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Asymptotic Symmetries in Four-Dimensional Gauge and
Gravity Theories

ABSTRACT

Recent developments have uncovered a deep relationship between soft theorems in quantum
field theories and asymptotic symmetries. We investigate five explicit examples wherein these connec-
tions are studied and verified.

First, we show that the Weinberg’s soft-photon theorem may be recast as the Ward identity for
C PT-invariant large U (1) gauge transformations that asymptotically approach an arbitrary func-
tion € of the conformal sphere at null infinity, but are independent of retarded time. The symme-
tries for which € # constant are spontaneously broken in the perturbative quantum field theory
vacuum and the associated Goldstone modes are the zero-momentum photons. These comprise a
U (1) boson living on the conformal sphere.

Second, we generalize the construction to non-abelian gauge theories with gauge group G and
show that the massless tree-level soft-gluon theorem is the Ward identity of a holomorphic two-
dimensional G-Kac-Moody symmetry acting on these correlation functions. Holomorphic Kac-
Moody current insertions are positive helicity soft-gluon insertions. These symmetries are also spon-
taneously broken and the soft-gluons are the Goldstone modes.

Third, we generalize to supersymmetric ' = 1 abelian gauge theories with massless charged
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matter and establish the existence of infinitely many fermionic asymptotic symmetries at null infin-
ity, parametrized by a function on 52, whose Ward identities give rise to the soft photino theorem.
Unlike large gauge transformations, these symmetries are not manifest at the level of the Lagrangian.
They are spontaneously broken, and the soft photinos are the associated Goldstone fermions. Un-
broken global supersymmetry relates this fermionic charge to the U (1) large gauge charge.

Fourth, we consider gravitational theories and show that Weinberg’s soft-graviton theorem is
the Ward identity corresponding to a certain infinite-dimensional “diagonal” subgroup of BMS
supertranslations acting on past and future null infinity (.# ~ and .# ). The soft-gravitons are the
Goldstone bosons of spontaneously broken supertranslation invariance.

Finally, we use the sub-leading soft-graviton theorem to construct an operator 77, whose inser-
tion in the four-dimensional tree-level quantum gravity S-matrix obeys the Virasoro-Ward identities
of the energy momentum tensor of a two-dimensional conformal field theory (CFT?3). The celestial
sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT3, with the

Lorentz group acting as the unbroken SL(2, C) subgroup.
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Introduction

Quantum field theory is the central mathematical framework that is used in modern day particle
physics research. The Standard Model, which is a particular quantum field theory, describes the
dynamics and interactions of all known elementary particles. It is one of the most widely and accu-
rately tested theories to date (the other being Einstein’s General Theory of Relativity). Experimen-

tal verifications of the Standard Model typically come from scattering experiments. In a scattering



experiment, two or more collimated beams of particles are accelerated to very high energies and col-
lided. The immense energy released in the collision process is almost instantaneously converted into
a plenitude of new particles which are then collected and their properties measured by particle detec-
tors. By studying the type and amount of each particle that is released as well as their momenta, one
can obtain information of the structure of the subatomic world as well as the laws that govern it. In
general, these processes are exceedingly complicated and a lot of incredible theoretical, experimental
and technological ideas are needed to extract useful information from these collisions.

The fundamental quantity that theoretical physicists like to use to describe scattering processes is
called the scartering amplitude or scattering matrix or S-matrix or often, simply amplitude. The S-
matrix is defined as the overlap between the quantum state before the collision | in ) (the incoming

or in state) and a possible quantum state after the collision | out ) (the outgoing or our state), i.e.

ourin = (out|in) .
The S-matrix amplitude 7 is a function of all the quantum numbers that describe the iz and ot
states, e.g. the momentum, spin, charge, flavor, color, etc of each particle. It describes almost all
aspects of the collision process and consequently, it is extremely vital that we have a good under-
standing of the structure of the S-matrix and more importantly, how it is determined in quantum
field theory. A large part of particle physics research in the past 8o years has been devoted to this
endeavor.
Despite being incredibly complicated in general (as expected from the complexity of the collision

process it describes), there are certain limits in which the S-matrix simplifies. These simplifications



are often due special properties of the S-matrix or of the underlying quantum field theory such

as unitarity, locality, causality, Poincaré invariance, etc. In this thesis, we will study a particularly
interesting kinematic limit of the S-matrix known as the soff limit, in which the energy of one or
more of the massless particles involved in the collision is taken to be small compared to the energy
or masses of the other particles in the process. It has been well known since the work of Bloch and
Nordseick [6], Low [7, 8], Yennie, Frautschi and Suura [9] and Weinberg [10] that the S-matrix
factorizes in this limit into a so-called soff-factor and another S-matrix that involves fewer particles.

Roughly

ft-limit
e /e Y S

Here, 27, denotes the S-matrix of a collision process involving a total of n particles (incoming +
outgoing), m is the number of soft-particles and .S, is the soff-factor which may be a number, a
matrix or differential operator that depends, in general, on the precise structure of .o7,. There are,
however, certain aspects of this soft factor that are independent of these details and are therefore
universal. The leading, subleading or in some cases, the subsubleading terms in the soft expansion
(expansion in the energies of all the soft particles) of Sy, are universal! Soft limits which extract these
universal structures are referred to as soff theorems.

Soft theorems characterize universal properties of S-matrices. They often imply severe con-
straints on the amplitude, such as conservation of (color) charge, momentum and angular momen-
tum [10, 11]. They additionally imply that long range interactions cannot be mediated by particles of

helicity |s| > 2 [10]. They also ensure infrared finiteness of cross sections and decay rates [6, 12, 13],



which are directly measured at colliders. Despite their immense usefulness, the origin of soft theo-
rems has not been clear. They are often determined, as in the case of [6-10], by an explicit compu-
tation of soft-limit in each case. This case-by-case derivation makes it difficult to understand when
soft theorems may exist in general. For instance, while the leading soft-photon and soft-graviton the-
orems were known since 1965 due to seminal work of Weinberg [10], the subleading soft-graviton
theorem was derived only as recently as 2014 [11].

Recent developments in this area, which form the central topic of this thesis, have shown that
soft theorems are consequences of infinite-dimensional symmetries of the S-matrix. In some cases,
these infinite-dimensional symmetries have been connected to previously known symmetries and
in other cases have turned out to be completely new! Once established, this connection allows us to
deduce new infinite-dimensional symmetries from soft theorems and vice versa. In fact, the sublead-
ing soft-graviton theorem was conjectured to exist only by first connecting it to a previously known
symmetry known as superrotations.

The infinite-dimensional symmetries referred to above are known as asymptotic symmetries.
These are exacr symmetries of the theory which are highly non-trivial in the bulk of spacetime,
but take on a rather simplified form at infinity. From the perspective of the scattering amplitudes,
these are symmetries that act in a simple way on the S-matrix but in a non-trivial way on the action.
Asymptotic symmetries have been studied in the context of general relavity for a long time, starting
from the work of Bondi, van der Burg, Metzner and Sachs in the early 6os [14, 15]. The authors were
interested in understanding the structure of gravitational waves at infinity, i.e. far away from any

sources. In particular, they were interested in determining the symmetry group that acts on such



gravitational waves and expected to find the Poincaré group — since general relativity ought to re-
duce to special relativity when spacetime is weakly curved. However, what they surprisingly found
instead was the so-called BMS group, an infinite-dimensional extension of the Poincaré group. At
the time, most were puzzled by the result and strived to impose stronger constraints than the ones
BMS used to reduce the asymptotic symmetry group down from BMS to Poincaré. On the other
hand, there significant interest in the the structure of the BMS group and its implications on grav-
itational physics, and in particular the gravitational S-matrix (see [16—26] and references therein.).
However, it wasn’t until quite recently [4, 27] that the consequences of the BMS group on the
S-matrix were understood. The study of asymptotic symmetries and their consequences on the
S-matrix in non-gravitational systems such as QED or non-abelian gauge theories is more recent
[1, 28-31] and is a subject of ongoing research [32-39].

Soft theorems and asymptotic symmetries have been independently studied over the past 6o
years with significant developments in both. The language and notation employed in these distinct
fields have been wildly different and yet — as we will argue in this thesis — they are in fact completely
equivalent. This equivalence will come in the form of conservation laws. In particular, due to the
seminal work of Noether [40], it is known that the existence of symmetries implies conservation
laws or Ward identities for the S-matrix. We will show, in several examples, that the Ward identities
corresponding to these asymptotic symmetries are precisely the soft-theorems in quantum field
theory.

The implications of the new found connection between soft theorems and asymptotic symme-

tries are deep.



Firstly, connecting two disparate fields is often in and of itself a useful development. Results in
one field can be translated into potentially new results in the other field. The connection opens up
the possibility of new calculational techniques and new insights into physical phenomena.

Secondly, it is known that soft theorems constrain the IR dynamics of a quantum field theory
which therefore implies that the IR sector is governed by infinitely many symmetries! This may pro-
vide new light into infrared problems in quantum field theory, which currently is treated technically
by introducing a IR cutoff and then removing it at the end of the calculation. This procedure explic-
itly breaks these symmetries and obscures the interesting physics. In particular, it is not clear with
this technique how to define an IR finite S-matrix in gauge theories (the cutoffs are removed from
decay rates and cross-sections, but cannot be removed from the S-matrix.). In fact, as we will see, in
theories with such infinite dimensional asymptotic symmetries, the vacuum is not unique so that a
basic assumption of perturbative quantum field theory breaks down. It is believed that this infinite
vacuum degeneracy might be the cause of IR divergences.

Thirdly, such a connection implies deep insights on the long-sought-after flat space holography,
i.e. a holographic description of quantum gravity in asymptotically flat spacetimes. With the ad-
vent of AdS/CFT [41, 42], substantial progress was made in understanding quantum gravity in AdS
spacetimes by holographically mapping it to a conformal field theory in one lower dimension. Var-
ious attempts to extrapolate this holographic principle to Minkowski spacetime have been made
by taking the infinite radius limit of AdS [43, 44], but not much progress has been made on this
front. For instance, while it has been possible to recover the three-dimensional BMS group by tak-

ing such a limit, attempts to recover BMSy have failed. Nonetheless a quantum theory of gravity



in flat space is much desired and one may begin to answer this question holographically by study-
ing the asymptotic symmetries of a spacetime. It was recently noted [45] that the original analysis
of BMvS allows for another infinite-dimensional extension of the four-dimensional Lorentz group
SO(1,3) = SL(2,C) to the local two-dimensional Virasoro group. Existence of the local two-
dimensional conformal group implies a possibility of the description of quantum gravity in flat
spacetimes in terms of a CFT. We are still in the process of understanding how such a holographic
correspondence would come about and we will touch upon some developments on this front in this
thesis.

Another interesting motivation to study this subject lies in understanding the so-called miracles of
N = 4 supersymmetric Yang-Mills theory. Detailed calculations of the S-matrix in this complicated
theory show that while intermediate steps of the calculation are often intricate, there are miraculous
cancellations so that the final answer is exceedingly simple. There is no apriori explanation for these
simplifications. One possible suggestion, and the one we advocate, is that the cancellations occur
due the asymptotic symmetries discussed here. Using a recently developed technique called inverse
soft [46], one is able to construct a large class of amplitudes in ' = 4 SYM with the knowledge of
only the soft theorems. It is then natural to suspect that the same symmetries that constrain the soft
sector also have implications for hard amplitudes.

Finally, another interesting application of this connection that has emerged due to the work of
Hawking, Perry and Strominger [47, 48] is to the black hole information paradox. It turns out that
the same infinite-dimensional asymptotic symmetries that BMvS obtained by studying the structure

of asymptotically flat spacetimes at infinity appear also on the horizon of black holes and therefore



constrain the formation and evaporation of a black hole. In particular, complete specification of a
black hole now requires not only the mass, charge and angular momentum (as dictated by the no-
hair theorem), but also these infinitely many charges. In other words, black holes have infinitely
many hair! This idea is intriguing and seems to significantly affect the original argument of the infor-
mation paradox [49]. However, it is not clear if this resolves the paradox or simply reformulates it.
The answer to this question is currently being investigated [47, 48, 50-66].

While the connection between soft theorems and asymptotic symmetries is interesting and rich
enough, it has additionally been revealed that these two fields are related to a third field, namely the
study of memory. A memory effect is a change in the average value of some quantity before and after
a certain process occurs. The first instance of memory was understood in 1974 in the context of grav-
itational physics in [67—-71] known as the Christodoulou memory. The Christodoulou memory ef-
fect describes the net change in the geodesic distance between two inertial detectors before and after
a gravitational wave passes through. In other words, when a gravitational wave passes through two
inertial detectors, there is a temporary oscillation while the wave passes, followed by a permanent
relative displacement of the two detectors. This net change in the distance is a DC effect captures
important non-radiative data about the passing wave. It is now understood that the Christodoulou
memory effect is related to the BMS group [72] and therefore also to the corresponding soft theo-
rem. In particular, the formula that relates the DC shift to the gravitational wave is simply a Fourier
transform of the soft theorem. The DC shift can also be understood as a transition between the in-
finitely degenerate vacua of systems with asymptotic symmetries. These relationships are concisely

portrayed in the so-called infrared triangle shown in Figure r.1. Similar memory effects and their
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Figure 1.1: The Infrared Triangle: The triangular equivalence of three phenomena that characterize the infrared
structure of all theories.

relationships to soft theorems and asymptotic symmetries have now been shown to exist for gauge
theories [73, 74] as well as new ones in gravity [75-84].

Instances of the infrared triangle appear ubiquitously in all physical systems — gauge, gravita-
tional or supersymmetric theories and in all dimensions. They are present in classical theories as well
as in quantum theories. Further, there is a version of this triangle corresponding to all types of soft
theorems — leading, subleading, subsubleading, double soft theorems, etc. Current research is slowly
uncovering various instances of this triangle in different theories. In many cases, only one vertex of
the triangle is known which can be used to deduce the remaining two vertices.

In this thesis, we will discuss the detailed relationship between asymptotic symmetries and soft

theorems. It is organized as follows. In Chapter 2, we present a basic introduction to fields in flat



space and their asymptotic structure. This chapter sets up the notations and conventions that we
use in the rest of the thesis and introduces all preliminary material. In Chapter 3, we study asymp-
totic symmetries in massless QED and relate it to the leading Weinberg’s soft-photon theorem. In
Chapters 4 and 5, we generalize the discussion of Chapter 3 to non-abelian gauge theories and super-
symmetric theories respectively. In Chapter 6, we move away from Minkowski space and consider
gravitational fluctuations thereof. We show that the asymptotic symmetries derived by BMvS [14, 15]
are related to Weinberg’s soft-graviton theorem. Finally, in Chapter 7, we discuss a recently proposed
infinite-dimensional extension of the BMS group - the extended BMS group. The extended BMS
group includes a Virasoro subgroup which is shown to be related to a newly discovered subleading

soft-graviton theorem [11] and we construct the corresponding two-dimensional stress tensor.

I0



Asymptotics of Minkowski Spacetime

In this chapter, we study the geometric structure of Minkowski space. In particular, we will be in-
terested in the asymptotic structure of Minkowski space. We also discuss free fields and their asymp-
totic structure. A lot of the discussion in this chapter is found in quantum field theory and general
relativity textbook, albeit in a slightly different form. We reproduce it here to setup our notations

and conventions.

II



2.1 CAUSAL STRUCTURE

A useful representation of the asymptotic structure of a (d + 2)-dimensional Lorentzian spacetime
(M, g) is given by the Penrose diagram (or more precisely, the Penrose-Carter diagram), which cap-
tures the causal relation between different points in M, i.e. whether two points are spacelike, null or
timelike separated. The idea is to perform a conformal transformation on the metricg — § = Q2g
which brings the entire spacetime M into a compact region which can then be conveniently repre-
sented on a two-dimensional diagram. Note that on the asymptotic boundary of M, we have (2 = 0
on the boundary of M. Since conformal transformations preserve causal relationships, the causal
structure of the unphysical spacetime (M, g) is the same as that of (M, g). Distances are not accu-
rately represented in the Penrose diagram.

In practice, one obtains the Penrose diagram by finding compact timelike and spacelike coordi-
nates T and R and then choosing  so thatg = —dT? + dR? + Gapdz®da? where 22 are the
remaining d spatial coordinates. The Penrose diagram is obtained by plotting the coordinate ranges
of T"and R on the usual Cartesian plane. The remaining d spatial directions £ are suppressed in
this representation of M.

We now carry out this program for Minkowski spacetime M p—q2. This is globally described in

Cartesian coordinates y* = (y°,y', y%, -+ ,y®*1), y* € R by the metric

ds* = napdy?dy® = —(dyo)2 + (dyl)2 + (dyz)2 + -+ (dyd+1)2 . (2.11)
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To find the compact coordinates T' and R, we move to spherical coordinates (¢, 7,01, | 69),

P =t, yizrgf(e), i=1,---,d+1. (2.1.2)
Here, 6% a = 1,--- ,d are generalized coordinates on S¢ and ¢ (6) is the unit-vector in R%+1

pointing towards 6 € S¢ (which is embedded in R%*! in the standard way).

The metric of Minkowski spacetime in spherical coordinates is

ds? = —dt? + dr? 4+ r2y,(0)d0°de® , ., (0) = 0.5 (0) Dyii () . (2.1.3)
where Y45 (6) is the round metric on the unit S

We may then find 7" and R by performing the following chain of coordinate transformations

u=t—r, v=t+r, —o<u<v<oo,
U=t lu, V =tn lv, _g <U<V< g, (2.1.4)
T=U+V, R=V-U, R>0, R+|T|<m.

u and v are null coordinates in the sense that null geodesics in Minkowski spacetime are defined
by varying u keeping (v, ) fixed and varying v keeping (u, 6) fixed. Similarly, U and V" are null
coordinates. The metricin the (T, R, 6) coordinates is

1
(cosT + cos R

ds® =

E (—dT2 + dR? + sin? R%bdaadeb) . (2.15)

We then obtain the #nphysical metric g by choosing {2 = cosT" + cos R. We note that the resultant

unphysical spacetime (M, g) is compact and may be represented as shown in Figure 2.1.

For the unit S%, we have

Rabcd[’Y] = YacYbd — YadVbc » Rap ['Y] = (d - 1)’7@1) , R[’Y] = d(d - 1) .

13
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i+

Figure 2.1: Penrose diagram of Minkowski spacetime: The coordinate ranges |T| + R < mand R > 0 are plotted
above. The angular coordinates 8 is frozen § = 6 so that each point in the diagram above is an S¢. Timelike,
spacelike and null geodesics that pass through the origin are shown in red, orange and blue respectively. The dotted
segment indicates that the geodesic that starts at 6 crosses the origin 7 = 0 over to the antipodal point .

The asymptotic boundaries of Minkowski spacetime are given by €2 oMp = 0. There are three

different types of asymptotic regions (shown in Figure 2.1):
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TiME-LIKE INFINITY i This is described by T' = +(7 — €), R = %’reZ with e — 0. In spherical
coordinates, this corresponds to the limit ¢ — £o0 with (7, 6) fixed. All time-like curves begin at

past timelike infinity ¢~ and end at future timelike infinity i .

SpatiaLINFINITY ¢ Thisis described by T = 1te?, R = m — ewithe — 0. In spherical
coordinates, this corresponds to the limit 7 — 00 keeping (¢, #) fixed. The end-points of all spatial

curves lies in i°.

Nurr INFInITY .#%  Future null infinity .#  is described by V' = 2 whereas past null infinity
J~isU = —%. In spherical coordinates, #* corresponds to the limit v — oo keeping (u, )
fixed whereas .~ s the limit u — — 00 keeping (v, 6) fixed. These have the topology of §¢ x R.
All null geodesics begin at .# ~ and end at .# . In this thesis, we will focus our discussion primarily
on null boundaries .#*. .#+ has further d-dimensional boundaries located at u = o0 (U = + 3)
which we denote by #;". Similarly, .# = has boundaries atv = +oo (V = +7) which we denote
by £ . Note that .Z" (.. ) is distinct from i+ (i ~) and . are distince from i°.

Note that null (timelike) geodesics that begin at .# = (i ™) ata point§ = 6y endat £ T (i) at
the antipodal point 6 = 6. For this reason, it is often more convenient to draw the Penrose diagram

of Minkowski space by including also the antipodal angle as shown in Figure 2.2.
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Figure 2.2: Alternative Penrose diagram of Minkowski spacetime: In the diagram above, we have frozen the angular
coordir@tes, with the right side corresponding to a fixed point § = 6 on 5% and the left side the antipodal point,
6 = 09. Thus, each point in the diagram above is a hemisphere. Timelike, null and spacelike geodesics passing
through the origin are shown in red, blue and orange respectively.

2.2 RETARDED AND ADVANCED COORDINATES

In this section, we introduce two coordinate systems that are more naturally adapted to .# * and

7 ~. These are the so-called retarded coordinates (u, 7, §) and advanced coordinates (v, , §) where

the metric of Minkowski spacetime takes the form

ds? = —du® — 2dudr + 1274 (0)d0°d0° = —dv® + 2dudr + 1294, (0)dA°de> . (22)
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& is best described in retarded coordinates as the boundary located at = oo keeping (u, ) fixed

whereas . ~ is best described in advanced coordinates as the boundary located at 7 = oo keeping

(v, ) fixed. Here, § and @ are antipodal coordinate systems on the asymptotic S, i.c.

7(000) = —5'0),  Yap(0) = 0a6°00%7.a(0(0)) .
The Christoffel symbols in the retarded coordinates are

1

a

avl9] = —Laplg] = mvab » I'ylgl = ;5b ) belg] = Tpel7] -

These coordinates are shown in Figure 2.3

(2.2.2)

(2.2.3)

Figure 2.3: Retarded (left) and Advanced Coordinates (right) shown on the Penrose diagram of Minkowski space

The null normal vector and volume element on .Z 7+ is

1 0 1
n=20a,— =0, / d¥X* = lim rd‘/ du/ ddG\ﬁ (55 — (5ﬁ> . (2.2.4)
2 g+ r—r00 —00 Sd 2

In §2.4.3, we will be discussing the structure of spinor fields near .# . For this purpose, we will

17



need to introduce a vielbein. We will work with the flat vielbein,

eﬁdaz“ =dy? = 22 da*, wMAB =0. (2.2:5)

We will discuss these vielbein more explicitly when we discuss spinors in §2.4.3.

SPECIAL COORDINATES IN D =4 So far we have discussed retarded and advanced coordinates in
general dimensions D > 3 and have not made any particular choice for coordinates on the asymp-
totic sphere, S d In D = 4, the asymptotic sphere is two-dimensional and it is extremely useful to
work in stereographic coordinates # = (z,Z). These are related to the standard angular coordi-

nates (6, ¢) by

: 0 : 0
z =€ tan -, Z=¢ ®tn—. (2.2.6)

Alternatively, we may describe them by relating (2, Z) to the unit vector §*(6) as

i z+zZ —i(z—%) 1—2Z
— 2.2.
§(=2) <1+zz’ 1+ 2z ’1+zz> (z27)
The S2-metric takes the form
2
dQ3 = d6? + sin? 0d¢? = 2v.zdzdz, Yz = ———. (2.2.8)
(1+22)

The volume form on S2 is

d?Q = sin0dO A d¢ = iy.2dz A dZ = %2,z . (22.9)
The S? Christoffel symbols are

T2 =770.72, I&h] =770z, (2.2.10)
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and all others vanish.

A convenience of working in stereographic coordinates is that one may describe spinor and tensor
representations together. These are classified by their weights (%, h). The covariant derivative of a
tensor T{, 7.y is given by

DTy = 0T — Wi my
(2.2.1)
For integer and positive h and h, T{), 1y can be thought of as a covariant tensor (or contravariant if
h or h are negative) with 1 z-indices and h % indices. However, (2.2.11) holds for both integer and

half-integer h and h.

Finally, we introduce a complex zweibein on S 2

Ef = E = \/27?, E;‘ =E; =0. (2.2.12)
Note that (EJ")* = E_. The flat metricisn++ = 0,m4_ = n_4 = 3. The corresponding spin

connection has the following non-vanishing components

05 =4Q., QT =70 (2.2.13)
where
1 - 1 1 - 1.
Q, = 57“ Yz = ifiz 1, Qz = 57“32%5 = §F%[’V] : (22.14)

Now, given any (h, h) tensor, we may change basis and define a tensor w.r.t the internal flat mer-

ric T( hR) 3

z\h zZ\h
T(hﬁ) - (E+) (Ef) T(hﬁ) . (2.2.15)



T( hR) does not transform under spacetime diffeomorphisms, but transforms as a (h, k) tensor un-

der the internal SO(2) rotation. The action of the covariant derivative on this tensor is

DZT(}L,E) — 8ZT(}L,E) _ SQZT(}Z,E) 5

(2.2.16)
DTz = 0Ty + 5% TR -
where s = h — h is the spin of the tensor.
Finally, we note that the antipodal stereographic coordinates (Z, %) is related to (2, Z) as
e _i’ 3 = _1. (2.2.17)
Z z

which corresponds to 0=m— 0, gg = 7 + ¢. It may easily be verified that

14(2,2) = —9'(2,2) . (2:2.18)

2.3 POINCARE GENERATORS

Particle dynamics are constrained by symmetries, via Noether’s theorem. In particular, Killing vector
fields of Minkowski spacetime give rise to translational and Lorentz invariance, which correspond
to momentum conservation and angular momentum conservation. In Cartesian coordinates, these

vector fields are

Ch=0a, Chp =240 — 250 . (23.1)

Together, these generators form the Poincaré algebra, T2 x so(1,d + 1). In our discussion of

null infinity, we will find it more convenient to rewrite these generators in retarded (or advanced)
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coordinates,

G = fOu+ D f0, — D" S

(2.3.2)
Gr =¥ udy = (u+1)0)] + Y = ZD") 0, .
where
W = 1 DY, . (23.3)
d
Here, f(8) is a function and Y%(6) is a vector field on S¢ that satisfy
1
DDy f — EW,DQ f=0, (d>1) (23.4)
Dy(D*+ad)f =0, (d>1) (2.3.5)
2
DYy, + DyY, — E'yachYc =0, (d>2) (2.3.6)
(Dan + ’Yab) DY, =0. (d>2) (2.3.7)

Here, D,, is the y-covariant derivative and D? = D¢D..Ind > 1,(2.3.4) implies (2.3.5) and in
d > 2,(2.3.6) implies (2.3.7).
The Killing vectors (2.3.2) are related to the usual translation and Lorentz transformation genera-

tors as follows. We may decompose the function f(6) into spherical harmonic modes as

FO) =" anYes(0), DY (0)=—L(l+d—1)Y(0). (2.3.8)
=0 J

where J are all the remaining quantum numbers®. (2.3.5) implies that only the / = Oand/ = 1

modes of f(#) are non-zero. The single / = 0 mode corresponds to time translation whereas the

2For 8%, J = {my---mg_1}withm; € Zand|mi| < my < -+ < mg_; < £ Thenumber

of spherical harmonics with quantum number £ is N (d, ) = £2=1 (d+ﬁ_2). Note that N(d,0) = 1and
N(d,1)=d+1.
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(d + 1) £ = 1 modes correspond to the (d + 1) spatial translations in R14+1,

In a similar way, (2.3.6) implies that Y is a conformal Killing vector field of S%. The Lie algebra
of these vectors is §0(1, d+1) which is also the Lorentz algebra in (d+2)-dimensions. In d = 2, the
conformal algebra is infinite-dimensional. In this case, (2.3.7) implies that Y is a global conformal
Killing vector of S? which reduces to the symmetry algebra to 50(1, 3) & s[(2, C). Spatial rotations
are generated by Killing vector fields of S d namely those satistying 1) = 0, whereas Lorentz boosts
correspond to vector fields with ¢ # 0.

The algebra of these vector fields is the Poincaré algebra,

[¢r.¢pr] =0, ¢y, Cr) = Cvip—us ¢y Cvr] = Cvvy - (23.9)
In a similar way, one may also determine the Killing vectors in advanced coordinates as

G = o, - 1D, - 1pefa,,
f d r

(2.3.10)
C};_ = {E— [vav + (v — T)ar] + [f/—“ + 2]5“1;_ Da -
where )~ = %150376_ and Y~ is a conformal Killing vector of S%. Of course, these Killing vectors
are not independent of those in retarded coordinates (2.3.2). Rather,
FO)=F(), YO)=Y""0). (23.10)

The identification above implies that f and Y are antipodally identified with f’ and Y 9 as func-
tions. For instance, the value of the function f at the north pole (say § = 0) is equal to the value of

fat the south pole (which is now = 0).
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In D = 4 and in stereographic coordinates, the conditions (2.3.4)—(2.3.7) read

D?*f=0=D2f, D;Y?*=0=D,Y~?, D3Y* =0=D2Y~>. (2.3.12)
These are solved by
fa:a0+a1 zZ+z o —i(z —2) 31 —2% YZ:a+ﬁz+722, (2.3.13)

a a ,
1422 142z 1427z
wherea” € Rand o, 8,7y € C.
Stereographic coordinates make the group isomorphism SO(1,3) = SL(2,C) explicit. A

general finite Lorentz transformation takes the form of a Mobitis transformation,

L gz u ot u(1 + 22)

= d—b =1. 2.3.1
cz+d’ lcz +dJ? + |az + b’ “ ¢ (2314)

The antipodal map of the Poincaré generators (2.3.11) in these coordinates is

f(2,2) = f (2,3%), YZ(2) =Y (2). (23.15)

2.4 ASYMPTOTICS OF MASSLESS FIELDS

Having understood the geometry of Minkowski spacetime, we may consider the asymptotic dynam-
ics of fields on M. We only consider massless particles and will therefore be interested in the struc-
ture near .# T and .# ~. For most of this section, we discuss the structure near .# . The analogous
structure near . ~ is almost identical and only briefly discussed in §2.4.s.

In particular, the goal of this section is to solve the Cauchy problem for and canonically quantize
massless scalar, vector and spinor fields on . *. The discussion of free fields trivially extends to the

interacting case as long as all interactions die off sufficiently fast near .# ", i.e. as long as all interac-
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tions are either marginal or irrelevant. We briefly discuss this in §2.4.6.

2.4 SCALAR FIELD

A massless free scalar field is governed by the action

1

sl = - [ avvav.avee, (24)
4

We vary the action w.r.t. ® to determine the equations of motion

5S[®, 5] = /

i3/~ goOV2D — / Loy =gV (50V,0) . (242)
My

My

The first term above gives us the equations of motion

2 1
V3o = [aﬁ = 20u0; + ~(9r = 0u) + TQDQ] d=0. (2.43)
The first step towards studying the asymptotics of the scalar field is to determine its large 7 behav-

ior. To do this, we consider (2.4.3) at large 7,

large

1
Ve =0 5 -2 [aT — J 2,®=0, (2.4.4)
which implies that near . .0, =0 (7‘_1). This motivates the boundary condition,

d=0 (r_l) atlarge r. (2.4.5)

This boundary condition is also consistent with finiteness of momentum and angular momentum
flux through .# +.
We now solve the Cauchy problem on .# *, which is to determine the daza on .t that must be

prescribed in order to have a unique solution to the wave equation (2.4.3). To do this, we assume
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that the scalar field ® admits a large r Taylor expansion satistying (2.4.5),

© pn)
O(u,r, 6) = Z <I>r(:a,0) . (2.4.6)
n=1

Plugging this expansion into (2.4.3) and expanding in large r, we find the following equations order-

by-order in large r,

9, Y = —QL [D? 4+ n(n —1)] M n>1. (2.4.7)

n

Up to u-independent integration constants @) (f) forn > 13, the full scalar field is determined by

the leading order coefhicient ®M (u, ). Thus, the boundary data for the massless scalar is

d(u,0) = lim [r®(u,r,6)] . (2.4.8)

=00

where we have now relabelled ®(®) — ¢. In the language of S? tensors introduced in §2.2, this field
has h = h = 0 and is denoted b(0,0)-

Now that we have solved the Cauchy problem on .#t, we may proceed with the canonical quan-
tization of the theory. To do this, we follow the procedure described in [8s]. Let us briefly review

this here.

3Solutions in which these integration constants are non-zero are of the form

1 1 1 1 1 U
- I _Dn2,_ Z D2 _ (n)
E TngFl (n 5 1/ D2 n 2—1-\/4 D2 n, 27")@ ).

n=1

These solutions are singular at the origin 7 = 0 and are not considered here.
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AsIDE — REVIEW OF WALD AND ZoUPAS:  Let ¢ be the set of all fields in a theory which is de-

scribed by an action Sy,

Sle] = / d*z/=gL(p) . (2.4.9)

Varying this action, we find the form
0S| = /d4x\/ng(¢)5¢ + /d4x\/jgvu®”(g0, dp) . (2.4.10)
The bulk term implies the Euler-Lagrange equations of motion £(¢) = 0. From the bulk term, we

read off the symplectic current potential density, ©# (¢, d¢). This quantity is defined only up to a

total derivative

O (p, 8p) = OF(p, 6p) + V, B (i, 0¢) . (2.4.11)
The symplectic form on a hypersurface ¥ is given by

Qs(p, 00,0 ¢) = / A, [60H(p, 8 p) — §'OM (¢, 0¢p)] . (2.4.12)
¥

Note that if we use ©’ instead of O, the symplectic form is modified to

Ox(p,00,8'p) = Qs(p, 80, 8'p) + /82 S, [0B"(,8'0) = 8'B™(,0p)] . (2-4.13)
Thus, the ambiguity in © affects the boundary symplectic form. In this thesis, we will not discuss
this ambiguity.

Let us now work this out for the scalar case. The symplectic current potential density from the

boundary term in the variation of the action (2.4.2)
0, (®,60) = 0,060 . (2.4.14)
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Finally, the symplectic form on a Cauchy surface ¥ is given by

Qy = / dSF (510, (B, 62B) — 620, (P, 5, )] = / dSF 9,0 A 5D . (2.4.15)

where we define da A b = d1ad9b — d2ad1b.
As an example of this procedure, let us take ¥ to be a ¢ = constant hypersurface, H;. The Cauchy

data on this hypersurface is ¢ = ®|x; and its time-derivative 7 = 0;®|x.. The symplectic form is

Qy, = / 3z om(t, T) A do(t, T) . (2.4.16)
The quantum commutators on H; are then determined by inverting (24

[o(t, ), m(t,2")] =6 (F-2'), [o(t.%),0(t,7")] = [r(t,D),n(t,Z')] =0.

(2.4.17)

Thus, by quantizing the theory on H;, we retrieve the usual equal time commutators of quantum
field theory.

We now move back to the case of interest, namely > = . T. The symplectic form is

Qv = / dud?0/70,66 N 5¢) . (2.4.18)
Recall that when we quantized the theory on Hy, ¢ was paired with 7 both of which are indepen-
dent data on H;. On .#* however, ¢ is paired with 9,,¢, which are not independent data. We
must therefore be careful about the way we read off quantum commutators. In particular, we
must be very careful about u-independent modes of ¢(u, ). We start by considering the zero mode

C(0) = ¢(+00,60) + ¢(—00, 8). This zero mode corresponds to the divergent n = 0 solution

#On a general symplectic manifold, if Q = %ijdq“ A dq” then [¢*, ¢¥] = Q" where Q" is the in-
verse matrix of €2,,,,.
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mentioned in footnote 3. We therefore discard this zero mode and set C' = 0. For all such solutions,

we may write

1 e}
o(u,0) = 2/ du'©(u — )0, p(u', 0) .
where O(z) is the sign function. We now move to Fourier space

N(w,0) = / due™ 0y p(u, ) .

The symplectic form is then

i

Q. =" / dod0 /7 L 5N (10, 6) A SN (~,6).
™ w

0

We can then easily read off the quantum commutators

[N(w,0),N(W,0")] = —mwd (w + w')6%(0,0') .

where §2(6,6') is the Dirac Delta function on S? normalized as

/dQG\ﬁ(SQ(G,H’) =1.

Moving back to position space, we find

[0(,6),6(u/,6)] =~ O — /)5 (6,6').

(2.4.19)

(2.4.20)

(2.4.21)

(2.4.22)

(2.4.23)

(2.4.24)

(2.4.24) is the canonical commutation relation on .# *. The non-standard ©-function that appears

on the RHS is due to the fact that .# T is a null hypersurface. Note that (2.4.24) is the quantum

commutator one would obtain if we naively invert the symplectic form (2.4.18) without discussing

the zero mode issues. This is due to the fact that the potential zero mode C' vanishes on the space

of solutions that we are considering. When dealing with gauge fields, the analogous zero mode is
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generically non-vanishing and we must follow through with the analogous argument as above in

order to determine the correct commutators.

2.4.2 VECTOR FIELD

We now consider the quantization of a free U (1) gauge field A whose dynamics is governed by the

Maxwell action

1

B FAxF. (2.4.25)
262 My

S[A] =
where F = d A is the field strength. Under U (1) gauge transformations

A — A+d). (2.4.26)

Varying the action, we find

5SA, 5A] = 1/ (d*]—“)AcSA—g/ d(+FAGA) . (2.4.27)
My My

e2 e
The bulk term above gives us the equations of motion
d(+F) =d(xdA) = 0. (2.4.28)
As in the case with the scalar field, we start by determining the boundary conditions for the gauge

field. This can be done by studying the equations of motion (2.4.28) and further imposing finiteness

of momentum and angular momentum flux through .# +, analogous to the scalar case. Near % +,

we find

Fur =0(r7?%), Fra=0(r"?), Fua = 0(1), Fap=0(1). (2.4.29)
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These boundary conditions are also consistent with finiteness of momentum and angular momen-
tum flux through .# +.

For the gauge field, this motivates the following boundary conditions

Au - O(Til) ’ AT = O(Tﬁ2) ’ Aa = O(l) . (7"4-30)
Next, we solve the Cauchy problem on .% *. Here, the gauge field A is defined only up to gauge

transformations so we need to fix a gauge. A convenient gauge for our purposes is the retarded radial
gauge
A, =0. (2.4.31)

In this gauge, (2.4.28) takes the form

VA Fpu = =5 [0y — 0,) (r20,A) + DA, — 8,D°A,] =0,

1

r2
1

Vﬂ}“ﬂr = ﬁar‘ (T28T~Au - DaAa) =0, (2.4.32)

VHFFpa = 0 (0r — 204) Aq + DaOr Ay + T%(D2 —1)A, — %DanAb =0.

To solve these equations, we Taylor expand the gauge field near .¥ +,

o 4(n) o 4(n)
Ay (u,r,0) =Y Aw0) ) = > A (w6) (2.4.33)

/rn /rn
n=1 n=0

The equations at each order in large 7 takes the form (for n > 0)
8 [AY — DAV =0,
20, AN — DAY — DY (D, A — DAY =0,
(2.4.34)

(n+2) A0+ + DUATD =0,

2(n + 2)3, A" + (D? + (n+ 1) (n +2) — 1) APTY = 0.
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The equations imply that up to u-independent integration constants AS) and A((ln) forn > 15, the

full gauge field is determined by AY (u, 0). Thus, the boundary data for the gauge field is

Aq(u,0) = lim Ag(u,r,0). (2.4.35)

r—00

where have now relabelled AY — A,. In stereographic coordinates, the datais A, = A1 ) and
Az = A1) As we will see in §2.5, A, corresponds to a positive helicity photon and Az corre-
sponds to a negative helicity photon.

Finally, we consider canonical quantization of the gauge field on .% *. From the boundary term

of (2.4.27), we find

*O[A, 5 A] = —el? * FAGSA, (2.4.36)

which implies the symplectic form

Qg+ = —% *0F NOA = ig / dud®6\/y 0,6 Aq N IA” . (2.4.37)
(& 7+ (& 7+

Now, as in the scalar case, it is important to be careful about u-independent zero modes of the
gauge field. For a scalar field, such a zero mode was forced to be zero by requirement of regularity at
the origin. For the gauge field, we may allow for a pure gauge zero mode which does not affect the

structure of the solution at the origin. Define,

Cu(0) = = [Au(+00,0) + Ay(—00,0)] = €20,0(0) . (2.4.38)

N =

SSimilar to the scalar field case (see footnote 3), gauge field solutions in which these integration constants
are non-zero are singular at the origin and will not be considered.
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We define the zero-mode-stripped gauge field as

~

Ag(u,0) = Ag(u,0) — Cy(6) . (2.439)

Plugging these into the symplectic form, we find

2 ~ —~
Qv = = / dud?0/70,6 Ay N S A — / d*0\/70,6C A SN®. (2.4.40)
S+ S2

where we have defined

Nq(0) = /duauAa(u,é?). (2.4.41)

Note that Cj, and N, are symplectically paired. To understand further the structure of the symplec-

tic form, we decompose N, into two pieces

N, = €29,N + €%, D°N' . (2.4.42)

Using this, we find

Qi = ?22 / dud?0,/70,6 A N SA® — ¢ / d*0,/46C A D*3N . (2.4.43)
I+ S2

Note that the mode N’ does not enter the symplectic form and is therefore non-dynamical. We can
therefore set N’ = 0° which then implies that N,, is flat.

We can finally read-off the quantum commutators as

o~ ) 2
[Aa(u,0), Ay(u',0')] = —%%b@(u —)6%(0,9'),
(2.4.44)

[N(9),C(8)] = —-G(6,0),

e

%This is no longer true when one includes magnetically charged matter. We will not consider this case in
this thesis, but has been discussed in [86].
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where G(6,6') is the Green’s function on 52,

CeG(0,6') = 6%(0,0) . (2.4.45)

For later use, we simplify the result above in stereographic coordinates. Here, we find it conve-

nient to normalize the Dirac delta function as

6%(z,Z;w, W) = 26 (z — w) , . d?20%(z —w) = 1. (2.4.46)

The non-zero commutators take the form

o~ ~ 1 2
[Ax(u.2,2), Ao (o, 2,7)] = —O(u— )3 (z = ),
, (2.4.47)
_ _ 1
[]\f(z7 2)7 C(Z/, Z/)] = Tre? log |Z — Z/|2 .

2.4.3 SPINOR FIELD

The final field we consider is a two-component spinor ¥, in four dimensions. The dynamics of a

massless two-component spinor is described by the action
S[w) = —= / Ao/ =g [T5V 0 — 7, T . (2.4.48)
My

Here, we are using the spinor conventions of [87], which we review in Appendix A.2. The o-matrices

in retarded coordinates are given by o# = eff‘oA. Varying the action, we find

§S[U] = —i / d*zy/—=g [6V5"V, ¥ — V, U551V
» (2-4.49)
= / d'e/=gV,, [To"50 — §T5"T] |

The bulk term above gives the equations of motion
'V, =0, V,¥e" =0. (2.4.50)

33



To simplify these equations and solve the Cauchy problem, it is convenient to use a helicity basis for

the spinors,
o 7EE) = %59:)7 £ 21, (2.4.51)
Complex conjugation changes the helicity, so we denote ( éi)) t = Eg). Using the explicit form of
the Lorentz matrices given in Appendix A.2, we find
1 1 1 Z
() — (=) — 2.4.52
o 1+zz<z>’ Sa 1+zz<—1> (2-452)
We expand the spinor W in this basis as
Uy = FHT. (2.4.53)

U, =Tl + 0,
The fields \i/(ﬂ hash = %, h = 0and \i/(,) hasash = 0, h = % w.r.t the internal flat metric. In

particular, these fields do not transform under S? diffeomorphisms.

(2.4.50) then take the form
1 . I
—[(0r = 20,)(r¥ () + 2BZ D20 (4] =0,
(2.4.54)

1 A N
S0 () +2ELD0 )] = 0.
First, we determine the large 7 fall-off of the \i/(i). The first equation in (2.4.54) implies that \i!(_)

falls-oft one power of 7 faster than @(4-)' The second equation then implies

‘il(Jr) - O(Til) , \if(,) = O(Tﬂ) at large r. (2.4.55)

These fall-offs are also consistent with finite energy and angular momentum flux through .# +.To
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determine the boundary data, we Taylor expand

\IJ( urzz:ily UZZ), \I/( (u,r,2,%) ilﬂ UZZ). (2.4.56)
—t n=2
At each order, we find the equations
0,9 = FZ D0
20,0"1V =282 DAV — (n— 1)), 2, (2.4.57)

(L

Up to u-independent integration constants, the full spinor field is determined in terms of ¥ (4)

Thus, the boundary data is

Yy (u,2,z) = lim ( \il(+)(u,r,z,§)) = — lim (rg(_)\p(u’ r,z,E)) ) (2.4.58)

700 r—00

(1

where we have no relabelled \II( 5 Y(4)- As described previously, in terms of .S 2 tensor notation,
this field is denoted 11)( 10)
2
Finally, we consider canonical quantization of the spinor. The symplectic potential current den-

sity is

OH[W, 0] = —~ Tau(s\y sUTH U] . (2.4.59)
Then, the symplectic form on .¥ +is

Qe =i / dud® 272604y A 04y - (2.4.60)

g+t

Note that now since 1) is a fermionic field, the wedge product is symmetric. The quantum anti-
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commutator can be read off as

{y(u,2,2), (', 2, Z) ) =770 (u—u)6*(z — 2') . (2.4.61)

2.4.4 GENERALIZATION TO FIELDS OF ARBITRARY SPIN

Without proof, we now present the large r fall-offs and the boundary data of general spin fields,
though the procedure to determine these is the identical to that of the previous three sections.

We recall that the the Lorentz algebrain D = 4, 50(1,3) = su(2)1, x su(2)p so that a general
field representation of SO(1, 3) is defined by two half-integers (4, 7). The scalar representation
is (0, 0). The left- and right-handed spinor representations are (%,0) and (0, 3 ) respectively. The
gauge field is described by the representation (1,0) @ (0, 1) corresponding to the self-dual and
anti-self-dual field strength tensor. Finally, a vector representation is (3, 3).

Working in the spinor notation introduced in §2.4.3, a field that transforms as (j, 7) has index

structure V( V(BB As we did with the spinor, it is natural to expand it in terms of the
27

oA Ao DY

helicity eigenspinors

m

+ p—
(o1--ava5) (1 ﬂgj Z Z gal .géjlmgéjlmﬂ §042J)

m=—jm=—j (2.4.62)

v

ra =(+)
8 f( €B]+m£&+m+1 o Bﬁ)v(m’m) ‘

The fields V(,,, ) have left- and right- J3 values m and 7 respectively. To see this, we note that
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under Lorentz transformations

5YV(m’m) = (C}!ﬁa}i + mDZYZ + WDZYE) V(mvm)

1 1 - _
+o(—mAD)DY Vo m+ 5 G-+ 1) DY Vo) (24:63)

2 2
uo. 2v% U= 2y 2
~ 5 (j+m+1) DY *Vni1m) — o (G+m+1) D2Y* V(1) -

To find the left-handed J3 value, we set Y? = z and Y? = 0. For this choice

Oy Vimm) = (2D, +m) Vimm) - (2.4.64)

which implies that the field above has a left-handed J3 value m. Similarly, the right-handed J3 value
ism.

The coefficient fields ,,, m) obey simple falloff conditions near null infinity. In order to state
these conditions, we need to introduce a conformal scaling dimension A for V( arazg) (B fiys)’
even though the theory under consideration need not be conformally invariant. Nevertheless, we
expect its long-distance behavior near null infinity to be governed by a conformally invariant IR
fixed point, and we take A to be the scaling dimension of V( arazg) (Brf) at that fixed point.

In cases where the IR theory is free, A coincides with the mass dimension of V(al ea2g) (1)
The behavior of the coefficient field V;,, 7 near % * is governed by A and its Lorentz quantum

numbers m, T,

V(m’m) (u7 r’ 0) - O (TiT) 9 T = A —m — m . (2,465)

The quantity 7 is known as the collinear twist: it is the eigenvalue of the conformal generator D +

M, which stabilizes the null vector field p*.”7

7 Here D = u0,, + 10, is a dilatation, which satisfies [D, p"0,,] = —p" 9y, and M = u0,, — 10, + 20, +
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As a simple example, consider an IR free, massless scalar field ® of scaling dimension Ag = 1. It
has just one component with m = T = 0'so that 7 = 1. Thus, it falls off as 7! at large 7.

The photon is described by an anti-symmetric field strength F,,,, whose IR scaling dimension
is Ax = 2. It decomposes into self-dual and anti-self-dual parts F3p and F 5P, which transform
as (1,0) and (0, 1) representations of the Lorentz group. According to (2.4.65), the different com-

ponents of F; EB behave as follows near .7+,

1 _
f(SEO)N;]:uz:O(T 1)7

1 -3
FO g~ =0 (79)
This is consistent with the following asymptotic expansion (2.4.30) near .& .

Similar, the spinor field also satisfies (2.4.65). A left-handed spinor field ¥ has Ay = 3 and

transforms as (1,0). Then,

Vo~ Y =007, Ty~ Ty =007), (2.4.67)

-1,
which is precisely (2.4.55).

As another example, we may apply (2.4.65) to determine the fall-off of currents that the fields

couple to. For instance, a scalar current J has A = 3, m = m = 0 and falls off as r3at large 7.

Z0z is a boost along p*, which satisfies [M, p"*0,,| = p*0,..

38



The gauge field current J, also has A = 3. This transforms as (3, ). Using (2.4.65), we find

1
e o(r—?),
? r (2.4.68)
1 _
T~ ;jz: o@r?),
‘,7( L1y~ TIr = O(T_4) .
The spinor field U couples to a spinor current K, which has Ax = g and transforms as (0, %)
Then, expanding this current as
. 7 7P e =)
Ko = ,C(+)§d + K:(,)fd . (2.4.69)
Then,
E(O,%) ~ E(_) = O(T_Q) s K(O,—%) ~ K(_’_) = O(T_S) . (2‘470)

Massless fields have j = 0 (left-handed fields) or j = 0 (right-handed fields). Free left-handed

massless fields of arbitrary spin satisfy the equations of motion

(Eﬂ)dalaﬂv(al"ﬂzj) =0. (2-4.71)
For free fields, we always have A = j + 1.
The boundary data for these fields may be determined just as we have done previously. We first
expand the fields in the spinor basis (2.4.62). The coefticient fields V;, o) are then Taylor expanded
near .# * using the boundary fall-offs (2.4.65). Equations are then solved order-by-order in large 7.

Following this procedure, we find that the boundary data is the leading coefficient of V( 4,0)5 which

39



we denote V{),

Vi (u,0) = rlggo mV(,0)(u,7,0)
(2.4.72)
= (—1)% lim rgo .. gy, o (u,r,0).

700

Under Lorentz transformation,

1
5yV(+) (u, Z,E) = |Y%*), + §Daya (u(‘?u + Ay — ]) +mD,Y?* V(+) (u, Z,E) , (2.4.73)

where recall that Ay — j = 1.

2.4.5 ASYMPTOTIC STRUCTURE AT .¥ ~

In the previous sections, we have completely determined the boundary data on .# *. We may analo-
gously determine the boundary data on .# ~ as well. For scalar, vector and spinor fields the bound-
ary dataon ¥~ is

¢(v,0) = lim (rq)(v,r, 9)),

r—00

Az (v,0) = lim (rAz(v,r,0)), (2.4.74)

100
Y (v, 0) = — lim (ré (o, 0)) .

Note that the boundary data on .# ~ is not independent of the data on .# *. Both independently

determine the full bulk field uniquely. The precise map that describes ¢, A, ) in terms of ¢, A, ¢

is known as the classical S-matrix. We will not discuss the precise structure of the classical or the

quantum S-matrix, but we will later discuss certain features which will allow us to relate asymptotic

symmetries in to soft theorems.
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2.4.6 BOUNDARY DATA FOR INTERACTING FIELDS

We now briefly comment on the boundary data for interacting fields. We will require that the in-
teractions do not change the fall-offs of the fields described above. To be concrete, we discuss scalar
fields. The extension to fields with spin is quite similar and will be omitted.

We start by coupling the scalar field to a background current 7 (),

Od(z) = J (). (2.4.75)

The scalar current falls-off as 7~ near .# as discussed in §2.4.4. We Taylor expand the current

T (u, 0
j(ua r, 9) - Z 7,(n) : (2'4'76)
n=3
The wave equation (2.4.7) is then modified to
0, ") = —[D? 4 n(n—1)]eM™ + 702 pn>1. (2.4.77)

Again, up to u-independent integration constants, we may determine the full scalar field in terms of
¢ = & The only difference is that the solution at each order in large " is more involved due to
the presence of the background current 7.

We now generalize to the case when the current J is dynamical. The requirement that the cur-
rent falls of at least as fast as %3 at large r implies that the interaction term that generates J must be
marginal or irrelevant. This is consistent with the requirement that the theory remains free in the
infrared. For instance, consider the case in which the scalar field ® couples to itself. In this case, the
RHS of (2.4.77) involves only the fields with m < n, which implies that one can determine the full

scalar field @ order-by-order in large r. Again, the boundary data remains unchanged, though the
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equations at each subsequent order in large r become increasingly complex. This statement trivially
extends to the gauge and spinor fields as well. We note in particular that in the presence of currents,

the leading constraint equations for the gauge field (2.4.34) and spinor field (2.4.57) is modified to

(%.Az(}) = 0,D"A, + 62ju , (2.4.78)
2
A _ e —
&J\IIEQ_)) = EZ Dz — Ek(_) . (2.4.79)

where

ju(U,Z,Z) = Tiﬂolo’ljju(u,?”,Z,Z) ’

(2.4.80)

- N 1 27 _
ky(u,2,Z) = Tlggor Ky(u,r 2,2),

are the leading terms in current expansion (they satisfy the fall-off (2.4.68) and (2.4.70)). Equations
(2.4.78) and (2.4.79) will play a very important role in the discussions of Chapter 3 and s.

Similarly, the boundary data for fields on .# ~ remains unchanged. In other words, the bulk field
® is determined uniquely either in terms of .# ™ data or in terms of .# ~ data and the relationship

between the two is now the full interacting S-matrix.

2.5 FREE FIELD MODE EXPANSIONS ON .# "

In this section, we relate the boundary data derived in the previous three sections to the creation
and annihilation operators that are more standard in quantum field theory. This will important
to connect our discussion of asymptotic symmetries — which will be on .# ™ and in terms of the
boundary data described previously — to soft theorems, which are derived in perturbative quantum

field theory using Feynman diagrams.
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ScarLar FIELD  We start with a massless complex scalar field ®(y) satisfying O®(y) = 0. As-
suming sufficiently fast fall-offs for ®(y) at infinity (we will make this precise soon), we may mode

expand the scalar field as

ey (251)
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where w, = [q].

Here, we use the notation that the annihilation operator that appears in a field f(y) is denoted
ay,s(q") where s is the helicity of the particle that it annihilates. For the scalar field, s = 0and we
drop this label. These operators may carry additional labels (such as Lie algebra indices) which we

have dropped here. The creation and annihilation operators satisfy®

lass(q), a},}s,(q_’/)} = (27m)3(2wq) 07,105,502 (T — 7). (2.5.2)

One-particle states are defined as

7. fs) = ak (7)]0), (2:5:3)

which satisfy

(@ £.517, £.5') = (2m) (2u0,)0 1,50, 8%(T— 7). (254
We now determine the structure of the scalar field (2.5.1) near .# . We write out the field explic-

itly in retarded coordinates

/ dwqwq/ qu [aé(g’)e*iwqu*iwqr(lffj'@) _i_a%(q’)eiwunriwqr(lfq.g)} .
0 S2

(2:5.5)

8, } isa commutator if the operators are bosonic and an anti-commutator if they are fermionic.
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Now, consider the mode expansion in the limit 7 — oo. In the integrand, in the stationary phase

approximation, we have an oscillating exponent which is localized to ¢ - = 1 in the large 7 limit. In

particular
. o i
/ A f()eFier =D 7220 120 g g) (2:5.6)
S2 WqT
Using this, we find
—= i > AN\ —Tw, AN G
d(u,r,z,z) = _87r2r/0 dw, [aq>(wqy)e v q"—ag(wqy)e ‘”q"} . (2:5.7)

Here, 9 is to be understood to be related to 2, Z according to (2.2.7). Then, the boundary field
é(u, 2, %) (defined in (2.4.8)) is given by

¢(u,z,Z) = lim (r@(u,r,z,?))

r—00
_ L > d A\ —iwgl T A\ iwgu
= &7 ), wq |as(wqy)e — aglwgd)e .
The complex conjugate field is

— 1

o(u, 2,z) = _87r2/0 dwg [ag(wqy)e_i‘”q“ - a;(wqy)eiwg“} . (2:5.9)

GAUGE FIELD  The gauge field A 4 () is not a gauge invariant operator and in particular does
not admit a unique mode expansion. We instead talk about the field strength tensor F 4 g, which is

mode expanded as

dgq 1 S) [ o\ % -\ _iq- S) (= =\ ,—1q-
Fanla)=e Y [ 35 2, LIABD 0@ + [(@)ak (@17 . @sa0)
s==

The explicit factor of e is present due to our non-standard normalization of the gauge field in (2.4.25).

This ensures that are creation and annihilation operators satisfy (2.5.2). Since 7 = d.A, the wave-
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functions fl(f% (¢') may be written in terms of polarizations as

fﬁx%(i) = *i[QA8S)(§) — quf)(q_')] ) (2.5.11)

The polarization tensors EE:) (q') satisfy

/@ =0. @M@ =0, HF@O@=1.  Cso)
We may pick any gauge to describe the polarizations in f4p(q’) since F is gauge invariant. A con-

venient choice for the polarization tensors is made as follows. We start by parameterizing the null

momentum ¢* in terms of (wg, w, W) as

A wt+w —i(w—w) 1—ww
= 1 , , — — ] . 2.5.13
a wq< l+ww’ 14+ww *1+ww (2513
In this parameterization, we choose the polarization to be
5.(4+)(CT) = i(_E> 17 _i7 _w) 3
V2
(2.5.14)
@) = o= (w10, —w).
V2
The field strength component Fﬁg) on .Z 7T can be determined as
FD(u,2%) = lim 9,y20.y° Fap(u,r,2,%). (2.5.15)
T—00

Using the stationary phase approximation as before, we find

o
FO(u,2,%) = ——=—EF /0 dwqwg [ar + (we)e ™" + ale _(wgi)e™ ] (25.16)

8v/2m2 *
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Recall that Fég) = 0y A.. Then, analogous to (2.4.19), we may now determine EZ as

N 1 [o©

A, (u,0) = 2/ du'O(u — u’)FIE?Z) (', 2,%)

o (2.5.17)

— % bt / " dwyfar 4 (wgg)e ™ —
8y/272 0 '

Note that we can determine only le\z, not the full A,. In particular, the zero mode C, = e2D,C is

_ (wqg})eiwqu]
not determined in terms of the creation and annihilation modes. This mode is typically not consid-
ered in standard quantum field theory. As we will see, it is precisely the inclusion of this mode that
will lead us to an enhancement of S-matrix symmetries which are related the soft theorems.

In particular, (2.5.17) implies A, creates outgoing positive helicity states. On the other hand, the
mode expansion for A\g is

~

ie - [~ ~\ —iWqU ~\ iWg U
Az(u,ﬁ):—WEZ/O dwq[ar, - (wgf)e ™ —a;7+(wqy)e a] (2.5.18)

which creates outgoing negative helicity states.

SPINOR FIELD  The final mode expansion we consider is that of the spinor field ¥(y). This is

d*q 1 ~ i\ g + -\ —ig-
Vo(y) = /(277)32%%((]) {G\D,Jr(CI)@ Y+ a@ﬁ(Q)e Y (2.5.19)

Here, 1,,(¢’) is a momentum space spinor that satisfies®

¢! (EA)M%((F) =0, qa (UA)aB = 10a(7)75(7) - (2.5.20)

When, we parameterize the momentum q* as (2.5.13), these wave-functions have the explicit form

@ = o () = VB, (2521

1+ ww

These spinors are precisely equivalent to the square and angle brackets that are used in the st_udy of
scattering amplitudes. Precisely, [ ¢ )o = 1a/(7), (¢|* = 1%(7), [¢]a = N4(7) and | ¢]* =7*(]).

46



The large 7 limit of the field may then be taken just as before. We may then extract the boundary

datavp(u, z,%) as

o0

_ i o
Y(u,2,z) = 57 /) dwg+/ 2wy [a\y#(wqy)e Wt — a%

)

- (wq@)eiwqu} . (2.5.22)

Again, we note that 1) creates positive helicity outgoing spinors and its complex conjugate

_ 7 o0

Y(u,z,z) = =) dwg /2wy [a@_(wq@))e_iw‘l“ - aifl,#(wqy))ei“qu} ) (2.5.23)
0

creates negative helicity outgoing spinors.

2.6 THE PERTURBATIVE QUANTUM S-MATRIX

In perturbative quantum field theory, the classical S-matrix is elevated to the S-matrix operator
when working in the interaction picture (where all the one- and multi-particle states are free and
non-interacting and the S-matrix operator captures all the interactions of the theory). The S-matrix

amplitude is given by

= (0 ag o, (P1) -+ gy (B)Sal o (Bmgr)---al o (B)]0).  (260)

The extra indices on .27, are described by the RHS of the equation above, but are dropped on the
LHS to have simplified expressions. We will reinstate them if and when required. The n-point am-

plitude here includes a momentum conserving Dirac delta function, which we can extract as

oy, = i(271-)454 (pr _ Z pf) My, . (2.6.2)
=1

1=m-+1

In this thesis, we will focus our discussion on the amplitude .%7,.

A turther simplification occurs by using a now common convention of describing all particles as
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outgoing. This is done using CPT invariance of the S-matrix, which implies

Sa},s(po’ p) = a?,fs(*POa p)S (2.6.3)

In particular, an incoming particle with helicity s and 3-momentum pand p° > 0canbe equiva-
lently described as an outgoing particle of the opposite helicity and with the same 3-momentum p’
but now with p° < 0. Other quantum numbers of the particle are also conjugated. For instance, if
the ingoing one-particle state transforms under a representation R of some internal Lie algebra, then
the outgoing particle transforms w.r.t. the conjugate representation R. Fora U (1) gauge group this
implies that a positive charged incoming particle is mapped to a negatively charged outgoing particle
and vice versa.

In this convention, the amplitude %7, may be written as

p = (0af, s, (p1) - af, s, (pn)S|0). (2.6.4)

where now the sign of the energy p! determines whether the particle is ingoing or outgoing.
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New Symmetries in Massless QED

In this chapter, we study the simplest — though historically, not the first — non-trivial example of the

relationship between soft theorems and asymptotic symmetries. This chapter is a modified extract of

[1].
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3.1 INTRODUCTION

The purpose of this chapter is to argue that the soft photon theorem in massless QED [9, 10, 88] can
be understood as a new asymptotic symmetry. The symmetry is generated by “large” U (1) gauge
transformations which approach an arbitrary function £(z, Z) on the conformal sphere at .# but
are constant along the null generators, even as they antipodally cross from .# ~ to .#* through
spatial infinity. Except for the constant transformation, these symmetries are spontaneously broken
in the conventional vacuum. The soft photons appear as Goldstone modes living on the sphere at
the boundary of .7

The relation between soft theorems and asymptotic symmetries of .# * (but not of the S-matrix),
was described already in [28], which in turn was inspired by [89]. Two “simplifying” restrictions
were made in the analysis of [28]: the incoming state was required to be invariant under the large
gauge symmetries, and the parameter (2, Z) was required to be locally holomorphic. However,
far from simplifying the analysis, these restrictions obscured the underlying structure. The present
analysis both simplifies and generalizes that of [28].

This chapter considers theories in which there are no stable massive charged particles, and the
quantum state begins and ends in the vacuum at past and future timelike infinity. Of course, in real-
world QED the electron is a stable massive charged particle, so it is highly desirable to generalize our
analysis to this case." However, stable massive charges create technical complications because the

charge current has no flux through future null infinity. Rather, there is charge flux across timelike

"The present analysis is relevant to hard scattering in QED when the electron mass becomes negligible.
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infinity which becomes a singular point in the conformal compactification of Minkowski space. In
principle a systematic treatment of this singularity should be possible — the fields disperse and are
weakly interacting; nonetheless, this is well beyond the scope of the present chapter.?

This chapter is organized as follows. In §3.2 we review the classical final data formulation at .,
study the asymptotic symmetries and constructs the associated charges. §3.3 gives the corresponding
formulae for .# . In §3.4 we give conditions which tie the data of .# ™ to that of .# ™ and thereby
defines the scattering problem. The conditions are shown to break the separate asymptotic sym-
metries to a diagonal subgroup preserving the S-matrix. In §3.5 the quantum Ward identity of this
symmetry is shown to relate scattering amplitudes with and without a soft photon insertion. Finally

in §3.6 we show that this Ward identity is the soft photon theorem.

3.2 LARGE GAUGE TRANSFORMATIONS ON .# "

In this subsection we briefly review the canonical final data formulation of U (1) electrodynamics
coupled to massless charged matter at future null infinity (.# ), introduce the large gauge transfor-
mations and construct the corresponding charges.

We recall that the boundary data for the gauge field is A, = rlgrolo A. When coupled to a current

Jyu» the leading constraint equation is given by (2.4.78)

Oy AL = 0,D" A, + €%j, (321)

*The massive case has been studied in [1,39].
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where

Ju(u,z,Z) = lim [r2ju(u, T,Z,E)] . (322)

7—00

Further, since we are interested in systems with massless particles only, we consider configurations

which revert to the vacuum in the far future, i.e.
Furl ot = Fual i+ =0. (3-23)
The analogous structure at .# ~ is described in §3.3 below.
Gauge theories have a local gauge symmetry which acts on the gauge field as
0ed, =08, E~éE+ . (3.2.4)
Radial gauge (2.4.31) leave unfixed residual gauge transformations generated by an arbitrary function
approachingé = £(f) on the conformal sphere at 7 = 00. We will refer to these as large gange
transformations. The action on I'T is
6 Aq(u,0) = 0,2(0) . (3.2:5)

These comprise the asymptotic symmetries considered in this chapter. We can construct the charge
that generates this symmetry on .# * following the procedure discussed in [85]. In particular, the
charge Qx; A on a hypersurface 3 that generates a particular symmetry transformation which acts

on fields as A satisfies

QA = —Qx (go, dp, Agp) . (3.2.6)

The charge Q) A is then constructed by integrating the equation above. If it is possible to integrate
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the RHS, the charge is called integrable, else it is non-integrable.
Let us now use this procedure to deduce the charge for large gauge transformations (3.2.5). We
will do so in a particular example when the gauge field couples to a scalar field of charge Q. In this

case, the symplectic form on ¥ T is

Q. - / Aud [ 50u5 A NA + 8,655 A6+ 8,66 A 3] (327)

Now, under large gauge transformations 6. ¢ = iQe¢ and 5e¢ = —iQe. In this case, (3.2.6) takes

the form

0QF =6 / dud®0/7] — 6—126uAaDae — iQe(0u — $0u0)] (3:2.8)

Note that for a scalar field the leading component of the current is

ju = _ZQ(auaqb - 53u¢) (3'2"9)

Additionally, the charge is integrable so that

1
QF = / dud®0/7 ] — S0uAaD% + Eju] - (3.2.10)
The same formula for the charge holds for arbitrary matter fields coupled to the gauge field. Integrat-

ing this by parts and using (3.2.3), we may write

1
Q= / dud® 0\ eF\o)| o+ - (3:2.11)
Thus, the charge that generates (3.2.5) is precisely the weighted integral of radial electric field at yay

Using (2.4.41), we may also write the charge as
Qf = / d*0\/veD?N + / dud*0/7ejy, - (3.2.12)
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For the special case ¢ = 1, Q7 is the total final electric charge which obeys

Qf = / dud29ﬁju. (3.2.13)
g+

For the choice £(2, Z) = §2(z — w) one has the fixed-angle charge

o0

Qo = 20,05N + / du Y ju - (3.2.14)

—0o0

This is the total outgoing electric charge radiated into the fixed angle (w, W) on the asymprotic S2.
e first term is a linear “so oton which we mean momentum is strictly zero, as opposed to
The fi 1 “soft” ph by which ly pposed t
just small) contribution to the fixed-angle charge. It does not contribute to the total charge Qf as it
is a total derivative. The second term is the accumulated matter charge flux at the angle (w, w). Q7

generates the large gauge transformation on matter fields

[Qg_v CZ)(U, 0)] = —QE(Q)Qb(U, 0) ; (3'2'15)
where ¢ is any massless charged matter field operator on .# * with charge g.
Using the commutators (2.4.44), we find
QF Au(w, )] = i0,2(0) . [QF.C(O)] = 2 (6). (3-2.16)

Moreover, the charges satisfy the Abelian algebra

[ ;rv Q;] - 0 (3'2'-17)
Periodicity of € implies that C'lives on a circle of radius e%:

2

—. (3.2.18)
e

C ~C+
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Exponentials of C' obey

[Qg—’ eineQC(G) — 7n5(9)€in620(0) : ne7. (3.2.19)

Such operators do not in themselves create physical states. Rather states with charge n are created
by products of these operators with neutral matter-sector operators. This is virtually the same opera-
tor product decomposition familiar in 2D CFT when factoring a U (1) current algebra boson, or in
4D soft collinear effective field theory (SCET) involving the so-called jet field [90, o1].

A vacuum wave function for the Goldstone mode which we take to be C' can be defined by the

condition

C(6)0)=0. (3.2.20)
(3.2.16) implies that the large gauge symmetries are broken in this vacuum. The symmetries trans-

form (3.2.20) into more general C eigenstates obeying
CO)a)=a@)|a). (3.2.21)
Up to an undetermined normalization, the inner products are
(ala)y =0 (a(6) =/ (9)) . (3.2.22)
)
Other zero-energy states are
1) = [ldale# S #0vi"aD5 o) (3229

These are zero-mode eigenstates

Na|B) = 0uB|8) . (3.2.24)
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obeying

Q1) =5 [ PovaeD*3I5). (3:229)
In particular, any state with 3 = constant has unbroken large gauge symmetry. These vacua are
annihilated by the zero mode and are not the ones usually employed in QED analyses: it might be
of interest to consider scattering in such states.? Finally there are normalizable, symmetry-breaking

vacua annihilated by complex linear combinations such as C' 4 i N.

3.3 ASYMPTOTIC STRUCTURE AT .¥ ~

A similar structure exists near .# ~ and is needed to discuss scattering. Recall that the boundary data

is Ay (v,0) = lim Au(v,r,0). This forms the coordinate on the asymptotic phase space I'~. The

r—00
leading order constraint equation is (obtained from the 1 = v component of the equations of
motion)
AN = —0,D° A, — ), ju(v,0) = lim [ﬁjv(v, r, 5)} . (3.3.1)

Unfixed large gauge transformations are parameterized by e~ (#) under which

8- Ay = Dye™ . (3.3.2)

The associated charge is

1
Q- =-= [ d0/e FY
e? )z
o (3.3.3)

= / d*0\/7e~ DN + / dvd?0\/7e" j, .

3For example, such states might be related to the vacua considered in [92, 93].
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+ —
3.4 MaTcHING Y TO I

The classical scattering problem is to find the map from I'™ to I'T, i.e. to determine the final data
A, on T which arises from a given set of initial data ga on .# . Given a field strength every-
where on Minkowski space, this data is so far determined only up to the large gauge transformations
which are generated by both £ and e~ and act separately on I'" and I'~. Clearly there can be no sen-
sible scattering problem without imposing a relation between € and € ~. Any relation between them

should preserve Lorentz invariance. Under Lorentz transformation

Sy Aq| g+ = (YP0,Aq + ApdaY?) | s+

(3-4.1)

(5yga‘]+_ = (?bgbga + gbga?b) ‘ﬂ; .

Now, recall that Y and Y are related to each other as (2.3.15). Then, the symmetry is preserved by the
natural requirement
A, (—00,2,Z) = Az(+00,2,Z) . (3-4.2)
(3.4.2) in turn requires
£(2,2) = e (2,2), (3-4.3)

as well as the generalization to finite gauge transformations.

In addition to the gauge field, the radial electric fields are also antipodal matched*

F{?)(~00,0) = F{P)(+00,0) . (3.4.4)

ur

It is easily checked that the Liénard-Wiechert electric field of moving charged particle satisfies this antipo-
dal matching condition as shown in [94].
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Note that, because of the antipodal identification of the null generators of .#  and .# ~, this
means the gauge parameter is ot the limit of a function which depends only on the angle in Minkowskian
(7, t) coordinates. Rather it goes to the same value at the beginning and end of light rays crossing
through the origin of Minkowski space.’ € is then a function on the space of null generators of .#.

This antipodal matching condition can also be understood by looking at the Penrose diagram of
compactified Minkowski space as shown in Figure 3.1.5

Both the gauge field strength and the charge current are invariant under these symmetries. The
phases they generate on matter fields are classically unobservable. Hence (unlike the case of grav-
itational supertranslations considered in [4]), they have little import for the usual discussion of
classical scattering. It simply (antipodally) equates the final data for A, ‘ s with that of the initial
data for Ag| s+ However in the quantum theory, where phases matter, they have significant conse-

quences to which we now turn.

3.5 QUANTUM WARD IDENTITY

In this section, we consider the consequences of the large gauge symmetry on the semi-classical S-
matrix. Following the conventions introduced in §2.4.6, we consider an amplitude (2.6.4) with n
outgoing particles with charges Q1 outgoing to points zj, Z, with energies wy, so that (out| =

(21, - 2p|and |in) = | 0). The S-matrix elements are then denoted as ( out |S|in ). The quan-

$Such gauge transformations were considered in [95].
®We are assuming that the theory under consideration be conformally invariant in the deep IR.
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Figure 3.1: The Einstein Cylinder: Minkowski space R:3is conformally equivalent to the Einstein cylinder R x S8,
In the diagram above, we have compactified Minkowski space onto the cylinder and shown the range of coordinates.

Note that the null generators that move from .# ~ to It across 10 are antipodally related. From this perspective,

the antipodal matching condition on the gauge field and large gauge parameter is quite natural.

tum version of the classical invariance of scattering under large gauge transformations is

(out| (QFS —SQ7) |in) = 0. (351)
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The semi-classical charge obeys the quantum relations (from (3.2.12) and (3.3.3))

(out|QF = (out |[F[e] + > Qre(r, Z) (out |,

k=1

Qc[in) = F~[e][in),

where

Ftle] = -2 / Pwdged,N,  Fle]=-2 / dPwdgedy,N .

Defining

and the time ordered product

: Fle]S: = F'[e]S — SF[¢],
equation (5.1.1) becomes

(out|: F[e]S: |in) = — > Que(2k, Z){out|S|in).
k=1

(3-5.2)

(3.5.3)

(3.5.4)

(3.5-5)

(3-5.6)

This Ward identity relates the insertion of a soft photon with polarization and normalization given

in (3.5.4) into any S-matrix element to the same S-matrix element without a soft photon insertion.

For an incoming state which happens to be the vacuum, (3.5.2) reduces to

Q:10) = F7[e][0).

(3.5.7)

Hence, Q- does not annihilate the vacuum unless € = constant, implying that all but the constant

mode of the large gauge symmetries are spontaneously broken. Moreover (3.2.16) identifies C'as the

corresponding Goldstone boson.
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This result may seem surprising for the following reason. Soft photons are labelled by a spatial
direction and a polarization. This suggests two modes for every point on the sphere, which is twice
the number predicted by Goldstone’s theorem. In fact the positive and negative helicity modes are
not independent. As spelled out in Appendix 3.7, there are non-local (on the asymptotic S?) linear
combinations of positive and negative helicity photons whose associated soft factor cancels exactly
at leading order.” To leading order, these linear combinations of soft modes decouple from all S-
matrix elements and hence are truly pure gauge. This relation reduces the two modes for every point

on the sphere to the single one predicted by Goldstone theorem.

3.6 SOFT PHOTON THEOREM

In this subsection, we show that the Ward identity (3.5.6) is the soft photon theorem in disguise. In

order to do so we must rewrite everything in momentum space. We start with the mode expansion

on It (2.5.17),

~ ie2

Ay (u,2,z) = —

o0
8v/2r2 Ej/o dwq [af7+(wq@)eﬂwqu - a;‘,f(wq@)ewqu : (.6.1)

Defining the energy eigenmodes

NZ(9) = /OO due™ " Fuq(u,0) (3.6.2)
we find
N2(:%) = ==Y ar 4 (wf) H (@) + b (@) H(-w)].  (:63)

7Sub-leading orders are considered in [96].
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where H (x) is the Heaviside theta function. Whenw > 0(w < 0) only the first (second) term

contributes. We define the zero mode by the hermitian expression

1
Ng = lim = (NY + N;¢) . (3.6-4)
w—0 2
It follows that
N, = E+ li [ 0 f 1 ] . (3-6-5)
8f7r im war+(wy) + way _(wf)

Similarly on .# ~, we define

N.(3,%) = / dvF,, = \[WEJr w1i>n8 [wa].-7+(wy) + wa}j_(wz})] , (3.6.6)

It follows from (3.6.2) and (3.6.6) that

N, — N / dulF,, — / dvFvZ = — [ ] , (3.6.7)
47 |z—w

the Ward identity (3.5.6) becomes

where F'[¢] is defined in (3.5.4). Setting e (w, W) =

. e~ Qk .
(out|: (N, —M,)S: |1n>——M;Z_Zk<out|S|1n). (3.6.8)

Using (3.6.5) and (3.6.6), the above equations become

li J)S EZ S|in), .6.
im[o{outlar,; (7)Sin)) = Ve Z fourlSlin). (69)
where we have used the fact
lim [w<out|$a}7(wg)|in> = — lim [w{out|az 4+ (w))S|in)]. (3.6.10)
w—0t ’ w—0t

(3.6.9) takes on precisely the form of a soft theorem where the particle that is taken to be soft is

a photon. Itis then natural to expect that this is precisely the soft theorem derived by Weinberg in
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1965 [97]. We now show that this is indeed the case.

First, we review the derivation of the soft-photon theorem. The standard derivation utilizes Feyn-
man diagrams. However, we present a derivation here that will readily generalize to arbitrary theo-
ries with arbitrary soft particles easily.

We consider a scattering amplitude &f:fii involving an outgoing photon of momentum ¢* and

(a)

polarization €,/ (), as well as n other hard asymptotic states (some of which may also be photons),
ﬂ;itia = (out|ar(q)S |in). (3.6.1)

The leading behavior of this amplitude when the momentum of the photon is taken to zero, ¢ — 0,

is governed by a universal soft theorem,

n . el@)
d:ria — eZQkMJZ{n. (3.6.12)
et P q

Here Qy, is the electric charge of kth particle, and %, = (out|S|in) is the hard amplitude with-
out the soft photon. The only assumptions that are needed to derive the soft photon theorem are
Lorentz symmetry and gauge invariance.

At tree level, the pole at ¢ = 0 on the right-hand side of (3.6.12) can only arise when an internal
propagator goes on shell, which happens precisely when the soft photon attaches to one of the exter-
nal lines. This is described by a single insertion of the interaction term —A*J,, C Zip,. Factorizing
on the propagators that go on shell when ¢ — 0 then leads to

AN — —i{0]ar.a(q)A*(0)]0)x
(3.6.13)

> ! (11TuO)| oy s) (L5 -5 fopgsss oo 5n| Slin)

g 2pk - q
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It follows from the mode expansions in §2.5 that

(0]aralq)A"(0)]0) = eel(f“)(q) . (3.6.14)

Lorentz invariance and current conservation completely determine the matrix elements of the elec-
tric current J, () between states of equal momentum (i.e. in the forward limit) in terms of their

electric charge (see for instance [97], chapter 10),
< f7p7 S ’\.7;1,(0)’ f/7p7 5/ > = _2Qf puéff’(sss’ . (3615)

Substituting (3.6.14) and (3.6.15) into (3.6.13) establishes the soft photon theorem (3.6.12).

We can rewrite (3.6.12) in the following form

w—07F w—07F

. out,&x p 6
lim [ ;zfnJ:l( =¢ lim wZQ kpk . ) L. (3.6.16)

Using the parametrization of the momenta discussed earlier

pl]::w (1 2k +Zk  —i (2 — Zk) 1—Zkzk)

’1—|—Zk§]€’ 1+ 2,z ’1—|—Zk§]€

z+zZ —i(z—%2) 1—2z
H = 1 3.6.17
e w<’1+zz’ 142z ’1+zz)’ ( )

1 .
El(l+) (q) = ﬁ (_37 17 -, _Z) )
we find
out,+ - z . Qk
wlgf)u w1 (q) = V2eE* Z p—— <, (3.6.18)

which is precisely (3.6.9). Thus, we have shown that the Ward identity, (3.5.6) is equivalent to the

soft-photon theorem. This argument can be run backwards to show that (3.6.16) implies (3.5.6) with
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e = However, since any function £(z, Z) can be written as

z—w"

1

Z—w

e(w, W) = % / 222(2,7)05 (3.6.19)

and F'[¢] is linear in €, the soft-photon theorem implies (3.5.6) for any £(z, Z).

3.7  APPENDIX: DECOUPLED SOFT PHOTONS

It is possible to see directly from the soft photon theorem that a particular combination of positive
and negative helicity photons decouples from the theory. This is seen easiest in the (2, Z) coordi-
nates. We start with the soft photon theorem in this parameterization (3.6.9) for positive helicity

insertions

lim_w( out oz 4+ (w9)S|in) = V2eEZ 3" 25 out|S]in) . (37.0)
k=1

w—0t Z— 2k
Consider now the amplitude involving the following linear combination of the positive helicity soft

photons

zZ— W w—0t

O_(z,z) = 217rEf/d2w1% [E,I lim {waf,Jr(wg)(w,@))} , (3.7.2)

where ¢ points towards (w, W). Insertions of this operator is given by (3.7.1) as

(out|0_(2,Z)S|in) = V2eE* Z = 6;2 = (out|S|in) . (3.73)
k=1

This is precisely the soft photon theorem for a negative-helicity soft photon with momentum point-

ing towards (2, Z). We therefore conclude that the linear combination

N 1 = 1 . A
iiglo [war —(wi)] — %E_ /dzwz—w% [E;; UEIEQO {war  (wi(w,w)) }} (3.7.4)
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has no poles and decouples from the S-matrix. In the more familiar momentum space variables, this

1 1+ cosf,
A (wpy) + / 00 % (i), (3.7:3)
772w (14 cos b, ) ey -4)° T

where the integral is over the angular distribution of ¢.
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2D Kac-Moody Symmetries of 4D

Yang-Mills Theory

4.1 INTRODUCTION

In this chapter, we study the nonabelian generalization of the large gauge symmetry. This chapter is

a modified extract of [2].



The n-particle scattering amplitudes .27, of any four-dimensional quantum field theory (QFT})
can be described as a collection of n-point correlation functions on the two-sphere (S2) with coordi-

nates (z, %)

= (O1(wi, 21,21) - - - On(Wns 20, Zn) ) (4.1.1)

where Oy, creates (if wy, < 0) or annihilates (if wy, > 0) an asymptotic particle with energy |wy,| at
the point (2, Zx) where the particle crosses the asymptotic S 2 atnull infinity (.#). The alternate
description (4.1.1) is obtained from the usual momentum space description by simply trading the
three independent components of the on-shell four momentum p); (subject to pz = —m%) with the

three quantities (wy, 2k, Z). This is shown in Figure 4.1.

O (Jw1|, 21, 21) O4(
O)

®

O7(—|wr|, 27, 27)

Figure 4.1: An S-matrix amplitude represented as a correlation function on the sphere. Operators in red have nega-
tive energy and represent incoming states and operators in blue have positive energy and represent outgoing states.

As discussed previously (2.3.14), the Lorentz group S L(2, C) acts as the global conformal group
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on the asymptotic S? according to

az+b
%

, ad —bc=1. (4.1.2)
cz+d

Hence, in this respect, Minkowskian QFT 4 amplitudes resemble Exclidean two-dimensional con-
formal field theory (CFT?) correlators. It is natural to ask what other properties QFT} scattering
amplitudes, expressed in the form (4.1.1), have in common with conventional CFT correlators,
and more generally whether a holographic relation of the form Minkowskian QFTy = Euclidean
CFT3 might plausibly exist when gravity is included." In this paper, we consider tree-level scattering
of massless particles in 4D nonabelian gauge theories with gauge group G. A salient feature of all
such amplitudes is that soft gluon scattering is controlled by the soft gluon theorem [104]. A pre-
scription is given for completing the hard S-matrix (in which all external states have Fj, # 0) to
an S-correlator which includes positive helicity soft gluons at strictly zero energy. It is shown that
the content of the soft gluon theorem at tree-level is that the positive helicity soft gluon insertions
are holomorphic 2D currents which generate a 2D G-Kac-Moody algebra in the S-correlator! Turn-
ing the argument around, the soft gluon theorem can be derived as a tree-level Ward identity of the
Kac-Moody symmetry.”

Moreover, we show that the Kac-Moody symmetries are equivalent to the asymptotic symmetries
of 4D gauge theories described in [28]. They are C'PT-invariant gauge transformations, which are

independent of advanced or retarded time and take angle-dependent values on .#. C'PT invariance

"The results of [11, 45, 98-103] suggest that for quantum gravity scattering amplitudes the SL(2, C)
Lorentz symmetry (4.1.2) is enhanced to the infinite-dimensional local 2D conformal symmetry.
*A similar Kac-Moody algebra was studied in [105] in the context of MHV amplitudes.
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requires that the gauge transformation at any point on .# ™ equals that at the PT antipode on .# .
Such transformations act nontrivially on the asymptotic physical states and comprise the asymptotic
symmetry group. These are the gauge theory analogs of BMS transformations in asymptotically flat
gravity [ 4, 14, 15, 25, 27, 45, 100-103, 106, 107]. The abelian U (1) case was discussed in [1, 30, 96] and
related recent discussions of symmetries, infrared divergences and soft theorems are in [11, 35, 108—
125].

The asymptotic symmetries of QED are spontaneously broken in the perturbative vacuum and
the soft photons were shown to be the resulting Goldstone bosons [1]. Analogously, the standard
rules of Yang-Mills perturbation theory presume a trivial flat color frame on .. In this paper we
see that this trivial frame is not invariant under the non-constant Kac-Moody transformations and
the large gauge symmetry is spontaneously broken, with the soft gluons being the corresponding
Goldstone bosons.

The nonabelian interactions of Yang-Mills theory lead to some surprising new features that are
not present in parallel analyses of QED [1]. As pointed out to us by S. Caron-Huot [126, 127], the
double-soft limit of the S-matrix involving one positive and one negative helicity gluon is ambigu-
ous. The result depends on the order in which the gluons are taken to be soft. Hence a prescription
must be given for defining the double-soft boundary of the S-matrix. We adopt the prescription
that positive helicities are always taken soft first. With this prescription there is one holomorphic
G-Kac-Moody from positive helicity soft gluons, but not a second one from negative helicity soft
gluons.

The soft gluon theorem has well-understood universal corrections due to IR divergences which
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appear only at one loop, see e.g. [91]. These will certainly affect any extension of the present discus-
sion beyond tree-level. Since an infinite number of relations among S-matrix elements remain, an
asymptotic symmetry may survive these corrections. However it is not clear if it can still be under-
stood as a Kac-Moody symmetry. Corrections do not appear at the level of the integrands studied

in the amplitudes program [111, 112, 128, 129] or in contexts requiring the soft limit to be taken prior
to the removal of the IR regulator [91, 111, 128]. Hence the Kac-Moody symmetry is relevant in some
contexts to all loops. We leave this issue, as well as the generalization to massive particle scattering, to
future investigations.

This chapter is organized as follows. §4.2 establishes our notation and conventions. In §4.3, we
introduce the various asymptotic fields used in the paper and discuss the asymptotic symmetries of
nonabelian gauge theories. In §4.4, we show that the soft gluon theorem is the Ward identity of a
holomorphic Kac-Moody symmetry which can also be understood as an asymptotic gauge symme-
try. In §4.5, we show that the double-soft ambiguity of the S-matrix obstructs the appearance of a
second antiholomorphic Kac-Moody. Finally, §4.6 contains a preliminary discussion of Wilson line

insertions, SCET fields and an operator realization of the flat gauge connection on .#.

4.2 NOTATIONS AND CONVENTIONS

We consider a nonabelian gauge theory with group G and associated Lie algebra g. Elements of G in

representation [, are denoted by gi, where k labels the representation. The corresponding hermi-
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tian generators of g obey

(72,11 = ey (421
wherea = 1,--- ,dim g and the sum over repeated Lie algebra indices is implied. The adjoint

elements of G and generators of g are denoted by g and T respectively with (7). = —i f2%¢. The

real antisymmetric structure constants f abe 3re normalized so that

facdfbcd _ 5ab —tr [TaTb] ) (4.2..2)
The four-dimensional matrix valued gauge field is -Au = AZT". The field strength corresponding

0 A, is
Fuv = Ay — Oy Ay — i[ Ay, A)) = F, T (4.23)
The theory is invariant under gauge transformations
Ap = gAug ™ +igdug™, k= akdk,  Tu— 9Tug (4.2.4)

where ¢y, are matter fields in representation Iy, and 7, is the matter current that couples to the

gauge field. The infinitesimal gauge transformations with respect to & = 2T (where g = €'¢) are

de Ay = 0ué —i[Ay, €], depp = 1€YTY dp. 6Ty = —i[Tu, €] . (4.2.5)
The bulk equations that govern the dynamics of the gauge field are
VV]:V/J, -1 [-Aya ]:1//_1,] = g%Mj;L ) (4.2.6)

where V# is the covariant derivative with respect to the spacetime metric.
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4.3 ASYMPTOTIC FIELDS AND SYMMETRIES

In this section, we give our conventions for the asymptotic expansion around . (see [28] for more
details), specify the gauge conditions and boundary conditions, and describe the residual large gauge
symmetry.
For the purposes of this chapter, we find it convenient to work in temporal gauge
A, =0. (43.1)
In this gauge, we can expand the gauge fields near .# * as
1
Aa(r,u,0) = Aa(w,0) + O (1/r) ,  Ar(r,u,0) = AP (u,0) + O (1/r%), (43:2)
r
where the leading behavior of the gauge field is chosen so that the charge and energy flux through
Z 1 is finite. The full four-dimensional gauge field is determined by the equations of motion in
terms of A, (u, 0), which forms the boundary data of the theory.
The leading behavior of the field strength is 7, = O(1/ r2) and Fya, Fap = O(1) with leading
coefficients
Fup = 0,42 Foo = 04A,, Foy = 0gAp — OyAq — i[Ag, Ap) . (4-33)
We will be interested in configurations that revert to the vacuum in the far future, i.c.
Fur|jr :Fua|v¢i- :Fab|yi' = 0. (4.3.4)
(4.3.4) implies

U = Ad| 1y = UM, (43:5)
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where () € G. A residual gauge freedom near .# is generated by an arbitrary function £(6)
on the asymptotic S2. These create zero-momentum gluons and will be referred to as large gauge
transformations. Under finite large gauge transformationstd — gld. We also define the soft gluon

operator

N, = / dulFy, = U, — Aa\jj. (4.3.6)
Near .# ~, the temporal gauge condition implies
A, =0. (437)

We expand the gauge fields as A, = A, + O(r~1), A, = %2;{5«2) + O(r~3). The field strength has

leading behavior Fy,. ~ O(1/72) and Fya, Fap = O(1) with leading coefficients

Fyr = 8’UAT‘ ) Fyo = 81)11(1 ) ﬁ(zb = aagb - 8bleia - i[ﬁa, gb] . (4'3'8)

Configurations that begin from the vacuum in the far past satisfy

ﬁur‘_ﬂ: = ~va‘y: = ~ab|y: = 0. (43.9)

The four-dimensional gauge field is uniquely determined by the boundary data /Ta(v, 5)

Residual gauge freedom near .# ~ is generated by an arbitrary function e~ (6) on the asymptotic

S2. Furthermore, (4.3.9) implies

V, = Ba‘y: =iV9, V1, (4.3.10)

On .#~, we define the soft gluon operator

S ~
N, = / dvFya = Bal ;- = Va (4.3.11)

— 00
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The classical scattering problem, i.e. to determine the final data A, given a set of initial data ;LI
is defined only up to the large gauge transformations generated by both € and £~ that act separately
on the initial and final data. Clearly, there can be no sensible scattering problem without impos-
ing some relation between € and €. To do this, we match the gauge field at i°. Lorentz invariant

matching conditions are

Azl g = Ay s (4.3.12)

This is preserved by

£(z,2) =€ (2,%2). (43.13)
Note that because of the antipodal identification of the null generators of % + across i0, the gauge
parameter £(2, Z) is not the limit of a function that depends on the angle in Minkowskian (t, ) co-
ordinates. Rather, it goes to the same value at the beginning and end of light rays crossing through
the origin of Minkowski space. ¢ is then a Lie algebra valued function (or section) on the space of

null generators of .#.

4.4 HoOLOMORPHIC SOFT GLUON CURRENT

In this section, we show that the soft theorem for outgoing positive helicity gluons (or equivalently
incoming negative helicity gluons) is the Ward identity of the holomorphic large gauge transforma-
tions and takes the form of a holomorphic G-Kac-Moody symmetry acting on the S 2on.7.

Let Ok (wk, 2k, Zi) denote an operator which creates or annihilates a colored hard particle with
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energywy, # O crossing the S? on .# at the point 2;.3 We denote the standard n-particle hard
amplitudes by

n(215- -+ 2n) = (01 On)u=1. (4-4.1)

There are no traces here, so .27, has n suppressed color indices. Since the gauge field vanishes at infin-
ity, the asymptotic S 2 has a flat connection U, = iU, U1, where U € G.# In order to compare
the color of particles emerging at different points on the S 2 this connection must be specified. The
U = 1 subscript here indicates the fact that the standard perturbation theory presumes the trivial
connection U, = 0.5

The hard S-matrix has soft boundaries where gluon momenta vanish. We wish to give a prescrip-
tion to extend, or ‘compactify’ the S-matrix to a larger object that includes these boundaries. Since
zero-energy gluons are not obviously either incoming or outgoing, the S-matrix so compactified
is not obviously a matrix mapping in states to out states. Hence we will refer to the compactified

S-matrix as the S-correlator.®

*For instance, for scalar particles

4 [ »
Ok(wk, Zk,fk) = —— due'* "9, lim
WE — o0 T—00

[row(u,r, 2k, Z1)] -

+U, should not be confused with U, (defined in (4.3.5)).

SFor U, = 0 or U = 1 an outgoing configuration with a red quark at the north pole and a red quark at
the south pole is a color singlet state which can be created by a colorless incoming state. For more general
choices of U, this will not be the case.

%In the abelian examples of gravity and QED [1, 4, 27, 103], it is possible to view the S-correlator as a con-
ventional S-matrix. However, the non-commutativity (see (4.5.2)) of the multi-gluon soft limits persists even
if one gluon is outgoing (¢° > 0) and the other incoming (¢’® < 0). This means that the soft limit on an out
state does not commute with the soft limit on an én state, creating difficulties for the reinterpretation of the
S-correlator as an S-matrix.



4.4.1 SOFT GLUON THEOREM

In this section, we will show that insertions of the soft gluon current J,, defined by

J. = — (N N.) = A < / dvF,, — / duFuz) , (4.4.2)
gYM g

™

into the hard tree-level S-matrix are determined by the soft gluon theorem. In its conventional mo-

mentum space form, this theorem states

<01(p1) T On(pn)§ Oa(Qv 5) >U:1

= gYMZ

where O%(q, ) = tr [T*O(q, €)] creates or annihilates, depending on the sign of ¢°, a soft gluon

(4-4.3)
- TEOk(Pr) - - - On(pn) Ju=1 + O(¢°),

with momentum ¢ and polarization ¥, and T} is a generator in the representation carried by O,.

Gauge invariance of the theory requires that the right hand side vanishes when € = ¢. This implies

n

> (O1(p1) -+ TEOw(pr) -+ - On(pn) Ju=1 = 0, (44-4)
k=1

which is global color conservation. Using the notation of our present paper and assuming € # g, for

a positive helicity gluon with massless particles (pi = 0), (4.4.3) becomes

(J701 - Zz_zk 1 TR Ok - Op Ju=1, (4.4.5)
k=1
where J¢ = tr [T%J,]. This was shown in [28] and is reviewed in the appendix. The collinear

q - pr — 0O singularities of (4.4.3) become the poles at z = 2z}, in (4.4.5). The soft pole in (4.4.3)
is absent in (4.4.5) simply because the definition of J involves the zero mode of the field strength

rather than the gauge field and hence an extra factor of the soft energy.
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4.4.2 Kac-MooODY SYMMETRY

Since 0zJ, = 0away from operator insertions, .J, is a holomorphic current. Consider a contour
C and an infinitesimal gauge transformation £(z) which is holomorphic (0ze® = 0) inside C. It

follows from (4.4.5) that

(Je(€)O1-+ Op)y=1 =Y (O1--ex(2)Ok - On )u=1, (4.4.6)
kec

where e, (2;,) = €*(2) T} and

d
Je(e) = j{ LaEIAR (4.4.7)
C
and the sum k£ € C includes all insertions inside the contour C. Moreover from the soft theorem

with multiple .J, insertions one finds

(Je(e)JwOr -+ Op)u=1 = Z<Jw01 cep(2) Ok - On )u=1
keC (4-4.8)

+ (5(w)JwC91 cee On >U:1,

where the last term is added only when w is also inside C.

(4.4.8) is a very familiar formula in two-dimensional conformal field theory. It is the Ward iden-
tity of a holomorphic Kac-Moody symmetry for the group §. The absence of a term with no J,, on
the right hand side of (4.4.8) indicates that the Kac-Moody level is zero (at tree-level). Hence the S-
correlators for any massless theory with nonabelian gauge group G transform under a holomorphic

level-zero G-Kac-Moody action!
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4.43 ASYMPTOTIC SYMMETRIES

In this subsection, the Kac-Moody symmetry is identified with holomorphic large gauge symmetry
of the gauge theory. According to (4.2.4) under the action of the asymptotic symmetry transforma-

tion U

Ok(zk,zk) — Uk(zk,Ek)(’)k(zk,Ek), (4-4-9)
where Uy, acts in the representation of Oy,. S-correlators for general U are simply related to those for
U=1

< Jg(’)’f s >U = U(Z,?)abU1<21,§1)ilj1 ce <J£O{1 ce >U:1~ (4-4-10)

To compare the asymptotic symmetry action (4.4.10) with the Kac-Moody action (4.4.6), con-

sider infinitesimal complexified transformations of the form

U(2,2) =1+ie(z) +-- -, (4.4.11)
which are holomorphic inside the contour C and vanish outside. In that case (4.4.10) linearizes to

0e(O1--On)u=1 = i2<01 ~ep(2)Ok - Op )u=1, (4.4.12)
ke

where the operator insertions could also include a positive-helicity soft gluon. Comparing with

(4.4.6) we see that

—i6:(O1---Op)u=1 = (Jc(e)O1--- On)y=1. (4.4.13)
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Hence, Je (€) generates holomorphic asymptotic symmetry transformations

1)
Je(e) = ; dQZ’YzEeam, (4.4.14)
C

where Dg is the region inside C and U“ is the Lie algebra element corresponding to U, thatis, U =

> a a
erT.

Let Cy be any contour that divides the incoming and outgoing particles as shown in Figure 4.2.

Figure 4.2: The contour Cy which separates incoming particles and outgoing particles.

For € holomorphic on the incoming side of Cy, the corresponding Je, (€) is then the charge that
generates the asymptotic symmetries on the incoming state. If € is holomorphic and non-constant
on the incoming side of Cy, it extends to a meromorphic section which must have poles on the out-
going side whose locations we denote w1, . . . , w),. We may also evaluate the contour integral by

pulling it over the outgoing state. Equating this with (4.4.6) one finds, for any meromorphic section
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p
—i0e(O1 -+ Op =1 = — Z(tr [eJwly, O1- - On)u=1, (4.4.15)
i=1
where
tr[eJy),,, = Res trley,]. (4.4.16)
v wW—rwW;

This is another form of the soft gluon theorem. It states that S-correlators are invariant under the
asymptotic symmetries up to insertions of the soft gluon current. The appearance of the inhomo-
geneous term on the right hand side implies that the U = 1 vacuum spontaneously breaks the
symmetry. The soft gluons are the associated Goldstone bosons. Indeed, when p = 0, i.e. when € is

a globally holomorphic function on the sphere (and therefore a constant), we have

0e(O1-+-On)u=1 =0, (4.4.17)

which is precisely (4.4.4). This indicates that the subgroup of constant global asymptotic color rota-
tions is not spontaneously broken, as expected.

One might think that the Kac-Moody symmetry does not capture 4/l of the asymptotic symmetry
group, since the transformations are restricted to be holomorphic within some contour C. However,
this is an irrelevant restriction. The S-correlator identities depend only on the n values e, = €(2y)
of ¢ at the n operator insertions. For any choice of €y, there exists a holomorphic £(2) inside some
C such that e(2zy) = ¢y, at the positions of operator insertions. Hence the holomorphicity does not
preclude consideration of any gauge transformation on Fock space states, and all nontrivial relations

among S-correlation functions can be derived from the Kac-Moody symmetry. In particular the soft
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gluon theorem (4.4.5) is itself a Ward identity of the the Kac-Moody symmetry.

4.5 ANTIHOLOMORPHIC CURRENT

We have seen that positive helicity soft gluon currents J, generate a holomorphic Kac-Moody sym-
metry. Naively one might expect that negative helicity soft gluon currents JZ generate a second Kac-
Moody symmetry which is antiholomorphic. This turns out 0t to be the case for a very interesting
reason.

The crucial observation is due to [126, 127]. Consider a boundary of the S-matrix near which two

gluons become soft. One finds

Gnio(P1s- - Pni g8 03¢, €', D)

n n

— ¢2 CPENTE Pl Teo, . TV, ... O
= ji
2 pabeN~E PjE-q 0 /0
—iggn ™Y =L =—={ Oy - T§O; -+ On)y=1 + O(¢°, ¢")
=dpiaq

where the above limit has been computed by taking ¢ — 0 first. Surprisingly, the right hand side

actually depends on the order of limits and

|:11m7 hmo:l van—f—Q <p17 ceyPnyq,€,Q; q/7 8/7 b)

q—0 ¢'—
7;92 fabczn:<€‘pk E-q/> <€/‘pk g/.q> <O TO O > (452)
_ _ _ L TOOL O Vet (4.
M= \pea a-d)\d e a-d g "
+O((]0,q/0).

In the special case that the helicities are the same, then the right hand side of the above expression

vanishes and the limits commute. In this case, the S-matrix can be extended to its soft boundaries
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unambiguously. When the helicities are not the same, the value of the S-matrix at the soft boundary

is ambiguous. In terms of currents, taking the positive helicity gluon to zero first gives

i abc
JE T~ —Z'}: —Jw (4-53)
while in the other order we have
i abc
J¢ T —zf_ —Jz- (4-5.4)

Thus, the extension (or ‘compactification’) of the S-matrix to all soft boundaries requires a prescrip-
tion. In this paper we adopt the prescription that positive helicity gluon momenta are always taken
to zero before negative helicity gluon momenta. With this prescription, it follows from (4.5.3) that
the current JY generates a Kac-Moody symmetry, under which J2 transforms in the adjoint. JZ
itself does not generate a symmetry. A prescription which treats J¢ and J2 symmetrically yields

no symmetry, while taking negative helicity momenta to zero first gives one antiholomorphic Kac-
Moody symmetry generated by JZ.

The situation is reminiscent of three-dimensional Chern-Simon gauge theory on a manifold
with a boundary parameterized by (2, Z). A priori, one might have expected A, and Az to gener-
ate both holomorphic and antiholomorphic G-Kac-Moody symmetries. However a more careful
analysis reveals that boundary conditions must be chosen to eliminate one or the other. Indeed, this
may be more than an analogy. The current JZ has no time dependence and lives on the S at the
boundary of the 3-manifold .#, and the addition of a 0 F' A F’ term to the 4D gauge theory action
induces a Chern-Simons term on .#. It would be interesting to understand how such a term affects

the present analysis.
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4.6  WILSON LINES AND THE FLAT CONNECTION ON .¢

Other types of S-correlator insertions besides soft gluon currents are of physical interest and have
been considered in the literature. This section contains preliminary observations on a few such inser-
tions.

Consider the Wilson line operator
We(u, 21, 22) = Pexp <z / dx“.AM> ) (4.6.1)
c

where P denotes path-ordering and the contour C is chosen such that it initially enters .# at
(u, 21, Z1) and leaves at (u, 22, Z2) along null lines of varying 7 and fixed (u, 2, Z). Under holo-
morphic large gauge transformations

We (U, 215 22) - g(Zl)WC (U, 21 22)9(22)_1 ) (4'6'2’)

where g(z) € G. Insertions of J; in the presence of the Wilson lines are given by the soft theorem’

1
<JgWC(u7 21, Z2) e >U:1 - <TaWC(’LL, 21, 22) e >U:1
z— 21
. (4.6.3)
_ W, TG N .
Z—22< C(U,Zl,Z2) >U—1+
From this, we can construct
A (u,2,%Z) = —i lim 9,We(u, z,2"), (4.6.4)
2=z
where we take C to be a short contour from 2z’ — z. It follows from (4.6.3)
Z'(Sab Z’fabc
JA O N = (O — AC O --- 6.
(J2ALO1 - Ju=1 (Z_w)2< v = s ARO ) (4.6.5)

7See §36.3.2 of [130] for details.
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Hence the action of .J, indeed transforms A as a connection on . as expected. A similar discus-
sion applies to fields on .# .

Recall that J,, was constructed from zero modes of the past and future field strengths (see (4.4.2)).
However, A (u) has an inhomogeneous term in its gauge transformation and has a soft u-independent

piece that cannot be constructed from J,. To see this, we expand on .¥ +

Az(u7 Z’E) — / ie—lqu‘-;(z7z) + CZ? (4.66)

oo 2m
where C,, is defined in (2.4.38)
Here we have used the fact that functions whose boundary values at 00 do not sum to zero
do not have a Fourier transform given in terms of ordinary functions. Radiative insertions in an

S-matrix involve A% and

N.= ! lim (wAY —wAZ¥). (4.6.7)

w—0t

Under a large gauge transformation,

6 AY = —i[AY.e], U, = D — iUy, €. (4.6.8)
Hence the Fourier modes of A, transform in the adjoint of the asymptotic symmetry group, while

the constant piece U, is a connection on S2. Further, (4.3.5) and (4.6.5) imply that we have

TCL

zZ—Ww

(J;U(w,w)O01 -+ )y=1 = (U(w,w)O1 -+ )y=1. (4.6.9)

A parallel structure on .# ~ also exists.
The flat connection U, is related to the SCET or Wilson line fields used to study jet physics [91].

In CFT3 with a Kac-Moody symmetry, correlations functions factorize into a hard part and a soft
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part computed by the current algebra. 4D gauge theory amplitudes also factorize into a hard and a
soft part, with the latter computed by Wilson line correlators. It would interesting to relate this soft

part to U-correlators and compare it to the structure in CFT5.
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Infinite-dimensional Fermionic Symmetries

of N' = 1 supersymmetric QED

In this chapter, we study our final example of asymptotic symmetries in flat spacetime — in a super-
symmetric extension of QED. Unlike the previous two chapters, where the asymptotic symmetry

was a subgroup of previously known symmetry, namely gauge symmetry, this will not be the case
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here. Instead, our approach will be to start with the soft-photino theorem and deduce an asymptotic

symmetry. This chapter is a modified extract of [3].

5.1 INTRODUCTION

The universal soft behavior of gauge boson amplitudes was recently traced back to the existence of
infinitely many symmetries that act on asymptotic scattering states at Minkowskian null infinity,
i.e. asymptotic symmetries, whose Ward identities are equivalent to the soft theorems [1, 2, 4, 27—
31, 35, 86, 96, 103, 125, 131-135 ]. Typically, these asymptotic symmetries can be viewed as large gauge
transformations, which do not vanish at infinity and therefore act non-trivially on physical states.!
For instance, the symmetries that give rise to the leading soft photon theorem [1, 2, 28, 31, 86, 132,
135] are parametrized by a function £(z, Z) on an asymptotic S? (with complex coordinates 2, %)
inside the null boundary of Minkowski space. The corresponding charges Q. are higher-harmonic
generalizations of the electric charge, to which they reduce when e(z,%) = 1. Transformations
with non-constant £(z, Z) inhomogeneously shift the gauge field A, by d,.€, and hence they are
spontaneously broken. The corresponding Goldstone bosons are soft, zero-momentum photons.
It is natural to ask whether soft theorems for massless particles that are not gauge bosons have
similar interpretations in terms of asymptotic symmetries. Here we will explore this question in the
context of rigid supersymmetric gauge theories, where the gauge fields are accompanied by massless

spin—% superpartners. For simplicity, we confine our attention to U (1) gauge theories with N/ =

! Here we follow the terminology of [28]: large gauge transformations are assumed to act non-trivially on
physical states, because they do not vanish sufficiently rapidly at the boundary of spacetime. However, they
may be topologically trivial, i.e. deformable to the identity gauge transformation.
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1 supersymmetry and massless charged matter in four dimensions. The U(1) photon A, has an
electrically neutral, fermionic superpartner — the photino A, — whose couplings to charged matter
are related to those of the photon by supersymmetry.

In this paper, we will establish the existence of infinitely many fermionic asymptotic symmetries,
parametrized by a chiral spinor-valued function x4 (2, %) on S?, whose Ward identities give rise to
the soft photino theorem. The corresponding anti-commuting charges .7, act on the asymptotic
fields at null infinity. However, unlike the infinity of bosonic charges ()., they are not a subgroup
of any obvious symmetry of the Lagrangian.> The usual Lagrangian only displays a finite number
of manifest fermionic symmetries — the global supersymmetries generated by Q,, and Qg Ttis per-
haps surprising that even rigid supersymmetric gauge theories can support an infinite number of
fermionic asymptotic symmetries.> By contrast, this is expected in supergravity, where local super-
symmetry is a gauge symmetry [137, 138].

Under the action of .7, we find that the photino A, shifts inhomogeneously. Hence these
symmetries are spontaneously broken, and the soft photini are interpreted as the corresponding

Goldstone fermions. Interestingly, supersymmetry relates the fermionic charges .7, to the bosonic

? The asymptotic symmetries related to the magnetic generalization of the leading soft photon theo-
rem [86] or the subleading soft photon theorem [96] are also not manifest at the level of the Lagrangian.

3 A similar phenomenon occurs in three-dimensional, supersymmetric Chern-Simons theory in the pres-
ence of a suitably supersymmetric boundary, which supports a supersymmetric Kac-Moody current algebra.
(As we will see below, the asymptotic symmetries (. and .%,, also give rise to just such a current algebra.) The
bosonic Kac-Moody symmetries are conventional gauge transformations that do not vanish at the boundary.
The Kac-Moody fermions can be understood as a remnant of the full super gauge symmetry that is present
before fixing Wess-Zumino (WZ) gauge (see for instance [136]). It is plausible that our asymptotic symme-
tries %, have a similar interpretation, but we will not show it here. Instead, we will exhibit the charges %,
directly in WZ gauge and explore their properties.

89



charges (). We find (see (5.3.14) below),
{ga(@(xa ﬁx} = iQCaxa ) {@émtgzx} =0. (S'I‘I)

Here the supersymmetry transformation is parametrized by a commuting, constant spinor (e,
and x4 (2, Z) is also taken to be commuting. The charges Q). commute with Q, and Q.

The soft photon theorem implies that the insertion of a zero-momentum, positive-helicity pho-
ton into a scattering amplitude can be interpreted as the Ward identity for a U (1) Kac-Moody cur-
rent, which transforms in a (1, 0) representation of the SL(2, C) conformal symmetry acting on
the S? at null infinity [1, 28]. Similarly, we will see that the insertion of a positive-helicity photino
behaves like a (3, 0) current on S2. The two currents are related by supersymmetry, as was the case
for the charges in (s.1.1).

In §5.2, we begin by reviewing basic aspects of abelian gauge theories with ' = 1 supersymme-
try, focusing on the structure of the supermultiplet that contains the electric current 7, which cou-
ples to the photon, and its fermionic superpartner ICg , which couples to the photino. We present a
current-algebra derivation of the tree-level soft photon and photino theorems that utilizes the prop-
erties of 7, and /Cg matrix elements between asymptotic states. This derivation emphasizes the
universality of the two soft theorems, as well as their relation via supersymmetry. In §5.3 we analyze
the classical dynamics of the supersymmetric gauge theory near null infinity. This is facilitated by
a convenient choice of coordinates and spinor basis, in which the asymptotic behavior of massless
fields near null infinity is simply related to their quantum numbers with respect to the conformal

group that governs the deep IR behavior of the theory. After reviewing the results of [1] on the
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asymptotic dynamics of the photon and the associated bosonic charges ()., we repeat the analysis for
the photino. We construct the fermionic asymptotic charges .7, and establish some of their basic
properties. In §5.4 we show that the Ward identity for the fermionic symmetries .7, reproduces the

soft photino theorem derived in §s.2.

5.2 SOFT THEOREMS

521 AsPEcTs OF N = 1 GAUGE THEORIES

Unless stated otherwise, we will use the conventions of [87]. As was stated in the introduction, we
will consider U (1) gauge theories with ' = 1 supersymmetry. After fixing Wess-Zumino (WZ)

gauge, the vector multiplet V is given by

V= (.A“ JAo, Ag ,D) . (5.2.1)

Here A, is the U (1) gauge field (i.e. the photon) with field strength F,, = 0,4, — 0, A, Itis
subject to conventional U (1) gauge transformations, which remain unfixed in WZ gauge. The spin-
% superpartner of the photon is the photino, which is described by a left-handed Weyl fermion A,,
and its right-handed Hermitian conjugate Ag. The vector multiplet also contains a real scalar D,
which is a non-propagating auxiliary field.

In WZ gauge, the non-vanishing (anti-) commutators of the component fields in the vector multi-
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plet V with the supercharges Q,,, Q4 are given by
[Qa, Au] = —ouadﬂd , [Q4, Au] = A%0paa (5.2.2a)
{Qa, Aﬂ} =D —i (UW)@,B Fuv s {@d,Kﬁ} =¢e45D — 1 (E“”)O.CB Fuv s (5.2.2b)
[Qu, D] = —ic",0,A", [Q4, D] = —id, A", . (5.2.20)

The dynamics of the gauge multiplet is described by a Lagrangian Zauge, which is invariant (up to a

total derivative) under the supersymmetry transformations in (5.2.2),

1

eg%auge = _@

| — 1
Fu FH — e%A ot O + @DQ + (higher-derivative terms) . (5-2.3)

In addition to the standard two-derivative kinetic terms for the gauge multiplet, we are allowing for
the possibility of higher-derivative terms, e.g. terms such as 74 + (fermions), which arise in super-
symmetric Born-Infeld actions. The soft theorems discussed below remain valid in the presence of
such terms.

The interaction of the gauge field .A,, with matter proceeds through a conserved current 7,,
which resides in a real linear multiplet 7 ,*

J=(KP KL KG . Th) 0T, =0, (5:2.4)

Here KB is a real scalar, while KX and its Hermitian conjugate K, are left- and right-handed Weyl
spinors. Unlike 7, neither KB nor KX, IC;, obey a differential constraint, i.e. they are not con-

served currents. All fields in the current supermultiplet 7 are gauge invariant. Their non-vanishing

* In superspace, a real linear multiplet is described by a real superfield [J that satisfies the con-

. -2 - . .
straints D2J = D J = 0,where Dy, Dy are the usual super-covariant derivative operators defined
in [87].
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supersymmetry transformations take the following model-independent form,
[Qa,’CB] = ile ) @Q,KB] = ZES , (5.2.52)
{(Qa, KEY = —io”, (T +10,K7) ,  {Qu, K5} =io", (T, —i0,KP) ,  (s2.5b)

*F/B

[Qav ju] = _2(0',111/)(158’/,65 ) [@d? j,u] =2 (EMV)OQB 'K (5-2.50)

At first order, the interaction of the fields in the vector multiplet V with matter proceeds via the

following universal couplings to the operators in the current multiplet 7,

L = — AT, — iACF +iAK" — DKP + (higher order) . (52.6)

The higher-order terms are required by gauge invariance and supersymmetry.

In general, the current multiplet 7 encodes all couplings of the gauge theory to charged matter,
as well as possible self-interactions due to higher-derivative terms, such as those indicated in (5.2.3).
For simplicity, we will take all matter fields to reside in massless chiral multiplets. Most of the results
below only rely on general properties of the current multiplet 7, e.g. its supersymmetry transfor-
mations (5.2.5), but do not depend on the detailed form of the interaction terms. Nevertheless, it
is helpful to keep in mind the simplest theory in this class, which consists of a single massless, min-

imally coupled chiral multiplet of charge g, with canonical kinetic terms and no superpotential or

_ 6Sint
SAR(z)

$ For instance, this means that J,,(z) =

, where Sipe = f d*z L.
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higher-derivative interactions.® In this theory, the operators in the current multiplet J are given by

KB =Q39, (5.2.72)
KE=Qvadu,, Kj=Qv2el,, (5:2.7b)
T =Q (z@ﬁ;@ —l—@ﬁu\ll) . (5.2.7¢)

Here @, ¥, are the propagating component fields in the chiral multiplet (their Hermitian conju-
gates @, U, reside in an anti-chiral multiplet) and D,, = 8,, — iQ.A,, is the gauge-covariant deriva-

tive. In our conventions, the electric charge Q) is given by

Qe = /dsx Jo, (5.2.8)

and the statement that ®, ¥, both have charge () means that
[Qa, ©(2)] = —QP(z),  [Qa, Va(z)] = —QVa(). (5.2.9)

This implies that a state ®(x)|0) has charge — Q.

5.2.2  SOFT PHOTINO THEOREM

In this section, we derive the soft-photino theorem following very closely the derivation of the soft-
photon theorem in §3.6. In the supersymmetric case, we can study scattering amplitudes sz:itfr
involving an outgoing photino A of momentum ¢ and positive helicity, as well as n other hard parti-

cles,

M;fﬁ = <out’a/\7+(q) S ‘in> . (5.2.10)

¢ This theory is quantum mechanically anomalous. The anomaly can be cancelled by including additional
chiral multiplets with suitable U (1) charge assignments.
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In order for the amplitude to be non-zero, the total number of fermions involved in the scatter-
ing process (including the photino) must be even. We are interested in the leading behavior of this
amplitude when the photino momentum is taken to zero, ¢ — 0. Asin §3.6, this arises from
single insertions of the interaction terms —iIAKE + A EF C L in (5.2.6) that attach only
to external lines. For a positive-helicity photino, insertions of —iAKY do not contribute, since
(0lan,+(q)Aa(0)] 0) = 0. Therefore, the amplitude obeys the following soft theorem,

dNT — —(0]an+(q)Aa(0)]0)x

D

fs i=1

(5.2.11)

—1 o ==Fa ;
5 (=)7K 0)] fopins) (Lsoon s fopiy 85 - ;n|Slin) .
Pi-q
Here (—1)7* is a fermion sign factor that comes from anti-commuting K" across multi-particle

states.”

The photino wavefunction is given by (see §2..5)
(0aa+(9)Aa(0)]0) = ems(q) - (5.2.12)

. .. —=Fa . .
We must now evaluate the matrix elements of the fermionic operator K = between single-particle
states, in the forward limit. In general, the matrix elements of such an operator may be model-
—Fa . . . .
dependent. However, K*  resides in the same supermultiplet (5.2.4) as the conserved electric cur-
rent J,,, whose forward matrix elements are universal, as discussed around (3.6.15). Explicitly, we can

evaluate the following commutation relation from (s.2.5),

{Qa?zg} =104 (ju - iOMICB) J (5-2.13)

7Forastate (1; ... ; 4; ... ; n| wedefine 0; to be the number of fermionic states in positions ¢ + 1

through n.
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between single-particle states in the forward limit, where we can drop the total derivative 9, k5.

Using (3.6.15) then leads to
—F .
(f.p,s{Qa,Ka } f/ip, ") = =2iQp puoh, 05565 . (5.2.14)

The appearance of d s on the right-hand side shows that only single-particle states that reside in the
same supermultiplet can can lead to non-vanishing matrix elements for ;. When the supercharges
act on the left or the right, they lead to other states in this supermultiplet, in a way that is completely
determined by representation theory. This can be used to derive all matrix elements of Ky, between
massless or massive single-particle states of arbitrary spin.

Here we explicitly work this out for a massless chiral multiplet ®, ¥, of charge @, and its conju-

gate anti-chiral multiplet @, ¥, of charge —@Q. The relevant single-particle states are
[®,p), |[¥,p,—) and |®,p), |¥,p,+). (5:2.15)
On these states, the supersymmetry algebra is represented as follows,?
Qql®,p) =0, Qal®,p) = V2ina(p)|¥,p,-),
Qal¥,p, =) = —V2in;,()|®,p),  Qal¥,p,—) =0. (5.2.16)

The action of the supercharges on the conjugate anti-chiral states is obtained by exchanging Q, <«

@d’ |(I)’p> A |6?p>> Ua(p) A ﬁa(p)s and |\I]7p7 _> s |@7p7 +>

We can now implement the procedure described after (5.2.14) to obtain all non-vanishing matrix

8 This follows from the non-vanishing commutation relations for a free chiral multiplet,

[Qa, ®] = iv2¥, and {Q,, ¥, } = V20" ,0,.
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elements of E(I;,
- =F, = =F _
(‘bap‘lca (O)|\Il’p’ _> = <\Il7p7+|lca (0)’¢7p> = \/iQna(p) : (5'2“17)

Substituting into (5.2.11), we obtain the final form of the soft photino theorem,

n
AT Ve @i (Ficty) . (5.2.18)
n ; n(g)n(p:) "

Here the Q; are the electric charges of the asymptotic states. The n-particle amplitude 47, is ob-
tained from szrfff by deleting the photino, but since it has an odd number of fermion external

states, it vanishes. The non-vanishing n-point amplitude .%;.47, is obtained from 27, by acting on

the 7th single-particle state with a fermionic operator .7, which satisfies

<67p‘§:_<@7p7_‘7 <\11,p,—|—|f: <(I)7p”
(5.2.19)
t95’(1)71» :|\I’,p,—|->, ng|67p,_>:_|6ap>'

The action of .% on all other single-particle states vanishes, and we take .# to act from the right on

out states and from the left on in states. Since .7 is a fermionic operator, it picks up a sign whenever

it moves past another fermionic operator or state. This accounts for the factors (—1)7% in (5.2.11).
So far we have only discussed an outgoing soft photino of positive helicity. The negative helicity

case can similarly be shown to satisfy
AT s \/2ie L — (9“2%) , (5.2.20)
i ; n(g)mp:) \7 0"
where the fermionic operator .% 1 is the Hermitian conjugate of the operator .# defined in (5.2.19).

Finally, the soft theorems for ingoing photini can be obtained from (s.2.18) and (5.2.20) by crossing

symmetr y-

97



5.3 ASYMPTOTIC SYMMETRIES

5.3.1 PHOTINO ASYMPTOTICS

The photino A, is a left-handed spinor that transforms as (5, 0). We have performed the boundary
analysis for such a spinor in §2.4.3. The boundary data is A (). The leading constraint equation

when it is coupled to a current is given by (2.4.79)

2
z e -
8u)\(_) = E_Dg)\(_,_) — 5/{7(_) . (5-3-1)

where we have denoted A(_y = [\@). As for the bosonic current, we assume that the fermionic
current vanishes at large u.

We would now like to know how supersymmetry relates the fermionic boundary fields A4 and
%(_) to the bosonic boundary fields A and j,. Even though all four supercharges remain unbro-

ken at null infinity, we will focus on supersymmetry transformations with constant spinor parame-

ter féf) and their complex conjugates, which are generated by the following supercharges
) —¢lag, . o™ gy, {Q(_)’ o™ } = —4id, . (53.2)
They are the position space analogues of the supercharges that act non-trivially on massless particle

representations, as in (5.2.16). The only non-vanishing commutators of Q) with the boundary

photon field A, and A7(~2) are given by

(@9, EZ Az =2y, [@9,4P] =X, (5:33)
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while the only non-vanishing anti-commutators of Q with the boundary photino )\(i) are
(@9 Ny} =4iEZ0,A.,  {Q N} =-D—i(Fu —77Fz).  (53.42)

The action of @(+) on these fields can be obtained by taking the Hermitian conjugates of these
formulas. The auxiliary field D in the vector multiplet (5.2.1) is a Lorentz scalar with IR scaling di-
mension Ap = 2, which according to (2.4.65) falls off like D = & + O(r~3). The fact that there
are no residual powers of 1 in these formulas shows that the assumed large-r falloffs are consistent
with supersymmetry.

It is straightforward to repeat the preceding discussion near .# ~. The photino fields on .+
and .# ~ must then be matched at spatial infinity. The appropriate matching conditions can be
determined from the matching conditions (3.4.2) for the photon using supersymmetry. Combining

the supersymmetry variation in (5.3.3a) with the matching condition for A in (3.4.2) leads to

Al = Al - (535)
Similarly, the supersymmetry variation in (5.3.4a) and the matching condition for Fy,;, in (3.4.4)

imply that the u-independent part of A(_) should be matched across spatial infinity. However, the

constraint equation (5.3.1) implies that A(_) } s+ does not exist, since
Aoy = u(EEDaAp| v ) +62) 2 u— —o0. (5.3.6)

Instead, we should match the u-independent term across spatial infinity, £(z,Z) = ¢~ (z,Z), which

can be expressed in terms of )\(_) as follows,

(1 —udy) )\(—)}jj = (1 —v0y) X(—)’j_; . (5-3.7)
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5.3.2 FERMIONIC ASYMPTOTIC SYMMETRIES

Consider the following fermionic charges on .% +and .Z—, for any complex-valued x(z, Z),

1
F= / oz X(2,2) (1~ ud) Ao+
(5-3.8)

_1 -
Fi = [ oD =003

We can express them in a more covariant form by introducing a commuting, chiral spinor-valued

function on S2,

Xa(2,%) = x(2,2)6P(2) . (53-9)
We can then write the charge as
1
g — = 2 e = o . 2 —=
Fy = = /d 272 X" (2, Z) [(1 u0y,) (Tlggor Ao (u, r,z,z))} ’yj’ (5.3.10)

and similarly for .. Comparing the matching condition (5.3.7) to (5.3.8) implies the conservation

law

7 — - (5:31)

and hence a Ward identity for the tree-level S-matrix,
FS—-S8F, =0. (5.3.12)

In section 5.4 we will show that this identity gives rise to the positive-helicity soft photino theo-
rem (5.2.18); the Hermitian conjugate charges ﬁ% lead to the negative-helicity case (5.2.20). In the

remainder of this section we establish several basic properties of .7,

Supersymmetry relates the fermionic symmetries .7, defined in (5.3.8) to the bosonic asymptotic
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symmetries () in Chapter 3. For instance, we can use (5.3.4a) to determine the anti-commutators of

the supercharges Q, O that were singled out in (5.3.2) with .7, ,°
, i - . =
(@7} =5 [Eoraxe ) Pl o =i0, (@7 2} =0, Gan)

Note that the fermionic symmetry .%,, with complex parameter x(z, Z), transforms into the bosonic
symmetry () with the same parameter, £(2,%Z) = x(z,%). This shows that it is natural to allow
complex £(z, Z), as was discussed in [2, 28, 86]. More generally, we can use (5.2.2) and (5.3.10) to ex-

press the commutator of an arbitrary supercharge with .7, in the covariant form quoted in (5.1.1),

{Ca@aa yx} =10Q [CaXa] > {@da jx} =0. (5-3.14)

Here ¢, is a commuting, constant spinor and X (z, Z) was defined in (5.3.9). It can similarly be
shown that the bosonic charges (). in Chapter 3 are annihilated by all supercharges. This is expected
from their interpretation as conventional gauge transformations that do not vanish at . *, since the
latter commute with supersymmetry.

Following the discussion of the bosonic case around (3.2.12), we can express .7, as an integral

over .# T and use the constraint equation (s.3.1) to write it as a sum of hard and soft contributions,

h
Ty =Ty + Ty (5.3.15)

9 Here we use the fact that D| st = F.=| st = 0. The first equation is obtained by solving for the aux-

iliary field D in (5.2.1) in terms of the bosonic source K2 in (5.2.4), which is assumed to vanish at .. The
second equation follows from the fact that there are no magnetic charges.
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The hard charge is given by

1 - 1
Fh == /dudQ,zvzzx(z,z)u(?uk(_) + 62/d2Z’Ysz(ZaZ) (1 — udy) A(—)‘Ji - (53.16)

2
Since we are considering theories without massive particles, we set (1 — udy) A(—) ‘ g+ =05
+
The supersymmetry transformation (5.3.4a) turns this condition into F, + = 0, which was
persy y 5.3.4 ur|
+

imposed also in the bosonic case in (3.2.3). We can compute the following anti-commutators with

the supercharges singled outin (5.3.2),

{@”x@}zg/mfmﬁﬂz@nzawuL (@7, 72 =0, (s317)
up to boundary terms at . that involve the sources and hence vanish by assumption. In sec-
tion 5.4 we will use these relations to determine the action of the hard charges ,9Z>}(‘ on asymptotic

scattering states.

The soft charges in (s.3.15) are given by

s 1 Z AYR S 0
Fi= e [EomEon Rty ey =G [dindag. e

Here we have defined a soft photino current w®." Under a Lorentz transformation, it changes as

follows,

1 _
Syw(yy = <2DZYZ +Y?0, + YZ8;> W4y » (5.3.19)

up to boundary terms that vanish as long as A asymptotes to a u-independent function of 2,z

* Following [31, 132], it should be possible to incorporate massive particles by appropriately taking into
account their semiclassical photino field as they pass through timelike infinity.

" Note that the operator [ du OuA(+)> which is similar to soft photon current j3 defined above (5.3.20),
can be shown to vanish inside S-matrix elements by expressing it in terms of creation and annihilation opera-
tors and comparing to the soft photino theorem (5.2.18).
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sufficiently rapidly at ff > The Lorentz transformation (s.3.19) shows that the soft photino cur-
rent w”® is a two-dimensional field with SL(2, C) conformal weights h = % andh = 0,i.e.itis
aleft-moving spin—% current. Under the supercharges in (5.3.2), the soft photino current w* trans-

forms into the soft photon current j§ = —%N -, as follows,
— S N nF AN _(+ S
{Q( ),w(+)}:zE+jz, {Q( ),w(+)}:O. (5.3.20)

In order to understand the action of the soft charges (5.3.18) on the photino, it is convenient to

rewrite them as follows,”

FS = 1 lim [ dud®z 0zx(z,%Z) cos(wu)/\(+) . (5.3.22)

X 262 w—0

In terms of creation and annihilation operators (see §2.5.22),

i

ags — : 2 _nz = =\ ]L —
Fi= 15 im Ve [ @aBR o) (ans(on ) — ] (@.22) - (539

This shows that f; acts on zero-momentum photini. Using this expression, as well as the mode
expansion for A(_,_) and the anti-commutation relations for creation and annihilation operators, it

can be checked that

{Zy A (w,2,2)} =0,  {FLA)(u,2,2)} = —EZ8:x(2,7) . (5-3-24)

Thus, A(4) shifts inhomogeneously whenever 9zx(z,%Z) # 0. Justasin the bosonic case, we in-

2 It is sufficient to assume that (1) = A(4)| gt O(|u|=F9), with § > 0,asu — Foc.
I3

B Given a function f(u) such that litﬂ? f(u) exists, but is nonzero, we have the following identity,
U—> T 00

/OO duuf'(u) = — lim /OO du cos(wu) f(u) , (5.3.21)

S w—0 o

which amounts to integrating by parts but dropping the divergent boundary terms.
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terpret this as spontaneous breaking of the corresponding charges .7} . The u-independent part
of A(_) furnishes the corresponding Goldstone fermions. Similar comments apply to 35;;, which

shifts /\(+) by —E_ZF@ZY(Z, E)

5.4 SOFT PHOTINO THEOREM FROM ASYMPTOTIC FERMIONIC SYMMETRIES

5.4.1 FERMIONIC WARD IDENTITY FOR SCATTERING AMPLITUDES

In the previous section we argued for the existence of a fermionic asymptotic symmetry .%,, which
is classically conserved (see (5.3.11)) and hence leads to a Ward identity (s.3.12) for the tree-level S-

matrix,

FS—-S8F; =0. (5.4.1)

We will now show that this Ward identity is nothing but the soft photino theorem for the case of an
outgoing positive-helicity photino (equivalently, by crossing symmetry, an ingoing negative helicity

photino), which we repeat for convenience,

n

AN V2ie _ Qi (Ficty,) . (5-4.2)
i z; n(a)n(p:)

Here ¢ — 0 is the momentum of the soft photino. Analogously, the Ward identity for 9; leads to
the soft photino theorem (5.2.20) for an outgoing negative helicity photino.
We begin by translating (5.4.2) from momentum to position space. As in (3.6.17), we can ex-

press the null momenta p; in terms of variables w;, 2;, Z; and ¢ in terms of w, 2, Z. In particular,
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the spinor-helicity variables corresponding to the p; are given by (2.4.52), so that

. [ eoee N
N (@)na(pi) = \/(1+ZZ)(1—|—ZiZi) (z —z) , (i1=1,...,n). (5.4.3)

In this parametrization, the soft photino theorem can be written as follows,

n —
V9I+zizi Qi
vV 2w42fn°j_ti+ —  dev1+ ZEZ tEz O (Fidy) (5.4-4)
- \/ W5 z — Z;
=1
In order to reproduce this result, we take the matrix element of the Ward identity (5.4.1) between

an n-particle out-state (1; ... ; n|and thein state | 0). All in- and outgoing particles (some of
which could be photini) are hard, i.e. they have non-vanishing momenta. Writing .%, = 93}(’ + 7

X

as a sum of hard and soft contributions, as in (5.3.15), and similarly for 3ZX_ , we obtain

(out]| IS — ST [x]|in) = —(out]| 9;(‘8 — S.h- [x]|in) . (5-4.5)
To proceed, we need to know the action of the soft and hard charges on asymptotic scattering states.
The soft charge was expressed in terms of photino creation and annihilation operators in (5.3.23).
It creates an outgoing positive-helicity photino and an ingoing negative-helicity photino of zero
momentum. Crossing symmetry implies that these two contributions lead to identical S-matrix

elements, so that we can write the left-hand side of (5.4.5) as the w — 0 limit of

iyw
V2ern

The action of the hard charges on asymprotic states will be derived section 5.4.2 below, where it is

d* Wy E® Ogx(w, ) (out; A, p(w, w, @) |S‘in> . (5.4.6)

shown that
Ff.pe0.22).5) = ~5 Sox(2. A F | fp(wr27).5).
(5-4.7)
9£T|f7p(W,Z,2),S> = —f/gx(z,z)ﬁwf,p(w,z,z),@ .
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Here Q) is the electric charge of the state labeled by f € {®,®, ¥, U}. The operator .# and
its Hermitian conjugate .# t appear in the soft theorem (5.4.2). Its action on chiral and anti-chiral
matter states was defined in (5.2.19).

If we choose x(w,w) = ﬁ, the Ward identity collapses to the soft theorem (5.4.2). Asin the
bosonic case [1], the argument can be reversed to deduce the Ward identity — and hence the underly-

ing symmetries — from the soft theorem, which establishes their equivalence.

5.4.2 AcCTION OF THE FERMIONIC CHARGES ON MATTER FIELDS

Here we show that the action of the hard fermionic charges f;‘

on asymptotic states is given by (5.4.7),
thereby completing the argument of section s.4.1. We will do this by using the supersymmetry rela-

tions (5.3.17),

{73} =iy, {Q.7y}=0. (5-4.8)

Here Q};( are the hard bosonic charges, whose action on boundary fields f, (u, 2, Z) of electric
charge ¢ is given by

[Qg,fQ(u,z,E)] = —Qe(2,2) fo(u,2,%) . (5.4.9)

Given the action of the supercharges o) , §(+) on charged boundary fields, we can extract the
action of ﬁfg on such fields from (5.4.8) and (5.4.9). The same logic was used in section s.2.2 to
relate the matrix elements of the fermionic source EdF to those of the electric current J,.

For our present purposes, all charged fields reside in massless chiral or anti-chiral multiplets. A

chiral multiplet consists of a complex scalar ® and left-handed spinor ¥, whose boundary data are
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¢ and 1)y respectively. If the chiral multiplet has charge @, then so do the boundary fields ¢ and ¢,

ie.

[Q?, o(u, z,E)] = —Qe(2,2)0(u, 2,2) ,
(5-4.10)

[Q}slv ’QZ}(-l-) (u’ 272)] = —Q&(Z,f)ll](_,_) (ua 2y Z) :

Given the asymptotic expansions in Chapter 2, we obtain the following transformation rules for the

boundary fields ¢, 1)) under the supercharges o), @(H singled out in (5.3.2),
(=) — \/i o) 2| =0
Q y (b “/}(Jr) ) Q ) ¢(U, Z, Z) ) (5-4'113)

{Q(_)’ 7/)(+) (’LL, Z, Z)} =0 ) {@(JF) ) 1/](—‘1-) (U, Z, z)} = _2\/§au¢(u’ Z, E) . (5'4'Hb)

Given the transformation properties (5.4.10) and (5.4.11) of the chiral multiplet fields under the
bosonic symmetry QP and the supersymmetries Q(~), @(+), the commutators in (5.4.8) are only

consistent if the fermionic symmetry ﬂ;‘ acts as follows,

[F2b(u,2,2)] =0, {F)v)(u,2,2)} = —\%X(%Z)cb(uw,z) . (5.4.12)

The first commutator can be understood as a consequence of the U (1) g symmetry that is expected

to emerge at the superconformal IR fixed point that governs the dynamics near null infinity. Since .7,
is linear in the photino (see (5.3.8)), it has R-charge +1. (We take the R-charge of Q, to be —1.)

The electric and U (1) g charges of the first commutator in (5.4.12) are not consistent with any

fermionic field in the chiral multiplet, and hence it must vanish.

107



For the anti-chiral multiplet of charge —(@), we similarly find

{ﬁ;‘,a(,)(u, Z,E)} =0, (5.4.132)
[3?)}(17 6u$(u’ 2y 2)] = _&X(sz)w(—) (U, Z,f) ’ (5-4-I3b)
(@9, 71 0(u.2,2)] | = iQx(2, 2)8(u. 2,2) (5.4

As above, the first equation (5.4.13a) is due to the electric and U (1) g charges of the fields. While (5.4.13b)
shows that 9,,¢ has a local transformation rule, it follows from (5.4.13¢) that this does not lead to a
local transformation rule for ¢ itself. If it did, then ¢ would be Q-exact, which is not the case be-
cause ¢ is the bottom component of the supermultiplet in (5.4.11).
The (anti-) commutators in (5.4.12), (5.4.13a), and (5.4.13b) are sufficient to establish the action
of ff; and g‘%hT on asymptotic states. Using the mode expansions in §2.5 and the fact that ,95)}(‘ anni-

hilates the vacuum,™ we find that

tga)}(l ‘ﬁvp(wazvz)a _> = —%Q/EX(Z,Z)}q),p(w,Z,Z)> ) (5-4-14)

F10.p(02,) = ~5 Sz D)W ple 2., )

We can express (5.4.14) in terms of the operator .7, whose action on asymptotic states was defined

in (5.2.19),

y‘57p> = ﬁ|ql’p’ +> = 07 ﬁ|q),p> = |\Ij’p’+> ) y|@7pa _> = _|6’p> . (5’4-15)

' Recall that the soft charges 7, are spontaneously broken, since they shift the photino as in (5.3.24) and
hence do not annihilate the vacaum. However, this is not the case for the hard charges 3‘;}(‘
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Since |®, p) has charge g and | ¥, p, —) has charge —q, we can express (5.4.14) as follows,

Felfips) = —&X(%?)%ﬂpﬁ% (5-4.16)

2Vw

where () 7 is the electric charge of the state. It is straightforward to repeat the preceding discussion

for the Hermitian conjugate charges. They obey

Q _
N

where the action of Z T on one-particle asymptotic states was defined in (5.2.19). Together with (5.4.16),

9;” f7p7$> = - (Z,f)yw f,p,$> , (5.4.17)

this establishes the relations stated in (5.4.7).
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BMS Supertranslations and the Soft

Graviton Theorem

In Chapters 3, 4 and s, we have studied three examples of the relationship between asymptotic sym-
metries and soft theorems in gauge theories. We now turn to a study of the relationship in gravita-

tional theories. This chapter is a modified extract of [4].
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6.1 INTRODUCTION

Weinberg’s soft graviton theorem [10] is a universal formula relating any S-matrix element in any
quantum theory including gravity to a second S-matrix element which differs only by the addition
of a graviton whose four-momentum is taken to zero. Remarkably, the formula is blind to the spin
or any other quantum numbers of the asymptotic particles involved in the S-matrix element.

It is often the case that universal formulae are explained by symmetries. Recently [28], it was
conjectured that the quantum gravity S-matrix has an exact symmetry given by a certain infinite-
dimensional “diagonal” subgroup of the asymptotic supertranslation symmetries of Bondi, van
der Burg, Metzner and Sachs (BMS) [14, 15]. In this paper, we show that the universal soft graviton
theorem of [10] is simply the Ward identity following from the diagonal BMS supertranslation sym-
metry of [28].

Put another way, it turns out that the deep discoveries made a half century ago about the struc-
ture of Minkowski scattering in theories with gravity by Weinberg and by BMS are equivalent, albeit
phrased in very different languages.

The Ward identities following from the diagonal BMS supertranslations were expressed in [28]
in terms of data at null infinity, namely the Bondi news representing gravitational radiation together
with certain infrared modes. These are described in terms of their retarded times and positions on
the asymptotic conformal sphere. The soft graviton theorem on the other hand is described [10] in
terms of the scattering of momentum-space plane waves. The demonstration of this paper consists

largely in transforming between these two different descriptions.
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In the course of our demonstration it is necessary to carefully define the physical phase spaces
'+ of gravitational modes at past and future null infinity (. ~ and .# *). I'* must include, in
addition to the Bondi news, all soft graviton degrees of freedom which do not decouple from the
S-matrix. The latter we argue are constrained by boundary conditions at the boundaries of .7 *.
The soft modes can be viewed as living on these boundaries, and the boundary conditions reduce
their number by a crucial factor of 2. The reduced space of modes may then be identified (from their
transformation law) as nothing but the Goldstone modes of spontaneously broken supertranslation
invariance. The relevant physical phase spaces I'* become simply the usual radiative modes plus the
Goldstone modes." The boundary constraint entails a modification of the naive Dirac bracket. After
this modification canonical expressions for T' are given which generate supertranslations on all of
I'®. While there has been much discussion of T+ over the decades, the construction of generators
which act properly on the infrared as well as radiative modes is new.

This paper is organized as follows. In §6.2 we present the full .#* phase spaces I'* (including the
boundary condition), present the Dirac brackets and supertranslation generators 7'+ and identify
the soft gravitons as Goldstone modes. §6.3 reviews the proposed relation [28] between .# ™ and
# " near where they meet at spatial infinity, together with the diagonal supertranslations which pre-
serve this relation and provide a symmetry of the S-matrix. §6.4 reviews the soft graviton theorem
[10]. §6.5 describes the transformation between the asymptotic description of §6.3 and the momen-

tum space description of §6.4. In §6.6 we show that Weinberg’s soft graviton theorem is the Ward

"This is the minimal phase space required for a good action of supertranslations. We have not
ruled out the possibility of further soft modes and a larger phase space associated to local conformal
symmetries[ 45, 98, 100—102] which could lie in components of the metric not considered here.
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identity following from diagonal supertranslation invariance.

We mainly consider only the case of pure gravity but expect the inclusion of massless matter or
gauge fields to be straightforward. New elements may arise in theories which do not revert to the
vacuum in the far past and future. We expect that parallel results apply to the gauge theory case [27].

Related results are in [89].

6.2 SUPERTRANSLATION GENERATORS

In this section we construct the physical phase space, the symplectic form (or equivalently the Dirac

bracket) and the canonical generators of supertranslations at . +,

6.2.1 ASYMPTOTIC VECTOR FIELDS

We consider asymptotically flat geometries in the finite neighborhood of Minkowski space defined
in [139] and referred to in [28] as CK spaces. These have a large-r weak-field expansion near future
null infinity (.# *) in retarded Bondi coordinates (see [45, 100-102] for details)

ds? = —du® — 2dudr + 2r2'yzgdzd2

(6.2.1)
2mp o 2 2
+ ——du” + rC,,dz* + rCszdz" — 2U,dudz — 2Uzdudz + - - - |
T
where?
e (6.2.2)

*The U, defined here should not be confused with that defined after (4.4.1).
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The retarded time u parameterizes the null generators of .# * and (z, Z) parameterize the conformal

ﬁ is the round metric on

S2. The Bondi mass aspect m p and C, depend on (u, 2,%), v,z =
unit S? and D, is the y-covariant derivative. Near past null infinity .# —, CK spaces have a similar

expansion in advanced Bondi coordinates

ds? = —dv? + 2dvdr + 2r?~y,zdzdz
o= (6.2.3)
+ %dzﬂ 4 1 Dandz? + rDoad?? — 2Vidvdz — 2VedvdZ + - - - |

where
1 2z (6 )
LZ - 7D -DZZ' 2.4

We denote the future (past) of .# T by f_f_r (F7), and the future (past) of & ~ by I (ID).
These comprise the boundary of .# (£ U .# ™). We also define the outgoing and incoming Bondi
news by

BMS™ transformations [14, 15] are defined as the subgroup of diffeomorphisms which act non-
trivially on the radiative data at .#+. These include the familiar Lorentz transformations and super-

translations. The latter are generated by the infinite family of vector fields®
1 -
fOu — ;(szaquszaz) +D?D, f0,, (6.2.6)
for any function f(2,%) on the S2. BMS™ acts on C.,, according to

L;C,, = f0,C., — 2D?f. (6.2.7)

*The subleading in % terms depend on the coordinate condition: see [ 45, 100-102].

114



Similarly BMS™ transformations act on .# ~ and contain the supertranslations parameterized by
f7(22)

1 -
f70u+ ~(D*f 0z + D*f~0.) — D*D:f 0, (6.2.8)

under which

L;-D..=f 0,D.. +2D2f". (6.2.9)

6.2.2 DIRAC BRACKETS ON .¥

The Dirac bracket on the radiative modes (the non-zero modes of the Bondi news) at # " was

found in [20, 25, 106, 107]
{Nz(u, 2,Z), Nyw (W, w, @)} = —167G0,6(u — u')6% (2 — w)7.z, (6.2.10)

where G is Newton’s constant. The generator of BMS™ supertranslations on these modes is [20, 25,

45, 100—102, 106, 107 ]

1
) = o | Pevatms
1 9 B 2z - (6.2.11)
= 16:G /dud 2f V22N N** + 20, (0. Uz + 8:U.)],

+ _
{T (f)?NZZ} —fausz,
where in the second line we have used the constraints and assumed no matter fields.
Of course BMS™ transformations acting on the radiative modes alone do not comprise an asymp-

totic symmetry. One must act on a larger phase space r+ including some non-radiative modes.

The obvious guess is to identify this larger space with that parametrized by C'.., itself, and define
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a bracket for all (u, u’) by integrating (6.2.10) to
{C=(u, 2,%), Cp (v, w, @)} = 8GO (1 — /)% (2 — w) 72z, (6.2.12)
where ©(z) = sign(z). However if we use this we find, perhaps surprisingly,
{TH(f),C..} = f0,C.. — DXf # L4C. (6.2.13)

The inhomogeneous term is oft by a factor of 2. So clearly either the bracket (6.2.12) or the generator
(6.2.11) is incorrect. This problem does not seem to have been addressed in the literature.

Here we solve this problem by motivating and imposing boundary conditions on C',, at the
boundaries of £, and incorporating this boundary constraint into a modified Dirac bracket. Since
the constraints apply only to the boundary degree of freedom, (6.2.12) will be unaltered unless either
wor ¢ is on the boundary. However this will turn out to give us exactly the missing factor of 2 in

(6.2.13)! The supertranslation invariant boundary conditions are

0.0 — 0:U.] s =0, (62.14)

sz|7j{ =0. (6.2.15)

Equivalently the first condition may be written

[D2Cs; — D2C..] sy =0 (6.2.16)

This reduces the boundary degrees of freedom by a factor of two. It has a coordinate invariant ex-

pression in terms of the component of the Weyl tensor sometimes referred to as the magnetic mass
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aspect:

Im \I/;O)]ji =0. (6.2.17)

There are two related motivations for this constraint besides the fact that it (as we will see mo-

mentarily) leads to a proper action of 7" First, the boundary condition (6.2.14) is obeyed by CK

+

e g
spaces [139]. Second, operator insertions of [0, Uz] ji and [0:U,] jﬁ correspond to soft gravi-

tons and have non-vanishing S-matrix elements (due to Weinberg poles) even though they are pure

gauge. Therefore they must be retained as part of the physical phase space. However these poles can-

+ +
cel in the difference [0,Uz] jﬁr — [02U,] f; Hence this combination decouples from all S-matrix

elements and should not be part of the physical phase space. Our constraint (6.2.14) projects out

these fully decoupled modes.

The general solution of the constraints (6.2.16) can be expressed

C.z| ,+ = DC, (6.2.18)
/ duN,. = DN, (6.2.19)

where the boundary fields C, N are real.*We may then take as our coordinates on phase space the

boundary and bulk fields®

I+ = {C(2,%), N(2,%), C..(u,2,%), Cz=(u,2,2)}. (6.2.20)

#These fields are not to be confused with the analogous fields that we defined for the gauge field in §2.4.2.

5C and N each have four zero modes of ¢ = Oand¢ = 1 which are projected out by D? and hence do
not appear in the metric. They might be omitted from the definition of I'*" and do not play an important
role in the present discussion. However we retain them for future reference: as will become apparent below
the C' zero modes have an interesting interpretation as the spatial and temporal position of the geometry.
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The arguments u of the bulk fields terms are restricted to non-boundary (i.e. finite) values only. The
bulk-bulk Dirac brackets remain (6.2.12). A priori it is not obvious how one extends the bulk-bulk
bracket (or equivalently the symplectic form) over all of I'*. We do so by first imposing (6.2.19) as a

relation between bulk-bulk and bulk-boundary brackets in the form
DE{N(Z,E),CW(U,U),@)} - / dul{sz(u/a272)7cm(u7w7@)}7 (6'2"2'1)
and then constraining the boundary-boundary bracket by continuity in the form

D2{N(z,%),C(w,w)} = lim {N(z,%),Cow(u,w,@)}. (6.2.22)

U——00
The non-zero Dirac brackets following from the boundary constraints (6.2.15), (6.2.16) are then
uniquely determined as®

{Cs(u, 2,2), Cyuo (v, w, W)} = 87GO(u — u')éz(z — W)Yzz,

{C(2,%), Cow (v, w, W)} = —8GD2(Sn|z — w|?),

(6.2.23)
{N(2,%), Copw(t/,w, @)} = 16GD2 (Sn |z — w|?),
{N(2,%),C(w, @)} = 16GS1In |z — w|?,
where u, u/ are not on the boundary and
S = (z —w)(z - ) (6.2.24)

(1+22)(1 4+ ww)’

%We note but do not pursue herein the interesting appearance of logarithms related to the four C and N
zero modes. These are projected out by acting with D? and hence irrelevant to the supertranslation genera-
tors below.
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S is the sine-squared of the angle between z and w on the sphere and obeys
S
27

2 nlz—wp?)=———
DSz~ ) = =0

(6.2.25)
D2D%(SIn |z — w|*) = 17.26%(2 — w).

Similarly, on .# ~, the constraints [0, Vz — 0: V.| = 0 can be solved by
(e e}
D..| oo = D?D, / dvM,, = D*M. (6.2.26)
—0o0
The coordinates on the phase space at .# ~ can then be taken as
I' ={D(2,2), M(2,2), D,.(v,2,%2), Dzz(v,2,2)}, (6.2.27)

where v is ot on the boundary. The non-zero Dirac brackets are
{Dz(v,2,%), Dy (v, w, W)} = 87GO(v — v')6%(2 — )7z,
{D(2,%), Dyw(v',w,@)} = 8GD? (Sn |z — w|?),
(6.2.28)
{M(2,%), Dyw(v',w, @)} = 16GD2(S1n |z — w|?),
{M(z,%), D(w,w)} = 16GSn |z — w|?,
where v, v’ are not on the boundary.

The demand of continuity (6.2.22) is not as innocuous as it looks because we see from (6.2.23),
(6.2.28) that other brackets (in particular { V., Cyyy }) are not continuous as u is taken to the
boundary. We have not ruled out the possibility that there are inequivalent extensions of the sym-
plectic form on the radiative phase space to all of T'F corresponding to inequivalent quantizations

of the boundary sector. In an action formalism, this could arise from different choices of bound-

ary terms. However an z posteriori justification of our choice is, as we now show, that it leads to a
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realization of supertranslations as a canonical transformation on I+,

6.2.3 CANONICAL GENERATORS

The supertranslation generator may now be written in terms of bulk and boundary fields as

1

= iy pn d2Z'YzEme

T*(f)
(6.2.29)

1 1 .
= —— [ dud’zfvzN..N"* — — [ d*2v** fDIDIN

where the integral over infinite u in the first term is the Cauchy principal value. Using the brackets

(6.2.23) one finds
{T+(f)7 NZZ} = fausza
{T+(f)7 sz} = fauczz - QDZf;
(6.2.30)
{T7(f),N} =0,
{T+(f)7 C} = _2f7
as desired.

Similarly on %,
B )= L 2 T A= zZz 1 2 2Z £— M2 N2
T(f7)= 1671'G/dvd 2f"vzM. M +87rG/d 2y** f-DiDZ M, (6.2.31)
and
{T_(f_)7 MZZ} = f_aszza
{T7(f7), Dz} = f0uD. +2D2f,
(6.2.32)
{T=(f"),M} =0,

{T7(f7), D}y =21,
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as desired.

At the quantum level supertranslations do not leave the usual in or out vacua invariant. Acting
with T'F, the last term in (6.2.29) is linear in the graviton field operator and creates a new state with
a soft graviton. The new state has energy degenerate with the out vacuum but different angular
momentum. Hence supertranslation symmetry is spontaneously broken in the usual vacuum. The
last line of (6.2.30) clearly identifies — %C’ as the Goldstone mode associated with this symmetry
breaking. It is conjugate to the soft graviton zero mode V.

In conclusion the construction of a generator of supertranslations on % +is possible but subtle

and requires a careful analysis of the zero mode structure and boundary conditions on the bound-

aries of F*.

6.3 SUPERTRANSLATION INVARIANCE OF THE S-MATRIX

In this section we summarize the supertranslation invariance of the S-matrix conjectured in [28] as
well as the associated Ward identity.

The first step is to understand how .# ™ and .# ~ may be linked near spatial infinity. In the con-
formal compactification of asymptotically flat spaces, the sphere at spatial infinity is the boundary of
a point i. Null generators of .# in the conformal compactification of asymprotically flat spaces run
from .~ to .# T through i®. We label all points lying on the same such generator with the same
value of (2,Z). This gives an ‘antipodal’ identification of points on the conformal spheres at .# ~

with those on .Z 1. For CK spaces one may identify geometric data on 7T with that at f_: via the
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continuity condition [28]

Cuzl g+ = =Dl -, (6:3.)

or equivalently

C(z,zZ) = —D(z,%). (6.3.2)

In [28] it was conjectured that the “diagonal” subgroup of BMS™ x BMS™ which preserves the
continuity condition (6.3.1) is an exact symmetry of both classical gravitational scattering and the
quantum gravity S-matrix. The diagonal supertranslation generators are those which are constant

on the null generators of .#, i.e.

. (2,5) = f(Z,f). (6.3.3)

The conjecture states that S-matrix obeys
T*(f)S = ST (f) =0. (6:3.4)

A Ward identity is then derived by taking the matrix elements of (6.3.4) between states with 7 outgo-

ing particles at zj, on the conformal sphere at .#". These carry energies wy,, where

Zwk =0. (6.3.5)
k=1

by total energy conservation. We denote the out and in states by ( out | and | in ). Choosing f(w, W) =

1

z—w?’

it was shown that the matrix element of (6.3.4) between such states implies

(out|:PzS:|in>:<out|S|in)Z Yk (6.3.6)
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where the : : denotes time-ordering and the “soft graviton current” is defined by

1 o0 o0
. _ 6.3.
P, e (/OO dvd,V, /Oo du@uUz> ) (6.3.7)

Since P, involves zero-frequency integrals over . + it creates and annihilates soft gravitons with

a certain z-dependent wave function. The supertranslation Ward identity (6.3.6) relates S-matrix
elements with and without insertions of the soft graviton current. It can also easily be seen [28] that

(6.3.6) implies the general Ward identities following from (6.3.4) for an arbitrary function f(z, Z).

6.4 THE SOFT GRAVITON THEOREM

In this section, we specify our conventions and briefly review Weinberg’s derivation of the soft gravi-
ton theorem for the simplest case of a free massless scalar. For more details and general spin see [10].

Einstein gravity coupled to a free massless scalar is described by the action

2 1
S =— / d*z/—g [&2]% + Eg#”amam , (6.4.1)
where k2 = 327G. In the weak field perturbation expansion gap = naB + khap and the relevant

leading terms are

2 1 1
Loy = = 5 R = —50chap0h"'" + S04h0"h + 0 hapdh®" — Oah"FPh + -,

1 1 1 1
Ls = —5V=99" 04000 = =507 0046 + 5kh"" | 040056 — Snap0 00| + -

(6.4.2)

In harmonic gauge Ohap = %th the Feynman rules take the form (see [140])

Additional diagrams with the external graviton attached to internal lines cannot develop soft
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poles[10]. The contribution of these diagrams to the near-soft amplitude is

—1
’Q{nﬁBl(Q7p17 to ;pn) = Z'Q{n(pla e DE g 7pn)/—2
bl +a)" —ie (6.4.3)
K
x [2 (0k (o + @) + 08 (o + ) = 0P pi - (01 + )
The soft graviton theorem is the leading term in g-expansion:
n A B
K PP

’Q{’ﬂ-i-l(q’pl"“ 7p'ﬂ):§ L kdn(plv 7pn)7 (6'4-4)

= pr-q

where ¢ — 0. While we reviewed the derivation here for a massless scalar, note that the pre-factor
in square brackets is a universal soft factor and does not depend on the spin of the matter particles.
Moreover the expression is actually gauge invariant. Under a gauge transformation de ap = qaAp+

qBA A one finds

Seapdih = kA? ZpkAszfn =0 (6.4.5)
k=1

by momentum conservation. Hence (6.4.4) is valid in any gauge.

6.5 FROM MOMENTUM TO ASYMPTOTIC POSITION SPACE

The supertranslation Ward identity (6.3.6) is expressed in terms of field operator P, integrated along
fixed-angle null generators of .. Weinberg’s soft graviton theorem (6.4.3) is expressed in terms of
momentum eigenmodes of the field operators. In this section, in order to compare the two, we
transform the field operator between these two bases.

We start with the mode expansion for the graviton field, h 4 g,

han(e Z;E/ 27)3 2w, J)s@*ah,a(q”)eiq'w + 8%(@“2,(1(@)67”“ , (6.5.1)
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where ¢ = wq = |q], @ = = are the two helicities and
[ah,a(q% a;fz,ﬁ(i,) = 5aﬂ(2“’q)(27r)353 (@7_ (7,) (6:5.2)

The outgoing gravitons with momentum ¢ and polarization « as in the amplitude (6.4.3) corre-

spond to final-state insertions of aj, o (§). In retarded Bondi coordinates, it follows from (6.2.1) that

on.Zt

1
C..(u,2,Z) =k lim —h,,(r,u,z,%). (6:53)

r—00 T

Taking the large r expansion as in §2.5, we find

1K e AN —iWwglU ~ WU
sz - - 1672 (Ej)2/0 dwq |:ah,+(wqy)e = ah,*(wqy)Te o (6'5'4)
where we have E(Aig (q) = 51(41) (q)sg) (q) where sili) (q) is given by (2.5.14).
Defining
NY.(z,%z) = / due™"9,C,., (65.5)

and using (6.5.4), we find

w = K > ~ ~
N (2,7) = _&r(Ej)Q/O dwqwy [ah,+(wqy)5(wq —w)+ ah7_(qu)T5(wq + W)] .
(6.5.6)
Whenw > 0 (w < 0), only the first (second) term contributes and we find

N2(2,%) = o (B an 4. (@)

8T (6:57)
—w =\ _ Rw 2 ~
sz (Z,Z) - _87(E;r) ah7_(wy) )
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where we have taken w > 0. In the case of the zero mode, we will define it in a hermitian way

-1 _
N = wgn8+ 5(1\[;; + N_9). (6.5.8)
It follows that
_ K . X X
N, (2,%) = —E(Ejfwlg& [wah,+(wy) +wal (Wy)T] : (6:5.9)

A parallel construction is possible on .# ~. Defining

o0
MZ.(2,%) :/ dve™’ 0, D, (6.5.10)
—o0
we find forw > 0
— RW N
Mz, (2,%) = _87(Ez )2ah’+(wy) )
(6.5.11)
s Kw .
MZZM(Z,Z) = —g(E;)Q(I;L (wy) )
Atw =0,
—_ /€ . A A~
MY,(,2) = — e (E)? lim |wap () +wal,_(w3)] . (6512)

From (6.5.5) and (6.5.10) we have also

N? (z,Z) = D?N,

(6.5.13)
M? (z,Z) = D> M.
Defining
O.. = N2 (2,2) + MY (2,%Z) = DN + D?M, (6.5.14)
the soft graviton current (6.3.7) can be written
1 I e 1
P=5G <VZ‘£ - UZ’JF) =P O (6.515)
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6.6 SOFT GRAVITON THEOREM AS A WARD IDENTITY

Equations (6.5.12)-(6.5.15) express the soft graviton current P, in terms of standard momentum
space creation and annihilation operators. Amplitudes involving the latter are given by Weinberg’s
soft graviton theorem. In this section we simply plug this in and reproduce the supertranslation
Ward identities.

We consider an S-matrix element of n outgoing particles denoted by <7, = (out|S|in ). We
now consider the S-matrix element (out| : O,,S : |in) with a time ordered insertion. Using

(6.5.12) and (6.5.14), this can be written as

. K(ED)? el i .
(out|:O0..S : |in) = ——— lim w |(out|ay 1 (wy)S|in) + (out|Sa; _(wy)] 1n>} .
16w w—0 ’ ’

(6.6.1)

Here, we have used the fact that a}; _(wy) (ap,+ (wy)) annihilates the out (in) state forw — 0.7

The first term is the S-matrix element with a single outgoing positive helicity soft graviton with spa-
tial momentum wy, while the second term is the S-matrix element with a single incoming negative

helicity soft graviton also with spatial momentum wg. The two amplitudes are equal, and we get

(out|:0,,S:]in) = —8£(E+)2 Iimow(out\ah7+(ng)8]in> . (6.6.2)
s

z
w—

The soft graviton theorem (6.4.4) with a positive helicity outgoing graviton reads

im ~ w [P - €+(q)ﬁ(

1
w—0 =1 Pr - q

out|S]in) . (6.6.3)

| =

lim w(outlay 4 (2)S]in) =

7This holds even if for example the initial state contains soft gravitons because of the factor of w in (6.5.2).
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Parameterizing the momenta p; in terms of (wj, i, Z;) and ¢ in terms of (w, 2, Z), we find

8G & Wk (5 — gk)

(out|: 0,,S: |in) = M(out|5!in>; G (Lt )

Now, using (6.5.15), we can relate the insertion of P, to that of O...

1 -
(out|: P,S: |in) = E’YZZOE<OUt|1 0,.S: |in)

_ <out15\in>zz°jk2k + (out|Slin) Y K

1+ 2.2
k=1 = L ARk

The very last square bracket vanishes due to total momentum conservation. We then have

n

(out|: P,S: |in) :Z k

b
VAR A
k=1 k

(6.6.6)

which reproduces exactly the supertranslation Ward identity (6.3.6) derived in [28]. We can also run

the above argument backwards to show that this supertranslation Ward identity implies Weinberg’s

soft graviton theorem.
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A 2D Stress Tensor for 4D Gravity

In this chapter, we study what is presumably the most interesting aspect of the relationship between
soft theorems and asymptotic symmetries, namely the equivalence of the recently discovered sub-
leading soft-graviton theorem [11] and BMS superrotations, which act as Virasoro transformations

on the asymptotic S2. This chapter is a modified extract of [s].
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7.1 INTRODUCTION

Any quantum scattering amplitude of massless particles in four-dimensional (4D) asymptotically
Minkowskian spacetime can be rewritten as a correlation function on the celestial sphere at null
infinity. Asymptotic one-particle states are represented as operator insertions on the sphere at the
points where they exit or enter the spacetime. The energy and other flavor or quantum numbers
then label distinct operators. The SL(2, C) Lorentz invariance acts as the global conformal group
on the celestial sphere and implies that these correlators lie in SL(2, C) representations.

In this paper we consider the S-matrix for 4D quantum gravity in asymptotically Minkowskian
spacetime. We construct an explicit soft-graviton mode, denoted 7, ., and prove that its insertions
in the tree-level S-matrix (with no other external soft insertions) obey all the Virasoro-Ward identi-
ties of a stress tensor insertion in a CFT3 correlator on the sphere. Our main tool is the subleading
soft-graviton theorem [11, 141-143]. Our construction refines and extends results and conjectures
of [4s, 98-101, 103]. It demonstrates that such quantum gravity scattering amplitudes are in Vira-
soro representations, as are CF T correlators. This extends from gauge theory to gravity earlier work
[1, 2] in which soft-photon and gluon insertions were shown to obey the Ward identities of a Kac-
Moody algebra on the celestial sphere.

The current work has several limitations. We do not consider massive particles, but do expect the
extension to the massive case to be possible along the lines of [31, 132, 134]. Qualitatively important
issues arise - including a possible central term - when there are multiple soft insertions that are not

addressed here. At the one-loop level, corrections to the Ward identity are expected as a consequence
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of corrections to the soft theorem [111, 112, 119]. We have not analyzed their implications. Finally,
although our results imply that certain quantum gravity scattering amplitudes are in Virasoro rep-
resentations, there is no reason to expect that they are the same kinds of unitary representations

appearing in conventional 2D CFTs. We leave the nature of these representations to future work.

7.2 SOFT-GRAVITON LIMITS

In this paper, we consider tree-level scattering amplitudes of massless particles in four dimensions.
(£)

Let fngrfﬁ (g) be an amplitude involving a graviton of momentum ¢ and polarization £, 5 (¢) as

well as m other massless asymptotic states

4 5)(q) = (out; ¢, £[S]in). (7.2.0)

The soft ¢° — 0 limit of this amplitude is governed by the leading [10] and sub-leading [11, 141-143]

soft-graviton theorems'

drfii (q) — [Séi) + Sii) + O(q)} Ay, (7.2.2)

where 47, is the original amplitude without the soft-graviton and

() _ K - pkpk 552 €3} ik 5%;(9)177390 CB
S i E , S = — E e ) 7.2.3)
© 242 pieg ' 24~ pog P (

where K = V327G and Jj, 4 is the angular momentum operator acting on the kth outgoing state.

It is the sum of the orbital angular momentum operator £, 4 g and spin angular momentum Sy, 4 B.

'As shown in [11, 121, 122], tree-level graviton amplitudes are also constrained by a sub-subleading soft-
graviton theorem.
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Explicitly (see [97]),

L ) [p 9 P 9
kAB = —U |PkA7TFR —PkB=—% | »
8pkB (“)pﬁ

SkAB = —iSk {S(Aﬂ (pk)f?g;)(pk) — Sg) (pk)€(f;7)(]9k)} + 8k8(0+) (pr) Leane ™ (pr) -

(7.2.4)

()

£, (p) are polarization vectors that satisty”

eHp)p=0, Hp)Hp)=0, Hp)e®p) =1. (7.25)

Equation (7.2.4) continues to hold for particles of half-integer helicity provided that the little group
phase of the wavefunction is chosen consistently. Gauge invariance of the leading and subleading

soft limits implies momentum and angular momentum conservation respectively,

ijlgdn = Z Tkapn = 0. (7.2..6)

k=1 k=1

To write out the soft factors explicitly, we parameterize the massless momenta and polarization vec-

tors in terms of (wj, 2, Z;). In this parameterization, the soft factors (7.2.3) are given by

S _ _ 4 s wi(z—7Zk)
R I D DY e (e
P LA CENPER o S Gl D N
" 20 ) = (Z—Zk) (1 + 2Zp)
(+):E Z— Zk k I R .
5 2 % z— 2 [2 — Z sz = Oz + ’Sk’QZk] 7
_ - 2h
S£ ) _ K (2 Zlc) [ k —T%_ hy,— 8., + ‘Sk’sz] '
2 — Z—Zk 2 kZk

*Note that (7.2.5) is invariant under €E4i) (q) — €% (Q)Eff) (q), i.e. (7.2.5) only determines the polariza-

tions up to an overall momentum dependent phase. These correspond to the little group transformations.
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Here I'Z, is the connection with respect to the unit round metric v,z = 2(1 + 2%) 2 on the sphere,

Q. = 1I'Z, is the spin connection, and we have defined the operators’

1
hi, = = (sk — WkOw,,) hy =

2 (—sk — WkOuy) - (7.2.8)

N

In this parameterization, equation (7.2.6) takes the form

n n J—
Ay = TR =0
; Zn: 2k — Zk o — 1 — 2z o =0
Wkl-f-Zk?k " kilw’gl-f—zkzk e

k=1

[sz (8zk — ‘Sk’sz) -+ sz (({%k — ’Sk‘ng) + Dzkyzkhk + ngyzkﬁk] Jan = 0,
k=1

(7.2.9)

where Y?(2) = a + bz + c2? is a global conformal Killing vector and D, is the covariant derivative

on the unit sphere.

7.3  MODE EXPANSIONS AND ZERO MODES ON .+

We now define certain zero-modes on .# T and rewrite the leading and subleading soft-graviton
theorem in terms of the zero mode insertions. We recall from (6.5.4) that near .# ", we have the
following mode expansion

1K
1672

Cz=(u,2,z) = — (EZ_)2/0 dwg [ah,— (wqﬁ)e_iwq“ - a};,Jr(qu)) eiwq“] : (7.3.1)

3Single particle momentum eigenstates do not diagonalize the dilation operator hy, + hp. At tree-
level, amplitudes are rational functions of the external momenta and we can formally define Mellin-
transformed primary operators O(m, z,%) = [, dww™ ' O(w, 2, %) with conformal weights
h = (s—l—m) h= f( s+m).
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Let us define (as in (6.5.5),

W= /duei“’“sz, Ng = /dueiw“NZZ. (7.3:2)

zZz

We now define the zero modes

NO = /duNZZ = % lim0 (N% + NZ*)

w—

(7.3.3)
= g (B fim [wan (w) + wan, - ()]
and
N%) = /duuNZZ = —% lim0 O [NZ — N

w—

(7.3.4)

= (B2 Jim (1 + i) [ (@) — ans (@)
along with similar definitions for N,z(7) and V. Z(Z). We note that N%) involves one less factor of w
than N{?, but has the Weinberg pole projected out by the factor of 1 + wd,,. Hence it has nonzero
finite scattering amplitudes.

The insertion of the zero mode (7.3.4) is then given by (7.2.2) and (7.2.7) with

(out | N; S\ in)
(7.35)

. n
(z — 2z) 2h; )
1+ZZ2; e {Z_Zk T2, hy — 0z + |s|, | (out|S|in).

7.4 A 2D STRESS TENSOR

Recall from Chapter 4 that massless scattering amplitudes 7, of any four-dimensional theory may

always be recast as two-dimensional correlation functions of local operators on the asymptotic S 2 at
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null infinity as

Iy = (O1(w1,21,21) - - On(wWn, 2n, Zn) ) - (7.4.1)

The particle created by O, intersects the asymptotic S 2 at the point (2, Z)*. The four-dimensional

Lorentz group SL(2, C) acts as the global conformal group on the asymptotic S? according to®

,  az+b

z—= 2z = , ad —bc=1. (7.4.2)
cz+d

This implies that all Minkowskian QFT4 amplitudes are in representations of the same global con-
formal group as Euclidean CFT3 correlators. In this section we will see that (hard) quantum grav-
ity amplitudes are in representations of the full CFT Virasoro group. Indeed it has already been
shown that the leading soft-photon and graviton theorems are the Ward identities of abelian Kac-
Moody current algebras acting on the asymptotic S? [1, 4,27, 28]. A similar Kac-Moody structure
for non-abelian gauge theory scattering amplitudes was studied in [105]. The leading soft-gluon
theorem in a non-abelian gauge theory with gauge group G was shown in [2] to be equivalent to
the Ward identity of a G Kac-Moody current algebra. In all of these cases, holomorphic Kac-Moody

current insertions were related to positive helicity soft insertions. For instance, the soft-photon Kac-

*#The same is not true for scattering amplitudes involving massive particles since a massive four-
momentum does not localize to a point on .#. However following [31, 132, 134] we expect the analysis of
this paper to have a suitable generalization to the massive case, as the subleading soft theorem [11, 141-143]
remains valid for massive particles.

$This also acts on the energy as

w

O — Dz +d)?, G:1+ —.
2Z
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Moody current is

1
0) _ 2 pt g i t 7 (7.4.3)
g, F,, . E] ul;lmo [war7+(wy) + wa]_-,_(wy)] ,

)
where F\Y is the zero mode of the photon field strength, and az 1 (wg) creates outgoing positive

helicity photons. Insertions of this current take the form

<JZ(’)1~-On>:Z L (O1---0n), (7.4-4)

z—Z
k k

where eQ), is the electric charge of the operator O}, and we have dropped the dependence of the
operators on (wy, 2k, 2k ) for compactness.

In a similar vein, it has been shown [29, 103] that the subleading soft-graviton theorem is the
Ward identity for the superrotations [ 45] which generate an infinite-dimensional Virasoro subgroup
of the extended BMS group®. In the language of 2D correlators, the current corresponding to these
local conformal transformations is the stress tensor. We now turn to an explicit construction of this
operator.

Our starting point is (7.3.5) which has a form reminiscent of a stress tensor Ward identity. To

bring this into the usual form, we define

_ 2 1 2 yw ar(1) 4.
TZZ_&TG/de_waD Ny (7.4.5)
Then (7.3.5) implies
T, o Un ) = - h 2k Qz rUn/y
(Te01 - Op) kl[(Z_Zk)2+Z_Zk bt s (On el | (01 0n)
(7.4.6)

®The sub-subleading soft-graviton theorem has also been recently recast as a symmetry of the S-matrix
(see [144, 145]).
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which is the precise form of the stress tensor correlator in a conformal field theory on a curved back-
ground. This can be brought to the more familiar form by dressing the operators with appropriate
factors of the zweibein (see [146] for a more detailed discussion).

Define the charge

TelY]= ¢ —Y*T,,, (7.4.7)

where Y is alocal CKV obeying 0zY* = 0 with no singularities inside the contour. Insertions of

(7.4.7) take the form

(Te[Y]O1-+- On) =D (Do Y hy + Y (9, — [s1]Q2,)] (O1-+- Oy) - (7.4.8)
kee

Thus, T¢[Y'] generates a local conformal transformation on all operators inside C7.

Now;, consider a contour C that encircles all z;, and a Y'* that is globally defined on the sphere,
ie. Y? = a + bz + cz2. Since we are on a compact S?, insertions of T¢z[Y] can be computed by
either closing the contour towards z = zj, or away from it. No poles are crossed when the contour is

closed away from z = 2z}, and these insertions must vanish. In other words,

D Do Y hy + Y™ (0s = |sk|2)] (O1-+-On) =0, Y?=a+bz+cz, (7.4.9)
k=1

which is the statement of boost/angular momentum conservation (7.2.9).

. . 1
The stress tensor (7.4.5) is non-local on S? in the news tensor zero mode N%). Nevertheless, we

7This operator is closely related to the soft part of the superrotation charge defined in [103]. More pre-
cisely if C is a contour that surrounds all 2y, then

Q% = —%Tc [Y].
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have proven that insertions of T, are local on the S 2. In contrast, the construction of the boundary
stress tensor in AdS/CFT [147, 148] is local in the bulk fields when written in terms of subleading
terms in the metric expansion. Leading and subleading terms in the metric expansion have a gauge-
dependent and generally nonlocal relation on the S? enforced by the Einstein equation. We have
tried but failed to find, by rewriting N%) in terms of subleading metric components, such a local
expression in Bondi gauge®. However it is possible that such a manifestly local expression exists in
some other gauge. On the other hand, the non-locality may indicate that the Virasoro action in 4D
quantum gravity has a different character than that in conventional 2D CFT. We leave this question
unanswered for now.

Obviously an anti-holomorphic stress tensor 7%z could be similarly constructed. However, a
number of yet-unresolved issues arise for multiple soft-current insertions, even in the Maxwell case,
as discussed in [1, 2]. The result of this paper is that insertions of a single 7. generate local confor-

mal transformations when all other insertions are hard.

$The O(r°) term in g, is an obvious suspect.
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Notations and Conventions

Most of the notations that are used in this thesis are described in the text when they are introduced.
For quick reference, we also summarize our notations and conventions here along with some useful

explicit formulae that are extensively used in the calculations.
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A1 CoOORDINATE CONVENTIONS

Cartesian coordinates are denoted y* = (3°, y*, 4%, ¥®). Retarded coordinates (u, r, z, Z) and

advanced coordinates are (v, r, Z, Z) are related to the Cartesian coordinates as

t=u+r=v—r,

1 r(z+2z) _7‘(5—1—%)

)

1+ 2z 1437
g —ir(z—7%) ir(’zv—%)
vy = 1—22 1-3% '
3 r(l—zz)  r(l- %)
YT vz T i s
The unit vector is
(2,7) = (2 4 7, —i(2 — 2), 1 - 22)
yz,z—l_i_zéz Z,—i(z — 2), 2Z) .

We will often use the notation § = (2, Z) and 9, = 3(2k, Zk)-

(2,%) coordinates are related to (Z, Z) by the anti-podal map

IR
I
|

NS
l
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The metric of Minkowski space My in each of these coordinates is

ds? = —(dy°)” + (dy")” + (d?)” + (d?)”,

= —du® — 2dudr + 2rv,zdzdz ,

= —dv? + 2dvdr + 2ryzdzdz,

where

2
S T

The non-vanishing Christoffel symbols are

2r
FZZ = —ng = TMYZE = (1 + ZZ)Z 9
Fiz =
- 2z
5, =770 =
We also introduce four dimension vierbein
oy
A A A
e =dy” = —=—dz*, w’p(e) =0.
V' =g B(e)
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Explicitly

eV =du+dr,

1 z+7Z r(1 —z?) r(1 — 2?)
ol —

= d*’
112z T4z T 1t

i(z — %) ir(1+z2) ir(1+ 22) (418)
2 - - —
— dr — d d
¢ 1422 (1+ 2%)? z+(1+22)2 .
1—2z 2rz 2rz
3 _
= dr — dz — ——dz.
T 1y (1+2z)2 : (1+22)2 :
We also define the zweibein on S2,
2 2
T = dz E = z (A.19)
142z 1422
for which
QFL(F) = +1 (T2,dz —TZ%dz) = F GRS (A.L10)
2\ 2 7% 142z 142z
A2 SrINOR CONVENTIONS
The four-dimensional sigma matrices are taken to be
(0M)as = (Fl2x2,8) , (@)Y = (~1axe,—0) . (A2.)
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where & are the Pauli matrices,

01:(?é>7 02:<? OZ>> 03:<é _01> (A.Z.Z)

Indices are raised and lowered using

We note the following properties

(04), (@)% = 25267,
(0%) 0a (04) g5 = —2€ape3

(EA)C'YCY (EA)BfB = —2e2BeB

‘ (A2.4)
(0%) s (79)" = —275.
(0455 + oP) P = 2858
cape’’ = 000% — 6755
We also define
1 - - - 1, _ A
OAB = Z(UAO'B—UBO'A) , OARB EZ<O'AJB—O'BO'A). (A.2.s)
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We note following property that we use often

1

TABTC = 0[aB0C) + 5 (NCATE —1IcBT4)

_ _ 1
OCTAB = 0[cTaB) ~ 5 (ncacs —ncpoa),

(A.2.6)
1
oABOC = 0[AROC) + 5 (lcATB — NCBOA)
_ _ 1 _ _
TCOAB = T(00aB) — 5 (NCATE —1ICBTA)

Any two-component spinor can be expanded in a basis of two spinors. It is convenient to choose

+) _ 1 1 ) _ 1 1)
§O‘+_\/1—i—zz<z)’ L _\/1+zz(z ’ (A27)
- (D). @ ()
@ 14+2z\z )’ a 14+2z\ 2z )~

These basis spinors are also useful in describing the o-matrices in retarded coordinates

the basis spinors

(0") 05 = 265757,
(07)ap = ESPES) — €0e(H
(A.2.8)
z 2 z
(0%) 05 = S E5EEPESD

= 2 = (=
(07)ap = - EZE0ES.

Similar formulas may be obtained for o#.
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The Lorentz generators can be expressed as outer products as

1 - .
(0")as = —5 [€57657 + €06l

uz 2 z +
(0" )ap = —;E+§&+)§f3 ) )

rz 1 z +
(07 )ap = ~ELEEST

rZ 1 Z ¢(— -
(U )aﬁ = ;Efgé )gé’ ) ;

Similar formulas may be obtained for 7, since 5 = — (o)1,

The Lie derivative of a spinor w.r.t. a vector ¢* is given by

1
LV, =V, — §(VuKy)(aﬂ)aﬁxpﬁ ,
= —a 1 SR —
LV =MV, — i(VMKV)(a“)O‘B\IJ .
A3 NurLL MOMENTA
In this note, null momenta are parameterized as
Prle —2 (1422247 —i(z—2),1 — 23) .
1+ 22 ’ ’ ’
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(0%)ap = — 5 ELEZ [00¢l7 +€00ef]
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The Lorentz invariant d-function in momentum space is then written as

2p")8*(p—p’) = %’yzgé(w — W (z - 7). (Asz.2)

Null momenta satisfy

pa(0™) 5 = 1a(P)74(P) (A33)

where

A.4 ONE-PARTICLE STATE NORMALIZATION

Here, we use the notation that the annihilation operator that appears in a field f(y) is denoted
ay,s(q") where s is the helicity of the particle that it annihilates. For the scalar field, s = 0and we
drop this label. These operators may carry additional labels (such as Lie algebra indices) which we

have dropped here. The creation and annihilation operators satisfy

[af,s (q), a},’sl (q‘/) } — (277)3(2wq)6f7f’55»8’53(cf— (f/) . (A.4.1)
where [, } isa commutator if the operators are bosonic and an anti-commutator if they are fermionic.
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One-particle states are defined as

which satisfy

(@ Frs|T' [ ") = (2m)(2wq) 87, 105,06° (T~ T') - (A.43)

In this convention, the S-matrix amplitude .27, is taken to be

= (0layg s (p1) - ayg,.s, (Pn)S]0). (A.4.4)

where we use the convention that all particles are outgoing and that the sign of the energy p? de-
termines whether the particle is actually ingoing or outgoing. We will often denote ay, 5, (p1) —

O;(wi, 2, Z;) and hence we write

G = (O1(w1, 21,21) - - On(Wn, 2, Zn) ) - (A.4.5)

147



[1]

(2]

(3]

(4]

References

T. He, P. Mitra, A. P. Porfyriadis, and A. Strominger, “New Symmetries of Massless QED,”
JHEP 10 (2014) 112, arXiv:1407.3789 [hep-th].

T. He, P. Mitra, and A. Strominger, “2D Kac-Moody Symmetry of 4D Yang-Mills Theory,”
JHEP 10 (2016) 137, arXiv:1503.02663 [hep-th].

T. T. Dumitrescu, T. He, P. Mitra, and A. Strominger, “Infinite-Dimensional Fermionic

Symmetry in Supersymmetric Gauge Theories,” arXiv:1511.07429 [hep-th].

T. He, V. Lysov, P. Mitra, and A. Strominger, “BMS supertranslations and Weinberg’s soft
graviton theorem,” /HEP o5 (2015) 151, arXiv:1401.7026 [hep-th].

D. Kapec, P. Mitra, A.-M. Raclariu, and A. Strominger, “A 2D Stress Tensor for 4D Gravity,”
arXiv:1609.00282 [hep-th].

F. Bloch and A. Nordsieck, “Note on the Radiation Field of the electron,” Phys. Rev. 52
(1937) 54-59-

F. E. Low, “Scattering of light of very low frequency by systems of spin 1/2,” Phys. Rev. 96
(1954) 1428-1432.

F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle collisions,”

Phys. Rev. 110 (1958) 974-977.

D. R. Yennie, S. C. Frautschi, and H. Suura, “The infrared divergence phenomena and

high-energy processes,” Annals Phys. 13 (1961) 379—452.
S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) Bs16-Bs24.

F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,”

arXiv:1404.4091 [hep-th].

T. Kinoshita, “Mass singularities of Feynman amplitudes,” /. Math. Phys. 3 (1962) 650-677.

148


http://dx.doi.org/10.1007/JHEP10(2014)112
http://arxiv.org/abs/1407.3789
http://dx.doi.org/10.1007/JHEP10(2016)137
http://arxiv.org/abs/1503.02663
http://arxiv.org/abs/1511.07429
http://dx.doi.org/10.1007/JHEP05(2015)151
http://arxiv.org/abs/1401.7026
http://arxiv.org/abs/1609.00282
http://dx.doi.org/10.1103/PhysRev.52.54
http://dx.doi.org/10.1103/PhysRev.52.54
http://dx.doi.org/10.1103/PhysRev.96.1428
http://dx.doi.org/10.1103/PhysRev.96.1428
http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1103/PhysRev.140.B516
http://arxiv.org/abs/1404.4091
http://dx.doi.org/10.1063/1.1724268

(13]

[14]

T. D. Lee and M. Nauenberg, “Degenerate Systems and Mass Singularities,” Phys. Rev. 133
(1964) Bis49-Bis62. [,25(1964)].

H. Bondi, M. G.]. van der Burg, and A. W. K. Metzner, “Gravitational waves in general
relativity. 7. Waves from axisymmetric isolated systems,” Proc. Roy. Soc. Lond. A269 (1962.)

21-52.

R. K. Sachs, “Gravitational waves in general relativity. 8. Waves in asymptotically flat

space-times,” Proc. Roy. Soc. Lond. A270 (1962) 103-126.

P. J. McCarthy, “Representations of the bondi-metzner-sachs group. i. determination of the
representations,” Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 330 no. 1583, (1972) s17-535.

P.]. McCarthy and M. Crampin, “Representations of the bondi-metzner-sachs group. iii.
poincare spin multiplicities and irreducibility,” Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences 335 no. 1602, (1973) 301-311.

P. J. McCarthy, “Representations of the bondi-metzner-sachs group. ii. properties and
classification of the representations,” Proceedings of the Royal Sociery of London A:
Mathematical, Physical and Engineering Sciences 333 no. 1594, (1973) 317—336.

M. Crampin and P. J. McCarthy, “Representations of the bondi-metzner-sachs group. iv.
cantoni representations are induced,” Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences 351 no. 1664, (1976) 55—70.

A. Ashtekar and R. O. Hansen, “A unified treatment of null and spatial infinity in general
relativity. I - Universal structure, asymptotic symmetries, and conserved quantities at spatial
infinity,” J. Math. Phys. 19 (1978) 1542-1566.

V. P. Frolov, “Null Surface Quantization and Quantum Field Theory in Asymptotically Flat
Space-Time,” Fortsch.Phys. 26 (1978) 4ss.

P. J. McCarthy, “Lifting of projective representations of the bondi-metzner-sachs group,”
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 358 no. 1693, (1978) 141-171.

P.J. McCarthy, “Hyperfunctions and asymptotic symmetries,” Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 358 no. 169s, (1978)

495—498.

149


http://dx.doi.org/10.1103/PhysRev.133.B1549
http://dx.doi.org/10.1103/PhysRev.133.B1549
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://dx.doi.org/10.1098/rspa.1972.0157
http://dx.doi.org/10.1098/rspa.1972.0157
http://dx.doi.org/10.1098/rspa.1973.0127
http://dx.doi.org/10.1098/rspa.1973.0127
http://dx.doi.org/10.1098/rspa.1973.0065
http://dx.doi.org/10.1098/rspa.1973.0065
http://dx.doi.org/10.1098/rspa.1976.0129
http://dx.doi.org/10.1098/rspa.1976.0129
http://dx.doi.org/10.1063/1.523863
http://dx.doi.org/10.1002/prop.19780260902
http://dx.doi.org/10.1098/rspa.1978.0003
http://dx.doi.org/10.1098/rspa.1978.0003
http://dx.doi.org/10.1098/rspa.1978.0023
http://dx.doi.org/10.1098/rspa.1978.0023
http://dx.doi.org/10.1098/rspa.1978.0023

[24]

(35]

(36]

A. Ashtekar and T. Dray, “On the Existence of Solutions to Einstein’s Equation With
Nonzero Bondi News,” Commun. Math. Phys. 79 (1981) 581-589.

A. Ashtekar and M. Streubel, “Symplectic Geometry of Radiative Modes and Conserved
Quantities at Null Infinity,” Proc. Roy. Soc. Lond. A376 (1981) s85-607.

A. Ashtekar, “Radiative Degrees of Freedom of the Gravitational Field in Exact General
Relativity,” /. Math. Phys. 22 (1981) 2885-2895.

A. Strominger, “On BMS Invariance of Gravitational Scattering,” /HEP 07 (2014) 152,
arXiv:1312.2229 [hep-th].

A. Strominger, “Asymptotic Symmetries of Yang-Mills Theory,” arXiv:1308.0589
[hep-th].

M. Campiglia and A. Laddha, “Asymptotic symmetries and subleading soft graviton
theorem,” Phys. Rev. Dgo no. 12, (2014) 124028, arXiv:1408.2228 [hep-th].

D. Kapec, V. Lysov, and A. Strominger, “Asymptotic Symmetries of Massless QED in Even
Dimensions,” arXiv:1412.2763 [hep-th].

D. Kapec, M. Pate, and A. Strominger, “New Symmetries of QED,” arXiv:1506.02906
[hep-th].

G. Barnich and C. Troessaert, “Comments on holographic current algebras and
asymptotically flat four dimensional spacetimes at null infinity,” /HEP 11 (2013) 003,
arXiv:1309.0794 [hep-th].

G. Barnich and P.-H. Lambert, “Einstein-Yang-Mills theory: Asymptotic symmetries,” Phys.
Rev. D88 (2013) 103006, arXiv:1310.2698 [hep-th].

D. Grumiller, M. Leston, and D. Vassilevich, “Anti-de Sitter holography for gravity and
higher spin theories in two dimensions,” Phys. Rev. D89 no. 4, (2014) 044001,
arXiv:1311.7413 [hep-th].

A. Mohd, “A note on asymptotic symmetries and soft-photon theorem,” /HEP 02 (2015)
060, arXiv:1412.5365 [hep-th].

C. Cardona, “Asymptotic Symmetries of Yang-Mills with Theta Term and Monopoles,”
arXiv:1504.05542 [hep-th].


http://dx.doi.org/10.1007/BF01209313
http://dx.doi.org/10.1098/rspa.1981.0109
http://dx.doi.org/10.1063/1.525169
http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229
http://arxiv.org/abs/1308.0589
http://arxiv.org/abs/1308.0589
http://dx.doi.org/10.1103/PhysRevD.90.124028
http://arxiv.org/abs/1408.2228
http://arxiv.org/abs/1412.2763
http://arxiv.org/abs/1506.02906
http://arxiv.org/abs/1506.02906
http://dx.doi.org/10.1007/JHEP11(2013)003
http://arxiv.org/abs/1309.0794
http://dx.doi.org/10.1103/PhysRevD.88.103006
http://dx.doi.org/10.1103/PhysRevD.88.103006
http://arxiv.org/abs/1310.2698
http://dx.doi.org/10.1103/PhysRevD.89.044001
http://arxiv.org/abs/1311.7413
http://dx.doi.org/10.1007/JHEP02(2015)060
http://dx.doi.org/10.1007/JHEP02(2015)060
http://arxiv.org/abs/1412.5365
http://arxiv.org/abs/1504.05542

(37]

(38]

(39]

[40]

[42]

T. Adamo and E. Casali, “Perturbative gauge theory at null infinity,” Phys. Rev. Dot no. 12,
(2015) 125022, arXiv:1504.02304 [hep-th].

A. Seraj, “Multipole charge conservation and implications on electromagnetic radiation,”

arXiv:1610.02870 [hep-th].

B. Gabai and A. Sever, “Large gauge symmetries and asymptotic states in QED,” JHEP 12
(2016) 095, arXiv:1607.08599 [hep-th].

E. Noether, “Invariante variationsprobleme,” Nachrichten von der Gesellschaft der
Wissenschaften zu Gottingen, Mathematisch-Physikalische Klasse 1918 (1918) 235-257.
http://eudml.org/doc/59024.

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories,
string theory and gravity,” Phys. Rept. 323 (2000) 183-386, arXiv:hep-th/9905111
[hep-th].

J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” /nz.
J. Theor. Phys. 38 (1999) 1113-1133, arXiv:hep-th/9711200 [hep-th]. [Adv. Theor.
Math. Phys.2,231(1998)].

A. Bagchi and R. Fareghbal, “BMS/GCA Redux: Towards Flatspace Holography from
Non-Relativistic Symmetries,” /HEP 10 (2012) 092, arXiv:1203.5795 [hep-th].

T. Andrade and D. Marolf, “Asymptotic Symmetries from finite boxes,” Class. Quant. Grav.
33 no. 1, (2016) 015013, arXiv:1508.02515 [gr-qc].

G. Barnich and C. Troessaert, “Supertranslations call for superrotations,” PoS (2010) o10,

arXiv:1102.4632 [gr-qc]. [Ann. U. Craiova Phys.21,S11(2011)].

C. Boucher-Veronneau and A. J. Larkoski, “Constructing Amplitudes from Their Soft
Limits,” JHEP o9 (2011) 130, arXiv:1108.5385 [hep-th].

S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys. Rev. Lett.
116 no. 23, (2016) 231301, arXiv:1601.00921 [hep-th].

S. W. Hawking, M. J. Perry, and A. Strominger, “Superrotation Charge and Supertranslation
Hair on Black Holes,” arXiv:1611.09175 [hep-th].

151


http://dx.doi.org/10.1103/PhysRevD.91.125022
http://dx.doi.org/10.1103/PhysRevD.91.125022
http://arxiv.org/abs/1504.02304
http://arxiv.org/abs/1610.02870
http://dx.doi.org/10.1007/JHEP12(2016)095
http://dx.doi.org/10.1007/JHEP12(2016)095
http://arxiv.org/abs/1607.08599
http://eudml.org/doc/59024
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1007/JHEP10(2012)092
http://arxiv.org/abs/1203.5795
http://dx.doi.org/10.1088/0264-9381/33/1/015013
http://dx.doi.org/10.1088/0264-9381/33/1/015013
http://arxiv.org/abs/1508.02515
http://arxiv.org/abs/1102.4632
http://dx.doi.org/10.1007/JHEP09(2011)130
http://arxiv.org/abs/1108.5385
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://arxiv.org/abs/1601.00921
http://arxiv.org/abs/1611.09175

[49]

[s0]

[51]

[60]

[61]

S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D14
(1976) 2460-2473.

A. Averin, G. Dvali, C. Gomez, and D. Lust, “Gravitational Black Hole Hair from Event
Horizon Supertranslations,” /HEP 06 (2016) 088, arXiv:1601.03725 [hep-th].

M. Blau and M. O’Loughlin, “Horizon Shells and BMS-like Soldering Transformations,”
JHEP 03 (2016) 029, arXiv:1512.02858 [hep-th].

R.-G. Cai, S.-M. Ruan, and Y.-L. Zhang, “Horizon supertranslation and degenerate black
hole solutions,” JHEP 09 (2016) 163, arXiv:1609.01056 [gr-qc].

S. Carlip, “Black Hole Entropy from BMS Symmetry at the Horizon,” arXiv:1702.04439
[gr-qcl].

L. Donnay, G. Giribet, H. A. Gonzalez, and M. Pino, “Supertranslations and Superrotations
at the Black Hole Horizon,” Phys. Rev. Lett. 116 no. 9, (2016) 09101, arXiv:1511.08687
[hep-th].

L. Donnay, G. Giribet, H. A. Gonzélez, and M. Pino, “Extended Symmetries at the Black
Hole Horizon,” JHEP 09 (2016) 100, arXiv:1607.05703 [hep-th].

C. Eling and Y. Oz, “On the Membrane Paradigm and Spontaneous Breaking of Horizon
BMS Symmetries,” JHEP 07 (2016) 065, arXiv:1605.00183 [hep-th].

M. Hotta, J. Trevison, and K. Yamaguchi, “Gravitational Memory Charges of
Supertranslation and Superrotation on Rindler Horizons,” Phys. Rev. D94 no. 8, (2016)

083001, arXiv:1606.02443 [gr—-qc].

S. Hou, “Asymptotic Symmetries of the Null Infinity and the Isolated Horizon,”
arXiv:1704.05701 [gr-qc].

P. Mao, X. Wu, and H. Zhang, “Soft hairs on isolated horizon implanted by electromagnetic
fields,” Class. Quant. Grav. 34 no. s, (2017) 055003, arXiv:1606.03226 [hep-th].

R. F. Penna, “Horizon symmetries as fluid symmetries,” arXiv:1703.07382 [hep-th].

C. Shi and J. Mei, “Extended Symmetries at Black Hole Horizons in Generic Dimensions,”
arXiv:1611.09491 [gr-qc].

152


http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1007/JHEP06(2016)088
http://arxiv.org/abs/1601.03725
http://dx.doi.org/10.1007/JHEP03(2016)029
http://arxiv.org/abs/1512.02858
http://dx.doi.org/10.1007/JHEP09(2016)163
http://arxiv.org/abs/1609.01056
http://arxiv.org/abs/1702.04439
http://arxiv.org/abs/1702.04439
http://dx.doi.org/10.1103/PhysRevLett.116.091101
http://arxiv.org/abs/1511.08687
http://arxiv.org/abs/1511.08687
http://dx.doi.org/10.1007/JHEP09(2016)100
http://arxiv.org/abs/1607.05703
http://dx.doi.org/10.1007/JHEP07(2016)065
http://arxiv.org/abs/1605.00183
http://dx.doi.org/10.1103/PhysRevD.94.083001
http://dx.doi.org/10.1103/PhysRevD.94.083001
http://arxiv.org/abs/1606.02443
http://arxiv.org/abs/1704.05701
http://dx.doi.org/10.1088/1361-6382/aa59da
http://arxiv.org/abs/1606.03226
http://arxiv.org/abs/1703.07382
http://arxiv.org/abs/1611.09491

[62] A. Averin, G. Dvali, C. Gomez, and D. Lust, “Goldstone origin of black hole hair from
supertranslations and criticality,” AMod. Phys. Lett. A31no. 39, (2016) 1630045,
arXiv:1606.06260 [hep-th].

[63] S.G. Avery and B. U. W. Schwab, “Soft Black Hole Absorption Rates as Conservation Laws,”
JHEP 04 (2017) 053, arXiv:1609.04397 [hep-th].

[64] G.Compere, “Bulk supertranslation memories: a concept reshaping the vacua and black
holes of general relativity,” Inz. . Mod. Phys. D2s no. 12, (2016) 1644006,
arXiv:1606.00377 [hep-th].

[65] S.W.Hawking, “The Information Paradox for Black Holes,” 2015. arXiv:1509.01147
[hep-th].
https://inspirehep.net/record/1391640/files/arXiv:1509.01147.pdf.

[66] A.Strominger and A. Zhiboedov, “Superrotations and Black Hole Pair Creation,” Class.
Quant. Grav. 34 no. 6, (2017) 064002, arXiv:1610.00639 [hep-th].

[67] Y.B.Zeldovich and A. G. Polnarev, “Radiation of gravitational waves by a cluster of

superdense stars,” Sovier Astronomy 18 (1974) 17.

[68] V.B. Braginsky and L. P. Grishchuk, “Kinematic Resonance and Memory Effect in Free Mass
Gravitational Antennas,” Sov. Phys. JETP 62.(198s) 427—430. [Zh. Eksp. Teor.

Fiz.89,744(198s)].

[69] D. Christodoulou, “Nonlinear nature of gravitation and gravitational wave experiments,”

Phys. Rev. Lett. 67 (1991) 1486-1489.

[70] A.G. Wiseman and C. M. Will, “Christodoulou’s nonlinear gravitational wave memory:

Evaluation in the quadrupole approximation,” Phys. Rev. D44 no. 10, (1991) R2945-R2949.

[71] K.S.Thorne, “Gravitational-wave bursts with memory: The Christodoulou eftect,” Phys.

Rev. D45 no. 2, (1992) 520-524.

[72] A.Strominger and A. Zhiboedov, “Gravitational Memory, BMS Supertranslations and Soft
Theorems,” JHEP o1 (2016) 086, arXiv:1411.5745 [hep-th].

[73] S. Pasterski, “Asymptotic Symmetries and Electromagnetic Memory,” arXiv:1505.00716
[hep-th].

153


http://dx.doi.org/10.1142/S0217732316300457
http://arxiv.org/abs/1606.06260
http://dx.doi.org/10.1007/JHEP04(2017)053
http://arxiv.org/abs/1609.04397
http://dx.doi.org/10.1142/S0218271816440065
http://arxiv.org/abs/1606.00377
http://arxiv.org/abs/1509.01147
http://arxiv.org/abs/1509.01147
https://inspirehep.net/record/1391640/files/arXiv:1509.01147.pdf
http://dx.doi.org/10.1088/1361-6382/aa5b5f
http://dx.doi.org/10.1088/1361-6382/aa5b5f
http://arxiv.org/abs/1610.00639
http://dx.doi.org/10.1103/PhysRevLett.67.1486
http://dx.doi.org/10.1103/PhysRevD.44.R2945
http://dx.doi.org/10.1103/PhysRevD.45.520
http://dx.doi.org/10.1103/PhysRevD.45.520
http://dx.doi.org/10.1007/JHEP01(2016)086
http://arxiv.org/abs/1411.5745
http://arxiv.org/abs/1505.00716
http://arxiv.org/abs/1505.00716

[74]

[75]

(76]

[77]

[78]

[79]

(80]

[83]

(84]

(86]

L. Susskind, “Electromagnetic Memory,” arXiv:1507.02584 [hep-th].

L. Bieri, D. Garfinkle, and S.-T. Yau, “Gravitational wave memory in de Sitter spacetime,”

Phys. Rev. D94 no. 6, (2016) 064040, arXiv:1509.01296 [gr-qc].

G. Compere and J. Long, “Classical static final state of collapse with supertranslation

memory,” Class. Quant. Grav. 33 no. 19, (2016) 195001, arXiv:1602.05197 [gr-qc].

L. De Vittori, A. Gopakumar, A. Gupta, and P. Jetzer, “Memory eftect from spinning
unbound binaries,” Astrophys. Space Sci. Proc. 40 (2015) 259-266, arXiv:1410.6605
[gr-qcl.

S. M. Du and A. Nishizawa, “Gravitational Wave Memory: A New Approach to Study
Modified Gravity,” Phys. Rev. D94 no. 10, (2016) 104063, arXiv:1609.09825 [gr-qc].

C. Gomez and R. Letschka, “Memory and the Infrared,” arXiv:1704.03395 [hep-th].

S. Hollands, A. Ishibashi, and R. M. Wald, “BMS Supertranslations and Memory in Four
and Higher Dimensions,” arXiv:1612.03290 [gr-qc].

D. A. Nichols, “Spin memory effect for compact binaries in the post-Newtonian

approximation,” Phys. Rev. Dos (2017) 084048, arXiv:1702.03300 [gr-qc].

S. Pasterski, A. Strominger, and A. Zhiboedov, “New Gravitational Memories,” /HEP 12
(2016) 053, arXiv:1502.06120 [hep-th].

P. Mao, H. Ouyang, J.-B. Wu, and X. Wu, “New electromagnetic memories and soft photon
theorems,” arXiv:1703.06588 [hep-th].

P. M. Zhang, C. Duval, G. W. Gibbons, and P. A. Horvathy, “The Memory Effect for Plane
Gravitational Waves,” arXiv:1704.05997 [gr-qc].

R. M. Wald and A. Zoupas, “A General definition of ‘conserved quantities’ in general
relativity and other theories of gravity,” Phys. Rev. D61 (2000) 084027,
arXiv:gr-qc/9911095 [gr-qc].

A. Strominger, “Magnetic Corrections to the Soft Photon Theorem,” Phys. Rev. Lett. 116
no. 3, (2016) 031602, arXiv:1509.00543 [hep-th].

[87] J. Wess and J. Bagger, Supersymmetry and supergravity. 1992.

154


http://arxiv.org/abs/1507.02584
http://dx.doi.org/10.1103/PhysRevD.94.064040
http://arxiv.org/abs/1509.01296
http://dx.doi.org/10.1088/0264-9381/33/19/195001
http://arxiv.org/abs/1602.05197
http://dx.doi.org/10.1007/978-3-319-10488-1_22
http://arxiv.org/abs/1410.6605
http://arxiv.org/abs/1410.6605
http://dx.doi.org/10.1103/PhysRevD.94.104063
http://arxiv.org/abs/1609.09825
http://arxiv.org/abs/1704.03395
http://arxiv.org/abs/1612.03290
http://dx.doi.org/10.1103/PhysRevD.95.084048
http://arxiv.org/abs/1702.03300
http://dx.doi.org/10.1007/JHEP12(2016)053
http://dx.doi.org/10.1007/JHEP12(2016)053
http://arxiv.org/abs/1502.06120
http://arxiv.org/abs/1703.06588
http://arxiv.org/abs/1704.05997
http://dx.doi.org/10.1103/PhysRevD.61.084027
http://arxiv.org/abs/gr-qc/9911095
http://dx.doi.org/10.1103/PhysRevLett.116.031602
http://dx.doi.org/10.1103/PhysRevLett.116.031602
http://arxiv.org/abs/1509.00543

(88] J. Grammer, G. and D. Yennie, “Improved treatment for the infrared divergence problem in

quantum electrodynamics,” Phys. Rev. D8 (1973) 4332—4344.

[89] J. Maldacena and A. Zhiboedov, “Notes on soft factors,” Unpublished and Private

Communication (2012) .

C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, “An Effective field theory for collinear
and soft gluons: Heavy to light decays,” Phys. Rev. D63 (2001) 114020,
arXiv:hep-ph/0011336 [hep-ph].

L. Feige and M. D. Schwartz, “Hard-Soft-Collinear Factorization to All Orders,”
arXiv:1403.6472 [hep-ph].

P. Kulish and L. Faddeev, “Asymptotic conditions and infrared divergences in quantum

electrodynamics,” Theor.Math.Phys. 4 (1970) 74s.

[93] J. Ware, R. Saotome, and R. Akhoury, “Construction of an asymptotic S matrix for

[94]

[95]

[96]

[97]

(98]

perturbative quantum gravity,” /HEP 1310 (2013) 159, arXiv:1308.6285 [hep-th].

A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,”
arXiv:1703.05448 [hep-th].

S. Caron-Huot, “When does the gluon reggeize?,” arXiv:1309.6521 [hep-th].

V. Lysov, S. Pasterski, and A. Strominger, “Low’s Subleading Soft Theorem as a Symmetry of
QED,” Phys. Rev. Lett. 113 no. 11, (2014) 111601, arXiv:1407.3814 [hep-th].

S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press,

2005.

T. Banks, “A Critique of pure string theory: Heterodox opinions of diverse dimensions,”
arXiv:hep-th/0306074 [hep-th].

[99] J.deBoer and S. N. Solodukhin, “A Holographic reduction of Minkowski space-time,” Nucl.

[100]

[101]

Phys. B665 (2003) 545-593, arXiv:hep-th/0303006 [hep-th].

G. Barnich and C. Troessaert, “Symmetries of asymptotically flat 4 dimensional spacetimes at

null infinity revisited,” Phys. Rev. Lert. 105 (2010) 111103, arXiv:0909.2617 [gr-qc].

G. Barnich and C. Troessaert, “Aspects of the BMS/CFT correspondence,” /HEP o5 (2010)
062,arXiv:1001.1541 [hep-th].

155


http://dx.doi.org/10.1103/PhysRevD.8.4332
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://arxiv.org/abs/hep-ph/0011336
http://arxiv.org/abs/1403.6472
http://dx.doi.org/10.1007/BF01066485
http://dx.doi.org/10.1007/JHEP10(2013)159
http://arxiv.org/abs/1308.6285
http://arxiv.org/abs/1703.05448
http://arxiv.org/abs/1309.6521
http://dx.doi.org/10.1103/PhysRevLett.113.111601
http://arxiv.org/abs/1407.3814
http://arxiv.org/abs/hep-th/0306074
http://dx.doi.org/10.1016/S0550-3213(03)00494-2
http://dx.doi.org/10.1016/S0550-3213(03)00494-2
http://arxiv.org/abs/hep-th/0303006
http://dx.doi.org/10.1103/PhysRevLett.105.111103
http://arxiv.org/abs/0909.2617
http://dx.doi.org/10.1007/JHEP05(2010)062
http://dx.doi.org/10.1007/JHEP05(2010)062
http://arxiv.org/abs/1001.1541

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[10]

(]

[112]

[113]

[114]

(115]

G. Barnich and C. Troessaert, “BMS charge algebra,” JHEP 12 (2011) 105, arXiv:1106.0213
[hep-th].

D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Semiclassical Virasoro symmetry of the

quantum gravity S-matrix,” /HEP 08 (2014) 058, arXiv:1406.3312 [hep-th].

F. A. Berends and W. T. Giele, “Multiple Soft Gluon Radiation in Parton Processes,” NuzcL.
Phys. B313 (1989) 595-633.

V. P. Nair, “A Current Algebra for Some Gauge Theory Amplitudes,” Phys. Lett. B214 (1988)

215—218.

A. Ashtekar, “Asymptotic Quantization of the Gravitational Field,” Phys. Rev. Lett. 46 (1981)
573-576.

A. Ashtekar, “Asymptotic Quantization: Based on 1984 Naples Lectures,”.

F. Cachazo, S. He, and E. Y. Yuan, “Scattering of Massless Particles in Arbitrary Dimensions,”
Phys. Rev. Lett. 113 no. 17, (2014) 171601, arXiv:1307.2199 [hep-th].

E. Casali, “Soft sub-leading divergences in Yang-Mills amplitudes,” arXiv:1404.5551
[hep-th].

B. U. W. Schwab and A. Volovich, “Subleading Soft Theorem in Arbitrary Dimensions from
Scattering Equations,” Phys. Rev. Lett. 113 no. 10, (2014) 101601, arXiv: 1404. 7749
[hep-th].

Z. Bern, S. Davies, and ]. Nohle, “On Loop Corrections to Subleading Soft Behavior of
Gluons and Gravitons,” arXiv:1405.1015 [hep-th].

S. He, Y.-t. Huang, and C. Wen, “Loop Corrections to Soft Theorems in Gauge Theories and
Gravity,” arXiv:1405.1410 [hep-th].

A. ]. Larkoski, “Conformal Invariance of the Subleading Soft Theorem in Gauge Theory,”
arXiv:1405.2346 [hep-th].

A. ]. Larkoski, D. Neill, and I. W. Stewart, “Soft Theorems from Effective Field Theory,”
JHEP 06 (2015) 077, arXiv:1412.3108 [hep-th].

N. Afkhami-Jeddi, “Soft Graviton Theorem in Arbitrary Dimensions,” arXiv:1405.3533
[hep-th].

156


http://dx.doi.org/10.1007/JHEP12(2011)105
http://arxiv.org/abs/1106.0213
http://arxiv.org/abs/1106.0213
http://dx.doi.org/10.1007/JHEP08(2014)058
http://arxiv.org/abs/1406.3312
http://dx.doi.org/10.1016/0550-3213(89)90398-2
http://dx.doi.org/10.1016/0550-3213(89)90398-2
http://dx.doi.org/10.1016/0370-2693(88)91471-2
http://dx.doi.org/10.1016/0370-2693(88)91471-2
http://dx.doi.org/10.1103/PhysRevLett.46.573
http://dx.doi.org/10.1103/PhysRevLett.46.573
http://dx.doi.org/10.1103/PhysRevLett.113.171601
http://arxiv.org/abs/1307.2199
http://arxiv.org/abs/1404.5551
http://arxiv.org/abs/1404.5551
http://dx.doi.org/10.1103/PhysRevLett.113.101601
http://arxiv.org/abs/1404.7749
http://arxiv.org/abs/1404.7749
http://arxiv.org/abs/1405.1015
http://arxiv.org/abs/1405.1410
http://arxiv.org/abs/1405.2346
http://dx.doi.org/10.1007/JHEP06(2015)077
http://arxiv.org/abs/1412.3108
http://arxiv.org/abs/1405.3533
http://arxiv.org/abs/1405.3533

[116] T. Adamo, E. Casali, and D. Skinner, “Perturbative gravity at null infinity,” Class. Quant.
Grav. 31 no. 22, (2014) 225008, arXiv:1405.5122 [hep-th].

[1r7] Y. Geyer, A. E. Lipstein, and L. Mason, “Ambitwistor strings at null infinity and (subleading)
soft limits,” Class. Quant. Grav. 32 no. s, (2015) 055003, arXiv:1406.1462 [hep-th].

[118] B.U. W. Schwab, “Subleading Soft Factor for String Disk Amplitudes,” arXiv:1406.4172
[hep-th].

[119] M. Bianchi, S. He, Y.-t. Huang, and C. Wen, “More on Soft Theorems: Trees, Loops and
Strings,” Phys. Rev. D92 no. 6, (2015) 065022, arXiv:1406.5155 [hep-th].

[120] A. Balachandran, S. Kurkcuoglu, A. de Queiroz, and S. Vaidya, “Spontaneous Lorentz
Violation: The Case of Infrared QED,” arXiv:1406.5845 [hep-th].

[121] ]. Broedel, M. de Leeuw, J. Plefka, and M. Rosso, “Constraining subleading soft gluon and
graviton theorems,” arXiv:1406.6574 [hep-th].

[122] Z.Bern, S. Davies, P. Di Vecchia, and J. Nohle, “Low-Energy Behavior of Gluons and
Gravitons from Gauge Invariance,” arXiv:1406.6987 [hep-th].

[123] A. Campoleoni and M. Henneaux, “Asymptotic symmetries of three-dimensional
higher-spin gravity: the metric approach,” JHEP 03 (2015) 143, arXiv:1412.6774
[hep-th].

[124] P.-H.Lambert, Conformal symmetries of gravity from asymptotic methods: further
developments. PhD thesis, Brussels U, 2014. arXiv:1409.4693 [gr-qc].
https://inspirehep.net/record/1317227/files/arXiv:1409.4693.pdf.

[125] M. Campiglia and A. Laddha, “New symmetries for the Gravitational S-matrix,” JHEP o4
(2015) 076, arXiv:1502.02318 [hep-th].

[126] S. Caron-Huot Private Commaunication (2014) .
[127] J. Maldacena Private Communication (2014) .

[128] F. Cachazo and E. Y. Yuan, “Are Soft Theorems Renormalized?,” arXiv:1405.3413
[hep-th].

[129] H.Elvang and Y.-t. Huang, “Scattering Amplitudes,” arXiv:1308.1697 [hep-th].

157


http://dx.doi.org/10.1088/0264-9381/31/22/225008
http://dx.doi.org/10.1088/0264-9381/31/22/225008
http://arxiv.org/abs/1405.5122
http://dx.doi.org/10.1088/0264-9381/32/5/055003
http://arxiv.org/abs/1406.1462
http://arxiv.org/abs/1406.4172
http://arxiv.org/abs/1406.4172
http://dx.doi.org/10.1103/PhysRevD.92.065022
http://arxiv.org/abs/1406.5155
http://arxiv.org/abs/1406.5845
http://arxiv.org/abs/1406.6574
http://arxiv.org/abs/1406.6987
http://dx.doi.org/10.1007/JHEP03(2015)143
http://arxiv.org/abs/1412.6774
http://arxiv.org/abs/1412.6774
http://arxiv.org/abs/1409.4693
https://inspirehep.net/record/1317227/files/arXiv:1409.4693.pdf
http://dx.doi.org/10.1007/JHEP04(2015)076
http://dx.doi.org/10.1007/JHEP04(2015)076
http://arxiv.org/abs/1502.02318
http://arxiv.org/abs/1405.3413
http://arxiv.org/abs/1405.3413
http://arxiv.org/abs/1308.1697

(130]

[131]

[132]

[133]

[134]

[135]

[136]

(137]

(138]

[139]

[140]

[141]

[142]

M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University
Press, 2014. http://www.cambridge.org/us/academic/subjects/physics/
theoretical-physics-and-mathematical-physics/

quantum-field-theory-and-standard-model.

D. Kapec, V. Lysov, S. Pasterski, and A. Strominger, “Higher-Dimensional Supertranslations
and Weinberg’s Soft Graviton Theorem,” arXiv:1502.07644 [gr-qc].

M. Campiglia and A. Laddha, “Asymptotic symmetries of QED and Weinberg’s soft photon
theorem,” JHEP 07 (2015) 115, arXiv: 1505.05346 [hep-th].

S. G. Avery and B. U. W. Schwab, “Burg-Metzner-Sachs symmetry, string theory, and soft
theorems,” Phys. Rev. D93 (2016) 026003, arXiv:1506.05789 [hep-th].

M. Campiglia and A. Laddha, “Asymptotic symmetries of gravity and soft theorems for
massive particles,” /HEP 12 (2015) 094, arXiv:1509.01406 [hep-th].

S. G. Avery and B. U. W. Schwab, “Noether’s second theorem and Ward identities for gauge
symmetries,” /HEP 02 (2016) 031, arXiv:1510.07038 [hep-th].

N. Sakai and Y. Tanii, “Superwess-zumino-witten Models From SuperChern-Simons

Theories,” Prog. Theor. Phys. 83 (1990) 968—990.

V. Lysov, “Asymptotic Fermionic Symmetry From Soft Gravitino Theorem,”

arXiv:1512.03015 [hep-th].

S. G. Avery and B. U. W. Schwab, “Residual Local Supersymmetry and the Soft Gravitino,”
Phys. Rev. Lett. 116 no. 17, (2016) 171601, arXiv:1512.02657 [hep-th].

D. Christodoulou and S. Klainerman, “The Global nonlinear stability of the Minkowski

space,”.

S.Y. Choi, J. S. Shim, and H. S. Song, “Factorization and polarization in linearized gravity,”
Phys. Rev. Ds1(1995) 2751-2769, arXiv:hep-th/9411092 [hep-th].

D.]. Gross and R. Jackiw, “Low-Energy Theorem for Graviton Scattering,” Phys. Rev. 166
(1968) 1287-1292.

R. Jackiw, “Low-Energy Theorems for Massless Bosons: Photons and Gravitons,” Phys. Rev.
168 (1968) 1623-1633.

158


http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://arxiv.org/abs/1502.07644
http://dx.doi.org/10.1007/JHEP07(2015)115
http://arxiv.org/abs/1505.05346
http://dx.doi.org/10.1103/PhysRevD.93.026003
http://arxiv.org/abs/1506.05789
http://dx.doi.org/10.1007/JHEP12(2015)094
http://arxiv.org/abs/1509.01406
http://dx.doi.org/10.1007/JHEP02(2016)031
http://arxiv.org/abs/1510.07038
http://dx.doi.org/10.1143/PTP.83.968
http://arxiv.org/abs/1512.03015
http://dx.doi.org/10.1103/PhysRevLett.116.171601
http://arxiv.org/abs/1512.02657
http://dx.doi.org/10.1103/PhysRevD.51.2751
http://arxiv.org/abs/hep-th/9411092
http://dx.doi.org/10.1103/PhysRev.166.1287
http://dx.doi.org/10.1103/PhysRev.166.1287
http://dx.doi.org/10.1103/PhysRev.168.1623
http://dx.doi.org/10.1103/PhysRev.168.1623

[143] C.D. White, “Factorization Properties of Soft Graviton Amplitudes,” /HEP o5 (2011) 060,
arXiv:1103.2981 [hep-th].

[144] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons and large diffeomorphisms,”
JHEP o1 (2017) 036, arXiv:1608.00685 [gr-qc].

[145] M. Campiglia and A. Laddha, “Sub-subleading soft gravitons: New symmetries of quantum
gravity?,” Phys. Lett. B764 (2017) 218—221, arXiv:1605.09094 [gr-qc].

[146] T.Eguchi and H. Ooguri, “Conformal and Current Algebras on General Riemann Surface,”

Nucl. Phys. B282 (1987) 308-328.

[147] J. D.Brown and J. W. York, Jr., “Quasilocal energy and conserved charges derived from the
gravitational action,” Phys. Rev. D47 (1993) 1407-1419, arXiv:gr-qc/9209012 [gr-qc].

[148] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commaun.

Math. Phys. 208 (1999) 413—428, arXiv:hep-th/9902121 [hep-th].

159


http://dx.doi.org/10.1007/JHEP05(2011)060
http://arxiv.org/abs/1103.2981
http://dx.doi.org/10.1007/JHEP01(2017)036
http://arxiv.org/abs/1608.00685
http://dx.doi.org/10.1016/j.physletb.2016.11.046
http://arxiv.org/abs/1605.09094
http://dx.doi.org/10.1016/0550-3213(87)90686-9
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://arxiv.org/abs/gr-qc/9209012
http://dx.doi.org/10.1007/s002200050764
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121

