrose-Carter diagram), which cap-

tures the causal relation between di ferent points inM , i.e. whether two points are spacelike, null or

timelike separated. The idea is to perform a conformal transformation on the metric g → g̃ = Ω2g

which brings the entire spacetimeM into a compact region which can then be conveniently repre-

sented on a two-dimensional diagram. Note that on the asymptotic boundary ofM , we haveΩ = 0

on the boundary ofM . Since conformal transformations preserve causal relationships, the causal

structure of the unphysical spacetime (M, g̃) is the same as that of (M, g). Distances are not accu-

rately represented in the Penrose diagram.

In practice, one obtains the Penrose diagram by nding compact timelike and spacelike coordi-

nates T andR and then choosingΩ so that g̃ = −dT 2 + dR2 + g̃abdxadxb where xa are the

remaining d spatial coordinates. The Penrose diagram is obtained by plotting the coordinate ranges

of T andR on the usual Cartesian plane. The remaining d spatial directions xa are suppressed in

this representation ofM .

We now carry out this program for Minkowski spacetimeMD=d+2. This is globally described in

Cartesian coordinates yA = (y0, y1, y2, · · · , yd+1), yA ∈ R by the metric

ds2 = ηABdyAdyB = −
(
dy0
)2

+
(
dy1
)2

+
(
dy2
)2

+ · · ·+
(
dyd+1

)2
. (2.1.1)
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To nd the compact coordinates T andR, we move to spherical coordinates (t, r, θ1, · · · , θd),

y0 = t , yi = r ŷi(θ) , i = 1, · · · , d+ 1 . (2.1.2)

Here, θa, a = 1, · · · , d are generalized coordinates on Sd and ŷi(θ) is the unit-vector inRd+1

pointing towards θ ∈ Sd (which is embedded inRd+1 in the standard way).

The metric of Minkowski spacetime in spherical coordinates is

ds2 = −dt2 + dr2 + r2γab(θ)dθadθb , γab(θ) = ∂aŷ
i(θ) ∂bŷi(θ) . (2.1.3)

where γab(θ) is the round metric on the unit Sd.1

Wemay then nd T andR by performing the following chain of coordinate transformations

u = t− r , v = t+ r , −∞ < u < v <∞ ,

U = tan−1 u , V = tan−1 v , −π
2
< U ≤ V <

π

2
,

T = U + V , R = V − U , R ≥ 0 , R+ |T | < π .

(2.1.4)

u and v are null coordinates in the sense that null geodesics in Minkowski spacetime are de ned

by varying u keeping (v, θ) xed and varying v keeping (u, θ) xed. Similarly,U and V are null

coordinates. The metric in the (T,R, θ) coordinates is

ds2 =
1

(cosT + cosR)2
(
−dT 2 + dR2 + sin2Rγabdθadθb

)
. (2.1.5)

We then obtain the unphysical metric g̃ by choosingΩ = cosT + cosR. We note that the resultant

unphysical spacetime (M, g̃) is compact and may be represented as shown in Figure 2.1.

1For the unit Sd, we have

Rabcd[γ] = γacγbd − γadγbc , Rab[γ] = (d− 1)γab , R[γ] = d(d− 1) .
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Figure 2.1: Penrose diagram of Minkowski space me: The coordinate ranges |T | + R ≤ π andR ≥ 0 are plo ed
above. The angular coordinates θ is frozen θ = θ0 so that each point in the diagram above is an Sd. Timelike,
spacelike and null geodesics that pass through the origin are shown in red, orange and blue respec vely. The do ed
segment indicates that the geodesic that starts at θ0 crosses the origin r = 0 over to the an podal point θ̃0.

The asymptotic boundaries of Minkowski spacetime are given byΩ
∣∣
∂MD

= 0. There are three

di ferent types of asymptotic regions (shown in Figure 2.1):
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Time-like Infinity i± This is described by T = ±(π− ε),R = 1
2rε

2 with ε→ 0. In spherical

coordinates, this corresponds to the limit t → ±∞with (r, θ) xed. All time-like curves begin at

past timelike in nity i− and end at future timelike in nity i+.

Spatial Infinity i0 This is described by T = 1
2 tε

2,R = π − εwith ε → 0. In spherical

coordinates, this corresponds to the limit r → ∞ keeping (t, θ) xed. The end-points of all spatial

curves lies in i0.

Null InfinityI ± Future null in nityI + is described by V = π
2 whereas past null in nity

I − isU = −π
2 . In spherical coordinates,I

+ corresponds to the limit v → ∞ keeping (u, θ)

xed whereasI − is the limit u → −∞ keeping (v, θ) xed. These have the topology of Sd × R.

All null geodesics begin atI − and end atI +. In this thesis, we will focus our discussion primarily

on null boundariesI ±. I + has further d-dimensional boundaries located at u = ±∞ (U = ±π
2 )

which we denote byI +
± . Similarly,I − has boundaries at v = ±∞ (V = ±π

2 ) which we denote

byI −
± . Note thatI +

+ (I −
− ) is distinct from i+ (i−) andI ±

∓ are distinct from i0.

Note that null (timelike) geodesics that begin atI − (i−) at a point θ = θ0 end atI + (i+) at

the antipodal point θ = θ̃0. For this reason, it is of en more convenient to draw the Penrose diagram

ofMinkowski space by including also the antipodal angle as shown in Figure 2.2.
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Figure 2.2: Alterna ve Penrose diagram of Minkowski space me: In the diagram above, we have frozen the angular
coordinates, with the right side corresponding to a fixed point θ = θ0 on Sd and the le side the an podal point,
θ = θ̃0. Thus, each point in the diagram above is a hemisphere. Timelike, null and spacelike geodesics passing
through the origin are shown in red, blue and orange respec vely.

2.2 Retarded and Advanced Coordinates

In this section, we introduce two coordinate systems that are more naturally adapted toI + and

I −. These are the so-called retarded coordinates (u, r, θ) and advanced coordinates (v, r, θ̃)where

the metric of Minkowski spacetime takes the form

ds2 = −du2 − 2dudr + r2γab(θ)dθadθb = −dv2 + 2dvdr + r2γab(θ̃)dθ̃adθ̃b . (2.2.1)
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I + is best described in retarded coordinates as the boundary located at r =∞ keeping (u, θ) xed

whereasI − is best described in advanced coordinates as the boundary located at r = ∞ keeping

(v, θ̃) xed. Here, θ and θ̃ are antipodal coordinate systems on the asymptotic Sd, i.e.

ŷi
(
θ̃(θ)

)
= −ŷi(θ) , γab(θ) = ∂aθ̃

c∂bθ̃
dγcd

(
θ̃(θ)

)
. (2.2.2)

The Christo fel symbols in the retarded coordinates are

Γuab[g] = −Γrab[g] = rγab , Γarb[g] =
1

r
δab , Γabc[g] = Γabc[γ] .

(2.2.3)

These coordinates are shown in Figure 2.3

I+

I−

+∞

−∞
0

∞
u

θ

r

I+

I−

+∞
0

∞

−∞

v

r

θ̃

Figure 2.3: Retarded (le ) and Advanced Coordinates (right) shown on the Penrose diagram of Minkowski space

The null normal vector and volume element onI + is

n = ∂u −
1

2
∂r ,

∫
I +

dΣµ = lim
r→∞

rd
∫ ∞

−∞
du

∫
Sd

ddθ
√
γ

(
δµu −

1

2
δµr

)
. (2.2.4)

In §2.4.3, we will be discussing the structure of spinor elds nearI +. For this purpose, we will
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need to introduce a vielbein. We will work with the at vielbein,

eAµ dx
µ = dyA =

∂yA

∂xµ
dxµ , ωµ

A
B = 0 . (2.2.5)

We will discuss these vielbein more explicitly when we discuss spinors in §2.4.3.

Special Coordinates inD = 4 So far we have discussed retarded and advanced coordinates in

general dimensionsD ≥ 3 and have not made any particular choice for coordinates on the asymp-

totic sphere, Sd. InD = 4, the asymptotic sphere is two-dimensional and it is extremely useful to

work in stereographic coordinates θa = (z, z). These are related to the standard angular coordi-

nates (θ, ϕ) by

z = eiϕ tan
θ

2
, z = e−iϕ tan

θ

2
. (2.2.6)

Alternatively, we may describe them by relating (z, z) to the unit vector ŷi(θ) as

ŷi(z, z) =

(
z + z

1 + zz
,
−i(z − z)
1 + zz

,
1− zz
1 + zz

)
. (2.2.7)

The S2-metric takes the form

dΩ2
2 = dθ2 + sin2 θdϕ2 = 2γzzdzdz , γzz =

2

(1 + zz)2
. (2.2.8)

The volume form on S2 is

d2Ω = sin θdθ ∧ dϕ = iγzzdz ∧ dz ≡ d2zγzz . (2.2.9)

The S2 Christo fel symbols are

Γzzz[γ] = γzz∂zγzz , Γzzz[γ] = γzz∂zγzz , (2.2.10)
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and all others vanish.

A convenience of working in stereographic coordinates is that one may describe spinor and tensor

representations together. These are classi ed by their weights (h, h). The covariant derivative of a

tensor T(h,h) is given by

DzT(h,h) = ∂zT(h,h) − hΓ
z
zzT(h,h) ,

DzT(h,h) = ∂zT(h,h) − hΓ
z
zzT(h,h) .

(2.2.11)

For integer and positive h and h, T(h,h) can be thought of as a covariant tensor (or contravariant if

h or h are negative) with h z-indices and h z indices. However, (2.2.11) holds for both integer and

half-integer h and h.

Finally, we introduce a complex zweibein on S2,

E+
z = E−

z =
√
2γzz , E+

z = E−
z = 0 . (2.2.12)

Note that (E+
z )

∗ = E−
z . The at metric is η±± = 0, η+− = η−+ = 1

2 . The corresponding spin

connection has the following non-vanishing components

Ωz
±
± = ±Ωz , Ωz

±
± = ∓Ωz . (2.2.13)

where

Ωz =
1

2
γzz∂zγzz =

1

2
Γzzz[γ] , Ωz =

1

2
γzz∂zγzz =

1

2
Γzzz[γ] . (2.2.14)

Now, given any (h, h) tensor, we may change basis and de ne a tensor w.r.t the internal flat met-

ric T̂(h,h) as

T̂(h,h) =
(
Ez+
)h(

Ez−
)h
T(h,h) .

(2.2.15)
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T̂(h,h) does not transform under spacetime di feomorphisms, but transforms as a (h, h) tensor un-

der the internal SO(2) rotation. The action of the covariant derivative on this tensor is

DzT̂(h,h) = ∂zT̂(h,h) − sΩzT̂(h,h) ,

DzT̂(h,h) = ∂zT̂(h,h) + sΩzT̂(h,h) ,

(2.2.16)

where s = h− h is the spin of the tensor.

Finally, we note that the antipodal stereographic coordinates (z̃, z̃) is related to (z, z) as

z̃ = −1

z
, z̃ = −1

z
. (2.2.17)

which corresponds to θ̃ = π − θ, ϕ̃ = π + ϕ. It may easily be veri ed that

ŷi(z̃, z̃) = −ŷi(z, z) . (2.2.18)

2.3 Poincaré Generators

Particle dynamics are constrained by symmetries, via Noether’s theorem. In particular, Killing vector

elds of Minkowski spacetime give rise to translational and Lorentz invariance, which correspond

to momentum conservation and angular momentum conservation. In Cartesian coordinates, these

vector elds are

ζTA = ∂A , ζLAB = xA∂B − xB∂A . (2.3.1)

Together, these generators form the Poincaré algebra, T d+2 ⋉ so(1, d + 1). In our discussion of

null in nity, we will nd it more convenient to rewrite these generators in retarded (or advanced)
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coordinates,

ζf = f∂u +
1

d
D2f∂r −

1

r
Daf∂a ,

ζY = ψ [u∂u − (u+ r) ∂r] +
[
Y a − u

r
Daψ

]
∂a .

(2.3.2)

where

ψ =
1

d
DcYc . (2.3.3)

Here, f(θ) is a function and Y a(θ) is a vector eld on Sd that satisfy

DaDbf −
1

d
γabD

2f = 0 , (d > 1) (2.3.4)

Da(D
2 + d)f = 0 , (d ≥ 1) (2.3.5)

DaYb +DbYa −
2

d
γabD

cYc = 0 , (d ≥ 2) (2.3.6)

(
DaDb + γab

)
DcYc = 0 . (d ≥ 2) (2.3.7)

Here,Da is the γ-covariant derivative andD2 = DcDc. In d > 1, (2.3.4) implies (2.3.5) and in

d > 2, (2.3.6) implies (2.3.7).

The Killing vectors (2.3.2) are related to the usual translation and Lorentz transformation genera-

tors as follows. We may decompose the function f(θ) into spherical harmonic modes as

f(θ) =

∞∑
ℓ=0

∑
J

aℓ,JYℓ,J(θ) , D2Yℓ,J(θ) = −ℓ (ℓ+ d− 1)Yℓ,J(θ) . (2.3.8)

where J are all the remaining quantum numbers2. (2.3.5) implies that only the ℓ = 0 and ℓ = 1

modes of f(θ) are non-zero. The single ℓ = 0mode corresponds to time translation whereas the

2For Sd, J = {m1 · · ·md−1}withmi ∈ Z and |m1| ≤ m2 ≤ · · · ≤ md−1 ≤ ℓ. The number
of spherical harmonics with quantum number ℓ isN(d, ℓ) = d+2ℓ−1

d−1

(
d+ℓ−2

ℓ

)
. Note thatN(d, 0) = 1 and

N(d, 1) = d+ 1.
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(d+ 1) ℓ = 1modes correspond to the (d+ 1) spatial translations inR1,d+1.

In a similar way, (2.3.6) implies that Y a is a conformal Killing vector eld of Sd. The Lie algebra

of these vectors is so(1, d+1)which is also the Lorentz algebra in (d+2)-dimensions. In d = 2, the

conformal algebra is in nite-dimensional. In this case, (2.3.7) implies that Y a is a global conformal

Killing vector of S2 which reduces to the symmetry algebra to so(1, 3) ∼= sl(2,C). Spatial rotations

are generated by Killing vector elds of Sd, namely those satisfying ψ = 0, whereas Lorentz boosts

correspond to vector elds with ψ ̸= 0.

The algebra of these vector elds is the Poincaré algebra,

[
ζf , ζf ′

]
= 0 ,

[
ζY , ζf

]
= ζY (f)−ψf ,

[
ζY , ζY ′

]
= ζ[Y,Y ′] . (2.3.9)

In a similar way, one may also determine the Killing vectors in advanced coordinates as

ζ−
f̃−

= f̃−∂v −
1

d
D̃2f̃−∂r −

1

r
D̃af̃−∂̃a ,

ζ−
Ỹ − = ψ̃−[v∂v + (v − r)∂r

]
+
[
Ỹ −a +

v

r
D̃aψ̃−

]
∂̃a .

(2.3.10)

where ψ̃− = 1
dD̃

cỸ −
c and Ỹ −a is a conformal Killing vector of Sd. Of course, these Killing vectors

are not independent of those in retarded coordinates (2.3.2). Rather,

f(θ) = f̃−(θ) , Y a(θ) = Ỹ −a(θ) . (2.3.11)

The identi cation above implies that f and Y a are antipodally identi ed with f̃− and Ỹ −a as func-

tions. For instance, the value of the function f at the north pole (say θ = 0) is equal to the value of

f̃ at the south pole (which is now θ̃ = 0).
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InD = 4 and in stereographic coordinates, the conditions (2.3.4)–(2.3.7) read

D2
zf = 0 = D2

zf , DzY
z = 0 = DzY

z , D3
zY

z = 0 = D2
zY

z . (2.3.12)

These are solved by

fa = a0 + a1
z + z

1 + zz
+ a2

−i(z − z)
1 + zz

+ a3
1− zz
1 + zz

, Y z = α+ βz + γz2 , (2.3.13)

where aµ ∈ R and α, β, γ ∈ C.

Stereographic coordinates make the group isomorphism SO(1, 3) ∼= SL(2,C) explicit. A

general nite Lorentz transformation takes the form of a Mobiüs transformation,

z → z′ =
az + b

cz + d
, u→ u′ =

u
(
1 + zz

)
|cz + d|2 + |az + b|2

, ad− bc = 1 . (2.3.14)

The antipodal map of the Poincaré generators (2.3.11) in these coordinates is

f(z, z) = f̃−(z, z) , Y z(z) = Ỹ −z̃(z) . (2.3.15)

2.4 Asymptotics ofMassless Fields

Having understood the geometry of Minkowski spacetime, we may consider the asymptotic dynam-

ics of elds onM4. We only consider massless particles and will therefore be interested in the struc-

ture nearI + andI −. For most of this section, we discuss the structure nearI +. The analogous

structure nearI − is almost identical and only brie y discussed in §2.4.5.

In particular, the goal of this section is to solve the Cauchy problem for and canonically quantize

massless scalar, vector and spinor elds onI +. The discussion of free elds trivially extends to the

interacting case as long as all interactions die o f su ciently fast nearI +, i.e. as long as all interac-
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tions are either marginal or irrelevant. We brie y discuss this in §2.4.6.

2.4.1 Scalar Field

Amassless free scalar eld is governed by the action

S[Φ] = −1

2

∫
M4

d4x
√
−g∇µΦ∇µΦ . (2.4.1)

We vary the action w.r.t. Φ to determine the equations of motion

δS[Φ, δΦ] =

∫
M4

d4x
√
−gδΦ∇2Φ−

∫
M4

d4x
√
−g∇µ (δΦ∇µΦ) . (2.4.2)

The rst term above gives us the equations of motion

∇2Φ =

[
∂2r − 2∂u∂r +

2

r
(∂r − ∂u) +

1

r2
D2

]
Φ = 0 . (2.4.3)

The rst step towards studying the asymptotics of the scalar eld is to determine its large r behav-

ior. To do this, we consider (2.4.3) at large r,

∇2Φ = 0
large r→ − 2

[
∂r −

1

r

]
∂uΦ = 0 , (2.4.4)

which implies that nearI +, ∂uΦ = O
(
r−1
)
. This motivates the boundary condition,

Φ = O
(
r−1
)

at large r. (2.4.5)

This boundary condition is also consistent with niteness of momentum and angular momentum

ux throughI +.

We now solve the Cauchy problem onI +, which is to determine the data onI + that must be

prescribed in order to have a unique solution to the wave equation (2.4.3). To do this, we assume
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that the scalar eldΦ admits a large r Taylor expansion satisfying (2.4.5),

Φ(u, r, θ) =
∞∑
n=1

Φ(n)(u, θ)

rn
. (2.4.6)

Plugging this expansion into (2.4.3) and expanding in large r, we nd the following equations order-

by-order in large r,

∂uΦ
(n+1) = − 1

2n

[
D2 + n(n− 1)

]
Φ(n) , n ≥ 1 . (2.4.7)

Up to u-independent integration constantsΦ(n)(θ) for n > 13, the full scalar eld is determined by

the leading order coe cientΦ(1)(u, θ). Thus, the boundary data for the massless scalar is

ϕ(u, θ) = lim
r→∞

[rΦ(u, r, θ)] . (2.4.8)

where we have now relabelledΦ(0) → ϕ. In the language of S2 tensors introduced in §2.2, this eld

has h = h = 0 and is denoted ϕ(0,0).

Now that we have solved the Cauchy problem onI +, we may proceed with the canonical quan-

tization of the theory. To do this, we follow the procedure described in [85]. Let us brie y review

this here.
3Solutions in which these integration constants are non-zero are of the form

∞∑
n=1

1

rn
2F1

(
n− 1

2
−
√

1

4
−D2, n− 1

2
+

√
1

4
−D2, n,− u

2r

)
Φ(n)(θ) .

These solutions are singular at the origin r = 0 and are not considered here.
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Aside – Review ofWald and Zoupas: Let φ be the set of all elds in a theory which is de-

scribed by an action S[φ],

S[φ] =

∫
d4x
√
−gL

(
φ
)
. (2.4.9)

Varying this action, we nd the form

δS[φ] =

∫
d4x
√
−gE(φ)δφ+

∫
d4x
√
−g∇µΘµ(φ, δφ) . (2.4.10)

The bulk term implies the Euler-Lagrange equations of motionE(φ) = 0. From the bulk term, we

read o f the symplectic current potential density,Θµ(φ, δφ). This quantity is de ned only up to a

total derivative

Θ′µ(φ, δφ) = Θµ(φ, δφ) +∇νBνµ(φ, δφ) . (2.4.11)

The symplectic form on a hypersurfaceΣ is given by

ΩΣ(φ, δφ, δ
′φ) =

∫
Σ
dΣµ

[
δΘµ(φ, δ′φ)− δ′Θµ(φ, δφ)

]
. (2.4.12)

Note that if we useΘ′ instead ofΘ, the symplectic form is modi ed to

Ω′
Σ(φ, δφ, δ

′φ) = ΩΣ(φ, δφ, δ
′φ) +

∫
∂Σ
dΣµν

[
δBνµ(φ, δ′φ)− δ′Bνµ(φ, δφ)

]
. (2.4.13)

Thus, the ambiguity inΘ a fects the boundary symplectic form. In this thesis, we will not discuss

this ambiguity.

Let us now work this out for the scalar case. The symplectic current potential density from the

boundary term in the variation of the action (2.4.2)

Θµ (Φ, δΦ) = ∂µΦδΦ . (2.4.14)
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Finally, the symplectic form on a Cauchy surfaceΣ is given by

ΩΣ =

∫
dΣµ [δ1Θµ (Φ, δ2Φ)− δ2Θµ (Φ, δ1Φ)] =

∫
dΣµ∂µδΦ ∧ δΦ . (2.4.15)

where we de ne δa ∧ δb = δ1aδ2b− δ2aδ1b.

As an example of this procedure, let us takeΣ to be a t = constant hypersurface,Ht. The Cauchy

data on this hypersurface is ϕ = Φ|Σ and its time-derivative π = ∂tΦ|Σ. The symplectic form is

ΩHt =

∫
d3x δπ(t, x⃗) ∧ δϕ(t, x⃗) . (2.4.16)

The quantum commutators onHt are then determined by invertingΩ4

[
ϕ(t, x⃗), π(t, x⃗ ′)

]
= iδd−1

(
x⃗− x⃗ ′) , [

ϕ(t, x⃗), ϕ(t, x⃗ ′)
]
=
[
π(t, x⃗), π(t, x⃗ ′)

]
= 0 .

(2.4.17)

Thus, by quantizing the theory onHt, we retrieve the usual equal time commutators of quantum

eld theory.

We nowmove back to the case of interest, namelyΣ = I +. The symplectic form is

ΩI + =

∫
dud2θ

√
γ∂uδϕ ∧ δϕ . (2.4.18)

Recall that when we quantized the theory onHt, ϕwas paired with π both of which are indepen-

dent data onHt. OnI + however, ϕ is paired with ∂uϕ, which are not independent data. We

must therefore be careful about the way we read o f quantum commutators. In particular, we

must be very careful about u-independent modes of ϕ(u, θ). We start by considering the zero mode

C(θ) = ϕ(+∞, θ) + ϕ(−∞, θ). This zero mode corresponds to the divergent n = 0 solution

4On a general symplectic manifold, ifΩ = 1
2Ωµνdq

µ ∧ dqν then [qµ, qν ] = iΩµν whereΩµν is the in-
verse matrix ofΩµν .
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mentioned in footnote 3. We therefore discard this zero mode and setC = 0. For all such solutions,

we may write

ϕ(u, θ) =
1

2

∫ ∞

−∞
du′Θ(u− u′)∂u′ϕ(u′, θ) . (2.4.19)

whereΘ(x) is the sign function. We nowmove to Fourier space

N(ω, θ) =

∫ ∞

−∞
dueiωu∂uϕ(u, θ) . (2.4.20)

The symplectic form is then

ΩI + =
i

π

∫ ∞

0
dωd2θ

√
γ
1

ω
δN(ω, θ) ∧ δN(−ω, θ) . (2.4.21)

We can then easily read o f the quantum commutators

[
N(ω, θ), N(ω′, θ′)

]
= −πωδ

(
ω + ω′)δ2(θ, θ′) . (2.4.22)

where δ2(θ, θ′) is the Dirac Delta function on S2 normalized as

∫
d2θ
√
γδ2(θ, θ′) = 1 . (2.4.23)

Moving back to position space, we nd

[
ϕ(u, θ), ϕ(u′, θ′)

]
= − i

4
Θ(u− u′)δ2

(
θ, θ′

)
. (2.4.24)

(2.4.24) is the canonical commutation relation onI +. The non-standardΘ-function that appears

on the RHS is due to the fact thatI + is a null hypersurface. Note that (2.4.24) is the quantum

commutator one would obtain if we naively invert the symplectic form (2.4.18) without discussing

the zero mode issues. This is due to the fact that the potential zero modeC vanishes on the space

of solutions that we are considering. When dealing with gauge elds, the analogous zero mode is
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generically non-vanishing and we must follow through with the analogous argument as above in

order to determine the correct commutators.

2.4.2 Vector Field

We now consider the quantization of a freeU(1) gauge eldAwhose dynamics is governed by the

Maxwell action

S[A] = − 1

2e2

∫
M4

F ∧ ∗F . (2.4.25)

whereF = dA is the eld strength. UnderU(1) gauge transformations

A → A+ dλ . (2.4.26)

Varying the action, we nd

δS[A, δA] = 1

e2

∫
M4

(d ∗ F) ∧ δA− 1

e2

∫
M4

d
(
∗ F ∧ δA

)
. (2.4.27)

The bulk term above gives us the equations of motion

d(∗F) = d(∗dA) = 0 . (2.4.28)

As in the case with the scalar eld, we start by determining the boundary conditions for the gauge

eld. This can be done by studying the equations of motion (2.4.28) and further imposing niteness

of momentum and angular momentum ux throughI +, analogous to the scalar case. NearI +,

we nd

Fur = O
(
r−2
)
, Fra = O

(
r−2
)
, Fua = O(1) , Fab = O(1) . (2.4.29)
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These boundary conditions are also consistent with niteness of momentum and angular momen-

tum ux throughI +.

For the gauge eld, this motivates the following boundary conditions

Au = O(r−1) , Ar = O(r−2
)
, Aa = O(1) . (2.4.30)

Next, we solve the Cauchy problem onI +. Here, the gauge eldA is de ned only up to gauge

transformations so we need to x a gauge. A convenient gauge for our purposes is the retarded radial

gauge

Ar = 0 . (2.4.31)

In this gauge, (2.4.28) takes the form

∇µFµu =
1

r2
[
(∂r − ∂u)

(
r2∂rAu

)
+D2Au − ∂uDaAa

]
= 0 ,

∇µFµr =
1

r2
∂r
(
r2∂rAu −DaAa

)
= 0 ,

∇µFµa = ∂r
(
∂r − 2∂u

)
Aa +Da∂rAu +

1

r2
(
D2 − 1

)
Aa −

1

r2
DaD

bAb = 0 .

(2.4.32)

To solve these equations, we Taylor expand the gauge eld nearI +,

Au(u, r, θ) =
∞∑
n=1

A(n)
u (u, θ)

rn
, Aa(u, r, θ) =

∞∑
n=0

A(n)
a (u, θ)

rn
. (2.4.33)

The equations at each order in large r takes the form (for n ≥ 0)

∂u
[
A(1)
u −DaA(0)

a

]
= 0 ,

2∂uA(1)
a −DaA(1)

u −Db
(
DaA(0)

b −DbA(0)
a

)
= 0 ,

(n+ 2)A(n+2)
u +DaA(n+1)

a = 0 ,

2(n+ 2)∂uA(n+2)
a +

(
D2 + (n+ 1)(n+ 2)− 1

)
A(n+1)
a = 0 .

(2.4.34)
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The equations imply that up to u-independent integration constantsA(1)
u andA(n)

a for n ≥ 15, the

full gauge eld is determined byA(0)
a (u, θ). Thus, the boundary data for the gauge eld is

Aa(u, θ) = lim
r→∞

Aa(u, r, θ) . (2.4.35)

where have now relabelledA(0)
a → Aa. In stereographic coordinates, the data isAz ≡ A(1,0) and

Az ≡ A(0,1). As we will see in §2.5,Az corresponds to a positive helicity photon andAz corre-

sponds to a negative helicity photon.

Finally, we consider canonical quantization of the gauge eld onI +. From the boundary term

of (2.4.27), we nd

∗Θ[A, δA] = − 1

e2
∗ F ∧ δA , (2.4.36)

which implies the symplectic form

ΩI + = − 1

e2

∫
I +

∗δF ∧ δA =
1

e2

∫
I +

dud2θ
√
γ ∂uδAa ∧ δAa . (2.4.37)

Now, as in the scalar case, it is important to be careful about u-independent zeromodes of the

gauge eld. For a scalar eld, such a zero mode was forced to be zero by requirement of regularity at

the origin. For the gauge eld, we may allow for a pure gauge zero mode which does not a fect the

structure of the solution at the origin. De ne,

Ca(θ) =
1

2
[Aa(+∞, θ) +Aa(−∞, θ)] = e2∂aC(θ) . (2.4.38)

5Similar to the scalar eld case (see footnote 3), gauge eld solutions in which these integration constants
are non-zero are singular at the origin and will not be considered.

31



We de ne the zero-mode-stripped gauge eld as

Âa(u, θ) = Aa(u, θ)− Ca(θ) . (2.4.39)

Plugging these into the symplectic form, we nd

ΩI + =
2

e2

∫
I +

dud2θ
√
γ∂uδÂa ∧ δÂa −

∫
S2

d2θ
√
γ∂aδC ∧ δNa . (2.4.40)

where we have de ned

Na(θ) =

∫
du∂uAa(u, θ) . (2.4.41)

Note thatCa andNa are symplectically paired. To understand further the structure of the symplec-

tic form, we decomposeNa into two pieces

Na = e2∂aN + e2εabD
aN ′ . (2.4.42)

Using this, we nd

ΩI + =
2

e2

∫
I +

dud2θ
√
γ∂uδÂa ∧ δÂa − e2

∫
S2

d2θ
√
γδC ∧D2δN . (2.4.43)

Note that the modeN ′ does not enter the symplectic form and is therefore non-dynamical. We can

therefore setN ′ = 06 which then implies thatNa is at.

We can nally read-o f the quantum commutators as[
Âa(u, θ), Âb(u

′, θ′)
]
= − ie

2

4
γabΘ(u− u′)δ2(θ, θ′) ,

[
N(θ), C(θ′)

]
= − i

e2
G(θ, θ′) ,

(2.4.44)

6This is no longer true when one includes magnetically charged matter. We will not consider this case in
this thesis, but has been discussed in [86].

32



whereG(θ, θ′) is the Green’s function on S2,

□θG(θ, θ
′) = δ2(θ, θ′) . (2.4.45)

For later use, we simplify the result above in stereographic coordinates. Here, we nd it conve-

nient to normalize the Dirac delta function as

δ2(z, z;w,w) = γzzδ2(z − w) ,
∫
S2

d2zδ2(z − w) = 1 . (2.4.46)

The non-zero commutators take the form[
Âz(u, z, z), Âz′(u

′, z′, z′)
]
= − ie

2

4
Θ(u− u′)δ2(z − z′) ,

[
N(z, z), C(z′, z′)

]
=

i

4πe2
log |z − z′|2 .

(2.4.47)

2.4.3 Spinor Field

The nal eld we consider is a two-component spinorΨα in four dimensions. The dynamics of a

massless two-component spinor is described by the action

S[Ψ] = − i
2

∫
M4

d4x
√
−g
[
Ψσµ∇µΨ−∇µΨσµΨ

]
. (2.4.48)

Here, we are using the spinor conventions of [87], which we review in Appendix A.2. The σ-matrices

in retarded coordinates are given by σµ = eµAσ
A. Varying the action, we nd

δS[Ψ] = −i
∫
d4x
√
−g
[
δΨσµ∇µΨ−∇µΨσµδΨ

]
− i

2

∫
d4x
√
−g∇µ

[
ΨσµδΨ− δΨσµΨ

]
.

(2.4.49)

The bulk term above gives the equations of motion

σµ∇µΨ = 0 , ∇µΨσµ = 0 . (2.4.50)
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To simplify these equations and solve the Cauchy problem, it is convenient to use a helicity basis for

the spinors,

σz
zξ(±)
α = ±1

2
ξ(±)
α , ξ(+)ξ(−) = 1 . (2.4.51)

Complex conjugation changes the helicity, so we denote
(
ξ
(±)
α

)∗
= ξ

(∓)
α̇ . Using the explicit form of

the Lorentz matrices given in Appendix A.2, we nd

ξ(+)
α =

√
1

1 + zz

(
1
z

)
, ξ(−)

α =

√
1

1 + zz

(
z
−1

)
(2.4.52)

We expand the spinorΨ in this basis as

Ψα = Ψ̂(+)ξ
(+)
α + Ψ̂(−)ξ

(−)
α , Ψ̂(±) = ∓ξ(∓)Ψ . (2.4.53)

The elds Ψ̂(+) has h = 1
2 , h = 0 and Ψ̂(−) has as h = 0, h = 1

2 w.r.t the internal at metric. In

particular, these elds do not transform under S2 di feomorphisms.

(2.4.50) then take the form

1

r

[
(∂r − 2∂u)(rΨ̂(−)) + 2Ez−DzΨ̂(+)

]
= 0 ,

1

r

[
− ∂r

(
rΨ̂(+)

)
+ 2Ez+DzΨ̂(−)

]
= 0 .

(2.4.54)

First, we determine the large r fall-o f of the Ψ̂(±). The rst equation in (2.4.54) implies that Ψ̂(−)

falls-o f one power of r faster than Ψ̂(+). The second equation then implies

Ψ̂(+) = O
(
r−1
)
, Ψ̂(−) = O

(
r−2
)

at large r. (2.4.55)

These fall-o fs are also consistent with nite energy and angular momentum ux throughI +. To
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determine the boundary data, we Taylor expand

Ψ̂(+)(u, r, z, z) =

∞∑
n=1

Ψ̂
(n)
(+)(u, z, z)

rn
, Ψ̂(−)(u, r, z, z) =

∞∑
n=2

Ψ̂
(n)
(−)(u, z, z)

rn
. (2.4.56)

At each order, we nd the equations

∂uΨ̂
(2)
(−) = Ez−DzΨ̂

(1)
(+) ,

2∂uΨ̂
(n+1)
(−) = 2Ez−DzΨ̂

(n)
(+) − (n− 1)Ψ̂

(n)
(−) , n ≥ 2 ,

Ψ̂
(n)
(+) = −

2

n− 1
Ez+DzΨ̂

(n)
(−) , n ≥ 2

(2.4.57)

Up to u-independent integration constants, the full spinor eld is determined in terms of Ψ̂(1)
(+).

Thus, the boundary data is

ψ(+)(u, z, z) = lim
r→∞

(
rΨ̂(+)(u, r, z, z)

)
= − lim

r→∞

(
rξ(−)Ψ(u, r, z, z)

)
. (2.4.58)

where we have no relabelled Ψ̂(1)
(+) → ψ(+). As described previously, in terms of S2 tensor notation,

this eld is denoted ψ( 1
2
,0).

Finally, we consider canonical quantization of the spinor. The symplectic potential current den-

sity is

Θµ[Ψ, δΨ] = − i
2

[
ΨσµδΨ− δΨσµΨ

]
. (2.4.59)

Then, the symplectic form onI + is

ΩI + = i

∫
I +

dud2zγzzδψ(+) ∧ δψ(+) . (2.4.60)

Note that now since ψ is a fermionic eld, the wedge product is symmetric. The quantum anti-
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commutator can be read o f as

{
ψ(+)(u, z, z), ψ(−)(u

′, z′, z′)
}
= γzzδ(u− u′)δ2(z − z′) . (2.4.61)

2.4.4 Generalization to Fields of Arbitrary Spin

Without proof, we now present the large r fall-o fs and the boundary data of general spin elds,

though the procedure to determine these is the identical to that of the previous three sections.

We recall that the the Lorentz algebra inD = 4, so(1, 3) ∼= su(2)L × su(2)R so that a general

eld representation of SO(1, 3) is de ned by two half-integers (j, j). The scalar representation

is (0, 0). The lef - and right-handed spinor representations are (12 , 0) and (0,
1
2) respectively. The

gauge eld is described by the representation (1, 0) ⊕ (0, 1) corresponding to the self-dual and

anti-self-dual eld strength tensor. Finally, a vector representation is (12 ,
1
2).

Working in the spinor notation introduced in §2.4.3, a eld that transforms as (j, j) has index

structure V(α1···α2j)(β̇1···β̇2j)
. As we did with the spinor, it is natural to expand it in terms of the

helicity eigenspinors

V(α1···α2j)(β̇1···β̇2j)
=

m∑
m=−j

j∑
m=−j

ξ
(+)
(α1
· · · ξ(+)

αj+m
ξ(−)
αj+m+1

· · · ξ(−)
α2j)

× ξ(−)

(β̇1
· · · ξ(−)

β̇j+m
ξ
(+)

β̇j+m+1
· · · ξ(+)

β̇2j)
V(m,m) .

(2.4.62)

The elds V(m,m) have lef - and right- J3 valuesm andm respectively. To see this, we note that
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under Lorentz transformations

δY V(m,m) =
(
ζµY ∂µ +mDzY

z +mDzY
z
)
V(m,m)

+
1

2
(j −m+ 1)D2

zY
zV(m−1,m) +

1

2

(
j −m+ 1

)
D2
zY

zV(m,m−1)

− u

2r
(j +m+ 1)D2

zY
zV(m+1,m) −

u

2r

(
j +m+ 1

)
D2
zY

zV(m,m+1) .

(2.4.63)

To nd the lef -handed J3 value, we set Y z = z and Y z = 0. For this choice

δY V(m,m) = (zDz +m)V(m,m) . (2.4.64)

which implies that the eld above has a lef -handed J3 valuem. Similarly, the right-handed J3 value

ism.

The coe cient elds V(m,m) obey simple fallo f conditions near null in nity. In order to state

these conditions, we need to introduce a conformal scaling dimension∆ for V(α1···α2j)(β̇1···β̇2j)
,

even though the theory under consideration need not be conformally invariant. Nevertheless, we

expect its long-distance behavior near null in nity to be governed by a conformally invariant IR

xed point, and we take∆ to be the scaling dimension of V(α1···α2j)(β̇1···β̇2j)
at that xed point.

In cases where the IR theory is free,∆ coincides with the mass dimension of V(α1···α2j)(β̇1···β̇2j)
.

The behavior of the coe cient eld V(m,m) nearI + is governed by∆ and its Lorentz quantum

numbersm,m,

V(m,m)(u, r, θ) = O
(
r−τ
)
, τ = ∆−m−m . (2.4.65)

The quantity τ is known as the collinear twist: it is the eigenvalue of the conformal generatorD +

M , which stabilizes the null vector eld pµ.7

7 HereD = u∂u+r∂r is a dilatation, which satis es [D, pµ∂µ] = −pµ∂µ, andM = u∂u−r∂r+z∂z+
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As a simple example, consider an IR free, massless scalar eldΦ of scaling dimension∆Φ = 1. It

has just one component withm = m = 0 so that τ = 1. Thus, it falls o f as r−1 at large r.

The photon is described by an anti-symmetric eld strengthFµν , whose IR scaling dimension

is∆F = 2. It decomposes into self-dual and anti-self-dual partsF SD
µν andFASD

µν , which transform

as (1, 0) and (0, 1) representations of the Lorentz group. According to (2.4.65), the di ferent com-

ponents ofF SD
µν behave as follows nearI ±,

F SD
(1,0) ∼

1

r
Fuz = O

(
r−1
)
,

F SD
(0,0) ∼ Fur −

1

r2
γzzFzz = O

(
r−2
)
,

F SD
(−1,0) ∼

1

r
Frz = O

(
r−3
)
.

(2.4.66)

This is consistent with the following asymptotic expansion (2.4.30) nearI +.

Similar, the spinor eld also satis es (2.4.65). A lef -handed spinor eldΨ has∆Ψ = 3
2 and

transforms as (12 , 0). Then,

Ψ( 1
2
,0) ∼ Ψ(+) = O(r−1) , Ψ(− 1

2
,0) ∼ Ψ(−) = O(r−2) , (2.4.67)

which is precisely (2.4.55).

As another example, we may apply (2.4.65) to determine the fall-o f of currents that the elds

couple to. For instance, a scalar currentJ has∆ = 3,m = m = 0 and falls o f as r−3 at large r.

z∂z is a boost along pµ, which satis es [M,pµ∂µ] = pµ∂µ.
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The gauge eld currentJµ also has∆ = 3. This transforms as (12 ,
1
2). Using (2.4.65), we nd

J( 1
2
, 1
2
) ∼ Ju = O(r−2) ,

J( 1
2
,− 1

2
) ∼

1

r
Jz = O(r−2) ,

J(− 1
2
, 1
2
) ∼

1

r
Jz = O(r−2) ,

J(− 1
2
,− 1

2
) ∼ Jr = O(r

−4) .

(2.4.68)

The spinor eldΨ couples to a spinor currentKα̇ which has∆K = 5
2 and transforms as (0, 12).

Then, expanding this current as

Kα̇ = K(+)ξ
(+)
α̇ +K(−)ξ

(−)
α̇ . (2.4.69)

Then,

K(0, 1
2
) ∼ K(−) = O(r−2) , K(0,− 1

2
) ∼ K(+) = O(r−3) . (2.4.70)

Massless elds have j = 0 (lef -handed elds) or j = 0 (right-handed elds). Free lef -handed

massless elds of arbitrary spin satisfy the equations of motion

(
σµ
)α̇α1∂µV(α1···α2j) = 0 . (2.4.71)

For free elds, we always have∆ = j + 1.

The boundary data for these elds may be determined just as we have done previously. We rst

expand the elds in the spinor basis (2.4.62). The coe cient elds V(m,0) are then Taylor expanded

nearI + using the boundary fall-o fs (2.4.65). Equations are then solved order-by-order in large r.

Following this procedure, we nd that the boundary data is the leading coe cient of V(j,0), which
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we denote V(+),

V(+)(u, θ) = lim
r→∞

rV(j,0)(u, r, θ)

= (−1)2j lim
r→∞

rξ(−)α1 · · · ξ(−)α2jVα1···α2j (u, r, θ) .

(2.4.72)

Under Lorentz transformation,

δY V(+)(u, z, z) =

[
Y a∂a +

1

2
DaY

a (u∂u +∆V − j) +mDzY
z

]
V(+)(u, z, z) , (2.4.73)

where recall that∆V − j = 1.

2.4.5 Asymptotic Structure atI −

In the previous sections, we have completely determined the boundary data onI +. We may analo-

gously determine the boundary data onI − as well. For scalar, vector and spinor elds the bound-

ary data onI − is

ϕ̃(v, θ̃) = lim
r→∞

(
rΦ(v, r, θ̃)

)
,

Ãz̃(v, θ̃) = lim
r→∞

(
rAz̃(v, r, θ̃)

)
,

ψ̃(+)(v, θ̃) = − lim
r→∞

(
rξ(−)Ψ̂(v, r, θ̃)

)
.

(2.4.74)

Note that the boundary data onI − is not independent of the data onI +. Both independently

determine the full bulk eld uniquely. The precise map that describes ϕ,A, ψ in terms of ϕ̃, Ã, ψ̃

is known as the classical S-matrix. We will not discuss the precise structure of the classical or the

quantum S-matrix, but we will later discuss certain features which will allow us to relate asymptotic

symmetries in to sof theorems.
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2.4.6 Boundary Data for Interacting Fields

We now brie y comment on the boundary data for interacting elds. We will require that the in-

teractions do not change the fall-o fs of the elds described above. To be concrete, we discuss scalar

elds. The extension to elds with spin is quite similar and will be omitted.

We start by coupling the scalar eld to a background currentJ (x),

□Φ(x) = J (x) . (2.4.75)

The scalar current falls-o f as r−3 nearI + as discussed in §2.4.4. We Taylor expand the current

J (u, r, θ) =
∑
n=3

J (n)(u, θ)

rn
. (2.4.76)

The wave equation (2.4.7) is then modi ed to

2n∂uΦ
(n+1) = −[D2 + n(n− 1)]Φ(n) + J (n+2) , n ≥ 1 . (2.4.77)

Again, up to u-independent integration constants, we may determine the full scalar eld in terms of

ϕ = Φ(0). The only di ference is that the solution at each order in large r is more involved due to

the presence of the background currentJ .

We now generalize to the case when the currentJ is dynamical. The requirement that the cur-

rent falls of at least as fast as 1
r3

at large r implies that the interaction term that generatesJ must be

marginal or irrelevant. This is consistent with the requirement that the theory remains free in the

infrared. For instance, consider the case in which the scalar eldΦ couples to itself. In this case, the

RHS of (2.4.77) involves only the elds withm < n, which implies that one can determine the full

scalar eldΦ order-by-order in large r. Again, the boundary data remains unchanged, though the
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equations at each subsequent order in large r become increasingly complex. This statement trivially

extends to the gauge and spinor elds as well. We note in particular that in the presence of currents,

the leading constraint equations for the gauge eld (2.4.34) and spinor eld (2.4.57) is modi ed to

∂uA(1)
u = ∂uD

aAa + e2ju , (2.4.78)

∂uΨ̂
(2)
(−) = Ez−Dzψ(+) −

e2

2
k(−) . (2.4.79)

where

ju(u, z, z) = lim
r→∞

r2Ju(u, r, z, z) ,

k(−)(u, z, z) = lim
r→∞

r2K(−)(u, r, z, z) ,

(2.4.80)

are the leading terms in current expansion (they satisfy the fall-o f (2.4.68) and (2.4.70)). Equations

(2.4.78) and (2.4.79) will play a very important role in the discussions of Chapter 3 and 5.

Similarly, the boundary data for elds onI − remains unchanged. In other words, the bulk eld

Φ is determined uniquely either in terms ofI + data or in terms ofI − data and the relationship

between the two is now the full interacting S-matrix.

2.5 Free FieldMode Expansions onI +

In this section, we relate the boundary data derived in the previous three sections to the creation

and annihilation operators that are more standard in quantum eld theory. This will important

to connect our discussion of asymptotic symmetries – which will be onI + and in terms of the

boundary data described previously – to sof theorems, which are derived in perturbative quantum

eld theory using Feynman diagrams.
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Scalar Field We start with a massless complex scalar eldΦ(y) satisfying□Φ(y) = 0. As-

suming su ciently fast fall-o fs forΦ(y) at in nity (we will make this precise soon), we may mode

expand the scalar eld as

Φ(y) =

∫
d3q

(2π)3
1

2ωq

[
aΦ(q⃗ )e

iq·y + a†
Φ
(q⃗ )e−iq·y

]
. (2.5.1)

where ωq = |q⃗ |.

Here, we use the notation that the annihilation operator that appears in a eld f(y) is denoted

af,s(q⃗ )where s is the helicity of the particle that it annihilates. For the scalar eld, s = 0 and we

drop this label. These operators may carry additional labels (such as Lie algebra indices) which we

have dropped here. The creation and annihilation operators satisfy8

[
af,s(q⃗ ), a

†
f ′,s′(q⃗

′)
}
= (2π)3(2ωq)δf,f ′δs,s′δ

3(q⃗ − q⃗ ′) . (2.5.2)

One-particle states are de ned as

| q⃗, f, s ⟩ = a†
f,s

(q⃗ )| 0 ⟩ , (2.5.3)

which satisfy

⟨ q⃗, f, s | q⃗ ′, f ′, s′ ⟩ = (2π)3(2ωq)δf,f ′δs,s′δ
3(q⃗ − q⃗ ′) . (2.5.4)

We now determine the structure of the scalar eld (2.5.1) nearI +. We write out the eld explic-

itly in retarded coordinates

Φ(u, r, z, z) =
1

2(2π)3

∫ ∞

0
dωqωq

∫
S2

dΩq̂

[
aΦ(q⃗ )e

−iωqu−iωqr(1−q̂·ŷ) + a†
Φ
(q⃗ )eiωqu+iωqr(1−q̂·ŷ)

]
.

(2.5.5)

8[ , } is a commutator if the operators are bosonic and an anti-commutator if they are fermionic.
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Now, consider the mode expansion in the limit r → ∞. In the integrand, in the stationary phase

approximation, we have an oscillating exponent which is localized to q̂ · ŷ = 1 in the large r limit. In

particular ∫
S2

dΩq̂f(q⃗ )e
±iωqr(1−q̂·ŷ) r→∞→ ±2πi

ωqr
f(ωqŷ) . (2.5.6)

Using this, we nd

Φ(u, r, z, z)
r→∞→ − i

8π2r

∫ ∞

0
dωq

[
aΦ(ωqŷ)e

−iωqu − a†
Φ
(ωqŷ)e

iωqu
]
. (2.5.7)

Here, ŷ is to be understood to be related to z, z according to (2.2.7). Then, the boundary eld

ϕ(u, z, z) (de ned in (2.4.8)) is given by

ϕ(u, z, z) = lim
r→∞

(
rΦ(u, r, z, z)

)
= − i

8π2

∫ ∞

0
dωq

[
aΦ(ωqŷ)e

−iωqu − a†
Φ
(ωqŷ)e

iωqu
]
.

(2.5.8)

The complex conjugate eld is

ϕ(u, z, z) = − i

8π2

∫ ∞

0
dωq

[
aΦ(ωqŷ)e

−iωqu − a†Φ(ωqŷ)e
iωqu

]
. (2.5.9)

Gauge Field The gauge eldAA(x) is not a gauge invariant operator and in particular does

not admit a unique mode expansion. We instead talk about the eld strength tensorFAB , which is

mode expanded as

FAB(x) = e
∑
s=±

∫
d3q

(2π)3
1

2ωq

[
f
(s)
AB(q⃗ )

∗aF ,s(q⃗ )e
iq·x + f

(s)
AB(q⃗ )a

†
F ,s(q⃗ )e

−iq·x
]
. (2.5.10)

The explicit factor of e is present due to our non-standard normalization of the gauge eld in (2.4.25).

This ensures that are creation and annihilation operators satisfy (2.5.2). SinceF = dA, the wave-
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functions f (s)AB(q⃗ )may be written in terms of polarizations as

f
(s)
AB(q⃗ ) = −i

[
qAε

(s)
B (q⃗ )− qBε(s)A (q⃗ )

]
. (2.5.11)

The polarization tensors ε(s)A (q⃗ ) satisfy

qAε
(s)
A (q⃗ ) = 0 , ε

(±)
A (q⃗ )εA(±)(q⃗ ) = 0 , ε

(+)
A (q⃗ )εA(−)(q⃗ ) = 1 . (2.5.12)

We may pick any gauge to describe the polarizations in fAB(q⃗ ) sinceF is gauge invariant. A con-

venient choice for the polarization tensors is made as follows. We start by parameterizing the null

momentum qA in terms of (ωq, w, w) as

qA = ωq

(
1 ,

w + w

1 + ww
,
−i(w − w)
1 + ww

,
1− ww
1 + ww

)
. (2.5.13)

In this parameterization, we choose the polarization to be

ε
(+)
A (q⃗ ) =

1√
2
(−w , 1 , − i , − w) ,

ε
(−)
A (q⃗ ) =

1√
2
(−w , 1 , i , − w) .

(2.5.14)

The eld strength component F (0)
uz onI + can be determined as

F (0)
uz (u, z, z) = lim

r→∞
∂uy

A∂zy
BFAB(u, r, z, z) . (2.5.15)

Using the stationary phase approximation as before, we nd

F (0)
uz (u, z, z) = −

e

8
√
2π2

E+
z

∫ ∞

0
dωqωq

[
aF ,+(ωqŷ)e

−iωqu + a†F ,−(ωqŷ)e
iωqu

]
(2.5.16)
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Recall that F (0)
uz = ∂uAz . Then, analogous to (2.4.19), we may now determine Âz as

Âz(u, θ) =
1

2

∫ ∞

−∞
du′Θ(u− u′)F (0)

u′z (u
′, z, z)

= − ie

8
√
2π2

E+
z

∫ ∞

0
dωq
[
aF ,+(ωqŷ)e

−iωqu − a†F ,−(ωqŷ)e
iωqu

] (2.5.17)

Note that we can determine only Âz , not the fullAz . In particular, the zero modeCz = e2DzC is

not determined in terms of the creation and annihilation modes. This mode is typically not consid-

ered in standard quantum eld theory. As we will see, it is precisely the inclusion of this mode that

will lead us to an enhancement of S-matrix symmetries which are related the sof theorems.

In particular, (2.5.17) implies Âz creates outgoing positive helicity states. On the other hand, the

mode expansion for Âz is

Âz(u, θ) = −
ie

8
√
2π2

E−
z

∫ ∞

0
dωq
[
aF ,−(ωqŷ)e

−iωqu − a†F ,+(ωqŷ)e
iωqu

]
(2.5.18)

which creates outgoing negative helicity states.

Spinor Field The nal mode expansion we consider is that of the spinor eldΨ(y). This is

Ψα(y) =

∫
d3q

(2π)3
1

2ωq
ηα(q⃗ )

[
aΨ,+(q⃗ )e

iq·y + a†
Ψ,−(q⃗ )e

−iq·y
]

(2.5.19)

Here, ηα(q⃗ ) is a momentum space spinor that satis es9

qA
(
σA
)α̇β

ηβ(q⃗ ) = 0 , qA
(
σA
)
αβ̇

= ηα(q⃗ )ηβ̇(q⃗ ) .
(2.5.20)

When, we parameterize the momentum qA as (2.5.13), these wave-functions have the explicit form

ηα(q⃗ ) =

√
2ωq

1 + ww

(
1
w

)
=
√
2ωqξ

(+)
α

∣∣
z=w

. (2.5.21)

9These spinors are precisely equivalent to the square and angle brackets that are used in the study of
scattering amplitudes. Precisely, | q ⟩α = ηα(q⃗ ), ⟨ q |α = ηα(q⃗ ), [ q |α̇ = ηα̇(q⃗ ) and | q ]α̇ = ηα̇(q⃗ ).
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The large r limit of the eld may then be taken just as before. We may then extract the boundary

data ψ(u, z, z) as

ψ(u, z, z) = − i

8π2

∫ ∞

0
dωq
√

2ωq

[
aΨ,+(ωqŷ)e

−iωqu − a†
Ψ,−(ωqŷ)e

iωqu
]
. (2.5.22)

Again, we note that ψ creates positive helicity outgoing spinors and its complex conjugate

ψ(u, z, z) = − i

8π2

∫ ∞

0
dωq
√

2ωq

[
aΨ,−(ωqŷ)e

−iωqu − a†Ψ,+(ωqŷ)e
iωqu

]
. (2.5.23)

creates negative helicity outgoing spinors.

2.6 The Perturbative Quantum S-matrix

In perturbative quantum eld theory, the classical S-matrix is elevated to the S-matrix operator

when working in the interaction picture (where all the one- and multi-particle states are free and

non-interacting and the S-matrix operator captures all the interactions of the theory). The S-matrix

amplitude is given by

An = ⟨ 0 |af1,s1(p⃗1) · · · afm,sm(p⃗m)Sa
†
fm+1,sm+1

(p⃗m+1) · · · a†fn,sn(p⃗n)| 0 ⟩ . (2.6.1)

The extra indices onAn are described by the RHS of the equation above, but are dropped on the

LHS to have simpli ed expressions. We will reinstate them if and when required. The n-point am-

plitude here includes a momentum conserving Dirac delta function, which we can extract as

An = i(2π)4δ4

(
m∑
i=1

pµi −
n∑

i=m+1

pµi

)
Mn . (2.6.2)

In this thesis, we will focus our discussion on the amplitudeAn.

A further simpli cation occurs by using a now common convention of describing all particles as

47



outgoing. This is done using CPT invariance of the S-matrix, which implies

Sa†f,s(p
0, p⃗) = af,−s(−p

0, p⃗ )S (2.6.3)

In particular, an incoming particle with helicity s and 3-momentum p⃗ and p0 > 0 can be equiva-

lently described as an outgoing particle of the opposite helicity and with the same 3-momentum p⃗

but now with p0 < 0. Other quantum numbers of the particle are also conjugated. For instance, if

the ingoing one-particle state transforms under a representationR of some internal Lie algebra, then

the outgoing particle transforms w.r.t. the conjugate representationR. For aU(1) gauge group this

implies that a positive charged incoming particle is mapped to a negatively charged outgoing particle

and vice versa.

In this convention, the amplitudeAn may be written as

An = ⟨ 0 |af1,s1(p1) · · · afn,sn(pn)S| 0 ⟩ . (2.6.4)

where now the sign of the energy p0i determines whether the particle is ingoing or outgoing.
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3
New Symmetries in Massless QED

In this chapter, we study the simplest – though historically, not the rst – non-trivial example of the

relationship between sof theorems and asymptotic symmetries. This chapter is a modi ed extract of

[1].

49



3.1 Introduction

The purpose of this chapter is to argue that the sof photon theorem in massless QED [9, 10, 88] can

be understood as a new asymptotic symmetry. The symmetry is generated by “large”U(1) gauge

transformations which approach an arbitrary function ε(z, z) on the conformal sphere atI but

are constant along the null generators, even as they antipodally cross fromI − toI + through

spatial in nity. Except for the constant transformation, these symmetries are spontaneously broken

in the conventional vacuum. The sof photons appear as Goldstone modes living on the sphere at

the boundary ofI .

The relation between sof theorems and asymptotic symmetries ofI + (but not of the S-matrix),

was described already in [28], which in turn was inspired by [89]. Two “simplifying” restrictions

were made in the analysis of [28]: the incoming state was required to be invariant under the large

gauge symmetries, and the parameter ε(z, z)was required to be locally holomorphic. However,

far from simplifying the analysis, these restrictions obscured the underlying structure. The present

analysis both simpli es and generalizes that of [28].

This chapter considers theories in which there are no stable massive charged particles, and the

quantum state begins and ends in the vacuum at past and future timelike in nity. Of course, in real-

world QED the electron is a stable massive charged particle, so it is highly desirable to generalize our

analysis to this case.1 However, stable massive charges create technical complications because the

charge current has no ux through future null in nity. Rather, there is charge ux across timelike

1The present analysis is relevant to hard scattering in QEDwhen the electron mass becomes negligible.
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in nity which becomes a singular point in the conformal compacti cation of Minkowski space. In

principle a systematic treatment of this singularity should be possible – the elds disperse and are

weakly interacting; nonetheless, this is well beyond the scope of the present chapter.2

This chapter is organized as follows. In §3.2 we review the classical nal data formulation atI +,

study the asymptotic symmetries and constructs the associated charges. §3.3 gives the corresponding

formulae forI −. In §3.4 we give conditions which tie the data ofI − to that ofI + and thereby

de nes the scattering problem. The conditions are shown to break the separate asymptotic sym-

metries to a diagonal subgroup preserving the S-matrix. In §3.5 the quantumWard identity of this

symmetry is shown to relate scattering amplitudes with and without a sof photon insertion. Finally

in §3.6 we show that this Ward identity is the sof photon theorem.

3.2 Large gauge transformations onI +

In this subsection we brie y review the canonical nal data formulation ofU(1) electrodynamics

coupled to massless charged matter at future null in nity (I +), introduce the large gauge transfor-

mations and construct the corresponding charges.

We recall that the boundary data for the gauge eld isAz = lim
r→∞

Az . When coupled to a current

Jµ, the leading constraint equation is given by (2.4.78)

∂uA(1)
u = ∂uD

aAa + e2ju , (3.2.1)

2The massive case has been studied in [1, 39].
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where

ju(u, z, z) = lim
r→∞

[
r2Ju(u, r, z, z)

]
. (3.2.2)

Further, since we are interested in systems with massless particles only, we consider con gurations

which revert to the vacuum in the far future, i.e.

Fur|I +
+

= Fua|I +
+

= 0 . (3.2.3)

The analogous structure atI − is described in §3.3 below.

Gauge theories have a local gauge symmetry which acts on the gauge eld as

δε̂Aµ = ∂µε̂ , ε̂ ∼ ε̂+ 2π

e2
. (3.2.4)

Radial gauge (2.4.31) leave un xed residual gauge transformations generated by an arbitrary function

approaching ε̂ = ε(θ) on the conformal sphere at r = ∞. We will refer to these as large gauge

transformations. The action on Γ+ is

δεAa(u, θ) = ∂aε(θ) . (3.2.5)

These comprise the asymptotic symmetries considered in this chapter. We can construct the charge

that generates this symmetry onI + following the procedure discussed in [85]. In particular, the

chargeQΣ,∆ on a hypersurfaceΣ that generates a particular symmetry transformation which acts

on elds as∆φ satis es

δQΣ,∆ = −ΩΣ

(
φ, δφ,∆φ

)
. (3.2.6)

The chargeQ∆ is then constructed by integrating the equation above. If it is possible to integrate
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the RHS, the charge is called integrable, else it is non-integrable.

Let us now use this procedure to deduce the charge for large gauge transformations (3.2.5). We

will do so in a particular example when the gauge eld couples to a scalar eld of chargeQ. In this

case, the symplectic form onI + is

ΩI + =

∫
dud2θ

√
γ
[ 1
e2
∂uδAa ∧ δAa + ∂uδϕ ∧ δϕ+ ∂uδϕ ∧ δϕ

] (3.2.7)

Now, under large gauge transformations δεϕ = iQεϕ and δεϕ = −iQεϕ. In this case, (3.2.6) takes

the form

δQ+
ε = δ

∫
dud2θ

√
γ
[
− 1

e2
∂uAaD

aε− iQε(∂uϕϕ− ϕ∂uϕ)
] (3.2.8)

Note that for a scalar eld the leading component of the current is

ju = −iQ(∂uϕϕ− ϕ∂uϕ) (3.2.9)

Additionally, the charge is integrable so that

Q+
ε =

∫
dud2θ

√
γ
[
− 1

e2
∂uAaD

aε+ εju
]
. (3.2.10)

The same formula for the charge holds for arbitrary matter elds coupled to the gauge eld. Integrat-

ing this by parts and using (3.2.3), we may write

Q+
ε =

1

e2

∫
dud2θ

√
γεF (2)

ru

∣∣
I +

−
. (3.2.11)

Thus, the charge that generates (3.2.5) is precisely the weighted integral of radial electric eld atI +
− .

Using (2.4.41), we may also write the charge as

Q+
ε =

∫
d2θ
√
γεD2N +

∫
dud2θ

√
γεju . (3.2.12)
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For the special case ε = 1,Q+
1 is the total nal electric charge which obeys

Q+
1 =

∫
I +

dud2θ
√
γju . (3.2.13)

For the choice ε(z, z) = δ2(z − w) one has the xed-angle charge

Q+
ww = 2∂w∂wN +

∫ ∞

−∞
duγwwju . (3.2.14)

This is the total outgoing electric charge radiated into the xed angle (w,w) on the asymptotic S2.

The rst term is a linear “sof ” photon (by which we mean momentum is strictly zero, as opposed to

just small) contribution to the xed-angle charge. It does not contribute to the total chargeQ+
1 as it

is a total derivative. The second term is the accumulated matter charge ux at the angle (w,w). Q+
ε

generates the large gauge transformation on matter elds

[
Q+
ε , ϕ(u, θ)

]
= −Qε(θ)ϕ(u, θ) , (3.2.15)

where ϕ is any massless charged matter eld operator onI + with charge q.

Using the commutators (2.4.44), we nd

[Q+
ε , Âa(u, θ)] = i∂aε(θ) , [Q+

ε , C(θ)] =
i

e2
ε(θ) . (3.2.16)

Moreover, the charges satisfy the Abelian algebra

[
Q+
ε , Q

+
ε′
]
= 0. (3.2.17)

Periodicity of ε implies thatC lives on a circle of radius 1
e2
:

C ∼ C +
2π

e2
. (3.2.18)
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Exponentials ofC obey

[
Q+
ε , e

ine2C(θ)
]
= −nε(θ)eine2C(θ) , n ∈ Z . (3.2.19)

Such operators do not in themselves create physical states. Rather states with charge n are created

by products of these operators with neutral matter-sector operators. This is virtually the same opera-

tor product decomposition familiar in 2D CFT when factoring aU(1) current algebra boson, or in

4D sof collinear e fective eld theory (SCET) involving the so-called jet eld [90, 91].

A vacuum wave function for the Goldstone mode which we take to beC can be de ned by the

condition

C(θ)| 0 ⟩ = 0 . (3.2.20)

(3.2.16) implies that the large gauge symmetries are broken in this vacuum. The symmetries trans-

form (3.2.20) into more generalC eigenstates obeying

C(θ)|α ⟩ = α(θ)|α ⟩ . (3.2.21)

Up to an undetermined normalization, the inner products are

⟨α |α′ ⟩ =
∏
θ

δ
(
α(θ)− α′(θ)

)
. (3.2.22)

Other zero-energy states are

|β ⟩ =
∫
[dα]e2i

∫
d2θ

√
γDaαDaβ |α ⟩ . (3.2.23)

These are zero-mode eigenstates

Na|β ⟩ = ∂aβ|β ⟩ . (3.2.24)
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obeying

Q+
ε |β⟩ =

2

e2

∫
d2θ
√
γεD2β|β ⟩ . (3.2.25)

In particular, any state with β = constant has unbroken large gauge symmetry. These vacua are

annihilated by the zero mode and are not the ones usually employed in QED analyses: it might be

of interest to consider scattering in such states.3 Finally there are normalizable, symmetry-breaking

vacua annihilated by complex linear combinations such asC + iN .

3.3 Asymptotic structure atI −

A similar structure exists nearI − and is needed to discuss scattering. Recall that the boundary data

is Ãa(v, θ̃) = lim
r→∞

Aa(v, r, θ̃). This forms the coordinate on the asymptotic phase space Γ−. The

leading order constraint equation is (obtained from the µ = v component of the equations of

motion)

∂vA(1)
v = −∂vDaÃa − e2jv , jv(v, θ̃) = lim

r→∞

[
r2Jv(v, r, θ̃)

]
. (3.3.1)

Un xed large gauge transformations are parameterized by ε−(θ̃) under which

δε−Ãa = Daε
− . (3.3.2)

The associated charge is

Q−
ε− = − 1

e2

∫
I −

+

d2θ
√
γε−F (2)

vr

=

∫
d2θ
√
γε−D2Ñ +

∫ ∞

−∞
dvd2θ

√
γε−jv .

(3.3.3)

3For example, such states might be related to the vacua considered in [92, 93].
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3.4 MatchingI +
− toI −

+

The classical scattering problem is to nd the map from Γ− to Γ+, i.e. to determine the nal data

Aa onI + which arises from a given set of initial data Ãa onI −. Given a eld strength every-

where onMinkowski space, this data is so far determined only up to the large gauge transformations

which are generated by both ε and ε− and act separately on Γ+ and Γ−. Clearly there can be no sen-

sible scattering problem without imposing a relation between ε and ε−. Any relation between them

should preserve Lorentz invariance. Under Lorentz transformation

δYAa
∣∣
I +

−
=
(
Y b∂bAa +Ab∂aY

b
)∣∣

I +
−
,

δY Ãa
∣∣
I −

+
=
(
Ỹ b∂̃bÃa + Ãb∂̃aỸ

b
)∣∣

I −
+
.

(3.4.1)

Now, recall that Y and Ỹ are related to each other as (2.3.15). Then, the symmetry is preserved by the

natural requirement

Az(−∞, z, z) = Ãz̃(+∞, z, z) . (3.4.2)

(3.4.2) in turn requires

ε(z, z) = ε−(z, z), (3.4.3)

as well as the generalization to nite gauge transformations.

In addition to the gauge eld, the radial electric elds are also antipodal matched4

F (2)
ur (−∞, θ) = F̃ (2)

vr (+∞, θ) . (3.4.4)

4It is easily checked that the Liénard-Wiechert electric eld of moving charged particle satis es this antipo-
dal matching condition as shown in [94].
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Note that, because of the antipodal identi cation of the null generators ofI + andI −, this

means the gauge parameter is not the limit of a function which depends only on the angle in Minkowskian

(r, t) coordinates. Rather it goes to the same value at the beginning and end of light rays crossing

through the origin of Minkowski space.5 ε is then a function on the space of null generators ofI .

This antipodal matching condition can also be understood by looking at the Penrose diagram of

compacti ed Minkowski space as shown in Figure 3.1.6

Both the gauge eld strength and the charge current are invariant under these symmetries. The

phases they generate on matter elds are classically unobservable. Hence (unlike the case of grav-

itational supertranslations considered in [4]), they have little import for the usual discussion of

classical scattering. It simply (antipodally) equates the nal data for Ãa
∣∣
I −

+
with that of the initial

data forAa
∣∣
I +

−
. However in the quantum theory, where phases matter, they have signi cant conse-

quences to which we now turn.

3.5 QuantumWard identity

In this section, we consider the consequences of the large gauge symmetry on the semi-classical S-

matrix. Following the conventions introduced in §2.4.6, we consider an amplitude (2.6.4) with n

outgoing particles with chargesQk outgoing to points zk, zk with energies ωk so that ⟨ out | ≡

⟨ z1, · · · zn | and | in ⟩ ≡ | 0 ⟩. The S-matrix elements are then denoted as ⟨ out |S| in ⟩. The quan-
5Such gauge transformations were considered in [95].
6We are assuming that the theory under consideration be conformally invariant in the deep IR.
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I +

I +

I −

I −

i0

θd−2

θa

θ̃a

i+

i−

Figure 3.1: The Einstein Cylinder: Minkowski spaceR1,3 is conformally equivalent to the Einstein cylinderR × S3.
In the diagram above, we have compac fied Minkowski space onto the cylinder and shown the range of coordinates.
Note that the null generators that move from I − to I + across i0 are an podally related. From this perspec ve,
the an podal matching condi on on the gauge field and large gauge parameter is quite natural.

tum version of the classical invariance of scattering under large gauge transformations is

⟨ out |
(
Q+
ε S − SQ−

ε

)
| in ⟩ = 0. (3.5.1)
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The semi-classical charge obeys the quantum relations (from (3.2.12) and (3.3.3))

⟨ out |Q+
ε = ⟨ out |F+[ε] +

n∑
k=1

Qkε(zk, zk)⟨ out | ,

Q−
ε | in ⟩ = F−[ε]| in ⟩ ,

(3.5.2)

where

F+[ε] ≡ −2
∫
d2w∂wε∂wN , F−[ε] ≡ −2

∫
d2w∂wε∂wÑ . (3.5.3)

De ning

F [ε] ≡ F+[ε]− F−[ε] . (3.5.4)

and the time ordered product

: F [ε]S : = F+[ε]S − SF−[ε] , (3.5.5)

equation (5.1.1) becomes

⟨ out | : F [ε]S : | in ⟩ = −
n∑
k=1

Qkε(zk, zk)⟨ out |S| in ⟩. (3.5.6)

This Ward identity relates the insertion of a sof photon with polarization and normalization given

in (3.5.4) into any S-matrix element to the same S-matrix element without a sof photon insertion.

For an incoming state which happens to be the vacuum, (3.5.2) reduces to

Q−
ε | 0 ⟩ = F−[ε]| 0 ⟩ . (3.5.7)

Hence,Q−
ε does not annihilate the vacuum unless ε = constant, implying that all but the constant

mode of the large gauge symmetries are spontaneously broken. Moreover (3.2.16) identi esC as the

corresponding Goldstone boson.
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This result may seem surprising for the following reason. Sof photons are labelled by a spatial

direction and a polarization. This suggests two modes for every point on the sphere, which is twice

the number predicted by Goldstone’s theorem. In fact the positive and negative helicity modes are

not independent. As spelled out in Appendix 3.7, there are non-local (on the asymptotic S2) linear

combinations of positive and negative helicity photons whose associated sof factor cancels exactly

at leading order.7 To leading order, these linear combinations of sof modes decouple from all S-

matrix elements and hence are truly pure gauge. This relation reduces the two modes for every point

on the sphere to the single one predicted by Goldstone theorem.

3.6 Soft photon theorem

In this subsection, we show that the Ward identity (3.5.6) is the sof photon theorem in disguise. In

order to do so we must rewrite everything in momentum space. We start with the mode expansion

onI + (2.5.17),

Âz(u, z, z) = −
ie2

8
√
2π2

E+
z

∫ ∞

0
dωq

[
aF ,+(ωqŷ)e

−iωqu − a†F ,−(ωqŷ)e
iωqu

]
. (3.6.1)

De ning the energy eigenmodes

Nω
a (θ) ≡

∫ ∞

−∞
dueiωuFua(u, θ) , (3.6.2)

we nd

Nω
z (z, z) = −

e

4
√
2π
E+
z

[
aF ,+(ωqŷ)H (ω) + a†F ,−(ωqŷ)H(−ω)

]
. (3.6.3)

7Sub-leading orders are considered in [96].
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whereH(x) is the Heaviside theta function. When ω > 0 (ω < 0) only the rst (second) term

contributes. We de ne the zero mode by the hermitian expression

Na = lim
ω→0

1

2

(
Nω
a +N−ω

a

)
. (3.6.4)

It follows that

Nz = −
e

8
√
2π
E+
z lim
ω→0+

[
ωaF ,+(ωŷ) + ωa†F ,−(ωŷ)

]
. (3.6.5)

Similarly onI −, we de ne

Ñz(z̃, z̃) ≡
∫ ∞

−∞
dvF̃vz = −

e

8
√
2π
E+
z lim
ω→0+

[
ωaF ,+(ωŷ) + ωa†F ,−(ωŷ)

]
, (3.6.6)

It follows from (3.6.2) and (3.6.6) that

Nz − Ñz =

∫ ∞

−∞
duFuz −

∫ ∞

−∞
dvF̃vz =

e2

4π
F

[
1

z − w

]
, (3.6.7)

where F [ε] is de ned in (3.5.4). Setting ε(w,w) = 1
z−w , the Ward identity (3.5.6) becomes

⟨ out | : (Nz −Mz)S : | in ⟩ = −
e2

4π

n∑
k=1

Qk
z − zk

⟨ out |S| in ⟩. (3.6.8)

Using (3.6.5) and (3.6.6), the above equations become

lim
ω→0+

[ω⟨ out |aF ,+(ωŷ)S| in ⟩] =
√
2eEz+

n∑
k=1

Qk
z − zk

⟨ out |S| in ⟩, (3.6.9)

where we have used the fact

lim
ω→0+

[
ω⟨ out |Sa†F ,−(ωŷ)| in ⟩

]
= − lim

ω→0+
[ω⟨ out |aF ,+(ωŷ)S| in ⟩] . (3.6.10)

(3.6.9) takes on precisely the form of a sof theorem where the particle that is taken to be sof is

a photon. It is then natural to expect that this is precisely the sof theorem derived byWeinberg in
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1965 [97]. We now show that this is indeed the case.

First, we review the derivation of the sof -photon theorem. The standard derivation utilizes Feyn-

man diagrams. However, we present a derivation here that will readily generalize to arbitrary theo-

ries with arbitrary sof particles easily.

We consider a scattering amplitudeA out,±
n+1 involving an outgoing photon of momentum qµ and

polarization ε(α)µ (q), as well as n other hard asymptotic states (some of which may also be photons),

A out,α
n+1 = ⟨ out |aF ,α(q)S | in ⟩ . (3.6.11)

The leading behavior of this amplitude when the momentum of the photon is taken to zero, q → 0,

is governed by a universal sof theorem,

A out,α
n+1 → e

n∑
k=1

Qk
pk · ε(α)(q)
pk · q

An . (3.6.12)

HereQk is the electric charge of kth particle, andAn = ⟨ out |S| in ⟩ is the hard amplitude with-

out the sof photon. The only assumptions that are needed to derive the sof photon theorem are

Lorentz symmetry and gauge invariance.

At tree level, the pole at q = 0 on the right-hand side of (3.6.12) can only arise when an internal

propagator goes on shell, which happens precisely when the sof photon attaches to one of the exter-

nal lines. This is described by a single insertion of the interaction term−AµJµ ⊂ Lint. Factorizing

on the propagators that go on shell when q → 0 then leads to

A out,α
n+1 −→ −i⟨ 0 |aF ,α(q)Aµ(0)| 0 ⟩×∑

f,s

n∑
k=1

−i
2pk · q

⟨ i |Jµ(0)| f, pk, s ⟩
⟨
1 ; . . . ; f, pk, s ; . . . ;n

∣∣S ∣∣in⟩ . (3.6.13)
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It follows from the mode expansions in §2.5 that

⟨ 0 |aF ,α(q)Aµ(0)| 0 ⟩ = eε(α)µ (q) . (3.6.14)

Lorentz invariance and current conservation completely determine the matrix elements of the elec-

tric currentJµ(x) between states of equal momentum (i.e. in the forward limit) in terms of their

electric charge (see for instance [97], chapter 10),

⟨ f, p, s |Jµ(0)| f ′, p, s′ ⟩ = −2Qf pµδff ′δss′ . (3.6.15)

Substituting (3.6.14) and (3.6.15) into (3.6.13) establishes the sof photon theorem (3.6.12).

We can rewrite (3.6.12) in the following form

lim
ω→0+

[
ωA out,α

n+1 (q)
]
= e lim

ω→0+
ω

n∑
k=1

Qk
pk · ε(α)(q)
pk · q

An. (3.6.16)

Using the parametrization of the momenta discussed earlier

pµk = ωk

(
1,

zk + zk
1 + zkzk

,
−i (zk − zk)
1 + zkzk

,
1− zkzk
1 + zkzk

)
,

qµ = ω

(
1,

z + z

1 + zz
,
−i (z − z)
1 + zz

,
1− zz
1 + zz

)
,

ε(+)
µ (q) =

1√
2
(−z, 1,−i,−z) ,

(3.6.17)

we nd

lim
ω→0+

ωA out,+
n+1 (q) =

√
2eEz+

n∑
k=1

Qk
z − zk

An , (3.6.18)

which is precisely (3.6.9). Thus, we have shown that the Ward identity, (3.5.6) is equivalent to the

sof -photon theorem. This argument can be run backwards to show that (3.6.16) implies (3.5.6) with
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ε = 1
z−w . However, since any function ε(z, z) can be written as

ε(w,w) =
1

2π

∫
d2zε(z, z)∂z

1

z − w
(3.6.19)

and F [ε] is linear in ε, the sof -photon theorem implies (3.5.6) for any ε(z, z).

3.7 Appendix: Decoupled soft photons

It is possible to see directly from the sof photon theorem that a particular combination of positive

and negative helicity photons decouples from the theory. This is seen easiest in the (z, z) coordi-

nates. We start with the sof photon theorem in this parameterization (3.6.9) for positive helicity

insertions

lim
ω→0+

ω⟨ out |aF ,+(ωŷ)S| in ⟩ =
√
2eEz+

n∑
k=1

Qk
z − zk

⟨ out |S| in ⟩ . (3.7.1)

Consider now the amplitude involving the following linear combination of the positive helicity sof

photons

O−(z, z) =
1

2π
Ez−

∫
d2w

1

z − w
∂w

[
E+
w lim
ω→0+

{
ωaF ,+

(
ωŷ(w,w)

)}]
, (3.7.2)

where ŷ points towards (w,w). Insertions of this operator is given by (3.7.1) as

⟨ out |O−(z, z)S| in ⟩ =
√
2eEz−

n∑
k=1

Qk
z − zk

⟨ out |S| in ⟩ . (3.7.3)

This is precisely the sof photon theorem for a negative-helicity sof photon with momentum point-

ing towards (z, z). We therefore conclude that the linear combination

lim
ω→0

[
ωaF ,−(ωx̂)

]
− 1

2π
Ez−

∫
d2w

1

z − w
∂w

[
E+
w lim
ω→0

{
ωaF ,+

(
ωŷ(w,w)

)}] (3.7.4)
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has no poles and decouples from the S-matrix. In the more familiar momentum space variables, this

is

aout− (ωp̂γ) +
1

2π
(
1 + cos θpγ

) ∫ dΩq
1 + cos θq(
ε(+)(p̂γ) · q̂

)2aout+ (ωq̂) , (3.7.5)

where the integral is over the angular distribution of q̂.
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4
2D Kac-Moody Symmetries of 4D

Yang-Mills Theory

4.1 Introduction

In this chapter, we study the nonabelian generalization of the large gauge symmetry. This chapter is

a modi ed extract of [2].
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The n-particle scattering amplitudesAn of any four-dimensional quantum eld theory (QFT4)

can be described as a collection of n-point correlation functions on the two-sphere (S2) with coordi-

nates (z, z)

An = ⟨O1(ω1, z1, z1) · · · On(ωn, zn, zn) ⟩ , (4.1.1)

whereOk creates (if ωk < 0) or annihilates (if ωk > 0) an asymptotic particle with energy |ωk| at

the point (zk, zk)where the particle crosses the asymptotic S2 at null in nity (I ). The alternate

description (4.1.1) is obtained from the usual momentum space description by simply trading the

three independent components of the on-shell four momentum pµk (subject to p
2
k = −m2

k) with the

three quantities (ωk, zk, zk). This is shown in Figure 4.1.

z1

z2
z3

z4

z5

z6

z7

⊗
O4(−|ω4|, z4, z̄4)

⊗
O5(−|ω5|, z5, z̄5)

⊗
O6(−|ω6|, z6, z̄6)

⊗
O7(−|ω7|, z7, z̄7)

�
O1(|ω1|, z1, z̄1)

�
O2(|ω2|, z2, z̄2)

�
O3(|ω3|, z3, z̄3)

Figure 4.1: An S-matrix amplitude represented as a correla on func on on the sphere. Operators in red have nega-
ve energy and represent incoming states and operators in blue have posi ve energy and represent outgoing states.

As discussed previously (2.3.14), the Lorentz group SL(2,C) acts as the global conformal group
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on the asymptotic S2 according to

z → az + b

cz + d
, ad− bc = 1 . (4.1.2)

Hence, in this respect,MinkowskianQFT4 amplitudes resemble Euclidean two-dimensional con-

formal eld theory (CFT2) correlators. It is natural to ask what other properties QFT4 scattering

amplitudes, expressed in the form (4.1.1), have in common with conventional CFT2 correlators,

and more generally whether a holographic relation of the formMinkowskian QFT4 = Euclidean

CFT2 might plausibly exist when gravity is included.1 In this paper, we consider tree-level scattering

of massless particles in 4D nonabelian gauge theories with gauge group G. A salient feature of all

such amplitudes is that sof gluon scattering is controlled by the sof gluon theorem [104]. A pre-

scription is given for completing the hard S-matrix (in which all external states haveEk ̸= 0) to

an S-correlator which includes positive helicity sof gluons at strictly zero energy. It is shown that

the content of the sof gluon theorem at tree-level is that the positive helicity sof gluon insertions

are holomorphic 2D currents which generate a 2D G-Kac-Moody algebra in the S-correlator! Turn-

ing the argument around, the sof gluon theorem can be derived as a tree-level Ward identity of the

Kac-Moody symmetry.2

Moreover, we show that the Kac-Moody symmetries are equivalent to the asymptotic symmetries

of 4D gauge theories described in [28]. They areCPT -invariant gauge transformations, which are

independent of advanced or retarded time and take angle-dependent values onI . CPT invariance

1The results of [11, 45, 98–103] suggest that for quantum gravity scattering amplitudes the SL(2,C)
Lorentz symmetry (4.1.2) is enhanced to the in nite-dimensional local 2D conformal symmetry.

2A similar Kac-Moody algebra was studied in [105] in the context of MHV amplitudes.
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requires that the gauge transformation at any point onI + equals that at the PT antipode onI −.

Such transformations act nontrivially on the asymptotic physical states and comprise the asymptotic

symmetry group. These are the gauge theory analogs of BMS transformations in asymptotically at

gravity [4, 14, 15, 25, 27, 45, 100–103, 106, 107]. The abelianU(1) case was discussed in [1, 30, 96] and

related recent discussions of symmetries, infrared divergences and sof theorems are in [11, 35, 108–

125].

The asymptotic symmetries of QED are spontaneously broken in the perturbative vacuum and

the sof photons were shown to be the resulting Goldstone bosons [1]. Analogously, the standard

rules of Yang-Mills perturbation theory presume a trivial at color frame onI . In this paper we

see that this trivial frame is not invariant under the non-constant Kac-Moody transformations and

the large gauge symmetry is spontaneously broken, with the sof gluons being the corresponding

Goldstone bosons.

The nonabelian interactions of Yang-Mills theory lead to some surprising new features that are

not present in parallel analyses of QED [1]. As pointed out to us by S. Caron-Huot [126, 127], the

double-sof limit of the S-matrix involving one positive and one negative helicity gluon is ambigu-

ous. The result depends on the order in which the gluons are taken to be sof . Hence a prescription

must be given for de ning the double-sof boundary of the S-matrix. We adopt the prescription

that positive helicities are always taken sof rst. With this prescription there is one holomorphic

G-Kac-Moody from positive helicity sof gluons, but not a second one from negative helicity sof

gluons.

The sof gluon theorem has well-understood universal corrections due to IR divergences which
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appear only at one loop, see e.g. [91]. These will certainly a fect any extension of the present discus-

sion beyond tree-level. Since an in nite number of relations among S-matrix elements remain, an

asymptotic symmetry may survive these corrections. However it is not clear if it can still be under-

stood as a Kac-Moody symmetry. Corrections do not appear at the level of the integrands studied

in the amplitudes program [111, 112, 128, 129] or in contexts requiring the sof limit to be taken prior

to the removal of the IR regulator [91, 111, 128]. Hence the Kac-Moody symmetry is relevant in some

contexts to all loops. We leave this issue, as well as the generalization to massive particle scattering, to

future investigations.

This chapter is organized as follows. §4.2 establishes our notation and conventions. In §4.3, we

introduce the various asymptotic elds used in the paper and discuss the asymptotic symmetries of

nonabelian gauge theories. In §4.4, we show that the sof gluon theorem is the Ward identity of a

holomorphic Kac-Moody symmetry which can also be understood as an asymptotic gauge symme-

try. In §4.5, we show that the double-sof ambiguity of the S-matrix obstructs the appearance of a

second antiholomorphic Kac-Moody. Finally, §4.6 contains a preliminary discussion of Wilson line

insertions, SCET elds and an operator realization of the at gauge connection onI .

4.2 Notations and Conventions

We consider a nonabelian gauge theory with group G and associated Lie algebra g. Elements of G in

representationRk are denoted by gk, where k labels the representation. The corresponding hermi-
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tian generators of g obey

[
T ak , T

b
k

]
= ifabcT ck ,

(4.2.1)

where a = 1, · · · , dim g and the sum over repeated Lie algebra indices is implied. The adjoint

elements of G and generators of g are denoted by g and T a respectively with (T a)bc = −ifabc. The

real antisymmetric structure constants fabc are normalized so that

facdf bcd = δab = tr
[
T aT b

]
. (4.2.2)

The four-dimensional matrix valued gauge eld isAµ = AaµT a. The eld strength corresponding

toAµ is

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] = FaµνT a. (4.2.3)

The theory is invariant under gauge transformations

Aµ → gAµg−1 + ig∂µg
−1 , ϕk → gkϕk , Jµ → gJµg−1, (4.2.4)

where ϕk are matter elds in representationRk andJµ is the matter current that couples to the

gauge eld. The in nitesimal gauge transformations with respect to ε̂ = ε̂aT a (where g = eiε̂) are

δε̂Aµ = ∂µε̂− i[Aµ, ε̂] , δε̂ϕk = iε̂aT ak ϕk , δε̂Jµ = −i[Jµ, ε̂] . (4.2.5)

The bulk equations that govern the dynamics of the gauge eld are

∇νFνµ − i [Aν ,Fνµ] = g2YMJµ , (4.2.6)

where∇µ is the covariant derivative with respect to the spacetime metric.
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4.3 Asymptotic fields and symmetries

In this section, we give our conventions for the asymptotic expansion aroundI (see [28] for more

details), specify the gauge conditions and boundary conditions, and describe the residual large gauge

symmetry.

For the purposes of this chapter, we nd it convenient to work in temporal gauge

Au = 0 . (4.3.1)

In this gauge, we can expand the gauge elds nearI + as

Aa(r, u, θ) = Aa(u, θ) +O (1/r) , Ar(r, u, θ) =
1

r2
A(2)
r (u, θ) +O

(
1/r3

)
, (4.3.2)

where the leading behavior of the gauge eld is chosen so that the charge and energy ux through

I + is nite. The full four-dimensional gauge eld is determined by the equations of motion in

terms ofAa(u, θ), which forms the boundary data of the theory.

The leading behavior of the eld strength isFur = O(1/r2) andFua,Fab = O(1)with leading

coe cients

Fur = ∂uA
(2)
r , Fua = ∂uAa , Fab = ∂aAb − ∂bAa − i[Aa, Ab] . (4.3.3)

We will be interested in con gurations that revert to the vacuum in the far future, i.e.

Fur|I +
+

= Fua|I +
+

= Fab|I +
+

= 0. (4.3.4)

(4.3.4) implies

Ua ≡ Aa|I +
+

= iU∂aU−1, (4.3.5)
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where U(θ) ∈ G. A residual gauge freedom nearI + is generated by an arbitrary function ε(θ)

on the asymptotic S2. These create zero-momentum gluons and will be referred to as large gauge

transformations. Under nite large gauge transformations U → gU . We also de ne the sof gluon

operator

Na ≡
∫ ∞

−∞
duFua = Ua −Aa|I +

−
. (4.3.6)

NearI −, the temporal gauge condition implies

Av = 0. (4.3.7)

We expand the gauge elds asAa = Ãa+O(r−1),Ar = 1
r2
Ã

(2)
r +O(r−3). The eld strength has

leading behaviorFvr ∼ O(1/r2) andFva,Fab = O(1)with leading coe cients

F̃vr = ∂vÃr , F̃va = ∂vÃa , F̃ab = ∂aÃb − ∂bÃa − i[Ãa, Ãb] . (4.3.8)

Con gurations that begin from the vacuum in the far past satisfy

F̃ur|I −
−

= F̃va|I −
−

= F̃ab|I −
−

= 0. (4.3.9)

The four-dimensional gauge eld is uniquely determined by the boundary data Ãa(v, θ̃).

Residual gauge freedom nearI − is generated by an arbitrary function ε−(θ̃) on the asymptotic

S2. Furthermore, (4.3.9) implies

Va ≡ Ba|I −
−

= iV∂aV−1, (4.3.10)

OnI −, we de ne the sof gluon operator

Ña ≡
∫ ∞

−∞
dvF̃va = Ba|I −

+
− Va . (4.3.11)

74



The classical scattering problem, i.e. to determine the nal dataAa given a set of initial data Ãa

is de ned only up to the large gauge transformations generated by both ε and ε− that act separately

on the initial and nal data. Clearly, there can be no sensible scattering problem without impos-

ing some relation between ε and ε−. To do this, we match the gauge eld at i0. Lorentz invariant

matching conditions are

Az|I +
−

= Ãz|I −
+
. (4.3.12)

This is preserved by

ε(z, z) = ε−(z, z). (4.3.13)

Note that because of the antipodal identi cation of the null generators ofI ± across i0, the gauge

parameter ε(z, z) is not the limit of a function that depends on the angle in Minkowskian (t, r) co-

ordinates. Rather, it goes to the same value at the beginning and end of light rays crossing through

the origin of Minkowski space. ε is then a Lie algebra valued function (or section) on the space of

null generators ofI .

4.4 Holomorphic soft gluon current

In this section, we show that the sof theorem for outgoing positive helicity gluons (or equivalently

incoming negative helicity gluons) is the Ward identity of the holomorphic large gauge transforma-

tions and takes the form of a holomorphic G-Kac-Moody symmetry acting on the S2 onI .

LetOk(ωk, zk, zk) denote an operator which creates or annihilates a colored hard particle with
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energy ωk ̸= 0 crossing the S2 onI at the point zk.3 We denote the standard n-particle hard

amplitudes by

An(z1, . . . , zn) = ⟨O1 · · · On ⟩U=1. (4.4.1)

There are no traces here, soAn has n suppressed color indices. Since the gauge eld vanishes at in n-

ity, the asymptotic S2 has a at connectionUz = iU∂zU
−1, whereU ∈ G.4 In order to compare

the color of particles emerging at di ferent points on the S2, this connection must be speci ed. The

U = 1 subscript here indicates the fact that the standard perturbation theory presumes the trivial

connectionUz = 0.5

The hard S-matrix has sof boundaries where gluon momenta vanish. We wish to give a prescrip-

tion to extend, or ‘compactify’ the S-matrix to a larger object that includes these boundaries. Since

zero-energy gluons are not obviously either incoming or outgoing, the S-matrix so compacti ed

is not obviously a matrix mapping in states to out states. Hence we will refer to the compacti ed

S-matrix as the S-correlator.6

3For instance, for scalar particles

Ok(ωk, zk, zk) = −
4π

ωk

∫ ∞

−∞
dueiωku∂u lim

r→∞
[rϕk(u, r, zk, zk)] .

4Uz should not be confused with Uz (de ned in (4.3.5)).
5ForUz = 0 orU = 1 an outgoing con guration with a red quark at the north pole and a red quark at

the south pole is a color singlet state which can be created by a colorless incoming state. For more general
choices ofUz this will not be the case.

6In the abelian examples of gravity and QED [1, 4, 27, 103], it is possible to view the S-correlator as a con-
ventional S-matrix. However, the non-commutativity (see (4.5.2)) of the multi-gluon sof limits persists even
if one gluon is outgoing (q0 > 0) and the other incoming (q′0 < 0). This means that the sof limit on an out
state does not commute with the sof limit on an in state, creating di culties for the reinterpretation of the
S-correlator as an S-matrix.
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4.4.1 Soft gluon theorem

In this section, we will show that insertions of the sof gluon current Jz , de ned by

Jz ≡ −
4π

g2YM

(
Nz − Ñz

)
=

4π

g2YM

(∫
dvF̃vz −

∫
duFuz

)
, (4.4.2)

into the hard tree-level S-matrix are determined by the sof gluon theorem. In its conventional mo-

mentum space form, this theorem states

⟨O1(p1) · · · On(pn);Oa(q, ε) ⟩U=1

= gYM

n∑
k=1

pk · ε
pk · q

⟨O1(p1) · · ·T akOk(pk) · · · On(pn) ⟩U=1 +O(q0),
(4.4.3)

whereOa(q, ε) = tr [T aO(q, ε)] creates or annihilates, depending on the sign of q0, a sof gluon

with momentum q⃗ and polarization εµ, and T ak is a generator in the representation carried byOk.

Gauge invariance of the theory requires that the right hand side vanishes when ε = q. This implies

n∑
k=1

⟨O1(p1) · · ·T akOk(pk) · · · On(pn) ⟩U=1 = 0, (4.4.4)

which is global color conservation. Using the notation of our present paper and assuming ε ̸= q, for

a positive helicity gluon with massless particles (p2k = 0), (4.4.3) becomes

⟨ JazO1 · · · On ⟩U=1 =
n∑
k=1

1

z − zk
⟨O1 · · ·T akOk · · · On ⟩U=1, (4.4.5)

where Jaz ≡ tr [T aJz]. This was shown in [28] and is reviewed in the appendix. The collinear

q · pk → 0 singularities of (4.4.3) become the poles at z = zk in (4.4.5). The sof pole in (4.4.3)

is absent in (4.4.5) simply because the de nition of Jaz involves the zero mode of the eld strength

rather than the gauge eld and hence an extra factor of the sof energy.
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4.4.2 Kac-Moody symmetry

Since ∂zJz = 0 away from operator insertions, Jz is a holomorphic current. Consider a contour

C and an in nitesimal gauge transformation εa(z)which is holomorphic (∂zεa = 0) inside C. It

follows from (4.4.5) that

⟨ JC(ε)O1 · · · On ⟩U=1 =
∑
k∈C
⟨O1 · · · εk(zk)Ok · · · On ⟩U=1, (4.4.6)

where εk(zk) = εa(zk)T
a
k and

JC(ε) ≡
∮
C

dz

2πi
tr [εJz] , (4.4.7)

and the sum k ∈ C includes all insertions inside the contour C. Moreover from the sof theorem

with multiple Jz insertions one nds

⟨ JC(ε)JwO1 · · · On ⟩U=1 =
∑
k∈C
⟨ JwO1 · · · εk(zk)Ok · · · On ⟩U=1

+ ⟨ ε(w)JwO1 · · · On ⟩U=1,

(4.4.8)

where the last term is added only whenw is also inside C.

(4.4.8) is a very familiar formula in two-dimensional conformal eld theory. It is the Ward iden-

tity of a holomorphic Kac-Moody symmetry for the group G. The absence of a term with no Jw on

the right hand side of (4.4.8) indicates that the Kac-Moody level is zero (at tree-level). Hence the S-

correlators for any massless theory with nonabelian gauge group G transform under a holomorphic

level-zero G-Kac-Moody action!
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4.4.3 Asymptotic symmetries

In this subsection, the Kac-Moody symmetry is identi ed with holomorphic large gauge symmetry

of the gauge theory. According to (4.2.4) under the action of the asymptotic symmetry transforma-

tionU

Ok(zk, zk)→ Uk(zk, zk)Ok(zk, zk), (4.4.9)

whereUk acts in the representation ofOk. S-correlators for generalU are simply related to those for

U = 1

⟨ JazO
i1
1 · · · ⟩U = U(z, z)abU1(z1, z1)

i1j1 · · · ⟨ JbzO
j1
1 · · · ⟩U=1. (4.4.10)

To compare the asymptotic symmetry action (4.4.10) with the Kac-Moody action (4.4.6), con-

sider in nitesimal complexi ed transformations of the form

U(z, z) = 1 + iε(z) + · · · , (4.4.11)

which are holomorphic inside the contour C and vanish outside. In that case (4.4.10) linearizes to

δε⟨O1 · · · On ⟩U=1 = i
∑
k∈C
⟨O1 · · · εk(zk)Ok · · · On ⟩U=1, (4.4.12)

where the operator insertions could also include a positive-helicity sof gluon. Comparing with

(4.4.6) we see that

−iδε⟨O1 · · · On ⟩U=1 = ⟨ JC(ε)O1 · · · On ⟩U=1. (4.4.13)
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Hence, JC(ε) generates holomorphic asymptotic symmetry transformations

JC(ε) =

∫
DC

d2zγzzε
a δ

δUa
, (4.4.14)

whereDC is the region inside C andUa is the Lie algebra element corresponding toU , that is,U =

eiU
aTa .

Let C0 be any contour that divides the incoming and outgoing particles as shown in Figure 4.2.

⊗

⊗

⊗

⊗
�

�
�

C0

Figure 4.2: The contour C0 which separates incoming par cles and outgoing par cles.

For ε holomorphic on the incoming side of C0, the corresponding JC0(ε) is then the charge that

generates the asymptotic symmetries on the incoming state. If ε is holomorphic and non-constant

on the incoming side of C0, it extends to a meromorphic section which must have poles on the out-

going side whose locations we denotew1, . . . , wp. We may also evaluate the contour integral by

pulling it over the outgoing state. Equating this with (4.4.6) one nds, for any meromorphic section
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ε

−iδε⟨O1 · · · On ⟩U=1 = −
p∑
i=1

⟨ tr [εJw]wi
O1 · · · On ⟩U=1, (4.4.15)

where

tr [εJw]wi
= Res

w→wi

tr [εJw] . (4.4.16)

This is another form of the sof gluon theorem. It states that S-correlators are invariant under the

asymptotic symmetries up to insertions of the sof gluon current. The appearance of the inhomo-

geneous term on the right hand side implies that theU = 1 vacuum spontaneously breaks the

symmetry. The sof gluons are the associated Goldstone bosons. Indeed, when p = 0, i.e. when ε is

a globally holomorphic function on the sphere (and therefore a constant), we have

δε⟨O1 · · · On ⟩U=1 = 0, (4.4.17)

which is precisely (4.4.4). This indicates that the subgroup of constant global asymptotic color rota-

tions is not spontaneously broken, as expected.

One might think that the Kac-Moody symmetry does not capture all of the asymptotic symmetry

group, since the transformations are restricted to be holomorphic within some contour C. However,

this is an irrelevant restriction. The S-correlator identities depend only on the n values εk = ε(zk)

of ε at the n operator insertions. For any choice of εk there exists a holomorphic ε(z) inside some

C such that ε(zk) = εk at the positions of operator insertions. Hence the holomorphicity does not

preclude consideration of any gauge transformation on Fock space states, and all nontrivial relations

among S-correlation functions can be derived from the Kac-Moody symmetry. In particular the sof
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gluon theorem (4.4.5) is itself a Ward identity of the the Kac-Moody symmetry.

4.5 Antiholomorphic current

We have seen that positive helicity sof gluon currents Jz generate a holomorphic Kac-Moody sym-

metry. Naively one might expect that negative helicity sof gluon currents Jaz generate a second Kac-

Moody symmetry which is antiholomorphic. This turns out not to be the case for a very interesting

reason.

The crucial observation is due to [126, 127]. Consider a boundary of the S-matrix near which two

gluons become sof . One nds

An+2(p1, . . . , pn; q, ε, a; q
′, ε′, b)

= g2YM

n∑
k=1

ε · pk
q · pk

n∑
j=1

ε′ · pj
q′ · pj

⟨O1 · · ·T akOk · · ·T bjOj · · · On ⟩U=1

− ig2YMfabc
n∑
j=1

ε′ · pj
q′ · pj

ε · q′

q · q′
⟨O1 · · ·T cjOj · · · On ⟩U=1 +O(q0, q′0) ,

(4.5.1)

where the above limit has been computed by taking q → 0 rst. Surprisingly, the right hand side

actually depends on the order of limits and[
lim
q→0

, lim
q′→0

]
An+2(p1, . . . , pn; q, ε, a; q

′, ε′, b)

= ig2YMf
abc

n∑
k=1

(
ε · pk
pk · q

− ε · q′

q · q′

)(
ε′ · pk
q′ · pk

− ε′ · q
q · q′

)
⟨O1 · · ·T akOk · · · On ⟩U=1

+O
(
q0, q′0

)
.

(4.5.2)

In the special case that the helicities are the same, then the right hand side of the above expression

vanishes and the limits commute. In this case, the S-matrix can be extended to its sof boundaries
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unambiguously. When the helicities are not the same, the value of the S-matrix at the sof boundary

is ambiguous. In terms of currents, taking the positive helicity gluon to zero rst gives

Jaz J
b
w ∼ −

ifabc

z − w
Jcw, (4.5.3)

while in the other order we have

Jaz J
b
w ∼ −

ifabc

z − w
Jcz . (4.5.4)

Thus, the extension (or ‘compacti cation’) of the S-matrix to all sof boundaries requires a prescrip-

tion. In this paper we adopt the prescription that positive helicity gluon momenta are always taken

to zero before negative helicity gluon momenta. With this prescription, it follows from (4.5.3) that

the current Jaz generates a Kac-Moody symmetry, under which Jaz transforms in the adjoint. Jaz

itself does not generate a symmetry. A prescription which treats Jaz and Jaz symmetrically yields

no symmetry, while taking negative helicity momenta to zero rst gives one antiholomorphic Kac-

Moody symmetry generated by Jaz .

The situation is reminiscent of three-dimensional Chern-Simon gauge theory on a manifold

with a boundary parameterized by (z, z). A priori, one might have expectedAz andAz to gener-

ate both holomorphic and antiholomorphic G-Kac-Moody symmetries. However a more careful

analysis reveals that boundary conditions must be chosen to eliminate one or the other. Indeed, this

may be more than an analogy. The current Jaz has no time dependence and lives on the S2 at the

boundary of the 3-manifoldI , and the addition of a θF ∧ F term to the 4D gauge theory action

induces a Chern-Simons term onI . It would be interesting to understand how such a term a fects

the present analysis.
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4.6 Wilson lines and the flat connection onI

Other types of S-correlator insertions besides sof gluon currents are of physical interest and have

been considered in the literature. This section contains preliminary observations on a few such inser-

tions.

Consider the Wilson line operator

WC(u, z1, z2) = P exp
(
i

∫
C
dxµAµ

)
, (4.6.1)

where P denotes path-ordering and the contour C is chosen such that it initially entersI + at

(u, z1, z1) and leaves at (u, z2, z2) along null lines of varying r and xed (u, z, z). Under holo-

morphic large gauge transformations

WC(u, z1, z2)→ g(z1)WC(u, z1, z2)g(z2)
−1, (4.6.2)

where g(z) ∈ G. Insertions of Jz in the presence of the Wilson lines are given by the sof theorem7

⟨ JazWC(u, z1, z2) · · · ⟩U=1 =
1

z − z1
⟨T aWC(u, z1, z2) · · · ⟩U=1

− 1

z − z2
⟨WC(u, z1, z2)T

a · · · ⟩U=1 + · · · .
(4.6.3)

From this, we can construct

Az(u, z, z) = −i lim
z′→z

∂zWC(u, z, z
′), (4.6.4)

where we take C to be a short contour from z′ → z. It follows from (4.6.3)

⟨ JazAbwO1 · · · ⟩U=1 = −
iδab

(z − w)2
⟨O1 · · · ⟩ −

ifabc

z − w
⟨AcwO1 · · · ⟩+ · · · . (4.6.5)

7See §36.3.2 of [130] for details.
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Hence the action of Jz indeed transformsAz as a connection onI as expected. A similar discus-

sion applies to elds onI −.

Recall that Jz was constructed from zero modes of the past and future eld strengths (see (4.4.2)).

However,Az(u) has an inhomogeneous term in its gauge transformation and has a sof u-independent

piece that cannot be constructed from Jz . To see this, we expand onI +

Az(u, z, z) =

∫ ∞

−∞

dω

2π
e−iωuAωz (z, z) + Cz, (4.6.6)

whereCz is de ned in (2.4.38)

Here we have used the fact that functions whose boundary values at±∞ do not sum to zero

do not have a Fourier transform given in terms of ordinary functions. Radiative insertions in an

S-matrix involveAωz and

Nz = −
i

2
lim
ω→0+

(
ωAωz − ωA−ω

z

)
. (4.6.7)

Under a large gauge transformation,

δεA
ω
z = −i[Aωz , ε] , δεUz = ∂zε− i[Uz, ε]. (4.6.8)

Hence the Fourier modes ofAz transform in the adjoint of the asymptotic symmetry group, while

the constant piece Uz is a connection on S2. Further, (4.3.5) and (4.6.5) imply that we have

⟨ Jaz U(w,w)O1 · · · ⟩U=1 =
T a

z − w
⟨ U(w,w)O1 · · · ⟩U=1. (4.6.9)

A parallel structure onI − also exists.

The at connectionUz is related to the SCET orWilson line elds used to study jet physics [91].

In CFT2 with a Kac-Moody symmetry, correlations functions factorize into a hard part and a sof
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part computed by the current algebra. 4D gauge theory amplitudes also factorize into a hard and a

sof part, with the latter computed byWilson line correlators. It would interesting to relate this sof

part to U -correlators and compare it to the structure in CFT2.
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5
In nite-dimensional Fermionic Symmetries

ofN = 1 supersymmetric QED

In this chapter, we study our nal example of asymptotic symmetries in at spacetime – in a super-

symmetric extension of QED. Unlike the previous two chapters, where the asymptotic symmetry

was a subgroup of previously known symmetry, namely gauge symmetry, this will not be the case
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here. Instead, our approach will be to start with the sof -photino theorem and deduce an asymptotic

symmetry. This chapter is a modi ed extract of [3].

5.1 Introduction

The universal sof behavior of gauge boson amplitudes was recently traced back to the existence of

in nitely many symmetries that act on asymptotic scattering states at Minkowskian null in nity,

i.e. asymptotic symmetries, whose Ward identities are equivalent to the sof theorems [1, 2, 4, 27–

31, 35, 86, 96, 103, 125, 131–135]. Typically, these asymptotic symmetries can be viewed as large gauge

transformations, which do not vanish at in nity and therefore act non-trivially on physical states.1

For instance, the symmetries that give rise to the leading sof photon theorem [1, 2, 28, 31, 86, 132,

135] are parametrized by a function ε(z, z) on an asymptotic S2 (with complex coordinates z, z)

inside the null boundary of Minkowski space. The corresponding chargesQε are higher-harmonic

generalizations of the electric charge, to which they reduce when ε(z, z) = 1. Transformations

with non-constant ε(z, z) inhomogeneously shif the gauge eldAµ by ∂µε, and hence they are

spontaneously broken. The corresponding Goldstone bosons are sof , zero-momentum photons.

It is natural to ask whether sof theorems for massless particles that are not gauge bosons have

similar interpretations in terms of asymptotic symmetries. Here we will explore this question in the

context of rigid supersymmetric gauge theories, where the gauge elds are accompanied by massless

spin-12 superpartners. For simplicity, we con ne our attention toU(1) gauge theories withN =

1 Here we follow the terminology of [28]: large gauge transformations are assumed to act non-trivially on
physical states, because they do not vanish su ciently rapidly at the boundary of spacetime. However, they
may be topologically trivial, i.e. deformable to the identity gauge transformation.
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1 supersymmetry and massless charged matter in four dimensions. TheU(1) photonAµ has an

electrically neutral, fermionic superpartner – the photinoΛα – whose couplings to charged matter

are related to those of the photon by supersymmetry.

In this paper, we will establish the existence of in nitely many fermionic asymptotic symmetries,

parametrized by a chiral spinor-valued function χα(z, z) on S2, whose Ward identities give rise to

the sof photino theorem. The corresponding anti-commuting chargesFχ act on the asymptotic

elds at null in nity. However, unlike the in nity of bosonic chargesQε, they are not a subgroup

of any obvious symmetry of the Lagrangian.2 The usual Lagrangian only displays a nite number

of manifest fermionic symmetries – the global supersymmetries generated byQα andQα̇. It is per-

haps surprising that even rigid supersymmetric gauge theories can support an in nite number of

fermionic asymptotic symmetries.3 By contrast, this is expected in supergravity, where local super-

symmetry is a gauge symmetry [137, 138].

Under the action ofFχ we nd that the photinoΛα shif s inhomogeneously. Hence these

symmetries are spontaneously broken, and the sof photini are interpreted as the corresponding

Goldstone fermions. Interestingly, supersymmetry relates the fermionic chargesFχ to the bosonic

2 The asymptotic symmetries related to the magnetic generalization of the leading sof photon theo-
rem [86] or the subleading sof photon theorem [96] are also not manifest at the level of the Lagrangian.

3 A similar phenomenon occurs in three-dimensional, supersymmetric Chern-Simons theory in the pres-
ence of a suitably supersymmetric boundary, which supports a supersymmetric Kac-Moody current algebra.
(As we will see below, the asymptotic symmetriesQε andFχ also give rise to just such a current algebra.) The
bosonic Kac-Moody symmetries are conventional gauge transformations that do not vanish at the boundary.
The Kac-Moody fermions can be understood as a remnant of the full super gauge symmetry that is present
before xingWess-Zumino (WZ) gauge (see for instance [136]). It is plausible that our asymptotic symme-
triesFχ have a similar interpretation, but we will not show it here. Instead, we will exhibit the chargesFχ

directly in WZ gauge and explore their properties.
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chargesQε. We nd (see (5.3.14) below),

{
ζαQα,Fχ

}
= iQζαχα ,

{
Qα̇,Fχ

}
= 0 . (5.1.1)

Here the supersymmetry transformation is parametrized by a commuting, constant spinor ζα,

and χα(z, z) is also taken to be commuting. The chargesQε commute withQα andQα̇.

The sof photon theorem implies that the insertion of a zero-momentum, positive-helicity pho-

ton into a scattering amplitude can be interpreted as the Ward identity for aU(1)Kac-Moody cur-

rent, which transforms in a (1, 0) representation of the SL(2,C) conformal symmetry acting on

the S2 at null in nity [1, 28]. Similarly, we will see that the insertion of a positive-helicity photino

behaves like a (12 , 0) current on S
2. The two currents are related by supersymmetry, as was the case

for the charges in (5.1.1).

In §5.2, we begin by reviewing basic aspects of abelian gauge theories withN = 1 supersymme-

try, focusing on the structure of the supermultiplet that contains the electric currentJµ, which cou-

ples to the photon, and its fermionic superpartnerKFα , which couples to the photino. We present a

current-algebra derivation of the tree-level sof photon and photino theorems that utilizes the prop-

erties ofJµ andKFα matrix elements between asymptotic states. This derivation emphasizes the

universality of the two sof theorems, as well as their relation via supersymmetry. In §5.3 we analyze

the classical dynamics of the supersymmetric gauge theory near null in nity. This is facilitated by

a convenient choice of coordinates and spinor basis, in which the asymptotic behavior of massless

elds near null in nity is simply related to their quantum numbers with respect to the conformal

group that governs the deep IR behavior of the theory. Af er reviewing the results of [1] on the
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asymptotic dynamics of the photon and the associated bosonic chargesQε, we repeat the analysis for

the photino. We construct the fermionic asymptotic chargesFχ and establish some of their basic

properties. In §5.4 we show that the Ward identity for the fermionic symmetriesFχ reproduces the

sof photino theorem derived in §5.2.

5.2 Soft Theorems

5.2.1 Aspects ofN = 1Gauge Theories

Unless stated otherwise, we will use the conventions of [87]. As was stated in the introduction, we

will considerU(1) gauge theories withN = 1 supersymmetry. Af er xingWess-Zumino (WZ)

gauge, the vector multiplet V is given by

V =
(
Aµ ,Λα ,Λα̇ ,D

)
. (5.2.1)

HereAµ is theU(1) gauge eld (i.e. the photon) with eld strengthFµν = ∂µAν − ∂νAµ. It is

subject to conventionalU(1) gauge transformations, which remain un xed inWZ gauge. The spin-

1
2 superpartner of the photon is the photino, which is described by a lef -handedWeyl fermionΛα

and its right-handed Hermitian conjugateΛα̇. The vector multiplet also contains a real scalarD,

which is a non-propagating auxiliary eld.

InWZ gauge, the non-vanishing (anti-) commutators of the component elds in the vector multi-
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plet V with the superchargesQα,Qα̇ are given by

[
Qα,Aµ

]
= −σµαα̇Λ

α̇
,

[
Qα̇,Aµ

]
= Λασµαα̇ , (5.2.2a)

{
Qα,Λβ

}
= εαβD − i (σµν)αβ Fµν ,

{
Qα̇,Λβ̇

}
= εα̇β̇D − i (σ

µν)α̇β̇ Fµν , (5.2.2b)

[
Qα,D

]
= −iσµαα̇∂µΛ

α̇
,

[
Qα̇,D

]
= −i∂µΛασµαα̇ . (5.2.2c)

The dynamics of the gauge multiplet is described by a LagrangianLgauge, which is invariant (up to a

total derivative) under the supersymmetry transformations in (5.2.2),

Lgauge = −
1

4e2
FµνFµν −

i

e2
Λσµ∂µΛ +

1

2e2
D2 + (higher-derivative terms) . (5.2.3)

In addition to the standard two-derivative kinetic terms for the gauge multiplet, we are allowing for

the possibility of higher-derivative terms, e.g. terms such asF4 + (fermions), which arise in super-

symmetric Born-Infeld actions. The sof theorems discussed below remain valid in the presence of

such terms.

The interaction of the gauge eldAµ with matter proceeds through a conserved currentJµ,

which resides in a real linear multipletJ ,4

J =
(
KB ,KFα ,K

F
α̇ ,Jµ

)
, ∂µJµ = 0 . (5.2.4)

HereKB is a real scalar, whileKFα and its Hermitian conjugateKFα̇ are lef - and right-handedWeyl

spinors. UnlikeJµ, neitherKB norKFα ,K
F
α̇ obey a di ferential constraint, i.e. they are not con-

served currents. All elds in the current supermultipletJ are gauge invariant. Their non-vanishing

4 In superspace, a real linear multiplet is described by a real super eldJ that satis es the con-
straintsD2J = D

2J = 0, whereDα, Dα̇ are the usual super-covariant derivative operators de ned
in [87].
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supersymmetry transformations take the following model-independent form,

[
Qα,KB

]
= iKFα ,

[
Qα̇,KB

]
= iKFα̇ , (5.2.5a)

{
Qα̇,KFα

}
= −iσµαα̇

(
Jµ + i∂µKB

)
,

{
Qα,K

F
α̇

}
= iσµαα̇

(
Jµ − i∂µKB

)
, (5.2.5b)

[
Qα,Jµ

]
= −2(σµν)α

β∂νKFβ ,
[
Qα̇,Jµ

]
= 2 (σµν)α̇β̇ ∂

νKF β̇ . (5.2.5c)

At rst order, the interaction of the elds in the vector multiplet V with matter proceeds via the

following universal couplings to the operators in the current multipletJ ,5

Lint = −AµJµ − iΛKF + iΛKF −DKB + (higher order) . (5.2.6)

The higher-order terms are required by gauge invariance and supersymmetry.

In general, the current multipletJ encodes all couplings of the gauge theory to charged matter,

as well as possible self-interactions due to higher-derivative terms, such as those indicated in (5.2.3).

For simplicity, we will take all matter elds to reside in massless chiral multiplets. Most of the results

below only rely on general properties of the current multipletJ , e.g. its supersymmetry transfor-

mations (5.2.5), but do not depend on the detailed form of the interaction terms. Nevertheless, it

is helpful to keep in mind the simplest theory in this class, which consists of a single massless, min-

imally coupled chiral multiplet of charge q, with canonical kinetic terms and no superpotential or

5 For instance, this means thatJµ(x) = −
δSint

δAµ(x)
, where Sint =

∫
d4xLint.
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higher-derivative interactions.6 In this theory, the operators in the current multipletJ are given by

KB = QΦΦ , (5.2.7a)

KFα = Q
√
2ΦΨα , KFα̇ = Q

√
2ΦΨα̇ , (5.2.7b)

Jµ = Q
(
iΦ
←→
DµΦ+ΨσµΨ

)
. (5.2.7c)

HereΦ,Ψα are the propagating component elds in the chiral multiplet (their Hermitian conju-

gatesΦ,Ψα̇ reside in an anti-chiral multiplet) andDµ = ∂µ − iQAµ is the gauge-covariant deriva-

tive. In our conventions, the electric chargeQel is given by

Qel =

∫
d3xJ0 , (5.2.8)

and the statement thatΦ,Ψα both have chargeQmeans that

[Qel,Φ(x)] = −QΦ(x) , [Qel,Ψα(x)] = −QΨα(x) . (5.2.9)

This implies that a stateΦ(x)|0⟩ has charge−Q.

5.2.2 Soft Photino Theorem

In this section, we derive the sof -photino theorem following very closely the derivation of the sof -

photon theorem in §3.6. In the supersymmetric case, we can study scattering amplitudesA out,+
n+1

involving an outgoing photinoΛ of momentum q and positive helicity, as well as n other hard parti-

cles,

A out,+
n+1 =

⟨
out
∣∣aΛ,+(q)S ∣∣in⟩ . (5.2.10)

6 This theory is quantummechanically anomalous. The anomaly can be cancelled by including additional
chiral multiplets with suitableU(1) charge assignments.
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In order for the amplitude to be non-zero, the total number of fermions involved in the scatter-

ing process (including the photino) must be even. We are interested in the leading behavior of this

amplitude when the photino momentum is taken to zero, q → 0. As in §3.6, this arises from

single insertions of the interaction terms−iΛKF + iΛKF ⊂ Lint in (5.2.6) that attach only

to external lines. For a positive-helicity photino, insertions of−iΛKF do not contribute, since

⟨ 0 |aΛ,+(q)Λα(0)| 0 ⟩ = 0. Therefore, the amplitude obeys the following sof theorem,

A out,+
n+1 −→ −⟨ 0 |aΛ,+(q)Λα̇(0)| 0 ⟩×∑
f,s

n∑
i=1

−i
2pi · q

(−1)σi⟨ i |KFα̇(0)| f, pi, s ⟩
⟨
1 ; . . . ; f, pi, s ; . . . ;n

∣∣S ∣∣in⟩ . (5.2.11)

Here (−1)σi is a fermion sign factor that comes from anti-commutingKFα̇ across multi-particle

states.7

The photino wavefunction is given by (see §2.5)

⟨ 0 |aΛ,+(q)Λα̇(0)| 0 ⟩ = eηα̇(q) . (5.2.12)

We must now evaluate the matrix elements of the fermionic operatorKFα̇ between single-particle

states, in the forward limit. In general, the matrix elements of such an operator may be model-

dependent. However,KFα̇ resides in the same supermultiplet (5.2.4) as the conserved electric cur-

rentJµ, whose forward matrix elements are universal, as discussed around (3.6.15). Explicitly, we can

evaluate the following commutation relation from (5.2.5),

{
Qα,K

F
α̇

}
= iσµαα̇

(
Jµ − i∂µKB

)
, (5.2.13)

7 For a state ⟨1 ; . . . ; i ; . . . ; n|we de ne σi to be the number of fermionic states in positions i+ 1
through n.

95



between single-particle states in the forward limit, where we can drop the total derivative ∂µKB .

Using (3.6.15) then leads to

⟨ f, p, s |
{
Qα,K

F
α̇

}
| f ′, p, s′ ⟩ = −2iQf pµσµαα̇ δff ′δss′ . (5.2.14)

The appearance of δff ′ on the right-hand side shows that only single-particle states that reside in the

same supermultiplet can can lead to non-vanishing matrix elements forKFα̇ . When the supercharges

act on the lef or the right, they lead to other states in this supermultiplet, in a way that is completely

determined by representation theory. This can be used to derive all matrix elements ofKFα̇ between

massless or massive single-particle states of arbitrary spin.

Here we explicitly work this out for a massless chiral multipletΦ,Ψα of chargeQ, and its conju-

gate anti-chiral multipletΦ,Ψα̇ of charge−Q. The relevant single-particle states are

|Φ, p⟩ , |Ψ, p,−⟩ and |Φ, p⟩ , |Ψ, p,+⟩ . (5.2.15)

On these states, the supersymmetry algebra is represented as follows,8

Qα̇|Φ, p⟩ = 0 , Qα|Φ, p⟩ =
√
2i ηα(p)|Ψ, p,−⟩ ,

Qα̇|Ψ, p,−⟩ = −
√
2i ηα̇(p)|Φ, p⟩ , Qα|Ψ, p,−⟩ = 0 . (5.2.16)

The action of the supercharges on the conjugate anti-chiral states is obtained by exchangingQα ↔

Qα̇, |Φ, p⟩ ↔ |Φ, p⟩, ηα(p)↔ ηα̇(p), and |Ψ, p,−⟩ ↔ |Ψ, p,+⟩.

We can now implement the procedure described af er (5.2.14) to obtain all non-vanishing matrix

8 This follows from the non-vanishing commutation relations for a free chiral multiplet,
[Qα,Φ] = i

√
2Ψα and {Qα̇,Ψα} =

√
2σµ

αα̇∂µΦ.
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elements ofKFα̇ ,

⟨Φ, p|KFα̇ (0)|Ψ, p,−⟩ = ⟨Ψ, p,+|K
F
α̇ (0)|Φ, p⟩ =

√
2Qηα̇(p) . (5.2.17)

Substituting into (5.2.11), we obtain the nal form of the sof photino theorem,

A out,+
n+1 −→

√
2ie

n∑
i=1

Qi
η(q)η(pi)

(FiAn) . (5.2.18)

Here theQi are the electric charges of the asymptotic states. The n-particle amplitudeAn is ob-

tained fromA out,+
n+1 by deleting the photino, but since it has an odd number of fermion external

states, it vanishes. The non-vanishing n-point amplitudeFiAn is obtained fromAn by acting on

the ith single-particle state with a fermionic operatorF , which satis es

⟨Φ, p|F = −⟨Ψ, p,−| , ⟨Ψ, p,+|F = ⟨Φ, p| ,

F |Φ, p⟩ = |Ψ, p,+⟩ , F |Ψ, p,−⟩ = −|Φ, p⟩ .
(5.2.19)

The action ofF on all other single-particle states vanishes, and we takeF to act from the right on

out states and from the lef on in states. SinceF is a fermionic operator, it picks up a sign whenever

it moves past another fermionic operator or state. This accounts for the factors (−1)σi in (5.2.11).

So far we have only discussed an outgoing sof photino of positive helicity. The negative helicity

case can similarly be shown to satisfy

A out,−
n+1 −→ −

√
2ie

n∑
i=1

Qi
η(q)η(pi)

(
F †
i An

)
, (5.2.20)

where the fermionic operatorF † is the Hermitian conjugate of the operatorF de ned in (5.2.19).

Finally, the sof theorems for ingoing photini can be obtained from (5.2.18) and (5.2.20) by crossing

symmetry.
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5.3 Asymptotic Symmetries

5.3.1 Photino Asymptotics

The photinoΛα is a lef -handed spinor that transforms as (12 , 0). We have performed the boundary

analysis for such a spinor in §2.4.3. The boundary data is λ(+). The leading constraint equation

when it is coupled to a current is given by (2.4.79)

∂uλ(−) = Ez−Dzλ(+) −
e2

2
k(−) . (5.3.1)

where we have denoted λ(−) = Λ̂
(2)
(−). As for the bosonic current, we assume that the fermionic

current vanishes at large u.

We would now like to know how supersymmetry relates the fermionic boundary elds λ(+) and

k(−) to the bosonic boundary eldsAz and ju. Even though all four supercharges remain unbro-

ken at null in nity, we will focus on supersymmetry transformations with constant spinor parame-

ter ξ(−)
α and their complex conjugates, which are generated by the following supercharges

Q(−) = ξ(−)αQα , Q(+)
= ξ

(+)α̇Qα̇ ,
{
Q(−),Q(+)

}
= −4i∂u . (5.3.2)

They are the position space analogues of the supercharges that act non-trivially on massless particle

representations, as in (5.2.16). The only non-vanishing commutators ofQ(−) with the boundary

photon eldAz andA
(2)
r are given by

[
Q(−), Ez

−Az
]
= λ(−) ,

[
Q(−), A(2)

r

]
= −λ(+) , (5.3.3a)
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while the only non-vanishing anti-commutators ofQwith the boundary photino λ(±) are{
Q(−), λ(+)

}
= 4iEz+∂uAz ,

{
Q(−), λ(−)

}
= −D − i

(
Fur − γzzFzz

)
. (5.3.4a)

The action ofQ(+) on these elds can be obtained by taking the Hermitian conjugates of these

formulas. The auxiliary eldD in the vector multiplet (5.2.1) is a Lorentz scalar with IR scaling di-

mension∆D = 2, which according to (2.4.65) falls o f likeD = D
r2

+ O(r−3). The fact that there

are no residual powers of r in these formulas shows that the assumed large-r fallo fs are consistent

with supersymmetry.

It is straightforward to repeat the preceding discussion nearI −. The photino elds onI +

andI − must then be matched at spatial in nity. The appropriate matching conditions can be

determined from the matching conditions (3.4.2) for the photon using supersymmetry. Combining

the supersymmetry variation in (5.3.3a) with the matching condition forAz in (3.4.2) leads to

λ(+)

∣∣
I +

−
= λ̃(+)

∣∣
I −

+
. (5.3.5)

Similarly, the supersymmetry variation in (5.3.4a) and the matching condition for Fur in (3.4.4)

imply that the u-independent part of λ(−) should be matched across spatial in nity. However, the

constraint equation (5.3.1) implies that λ(−)

∣∣
I +

−
does not exist, since

λ(−) → u
(
Ez−Dzλ(+)

∣∣
I +

−

)
+ ℓ(z, z) as u→ −∞ . (5.3.6)

Instead, we should match the u-independent term across spatial in nity, ℓ(z, z) = ℓ−(z, z), which

can be expressed in terms of λ(−) as follows,

(1− u∂u)λ(−)

∣∣
I +

−
= (1− v∂v) λ̃(−)

∣∣
I −

+
. (5.3.7)
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5.3.2 Fermionic Asymptotic Symmetries

Consider the following fermionic charges onI + andI −, for any complex-valued χ(z, z),

Fχ =
1

e2

∫
d2zγzz χ(z, z) (1− u∂u)λ(−)

∣∣
I +

−
,

F−
χ =

1

e2

∫
d2zγzz χ(z, z) (1− v∂v) λ̃(−)

∣∣
I −

+
.

(5.3.8)

We can express them in a more covariant form by introducing a commuting, chiral spinor-valued

function on S2,

χα(z, z) = χ(z, z)ξ(+)
α (z) . (5.3.9)

We can then write the charge as

Fχ = − 1

e2

∫
d2zγzz χ

α(z, z)
[
(1− u∂u)

(
lim
r→∞

r2Λα(u, r, z, z)
)] ∣∣∣

I +
−
, (5.3.10)

and similarly forF−
χ . Comparing the matching condition (5.3.7) to (5.3.8) implies the conservation

law

Fχ = F−
χ , (5.3.11)

and hence a Ward identity for the tree-level S-matrix,

FχS − SF−
χ = 0 . (5.3.12)

In section 5.4 we will show that this identity gives rise to the positive-helicity sof photino theo-

rem (5.2.18); the Hermitian conjugate chargesF †
χ lead to the negative-helicity case (5.2.20). In the

remainder of this section we establish several basic properties ofFχ.

Supersymmetry relates the fermionic symmetriesFχ de ned in (5.3.8) to the bosonic asymptotic
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symmetriesQε in Chapter 3. For instance, we can use (5.3.4a) to determine the anti-commutators of

the superchargesQ,Q that were singled out in (5.3.2) withFχ,9

{
Q(−),Fχ

}
= − i

e2

∫
d2zγzzχ(z, z)Fur

∣∣
I +

−
= iQχ ,

{
Q(+)

,Fχ

}
= 0 . (5.3.13)

Note that the fermionic symmetryFχ, with complex parameter χ(z, z), transforms into the bosonic

symmetryQε with the same parameter, ε(z, z) = χ(z, z). This shows that it is natural to allow

complex ε(z, z), as was discussed in [2, 28, 86]. More generally, we can use (5.2.2) and (5.3.10) to ex-

press the commutator of an arbitrary supercharge withFχ in the covariant form quoted in (5.1.1),

{
ζαQα,Fχ

}
= iQ [ζαχα] ,

{
Qα̇,Fχ

}
= 0 . (5.3.14)

Here ζα is a commuting, constant spinor and χα(z, z)was de ned in (5.3.9). It can similarly be

shown that the bosonic chargesQε in Chapter 3 are annihilated by all supercharges. This is expected

from their interpretation as conventional gauge transformations that do not vanish atI +, since the

latter commute with supersymmetry.

Following the discussion of the bosonic case around (3.2.12), we can expressFχ as an integral

overI + and use the constraint equation (5.3.1) to write it as a sum of hard and sof contributions,

Fχ = F h
χ + F s

χ . (5.3.15)

9 Here we use the fact thatD|I +
±

= Fzz|I +
±

= 0. The rst equation is obtained by solving for the aux-
iliary eldD in (5.2.1) in terms of the bosonic sourceKB in (5.2.4), which is assumed to vanish atI +

± . The
second equation follows from the fact that there are no magnetic charges.
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The hard charge is given by

F h
χ =

1

2

∫
dud2zγzzχ(z, z)u∂uk(−) +

1

e2

∫
d2zγzzχ(z, z) (1− u∂u)λ(−)

∣∣
I +

+
. (5.3.16)

Since we are considering theories without massive particles, we set (1− u∂u)λ(−)

∣∣
I +

+
= 0.10

The supersymmetry transformation (5.3.4a) turns this condition into Fur
∣∣
I +

+
= 0, which was

imposed also in the bosonic case in (3.2.3). We can compute the following anti-commutators with

the supercharges singled out in (5.3.2),

{
Q(−),F h

χ

}
= i

∫
dud2zγzzχ(z, z)ju = iQh[χ] ,

{
Q(+)

,F h
χ

}
= 0 , (5.3.17)

up to boundary terms atI +
± that involve the sources and hence vanish by assumption. In sec-

tion 5.4 we will use these relations to determine the action of the hard chargesF h
χ on asymptotic

scattering states.

The sof charges in (5.3.15) are given by

F s
χ =

1

2π

∫
d2zγzzE

z
−∂zχ(z, z)ω

s
(+) , ωs

(+) =
π

e2

∫
duu∂uλ(+) . (5.3.18)

Here we have de ned a sof photino current ωs.11 Under a Lorentz transformation, it changes as

follows,

δY ω
s
(+) =

(
1

2
DzY

z + Y z∂z + Y z∂z

)
ωs
(+) , (5.3.19)

up to boundary terms that vanish as long as λ(+) asymptotes to a u-independent function of z, z

10 Following [31, 132], it should be possible to incorporate massive particles by appropriately taking into
account their semiclassical photino eld as they pass through timelike in nity.

11 Note that the operator
∫
du ∂uλ(+), which is similar to sof photon current jsz de ned above (5.3.20),

can be shown to vanish inside S-matrix elements by expressing it in terms of creation and annihilation opera-
tors and comparing to the sof photino theorem (5.2.18).
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su ciently rapidly atI +
± .12 The Lorentz transformation (5.3.19) shows that the sof photino cur-

rent ωs is a two-dimensional eld with SL(2,C) conformal weights h = 1
2 and h = 0, i.e. it is

a lef -moving spin-12 current. Under the supercharges in (5.3.2), the sof photino current ωs trans-

forms into the sof photon current jsz = −4π
e2
Nz as follows,

{
Q(−), ωs

(+)

}
= iEz+j

s
z ,

{
Q(+)

, ωs
(+)

}
= 0 . (5.3.20)

In order to understand the action of the sof charges (5.3.18) on the photino, it is convenient to

rewrite them as follows,13

F s
χ = − 1

2e2
lim
ω→0

∫
dud2z ∂zχ(z, z) cos(ωu)λ(+) . (5.3.22)

In terms of creation and annihilation operators (see §2.5.22),

F s
χ =

i

4
√
2eπ

lim
ω→0

√
ω

∫
d2zγzzE

z
−∂zχ(z, z)

(
aΛ,+(ω, z, z)− a†Λ,−(ω, z, z)

)
. (5.3.23)

This shows thatF s
χ acts on zero-momentum photini. Using this expression, as well as the mode

expansion for λ(+) and the anti-commutation relations for creation and annihilation operators, it

can be checked that

{
F s
χ, λ(+)(u, z, z)

}
= 0 ,

{
F s
χ, λ(−)(u, z, z)

}
= −Ez−∂zχ(z, z) . (5.3.24)

Thus, λ(+) shif s inhomogeneously whenever ∂zχ(z, z) ̸= 0. Just as in the bosonic case, we in-

12 It is su cient to assume that λ(+) = λ(+)

∣∣
I +

±
+O

(
|u|−(1+δ)

)
, with δ > 0, as u→ ±∞.

13 Given a function f(u) such that lim
u→±∞

f(u) exists, but is nonzero, we have the following identity,

∫ ∞

−∞
duuf ′(u) = − lim

ω→0

∫ ∞

−∞
du cos(ωu)f(u) , (5.3.21)

which amounts to integrating by parts but dropping the divergent boundary terms.
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terpret this as spontaneous breaking of the corresponding chargesF s
χ. The u-independent part

of λ(−) furnishes the corresponding Goldstone fermions. Similar comments apply toF †
χ, which

shif s λ(+) by−Ez+∂zχ(z, z).

5.4 Soft Photino Theorem fromAsymptotic Fermionic Symmetries

5.4.1 FermionicWard Identity for Scattering Amplitudes

In the previous section we argued for the existence of a fermionic asymptotic symmetryFχ, which

is classically conserved (see (5.3.11)) and hence leads to a Ward identity (5.3.12) for the tree-level S-

matrix,

FχS − SF−
χ = 0 . (5.4.1)

We will now show that this Ward identity is nothing but the sof photino theorem for the case of an

outgoing positive-helicity photino (equivalently, by crossing symmetry, an ingoing negative helicity

photino), which we repeat for convenience,

A out,+
n+1 −→

√
2ie

n∑
i=1

Qi
η(q)η(pi)

(FiAn) . (5.4.2)

Here q → 0 is the momentum of the sof photino. Analogously, the Ward identity forF †
χ leads to

the sof photino theorem (5.2.20) for an outgoing negative helicity photino.

We begin by translating (5.4.2) frommomentum to position space. As in (3.6.17), we can ex-

press the null momenta pi in terms of variables ωi, zi, zi and q in terms of ω, z, z. In particular,
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the spinor-helicity variables corresponding to the pi are given by (2.4.52), so that

ηα(q)ηα(pi) =

√
(2ω)(2ωi)

(1 + zz)(1 + zizi)
(z − zi) , (i = 1, . . . , n) . (5.4.3)

In this parametrization, the sof photino theorem can be written as follows,

√
2ωA out,+

n+1 −→ ie
√
1 + zz

n∑
i=1

√
1 + zizi√
ωi

Qi
z − zi

(FiAn) . (5.4.4)

In order to reproduce this result, we take the matrix element of the Ward identity (5.4.1) between

an n-particle out-state ⟨ 1 ; . . . ; n | and the in state | 0 ⟩. All in- and outgoing particles (some of

which could be photini) are hard, i.e. they have non-vanishing momenta. WritingFχ = F h
χ + F s

χ

as a sum of hard and sof contributions, as in (5.3.15), and similarly forF−
χ , we obtain

⟨ out |F s
χS − SF s−[χ] | in ⟩ = −⟨ out |F h

χS − SF h−[χ] | in ⟩ . (5.4.5)

To proceed, we need to know the action of the sof and hard charges on asymptotic scattering states.

The sof charge was expressed in terms of photino creation and annihilation operators in (5.3.23).

It creates an outgoing positive-helicity photino and an ingoing negative-helicity photino of zero

momentum. Crossing symmetry implies that these two contributions lead to identical S-matrix

elements, so that we can write the lef -hand side of (5.4.5) as the ω → 0 limit of

i
√
ω√

2eπ

∫
d2wγwwE

w
− ∂wχ(w,w) ⟨ out; Λ, p(ω,w,w) |S

∣∣in⟩ . (5.4.6)

The action of the hard charges on asymptotic states will be derived section 5.4.2 below, where it is

shown that

F h
χ

∣∣f, p(ω, z, z), s⟩ = − Qf
2
√
ω
χ(z, z)F

∣∣f, p(ω, z, z), s⟩ ,
F h†
χ

∣∣f, p(ω, z, z), s⟩ = − Qf
2
√
ω
χ(z, z)F †∣∣f, p(ω, z, z), s⟩ . (5.4.7)
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HereQf is the electric charge of the state labeled by f ∈ {Φ,Φ,Ψ,Ψ}. The operatorF and

its Hermitian conjugateF † appear in the sof theorem (5.4.2). Its action on chiral and anti-chiral

matter states was de ned in (5.2.19).

If we choose χ(w,w) = 1
z−w , the Ward identity collapses to the sof theorem (5.4.2). As in the

bosonic case [1], the argument can be reversed to deduce the Ward identity – and hence the underly-

ing symmetries – from the sof theorem, which establishes their equivalence.

5.4.2 Action of the Fermionic Charges onMatter Fields

Here we show that the action of the hard fermionic chargesF h
χ on asymptotic states is given by (5.4.7),

thereby completing the argument of section 5.4.1. We will do this by using the supersymmetry rela-

tions (5.3.17), {
Q,F h

χ

}
= iQh

χ ,
{
Q,F h

χ

}
= 0 . (5.4.8)

HereQh
χ are the hard bosonic charges, whose action on boundary elds fq(u, z, z) of electric

charge q is given by [
Qε, fQ(u, z, z)

]
= −Qε(z, z)fQ(u, z, z) . (5.4.9)

Given the action of the superchargesQ(−),Q(+) on charged boundary elds, we can extract the

action ofF h
χ on such elds from (5.4.8) and (5.4.9). The same logic was used in section 5.2.2 to

relate the matrix elements of the fermionic sourceKFα̇ to those of the electric currentJµ.

For our present purposes, all charged elds reside in massless chiral or anti-chiral multiplets. A

chiral multiplet consists of a complex scalarΦ and lef -handed spinorΨα whose boundary data are
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ϕ and ψ(+) respectively. If the chiral multiplet has chargeQ, then so do the boundary elds ϕ and ψ,

i.e. [
Qh
ε , ϕ(u, z, z)

]
= −Qε(z, z)ϕ(u, z, z) ,

[
Qh
ε , ψ(+)(u, z, z)

]
= −Qε(z, z)ψ(+)(u, z, z) .

(5.4.10)

Given the asymptotic expansions in Chapter 2, we obtain the following transformation rules for the

boundary elds ϕ, ψ(+) under the superchargesQ(−),Q(+) singled out in (5.3.2),[
Q(−), ϕ

]
=
√
2iψ(+) ,

[
Q(+)

, ϕ(u, z, z)
]
= 0 , (5.4.11a){

Q(−), ψ(+)(u, z, z)
}
= 0 ,

{
Q(+)

, ψ(+)(u, z, z)
}
= −2

√
2∂uϕ(u, z, z) . (5.4.11b)

Given the transformation properties (5.4.10) and (5.4.11) of the chiral multiplet elds under the

bosonic symmetryQh
ε and the supersymmetriesQ(−),Q(+), the commutators in (5.4.8) are only

consistent if the fermionic symmetryF h
χ acts as follows,

[
F h
χ , ϕ(u, z, z)

]
= 0 ,

{
F h
χ , ψ(+)(u, z, z)

}
= − Q√

2
χ(z, z)ϕ(u, z, z) . (5.4.12)

The rst commutator can be understood as a consequence of theU(1)R symmetry that is expected

to emerge at the superconformal IR xed point that governs the dynamics near null in nity. SinceFχ

is linear in the photino (see (5.3.8)), it hasR-charge+1. (We take theR-charge ofQα to be−1.)

The electric andU(1)R charges of the rst commutator in (5.4.12) are not consistent with any

fermionic eld in the chiral multiplet, and hence it must vanish.
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For the anti-chiral multiplet of charge−Q, we similarly nd{
F h
χ , ψ(−)(u, z, z)

}
= 0 , (5.4.13a)

[
F h
χ , ∂uϕ(u, z, z)

]
= − iQ

2
√
2
χ(z, z)ψ(−)(u, z, z) , (5.4.13b)

{
Q(−),

[
F h
χ , ϕ(u, z, z)

]}
= iQχ(z, z)ϕ(u, z, z) . (5.4.13c)

As above, the rst equation (5.4.13a) is due to the electric andU(1)R charges of the elds. While (5.4.13b)

shows that ∂uϕ has a local transformation rule, it follows from (5.4.13c) that this does not lead to a

local transformation rule for ϕ itself. If it did, then ϕwould beQ-exact, which is not the case be-

cause ϕ is the bottom component of the supermultiplet in (5.4.11).

The (anti-) commutators in (5.4.12), (5.4.13a), and (5.4.13b) are su cient to establish the action

ofF h
χ andF h†

χ on asymptotic states. Using the mode expansions in §2.5 and the fact thatF h
χ anni-

hilates the vacuum,14 we nd that

F h
χ

∣∣Φ, p(ω, z, z)⟩ = F h
χ

∣∣Ψ, p(ω, z, z),+⟩ = 0 ,

F h
χ

∣∣Ψ, p(ω, z, z),−⟩ = − Q

2
√
ω
χ(z, z)

∣∣Φ, p(ω, z, z)⟩ ,
F h
χ

∣∣Φ, p(ω, z, z)⟩ = − Q

2
√
ω
χ(z, z)

∣∣Ψ, p(ω, z, z),+⟩ .
(5.4.14)

We can express (5.4.14) in terms of the operatorF , whose action on asymptotic states was de ned

in (5.2.19),

F |Φ, p⟩ = F |Ψ, p,+⟩ = 0 , F |Φ, p⟩ = |Ψ, p,+⟩ , F |Ψ, p,−⟩ = −|Φ, p⟩ . (5.4.15)

14 Recall that the sof chargesF s
χ are spontaneously broken, since they shif the photino as in (5.3.24) and

hence do not annihilate the vacuum. However, this is not the case for the hard chargesF h
χ.

108



Since |Φ, p⟩ has charge q and |Ψ, p,−⟩ has charge−q, we can express (5.4.14) as follows,

F h
χ | f, p, s ⟩ = −

Qf
2
√
ω
χ(z, z)F | f, p, s ⟩ , (5.4.16)

whereQf is the electric charge of the state. It is straightforward to repeat the preceding discussion

for the Hermitian conjugate charges. They obey

F h†
χ | f, p, s ⟩ = −

Qf
2
√
ω
χ(z, z)F †| f, p, s ⟩ , (5.4.17)

where the action ofF † on one-particle asymptotic states was de ned in (5.2.19). Together with (5.4.16),

this establishes the relations stated in (5.4.7).
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6
BMS Supertranslations and the Sof

Graviton Theorem

In Chapters 3, 4 and 5, we have studied three examples of the relationship between asymptotic sym-

metries and sof theorems in gauge theories. We now turn to a study of the relationship in gravita-

tional theories. This chapter is a modi ed extract of [4].
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6.1 Introduction

Weinberg’s sof graviton theorem [10] is a universal formula relating any S-matrix element in any

quantum theory including gravity to a second S-matrix element which di fers only by the addition

of a graviton whose four-momentum is taken to zero. Remarkably, the formula is blind to the spin

or any other quantum numbers of the asymptotic particles involved in the S-matrix element.

It is of en the case that universal formulae are explained by symmetries. Recently [28], it was

conjectured that the quantum gravity S-matrix has an exact symmetry given by a certain in nite-

dimensional “diagonal” subgroup of the asymptotic supertranslation symmetries of Bondi, van

der Burg, Metzner and Sachs (BMS) [14, 15]. In this paper, we show that the universal sof graviton

theorem of [10] is simply the Ward identity following from the diagonal BMS supertranslation sym-

metry of [28].

Put another way, it turns out that the deep discoveries made a half century ago about the struc-

ture of Minkowski scattering in theories with gravity byWeinberg and by BMS are equivalent, albeit

phrased in very di ferent languages.

TheWard identities following from the diagonal BMS supertranslations were expressed in [28]

in terms of data at null in nity, namely the Bondi news representing gravitational radiation together

with certain infrared modes. These are described in terms of their retarded times and positions on

the asymptotic conformal sphere. The sof graviton theorem on the other hand is described [10] in

terms of the scattering of momentum-space plane waves. The demonstration of this paper consists

largely in transforming between these two di ferent descriptions.
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In the course of our demonstration it is necessary to carefully de ne the physical phase spaces

Γ± of gravitational modes at past and future null in nity (I − andI +). Γ± must include, in

addition to the Bondi news, all sof graviton degrees of freedom which do not decouple from the

S-matrix. The latter we argue are constrained by boundary conditions at the boundaries ofI ±.

The sof modes can be viewed as living on these boundaries, and the boundary conditions reduce

their number by a crucial factor of 2. The reduced space of modes may then be identi ed (from their

transformation law) as nothing but the Goldstone modes of spontaneously broken supertranslation

invariance. The relevant physical phase spaces Γ± become simply the usual radiative modes plus the

Goldstone modes.1 The boundary constraint entails a modi cation of the naive Dirac bracket. Af er

this modi cation canonical expressions for T± are given which generate supertranslations on all of

Γ±. While there has been much discussion of T± over the decades, the construction of generators

which act properly on the infrared as well as radiative modes is new.

This paper is organized as follows. In §6.2 we present the fullI ± phase spaces Γ± (including the

boundary condition), present the Dirac brackets and supertranslation generators T± and identify

the sof gravitons as Goldstone modes. §6.3 reviews the proposed relation [28] betweenI + and

I − near where they meet at spatial in nity, together with the diagonal supertranslations which pre-

serve this relation and provide a symmetry of the S-matrix. §6.4 reviews the sof graviton theorem

[10]. §6.5 describes the transformation between the asymptotic description of §6.3 and the momen-

tum space description of §6.4. In §6.6 we show that Weinberg’s sof graviton theorem is the Ward

1This is the minimal phase space required for a good action of supertranslations. We have not
ruled out the possibility of further sof modes and a larger phase space associated to local conformal
symmetries[45, 98, 100–102] which could lie in components of the metric not considered here.
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identity following from diagonal supertranslation invariance.

We mainly consider only the case of pure gravity but expect the inclusion of massless matter or

gauge elds to be straightforward. New elements may arise in theories which do not revert to the

vacuum in the far past and future. We expect that parallel results apply to the gauge theory case [27].

Related results are in [89].

6.2 Supertranslation generators

In this section we construct the physical phase space, the symplectic form (or equivalently the Dirac

bracket) and the canonical generators of supertranslations atI ±.

6.2.1 Asymptotic vector fields

We consider asymptotically at geometries in the nite neighborhood of Minkowski space de ned

in [139] and referred to in [28] as CK spaces. These have a large-r weak- eld expansion near future

null in nity (I +) in retarded Bondi coordinates (see [45, 100–102] for details)

ds2 = −du2 − 2dudr + 2r2γzzdzdz

+
2mB

r
du2 + rCzzdz

2 + rCzzdz
2 − 2Uzdudz − 2Uzdudz + · · · ,

(6.2.1)

where2

Uz = −
1

2
DzCzz. (6.2.2)

2TheUz de ned here should not be confused with that de ned af er (4.4.1).
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The retarded time u parameterizes the null generators ofI + and (z, z) parameterize the conformal

S2. The Bondi mass aspectmB andCzz depend on (u, z, z), γzz = 2
(1+zz)2

is the round metric on

unit S2 andDz is the γ-covariant derivative. Near past null in nityI −, CK spaces have a similar

expansion in advanced Bondi coordinates

ds2 = −dv2 + 2dvdr + 2r2γzzdzdz

+
2m−

B

r
dv2 + rDzzdz

2 + rDzzdz
2 − 2Vzdvdz − 2Vzdvdz + · · · ,

(6.2.3)

where

Vz =
1

2
DzDzz. (6.2.4)

We denote the future (past) ofI + byI +
+ (I +

− ), and the future (past) ofI − byI −
+ (I −

− ).

These comprise the boundary ofI (I + ∪I −). We also de ne the outgoing and incoming Bondi

news by

Nzz ≡ ∂uCzz , Mzz ≡ ∂vDzz. (6.2.5)

BMS+ transformations [14, 15] are de ned as the subgroup of di feomorphisms which act non-

trivially on the radiative data atI +. These include the familiar Lorentz transformations and super-

translations. The latter are generated by the in nite family of vector elds3

f∂u −
1

r
(Dzf∂z +Dzf∂z) +DzDzf∂r, (6.2.6)

for any function f(z, z) on the S2. BMS+ acts onCzz according to

LfCzz = f∂uCzz − 2D2
zf. (6.2.7)

3The subleading in 1
r terms depend on the coordinate condition: see [45, 100–102].
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Similarly BMS− transformations act onI − and contain the supertranslations parameterized by

f−(z, z)

f−∂v +
1

r
(Dzf−∂z +Dzf−∂z)−DzDzf

−∂r, (6.2.8)

under which

Lf−Dzz = f−∂vDzz + 2D2
zf

−. (6.2.9)

6.2.2 Dirac brackets onI

The Dirac bracket on the radiative modes (the non-zero modes of the Bondi news) atI + was

found in [20, 25, 106, 107]

{Nzz(u, z, z), Nww(u
′, w, w)} = −16πG∂uδ(u− u′)δ2(z − w)γzz, (6.2.10)

whereG is Newton’s constant. The generator of BMS+ supertranslations on these modes is [20, 25,

45, 100–102, 106, 107]

T+(f) =
1

4πG

∫
I +

−

d2zγzzfmB

=
1

16πG

∫
dud2zf

[
γzzNzzN

zz + 2∂u(∂zUz + ∂zUz)
]
,

{T+(f), Nzz} = f∂uNzz,

(6.2.11)

where in the second line we have used the constraints and assumed no matter elds.

Of course BMS+ transformations acting on the radiative modes alone do not comprise an asymp-

totic symmetry. One must act on a larger phase space Γ+ including some non-radiative modes.

The obvious guess is to identify this larger space with that parametrized byCzz itself, and de ne
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a bracket for all (u, u′) by integrating (6.2.10) to

{Czz(u, z, z), Cww(u′, w, w)} = 8πGΘ(u− u′)δ2(z − w)γzz, (6.2.12)

whereΘ(x) = sign(x). However if we use this we nd, perhaps surprisingly,

{T+(f), Czz} = f∂uCzz −D2
zf ̸= LfCzz. (6.2.13)

The inhomogeneous term is o f by a factor of 2. So clearly either the bracket (6.2.12) or the generator

(6.2.11) is incorrect. This problem does not seem to have been addressed in the literature.

Here we solve this problem by motivating and imposing boundary conditions onCzz at the

boundaries ofI +, and incorporating this boundary constraint into a modi ed Dirac bracket. Since

the constraints apply only to the boundary degree of freedom, (6.2.12) will be unaltered unless either

u or u′ is on the boundary. However this will turn out to give us exactly the missing factor of 2 in

(6.2.13)! The supertranslation invariant boundary conditions are

[∂zUz − ∂zUz]I +
±

= 0, (6.2.14)

Nzz|I +
±

= 0. (6.2.15)

Equivalently the rst condition may be written

[
D2
zCzz −D2

zCzz
]
I +

±
= 0. (6.2.16)

This reduces the boundary degrees of freedom by a factor of two. It has a coordinate invariant ex-

pression in terms of the component of the Weyl tensor sometimes referred to as the magnetic mass
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aspect:

Im Ψ
(0)
2 |I +

±
= 0. (6.2.17)

There are two related motivations for this constraint besides the fact that it (as we will see mo-

mentarily) leads to a proper action of T+. First, the boundary condition (6.2.14) is obeyed by CK

spaces [139]. Second, operator insertions of [∂zUz]
I +

+

I +
−
and [∂zUz]

I +
+

I +
−
correspond to sof gravi-

tons and have non-vanishing S-matrix elements (due toWeinberg poles) even though they are pure

gauge. Therefore they must be retained as part of the physical phase space. However these poles can-

cel in the di ference [∂zUz]
I +

+

I +
−
− [∂zUz]

I +
+

I +
−
. Hence this combination decouples from all S-matrix

elements and should not be part of the physical phase space. Our constraint (6.2.14) projects out

these fully decoupled modes.

The general solution of the constraints (6.2.16) can be expressed

Czz|I +
−

= D2
zC, (6.2.18)

∫ ∞

−∞
duNzz = D2

zN, (6.2.19)

where the boundary eldsC,N are real.4Wemay then take as our coordinates on phase space the

boundary and bulk elds5

Γ+ ≡ {C(z, z), N(z, z), Czz(u, z, z), Czz(u, z, z)}. (6.2.20)
4These elds are not to be confused with the analogous elds that we de ned for the gauge eld in §2.4.2.
5C andN each have four zero modes of ℓ = 0 and ℓ = 1which are projected out byD2

z and hence do
not appear in the metric. They might be omitted from the de nition of Γ+ and do not play an important
role in the present discussion. However we retain them for future reference: as will become apparent below
theC zero modes have an interesting interpretation as the spatial and temporal position of the geometry.
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The arguments u of the bulk elds terms are restricted to non-boundary (i.e. nite) values only. The

bulk-bulk Dirac brackets remain (6.2.12). A priori it is not obvious how one extends the bulk-bulk

bracket (or equivalently the symplectic form) over all of Γ+. We do so by rst imposing (6.2.19) as a

relation between bulk-bulk and bulk-boundary brackets in the form

D2
z{N(z, z), Cww(u,w,w)} =

∫ ∞

−∞
du′{Nzz(u

′, z, z), Cww(u,w,w)}, (6.2.21)

and then constraining the boundary-boundary bracket by continuity in the form

D2
w{N(z, z), C(w,w)} = lim

u→−∞
{N(z, z), Cww(u,w,w)}. (6.2.22)

The non-zero Dirac brackets following from the boundary constraints (6.2.15), (6.2.16) are then

uniquely determined as6

{Czz(u, z, z), Cww(u′, w, w)} = 8πGΘ(u− u′)δ2(z − w)γzz,

{C(z, z), Cww(u′, w, w)} = −8GD2
w(S ln |z − w|2),

{N(z, z), Cww(u
′, w, w)} = 16GD2

w(S ln |z − w|2),

{N(z, z), C(w,w)} = 16GS ln |z − w|2,

(6.2.23)

where u, u′ are not on the boundary and

S ≡ (z − w)(z − w)
(1 + zz)(1 + ww)

. (6.2.24)

6We note but do not pursue herein the interesting appearance of logarithms related to the fourC andN
zero modes. These are projected out by acting withD2

z and hence irrelevant to the supertranslation genera-
tors below.
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S is the sine-squared of the angle between z andw on the sphere and obeys

D2
w(S ln |z − w|2) = S

(z − w)2
,

D2
zD

2
w(S ln |z − w|2) = πγzzδ

2(z − w).

(6.2.25)

Similarly, onI −, the constraints [∂zVz − ∂zVz]I −
±

= 0 can be solved by

Dzz|I −
+

= D2
zD,

∫ ∞

−∞
dvMzz = D2

zM. (6.2.26)

The coordinates on the phase space atI − can then be taken as

Γ− ≡ {D(z, z), M(z, z), Dzz(v, z, z), Dzz(v, z, z)}, (6.2.27)

where v is not on the boundary. The non-zero Dirac brackets are

{Dzz(v, z, z), Dww(v
′, w, w)} = 8πGΘ(v − v′)δ2(z − w)γzz,

{D(z, z), Dww(v
′, w, w)} = 8GD2

w(S ln |z − w|2),

{M(z, z), Dww(v
′, w, w)} = 16GD2

w(S ln |z − w|2),

{M(z, z), D(w,w)} = 16GS ln |z − w|2,

(6.2.28)

where v, v′ are not on the boundary.

The demand of continuity (6.2.22) is not as innocuous as it looks because we see from (6.2.23),

(6.2.28) that other brackets (in particular {Nzz, Cww}) are not continuous as u is taken to the

boundary. We have not ruled out the possibility that there are inequivalent extensions of the sym-

plectic form on the radiative phase space to all of Γ± corresponding to inequivalent quantizations

of the boundary sector. In an action formalism, this could arise from di ferent choices of bound-

ary terms. However an a posteriori justi cation of our choice is, as we now show, that it leads to a
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realization of supertranslations as a canonical transformation on Γ±.

6.2.3 Canonical generators

The supertranslation generator may now be written in terms of bulk and boundary elds as

T+(f) =
1

4πG

∫
I +

−

d2zγzzfmB

=
1

16πG

∫
dud2zfγzzNzzN

zz − 1

8πG

∫
d2zγzzfD2

zD
2
zN,

(6.2.29)

where the integral over in nite u in the rst term is the Cauchy principal value. Using the brackets

(6.2.23) one nds

{T+(f), Nzz} = f∂uNzz,

{T+(f), Czz} = f∂uCzz − 2D2
zf,

{T+(f), N} = 0,

{T+(f), C} = −2f,

(6.2.30)

as desired.

Similarly onI −,

T−(f−) =
1

16πG

∫
dvd2zf−γzzMzzM

zz +
1

8πG

∫
d2zγzzf−D2

zD
2
zM, (6.2.31)

and

{T−(f−),Mzz} = f−∂vMzz,

{T−(f−), Dzz} = f−∂vDzz + 2D2
zf

−,

{T−(f−),M} = 0,

{T−(f−), D} = 2f−,

(6.2.32)
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as desired.

At the quantum level supertranslations do not leave the usual in or out vacua invariant. Acting

with T+, the last term in (6.2.29) is linear in the graviton eld operator and creates a new state with

a sof graviton. The new state has energy degenerate with the out vacuum but di ferent angular

momentum. Hence supertranslation symmetry is spontaneously broken in the usual vacuum. The

last line of (6.2.30) clearly identi es−1
2C as the Goldstone mode associated with this symmetry

breaking. It is conjugate to the sof graviton zero modeN .

In conclusion the construction of a generator of supertranslations onI ± is possible but subtle

and requires a careful analysis of the zero mode structure and boundary conditions on the bound-

aries ofI ±.

6.3 Supertranslation invariance of the S-matrix

In this section we summarize the supertranslation invariance of the S-matrix conjectured in [28] as

well as the associatedWard identity.

The rst step is to understand howI + andI − may be linked near spatial in nity. In the con-

formal compacti cation of asymptotically at spaces, the sphere at spatial in nity is the boundary of

a point i0. Null generators ofI in the conformal compacti cation of asymptotically at spaces run

fromI − toI + through i0. We label all points lying on the same such generator with the same

value of (z, z). This gives an ‘antipodal’ identi cation of points on the conformal spheres atI −

with those onI +. For CK spaces one may identify geometric data onI +
− with that atI −

+ via the
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continuity condition [28]

Czz|I +
−

= −Dzz|I −
+
, (6.3.1)

or equivalently

C(z, z) = −D(z, z). (6.3.2)

In [28] it was conjectured that the “diagonal” subgroup of BMS+×BMS− which preserves the

continuity condition (6.3.1) is an exact symmetry of both classical gravitational scattering and the

quantum gravity S-matrix. The diagonal supertranslation generators are those which are constant

on the null generators ofI , i.e.

f−(z, z) = f(z, z). (6.3.3)

The conjecture states that S-matrix obeys

T+(f)S − ST−(f) = 0. (6.3.4)

AWard identity is then derived by taking the matrix elements of (6.3.4) between states with n outgo-

ing particles at zk on the conformal sphere atI . These carry energies ωk, where

n∑
k=1

ωk = 0 . (6.3.5)

by total energy conservation. We denote the out and in states by ⟨ out | and | in ⟩. Choosing f(w,w) =

1
z−w , it was shown that the matrix element of (6.3.4) between such states implies

⟨ out | : PzS : | in ⟩ = ⟨ out |S| in ⟩
n∑
k=1

ωk
z − zk

. (6.3.6)
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where the : : denotes time-ordering and the “sof graviton current” is de ned by

Pz ≡
1

2G

(∫ ∞

−∞
dv∂vVz −

∫ ∞

−∞
du∂uUz

)
. (6.3.7)

Since Pz involves zero-frequency integrals overI ± it creates and annihilates sof gravitons with

a certain z-dependent wave function. The supertranslationWard identity (6.3.6) relates S-matrix

elements with and without insertions of the sof graviton current. It can also easily be seen [28] that

(6.3.6) implies the general Ward identities following from (6.3.4) for an arbitrary function f(z, z).

6.4 The soft graviton theorem

In this section, we specify our conventions and brie y reviewWeinberg’s derivation of the sof gravi-

ton theorem for the simplest case of a free massless scalar. For more details and general spin see [10].

Einstein gravity coupled to a free massless scalar is described by the action

S = −
∫
d4x
√
−g
[
2

κ2
R+

1

2
gµν∂µϕ∂νϕ

]
, (6.4.1)

where κ2 = 32πG. In the weak eld perturbation expansion gAB = ηAB + κhAB and the relevant

leading terms are

Lgrav = −
2

κ2
R = −1

2
∂ChAB∂

ChAB +
1

2
∂Ah∂

Ah+ ∂AhAB∂ρh
Bρ − ∂AhAB∂Bh+ · · · ,

Ls = −
1

2

√
−ggAB∂Aϕ∂Bϕ = −1

2
∂Aϕ∂Aϕ+

1

2
κhAB

[
∂Aϕ∂Bϕ−

1

2
ηAB∂

Cϕ∂Cϕ

]
+ · · · .

(6.4.2)

In harmonic gauge ∂AhAB = 1
2∂Bh the Feynman rules take the form (see [140])

Additional diagrams with the external graviton attached to internal lines cannot develop sof
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poles[10]. The contribution of these diagrams to the near-sof amplitude is

A AB
n+1(q, p1, · · · , pn) =

m∑
k=1

An(p1, · · · , pk + q, · · · , pn)
−i(

p′k + q
)2 − iε

×
[
iκ

2

(
pAk (pk + q)B + pBk (pk + q)A − ηABpk · (pk + q)

)] (6.4.3)

The sof graviton theorem is the leading term in q-expansion:

A AB
n+1(q, p1, · · · , pn) =

κ

2

n∑
k=1

pAk p
B
k

pk · q
An(p1, · · · , pn) , (6.4.4)

where q → 0. While we reviewed the derivation here for a massless scalar, note that the pre-factor

in square brackets is a universal sof factor and does not depend on the spin of the matter particles.

Moreover the expression is actually gauge invariant. Under a gauge transformation δεAB = qAΛB+

qBΛA one nds

δεABA AB
n+1 = κΛA

m∑
k=1

pkAAn = 0 (6.4.5)

by momentum conservation. Hence (6.4.4) is valid in any gauge.

6.5 Frommomentum to asymptotic position space

The supertranslationWard identity (6.3.6) is expressed in terms of eld operator Pz integrated along

xed-angle null generators ofI . Weinberg’s sof graviton theorem (6.4.3) is expressed in terms of

momentum eigenmodes of the eld operators. In this section, in order to compare the two, we

transform the eld operator between these two bases.

We start with the mode expansion for the graviton eld, hAB ,

hAB(x) =
∑
α=±

∫
d3q

(2π)3
1

2ωq

[
ε
(α)
AB(q⃗)

∗ah,α(q⃗)e
iq·x + ε

(α)
AB(q⃗)a

†
h,α(q⃗)e

−iq·x
]
, (6.5.1)
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where q0 = ωq = |q⃗|, α = ± are the two helicities and[
ah,α(q⃗), a

†
h,β(q⃗

′)
]
= δαβ(2ωq)(2π)

3δ3
(
q⃗ − q⃗ ′). (6.5.2)

The outgoing gravitons with momentum q and polarization α as in the amplitude (6.4.3) corre-

spond to nal-state insertions of ah,α(q⃗). In retarded Bondi coordinates, it follows from (6.2.1) that

onI +

Czz(u, z, z) = κ lim
r→∞

1

r
hzz(r, u, z, z). (6.5.3)

Taking the large r expansion as in §2.5, we nd

Czz = −
iκ

16π2
(E+

z )
2

∫ ∞

0
dωq

[
ah,+(ωqŷ)e

−iωqu − ah,−(ωqŷ)†eiωqu
]
. (6.5.4)

where we have ε(±)
AB(q) = ε

(±)
A (q)ε

(±)
B (q)where ε(±)

A (q) is given by (2.5.14).

De ning

Nω
zz(z, z) ≡

∫ ∞

−∞
dueiωu∂uCzz, (6.5.5)

and using (6.5.4), we nd

Nω
zz(z, z) = −

κ

8π
(E+

z )
2

∫ ∞

0
dωqωq

[
ah,+(ωqŷ)δ(ωq − ω) + ah,−(ωqŷ)

†δ(ωq + ω)
]
.

(6.5.6)

When ω > 0 (ω < 0), only the rst (second) term contributes and we nd

Nω
zz(z, z) = −

κω

8π
(E+

z )
2ah,+(ωŷ) ,

N−ω
zz (z, z) = −κω

8π
(E+

z )
2a†h,−(ωŷ) ,

(6.5.7)
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where we have taken ω > 0. In the case of the zero mode, we will de ne it in a hermitian way

N0
zz ≡ lim

ω→0+

1

2
(Nω

zz +N−ω
zz ). (6.5.8)

It follows that

N0
zz(z, z) = −

κ

16π
(E+

z )
2 lim
ω→0+

[
ωah,+(ωŷ) + ωa†−(ωŷ)

†
]
. (6.5.9)

A parallel construction is possible onI −. De ning

Mω
zz(z, z) ≡

∫ ∞

−∞
dveiωv∂vDzz, (6.5.10)

we nd for ω > 0

Mω
zz(z, z) = −

κω

8π
(E+

z )
2ah,+(ωŷ) ,

M−ω
zz (z, z) = −κω

8π
(E+

z )
2a†h,−(ωŷ) ,

(6.5.11)

At ω = 0,

M0
zz(z, z) ≡ −

κ

16π
(E+

z )
2 lim
ω→0+

[
ωah,+(ωŷ) + ωa†h,−(ωŷ)

]
. (6.5.12)

From (6.5.5) and (6.5.10) we have also

N0
zz(z, z) = D2

zN,

M0
zz(z, z) = D2

zM.

(6.5.13)

De ning

Ozz ≡ N0
zz(z, z) +M0

zz(z, z) = D2
zN +D2

zM, (6.5.14)

the sof graviton current (6.3.7) can be written

Pz =
1

2G

(
Vz|

I −
+

I −
−
− Uz|

I +
+

I +
−

)
=

1

4G
DzOzz. (6.5.15)
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6.6 Soft graviton theorem as aWard identity

Equations (6.5.12)-(6.5.15) express the sof graviton current Pz in terms of standard momentum

space creation and annihilation operators. Amplitudes involving the latter are given byWeinberg’s

sof graviton theorem. In this section we simply plug this in and reproduce the supertranslation

Ward identities.

We consider an S-matrix element of n outgoing particles denoted byAn = ⟨ out |S| in ⟩. We

now consider the S-matrix element ⟨ out | : OzzS : | in ⟩with a time ordered insertion. Using

(6.5.12) and (6.5.14), this can be written as

⟨ out | : OzzS : | in ⟩ = −κ(E
+
z )

2

16π
lim
ω→0

ω
[
⟨ out |ah,+(ωŷ)S| in ⟩+ ⟨ out |Sa†h,−(ωŷ)| in ⟩

]
.

(6.6.1)

Here, we have used the fact that a†h,−(ωŷ) (ah,+(ωŷ)) annihilates the out (in) state for ω → 0.7

The rst term is the S-matrix element with a single outgoing positive helicity sof graviton with spa-

tial momentum ωŷ, while the second term is the S-matrix element with a single incoming negative

helicity sof graviton also with spatial momentum ωŷ. The two amplitudes are equal, and we get

⟨ out | : OzzS : | in ⟩ = − κ

8π
(E+

z )
2 lim
ω→0

ω⟨ out |ah,+(ωŷ)S| in ⟩ . (6.6.2)

The sof graviton theorem (6.4.4) with a positive helicity outgoing graviton reads

lim
ω→0

ω⟨ out |ah,+(q⃗)S| in ⟩ =
κ

2
lim
ω→0

n∑
k=1

ω [pk · ε+(q)]2

pk · q
⟨ out |S| in ⟩ . (6.6.3)

7This holds even if for example the initial state contains sof gravitons because of the factor of ω in (6.5.2).
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Parameterizing the momenta pi in terms of (ωi, zi, zi) and q in terms of (ω, z, z), we nd

⟨ out | : OzzS : | in ⟩ =
8G

(1 + zz)
⟨ out |S| in ⟩

n∑
k=1

ωk (z − zk)
(z − zk) (1 + zkzk)

. (6.6.4)

Now, using (6.5.15), we can relate the insertion of Pz to that ofOzz .

⟨ out | : PzS : | in ⟩ =
1

4G
γzz∂z⟨ out | : OzzS : | in ⟩

= ⟨ out |S| in ⟩
n∑
k=1

ωk
z − zk

+ ⟨ out |S| in ⟩
n∑
k=1

ωkzk
1 + zkzk

(6.6.5)

The very last square bracket vanishes due to total momentum conservation. We then have

⟨ out | : PzS : | in ⟩ =
n∑
k=1

ωk
z − zk

, (6.6.6)

which reproduces exactly the supertranslationWard identity (6.3.6) derived in [28]. We can also run

the above argument backwards to show that this supertranslationWard identity implies Weinberg’s

sof graviton theorem.
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7
A 2D Stress Tensor for 4D Gravity

In this chapter, we study what is presumably the most interesting aspect of the relationship between

sof theorems and asymptotic symmetries, namely the equivalence of the recently discovered sub-

leading sof -graviton theorem [11] and BMS superrotations, which act as Virasoro transformations

on the asymptotic S2. This chapter is a modi ed extract of [5].
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7.1 Introduction

Any quantum scattering amplitude of massless particles in four-dimensional (4D) asymptotically

Minkowskian spacetime can be rewritten as a correlation function on the celestial sphere at null

in nity. Asymptotic one-particle states are represented as operator insertions on the sphere at the

points where they exit or enter the spacetime. The energy and other avor or quantum numbers

then label distinct operators. The SL(2,C) Lorentz invariance acts as the global conformal group

on the celestial sphere and implies that these correlators lie in SL(2,C) representations.

In this paper we consider the S-matrix for 4D quantum gravity in asymptotically Minkowskian

spacetime. We construct an explicit sof -graviton mode, denoted Tzz , and prove that its insertions

in the tree-level S-matrix (with no other external sof insertions) obey all the Virasoro-Ward identi-

ties of a stress tensor insertion in a CFT2 correlator on the sphere. Our main tool is the subleading

sof -graviton theorem [11, 141–143]. Our construction re nes and extends results and conjectures

of [45, 98–101, 103]. It demonstrates that such quantum gravity scattering amplitudes are in Vira-

soro representations, as are CFT2 correlators. This extends from gauge theory to gravity earlier work

[1, 2] in which sof -photon and gluon insertions were shown to obey theWard identities of a Kac-

Moody algebra on the celestial sphere.

The current work has several limitations. We do not consider massive particles, but do expect the

extension to the massive case to be possible along the lines of [31, 132, 134]. Qualitatively important

issues arise - including a possible central term - when there are multiple sof insertions that are not

addressed here. At the one-loop level, corrections to the Ward identity are expected as a consequence
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of corrections to the sof theorem [111, 112, 119]. We have not analyzed their implications. Finally,

although our results imply that certain quantum gravity scattering amplitudes are in Virasoro rep-

resentations, there is no reason to expect that they are the same kinds of unitary representations

appearing in conventional 2D CFTs. We leave the nature of these representations to future work.

7.2 Soft-Graviton Limits

In this paper, we consider tree-level scattering amplitudes of massless particles in four dimensions.

LetA (±)
n+1(q) be an amplitude involving a graviton of momentum qA and polarization ε(±)

AB(q) as

well as n other massless asymptotic states

A
(±)
n+1(q) = ⟨ out ; q,± |S| in ⟩ . (7.2.1)

The sof q0 → 0 limit of this amplitude is governed by the leading [10] and sub-leading [11, 141–143]

sof -graviton theorems1

A
(±)
n+1(q)→

[
S
(±)
0 + S

(±)
1 +O(q)

]
An , (7.2.2)

whereAn is the original amplitude without the sof -graviton and

S
(±)
0 =

κ

2

n∑
k=1

pAk p
B
k ε

(±)
AB(q)

pk · q
, S

(±)
1 = − iκ

2

n∑
k=1

ε
(±)
AB(q)p

A
k qC

pk · q
J CBk , (7.2.3)

where κ =
√
32πG andJkAB is the angular momentum operator acting on the kth outgoing state.

It is the sum of the orbital angular momentum operatorLkAB and spin angular momentum SkAB .

1As shown in [11, 121, 122], tree-level graviton amplitudes are also constrained by a sub-subleading sof -
graviton theorem.
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Explicitly (see [97]),

LkAB = −i
[
pkA

∂

∂pBk
− pkB

∂

∂pAk

]
,

SkAB = −isk
[
ε
(+)
A (pk)ε

(−)
B (pk)− ε

(+)
B (pk)ε

(−)
A (pk)

]
+ skε

(+)
C (pk)LkABε(−)C(pk) .

(7.2.4)

ε
(±)
A (p) are polarization vectors that satisfy2

ε(±)(p) · p = 0 , ε(±)(p) · ε(±)(p) = 0 , ε(±)(p) · ε (±)(p) = 1 . (7.2.5)

Equation (7.2.4) continues to hold for particles of half-integer helicity provided that the little group

phase of the wavefunction is chosen consistently. Gauge invariance of the leading and subleading

sof limits implies momentum and angular momentum conservation respectively,

n∑
k=1

pAk An =
n∑
k=1

JkABAn = 0 . (7.2.6)

To write out the sof factors explicitly, we parameterize the massless momenta and polarization vec-

tors in terms of (ωi, zi, zi). In this parameterization, the sof factors (7.2.3) are given by

S
(+)
0 = − κ

2ω

(
1 + zz

) n∑
k=1

ωk(z − zk)
(z − zk)(1 + zkzk)

,

S
(−)
0 = − κ

2ω

(
1 + zz

) n∑
k=1

ωk(z − zk)
(z − zk)(1 + zkzk)

,

S
(+)
1 =

κ

2

n∑
k=1

(z − zk)2

z − zk

[
2hk
z − zk

− Γzkzkzkhk − ∂zk + |sk|Ωzk
]
,

S
(−)
1 =

κ

2

n∑
k=1

(z − zk)2

z − zk

[
2hk
z − zk

− Γzkzkzkhk − ∂zk + |sk|Ωzk
]
.

(7.2.7)

2Note that (7.2.5) is invariant under ε(±)
A (q) → eiθ±(q)ε

(±)
A (q), i.e. (7.2.5) only determines the polariza-

tions up to an overall momentum dependent phase. These correspond to the little group transformations.
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Here Γzzz is the connection with respect to the unit round metric γzz = 2(1 + zz)−2 on the sphere,

Ωz =
1
2Γ

z
zz is the spin connection, and we have de ned the operators3

hk ≡
1

2
(sk − ωk∂ωk

) , hk ≡
1

2
(−sk − ωk∂ωk

) . (7.2.8)

In this parameterization, equation (7.2.6) takes the form(
n∑
k=1

ωk

)
An =

(
n∑
k=1

ωk
zk + zk
1 + zkzk

)
An = 0 ,

−i

(
n∑
k=1

ωk
zk − zk
1 + zkzk

)
An =

(
n∑
k=1

ωk
1− zkzk
1 + zkzk

)
An = 0 ,

−i
n∑
k=1

[
Y zk

(
∂zk − |sk|Ωzk

)
+ Y zk

(
∂zk − |sk|Ωzk

)
+DzkY

zkhk +DzkY
zkhk

]
An = 0 ,

(7.2.9)

where Y z(z) = a+ bz + cz2 is a global conformal Killing vector andDz is the covariant derivative

on the unit sphere.

7.3 Mode Expansions and ZeroModes onI +

We now de ne certain zero-modes onI + and rewrite the leading and subleading sof -graviton

theorem in terms of the zero mode insertions. We recall from (6.5.4) that nearI +, we have the

following mode expansion

Czz(u, z, z) = −
iκ

16π2
(E−

z )
2

∫ ∞

0
dωq

[
ah,−

(
ωqŷ
)
e−iωqu − a†h,+(ωqŷ

)
eiωqu

]
. (7.3.1)

3Single particle momentum eigenstates do not diagonalize the dilation operator hk + hk. At tree-
level, amplitudes are rational functions of the external momenta and we can formally de ne Mellin-
transformed primary operators Õ(m, z, z) =

∫∞
0
dωωm−1O(ω, z, z)with conformal weights

h = 1
2 (s+m), h = 1

2 (−s+m).
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Let us de ne (as in (6.5.5),

Nω
zz ≡

∫
dueiωuNzz , Nω

zz ≡
∫
dueiωuNzz . (7.3.2)

We now de ne the zero modes

N (0)
zz ≡

∫
duNzz =

1

2
lim
ω→0

(
Nω
zz +N−ω

zz

)
= − κ

16π
(E+

z )
2 lim
ω→0

[
ωah,+

(
ωŷ
)
+ ωah,−

(
ωŷ
)†] (7.3.3)

and

N
(1)
zz ≡

∫
duuNzz = −

i

2
lim
ω→0

∂ω
[
Nω
zz −N−ω

zz

]
=

iκ

16π
(E−

z )
2 lim
ω→0

(1 + ω∂ω)
[
ah,−

(
ωŷ
)
− ah,+

(
ωŷ
)†]

,

(7.3.4)

along with similar de nitions forN (0)
zz andN (1)

zz . We note thatN (1)
zz involves one less factor of ω

thanN (0)
zz , but has the Weinberg pole projected out by the factor of 1 + ω∂ω . Hence it has nonzero

nite scattering amplitudes.

The insertion of the zero mode (7.3.4) is then given by (7.2.2) and (7.2.7) with

⟨ out |N (1)
zz S| in ⟩

=
4Gi

(1 + zz)2

n∑
k=1

(z − zk)2

z − zk

[
2hk
z − zk

− Γzkzkzkhk − ∂zk + |sk|Ωzk
]
⟨ out |S| in ⟩ .

(7.3.5)

7.4 A 2D Stress Tensor

Recall from Chapter 4 that massless scattering amplitudesAn of any four-dimensional theory may

always be recast as two-dimensional correlation functions of local operators on the asymptotic S2 at
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null in nity as

An = ⟨O1(ω1, z1, z1) · · · On(ωn, zn, zn) ⟩ . (7.4.1)

The particle created byOk intersects the asymptotic S2 at the point (zk, zk)4. The four-dimensional

Lorentz group SL(2,C) acts as the global conformal group on the asymptotic S2 according to5

z → z′ =
az + b

cz + d
, ad− bc = 1 . (7.4.2)

This implies that all Minkowskian QFT4 amplitudes are in representations of the same global con-

formal group as Euclidean CFT2 correlators. In this section we will see that (hard) quantum grav-

ity amplitudes are in representations of the full CFT2 Virasoro group. Indeed it has already been

shown that the leading sof -photon and graviton theorems are the Ward identities of abelian Kac-

Moody current algebras acting on the asymptotic S2 [1, 4, 27, 28]. A similar Kac-Moody structure

for non-abelian gauge theory scattering amplitudes was studied in [105]. The leading sof -gluon

theorem in a non-abelian gauge theory with gauge group G was shown in [2] to be equivalent to

the Ward identity of a G Kac-Moody current algebra. In all of these cases, holomorphic Kac-Moody

current insertions were related to positive helicity sof insertions. For instance, the sof -photon Kac-

4The same is not true for scattering amplitudes involving massive particles since a massive four-
momentum does not localize to a point onI . However following [31, 132, 134] we expect the analysis of
this paper to have a suitable generalization to the massive case, as the subleading sof theorem [11, 141–143]
remains valid for massive particles.

5This also acts on the energy as

ω̃ → ω̃|cz + d|2 , ω̃ =
ω

1 + zz
.
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Moody current is

Jz = −
8π

e2
F (0)
uz =

1

e
E+
z lim
ω→0

[
ωaF ,+(ωŷ) + ωa†F ,−(ωŷ)

]
, (7.4.3)

where F (0)
uz is the zero mode of the photon eld strength, and aF ,+

(
ωŷ
)
creates outgoing positive

helicity photons. Insertions of this current take the form

⟨ JzO1 · · · On ⟩ =
∑
k

Qk
z − zk

⟨O1 · · · On ⟩ , (7.4.4)

where eQk is the electric charge of the operatorOk and we have dropped the dependence of the

operators on (ωk, zk, zk) for compactness.

In a similar vein, it has been shown [29, 103] that the subleading sof -graviton theorem is the

Ward identity for the superrotations [45] which generate an in nite-dimensional Virasoro subgroup

of the extended BMS group6. In the language of 2D correlators, the current corresponding to these

local conformal transformations is the stress tensor. We now turn to an explicit construction of this

operator.

Our starting point is (7.3.5) which has a form reminiscent of a stress tensor Ward identity. To

bring this into the usual form, we de ne

Tzz ≡
i

8πG

∫
d2w

1

z − w
D2
wD

wN
(1)
ww . (7.4.5)

Then (7.3.5) implies

⟨TzzO1 · · · On ⟩ =
n∑
k=1

[
hk

(z − zk)2
+

Γzkzkzk
z − zk

hk +
1

z − zk
(∂zk − |sk|Ωzk)

]
⟨O1 · · · On ⟩ ,

(7.4.6)

6The sub-subleading sof -graviton theorem has also been recently recast as a symmetry of the S-matrix
(see [144, 145]).
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which is the precise form of the stress tensor correlator in a conformal eld theory on a curved back-

ground. This can be brought to the more familiar form by dressing the operators with appropriate

factors of the zweibein (see [146] for a more detailed discussion).

De ne the charge

TC [Y ] =

∮
C

dz

2πi
Y zTzz , (7.4.7)

where Y z is a local CKV obeying ∂zY z = 0with no singularities inside the contour. Insertions of

(7.4.7) take the form

⟨TC [Y ]O1 · · · On ⟩ =
∑
k∈C

[DzkY
zkhk + Y zk (∂zk − |sk|Ωzk)] ⟨O1 · · · On ⟩ . (7.4.8)

Thus, TC [Y ] generates a local conformal transformation on all operators inside C7.

Now, consider a contour C that encircles all zk and a Y z that is globally de ned on the sphere,

i.e. Y z = a + bz + cz2. Since we are on a compact S2, insertions of TC [Y ] can be computed by

either closing the contour towards z = zk or away from it. No poles are crossed when the contour is

closed away from z = zk and these insertions must vanish. In other words,

n∑
k=1

[DzkY
zkhk + Y zk (∂zk − |sk|Ωzk)] ⟨O1 · · · On ⟩ = 0 , Y z = a+ bz + cz2 , (7.4.9)

which is the statement of boost/angular momentum conservation (7.2.9).

The stress tensor (7.4.5) is non-local on S2 in the news tensor zero modeN (1)
zz . Nevertheless, we

7This operator is closely related to the sof part of the superrotation charge de ned in [103]. More pre-
cisely if C is a contour that surrounds all zk, then

Q+
S = − i

2
TC [Y ] .
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have proven that insertions of Tzz are local on the S2. In contrast, the construction of the boundary

stress tensor in AdS/CFT [147, 148] is local in the bulk elds when written in terms of subleading

terms in the metric expansion. Leading and subleading terms in the metric expansion have a gauge-

dependent and generally nonlocal relation on the S2 enforced by the Einstein equation. We have

tried but failed to nd, by rewritingN (1)
zz in terms of subleading metric components, such a local

expression in Bondi gauge8. However it is possible that such a manifestly local expression exists in

some other gauge. On the other hand, the non-locality may indicate that the Virasoro action in 4D

quantum gravity has a di ferent character than that in conventional 2D CFT.We leave this question

unanswered for now.

Obviously an anti-holomorphic stress tensor Tzz could be similarly constructed. However, a

number of yet-unresolved issues arise for multiple sof -current insertions, even in the Maxwell case,

as discussed in [1, 2]. The result of this paper is that insertions of a single Tzz generate local confor-

mal transformations when all other insertions are hard.

8TheO(r0) term in gzz is an obvious suspect.
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A
Notations and Conventions

Most of the notations that are used in this thesis are described in the text when they are introduced.

For quick reference, we also summarize our notations and conventions here along with some useful

explicit formulae that are extensively used in the calculations.
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A.1 Coordinate Conventions

Cartesian coordinates are denoted yA ≡ (y0, y1, y2, y3). Retarded coordinates (u, r, z, z) and

advanced coordinates are (v, r, z̃, z̃) are related to the Cartesian coordinates as

t = u+ r = v − r ,

y1 =
r(z + z)

1 + zz
= −r(z̃ + z̃)

1 + z̃z̃
,

y2 =
−ir(z − z)
1− zz

=
ir(z̃ − z̃)
1− z̃z̃

,

y3 =
r(1− zz)
1 + zz

= −r(1− z̃z̃)
1 + z̃z̃

.

(A.1.1)

The unit vector is

ŷ(z, z) =
1

1 + zz
(z + z,−i(z − z), 1− zz) . (A.1.2)

We will of en use the notation ŷ ≡ ŷ(z, z) and ŷk ≡ ŷ(zk, zk).

(z, z) coordinates are related to (z̃, z̃) by the anti-podal map

z̃ = −1

z
, z̃ = −1

z
=⇒ ŷ(z, z) = −ŷ(z̃, z̃) . (A.1.3)
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The metric of Minkowski spaceM4 in each of these coordinates is

ds2 = −
(
dy0
)2

+
(
dy1
)2

+
(
dy2
)2

+
(
dy3
)2
,

= −du2 − 2dudr + 2rγzzdzdz ,

= −dv2 + 2dvdr + 2rγz̃z̃dz̃dz̃ ,

(A.1.4)

where

γzz =
2

(1 + zz)2
. (A.1.5)

The non-vanishing Christo fel symbols are

Γuzz = −Γrzz = rγzz =
2r

(1 + zz)2
,

Γzrz =
1

r
,

Γzzz = γzz∂zγzz = −
2z

1 + zz
.

(A.1.6)

We also introduce four dimension vierbein

eA = dyA =
∂yA

∂xµ
dxµ , ωAB(e) = 0 . (A.1.7)
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Explicitly

e0 = du+ dr ,

e1 =
z + z

1 + zz
dr +

r(1− z2)
(1 + zz)2

dz +
r(1− z2)
(1 + zz)2

dz ,

e2 =
−i(z − z)
1 + zz

dr − ir(1 + z2)

(1 + zz)2
dz +

ir(1 + z2)

(1 + zz)2
dz ,

e3 =
1− zz
1 + zz

dr − 2rz

(1 + zz)2
dz − 2rz

(1 + zz)2
dz .

(A.1.8)

We also de ne the zweibein on S2,

E+ =
2

1 + zz
dz , E− =

2

1 + zz
dz . (A.1.9)

for which

Ω±
±(E) = ±1

2

(
Γzzzdz − Γzzzdz

)
= ∓ z

1 + zz
dz ± z

1 + zz
dz . (A.1.10)

A.2 Spinor Conventions

The four-dimensional sigma matrices are taken to be

(σA)αβ̇ = (−12×2, σ⃗) , (σA)α̇β = (−12×2,−σ⃗) . (A.2.1)
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where σ⃗ are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.2.2)

Indices are raised and lowered using

εαβ = εα̇β̇ ≡
(

0 1
−1 0

)
= −εαβ = −εα̇β̇ . (A.2.3)

We note the following properties

(
σA
)
αα̇

(σA)
β̇β = −2δβαδ

β̇
α̇ ,(

σA
)
αα̇

(σA)ββ̇ = −2εαβεα̇β̇ ,(
σA
)α̇α

(σA)
β̇β = −2εαβεα̇β̇ ,

(
σA
)
αα̇

(
σB
)α̇α

= −2ηAB ,

(
σAσB + σBσA

)
α
β = −2ηABδβα ,

εαβε
γδ = δδαδ

γ
β − δ

γ
αδ

δ
β .

(A.2.4)

We also de ne

σAB ≡
1

4
(σAσB − σBσA) , σAB ≡

1

4
(σAσB − σBσA) . (A.2.5)
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We note following property that we use of en

σABσC = σ[ABσC] +
1

2
(ηCAσB − ηCBσA) ,

σCσAB = σ[CσAB] −
1

2
(ηCAσB − ηCBσA) ,

σABσC = σ[ABσC] +
1

2
(ηCAσB − ηCBσA) ,

σCσAB = σ[CσAB] −
1

2
(ηCAσB − ηCBσA) .

(A.2.6)

Any two-component spinor can be expanded in a basis of two spinors. It is convenient to choose

the basis spinors

ξ(+)
α =

√
1

1 + zz

(
1
z

)
, ξ(−)

α =

√
1

1 + zz

(
1
z

)
,

ξ
(−)
α̇ =

√
1

1 + zz

(
1
z

)
, ξ

(+)
α̇ =

√
1

1 + zz

(
1
z

)
.

(A.2.7)

These basis spinors are also useful in describing the σ-matrices in retarded coordinates

(σu)αβ̇ = −2ξ(+)
α ξ

(−)
β ,

(σr)αβ̇ = ξ(+)
α ξ

(−)
β − ξ(−)

α ξ
(+)
β ,

(σz)αβ̇ =
2

r
Ez+ξ

(+)
α ξ

(+)
β ,

(σz)αβ̇ =
2

r
Ez−ξ

(−)
α ξ

(−)
β .

(A.2.8)

Similar formulas may be obtained for σµ.

144



The Lorentz generators can be expressed as outer products as

(σur)αβ = −1

2

[
ξ(+)
α ξ

(−)
β + ξ(−)

α ξ
(+)
β

]
,

(σuz)αβ = −2

r
Ez+ξ

(+)
α ξ

(+)
β ,

(σuz)αβ = 0 ,

(σrz)αβ =
1

r
Ez+ξ

(+)
α ξ

(+)
β ,

(σrz)αβ =
1

r
Ez−ξ

(−)
α ξ

(−)
β ,

(σzz)αβ = − 1

r2
Ez+E

z
−

[
ξ(+)
α ξ

(−)
β + ξ(−)

α ξ
(+)
β

]
.

(A.2.9)

Similar formulas may be obtained for σµν , since σµν = −(σµν)†.

The Lie derivative of a spinor w.r.t. a vector ζµ is given by

LζΨα = ζµ∇µΨα −
1

2

(
∇µKν

)
(σµ)α

βΨβ ,

LζΨ
α̇
= ζµ∇µΨ

α̇ − 1

2

(
∇µKν

)
(σµ)α̇β̇Ψ

β̇
.

(A.2.10)

A.3 NullMomenta

In this note, null momenta are parameterized as

pA =
ω

1 + zz
(1 + zz, z + z,−i(z − z), 1− zz) . (A.3.1)
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The Lorentz invariant δ-function in momentum space is then written as

(2p0)δ3(p⃗− p⃗ ′) =
2

ω
γzzδ(ω − ω′)δ2(z − z′) . (A.3.2)

Null momenta satisfy

pA(σ
A)αβ̇ = ηα(p)ηα̇(p) , (A.3.3)

where

ηα(p) =

√
2ω

1 + zz

(
1
z

)
=
√
2ωξ(+)

α . (A.3.4)

A.4 One-Particle State Normalization

Here, we use the notation that the annihilation operator that appears in a eld f(y) is denoted

af,s(q⃗ )where s is the helicity of the particle that it annihilates. For the scalar eld, s = 0 and we

drop this label. These operators may carry additional labels (such as Lie algebra indices) which we

have dropped here. The creation and annihilation operators satisfy

[
af,s(q⃗ ), a

†
f ′,s′(q⃗

′)
}
= (2π)3(2ωq)δf,f ′δs,s′δ

3(q⃗ − q⃗ ′) . (A.4.1)

where [ , } is a commutator if the operators are bosonic and an anti-commutator if they are fermionic.

146



One-particle states are de ned as

| q⃗, f, s ⟩ = a†
f,s

(q⃗ )| 0 ⟩ , (A.4.2)

which satisfy

⟨ q⃗, f, s | q⃗ ′, f ′, s′ ⟩ = (2π)3(2ωq)δf,f ′δs,s′δ
3(q⃗ − q⃗ ′) . (A.4.3)

In this convention, the S-matrix amplitudeAn is taken to be

An = ⟨ 0 |af1,s1(p1) · · · afn,sn(pn)S| 0 ⟩ . (A.4.4)

where we use the convention that all particles are outgoing and that the sign of the energy p0i de-

termines whether the particle is actually ingoing or outgoing. We will of en denote af1,s1(p1) →

Oi(ωi, zi, zi) and hence we write

An = ⟨O1(ω1, z1, z1) · · · On(ωn, zn, zn) ⟩ . (A.4.5)
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