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Essays in Financial Economics

My dissertation is composed of three papers in financial economics. In the first essay,

“Credit Migration and Covered Interest Rate Parity,” I document economically large and

persistent discrepancies in the pricing of credit risk between corporate bonds denominated in

di�erent currencies. This violation of the Law-of-One-Price (LOOP) in credit risk is closely

aligned with violations of covered interest rate parity in the time series and the cross-section

of currencies. I explain this phenomenon with a model of market segmentation. Post-crisis

regulations and intermediary frictions have severely impaired arbitrage in the exchange rate

and credit markets each on their own, but capital flows, either currency-hedged investment

or debt issuance, bundle together the two LOOP violations. Limits of arbitrage spill over

from one market to another.

The second essay, joint with Robin Greenwood and Sam Hanson, studies theoretically

how do large supply shocks in one financial market a�ect asset prices in other markets. We

develop a model in which capital moves quickly within an asset class, but slowly between

asset classes. While most investors specialize in a single asset class, a handful of generalists

can gradually re-allocate capital across markets. Upon arrival of a supply shock, prices of

risk in the impacted asset class become disconnected from those in others. Over the long-run,

capital flows between markets and prices of risk become more closely aligned. While prices

in the impacted market initially overreact to shocks, under plausible conditions, prices in
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related asset classes underreact. Our model suggests that the short-run price impact of a

supply shock on di�erent markets may not accurately reveal the long-run impact, which is

often of greater interest to policymakers.

The final essay, joint with Robert Barro, develops a new options-pricing formula that

applies to far-out-of-the money put options on the overall stock market when disaster risk is

the dominant force, the size distribution of disasters follows a power law, and the economy

has a representative agent with Epstein-Zin utility. In the applicable region, the elasticity of

the put-options price with respect to maturity is close to one. The elasticity with respect to

exercise price is greater than one, roughly constant, and depends on the di�erence between

the power-law tail parameter and the coe�cient of relative risk aversion, “. The options-

pricing formula conforms to data from 1983 to 2015 on far-out-of-the-money put options

on the U.S. S&P 500 and analogous indices for other countries. The analysis uses two

types of data—indicative prices on OTC contracts o�ered by a large financial firm and

market data provided by OptionMetrics, Bloomberg, and Berkeley Options Data Base. The

options-pricing formula involves a multiplicative term that is proportional to the disaster

probability, p. If “ and the size distribution of disasters are fixed, time variations in p can

be inferred from time fixed e�ects. The estimated disaster probability peaks particularly

during the recent financial crisis of 2008-09 and the stock-market crash of October 1987.
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1 Credit Migration and Covered

Interest Rate Parity1

1.1 Introduction

The finance literature is full of examples in which security markets violate the Law of One

Price (LOOP), a cornerstone of finance theory stating that assets with identical payo�s

should have identical prices. For instance, closed-end funds, twin shares, and stub pricing

are well-documented examples of price discrepancies in securities with similar cashflows2

(see Lamont and Thaler 2003 for survey). These violations are often studied in isolation and

attributed to behavioral and institutional frictions in the particular market. I show, in a

novel setting, that LOOP violations in one market can arise as an equilibrium outcome of

1I am indebted to Robin Greenwood, Sam Hanson, Andrei Shleifer, and Jeremy Stein for their guidance
and support. I am also thankful for helpful conversations with Malcom Baker, Robert Barro, Vitaly Bord,
May Bunsupha, John Campbell, Je�rey Frankel, Xavier Gabaix, Gita Gopinath, Ben Hébert, Victoria
Ivashina, Derek Kaufman, Owen Lamont, Patrick Luo, Yueran Ma, Matteo Maggiori, Filippo Mezzanotti,
Mikkel Plagborg-Møller, Andreas Schaab, David Scharfstein, Jesse Schreger, Emil Siriwardane, Erik Sta�ord,
Sophia Yue Sun (discussant), Adi Sunderam, Boris Vallée, Luis Viceira, Kevin Wang and seminar participants
at Harvard, conference participants of the Corporate Finance Conference at Washington University in St.
Louis Olin Business School. I also thank the following institutions for insightful conversations with their
employees: Bracebridge Capital, Credit Suisse, Deutsche Bank, Harvard Management Company, JP Morgan,
Morgan Stanley, Nikko Asset Management, Nippon Life, Nomura, Norinchukin Bank, and UBS. I thank HBS
Research Services and HBS Japan Research Center. I am grateful for financial support from the Bradley
Foundation Fellowship.

2To be clear, these are LOOP violations in the classical, frictionless sense, if one were to actually construct
an arbitrage strategy, the cashflows might very well be di�erent.
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arbitrageur actions intended to correct LOOP violations in another market.

I begin by documenting large and persistent di�erences in the pricing of credit risk for

corporate bonds denominated in di�erent currencies. Textbook asset pricing theory predicts

that identical claims issued by the same firm but traded in di�erent markets are priced

similarly due to arbitrage. I show that persistent discrepancies exist for the entire euro

corporate bond market versus the dollar bond market (as well as between other currencies).

For example, in November 2014, AT&T, the BBB-rated and U.S.-based telecommunication

giant, had a credit spread of 203 basis points on its 15-year U.S. dollar-denominated bond,

while its euro-denominated bonds of similar maturity had a credit spread of 129 basis points.

Credit risk of AT&T is therefore priced di�erently in the U.S. and European bond markets.

Generalizing from this example is di�cult because no two bonds are perfectly alike. Di�erent

terms of maturity, rating, liquidity, and firm-specific characteristics create challenge in the

comparison. AT&T, for example, issues more long-term bonds in euro than in dollar. Apply-

ing cross-sectional regressions on a large panel of bond credit spreads, I build a measure of

currency-specific pricing of credit risk that controls for other characteristics. I interpret the

currency fixed e�ects in the regressions as measures of the price of credit risk associated with

di�erent bond denomination currencies. Taking fixed e�ects normalizes bond characteristics

and using credit spread as a price measure removes di�erences in risk-free funding rates

across currencies. Thus, the di�erence in residualized credit spreads constitutes a di�erence

in the pricing of credit default risks.

The di�erence in residualized credit spreads between major currencies have dramatically

widened since the Global Financial Crisis. From 2004 to 2007, the residualized credit spreads

of Australian dollar (AUD), Canadian dollar (CAD), Swiss francs (CHF), Euro (EUR),

British Pound Sterling (GBP), and Japanese Yen (JPY) relative to USD maintained a narrow

range of 10 bps. Since 2008, however, these spreads have diverged significantly and have been

large even in tranquil periods. For instance, the di�erence between the residualized credit

2



spread of EUR and USD had reached over 70 basis points in 2016. The price discrepancies are

substantial in terms of dollar value given the sheer size of the aggregate bond markets (e.g.

EUR corporate bond market has $3 trillion of long-term outstanding debt, USD corporate

bond market has $10 trillion of outstanding debt3). A 70 basis points price discrepancy

amounts to $25 billion or represent 84% of net (12% of gross) annual issuance in the euro

corporate bond market.

I then show that the LOOP violations in credit market between bonds of di�erent denomina-

tion currencies are closely related to deviations from Covered Interest Rate Parity condition,

another LOOP violation that has recently attracted attention from a variety of other papers

(Sushko, et al. [2016], Du, Tepper, and Verdelhan [2016], Iida, Kimura, and Sudo [2016]).

Covered Interest Rate Parity (CIP) condition is a textbook no-arbitrage relation asserting

that the forward currency exchange rate must be equal to the spot exchange rate after adjust-

ing for the funding rate di�erential between two currencies. The CIP condition held tightly

prior to 2008. However, large deviations from the CIP relation appeared in the aftermath

of the financial crisis and have persisted through 2016. For a detailed documentation and

exposition of CIP violations, see Du, Tepper, and Verdelhan (2016).

Figure 1.1 shows the time series of price discrepancies in credit risk and deviations from

CIP for EUR/USD. Periods when the price of credit risk is lower in euro than in dollar

(more negative dashed blue line) tend to coincide with periods with a lower FX-implied euro

funding rate relative to actual euro funding rate (more negative CIP deviation as indicated by

the red solid line). The two time series share similar magnitude of deviation and are highly

correlated (77%). The close alignment of the two LOOP violations is not mechanically

driven by interest rate fluctuation, as explained in Section 1.3. This comovement of LOOP

violations also holds true in other currencies. In a pooled sample of AUD, CAD, CHF,

EUR, GBP, and JPY relative to USD, the correlation between CIP violation and credit
3ECB; Federal Reserve Flow of Funds L.213
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Figure 1.1: Credit risk price discrepancies and CIP deviations for EURUSD
This figure shows the residualized credit spread di�erential (dotted blue) and violations of CIP at the 5-year
horizon (solid red) for EURUSD. To construct estimates of residualized credit spread, I estimate the following
cross-sectional regression at each date t

Sit = –ct + —ft + “mt + ”rt + Áit

where Sit is the yield spread over the swap curve for bond i that is issued in currency c, by firm f , with
maturity m and rating r. The residualized credit spread of euro relative to dollar is defined as –̂eur,t ≠ –̂usd,t.
Details of the measure’s construction are provided in Section 1.2.2.
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CIP deviations 5 yr (FX−implied − actual euro funding rate) Credit Spread Diff. (EU−US) controling for other bond characteristics

price discrepancies is 81%.

I provide an explanation for the joint determination of credit pricing discrepancies in di�erent

currencies and CIP violations based on a model of market segmentation and limited arbitrage.

When markets are segmented, prices of risk in one market may be disconnected from those

in other markets. The two LOOP deviations reflect two distinct market segmentations – the

credit markets are divided by denomination currencies while the CIP violation is a disconnect

between spot and forward exchange rates in the FX markets. I develop a model in which

the integration of either asset class requires cross-market arbitrageurs to bridge through the

other asset class.
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To understand the conceptual framework, consider again the AT&T example, the firm finds

it cheaper to issue in EUR than in USD when considering the cost of debt payment alone.

However, for AT&T to take advantage of the lower credit spread in EUR, it would be exposed

to substantial amount of FX volatility4. To hedge for this volatility, AT&T would need to

buy EUR in the forward market for the future repayment of its debt – in fact, AT&T did

exactly this: it issued Ä800 million ($1 billion) in a 15-year euro-denominated bond and

entered into currency derivatives as a hedge. In its 10K statement, AT&T describes the

pervasiveness of its FX-hedged global bond issuance,

“We have entered into multiple cross-currency swaps to hedge our exposure to
variability in expected future cash flows that are attributable to foreign currency
risk generated from the issuance of our Euro, British pound sterling, Canadian
dollar and Swiss Franc denominated debt.”

It is therefore natural to think of AT&T as a corporate arbitrageur that not only links

together the two credit markets but also connects the FX forward and spot markets through

its currency hedges.

There are four players in my model: a FX arbitrageur, two specialized credit investors, and a

representative debt-issuing firm. The two specialized credit investors each invest in corporate

bonds in their respective home currencies, the euro and the dollar, and they each have a

downward sloping demand curves in the credit markets. The FX arbitrageur connects the

spot and forward exchange rate markets and also has a downward sloping demand curve

because of limited balance sheet capacity to perform the arbitrage.

The firm connects the credit and FX markets by engaging in FX-hedged debt issuance. Its

objective is to minimize its overall financing cost by choosing the optimal share of debt to

issue in each currency. When the foreign credit spread is low, the firm allocates a greater

share of debt to be issued abroad. Issuing in the foreign currency, however, generates FX

4A back of envelope calculation suggests that a 10% appreciation of USD could wipe out one-third of AT&T’s
annual profit if the firm does not hedge its FX exposure on its outstanding foreign currency debt.
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exposure, which the firm hedges using currency forwards. To integrate the two downward-

sloping demand curves in the bond markets, the firm has to walk down the demand curve

in the FX forward market. Conversely, when CIP violations are large, the firm chooses to

integrate the forward and spot FX exchange rates instead while walking down the demand

curves of the credit markets. The two violations of LOOP are aligned such that the firm’s

first order condition is satisfied. While cross-market arbitrageurs are modeled in this paper

as a debt-issuing firm, they can also be broadly interpreted as global debt investors.

Two types of exogenous demand shocks a�ect the system. First, there are credit demand

shocks (perhaps originating from central bank purchase outside of the model) that raise the

relative price of credit for bonds in one currency versus the other. Second, there are CIP

shocks originating from other end-users of FX forwards that decouple the forward exchange

rates from the spot exchange rate. The shocks are transmitted between the FX and credit

markets by firms engaged in currency-hedged foreign debt issuance. Credit demand shocks

cause discrepancies in the price of credit risk as well as deviations from CIP. Similarly, CIP

shocks also spill over to a�ect the relative price of credit.

The model generates four key predictions. First, LOOP violation in one market (FX or

credit) spills over to the other market. Arbitrage processes are imperfect in both markets,

but capital flow ensures that the two LOOP deviations are aligned. Second, the amount of

cross-currency issuance, which represents arbitrage position, co-varies with the profitability

of the arbitrage. The profit margin is indicated by the di�erence between credit spread

di�erential and CIP deviation. Third, an exogenous increase in cross-market arbitrage capital

in the form of higher total amount of debt issuance aligns the two deviations. Lastly, limits

of arbitrage in one market (FX or credit) spill over to the other market and become a

constraining friction in the other market.

Empirical analyses lend support to the model predictions. A counterintuitive implication

of the model, which also appears in the data, is that the net deviation from LOOP is
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small even when both deviations in CIP and credit are large individually. When the two

deviations are meaningfully large (greater than 20 basis points), the level of net deviation,

which represents the amount of arbitragable profit, is only around a quarter of the size of

the two individual deviations. Evidence from currency-hedged debt issuance accords with

the model. A textual analysis of 10K filings by S&P 500 firms indicates that around 40%

of firms have issued currency-hedged foreign debt in recent years. Furthermore, issuance

flow at the monthly and quarterly horizon fluctuates with the net deviation. For each one

standard deviation increase in the di�erence between residualized credit spread di�erential

and CIP violation for EURUSD, firms respond by shifting around 5% of the aggregate debt

issuance towards the cheaper currency (0.75 standard deviation of issuance flow). Vector

Autoregression analyses show that issuance flow responds to shocks in credit and FX markets

in the direction predicted by the model. The transmission of shocks is slow moving, which

is consistent with theories on slow moving capital (Du�e [2010], Greenwood, Hanson, and

Liao [2015]). Firm-level panel regressions confirm the same result as in the aggregate data.

In addition, an increase in the overall debt issuance, as instrumented by maturing debt that

needs to be rolled over, contributes to the alignment of the two LOOP violations.

Why do the two deviations persist? One way of explaining the co-existence of the two

LOOP violations is that each of them serves the role of a short-sell constraint to the other.

This joint determination of the two LOOP violations is analogous to heavily-shorted stocks

being overvalued at the same time that they have high cost to borrow (Negal [2005], D’Avoli

[2002]).

My paper takes the idea of limits of arbitrage a step further. Traditionally, LOOP violations

are studied in isolation. Noise trader risks and agency problems pose limits to the amount

of arbitrage activities (De Long et al. [1990], Shleifer and Vishny [1997]) in a single market.

I provide a conceptual framework and document a clear-cut example in which arbitrage

constraints and violations of LOOP spill over from one market to a completely di�erent
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market. The two LOOP violations are determined jointly in equilibrium.

My paper also contributes to the literature on the determination of foreign exchange rate

dynamics. Gabaix and Maggiori (2015) provide a theory of the determination of exchange

rates based on capital flows in imperfect financial markets. The study of exchange rate

determination typically focuses on uncovered interest rate parity. In contrast, I model and

provide empirical evidence for the determination of covered interest rate parity violations.

The two concepts are intimately related. As deviation from CIP becomes large, firms and

investors eventually forgo hedging (since CIP deviation is a hedging cost), the unhedged

capital flow thus leads to UIP violation. Unlike the risk-bearing financial intermediaries in

the Gabaix and Maggiori (2015) model, FX-arbitrageurs in my model face little risk, but

CIP arbitrage is capital intensive and therefore costly to implement. Ultimately, the real

arbitrageurs of the CIP market are investors and treasuries of firms that must fund the cost

of arbitrage through bond markets.

This paper also contributes to previous work showing that corporations behave like ar-

bitrageurs in their financing activities (Baker and Wurgler [2000] and Baker, Foley, and

Wurgler [2009], Greenwood, Hanson, and Stein [2010], and Ma [2015]). My paper con-

tributes to the literature on firms as arbitrageurs in two ways. First, this paper shows that

firm are advantageous at exploiting LOOP violations in addition to previously documented

arbitrage of inexact valuation di�erences, e.g. between debt and equity and market tim-

ing of issuance. These arbitrage strategies of LOOP violations typically require specialized

knowledge and capital, and were previously reserved for sophisticated hedge funds. Firms’

increasing involvement in specialized arbitrage demonstrates the di�culty of deploying tra-

ditional arbitrage capital in the post-crisis financial and regulatory environment. Second,

firms are arbitraging multiple markets at the same time – e.g. credit and FX, and they play

a role in transforming LOOP violation of one form into that of another form.

A small set of literature has examined short-term CIP violations during the financial crisis
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(Baba, Packer, and Nagano [2008], Co�ey, Hrung, and Sarkar [2009] Gri�oli and Ranaldo

[2011], and Levich [2012]). Fletcher and Taylor (1996) document long-term CIP violations of

the early 1990s and conclude that these violations have diminished or disappeared over time.

While these papers discuss limits to arbitrage that prevent the elimination of CIP violations,

their examinations of the root cause of deviation in both crisis and non-crisis periods are

limited.

More closely related to my paper are Ivashina, Scharfstein, and Stein (2015), Du, Tepper, and

Verdelhan (2016), and Sushko et al. (2016). Ivashina, Scharfstein, and Stein (2015) examine

the dollar funding and lending behaviors of European banks during the Eurozone Sovereign

Crisis in 2011-2012 and explore how shrinkage of wholesales dollar funding compelled the

banks to swap their euro funding into dollar, which in turn generated CIP violations and

a�ected lending. Bräuning and Ivashina (2016) further explore the role of monetary policy

in a�ecting global bank’s funding sources and the use of FX hedges. Du, Tepper, and

Verdelhan (2016) extensively document persistent deviations from CIP in recent periods

and propose explanations based on costly financial intermediation and global imbalances.

Sushko et al. (2016) examine the role of hedging demands and costly balance sheet in the

determination of CIP violations. Relative to these papers, my contribution is to document

and explain the joint determination of both CIP violation and price discrepancies in corporate

bonds of di�erent denomination currencies. I show that the two LOOP violations need to

be considered together in formulating an explanation of the equilibrium prices and capital

flows.

The paper proceeds as follows. Section 1.2 discusses the measurements of residualized credit

spread. Section 1.3 presents the stylized fact that residualized credit spread di�erential

and CIP deviation are highly aligned. Section 1.4 provides a model to explain the co-

determination of these two violations. This is followed by discussion in Section 1.5. Addi-

tional model predictions are tested empirically in Section 1.6.

9



1.2 Measuring residualized credit spread

In this section, I develop a procedure to measure the price of credit risk in di�erent currencies.

The ideal experiment is to find pairs of otherwise identical bonds (same issuer, maturity,

etc) in di�erent currencies. This is challenging because no two bonds are perfectly alike. My

proposed methodology relies on cross-sectional regression to control for di�erences in rating,

maturity, and firm characteristics. From here on in the paper, I refer to the di�erential in

the residualized credit spread of bonds denominated in di�erent currencies simply as credit

spread di�erential.

1.2.1 Data

I utilize a comprehensive sample of individual bond yields from Bloomberg and bond at-

tributes from Financial Securities Data Company (SDC) Platinum Global New Issues data

set. The selection of bonds is as exhaustive as possible. I obtain yields of more than 35,000

corporate bonds in seven major funding currencies (USD, EUR, GBP, JPY, AUD, CHF,

CAD) from 2004 to 2016. The selection includes all fixed-coupon, bullet corporate bonds

with outstanding amount of at least $50 million and original maturity of at least one year

available on Bloomberg and in the SDC dataset. These bonds were issued by more than

4,600 entities. The issuing entities also include a number of large supranational (such as

the World Bank) and sovereign agencies (such as state-owned banks) that are generally con-

sidered a part of the corporate bond market. The total notional of outstanding bonds in

the database as of June 2016 is around $10 trillion. These bonds represent the majority of

bonds outstanding in the market. I use the yield spread against the swap curve as a mea-

surement of credit spread. Pricing data on swaps are obtained from Bloomberg. Additional

bond attributes used for robustness checks are obtained from Moody’s Default & Recovery

Database. A summary of the bond data is provided in Table 1.1.
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Table 1.1: Bond data summary

This table presents a summary of the bond data used in the main analyses. Bond
characteristics are from Thompson One SDC Platinum.

All bonds Global issuers only
Number Notional $bil Number Notional $bil

currency all 35,204 15,937 24,090 12,294
usd 12,772 6,443 7,954 4,561
eur 8,625 5,446 6,653 4,556
jpy 8,152 1,969 5,316 1,474
gbp 1,492 766 1,238 678
cad 1,124 516 700 419
chf 2,017 478 1,301 304
aud 1,022 319 928 302

rating AA- or higher 12,060 7,331 10,528 6,741
A+ to BBB- 13,732 5,796 8,593 3,782

HY (BB+ or lower) 1,932 899 1,057 541
NA 7,480 1,912 3,912 1,230

maturity <3yrs 1,268 807 1,012 691
3-7 yrs 14,850 7,173 10,415 5,702
7-10 yrs 4,755 1,904 3,141 1,396
10yr+ 14,331 6,054 9,522 4,505

1.2.2 Matrix pricing of corporate credit

To assess the impact of denomination currency on the pricing of credit risk, I estimate the

following cross-sectional regression at each date t

Sit = –ct + —ft + “mt + ”rt + Áit (1.1)

where Sit is the yield spread over the swap curve for bond i traded in the secondary market

at time t. –ct, —ft, “mt, and ”rt are fixed e�ect estimates for currency c , firm f , maturity

bucket5 m and rating bucket r respectively at date t. The firm fixed e�ect is important here

since it controls for other characteristics of bonds that are common at the firm level, e.g.

industry e�ect. Furthermore, the data sample is limited to only bonds belonging to multi-
5The maturity of the bond at each pricing date t is categorized into four buckets (under 3 years, 3 to 7 years,
7 to 10 years and beyond 10 years). Alternative specification that includes maturity as a linear control is
also tested and produce similar results.
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currency issuers. As with the AT&T example in the introduction, the idea here is to match

bonds of similar characteristics issued by the same firm with the only di�erence being the

currency in which they are denominated. –ct thus measures the residualized credit spread

controlling for all other observables. This method of attribution is analogous to the standard

industry practice of matrix pricing in which a bond with unknown prices is assessed against

other bonds with similar maturity and rating.

I use the residualized credit spread di�erential to measure the LOOP violation of credit risk

between currencies. Specifically, the currency fixed e�ect estimates –̂ct ≠ –̂USDt measures the

deviation in the pricing of credit risk in currency c relative to the pricing of credit risk in

dollar. The large number of observations for each date t ensures a reasonably tight confidence

interval6.

Figure 1.2 presents time series of the point estimates of –ct≠–USDt at each date for currencies

EUR, GBP, JPY and AUD. All four credit spread di�erentials were relatively small from

2004 to 2007. The spreads blew out during the Global Financial Crisis. Yen, sterling, and

euro credit all tightened considerably relative to U.S. dollar. In particular, euro and yen

credit spread di�erentials reached deviations beyond -100 basis points during the peak of the

crisis. The deviations briefly reversed after the crisis. However, since 2010, the credit spread

di�erentials have widened again. Cross-sectionally, the spread di�erentials for each market

have been persistent. JPY credit (purple long dashed line) has been the most over-priced

(negative spread) relative to dollar credit, and AUD credit (solid red) has been under-priced

(positive spread) relative to the dollar credit market. EUR credit spread di�erential (green

dots) became more negative since 2014, and reached -70 basis points in 2016.

The dollar magnitude of the deviations is substantial and economically large. As of June

2016, the total amount of outstanding long-term corporate debt in EUR is Ä3.2 trillion7.

6Confidence interval is provided in Figure 1.5
7ECB defines long-term debt as debt with original maturity at issuance of greater than one year.
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Figure 1.2: Residualized foreign currency credit spreads relative to dollar credit spread
This figure presents the residualized credit spreads in each currency relative to dollar credit
spread. To construct this measure, I estimate the following cross-sectional regression at each
date t

Sit = –ct + —ft + “mt + ”rt + Áit

where Sit is the yield spread over the swap curve for bond i that is issued in currency c, by
firm f , with maturity m and rating r. The residualized credit spread of currency c relative
to dollar is defined as –̂c,t ≠ –̂usd,t. Details of the measure’s construction are provided in
Section 1.2.2.
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The residualized credit spread di�erential between EUR and USD in June 2016 is -70 basis

points. A back-of-the-envelope calculation suggests that the discrepancy in the pricing of

default risk represents a dollar value di�erence of around $25 billion if all EUR corporate

bonds were priced in USD instead. This amount is economically large, representing 84% of

the net issuance amount (12% of gross issuance) in EUR by the corporate sector in 20158.

1.2.3 Comparison with benchmark credit spreads

The residualization of credit spreads using the above methodology produces time series that

o�er substantial improvements over un-residualized aggregate credit spreads. I compare the

residualized credit spread di�erential in EURUSD against two un-residualized benchmark in-

dices – the Bank of America Merrill Lynch Corporate Single A index and Barclays Corporate

Single A index in Figure 1.3. The residualized and un-residualized spreads are quantitatively

and qualitatively di�erent. While the residualized spreads were always negative (indicting

tighter euro credit spread than dollar), the unrestricted versions of the spread were posi-

tive for a substantial part of the sample and had larger magnitudes. This large di�erence

between the residualized and un-residualized versions is due to compositional di�erences of

the aggregate indices for EUR and USD benchmark bond portfolios provided by Bank of

America and Barclays. The regression methodology addresses the compositional di�erence

by controlling for firm and other bond characteristics using individual bond prices.

8Total net issuance of long-term debt by corporates in 2015 is Ä26.6 billion and gross issuance is Ä192.2 billion
according to ECB statistics.
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Figure 1.3: Comparison of residualized credit spread di�. (EU-US) with un-residualized
benchmarks

This figure compares the EU-US residualized credit spread di�erential (dashed blue) with
un-residualized credit spread di�erentials constructed from Bank of America Merrill Lynch
Single A Corporate index (BAML, dotted green) and Barclays Single A Corporate index
(solid red). The un-residualized euro minus dollar credit spread di�erential is constructed
by subtracting the dollar-denominated single A aggregate option adjusted spread from euro-
denominated single A aggregate option adjusted spread provided by BAML and Barclays.
To construct estimates of residualized credit spread, I estimate the following cross-sectional
regression at each date t

Sit = –ct + —ft + “mt + ”rt + Áit

where Sit is the yield spread over the swap curve for bond i that is issued in currency c, by
firm f , with maturitym and rating r. The residualized credit spread of euro relative to dollar
is defined as –̂eur,t≠–̂usd,t. Details of the measure’s construction are provided in Section 1.2.2.
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1.2.4 Robustness in the measurement of the credit spread

di�erential

In this section, I conduct a number of robustness checks in the estimation of the residualized

credit spread di�erential.

1.2.4.1 Additional Controls

I augment the regression specification of Equation 1.1 with three additional controls – amount

outstanding, age, and seniority. The first two controls serve as liquidity proxies. Larger

bond issuance size and newly issued bonds are known to be more liquid. On-the-run bonds,

or newly issued bonds, have a premium when compared to o�-the-run bonds of similar

maturities (Krishnamurthy 2002). To capture this e�ect, the control for age of the bond is

defined as the ratio of remaining maturity to initial maturity of the bond. An additional

control for bond seniority (e.g. senior secured, unsecured, subordinate, etc) is obtained from

the Moody’s Default & Recovery Database and also added to the expanded regression. These

controls make little di�erence on the estimates of the credit spread di�erentials.

Furthermore, while there might be other idiosyncratic bond attributes not captured in the

augmented specification, these additional features should not a�ect the aggregate residual-

ized credit spread di�erential. As can be seen in Figure 1.2, the residualized credit spread

di�erentials were small prior to the financial crisis. It is unlikely that bond-specific un-

observables only begin to vary systematically across currencies after the crisis. Therefore,

additional unobserved bond features are treated as idiosyncratic noise in the estimation.
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1.2.4.2 Heterogeneity for di�erent credit ratings

Another potential concern is that the aggregate credit rating varies significantly across di�er-

ent currency-segmented bond markets. That is, if all euro-denominated bonds have rating of

AAA while all dollar-denominated bonds have rating of single-A, then naturally there would

be a tighter credit spread for euro-denominated bonds. Under this hypothetical scenario,

the residualized credit spread di�erential would pick up the di�erence between AAA bonds

and single-A bonds rather than a di�erential due to the denominating currency.

I address this concern in two ways. First, I limit the sample on each date to only bonds

that are issued by entities that have debt outstanding in another currency. In this case,

controlling for firm fixed-e�ects alleviate the concern raised above, as bonds issued by the

same firm generally have similar credit ratings. Second, a further robustness check is to split

the sample for high-grade and low-grade bonds (not shown). When the sample is restricted

to low-grade bonds only, the credit spread di�erentials are larger in magnitude than those

of high-grade bonds. This is intuitive since low-grade bonds have higher credit spreads to

begin with, the credit spread di�erential are also intensified.

1.3 Alignment of credit di�erential and CIP violation

In this section, I define and discuss the measurement of deviation from Covered Interest Rate

Parity condition and show the similarities in the time series of CIP deviations and credit

spread di�erentials. Taking the currency pair EUR/USD as an example, the classic text

book definition of CIP condition is

FT = S
(1 + rD,T )T

(1 + rE,T )T
(1.2)

where S is the spot exchange rates expressed in dollars per euro, FT is the forward exchange

rate with maturity T also expressed in dollars per euro, rD,T and rE,T denote the T -period
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risk-free zero-coupon funding rates in dollar and euro respectively. A violation of CIP occurs

when the above equation fails to hold. For expositional purpose, assume that T = 1. We

can rewrite equation 1.2 as

0 = S

F
(1 + rD)

¸ ˚˙ ˝

FX-implied

euro funding rate

≠ (1 + rE)¸ ˚˙ ˝

actual

euro funding rate

.

In other words, CIP condition states that the FX-implied foreign funding rate is equal to

the actual foreign funding rate. A violation of CIP condition can be expressed as a basis b

b = S

F
(1 + rD)

¸ ˚˙ ˝

FX-implied

euro funding rate

≠ (1 + rE)¸ ˚˙ ˝

actual

euro funding rate

. (1.3)

I measure b empirically using the level of cross-currency basis swap, consistent with other

concurrent papers9 studying CIP deviations. A cross-currency basis swap is a market instru-

ment that allows the market participant to simultaneously borrow in one currency and lend

in another currency at the respective floating interest rates. The counter party of the swap

transaction agrees to take on the reverse position. A currency basis is a market-determined

adjustment to the reference floating funding rates. It is analogous to the market pricing of

b in Equation 1.3 above. The empirically-relevant funding rates, represented by rD and rE

in Equation 1.3, are Libor-based swap rates 10. The details of cross-currency basis swap,

9Sushko, et al. [2016], Du, Tepper, and Verdelhan [2016], Iida, Kimura, and Sudo [2016]
10Alternative definition using Overnight Index Swap rates based on actual transactions such as Fed Fund
E�ective Rate or Eonia rate generates similar results. Calculating CIP deviations using FX forward and
spot rates also yield similar results.
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relation with CIP violation and maturity of CIP deviations are discussed in the appendix11.

To provide intuition for b, I continue with the earlier example. Suppose AT&T issues in

EUR as the euro credit spread is 74 basis points tighter than the dollar credit spread. If

there were no CIP deviation, i.e. b = 0, AT&T is able to keep the entire 74 basis points by

issuing in EUR and swapping EUR into USD. The hedging cost (or benefit) would just be

the interest rate di�erential. If there were a CIP basis b ”= 0, the hedging cost would adjust

accordingly.

The sign of b is also intuitive. In my example, AT&T issues in EUR and wants to swap EUR

to USD. This FX swap transaction can be equivalently stated in two other ways. A FX swap

of EUR to USD is equivalent to 1) simultaneously borrowing dollar to lend in euro, and 2)

sell euro in the spot market and buy euro in the forward market. Holding the spot exchange

rate S and interest rates rD and rE fixed in equation 1.3, an increase in F necessitates a

decrease in b. Therefore when b is negative, it is expensive to swap from euro to dollar

(expensive to buy euro in the forward market), and when b is positive, it is expensive to

swap from dollar to euro.

Figure 1.4 shows the deviations from CIP at the 5-year horizon for AUD, EUR, GBP, and

JPY relative to USD. This condition had been upheld tightly prior to 2008. However, large

deviations from the CIP relation appeared in the aftermath of the financial crisis and persist

through 2016.

My key finding is that CIP violation and credit spread di�erential are highly correlated.

Figure 1.5 graphs the time series of credit spread di�erential and CIP deviations at the 5

11In the appendix, I show that T -horizon CIP deviation bT is related to cross-currency basis swap rate BT by
the following approximation:

bT ¥ BT

C
Tÿ

t=1
(1 + Zú

t )
≠t

D
1 + Zú

T

T

where Zú
t denotes the foreign zero-coupon rate with maturity t.
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Figure 1.4: Covered Interest Rate Parity deviations at the 5-year horizon
This figure presents the violations of covered interest rate parity at the 5-year horizon
between each of the four major free-floating funding currencies - EUR, GBP, JPY, AUD -
and USD. Deviations from CIP are measured as the FX-implied local funding rate minus
the actual local funding rate. Details of this measure are provided in Section 1.3.
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-year horizon for six major funding currencies. The time series of the two violations match

closely in magnitude and direction for each currency especially outside of the crisis period.

The correlation in the cross-section is also high. Pooling the observations across time and

currency, the two violations have a correlation of 81%.

Figure 1.6 shows a scatter plot with credit spread di�erential on the horizontal axis and

deviation from CIP on the vertical axis. This figure highlights both the cross-sectional and

time series correlation between the two violations. Japan has negative deviations in both CIP

and credit, meaning that yen credit spread is tighter than dollar credit spread for comparable

bonds and it is costly to swap yen to dollar. Australia, on the other hand, has both positive

deviations, meaning that both its credit spread is wider and it is costly to swap from USD

to AUD.

Descriptive regressions also confirm both cross-sectional and time-serial correlation between

credit spread di�erential and CIP deviations. Table 1.2 presents the relationship between

the two LOOP violations for the six currencies in panel and individual regressions. The

regressions coe�cients are highly significant. Most coe�cients range from 0.7 to close to 1.

Column 2 and 3 present regressions controlling for time and currency fixed e�ects. While

these regressions cannot be interpreted as causal, nonetheless they demonstrate the close

alignment of the two LOOP violations. Empirical identification of the impact of one LOOP

violation on another is achieved through additional empirical tests of model predictions in

subsequent sections.
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Figure 1.6: Credit spread di�erential and CIP violation
This figure presents the residualized credit spread di�erential and CIP violations relative to
USD for EUR, GBP, JPY, AUD, CHF and CAD. Details of each measures’ construction
are provided in Section 1.2.2 and 1.3.
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1.4 A model of aligned deviations in credit and

currency markets

In this section, I present a model of segmented markets that provide an explanation for

the high degree of alignment between the two LOOP violations. In this model, I assume

that there are two credit markets, one denominated in euro and another denominated in

dollar. These two credit markets are segmented from one another except through capital

flow provided by a representative debt-issuing firm. The issuer has funding needs in dollar

24



but issues in both currencies and engages in currency hedging. While the cross-market

arbitrageur is modeled as a firm selling debt, it can also be alternatively interpreted as global

investors that both purchase and sell across markets. The intuitions and model implications

are unchanged when a representative global investor replaces the firm in the model. I use

the model to illustrate the transmission of shocks across markets, the alignment of LOOP

violations, and the response of issuance capital flow. In addition, the model delivers testable

predictions that are examined in Section 1.6.

1.4.1 Firm decision

In this static model, a representative price-taking firm chooses the currency of debt denom-

ination given a fixed debt amount D that needs to be raised. It faces two prices. First,

the firm observes a credit spread di�erential between euro-denominated bonds and dollar-

denominated bonds denoted as c. Recall from the earlier example, c is ≠74 basis points,

meaning that AT&T’s euro bond credit spread is 74 basis points tighter than the dollar bond

spread. If CIP holds, AT&T would save 74 basis points by issuing in EUR and swapping the

issuance to USD with currency hedge instead of directly issuing in USD. This is because CIP

condition implies that the currency hedging cost is entirely accounted for by the interest rate

di�erential. However, when CIP fails, the firm faces additional hedging cost. It observes a

CIP basis, denoted b. As defined earlier in Section 1.3, a negative b means that it is expensive

to swap EUR to USD. Suppose b = ≠50, this means that AT&T must pay 50 basis points to

swap its euro bond issuance proceeds to dollar. E�ectively, AT&T observes a net issuance

cost saving of c ≠ b = 25 basis points by issuing in EUR instead of USD. Given this cost

saving and absent any firm capital structure frictions, AT&T would choose to conduct its

entire debt capital raising in EUR instead of USD. That is, the firm chooses dollar issuance

share µ to minimize cost
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min
µ

Q

ca ≠c¸˚˙˝
credit spread di�.

+ b¸˚˙˝
CIP/hedging cost

R

dbµD

where D is the total amount of debt that needs to be raised.

Two predictions emerge immediately from this simple setup. First, if the net deviation (the

e�ective credit spread di�erence) is negative, c≠b < 0, then the firm chooses µ = 0, otherwise

it chooses µ = 1. More generally stated, issuance capital flow responds to the net deviation

of credit and CIP violations. Second, if the total amount of debt D is large, then c ≠ b is

driven to zero in general equilibrium. That is, the two deviations are perfectly aligned when

the capital available for cross-market arbitrage is large.

In this model, I assume for simplicity that UIP holds (to focus on CIP), firms always currency-

hedge when issuing abroad, and that there are no capital structure frictions to prevent firms

from issuing all of its debt in one currency versus another. These assumptions can all be

relaxed without changing the main results. I provide an extended model in the appendix that

provides an interior solution to µ and yield similar predictions. For expositional purpose, I

continue with the simple version of the firm’s decision.

1.4.2 Credit markets

While the above setup generates simple intuitions for the alignment and elimination of the

two types of LOOP violations, understanding how deviation in one market spills over to the

other requires endogenizing the two violations. We start with endogenizing c.

There are two credit markets (EUR and USD bond markets), and three main credit market

players: active local investors in Europe, active local investor in the U.S. and the represen-

tative firm from above that has access to both debt markets.

Local investors U.S. active investors specialize in the investment of corporate bonds denom-

inated in dollars, and European investors only invests in EUR denominated bonds. Investors
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borrow at the domestic short rate, ri, and purchase bonds with a promised net yield of Yi,

where i = EUR or USD. The two bonds have identical default probability fi, loss-given-

default L. The payo� of bonds has a variance of V , which is treated as an exogenous constant

in the model for tractability12. U.S. and European investors have a mean-variance preference

with identical risk tolerance · and choose investment amount Xi to solve the following

max
Xi

5
Xi ((1 ≠ fi)Yi ≠ fiL ≠ ri) ≠ 1

2·
X2

i V
6

(1.4)

which has the solution Xi = ·
V
((1 ≠ fi)Yi ≠ fiL ≠ ri) for i = EUR or USD.

Market clearing conditions In addition to active local investors, there are exogenous euro-

relative-to-dollar bond demand Ác, perhaps representing demand shocks that originate from

Quantitative Easing or preferred-habitat investors with inelastically demands such as passive

pension funds. The sources of exogenous Ác shocks are discussed in Section 4. Combining

the demand with firm debt issuance supply defined earlier, the market clearing conditions

for the dollar and euro credit markets are

XU = µD (1.5)

XE + ‘c = (1 ≠ µ)D. (1.6)

We can rewrite the di�erence between the two promised yields as a credit spread di�erence

and interest rate di�erence, YE ≠YU © c+(rE ≠ rU). Combining the investor demands with

the market clearing conditions and applying first-order taylor approximation for fi around

0, we can express credit spread di�erential as:
12A Bernoulli default distribution with probability fi, loss-given-default L and promised yield Y implies that
V =fi (1 ≠ fi) (Y + L)2. The solution to the investors’ problem would contain a quadratic root. To keep
the model tractable, V is assumed to be an exogenous constant and the same for both EUR- and USD-
denominated bonds.
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c¸˚˙˝

credit spread

di�erential

(eu-us)

= V

·¸˚˙˝

elasticity of

bond demand

Q

ca (1 ≠ 2µ)D
¸ ˚˙ ˝

relative debt issuance

≠ Ác¸˚˙˝
exog. eur bond demand

R

db

¸ ˚˙ ˝

net bond supply

eur relative to usd

(1.7)

c represent a LOOP violation in credit since the default probability and loss given default

are identical for the two bonds. The intuition is that c is determined by the net supply and

demand imbalances between the two markets multiplied by the elasticity of bond demand.

The cross-currency issuer has limited ability to influence the relative credit spread. If it

chooses all of its debt to be issued in euro instead of dollar, i.e. µ = 0, then the relative

credit spread in euro would widen (c increases) as a result of the additional debt supply. The

issuer’s impact is limited, however, by the size of its total debt issuance D.

1.4.3 Currency swap market

Next, I endogenize CIP basis b and describe the dynamics of the currency swap market. The

intuition is essentially similar to that of credit LOOP violation, but instead of risk preference

that determines the slope of demand curve, arbitrage in CIP is limited by intermediary

collateral and capital constraints. There are two main players in this market: currency swap

traders and issuers.

Currency swap traders Currency swap traders choose amount of capital to devote to

either CIP deviations, denoted as b, or alternate investment opportunity with profit of f (I),

where I is the amount of investment. b is defined in the same way as in Section 3.
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The arbitrageur has to set aside a haircut H when it enters the swap transaction to arbitrage

CIP violation. Following Garleanu and Pedersen (2011), the amount of haircut is assumed to

be proportional to the size s of the swap position, H = “|s|. Therefore, the capital devoted

towards alternative investment is I = W ≠ “|s|. Swap traders has total wealth W and solve

the following

max
s

bs+ f (W ≠ “|s|)

which generates the intuitive result that the expected gain from conducting a unit of ad-

ditional CIP arbitrage is equal to marginal profitability of the alternative investment, b =

sign[s]“f Õ (W ≠ “|s|). A simple case is when the alternative investment activity is quadratic,

f (I) = „
0

I ≠ 1

2

„I2. In this case, b = sign[s]“ („
0

≠ „W + “„|s|).

I make an additional simplifying assumption that CIP deviation b disappears when there is

no net demand for swaps, but as soon as there is net demand for swaps, b becomes non-zero.

This assumption is equivalent to stating „
0

„
= W , which means that arbitrageur has just

enough wealth W to take advantage of all positive-NPV investment opportunities in the

alternative project f (I). Simplifying with this assumption remove the constant intercept

term in the equation for b, and we obtain that CIP deviation is proportional to swap trader

position, b = „“2s. I further normalize „ = 1. This model of swap traders is analogous to

that of Ivashina, Scharfstein, and Stein (2015) which models the outside alternative activity

of the trader with a log functional form instead of the quadratic form used here.

Equilibrium The representative firm from earlier relies on FX market to hedge its foreign

debt issuance. It swaps its euro issuance proceed amount D (1 ≠ µ) to dollar. In addition,

there are exogenous shocks to CIP basis Áb that represent other non-issuance-related use of

FX-swaps. The sources of shocks are discussed in Section 4.

Market clearing condition of the FX swap market implies that the equilibrium level of CIP

deviation satisfies
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b¸˚˙˝
CIP basis

= ≠ “2

¸˚˙˝

haircut

on collateral

(D (1 ≠ µ) + Áb)¸ ˚˙ ˝

net hedging demand

(swap euro to dollar)

(1.8)

The negative sign arise since the swap trader takes the opposite position of the hedging

demand. CIP deviation b is proportional to net hedging demand multiplied by the elasticity

of supply, which is determined by the collateral margin. Higher haircut “ amplifies the

impact of hedging demand, but without net hedging demand, b does not deviate from zero.

One additional insight on the role of the issuer in the above setup is that debt issuer hedging

demand D (1 ≠ µ) does not have to have the same sign as other exogenous hedging demand

Áb. If ‘b has the opposite sign as and larger in magnitude than the issuer demand, the issuer

would incur an additional benefit (instead of cost) through hedging. In this case, the firm

would contribute to the elimination of CIP deviation and act as a supplier of liquidity in the

currency forward market.

An extension of the model with natural hedges hedging using the firm’s real asset and

cashflows in the foreign currency) and partial hedging is analyzed in the appendix, but it

does not alter the main predictions in the model.

1.4.4 Summary of equilibrium conditions and predictions

The three equilibrium conditions are summarized below:

1. Credit spread di�erential (EU-US):

c¸˚˙˝
credit deviation

= V

·¸˚˙˝
elasticity of
bond demand

((1 ≠ 2µ)D ≠ Ác)¸ ˚˙ ˝
net bond supply

in EUR rel. to USD
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2. CIP basis (negative means more costly to swap into USD):

b¸˚˙˝
CIP basis

= ≠ “2

¸˚˙˝
elasticity of

fx swap supply

(D (1 ≠ µ) + Áb)¸ ˚˙ ˝
net hedging demand
to swap euro to dollar

3. Firm choice of dollar issuance ratio:

µ =
Y
]

[
1 if c ≠ b > 0 cheaper to issue in dollar
0 if c ≠ b < 0 cheaper to issue in euro and swap to dollar

With these equilibrium conditions, we can analyze the transmission of Ác and Áb shocks from

one market to the other. A positive euro credit demand shock Ác directly reduces credit

spread di�erential c and net deviation c ≠ b. In response to the falling cost of issuing in

euro, the firm switches its dollar bond issuance to euro bond issuance, leading to a decrease

in the dollar issuance ratio µ. As the firm issues more in euro and swaps the bond proceed

back to dollar, the hedging demand then endogenously raises the cost of FX swapping from

EUR to USD, resulting in a decrease in b. Thus, a credit demand shock is transformed into

a deviation from CIP. c and b both decrease due to a positive Ác shock.

Conversely, a positive demand shock for dollar liquidity, Áb, can also spillover to the credit

market. An increase in the exogenous demand for swapping euro into dollar directly reduces

b, raising the hedging cost of issuing in euro. As the e�ective cost of euro issuance c ≠ b

increases, the firm issues more in dollar, raising µ. This increase in supply in turn widens

the credit spread in dollar, reducing c. Therefore, the shock to CIP is transmitted to credit

market. As with the Ác shock, an Áb shock also induces c and b to commove in the same

direction.

While these transitions occur discretely at the boundary when c≠b flips sign, a small amount

of friction to the firm’s capital structure would generate a continuous spillover of deviations

as shown in the appendix.

The above analysis can be stated more formally as the following propositions.

31



Proposition 1. (Spillover of deviations) If Ác ø, then c ¿ ∆ µ ¿ ∆ b ¿. If Áb ø, then

b ¿ ∆ µ ø ∆ c ¿. Shocks to one market are transmitted to the other through capital flows.

Credit spread di�erential c and CIP deviations b respond in the same direction to either

credit demand shocks Ác or FX swap demand shocks Áb. Dollar issuance share µ responds

di�erentially to the two shocks.

While Proposition 1 has a clear prediction for the signs of c and b, the sign of µ is ambiguous

without precisely distinguishing whether the shock originates from Ác or Áb. However, the

correlation between µ and the net deviation c ≠ b is unambiguous and testable, which leads

to the following prediction.

Proposition 2. (Issuance flow and net deviation) (c ≠ b) ¿ =∆ µ ¿ Cheaper net cost of

issuance in euro induces more issuance flow in euro and less issuance in dollar.

Another related prediction that follows from the above is that more cross-market arbitrage

capital reduces the net deviations and the two deviations are perfectly aligned in the limit.

Proposition 3. (Arbitrage capital and aligned deviations)

ˆ|c≠b|
ˆD

< 0 and lim
DæŒ

c ≠ b = 0.

An increase in the total amount of debt issuance decreases the absolute value of the net

deviation. As the total amount of debt increases towards infinity, the two deviations become

identical.

Proposition 4. (Limits to arbitrage spillover) Additional comparative statics of the model

are summarized in the following table:

FX haircut “ ø Credit investor risk tol. · ø bond risk Vø

|c| ø ¿ ø

|b| ø ¿ ø
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Proposition 4 suggests that limits of arbitrage are carried over from one market to the other.

For instance, while the amount of haircut on FX swap trades, “, directly a�ects CIP basis b,

“ also a�ects the credit spread di�erential c indirectly through the cross-market arbitraging

firm. Similarly, the risk tolerance of localized bond investors that do not engage in FX swaps

also a�ects the level of CIP deviation through capital flow. Thus, limits of arbitrage can

spill over to a completely di�erent market.

On the surface, the prediction of aligned deviation might appear to be similar to implications

of intermediary-based asset pricing models that have a single intermediary trading in multiple

markets. To distinguish my explanation from those of intermediary-based asset pricing, I

discuss the falsifiable alternative below.

1.4.5 Falsifiable alternative

The model developed above is also useful for assessing alternative explanations of the align-

ment between the two LOOP violations. One alternative hypothesis relies on intermediary-

based asset pricing: deviations might be correlated when there are fluctuations in the binding

constraints for a common intermediary that operates in both markets. That is, arbitrageurs

face the same constraint to arbitrage in credit and CIP, and a shock is delivered to this

constraint. An equivalent way of stating this hypothesis in the framework of my model is to

set “2 = V
·

© ⁄ and suppose there is a shock to ⁄.

There are two reasons for why this alternative hypothesis would not explain the alignment

of the credit and CIP violations. First, absent of net demand imbalances in each market,

changes in ⁄ would not cause deviations to occur; it would only amplify the e�ect of demand

imbalances. Second, while the absolute value of deviations would be correlated through

intermediary capital, i.e. ˆ|b|
ˆ⁄

Ã ˆ|c|
ˆ⁄

, changes in ⁄ would not explain the high alignment in the

direction and magnitude of the deviations in b and c. Fluctuations in the common constraint
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⁄ are therefore distinct from a spillover of deviation and frictions from one market to the

other. Furthermore, one would not expect to observe changes in capital flow as represented

by µ under this alternative explanation.

1.5 Discussions

In this section, I discuss the sources of shocks, limits to arbitrage in each market and why

firms are natural cross-market arbitrageurs. The schematics in Figure 1.7 summarizes the

discussion.

1.5.1 Source of Ác and Áb shocks

1.5.1.1 Ác shocks

• Central bank QE Large asset purchasing programs by central banks have contributed

to the displacement of traditional government debt investors in search of high-yielding

assets such as corporate bonds. The di�erential timing and sizes of ECB and Fed

quantitative easing programs likely changed the relative demand for credits in Europe

and the U.S., resulting in changes in Ác.

• Passive investor portfolio changes Shifts to passive institutional investor’s bench-

marks and portfolios can bring large changes to the demand for assets. Portfolio

benchmark changes can be distinct from shifts in the investment of active investors

presented in the model due to their slow decision making process and a number of

intuitional constraints. For instance, Japan’s Government Pension Investment Fund,

which holds US$1.2 trillion in asset and serves as the most frequently used portfolio

benchmark for other Japanese-based asset managers, decided in October 2014 to re-

duce its domestic bond holding from 60% to 35% and increase its allocations to stocks
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and foreign assets. This large, one-time portfolio shift di�ers from that of active credit

specialists who decide on bond investments based on credit risks at higher frequencies.

• Regulatory-driven demand shocks Portfolio shifts can also be driven by regulatory

reforms. One such regulatory change occurred in the United Kingdom, where the

2005 Pension Reform Act forced pension funds to mark their liabilities to market by

discounting them at the yield on long-term bonds. This reform significantly increased

the demand for long-term securities (Greenwood and Vayanos 2010).

• Credit-market sentiments A number of papers have analyzed the role of credit

sentiment on asset prices and the real economy (López-Salido, Zakrajöek and Stein

[2015], Bordalo, Gennaioli, and Shleifer [2016], Greenwood, Hanson, and Jin [2016],

Greenwood and Hanson [2014]). A shock to the relative credit demand between bond

markets can arise if credit sentiments di�erentially impact di�erent markets. One such

episode occurred around the time of the Bear Stearns collapse, when the residualized

dollar credit spread widened relative to the euro credit spread as fears of US credit

market meltdown heightened.

1.5.1.2 Áb shocks

• Dollar liquidity shortage Since the crisis, non-U.S. banks, in need of short-term

dollar funding for their U.S. operations, have become active borrowers of dollar through

FX swaps13. A particularly striking episode of demand shock for FX swaps into dollar

is during the Eurozone Sovereign Crisis in 2011-2012. Dollar money-market funds

stopped lending to European banks in of fear of fallouts from the sovereign crisis. The
13Banks do not all have dollar liquidity shortage (i.e. Áb could also be negative). For instance, in Australia,
banks need to fund abroad their long term needs as the base of investors lending long-term is small. They
borrow in USD or EUR and swap it back in AUD. CIP deviations in AUD indicates that it is more expensive
to swap into AUD instead of the other way around (due to the negative Áb shock). This demand is partially
captured in my data on corporate debt issuance since the Australian banks fund both through long-term
debt market and short-term money market.
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swapping of deposits and wholesale fundings by banks are typically concentrated in

short maturities.

• Money market reform in the U.S. that took e�ect in October 2016 has reduced the

availability of wholesales dollar funding to foreign banks and increased their reliance

on funding via currency swaps (Pozsar and Smith 2016).

• Structured note issuers also utilize currency swaps in the hedging of ultra long-

dated structured products whose payo� depends on exchange rate at a future date. The

convexity embedded in these notes produced enormous hedging needs in FX forwards

under certain market conditions for AUD, JPY, and other Asian or Pacific currencies.

In particular, the hedging of Power Reverse Dual Currency Notes by issuers had been

an important driver of currency basis in AUD, JPY and other Asian currencies.

• Regulatory-driven hedging demands New regulatory requirements for the hedging

of previously under-hedged exposures also have been a factor driving the CIP basis.

Solvency II Directives on E.U. and U.K. insurance companies demanded greater usage

of longer-dated cross-currency basis swaps to reduce foreign currency exposure of in-

surance firm asset holdings14. The Solvency II rules started with initial discussions in

2009 and finally took e�ect in 2016. Regulatory reforms are generally slow and filled

with uncertainty during the interim.

• Central bank policies European banks with EUR excess liquidity have been able to

take advantage of the higher Interest on Excess Reserve (IOER) rate o�ered by the

Fed by lending their EUR through FX swap and use the resulting USD to lend at

the IOER. As of September 2016, foreign bank o�ces in the U.S. have a total excess

reserve at the Fed of $766 billion, of which $429 billion15 are funded through Fed Fund

and Repo agreements as a part of the IOER-Fed Fund arbitrage.16 This leaves the
14Previously, insurance firms partially hedged using rolling short-dated FX forwards
15Flow of Funds Table L.112
16Foreign bank branches can fund at the lower Fed Fund rate and lend at the IOER without paying FDIC
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remaining $337 billion as currency-swapped liabilities from abroad. This motive is

best described with a quote from an European bank executive:

In response to the ECB’s move to adopt negative rates on bank deposits
[...] Rabobank Group, one of Europe’s best-capitalized banks, said it has
withdrawn a total of Ä40 billion in recent months and moved it to other
large central banks like the Bank of England, the Swiss National Bank and
the Federal Reserve."At least there, you don’t have to pay to park your
money," said Chief Financial O�cer Bert Bruggink. (WSJ, August 2014)

The policies at other central banks also had impacts on CIP violations. For example,

the termination of ECB’s sterilization programs reduced the amount of High Quality

Liquid Asset for European banks and were a contributing factor to the widening of the

CIP violation in 201417.

• Hedging demand from investors I do not consider this as an Áb shock since the

issuers in my model can be broadly interpreted as both sellers and buyers of bonds.

Another reason why investors are not a major contributor to long-term CIP violations

is that they often hedge FX risk using rolling short-dated forwards18.

1.5.2 Limits of arbitrage

To understand why the credit and CIP violations exist, we must understand who are the

arbitrageurs in each market and the constraints that they each face. These constraints
assessment cost since they are uninsured. This is known as the IOER-Fed Fund arbitrage for foreign banks.

17ECB’s Security Market Program that started in 2010 and the Outright Monetary Transaction program that
started in 2012 both were initially sterilized purchasing programs. Sterilization encouraged the use of ECB
excess reserved and provided a way for banks to obtain HQLA (High Quality Liquid Asset) needed to fulfill
LCR (Liquidity Coverage Ratio) requirements. The end of ECB sterilization in 2014 meant that European
banks needed to look for other HQLA to replace around $200 billion of ECB excess reserve. Therefore, these
banks had to either invest in Euro assets or swap into other currencies and park their cash at the Fed or
other central banks.

18Most benchmark indices calculate total returns on foreign sovereign and corporate bonds either as unhedged
returns or hedged returns using 1-month rolling FX forwards. Bank of America Merrill Lynch, Barclays, and
Citi each state in their index methodology that 1 month rolling forwards are used in the calculation of total
returns for currency hedged indices. Longer horizon FX hedges are sometimes used but generate tracking
errors from benchmark for investors. Of course, the long- and short- dated CIP basis are integrated to a
certain extend as discussed below.
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are represented in the model by the elasticity of supply and demand curve, “2 and V
·
, but

they take on realistic interpretations in practice. The main conclusion from the following

discussion is that post-crisis regulatory restrictions and intermediary frictions have severely

hindered arbitrage in the FX and credit markets each on their own, but capital flows (from

either issuers or investors) bundle together the two deviations.

1.5.2.1 Why CIP deviations cannot be eliminated alone?

Unlike the textbook notion of costless arbitrage, eliminating CIP violations in practice is

a very capital-intensive transaction. Suppose one were to arbitrage the CIP violation in

EURUSD, when reduced to the simplest form, even deploying the strategy on CIP deviations

at the 1-day horizon requires the delivery of large amount of cash in dollar and receiving a

large amount of cash in euro today and reversing the transaction tomorrow. The problem

is that the arbitrageur needs to 1) fund this large amount of dollar in cash and 2) invest

the large amount of euro that is received. If one were able to do (1) and (2) costlessly at

either the Libor rate (or the Overnight Index Swap rate), then CIP deviations would easily

be eliminated. Below I discuss and rule out possible arbitrageurs:

• Banks Traditionally, depository institutions’ Asset Liability Management desks elim-

inated CIP deviations by flexibly lending out their balance sheets as needed. However,

few institutions are able to do so today in the post-crisis environment with tightened

balance-sheet constraints. On the contrary, as discussed earlier, banks had become

a net contributor to CIP violation as they themselves rely on FX swaps to fund in

di�erent currencies.

• Hedge funds are often mistakenly viewed as a source of arbitrage capital for elimi-

nating CIP violation. In reality, hedge funds only integrate the term structure of the

currency forwards but provide little mitigation of the outright level of deviation from
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CIP. This is because outright arbitrage of CIP is a capital-intensive transaction that

requires the physical delivery of cash. It is impossible for hedge funds to obtain fund-

ing at Libor or OIS rates19. The key point is that low-risk, balance sheet intensive

activities are costly to conduct. Instead, hedge funds transmit shocks across the ma-

turity curve of CIP deviations by entering into forward starting cross-currency basis

swaps that do not have physical exchanges of notional, and they unwinds the trade

well-ahead of the actual delivery of cash. This form of term structure integration can

be modeled similarly as Vayanos and Vila (2009) and Greenwood and Vayanos (2014).

• Debt issuers and investors The ability to borrow and to invest large amount of cash

in a deep market is a defining characteristic of the debt capital markets. Therefore, It is

natural to expect issuers and investors to play a large role in eliminating CIP violation.

This is precisely why CIP violation is linked to corporate credit spread di�erential (and

sovereign spread di�erentials to some extent20).

More stringent regulatory requirements have also raised the cost of arbitraging CIP devia-

tions. In other words, “ has increased. Many of the regulatory change came about because

of large losses by certain financial institutions. In this sense, the margin on trades arose

endogenously a la Geanakoplos (2010) and further exacerbated the violations. Prior to 2008,

many of the FX derivative instruments related to forward exchange rate required little col-

lateral and margining, since then, the trading of these derivatives are much more prohibitive

in balance sheet requirements. Specifically, Supplementary Leverage Ratio has increased the

cost of holding low-risk positions. Mandatory margining by di�erent local regulator and

other Basel III rules has also increased the cost of trading FX swaps. An alphabet soup
19Alternatively, using equity capital from investors to arbitrage CIP earns unattractive returns
20While the government bond market is more liquid, developed market sovereigns seldomly issue in foreign
currencies with the same covenants as their domestic bonds. Sovereigns can also choose to default on foreign
bonds without defaulting on domestic bonds. Investors would face di�erent sovereign risk if they were to
bundle together the arbitrage of CIP violation with government debt investments. On the other hand, bonds
issued by corporates and supranational in multiple currencies have the same underlying credit risks across
denominating currencies, therefore, corporate debt is a natural choice for facilitating CIP arbitrage.
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of di�erent funding costs has also emerged21 in response to post-financial-crisis regulatory

and market environment. Relatedly, Levich (2012) finds that trading in over-the-counter

currency forward has declined in favor of currency futures. In short, there are hefty costs to

low-risk, low-return projects.

1.5.2.2 Why credit spread di�erential cannot be eliminated alone?

With a distortion in CIP, credit spread di�erential along currency lines cannot be eliminated

unless issuers or investors forgo currency hedging. A simple long-short strategy in the bond

market alone would incur large amount of currency mismatch. Given the high levels of FX

volatility (e.g., EURUSD annualized volatility has averaged 10% since 2004), few investors

and issuers would forgo the hedging to earn the credit spread di�erential. Hedging for the

FX exposure, however, requires arbitrageurs to be exposed to CIP violations. All of the

constraints in the FX forward market are thus carried over to the credit market.

Furthermore, bond market liquidity conditions have worsened in recent years. The shift

from principal-based to agent-based market-making by dealers has increased the cost of

transacting in large sizes and lengthened the amount of time it takes to execute large trades.

Regulatory rules a�ecting funding have also contributed to a reduction in market liquidity,

as emphasized in Brunnermeier and Pedersen (2009).

1.5.3 Firms as natural cross-market arbitrageurs

Having discussed the constraints and the lack of arbitrageurs in the credit and CIP market

each on their own, we turn towards understanding cross-market arbitrageurs between credit
21These funding costs include CVA (Credit Valuation Adjustments) that accounts for counter-party default
risk, KVA (Capital Valuation Adjustment) imposed by banks on clients to account for the lifetime capital
consumption of individual trades, MVA (Margin Valuation Adjustment) that adjusts for interest earned
on the initial margin to reflect interest on investments of similar risk elsewhere, and FVA (Funding Valu-
ation Adjustment) that adjusts for di�erential funding rates associated with derivative collateral posting.
Collectively these are known as XVAs.
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and CIP. While the cross-market arbitrageurs in the model can be interpreted as global

investors as well as firms, I focus my analysis on firms for two reasons. First, bond issuance

data is easily obtainable. This data allows the testing of model predictions on capital flow,

shock transmissions, and deviation elimination. Second, firms are natural cross-market ar-

bitrageurs that can better withstand noise trader shocks and more easily overcome limits

of arbitrage problems raised by Shleifer and Vishny (1997). This point had been argued by

previous papers including Baker and Wurgler (2000), Greenwood, Hanson, and Stein (2010),

and in particular, Ma (2015) explores the role of firms as cross-market arbitrageurs in their

own equity and debt securities.

To observe issuance flow as arbitrage capital, it must be the case that investors are not

supplying su�cient arbitrage capital. Why might investors be constrained in performing the

arbitrage? While many institutional investors such as pension funds, life insurance companies

and endowments have diversified exposure to bonds in di�erent currencies, they often have

clear mandates on their benchmarks and currency exposure. The rigidity of their mandates

allow for little discretion in their portfolio allocation choice. They are also often limited in

their usage of derivatives due to the lack of expertise and regulatory restrictions. Mutual

funds and hedge funds in fixed income also typically follow benchmarks. Unrestricted global

funds are limited in size. For instance, global retail bond fund holds only a total of Ä55

billion of EUR corporate bonds22. The small number of hedge funds that do engage in the

active trading of foreign credit markets face balance-sheet constraints as discussed earlier

and high transaction costs in long-short strategy. This is because a long-short strategy

requires conducting repo in one market and reverse-repo in the other market to fund the

bond positions while also engages in FX hedging. Limits to arbitrage associated with investor

redemption and short investment horizon as highlighted in Shleifer and Vishny (1997) pose

a challenge to all specialized funds that perform arbitrage. In short, dedicated investors

22EPFR data
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simply do not have enough capital or risk tolerance to digest large demand shocks.

Firms are natural arbitrageurs to exploit capital-intensive, slow-convergence arbitrage op-

portunities. They have the ability to bear noise-trader risk, withstand large mark-to-market

losses and endure long investment horizons. Because firms have stable cash flows and do not

face redemptions, making a one time issuance and hedging decision is equivalent to holding

the arbitrage trades to maturity. The standard deviation of monthly issuance flow between

the Eurozone and the U.S. is in excess of $6 billion. This is equivalent to the creation of a

sizable hedge fund fully dedicated to exploiting the two LOOP violations every month.

1.5.3.1 Evidence from textual analysis of SEC filings

I conduct a textual analysis of SEC filings by S&P 500 firms that is indicative of the pervasive

use of currency-hedged debt issuance. Figure 1.8 shows the result of this analysis. I graph

the fraction of 10K filings with mentions of words relating to 1) “debt”, 2) “exchange rate”,

3) “hedging” and 4) “derivatives” in the same sentence. The restriction of having all four

groups of words to appear in a single sentence likely under-estimates the actual disclosure of

currency-hedged issuance since the disclosure could be relayed in multiple sentences. While

this proxy might be imperfect, it nonetheless indicates that a substantial fraction of S&P 500

firms had engaged in currency-hedged issuance in recent years. The sharp rise in this proxy

from 2007 to 2010 corresponds to the period when deviations in the credit and CIP markets

first begin to widen. This analysis of SEC filings shows the pervasiveness of firms acting as

cross-market arbitrageurs between the credit market and CIP market in recent periods23.

23Figure 1.8 also shows that a smaller fraction of firms have indicated currency-hedged issuance as early as
2004 even though both the CIP violation and the aggregate credit spread di�erentials were small prior to
2007. This is possibly explained by issuer-specific idiosyncratic credit spread di�erentials that did not appear
in the aggregate.
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Figure 1.8: Textual analysis of FX-hedged foreign debt issuance for S&P 500 firms
This figure presents a textual analysis of SEC filings for S&P500 firms that had indicated
cross-currency debt issuance in their annual 10-K filings. Panel A shows three examples
of firms that has mentioned in their SEC filings that they engaged in currency-hedged
foreign debt issuance. Panel B presents the fraction of SEC 10K filings of S&P500 firms
with mentions of words relating to 1) “debt”, 2) “exchange rate”, 3) “hedging” and 4)
“derivative” in the same sentence by year.

Panel A: Examples of SEC filings with mentions of currency-hedged debt issuance

10K:	“We	have	entered	into	mul5ple	cross-currency	swaps	to	hedge	
our	exposure	to	variability	in	expected	future	cash	flows	that	are	
aAributable	to	foreign	currency	risk	generated	from	the	issuance	of	our	
Euro,	Bri5sh	pound	sterling,	Canadian	dollar	and	Swiss	Franc	
denominated	debt.	”	

10Q:	“In	the	first	quarter	of	2015,	the	Company	issued	€2.8	billion	of	
Euro-denominated	long-term	debt.	To	manage	foreign	currency	risk	
associated	with	this	issuance,	the	Company	entered	into	currency	
swaps	with	an	aggregate	no5onal	amount	of	$3.5	billion,	which	
effec5vely	converted	the	Euro-denominated	notes	to	U.S.	dollar-
denominated	notes.”	

10K:	“To	hedge	our	exposure	to	foreign	currency	exchange	rate	risk	
associated	with	certain	of	our	long-term	notes	denominated	in	foreign	
currencies,	we	entered	into	cross-currency	swap	contracts,	which	
effec5vely	convert	the	interest	payments	and	principal	repayment	of	the	
respec5ve	notes	from	euros/pounds	sterling	to	U.S.	dollars.”		

Panel B: Fraction of 10K filings with mentions of currency-hedged debt issuance
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1.6 Additional empirical results

In this section, I take the model to the data. I first describe the issuance data, the mea-

surement of net deviations, and patterns in the misalignment. Then I present supporting

evidence for the model predictions.

1.6.1 Data and definition

1.6.1.1 Issuance flow µ

To test the model predictions on cross-currency capital flow, I analyze the amount of corpo-

rate debt issued by public firm in the seven free-floating funding currencies. Debt issuance

amount and other bond characteristics are obtained from Thompson One SDC Platinum

data set. I define the monthly bilateral issuance flow between two currency regions as the

amount of debt issuance by foreign firms in dollar minus the amount of debt issuance by

U.S. firms in that currency expressed as a percentage of total issuance. For instance, the

issuance flow between Europe and the U.S. is expressed as

issPctEUæUS = EU firm issuance in dollar - US firm issuance in euro
total issuance in dollar & euro .

This measure of issuance flow proxies for µ in my static model.

1.6.1.2 Net deviation (c ≠ b)

I define net deviation as the di�erence between the residualized credit spread di�erential and

CIP violation, i.e. c≠b. The easiest way to construct the net deviation is to directly subtract

CIP deviations from the residualized credit spread di�erential. However, the maturity of FX

forward used for hedging each individual bond is di�erent. To construct a measure of the net

deviation, I first adjust the swap yield curve by the corresponding CIP deviation maturity
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curve before linearly interpolating to each individual bond’s maturity in calculating the

bonds’ e�ective credit spreads. Then I conduct cross-sectional regression as specified in

Equation 1.1 using this e�ective credit spread as the dependent variable. I take the currency

fixed e�ects as estimates of the net deviation that corrects for maturity mismatches between

FX forwards and bonds. This procedure produces estimates of c≠ b that is not too di�erent

from directly subtracting the 5-year CIP deviation from the credit spread di�erential.

Misalignment of LOOP violations The two violations are misaligned when the size of

net deviation is large or when their correlation is low. Figure 1.9 shows the net deviation

time series for each of the six currency pairs (relative to USD). Apart from the financial

crisis period, the net deviation is much smaller in magnitude in comparison to either CIP

deviation or credit spread di�erential alone. This indicates that the two violations in credit

and CIP are generally well aligned in magnitude. The misalignment, however, is larger

during the financial crisis. This is consistent with the model predictions that larger demand

shocks in the FX and credit market, more risk aversion, and less debt issuance lead to larger

misalignment between c and b. Credit spread di�erential had higher spikes during the peak

of the crisis than CIP deviation for most currencies. This is in part because CIP deviations

were eventually capped when the U.S. Federal Reserve established swap lines with other

central banks for the lending of dollar funding to foreign institutions. On the other hand,

credit market distortions were exacerbated during the financial crisis by the lack of liquidity

in fixed income trading.

The net deviation represents the e�ective credit spread di�erential accounting for the hedging

cost that firms observe. Thus, the net deviation time series make it obvious that while yen

credit spread is much more compressed related to dollar as presented earlier in Figure 1.5,

firms have little net incentive to issue in yen during most of the non-crisis period.
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Figure 1.9: Net deviation
This figure presents the net deviation or the e�ective residualized credit spread (credit spread
di�erentials minus CIP deviations with matching maturities) for EUR, GBP, JPY, AUD,
CHF and CAD relative to USD. Vertical bars (grey) represent the 95% confidence interval
for the estimated net deviation. To construct the net deviation, I estimate the following
cross-sectional regression at each date t

Sadj
it = –ct + —ft + “mt + ”rt + Áit

where Sadj
it is the yield spread over the CIP-adjusted swap curve for bond i that is issued in

currency c, by firm f , with maturity m and rating r. The CIP-adjustment is calculated by
subtracting maturity-specific CIP deviation from each bond’s yield spread. The net deviation
or e�ective residualized credit spread for currency c relative to dollar credit spread is cal-
culated as –̂c,t≠–̂usd,t. Details of net deviation’s construction are provided in Section 1.6.1.2.
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1.6.2 Prediction 1: Spillover of deviations

I test the spillover of deviations through the channel of debt issuance by analyzing the

impulse responses of credit spread di�erential c, CIP violation b, and issuance flow µ to

Ác and Áb shocks. In addition, I provide interpretation of the time series magnitudes and

lead-lags relationships.

1.6.2.1 VAR analysis

VAR analysis is useful in this context since the shocks to credit and CIP can occur simulta-

neously and transmission could be slow. As discussed in Section 1.5, there are many source

of Ác and Áb shocks. These shocks can occur concurrently and might be anticipated long

before the actual delivery, e.g. gradual regulatory changes. Furthermore, arbitrage capitals

provided by non-specialized agents are often slow to react to market distortions due to inat-

tention and institutional impediments to immediate trade (Du�e 2010). In this context,

cross-currency issuance transmits the shocks gradually.

Figure 1.10 presents the orthogonalized impulse response functions with shocks to credit

and CIP. The impulse response in this figure applies Cholesky Decomposition using a strict

ordering of variables. I assume that issuance respond with a lag to both c and b, and b

respond with a lag to c. That is, I estimate the following,
S

WWWWWWU

1 0 0

acµ 1 0

abµ abc 1

T

XXXXXXV

S

WWWWWWU

µt

ct

bt

T

XXXXXXV
= B

S

WWWWWWU

µt≠1

ct≠1

bt≠1

T

XXXXXXV
+

S

WWWWWWU

Áµ,t

Ác,t

Áb,t

T

XXXXXXV
.

Proposition 1 states that an exogenous increase in the euro credit spread c (less demand of

euro credit, Ác ¿) raises dollar debt issuance µ and currency basis b (less FX swapping cost

from euro to dollar) as firms avoid the higher credit spread in EUR and issue more in USD.

The first row of Figure 1.10 confirms this model prediction. Upon a shock that increases
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c(top left), both b (top middle) and µ (top right) are raised. Credit spread di�erential then

gradually declines after the initial shock as do µ and b.

The slow responses of issuance flow µ and CIP deviation b to an Ác shock are reflective of the

slow moving nature of corporate financing decisions. The under-reaction of price movement

in the market not directly a�ected by the shock, FX market in this case, is also a prediction

of cross-market price dynamics with slow moving capital in a model developed in Greenwood,

Hanson, and Liao (2016).

The bottom row presents the impulse responses with an exogenous increase in b that signals

an increase in the cost of swapping dollar to euro. We observe the exact opposite dynamics

in the second row as predicted by Proposition 1. Cost of swapping into euro initially is

raised then gradually declines over time (bottom middle). The slow moving capital e�ect is

also easily seen. Issuance flow initially shifts towards euro (bottom right) to take advantage

of the lower cost of swapping into dollar before gradually normalizing over the next nine

months. Credit deviations also increase gradually before plateauing around 6 months after

the shock (bottom left).

Since it is ambiguous whether LOOP violation in CIP proceeds violation in credit risk pricing,

I also consider an alternate ordering in which issuance respond with a lag to both c and b,

and c respond with a lag to b. This alternate specification yields similar results as Figure

1.10 and is presented along with a partial identification approach24 in the Internet Appendix.

Furthermore, I conduct the same analysis on all six currency pairs against the dollar in a

panel VAR. The resulting impulse response function is similar to that of EURUSD and is

presented in Figure 1.11.

24The partial identification approach restricts µ to respond with a lag to c and b but allow the c and b to have
contemporaneous e�ects on each other.
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Figure 1.10: Spillover of deviations: orthogonalized impulse responses of deviations and
issuance flow for EURUSD

I estimate a first order vector autoregression (VAR) of the form

S

WU
1 0 0
acµ 1 0
abµ abc 1

T

XV

S

WU
µt

ct
bt

T

XV = B

S

WU
µt≠1

ct≠1

bt≠1

T

XV +

S

WU
Áµ,t
Ác,t
Áb,t

T

XV

where µt is the bilateral issuance flow (defined in Section 1.6.1.1), ct is the credit spread
di�erential and bt is the CIP deviation. I apply Cholesky Decomposition by ordering the
variables as µ, c and b. This ordering assumes that issuance responds with a lag to both
Ác and Áb shocks, and CIP violation respond with a lag to credit shock. The orthogonalized
impulse responses to Ác and Áb shocks are graphed below. The choice of lag 1 is selected by
Bayesian Information Criteria. 95% confidence intervals are shown in gray.
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Figure 1.11: Spillover of deviations: Panel VAR
I estimate a first order panel vector autoregression (PVAR) for the six currency pairs (i =
EURUSD, GBPUSD, JPYUSD, AUDUSD, CHFUSD, CADUSD)

S

WU
1 0 0
acµ 1 0
abµ abc 1

T

XV

S

WU
µi,t

ci,t
bi,t

T

XV = B

S

WU
µi,t≠1

ci,t≠1

bi,t≠1

T

XV +

S

WU
”i,µ
”i,c
”i,b

T

XV +

S

WU
Ái,µ,t
Ái,c,t
Ái,b,t

T

XV

where µt is the bilateral issuance flow (defined in Section 1.6.1.1), ct is the credit spread
di�erential, bt is the CIP deviation and ”i is a vector of fixed e�ects. I apply Cholesky
Decomposition by ordering the variables as µ, c and b. This ordering assumes that issuance
responds with a lag to both Ác and Áb shocks, and CIP violation respond with a lag to credit
shock. Confidence intervals at the 95% level using bootstrapped standard errors are shown
in gray.
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1.6.2.2 Time series

Beyond VAR analysis, the time series of the two LOOP violations are also informative in

establishing the direction of spillover. While the ambiguity in the ordering of the LOOP

violations poses a challenge to the VAR analysis, the changing lead-lag relationship between

c and b, in conjunction with relative magnitude of the two deviations, in di�erent periods

provide valuable insights on identifying whether shocks might have originated from credit

demand or FX forward demand. As seen in Figure 1.1, CIP deviation appears to have led

the credit spread di�erential both in time and magnitude during the 2011-2012 Eurozone

Sovereign Crisis that tightened foreign bank’s wholesales dollar funding conditions25. In

more recent periods, credit spread di�erential have overtaken CIP deviation in magnitude

and time lead, potentially a reflection of credit demand shocks originating from ECB asset

purchases.

1.6.3 Prediction 2: Issuance flow and net deviation

Another key prediction from the model is that capital flow fluctuates with net deviation. In

the case of corporate arbitrageurs, capital flow is represented by cross-currency issuance.

I focus on bilateral issuance flows with the U.S. since the U.S. corporate bond market is the

largest, with over a third of the global corporate debt issuance in the data sample. Figure

1.12 compares the quarterly time series of the issuance flow and net deviation for EURUSD.

Consistent with the model prediction on the comovement between µ and c≠b, issuance flows

from Europe to the U.S. when the e�ective residualized credit spread of euro-denominated

debt is high relative to dollar-denominated debt, and vice versa.

The sign reversals of the issuance flow and net deviation mark distinct time periods in Figure

25Chernenko and Sunderam (2014) document that the total money-fund holdings of Eurozone bank paper
declined by 37%, from $453 billion to $287 billion, between May and August of 2011.
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Figure 1.12: Issuance flow and net deviation between Europe and the U.S.
This figure presents issuance flow between the Eurozone and the U.S. and the net deviation
(e�ective residualized credit spread di�erence) between the euro and the dollar . To construct
the net deviation, I estimate the following cross-sectional regression at each date t

Sadj
it = –ct + —ft + “mt + ”rt + Áit

where Sadj
it is the CIP-adjusted yield spread over the swap curve for bond i that is issued in

currency c, by firm f , with maturity m and rating r. The CIP-adjustment is calculated by
subtracting maturity-specific CIP deviation from each bond’s yield spread. The net deviation
or e�ective residualized credit spread for euro relative to dollar credit spread is calculated
as –̂eur,t ≠ –̂usd,t. Details of net deviation’s construction are provided in Section 1.6.1.2.
Issuance flow is defined as the amount of dollar debt issuance by Eurozone firms minus the
amount of euro debt issuance by U.S. firms. I express this measure as a percentage of total
issuance between the two countries. Details of the issuance flow’s construction are provided
in Section 1.6.1.1.
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1.12. Prior to the credit crunch in 2007, the net deviation was relatively small and issuance

flow oscillated between the two markets with a tilt towards issuance flowing into Europe.

The onset of the U.S.-led credit crunch in 2007 reduced the euro credit spread relative to

dollar credit spread, which is surprising in itself since the residualized measure suggests

that similar bonds issued by the same firm are di�erentially a�ected by the credit crunch’s

risk-o� sentiment depending on the bond’s currency of denomination. This change in net

deviation is coupled with several quarters of strong issuance flow from the U.S. to Europe.

As the U.S. Federal Reserve begins its quantitative easing (QE) program in late 2008 and

early 2009, both the signs for issuance flow and net deviation flipped to the positive side.

Even though the asset purchase was in treasury and MBS, QE also indirectly a�ected the

corporate bond market but with lag (Mamaysky 2014, Greenwood, Hanson, and Liao 2015).

Foreign issuance in dollar, nicknamed Yankee bond, was popular during this period of Fed

QE. In the more recent period since 2014, both time series have reversed sign once again

towards the negative. The tapering of Fed QE and the step up of ECB asset-purchasing

program arguably led to lower euro-relative-to-dollar credit spread. Reverse-Yankee bonds,

or issuance of non-dollar denominated debt by U.S. firms, have picked up and driven the net

issuance flow towards Europe.

The comovement of issuance flow and net deviation can also be examined in regression

analysis. Table 1.3 presents regression results showing the relation between net deviation

(e�ective credit spread di�erential) and issuance flow. As seen earlier in the VAR analysis,

issuance flow continues for several months after a shock to the credit and CIP violations.

Thus, I examine the relation between net deviation at month t and issuance flow averaged

over the following six months. The coe�cients for the panel regression and for the individual

regressions of EUR, GBP, JPY, and CHF are all significant while they are insignificant for

AUD, and CAD. One possible interpretation is that while issuance flow is an important source

of arbitrage capital in some markets, it is not a dominant force of arbitrage capital for AUD
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and CAD. Instead, the coe�cients on interest rate di�erential, which represent unhedged

carry trade margins, is highly significant for AUD and CAD. This indicates that issuers might

be engaged in unhedged issuances in these two currencies for reasons unexplored in this paper.

Correspondingly, CIP deviations in AUD and CAD relative to USD are less correlated with

their credit spread di�erentials as can be seen in Figure 1.5 and Table 1.2. While investors-

driven hedged capital flows might still be a force that aligns the two deviations, investors

generally face more constraints than firms as discussed earlier, therefore, leaving a larger

misalignment.

The coe�cient on net deviation for EUR-USD issuance flow is the largest and most sig-

nificant. This is perhaps because the euro and dollar corporate credit markets are highly

developed and large in size, issuers are relatively flexible to issue between them. It is also a

reflection of the data sample that concentrates on EUR- and USD- denominated bonds.

To explore the dynamics of slow moving capital, I conduct a VAR study on issuance flow

and the net deviation as I had done with the individual credit and CIP deviations in earlier

section. Figure 1.13 presents the orthogonalized impulse response function of issuance flow

upon a shock to the net deviation assuming that issuance respond with a lag to changes in

net deviation. The impulse response shows that issuance flow continues to be significant up

to 10 months after a shock to the net deviation.

1.6.3.1 Firm-level panel

The aggregate results showing the response of capital flow to the two LOOP violations and

to the net deviation can equivalently be tested using a panel of firm-specific credit spread

di�erentials and net deviations. I explore the decision of firm’s currency debt choice with

a linear probability model in Table 1.4. All of the predictions in the aggregate data are

also supported by the firm level regressions with controls for time, currency, and firm fixed

55



Table 1.3: Issuance flow and net deviation

This table presents forecasting regressions of future issuance flow using e�ective residualized
credit spread di�erentials (net deviation). issPctForignæUS is defined as the amount of debt
issuance by foreign firms in dollar minus the amount of debt issuance by U.S. firms in the
foreign currency expressed as a percentage of total issuance. The sample period is from
January 2004 to July 2016 with monthly observation. t-statistics in brackets are based on
Newey-West (1987) standard errors with lag selection following Newey-West(1994).

issPctEUæUS
6m.avg.

= —
0

+ —
1

netdevt + —
2

ratedi�t + Át+1

Net issuance flow (EUæUS) /total issuance pct.
EUR GBP JPY AUD CHF CAD

net dev. 0.247 0.157 0.0353 0.00709 0.119 -0.0534
[5.08] [2.11] [2.10] [0.07] [3.47] [-0.75]

rate di�. 0.0175 -0.0165 0.0256 0.0271 0.00675 0.093
[1.65] [-0.77] [5.50] [3.52] [1.14] [5.32]

_cons 0.984 9.51 5.94 2.26 0.266 7.32
[0.99] [4.92] [4.46] [1.49] [0.31] [6.63]

rsq 0.39 0.13 0.45 0.18 0.29 0.33
n 151 151 151 151 151 151
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Figure 1.13: Orthogonalized impulse response of monthly issuance flows to shock to net
deviation for EURUSD

I estimate a first order vector autoregression (VAR) of the form
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1 0

ac≠b,µ 1

D C
µt

ct ≠ bt

D

= B

C
µt≠1

ct≠1

≠ bt≠1

D

+ Át

where µt is the bilateral issuance flow (defined in Section 1.6.1.1), ct is the credit spread
di�erential and bt is the CIP deviation. I plot the impulse response of issuance flow µ to
shocks to the net deviation ct ≠ bt. I conduct Cholesky Decomposition by assuming that
issuance responds with a lag to shocks to the net deviation. The choice of lag 1 is selected
by Bayesian Information Criteria. Confidence intervals at 95% level are shown in gray.
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e�ects. The firm-level panel regressions serve as robustness checks to the aggregate result.

1.6.4 Prediction 3: Total issuance and deviation alignment

Prediction 3 says that an exogenous increase in debt issuance amountD allows firms to deploy

more capital and reduces the net deviation. The debt issuance amount D can be seen as the

amount of arbitrage capital available to be deployed toward cross-currency credit and CIP

arbitrage. As D increases towards infinity, we would expect the net deviation to converge to

zero. In this section, I analyze whether large financing needs reduces arbitrageable deviation

by first testing in an OLS regression followed by instrumental variable approach that uses

the amount of debt maturing to instrument for the need to rollover and refinance through

new debt issuance. Specifically, I run a change-on-change regression of the following form

�|c ≠ b|t,c = –c + —
1

Dt,c + Át

where �|c≠ b|t,c is the monthly change in the absolute value of net deviation and Dt,c is the

total amount of debt issued in both currency c and USD in month t. Note that Dt,c is the

amount of debt issued, not the outstanding amount of debt.

Conceptually, the analysis relies on the assumption that firms are being opportunistic on

the relative allocation of issuance in di�erent currencies rather than being opportunistic on

the issuance size in market timing. While the latter motive is important and documented

in a number of studies (Baker and Wurgler [2000], Greenwood, Hanson, and Stein [2010],

Ma [2015], etc.), it does not preclude the choice analyzed here that focuses on the relative

currency denomination conditional on firms having decided the total amount of debt to issue.

To address the potential concerns with endogenous debt issuance decision, I instrument

debt issuance amount with maturing debt amount, Mt,c. Firms frequently issue debt just

to rollover existing maturing debt. When deciding to rollover old debt, firms can choose a
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Table 1.4: Firm-level issuance choice and violations in credit and CIP

This table presents regressions of firm-level debt denomination choice on credit spread dif-
ferential and CIP deviation. I estimate the probability that a firm issues debt in currency c
conditional on the firm issuing debt in that quarter. I estimate the following specifications
in column 1

Diss

fct = —
0

+ —
1

Crddi�fct + —
2

CIPct + Áfct

where Diss

fct is a dummy that equals to 1 if firm f issues in currency c in quarter t, Crddi�fct

is the firm-specific residualized credit spread estimated as –̂ct + –̂ct · ”̂ft in the following
cross-sectional regression at each date t

Sit = –ct + ”ft + –ct · ”ft + Áit

where Sit is the yield spread over the swap curve for bond i issued in currency c, by firm f .
In column 2, I estimate the following regression

Diss

fct = —
0

+ —
1

NetDi�fct + Áfct

where NetDi�fct = Crddi�fct ≠ CIPct. t-statistics in brackets are based on robust standard
errors clustered by firm and time.

probability of
issuing in ccy c
(1) (2)

credit dev. c -0.0727
[-5.41]

cip 0.135
[3.19]

net dev. (c-b) -0.074
[-5.53]

firm FE x x
time FE x x
ccy FE x x
rsq 0.18 0.18
n 28726 28726
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currency of denomination di�erent from that of the maturing debt. In e�ect, the amount of

debt that needs to be rolled over is capital that corporate arbitrageurs can deploy to take

advantage of profitable deviations.

Table 1.5 shows the result of this analysis. AUD and CAD are excluded in this analysis,

as issuance is less relevant for the determination of deviations in these two currencies as

discussed earlier in Section 1.6.3. For each billion-dollar increase in amount of total debt

matured, the net deviation is reduced by roughly 0.1 basis points. While statistically signifi-

cant, the economic magnitude of this estimation is small, likely because market participants

have priced in the e�ect of large issuance needs from maturing debt given that the debt

maturities are easily observable both at the individual and aggregate level.

1.6.5 Prediction 4: Spillover of Limits to Arbitrage

Lastly, I discuss possible tests of the prediction on the spillover of limits to arbitrage. The

model suggests that frictions constraining in one market can also be constraining for the

other market. These limits to arbitrage frictions can be either directly observable, such as

transaction costs, or agency frictions embedded in institutional details. In the model, these

constraints are represented by FX swap collateral haircut “ in Equation 1.7, and the ratio

of bond risk to risk tolerance V
r
in Equation 1.8. The FX haircut is a direct cost while the

latter might proxy for indirect agency costs associated with holding an arbitrage position

that could become more dislocated before converging as in Shleifer and Vishny (1997).

The empirical measures of these two types of Limits to Arbitrage are di�cult to obtain.

FX collateral haircut for derivative transactions depends on the currency, maturity and

counterparty. The cost of holding LOOP arbitrage positions to maturity are also di�cult

to quantify. As a rough proxy, I analyze the impact of broker-dealer leverage, proxying for

“, and the VIX index, proxying for V
r
, on the absolute level of credit spread di�erential and
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Table 1.5: Debt issuance amount and deviation alignment

This table presents regressions of the monthly change in the absolute value of net deviation
(c ≠ b) on total debt issuance amount (including both domestic and cross-currency debt) in
the same month. The regression is specified as follows

�|c ≠ b|c,t = –c + —
1

Dc,t + Át,

where Dc,t is the total amount of debt issued in both currency c and USD expressed in
$billions, where c = EUR,GBP,JPY, or CHF. The amount of debt issued is further instru-
mented by the amount of maturing debt, Mc,t. Column 1 shows the OLS result with debt
issued. Column 2 shows the reduced form regression with maturing debt. Column 3 shows
the first stage regression of issued debt on maturing debt. Column 4 shows the IV regression.
t-statistics in brackets are based on robust standard errors clustered by time.

�|c ≠ b|c,t
OLS Reduced

Form 1st stage IV

Dc,t (D̂c,t) -0.080 -0.0939
[-3.98] [-2.05]

Mc,t -0.0500 0.525
[-2.42] [4.94]

�|c ≠ b|c,t≠1

-0.089 -0.073 -0.0929
[-1.44] [-1.16] [-1.29]

ccy fe x x x x
rsq 0.05 0.01 0.63 0.05
n 1180 1180 1198 1180
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CIP deviation. The results are in line with Prediction 4. However, for reasons discussed

above, the proxies are imprecise and thus relegated to the Internet Appendix.

1.7 Conclusion

This paper examines the connection between violations of covered interest rate parity and

price discrepancy of credit risk for bonds of di�erent denominating currencies. I document

that these two forms of LOOP violations are substantial and persistent since the financial

crisis. Moreover, the two violations are highly aligned in magnitude and direction in both

time series and cross section of currencies. I develop a model of market segmentation along

two dimensions – in credit market along currency denomination and in FX market between

spot and forward exchange rates. Arbitrage processes are imperfect in either markets but

capital flow ensures that the two types of LOOP violations are intimately connected.
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2 Asset Price Dynamics in Partially

Segmented Markets1

2.1 Introduction

How do supply shocks in one financial market a�ect the pricing of assets in other markets? If

markets for di�erent asset classes are tightly integrated, then a shock that a�ects the pricing

of a risk factor in one asset class will have a similar e�ect on other asset classes exposed to

the same risk. When markets are more segmented, however, prices of risk in one market may

be disconnected from those in other markets. Segmentation arises because institutional and

informational frictions lead investors to specialize in a particular asset class or a narrow set

of assets (Merton [1987], Grossman and Miller [1988], Shleifer and Vishny [1997]). Although

specialization can facilitate arbitrage across securities within an asset class, it can impede

arbitrage across asset classes. Specialists’ limited willingness to trade across markets may

lead the pricing of risk to become disconnected across markets.

The degree of segmentation between di�erent financial markets depends on time horizon.

1This paper was written jointly with Robin Greenwood and Samuel G. Hanson. We thank Daniel Bergstresser,
Yueran Ma, Jeremy Stein, Adi Sunderam, and seminar participants at Berkeley Haas, Brandeis, MIT Sloan,
NYU Stern, University of Minnesota Carlson, University of North Carolina Kenan-Flager, and University of
Texas McCombs for useful feedback. We thank David Biery for research assistance. Greenwood and Hanson
gratefully acknowledge funding from the Division of Research at Harvard Business School.
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Over the long run, the forces of arbitrage ensure that capital will flow from underpriced

markets to overpriced markets. However, the process of market integration can be slow,

because investors with the flexibility to trade across asset classes do not do so immediately.

For example, investment committees at pension funds and endowments—who have the flex-

ibility to allocate capital across asset classes—typically only reallocate capital annually or

biannually.

In this paper, we develop a dynamic model of financial markets in which capital moves

quickly between securities within a given asset class, but more slowly between di�erent asset

classes. Our key contribution is to show how supply shocks in one market are reflected

in prices and flows into neighboring markets. In particular, we show how the reaction of

neighboring markets depends on time horizon.

Consider two similar long-term risky assets trading in partially segmented markets, such as

corporate bonds and Treasury securities. Both assets are exposed to a common fundamental

risk factor, making them partial substitutes. This means that, absent frictions, their prices

would be tightly linked by cross-market arbitrage. To introduce market segmentation, we

assume that there are two sets of risk-averse market specialists, each of whom can flexibly

trade one of the risky assets as well as a short-term risk-free asset. Specialists are unable to

allocate capital across the two markets. However, markets are partially integrated by risk-

averse generalist investors who periodically reevaluate their portfolios and shift between the

two risky assets. This setup is similar to Gromb and Vayanos (2002), except that the cross-

market arbitrageurs are slow-moving, much like in Du�e (2010). Because of the gradual

nature of cross-market arbitrage, markets are more integrated in the long run than the short

run.

In the setting we have just described, what happens when there is an unanticipated sup-

ply shock in one market? Suppose, for concreteness, that the Federal Reserve announces

that it will sell a large portfolio of long-term U.S. Treasury bonds, permanently expand-
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ing the amount of interest rate risk that investors need to bear in equilibrium. Treasury

market specialists react immediately to the shock, absorbing the increased supply into their

inventories. The risk premium on long-term Treasury bonds will rise, lifting their yields.

However, Treasury yields will overreact—the short-run price impact will exceed the long-run

impact—because the amount of capital that can initially accommodate the shock is limited

to specialists and a handful generalists. Over the long-run, generalist investors will allocate

additional capital to the Treasury market, muting the price impact of the supply shock at

longer horizons. Price dynamics of this sort are similar to those described in Du�e (2010),

who shows how prices react to shocks when there is slow-moving capital.

Our key contribution is to characterize how prices evolve in related markets that are not

directly impacted by the supply shock. Consider the question of how corporate bond prices

(or stock prices for that matter) will react to a shock to the supply of long-term Treasuries.

Although this supply shock does not directly impact the corporate bond market, this market

is indirectly a�ected because generalist investors will respond by increasing their holdings

of long-term Treasuries and reducing their holdings of long-term corporate bonds. These

cross-market capital flows drive down the prices of corporate bonds and push up corporate

bond yields. In this way, the trading of generalist asset allocators transmits supply shocks

across markets, serving to increase market integration. While yields in the Treasury market

initially overreact to the supply shock, under plausible parameter values, we show that

corporate bond yields will underreact: the short-run price impact is less than the long-run

impact. The overreaction of Treasury yields and the underreaction of corporate yields are

both driven by the fact that generalists only reallocate capital slowly. As a result, it takes

time for financial markets to fully digest large supply shocks.

If all investors were generalists, the two markets would be fully integrated in the sense that

exposures to common risk factors would always have the same prices in the two markets.

However, in the more realistic case when markets are partially segmented, risk prices can
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di�er across markets. This occurs because risks cannot be easily unbundled from assets

and because markets receive periodic supply shocks, making cross-market arbitrage risky for

generalists, as in the model developed by Gromb and Vayanos (2002). For example, interest

rate risk may not be priced identically in the corporate bond market and the Treasury

market. Following a supply shock, the premia associated with similar risk exposures can di�er

significantly between the two asset markets. As generalists react to pricing discrepancies

across markets, di�erences in risk premia will gradually narrow. However, the di�erences

will not vanish in the long run because of the permanent risks associated with cross-market

arbitrage. Put di�erently, partial segmentation creates a form of noise trader risk.

The price dynamics in our model depend critically on the fractions of specialists in each

market, the number of time periods it takes generalists to fully rebalance their portfolios, and

the degree of substitutability between the two asset markets. The fraction of specialists and

generalist investors play an especially important role. When there are a small number of slow-

moving generalists, the Treasury market overreacts while the corporate market underreacts

to the shock to Treasury supply. However, if there are many slow-moving generalists, markets

are well-integrated and supply shocks can result in short-run overreaction in both markets.

In describing our model, we have made no distinction between a risky “asset” and the

“market” in which it trades. This distinction arises when we introduce multiple risky assets

into each market. Individual assets di�er in their degree of exposure to common risk factors.

For example, the “market" for U.S. Treasury securities contains bonds of many di�erent

maturities, which have di�erent exposures to interest rate risk. Extending our model to

allow for multiple securities per asset market, we show that a conditional CAPM prices

all assets in the first market and that another conditional CAPM—with di�erent prices of

risk—prices all assets in the second market. Critically, these two market-specific pricing

models are linked over time by the cross-market arbitrage activities of slow-moving asset

allocators. For example, the pricing of interest rate risk for 2-year Treasuries is always
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perfectly consistent with the pricing of interest rate risk for 10-year Treasuries. However,

the pricing of interest rate risk in the Treasury market may di�er somewhat from that in

the corporate bond market. And these cross-market di�erences will be most pronounced

following the arrival of major shocks that take time for slow-moving generalists to digest.

Recognizing the partially segmented nature of capital markets is helpful for understanding

fixed income markets in the QE-era. A key question about central bank government bond

purchases is whether they impact the prices of financial assets outside of the market for gov-

ernment bonds. The favored methodology for answering this question has been to use event

studies of intraday or one-day price changes following central bank policy announcements. A

number of these studies have concluded that the e�ects of quantitative easing are most pro-

nounced in the market in which the central bank is transacting, with only modest spillovers to

other related markets (Woodford [2012] and Krishnamurthy and Vissing-Jorgensen [2013]).

Others have suggested that at longer horizons, the spillovers are more significant. Mamaysky

(2014) suggests that if one expands the measurement window by a few days or weeks, the

e�ects in other markets may be much larger.

Our model suggests that the short-run price impact of a supply shock on di�erent markets

may not accurately reveal the long-run impact, which is often of greater interest to policy-

makers. We illustrate this idea by analyzing the statistical power of short-run event studies

within our model. We show that the horizon at which statistical power is maximized is often

much shorter than the horizon at which the long-run price impact is achieved. A broad

message to emerge from our paper is that while the event study methodology is appropriate

for measuring cash flow news, it is less suitable for analyzing policies that impact discount

rates.

Our model is closely related to two strands of research in financial economics. The idea

that front-line arbitrageurs in financial markets are highly specialized traces back to Merton

(1987) and Grossman and Miller (1988), and is a central tenet of the theory of limited ar-
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bitrage (De Long et al [1990], Shleifer and Vishny [1997], and Gromb and Vayanos [2002]).

A small literature in finance describes asset prices and returns in segmented markets (Sta-

pleton and Subrahmanyam [1977], Errunza and Losq [1985], Merton [1987]). More recently,

a number of researchers have demonstrated downward-sloping demand curves for individual

financial asset classes, which would be puzzling if markets were fully integrated (Gabaix,

Krishnamurthy, and Vigneron [2007], Gârleanu, Pedersen, and Poteshman [2009], Green-

wood and Vayanos [2014], and Hanson [2014]). These researchers have often motivated their

analysis by positing an extreme form of market segmentation in which a di�erent pricing

kernel is used to price the securities in each distinct asset class. Our paper emphasizes

how the actions of slow-moving asset allocators serve to link these market-specific pricing

kernels together, thereby o�ering a middle ground between these models positing extreme

segmentation and traditional models featuring perfect integration.

Second, our paper is related to research on “slow-moving capital,” which is the idea that

capital does not flow as quickly towards attractive investment opportunities as textbook

theories might suggest (Mitchell, Pedersen, Pulvino [2007], Du�e [2010], Acharya, Shin, and

Yorulmazer [2013]). Here, our model draws most heavily from Du�e (2010), who studies the

implications of slow moving capital for price dynamics in a single asset market. Compared

to his paper, our contribution is to analyze the impact of supply shocks and slow moving

capital across multiple asset markets as well as the implication on event study methodology.

Du�e and Strulovici (2012) present a model of the movement of capital across two partially

segmented markets, but their focus is on the endogenous speed of capital mobility, which we

take as exogenous. Our key contribution here is characterizing the dynamics of prices across

related asset markets and the patterns of cross-market arbitrage in response to large supply

or demand shocks.

Our paper also relates to studies of FOMC news releases on asset prices (Akhtar [1997],

Harvey and Huang [2002], Sokolov [2009], and Cieslak, Morse, and Vissing-Jorgensen [2016])
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and liquidity and limits to arbitrage in the treasury market, e.g. Hu, Pan, Wang (2013).

Relative to these prior studies, our paper emphasizes the long-term e�ect of asset prices in

response to large supply shocks rather than the most immediate e�ect detectable as event

studies.

2.2 Model

We develop the model in two steps. We first develop a tractable, benchmark model for pricing

long-term fixed-income assets that are exposed to both interest rate risk and default risk.

The model builds on the default-free term structure models in Vayanos and Vila (2009) and

Greenwood and Vayanos (2014) in which interest rate risk is priced by a set of specialized,

risk-averse bond arbitrageurs, leading to a downward-sloping aggregate demand curve for

bond risk factors. In this first step, we develop a simple way to incorporate default risk

into this class of models. In the second step, we introduce a second asset class and a richer

institutional trading environment that contains both generalists and specialists. In this richer

environment, we describe how prices and investor positions in both markets evolve following

a supply shock that directly impacts only one market.

2.2.1 Single asset model

2.2.1.1 Defaultable perpetuities

Consider a homogenous portfolio of perpetual, defaultable bonds each of which promises to

pay a coupon of C each period. Let PL,t denote the the price of each long-term bond at

time t. Suppose that a random fraction ht+1

of the bonds default at t + 1 and are worth

(1 ≠ Lt+1

) (PL,t+1

+ C) where 0 Æ Lt+1

< 1 is the (possibly random) loss-given-default as a
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fraction of market value. The remaining fraction (1 ≠ ht+1

) of the bonds do not default and

are worth (PL,t+1

+ C). Thus, the return on the bond portfolio is

1 +RL,t+1

= (1 ≠ Zt+1

) (PL,t+1

+ C)
PL,t

, (2.1)

where Zt+1

= ht+1

Lt+1

, satisfying 0 Æ Zt+1

< 1, is the portfolio default realization at time

t+1. If Zt+1

© 0, the bonds are default-free. If Zt+1

is stochastic, the bonds are defaultable

with high realizations of Zt+1

corresponding to larger default losses at time t + 1. This

formulation of default risk follows Du�e and Singleton’s (1999) “recovery of market value”

assumption which has become standard in the credit risk literature.

To generate a tractable linear model, we use a Campbell-Shiller (1988) log-linear approx-

imation to the return on this portfolio of defaultable perpetuities. Specifically, defining

◊ © 1/ (1 + C) < 1, the one-period log return on the bonds is

rL,t+1

© ln
1
1 +RL

t+1

2
¥

D˙ ˝¸ ˚
1

1 ≠ ◊
yL,t ≠

D≠1˙ ˝¸ ˚
◊

1 ≠ ◊
yL,t+1

≠ zt+1

, (2.2)

where yL,t is the log yield-to-maturity at time t,

D = 1
1 ≠ ◊

= C + 1
C

(2.3)

is the Macaulay duration when the bonds are trading at par, and zt = ≠ ln (1 ≠ Zt) is the

log default loss at time t.2

To derive this approximation note that the Campbell-Shiller (1988) approximation of the

1-period log return is

rL,t+1

= ln (PL,t+1

+ C) ≠ pL.t ≠ zt+1

(2.4)

¥ Ÿ + ◊pL.t+1

+ (1 ≠ ◊) c ≠ pL.t ≠ zt+1

2This log-linear approximation for default-free coupon-bearing bonds appears in Chapter 10 of Campbell, Lo,
and MacKinlay (1997). Our approximation for defaultable bonds then follows trivially given the assumption
that default losses are a (random) fraction of market value.
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where ◊ = 1/ (1 + exp (c ≠ pL)) and Ÿ = ≠ log (◊) ≠ (1 ≠ ◊) log (◊≠1 ≠ 1) are parameters of

the log-linearization. Iterating equation (2.4) forward, we find that the log bond price is

pL,t = (1 ≠ ◊)≠1 Ÿ + c ≠ qŒ
i=0

◊iEt [rL,t+i+1

+ zt+i+1

] . (2.5)

Applying this approximation to promised cashflows (i.e., zt+i+1

© 0 for all i Ø 0) and the

yield-to-maturity, defined as the constant return that equates bond price and the discounted

value of promised cashflows, we obtain

pL,t = (1 ≠ ◊)≠1 Ÿ + c ≠ (1 ≠ ◊)≠1 yL,t. (2.6)

Equation (2.2) then follows by substituting the expression for pL,t in equation (2.6) into

the Campbell-Shiller return approximation in equation (2.4). Assuming the steady-state

price of the bonds is par (pL = 0), we have ◊ = 1/ (1 + C). Thus, bond duration is D =

≠ˆpL,t/ˆyL,t = (1 ≠ ◊)≠1 = (1 + C) /C. Since ≠ˆpL,t/ˆyL,t = ≠ (ˆPL,t/ˆYL,t) ((1 + YL,t) /PL,t) =

(Y :

L,t + 1)/YL,t this corresponds to Macaulay duration when the bonds are trading at par

(YL,t = C).

2.2.1.2 Risk factors

Investors in defaultable long-term bonds are exposed to three di�erent types of risk: interest

rate risk, default risk, and supply risk. First, investors are exposed to interest rate risk. In

our model, investors face an exogenous short-term interest rate that evolves randomly over

time and will su�er a capital loss on their bond holdings if short-term rates rise unexpect-

edly. Second, investors face default risk: the future period-by-period default realization is

unknown and evolves randomly over time. Finally, investors are exposed to supply risk: there

are random supply shocks which impact the prices and yields on long-term bonds, holding

fixed the expected future path of short-term interest rates and expected future defaults.

Thus, using Campbell’s (1991) terminology, interest rate risk and default risk are forms of
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fundamental “cash flow” risk, whereas supply risk is a form of “discount rate” risk.

We make the following concrete assumptions:

• Short-term interest rates: The log short-term riskless rate available to investors

between time t and t + 1, denoted rt, is known at time t. We assume that rt also

follows an exogenous AR(1) process
rt+1

= r + flr (rt ≠ r) + Ár,t+1

, (2.7)

where V art [Ár,t+1

] = ‡2

r
. One can think of the short-term rate as being determined

outside the model either by monetary policy or by a stochastic short-term storage

technology that is available in perfectly elastic supply.

• Default losses: We assume that the default process zt follows
zt+1

= z + flz (zt ≠ z) + Áz,t+1

(2.8)

where V art [Áz,t+1

] = ‡2

z .

• Supply: We assume that the perpetuity is available in an exogenous, time-varying

supply st. We assume that supply follows an AR(1) process
st+1

= s+ fls (st ≠ s) + Ás,t+1

, (2.9)

where V art [Ás,t+1

] = ‡2

s .

For simplicity, we will assume that Ás,t+1

, Ár,t+1

, and Áz,t+1

are mutually orthogonal. However,

it is straightforward to relax this assumption.

2.2.1.3 Specialist demand and market clearing

There is a unit mass of specialized bond arbitrageurs, each with risk tolerance · . Specialist

arbitrageurs can earn an uncertain future return of rL,t+1

from to t to t + 1 by investing

in the defaultable long-term bond. Alternatively, they can earn a certain return of rt by

investing at the short-term interest rate. Specialist arbitrageurs are concerned with their

interim wealth.

72



Formally, we assume that at date t specialist arbitrageurs have mean-variance preferences

over their wealth at t+1. This means that arbitrageurs choose their holdings of the perpetuity

to solve

max
bt

Ó
btEt [rxL,t+1

] ≠ (2·)≠1 (bt)2 V art [rxL,t+1

]
Ô
, (2.10)

where rxL,t+1

© rL,t+1

≠ rt is the log excess returns on the defaultable long–term bond over

the short-term interest rate between t and t + 1. Thus, arbitrageur demand for the risky

bond is

bt = ·
Et [rxL,t+1

]
V art [rxL,t+1

] . (2.11)

Equation (2.11) says that arbitrageurs borrow at the short-term rate and invest in risky

long-term bonds when the expected return on perpetuities exceeds that the short rate

(Et [rxL,t+1

] > 0). Conversely, arbitrageurs sell short bonds and invest at the short rate

when Et [rxL,t+1

] < 0. And they respond more aggressively to these movements in risk

premia when they are more risk tolerant and when the variance of excess bond returns is

low.

Market clearing (bú
t = st) implies that the bond risk premium, Et [rxL,t+1

] is given by

Et [rxL,t+1

] = ·≠1V (1)

L st, (2.12)

where V (1)

L = V art [(D ≠ 1) yL,t+1

+ zt+1

] is the equilibrium variance of 1-period excess re-

turns.

Thus, bond risk-premia are increasing in bond supply, st. When a positive supply shock

arrives, bond risk premia jump instantaneously. If the shock is almost permanent (fls ¥ 1),

the impact on the risk premium will be long lived. If the shock is transient (0 < fls π 1),

supply will quickly revert to steady-state (s) and risk premia will revert to their steady-state

level, ·≠1V (1)

L s.
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2.2.1.4 Solution and equilibrium yields

To solve the model, we conjecture that equilibrium bond yields take the linear form

yL,t = –
0

+ –r (rt ≠ r) + –z (zt ≠ z) + –s (st ≠ s) . (2.13)

Using this conjecture, in the Internet Appendix we show that a linear equilibrium of this

form exists so long as arbitrageurs are su�ciently risk tolerant (i.e., if · is large enough).

We show that the equilibrium variance of 1-period excess bond returns, V (1)

L , must satisfy

the following quadratic equation

V (1)

L =
A

◊

1 ≠ flr◊
‡r

B
2

+
A

1
1 ≠ flz◊

‡z

B
2

+
A

·≠1

◊

1 ≠ fls◊
‡s

B
2 1

V (1)

L

2
2

. (2.14)

The total risk premium can be decomposed into compensation for bearing interest rate risk,

compensation for bearing credit risk, and compensation for bearing supply risk:

Et [rxL,t+1

] =

Interest rate risk premium

˙ ˝¸ ˚

·≠1

A
◊

1 ≠ flr◊
‡r

B
2

st +

Credit risk premium

˙ ˝¸ ˚

·≠1

A
1

1 ≠ flz◊
‡z

B
2

st (2.15)

+

Supply risk premium

˙ ˝¸ ˚

·≠1

A

·≠1

◊

1 ≠ fls◊
‡s

B
2 1

V (1)

L

2
2

st.

The level of supply (st) appears three times on the right hand side of equation (2.15) because

all three components of the total risk premium move in lock in our single asset model.

As in Greenwood and Vayanos (2014), when there is supply risk (‡2

s > 0) a linear equilibrium

only exists if bond arbitrageurs are su�ciently risk tolerant.3 In this case, there are two

possible solutions to (2.14): one in which yields are highly sensitive to supply shocks and one

in which yields are less sensitive. What is the intuition for the multiplicity of equilibria? If

yields are highly sensitive to supply shocks, then bonds become highly risky for arbitrageurs.

Hence, arbitrageurs absorb supply shocks only if they are compensated by large changes in

3If · is too small and there are supply shocks (‡2
s > 0), no linear equilibrium exits because bonds become

extremely risky for arbitrageurs and it is impossible to clear the market.
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yields, making the high sensitivity of yields to shocks self-fulfilling. Conversely, if yields are

less sensitive to supply shocks, then bonds become less risky for arbitrageurs and arbitrageurs

are willingly absorb supply shocks even if they are only compensated by modest changes in

yields. Equilibrium multiplicity of this sort is common in overlapping generations models

such as ours where arbitrageurs with short investment horizons hold a long-lived asset that

is subject to supply shocks (see e.g., DeLong, Shleifer, Summers, and Waldmann [1990]).

[referee wants more on equilibrum selection, insert here]

Following Greenwood and Vayanos (2014), we focus on the well-behaved and economically

relevant equilibrium in which yields are less sensitive to supply shocks, which corresponds to

the smaller root of equation (2.14).4 It is then straightforward to show that V (1)

L is increasing

in ‡2

r , ‡2

z , ‡2

s , flr, flz, fls, and D [= (1 ≠ ◊)≠1] and decreasing in · . Thus, for a given level

of bond supply, the total risk premium is larger when short-term rates are more volatile,

when there is greater uncertainty about future defaults, and when supply shocks are more

volatile. Furthermore, the risk premium is larger when each of these three processes is more

persistent. Finally, the risk premium is increasing in the duration of the perpetuity and is

decreasing in arbitrageur risk tolerance.

Rewriting equation (2.2) as yL,t = Et [(1 ≠ ◊) (rt + rxL,t+1

+ zt+1

) + ◊yL,t+1

] and iterating

forward, we see that the equilibrium yield on the defaultable perpetuity is a weighted average

of expected future short rates, future default losses, and future risk premia

yL,t = (1 ≠ ◊)qŒ
i=0

◊iEt[
Short rate˙˝¸˚
rt+i +

Default loss˙ ˝¸ ˚
zt+i+1

+

Risk premium˙ ˝¸ ˚
·≠1V (1)

L st+i]. (2.16)

Because of the coupon-bearing nature of the long-term bond, equation (2.16) shows that

expected short rates, default losses, and risk premia in the near future have a larger e�ect on

4As ‡2
s æ 0, this smaller root converges to the solution for V

(1)
L when ‡2

s = 0 (i.e., to ((◊‡)r / (1 ≠ flr◊))2 +
(‡z/ (1 ≠ flz◊))2) whereas the larger root diverges to infinity as ‡2

s æ 0. All of the relevant comparative
statics on V

(1)
L have the intuitive signs at the smaller root, but have the opposite signs at the larger root.
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bond yields than those in the distant future.5 Making use of the assumed AR(1) dynamics

for rt, zt, and st, we can express the equilibrium yield as

yL,t =

Expected future short rates

˙ ˝¸ ˚C

r + 1 ≠ ◊

1 ≠ flr◊
(rt ≠ r)

D

+

Expected future default losses

˙ ˝¸ ˚C

z + 1 ≠ ◊

1 ≠ flz◊
flz (zt ≠ z)

D

(2.17)

+

Risk premium

˙ ˝¸ ˚C

·≠1V (1)

L s+ ·≠1V (1)

L

1 ≠ ◊

1 ≠ fls◊
(st ≠ s)

D

.

Equation (2.17) shows that the perpetuity yield is more sensitive to movements in short

rates when the short-rate process is more persistent and when bond duration is shorter

(i.e., ˆ2yL,t/ˆrtˆflr > 0 and ˆ2yL,t/ˆrtˆD < 0). Similarly, the yield is more sensitive to

movements in current default losses (zt ) when the default process is more persistent and

when bond duration is shorter. Yields are more sensitive to bond supply when short-rates

are more volatile or more persistent or when defaults are more volatile or more persistent.

Finally, yields are also more sensitive to supply shocks when risk tolerance is low, supply

shocks are more volatile, or supply shocks are more persistent.6

2.2.2 Partially segmented markets

With this machinery in place, we now introduce a second risky asset and a richer trading

environment, to capture the idea that the two assets trade in partially segmented markets.

Our goal is to study how shocks to asset supply in one market are transmitted over time to

the second market.

5This is similar to Campbell and Shiller’s (1988) analysis of the price of a dividend-paying stock.
6The sign of ˆ2yL,t/ˆstˆD is ambiguous since ˆV

(1)
L /ˆD > 0, but ˆ [(1 ≠ ◊) / (1 ≠ fls◊)] /ˆD < 0. This

corresponds to the finding in Vayanos and Greenwood (2014) that, depending on the persistence of supply
shocks, a current increase in bond supply can have a greater impact on the yields of intermediate or long-
dated bonds. Specifically, highly persistent supply shocks have the greatest impact on long-dated yields,
while transitory supply shocks have the greatest impact on intermediate-dated yields.
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2.2.2.1 Asset markets

Suppose now that there are two portfolios of perpetual risky assets, A and B. A is de-

fault–free and exposed only to interest rate risk. Borrowing notation from above, portfolio A

pays a coupon of CA each period, so the gross return on A is 1+RA,t+1

= (PA,t+1

+ CA) /PA,t.

The log excess return on the A portfolio over the short-term interest rate from time t to t+1

is

rxA,t+1

¥ 1
1 ≠ ◊A

yA,t ≠ ◊A
1 ≠ ◊A

yA,t+1

≠ rt, (2.18)

where ◊A = 1/ (1 + CA).

The second portfolio, B, is subject to default risk which makes it an imperfect substitute

for asset A. Specifically, the B portfolio carries a promised coupon payment of CB each

period. However, the gross return on the B portfolio from time t to t + 1 is 1 + RB,t+1

=

(1 ≠ Zt+1

) (PB,t+1

+ CB) /PB,t where 0 Æ Zt+1

Æ 1 is the default realization at time t + 1.

Therefore, the log excess return on B from time t to t+ 1 is

rxB,t+1

¥ 1
1 ≠ ◊B

yB,t ≠ ◊B
1 ≠ ◊B

yB,t+1

≠ zt+1

≠ rt, (2.19)

where ◊B = 1/ (1 + CB). The additional zt+1

term in equation (2.19) reflects the time t+ 1

default realization that is specific to the B asset. The variance of zt+1

determines, in part,

the degree of substitutability between assets A and B.

We assume that the processes for the short rate rt and for default losses zt are as in equations

(2.7) and (2.8) above. However, we assume that the two asset markets are subject to di�erent

supply shocks which also limits their substitutability for investors with shorter horizons. The

net supply that investors must hold of asset A evolves according to

sA,t+1

= sA + flsA (sA,t ≠ sA) + ÁsA,t+1

, (2.20)

where V art [ÁsA,t+1

] = ‡2

sA
. Similarly, the net supply that investors must hold of asset B
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evolves as

sB,t+1

= sB + flsB (sB,t ≠ sB) + ÁsB ,t+1

, (2.21)

where V art [ÁsB ,t+1

] = ‡2

sB
.We continue to assume that Ár,t+1

, Áz,t+1

, ÁsA,t+1

, and ÁsB ,t+1

are

mutually orthogonal.

2.2.2.2 Market participants

There are three types of investors, all with identical risk tolerance · . Investors are distin-

guished by their ability to transact in di�erent markets and by the frequency with which they

can rebalance their portfolios. Fast-moving A-specialists are free to adjust their holdings of

the A asset and the riskless short-term asset each period; however, A-specialists cannot hold

the B asset. A-specialists are present in mass qA and we denote their demand for A by bA,t.

Analogously, fast-moving B-specialists can freely adjust their holdings of the B asset and

the riskless asset each period, but cannot hold the A asset. B-specialists are present in mass

qB and their demand for asset B is bB,t.

The third group of investors is a set of slow-moving generalists who can adjust their holdings

of A and B asset, as well as the riskless short-term asset, but can do so only every k periods.

Generalists are present in mass 1 ≠ qA ≠ qB. Fraction 1/k of these generalists investors are

active each period and can reallocate their portfolios between the A and B assets. However,

they must then maintain this same portfolio allocation for the next k periods. As in Du�e

(2010), this is a reduced form way to model the frictions that limit the speed of capital flows

across markets.

The market structure we have described here is a natural way to capture the industrial orga-

nization of real world asset management. Due to agency and informational problems, savers

are only willing to give delegated managers the discretion to adjust their portfolios quickly if

the manager accepts a narrow, specialized mandate. These same agency and informational
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frictions also mean that savers are only willing to give managers the discretion to adjust

quickly if the manager gives them an open-ended claim (e.g., Stein (2005)). As a result, fast-

moving investors often have endogenously short horizons. By contrast, most institutions,

such as endowments and pensions, that have longer horizons and possess greater flexibility

to re-allocate capital across asset classes are subject to governance mechanisms—themselves

a response to informational and agency frictions—that limit the speed of any such capital

movement. In combination, we believe that a model with fast-moving specialists and slow-

moving generalists is a tractable, reduced-form way to capture real-world arbitrage frictions.

In this paper, we focus on a “medium-run” equilibrium in which the parameters governing

market structure (qA, qB, and k) are regarded as fixed and exogenously given. However, one

could extend the model to endogenize the market structure. In the resulting “very long-run”

equilibrium, qA, qB, and k would adjust so that A specialists, B specialists, and generalists

all have the same expected utility in the long-run.7

Fast-moving A-specialists and B-specialists have mean-variance preferences over 1-period

portfolio log returns. Thus, their demands are given by

bA,t = ·
Et [rxA,t+1

]
V art [rxA,t+1

] , (2.22)

and

bB,t = ·
Et [rxB,t+1

]
V art [rxB,t+1

] . (2.23)

Since they only rebalance their portfolios every k periods, slow-moving generalist investors

have mean-variance preferences over their k-period cumulative portfolio excess return. Defin-

ing rxA,tæt+k © qk
i=1

rxA,t+i and rxB,tæt+k © qk
i=1

rxB,t+i as the cumulative k-period returns

7For instance, one could assume that A and B specialists must pay a cost to set up a specialized, fast-moving
fund and that generalists must pay a cost in order to adjust more quickly. qA, qB , and k would then need
to adjust so that (i) investors expect to earn the same long-run Sharpe ratio, net of costs, from all three
structures and (ii) generalists’ marginal benefit from adjusting their portfolios more frequently equals the
marginal cost of more frequent adjustment.
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from t to t+k on A and B, the k-period portfolio excess return of generalists who are active

at t is8

rxdt,tæt+k = dA,t ◊ rxA,tæt+k + dB,t ◊ rxB,tæt+k. (2.24)

Thus, generalist investors who are active at time t choose their holdings of asset A and B,

denoted dA,t and dB,t, to solve

max
dA,t,dB,t

Ó
Et [rxdt,tæt+k] ≠ (2·)≠1 (V art [rxdt,tæt+k])

Ô
. (2.25)

This implies that
S

WWU
dA,t

dB,t

T

XXV = ·

1 ≠ R2

(k)

AB

S

WWU

Et[rxA,tæt+k]
V art[rxA,tæt+k]

≠ —(k)
B|A

Et[rxB,tæt+k]
V art[rxB,tæt+k]

Et[rxB,tæt+k]
V art[rxB,tæt+k]

≠ —(k)
A|B

Et[rxA,tæt+k]
V art[rxA,tæt+k]

T

XXV , (2.26)

where, for example, —(k)
B|A is the coe�cient from a linear regression of rxB,tæt+k on rxA,tæt+k

and R2

(k)

AB is the goodness of fit from this regression.9

Equation (2.26) says that, all else equal, generalist investors allocate more capital to market

A when asset A becomes more attractive from a narrow risk-reward standpoint (i.e., dA,t is in-

creasing in Et[
qk

i=1

rxA,t+i]/V art[rxA,tæt+k]). Further, assuming B and A co-move positively

(—(k)
B|A > 0), generalists allocate less capital to market A when asset B becomes more attrac-

tive from a risk-reward standpoint (i.e., dA,t is decreasing in Et[
qk

i=1

rxB,t+i]/V art[rxB,tæt+k]).

In this way, the response of generalist investors transmits supply shocks in the B market

8Formally, this means we assume that slow-moving generalists re-invest all capital initially allocated to the A
market (B market) in the A market (B market) over their k-period investment horizon. Also, our implicit
log-linearization of the portfolio return omits the second-order Jensen’s inequality adjustments familiar
from Campbell and Viceira (2002). However, in the case of low-volatility fixed-income instruments, these
adjustments are quantitatively small and do not alter the core economic intuition of the model.

9We obtain similar results if we alter equation (2.25) to reflect the fact that the cumulative return from
rolling over an investment at the short-rate for k periods,

qk≠1
i=0 rt+i, is unknown at time t. As in Camp-

bell and Viceira (2001), this adds an I-CAPM-like hedging motive for holding long-duration assets that
have high excess returns when

qk≠1
i=0 rt+i turns out to be lower than expected. Formally, this means

that generalists solve maxdA,t,dB,t

)
Et [rP,tæt+k] ≠ 1

2· (V art [rP,tæt+k])
*

where rP,tæt+k = (
qk≠1

i=0 rt+i) +
dA,t ◊ (

qk
i=1 rxA,t+i) + dB,t ◊ (

qk
i=1 rxB,t+i). The solution takes the same form as (2.26), replacing

Et[
qk

i=1 rxA,t+i] with Et[
qk

i=1 rxA,t+i] ≠ ·≠1 Covt[
qk

i=1 rx
A
t+i,

qk≠1
i=0 rt+i] and simiilarly for asset B.
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to the A market, promoting cross-market integration over time. Cross-market capital flows

become more responsive to di�erences in risk-reward between markets when the two assets

are closer substitutes (i.e., when R2

(k)

AB is higher). In the limit as the two assets become

perfect substitutes, R2

(k)

AB approaches 1 and generalist investors become extremely aggressive

in exploiting any cross-market pricing di�erences.

2.2.2.3 Equilibrium yields

In market A at time t, there is a mass qA of fast-moving specialists, each with demand

bA,t, and a mass (1 ≠ qA ≠ qB) k≠1 of active slow-moving generalists, each with demand dA,t.

These investors must accommodate the active supply, which is the total supply of sA,t less

any supply held o� the market by inactive generalist investors, (1 ≠ qA ≠ qB) k≠1

qk≠1

j=1

dA,t≠j.

Thus, the market-clearing condition for asset A is

Specialist

demand
˙ ˝¸ ˚
qAbA,t +

Active generalist

demand
˙ ˝¸ ˚
(1 ≠ qA ≠ qB)k≠1dA,t =

Total bond

supply
˙˝¸˚
sA,t ≠

Inactive generalist

holdings
˙ ˝¸ ˚
(1 ≠ qA ≠ qB)(k≠1

ÿk≠1

i=1

dA,t≠i). (2.27)

The market-clearing condition for asset B is analogous.

We conjecture that equilibrium yields and generalist demands are linear functions of a state

vector, xt, that includes the steady-state deviations of the short-term interest rate, the

default realization, the supply of asset A, the supply of asset B, inactive generalist holdings

of asset A, and inactive generalist holdings of asset B. Formally, we conjecture that long-term

yields in market A and B are

yA,t = –A0

+ –Õ
A1

xt, (2.28)

yB,t = –B0

+ –Õ
B1

xt, (2.29)

and that the demands of slow-moving generalists are
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dA,t = ”A0

+ ”Õ
A1

xt, (2.30)

dB,t = ”B0

+ ”Õ
B1

xt, (2.31)

where the 2 (1 + k) ◊ 1 dimensional state vector, xt, is given by

xt= [rt≠r, zt≠z, sA,t≠sA, sB,t≠sB, dA,t≠1

≠”A0

, · · · , dA,t≠(k≠1)

≠”A0

, dB,t≠1

≠”B0

, · · · , dB,t≠(k≠1)

≠”B0

]Õ.

(2.32)

These assumptions imply that the state vector follows an AR(1) process

xt+1

= �xt + ‘t+1

, (2.33)

where the transition matrix � depends on generalist demands.

As we show in the Internet Appendix, equilibrium yields take the same basic form as in

(2.17) with only specialist investors. For market A, the yield is given by

yA,t =

Expected future short rates

˙ ˝¸ ˚I

r +
A

1 ≠ ◊A
1 ≠ flr◊A

B

(rt ≠ r)
J

(2.34)

+

Unconditional term premia

˙ ˝¸ ˚Ë
(qA·)≠1 V (1)

A (sA ≠ (1 ≠ qA ≠ qB) ”A0

)
È

+

Conditional term premia

˙ ˝¸ ˚S

WWU(qA·)≠1 V (1)

A

Q

cca

1≠◊A
1≠◊AflsA

(sA,t ≠ sA)

≠ (1 ≠ ◊A) (1 ≠ qA ≠ qB) k≠1

qŒ
i=0

◊iAEt[
qk≠1

j=0

(dA,t+i≠j ≠ ”A0

)]

R

ddb

T

XXV ,

where V (1)

A = V art [rxA,t+1

] is the equilibrium variance of 1-period excess returns on asset A.

The yield for asset B has an extra term relating to expected future defaults, but is otherwise

similar
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yB,t =

Expected future short rates

˙ ˝¸ ˚I

r +
A

1 ≠ ◊B
1 ≠ flr◊B

B

(rt ≠ r)
J

+

Expected future default losses

˙ ˝¸ ˚I

z + 1 ≠ ◊

1 ≠ flz◊
flz (zt ≠ z)

J

(2.35)

+

Unconditional term/credit premia

˙ ˝¸ ˚Ë
(qB·)≠1 V (1)

B (sB ≠ (1 ≠ qA ≠ qB) ”B0

)
È

+

Conditional term/credit premia

˙ ˝¸ ˚

(qB·)≠1 V (1)

B

S

WWU

1≠◊B
1≠◊BflsB

(sB,t ≠ sB)

≠ (1 ≠ ◊B) (1 ≠ qA ≠ qB) k≠1

qŒ
i=0

◊iBEt[
qk≠1

j=0

(dB,t+i≠j ≠ ”B0

)]

T

XXV .

Although equations (2.34) and (2.35) show that yields in markets A and B take a similar

algebraic form, the risk premia in the two markets will not be the same because of the

di�erent risks that market specialists must bear in equilibrium.

As explained further in the Internet Appendix, solving the model involves finding a solution

to a system of 8k polynomial equations in 8k unknowns. Specifically, we need to determine

the way that equilibrium yields and active generalist demand in markets A and B respond

to shifts in asset supply in A and B: this generates 8 unknowns. We also need to determine

how equilibrium yields and active generalist demand in A and B respond to the holdings of

inactive generalists: this generates 8 (k ≠ 1) unknowns.

As in the single-asset case, a solution only exists if investors are su�ciently risk tolerant (i.e.,

for · su�ciently large). And, there can be a multiplicity of equilibrium solutions. However,

as above, there is a unique solution that has well-behaved limiting behavior.

There are three separate forces that give rise to equilibrium multiplicity:

1. Since specialists have short-horizons, a steeply-downward sloping demand curve creates

a self-fulfilling form of discount rate risk for specialists, just as in the single-asset model.

However, the relevant and well-behaved solution features a smaller equilibrium response

of A yields to A supply shocks, and similarly for asset B. As above, the solutions

featuring a larger response to supply shocks explode in the limiting case where supply

risk vanishes.
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2. Although generalists have longer investment horizons than specialists, their investment

horizons are still shorter than the maturity (perpetual) of the A and B assets. Since

generalists are concerned about the supply risk associated with cross-market arbitrage,

the degree of equilibrium segmentation between the A and B can be self-fulfilling. For

instance, if yields in market B are insensitive to shocks to the supply of A (and vice

versa), cross-market arbitrage becomes very risky for generalists. Hence, generalists

will not aggressively integrate markets, making the low sensitivity of B yields to A

supply shocks self-fulfilling. Conversely, if generalists behave as if markets are highly

integrated, then cross-market arbitrage becomes less risky and, yields in B will be more

sensitive to A supply shocks (and vice versa). However, the relevant and well-behaved

solution always features more aggressive cross-market arbitrage and, thus, tighter cross-

market integration. The solutions with weak cross-market arbitrage explode in the

limit where supply risk vanishes: to induce generalists to absorb a A supply shock, the

yields in B must drop massively in response to a tiny rise in the supply of A.

3. The final source of multiplicity stems from the way that active generalists and, there-

fore, bond yields react to the holdings of inactive generalists. In the unique, well-

behaved equilibrium, active generalists reduce their holdings less than one-for-one in

response to abnormally large holdings of inactive generalists. As a result, large hold-

ings of inactive generalists reduce equilibrium yields. However, there are also solutions

in which active generalists “overreact” to the holdings of inactive generalists, reducing

their holding more than one-for-one. This can lead to situations where large holdings

of inactive generalists actually raises equilibrium yields. This solution behaves oddly in

the limit where the number of generalists grows vanishingly small, with a tiny number

of active generalists taking extremely large bets.

We solve this system of polynomial equations numerically using the Powell hybrid algorithm.

This algorithm performs a quasi-Newton search to find roots of a system of nonlinear equa-
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tions starting from an initial guess vector. To find all of the roots, we apply this algorithm

by sampling over 10, 000 di�erent initial conditions. As discussed above, we restrict atten-

tion to those solutions where active generalists reduce their holdings less than one-for-one

in response to abnormally large holdings of inactive generalists. Of these, we focus on the

single solution where the price of A (B) is less sensitive to shocks to the supply of A (B)

and is more sensitive to shocks to the supply of B (A).10

2.2.3 Defining market integration

What do we mean by “market integration”? We define markets as being integrated in the

short-run if, at each date, conditional risk premia in both markets reflect the same conditional

prices of factor risk. For example, the pricing of interest rate risk is conditionally integrated

across markets if, at each date, the expected return per unit of exposure to short-rate shocks

is the same in markets A and B. Similarly, we will say that markets are integrated in

the long-run when average, or unconditional risk premia in both markets reflect the same

unconditional prices of risk. Unconditional integration is therefore a weaker form of market

integration than conditional integration.

Note that, in our model, market integration has nothing to do with the speed by which

fundamental cash flow news is reflected in asset prices. In our model, fundamental cash flow

news is reflected instantaneously in both markets. To see this, consider the terms in curly

brackets in equations (2.34) and (2.35) above. Both A and B share exposure to news about

changes in future short rates and this news is reflected identically in their yields.

In our model, the degree of market integration depends on which investors can bear risk at

di�erent horizons and is driven by two parameters: (1 ≠ qA ≠ qB) and k. The first parameter,
10Specifically, we select solution vectors that satisfy the restrictions ≠1 <

qk≠1
i=1 ”A1[dA,t≠i] < 0 and ≠1 <qk≠1

i=1 ”B1[dB,t≠i] < 0, where ”A1[dA,t≠i] denotes the element of the ”A1 solution vector that captures the
way that active generalists’ demands for A responds to inactive generalists’ holdings of A in period t ≠ i.
We then pick the single solution among the remaining with the smallest value of –A1[sA] and –B1[sB ].
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(1 ≠ qA ≠ qB), is the population share of generalists. This parameter determines the degree

of long-run integration between markets. For instance, if (1 ≠ qA ≠ qB) ¥ 1, markets will be

well integrated in the long-run even if k is large. The second parameter, k, indexes the speed

with which generalist capital can flow between markets. Thus, k determines the degree of

short-run integration. Markets are perfectly segmented if (1 ≠ qA ≠ qB) = 0 or k æ Œ. If

either of these conditions holds, the two markets operate independently of each other.

Formally, collect all of the 1-period returns in a vector rxt+1

and the asset supplies in a

vector st. Letting rxMt,t+1

= sÕ
trxt+1

, markets are integrated in the short-run if

Et [rxt+1

] = ·≠1V art [rxt+1

] st (2.36)

= —t [rxt+1

, rxMt,t+1

]Et [rxMt,t+1

]

where —t [rxt+1

, rxMt,t+1

] = V art [rxt+1

] st/ (sÕ
tV art [rxtæt+j] st) and Et [rxMt,t+1

] = sÕ
tEt [rxt+1

].

In other words, markets are integrated in the short-run if, at each date, a conditional-CAPM

based on the current market portfolio (rxMt,t+1

= sÕ
trxt+1

) prices both the A and B assets.

In our model, markets are integrated in the short-run if and only if (1 ≠ qA ≠ qB) = 1 and

k = 1.11

Similarly, markets are integrated in the long-run if

E [rxtæt+k] = ·≠1V art [rxtæt+k]E [st] (2.37)

= —[rxtæt+k, rxM,tæt+k]E[rxM,tæt+k],

where —[rxtæt+k, rxM,tæt+k] = V art [rxtæt+k]E [st] / (E [sÕ
t]V art [rxtæt+k]E [st]) and E[rxM,tæt+k] =

E [sÕ
t]E [rxtæt+k]. In other words, markets are integrated in the long-run if the same unconditional-

11In our setting, a conditional-CAPM holds if and only if the conditional prices of factor risk are the same in
both markets at each date. To see this, write rxA,t+1≠Et [rxA,t+1] = „Õ

AÁt+1 where Át+1 are the (four) factor
innovations and „A are the factor loadings for asset A. Proceeding similarly for market B and stacking these
equations, we have rxt+1 ≠ Et [rxt+1] = �Át+1 where � = [„A „B ]Õ. Therefore, when (1 ≠ pA ≠ pB) = 1
and k = 1, we have Et [rxt+1] = ·≠1V art [rxt+1] st = �

!
·≠1

��

Õ
st

"
= �⁄t where ⁄t =

!
·≠1

��

Õ
st

"
are the

(four) conditional prices of factor risk at time t. By contrast, when (1 ≠ pA ≠ pB) ”= 1 and k ”= 1, there is
no conditional CAPM that will price the 1-period returns on the A and B assets.
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CAPM based on the average market portfolio (rxM,tæt+k = E [sÕ
t] rxtæt+k) prices both the

A and B assets on average. In our model, markets are integrated in the long-run if and only

if (1 ≠ qA ≠ qB) = 1, irrespective of k.

Economically, the reason markets are not integrated is because cross-market arbitrage is

risky for generalists, much like in Gromb and Vayanos (2002). Unless (1 ≠ qA ≠ qB) = 1

and k = 1, short-run integration fails because generalists demand compensation for the risk

associated with the short-run trades they place to exploit the cross-market pricing di�erences

that arise following supply shocks. Similarly, unless (1 ≠ qA ≠ qB) = 1, long-run integration

fails because generalists are engaged in a risky “cross-market arbitrage” trade even in the

long run and must be compensated for its risks. Specifically, when (1 ≠ qA ≠ qB) < 1,

generalists will not hold the market portfolio in the steady-state (i.e., E [dA,t] ”= E [sA,t] and

E [dB,t] ”= E [sB,t]). Relative to the market portfolio, generalists’ portfolio will incorporate a

tilt that reflects cross-market pricing di�erences. And, generalists will demand compensation

for bearing the risks stemming from this portfolio tilt.12 Thus, in the general case where

(1 ≠ qA ≠ qB) < 1 and k > 1, we obtain neither short-run nor long-run market integration.

How should one think about the relevant values for (1 ≠ qA ≠ qB) and k empirically? Clearly,

the relevant values of (1 ≠ qA ≠ qB) and k depend crucially on the two markets being con-

sidered. For instance, U.S. Treasury and U.S. Agency bonds are often overseen by the same

portfolio manager within a large institution. As a result, we would expect (1 ≠ qA ≠ qB)

to be near 1 and k to be low, so the two markets would be tightly integrated even in the

short-run: Treasury supply shocks would be rapidly transmitted to Agency debt markets

and vice versa. However, in other cases, such as U.S. Treasury bonds and corporate bonds,

or the fixed-income market and the equity market, it is natural to think that (1 ≠ qA ≠ qB)

12In the symetric case where qA = qB and sA = sB , we have ”B0 > ”A0. The reason is that the B asset is
riskier than the A asset since the former is exposed to cash-flow risk. As a result, B-specialists will hold
less of the B-asset than A -specialists hold of the A-asset. Relative to the market portfolio, this means that
generalists will be overweight the B asset and underweight the A asset.
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is well below 1 and that k > 1. Although di�erent asset classes are often held by the same

generalists—e.g., pension funds or endowments, most of these investors are quite slow to

reallocate capital.

2.3 Market integration following large supply shocks

How do prices adjust across di�erent asset markets following supply shocks? Here we use our

model to explore asset price dynamics following shocks.

Table 2.1 lists the illustrative set of parameter values that we use in these numerical exercises.

For the purposes of these illustrations, it may be helpful to think of market A as the U.S.

Treasury market and market B as the corporate bond market. We use annualized values so

that one period in our numerical exercises corresponds to one year. The total average supply

of assets in each market is normalized to be one unit.

Table 2.1: Illustrative model parameters

This table presents the illustrative model parameters that we use throughout our numerical
exercises. We use annualized values so that one period corresponds to one year.
Parameter Description Value
qA, qB Percentage of investors that are specialists in A and B 45%
k Number of periods between generalist portfolio rebalancing 4
r̄ Average short-term riskless rate 4%
‡r Volatility of annual shocks to short-term riskless rate 1.3%
flr Annual persistence of short-term riskless rate 0.85
z̄ Expected default losses per annum on asset B 0.2%
‡z Volatility of annual shocks to default losses on asset B 0.7%
flz Annual persistence of default losses on asset B 0.85

s̄A, s̄B Average asset supplies 1
‡sA , ‡sB Volatility of annual supply shocks 0.6
flsA , flsB Annual persistence of supply shocks 0.999
DA, DB Macaulay duration in years (implies ◊A = ◊B = 0.8) 5 years

· Investor risk tolerance 50

We have calibrated the parameters in our model to the extent possible to actual data on U.S.
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fixed income markets as described in the internet appendix. For parameters that cannot be

calibrated, we used reasonable values that are illustrative of the main takeaway.

We begin our analysis by choosing k = 4 years and qA = qB = 45%, but later show compar-

ative statics for these parameters. Based on these values, our simulations assume that most

of the capital in each market is operated by specialists, with 10% being controlled by flexible

generalist investors, one-fourth of whom re-allocate their portfolios each year. Our choice of

k = 4 is somewhat arbitrary, but we think of this as capturing the empirically relevant case

of pension funds or endowments who typically review their asset allocations on an annual or

biannual basis and, even then, only sluggishly adjust their portfolios towards some evolving

target. A recent paper by Bacchetta and van Wincoop (2017) have estimated the portfolio

re-allocation frequency to be in line with our assumption.

A simple way to think about k = 4 is that upon a shock, one-fourth of the capital is able

reallocate in a relative fast manner, while the remaining three-fourth of the total capital

reacts sluggishly. Given that relative small share of capital are managed by unrestricted

asset managers with the ability to react quickly, e.g. macro hedge funds, even on a levered

basis, we think having one-fourth of the total capital being able to react quickly is not an

extreme choice.

2.3.1 Unanticipated supply shocks

Baseline example We first consider the impact of an unanticipated supply shock that

increases the supply of asset A (Treasuries) by 50% in period 10. To make the intuition as

stark as possible, we focus on the case of a near-permanent supply shock and set flsA = 0.999.

Specifically, Figure 2.1 illustrates the price impact of this shock, plotting the evolution of

expected annual returns and bond yields in market A (Treasuries) and market B (corporate

bonds). Figure 2.2 shows how specialists and generalist investors adjust their holdings in
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response to the shock.

Prior to the supply shock in period 10, Figure 2.1 shows that the risk premium in market

B (corporate bonds) is 0.64% per annum versus a risk premium of 0.48% in market A

(Treasuries). The additional risk premium of 0.16% obtains because market B (corporate

bonds) is subject to default risk, which exposes investors to an additional source of cash flow

risk and amplifies the supply risk facing corporate bond holders. The initial yield in market

B is 4.84% per annum versus a yield of 4.48% in market A. The steady-state yield in market

A equals the average short-term riskfree rate of r = 4.00% plus the steady-state risk premia

of 0.48%. The 0.36% steady-state yield spread between the B and A markets equals the

di�erence in steady-state risk premia of 0.16% plus the market B’s expected default losses

of z = 0.20% per annum.

When the supply shock hits the market A in period 10, expected returns and yields in both

markets react immediately. Figure 2.1.A shows that expected returns in market A overreact

and reach a peak of 0.70% before ultimately falling back to a long-run level of 0.64%. The

overreaction of expected returns for asset A illustrates a general property of models that

feature slow-moving capital and has been shown in some models, such as Du�e (2010),

namely, the relative steepness of short-run demand curves and relative flatness of long-run

demand curves.

In contrast, Figure 2.1.A shows the key novel implication of our model: expected returns in

market B actually underreact to the shock to the supply of A, rising slowly from 0.64% to a

new long-run level of 0.72%. Why does market A overreact to the supply shock while market

B underreacts? Figure 2.2.A shows how the positions of di�erent market participants evolve

over time. Following the initial supply shock in market A, both specialist demand in A (bA,t)

and active generalist demand in A (dA,t) spike upwards. As a partial hedge against their

increased holdings of A, active generalists reduce their holdings in market B. This reduction

in generalists’ B holdings is motivated by a need to reduce the common short-rate risk (and
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Figure 2.1: Price impact of an unanticipated shock to the supply of asset A
This figure shows the impact on annual bond risk premia and bond yields of an unanticipated
shock that increases the supply of asset A by 50% in period 10. Panel A shows the evolution
of annual bond risk premia in market A, Et[rxA,t+1], and market B, Et[rxB,t+1], over time.
Panel B shows the evolution of bond yields in market A, yA,t, and market B, yB,t, over time.
Panel A: Annual bond risk premia

Panel B: Bond yields
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Figure 2.2: Portfolio adjustments in response to an unanticipated shock to the supply of
asset A

This figure shows the impact on investor positions and active asset supplies of an unexpected
shock that increases the supply of asset A by 50% in period 10. Panel A shows the evolution
of specialists holdings in markets A and B (bA,t and bB,t) as well as the positions of active
generalists (dA,t and dB,t). Panel B shows the evolution of the “active supplies” of assets A
and B. The active supply of A is sA,t ≠ (1 ≠ qA ≠ qB)k≠1)qk≠1

i=1

dA,t≠i and the active supply
of B is defined analogously.
Panel A: Specialist holdings and positions of active generalists

Panel B: Active asset supply
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supply risk) across their holdings in both markets. To fill the void left by the generalists,

specialists in market B must hold more of the B asset. As time passes and more generalists

reallocate their portfolios in response to the shock, the active demands for A decline slowly

towards their new long-run levels.

In our model, the dynamics of risk premia are tied to the dynamics of the “active supply”

of A and B that must be absorbed by active market participants each period. By "active

supply" we mean the total supply less the assets that are being held o� the market by inactive

generalists. The evolution of the active supplies is shown in Figure 2.2.B. The dynamics of

active supply mirror those for bond risk premia shown in Figure 2.1.A. The initial supply

shock to A in period 10 immediately increases the active supply in A but has no immediate

e�ect on the active supply of B. This is because slow-moving generalists have yet to reduce

their holdings in market B. Over the ensuing periods, generalists gradually increase their

holdings of A and reduce their holdings of B. Therefore, the active supply in A gradually

declines while the active supply in B gradually rises.

Recall that k = 4 in this example, so by period 13 all generalist investors have re-allocated

their portfolios in response to the supply shock in period 10. However, the gradual adjust-

ment of generalists gives rise to modest echo e�ects after period 13, generating a series of

dampening oscillations that converge to the new long-run equilibrium. As in Du�e (2010),

these oscillations arise because generalists who reallocate soon after the supply shock hits

take large opportunistic positions. These large positions temporarily reduce the active supply

of A and then need to be absorbed in later periods.13

Because markets are partially segmented, large supply shocks can have surprising e�ects on

seemingly unrelated risk premia in our model. For example, because it triggers significant

cross-market capital flows, the shock to the supply of asset A (Treasuries) actually raises

13Using an extension of Du�e’s (2010) model, Bogousslavsky (2016) argues that infrequent rebalancing can
explain the echo e�ects found intra-day and daily returns.
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the risk premium that corporate bond investors earn for bearing default risk in market B

(corporate bonds), even though Treasury bonds themselves have no exposure to default risk
14.

In Figure 2.1.B, we shift from risk premia to bond yields, which are simply risk premia

integrated over time. The overreaction of the A market and the underreaction of the B

market is more muted in yield space than in risk premium space. This is natural since bond

yields reflect weighted averages of future bond risk premia.15 Market A yield overreacts

by 11% of the total long-run impact and market B yield underreacts by 19% of the total

long-run impact.

Comparative statics In Table 2.2, we perform a variety of comparative statics exercises

to illustrate how the price dynamics following supply shocks depend on the parameters of

our model. We focus on the parameters governing market structure: the population share of

generalist investors (1 ≠ qA ≠ qB) and the frequency at which generalists can rebalance (k).

For a given set of model parameters, we summarize the impact of the supply shock on both

the A and B markets by listing the yields and expected annual returns in (i) the period

before the shock arrives (labeled as “pre-shock level”), (ii) the period when the shock arrives

(labeled as “short-run �”), and (iii) in 2k periods after the shock arrives (labeled as “long-run

�”).

We define the degree to which bond yields over- or underreact as the di�erence between

the short-run change and the long-run change, expressed as a percentage of the long-run

change16

14In this way, our model may shed light on the otherwise puzzling finding that central bank purchases of long-
term government bonds appear to have reduced credit risk premia (Krishnamurthy and Vissing-Jorgensen
[2011]).

15Specifically, generalizing (2.16) we have yA,t = (1 ≠ ◊A)
qŒ

i=0◊iAEt[rt+i + ·≠1V
(1)
A bA,t+i] and yB,t =

(1 ≠ ◊B)
qŒ

i=0◊iBEt[rt+i + zt+i+1 + ·≠1V
(1)
B bB,t+i].

16Since our supply shock is not quite permanent, we subtract o� the constant (1 ≠ fl2k
SA

)/fl2k
SA

from %Over-
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%Over-Reaction(y) © (yt ≠ yt≠1

) ≠ (yt+2k ≠ yt≠1

)
(yt+2k ≠ yt≠1

) .

Our measure of over-reaction for risk premia, %Over-Reaction(E [rx]), is defined analo-

gously. According to this definition, using our baseline set of parameters, yields in market

A overreact by approximately 11%, while yields in market B underreact by 19%.

The second row in Table 2.2 shows that, if market participants are more risk tolerant, this

reduces the price impact of the supply shock on both market A and market B. Changing

investor risk tolerance has a similar impact on the short- and long-run response of yields to

shocks. Thus, the degree of overreaction or underreaction in each market is unchanged in

percentage terms.

We next change the mix between generalist and specialist investors. qA and qB indicate the

relative fraction of specialists in market A and B, respectively. In row 3, we set qA = qB = 0.5

so there are no generalists and the two markets are completely segmented: a supply shock

in the market A is not transmitted to the market B and vice versa.

In contrast, in the case of many generalists and few specialists, the markets are well inte-

grated, so that both the A and B markets overreact to a supply shock that directly hits

only the A market. In this case, shown in row 4 which sets qA = qB = 0.2, the two markets

behave as essentially one and the result is similar to the single-market case with slow-moving

capital studied in Du�e (2010).

We next change the mix between market A specialists and market B specialists, holding

fixed the overall mix between generalists and specialists. Row 5 of Table 2.2 shows that

if we hold the total number of specialists the same at qA + qB = 0.9, then as we increase

the proportion of specialists in B and decrease the proportion of specialists in A, we get

Reaction to ensure that our measure is zero the case of perfectly conditionally-integrated (1 ≠ pA ≠ pB =
k = 1) or perfectly segmented markets (1 ≠ pA ≠ pB = 0) in which there is no “over-reaction” but only
“reaction.” This is because in these limiting cases we have [(yt ≠ yt≠1) ≠ (yt+2k ≠ yt≠1)] / [yt+2k ≠ yt≠1] =#
–sAsA,t ≠ –sAsA,tfl

2k
sA

$
/–sAsA,tfl

2k
sA = (1 ≠ fl2k

sA)/fl2k
sA . For k = 4 and flsA = 0.999, this constant is 0.8%.
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more over-reaction in A. The B market is only modestly a�ected by this change because the

supply shock is primarily being absorbed by generalists anyway.

Recall that k is the number of periods it takes for generalists to fully reallocate their port-

folios and that k = 4 in our base case. In row 6 we instead set k = 2, so half the generalists

reallocate their portfolio each period, and the other half reallocate in the next period. Nat-

urally, this smaller value of k reduces the over-reaction in market A and the under-reaction

in market B. Similarly, when we set k = 6 in row 7, there is more over-reaction in market

A, and more under-reaction in market B.

Note that k also a�ects the unconditional risk premium that investors earn over the long

run. As we increase k, there are two competing e�ects on unconditional risk premium. On

the one hand, generalists with longer horizons worry less about a fixed amount of transitory

discount rate risk, leading to a decline in the unconditional price of discount rate risk.17

On the other hand, the steady state quantity of discount rate risk that investors must bear

actually grows with generalist horizons k.18 As shown in Table 2.2, the latter e�ect generally

tends to dominate.19 In summary, as we increase k, supply shocks have a larger impact

on conditional risk premia and this increase in supply risk tends to raise unconditional risk

premia.

17Since mean-reverting supply shocks generate negative serial correlation in returns, the variance ratio
V art[rxA,tæt+k]/k will be decreasing in k holding fixed the endogenous parameters that govern the re-
turn generating process. Thus, as in Campbell and Viceira (2002), longer-horizon investors worry less about
transitory supply (discount rate) risk, leading them to take larger positions in risky assets.

18Formally, as we increase k, the endogenous parameters that govern the return generating process are not
held fixed. Since fewer long-horizon investors are active in a given period, the short-term price impact of
supply shocks grows, leading to an rise in the quantity of discount rate risk.

19Formally, let E[rxA
t+1] = (pA·)≠1 !

sA ≠ (1 ≠ pA ≠ pB) ”A0
"
V

(1)
A denote the unconditional risk premium. We

have

ˆE[rxA
t+1]

ˆk
= (pA·)≠1

C
ˆV

(1)
A

ˆk

!
sA ≠ (1 ≠ pA ≠ pB) ”A0

"
≠ V

(1)
A (1 ≠ pA ≠ pB)

ˆ”A0
ˆk

D

When ‡2
sA ,‡

2
sB = 0, ˆV

(1)
A /ˆk = ˆ”A0/ˆk = 0 and unconditional risk premia are independent of k. When

‡2
sA ,‡

2
sB > 0, we have ˆV

(1)
A /ˆk > 0 and ˆ”A0/ˆk > 0. In general, we find that the former e�ect tends to

dominate, so that unconditional risk premia are increasing in k.
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In row 8, we ask how our results depend on the relative sizes of the A and B markets.

Relative to our base case of two equally sized markets, we find that generalists are better

able to integrate a small market with a larger market. We keep sA+sB = 2 and qA+qB = 0.9,

but we now assume that sA = 5/3 and sB = 1/3 so average supply in market A is 5◊ that

in market B. We also assume that qA = 0.45 ◊ sA and qB = 0.45 ◊ sB as in the baseline,

which implies qA = 0.75 and qB = 0.15. As in our baseline, we consider a shock that raises

the supply of A by 0.5. Row 8 shows that A over-reacts less and that B under-react less to

the shock than under our baseline. The explanation is that market B is now much smaller

relative to total generalist risk tolerance. As a result, a cross-market arbitrage position of a

given size is better able to keep prices in market B close to those in market B.

2.3.2 Extensions

The model is also useful for understanding asset price dynamics following the announcement

of a large future change in asset supply. For example, many central bank asset purchase pro-

grams occurring 2008 and 2013 were announced weeks or months before the asset purchases

actually began. We can use the model to describe how prices and yields react to anticipated

supply shocks, but leave the formal details for the Internet Appendix. As we describe below,

the long-run impact of supply shocks on risk premia is the same whether or not the shock is

pre-announced. But the short run e�ects can be quite di�erent.

Consider the simple case of the pre-announcement of a one-time, near permanent jump in

the supply of asset A. Pre announcing the supply shocks mobilizes slow-moving generalists

before the supply of A actually rises. This early mobilization reduces the active supply of

asset A that must eventually be absorbed when the shock lands, dampening the overreaction

of prices and yields in market A. While this limits overreaction, it also lengthens the amount

of time that it takes for the full impact of the shock to be reflected in prices, particularly
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in market B. The overall impact is that yields in both market A and market B rise more

gradually to their new steady-state levels. Compared to the unanticipated shock case, we see

less overreaction in market A (and potentially underreaction) and even greater underreaction

in market B.

Another extension we have explored is whether the results carry over to a more complex

setting in which there are multiple risky assets trading in each market. Details of this analysis

are presented in the Internet Appendix. Concretely, in describing the model so far, we have

made no distinction between “asset” A and “market” A. The distinction takes on meaning

when the market A contains many securities, but flows between all of these securities and

market B are limited by the generalist arbitrageurs. For example, in the Treasury market,

there are many di�erent securities with di�erent maturities and thus exposure to interest

rate risk.

Subject to some mild conditions which guarantee that cross-market arbitrage remains risky,

the intuitions from the two risky asset model carry over to a richer setting with more se-

curities20. We show that the dynamics of the price of interest rate risk and default risk in

markets A and B follow the same path as in the simpler case, but di�erent securities in

these markets vary in their exposure to changes in these risk prices. Specifically, a condi-

tional CAPM prices all assets in the first market, and a di�erent conditional CAPM prices

all assets in the second market. The two market specific pricing models are linked over time

by the cross-market arbitrage activities of the slow-moving asset allocators, who take steps

to equalize the prices of risk in the two markets. And, much as before, the degree of market

integration depends on the risks faced by cross-market arbitrageurs.

To illustrate the impact of a supply shock on two di�erent markets that each contain multiple

assets, we provide the following example. Specifically, we numerically solve the model in the
20The key condition is that generalists are unable or unwilling to use the A assets to construct a factor
mimicking portfolio that isolates exposure interest rate shocks. If the generalists can do this in both markets,
then a riskless arbitrage exists.
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case where generalists re-allocate their portfolios every k = 2 periods and with N = 2 assets

in both the A and B markets. The two assets in each market di�er solely in their durations.

The short-term bonds, denoted A1 and B1, have a duration of 2 years (i.e., DA
1

= DB
1

= 2).

The long-term bonds, denoted A2 and B2, have duration of 10 years (i.e., DA
2

= DB
2

= 10).

As before, the two bonds in market A are default free whereas the two bonds in market B

are exposed to default risk.21

Figure 2.3 shows the evolution of risk premia following an unexpected shock at time 10

which permanently increases the supply of long-term default-free bonds (A2) and reduces the

supply of short-term default-free bonds (A1) by an equal amount. This scenario corresponds

to a “reverse Operation Twist” in which the Federal Reserve sells long-term Treasuries and

reinvests the proceeds in short-term Treasuries.

Since this supply shock increases the total amount of interest rate risk than investors must

bear, Figure 2.3 shows that the risk premia for all four assets rise after impact. Further-

more, this supply shock has a larger impact on the risk premium for long-maturity bonds

in each market, leading both the A and B yield curves to steepen (since the shock is per-

manent). These patterns are consistent with those generated by existing models of bond

supply shocks (e.g., Greenwood and Vayanos [2014] and Greenwood, Hanson, and Vayanos

[2015]). However, since markets are partially segmented in our example, it takes time for

the slow-moving generalists to integrate the A and B markets following the shock, leading

the risk premia of the two A assets to initially over-react and the risk premia of the two B

assets to initially underreact in Figure 2.3. Furthermore, because cross-market arbitrage is

risky for generalists, market integration remains imperfect even in the long run. Specifically,

even many period after the supply shock, Figure 2.3 shows that the yield curve in market A

has steepened more than the yield curve in market B.

21For simplicity, we assume that B1 and B2 have the same exposure to the common default process, zt. We
also assume that there is no idiosyncratic default risk—i.e., uB1,t = uB2,t © 0.
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Figure 2.3: Price impact with multiple securities in each market
This figure shows the impact on bond risk premia of an unexpected supply shock that
permanently increases the supply of long-term default-free bond (A2) and decreases the
supply of short-term bond (A1) by an equal amount at time 10. Panel A shows the evolution
of risk premia for short-term securities in each market (A1 and B1). Panel B shows the
evolution of risk premia for long-term securities in each market (A2 and B2).
Panel A: Risk premia for short-maturity bonds in each market

Panel B: Risk premia for long-maturity bonds in each market
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2.4 Discussion and Applications

2.4.1 Event studies and changes in the price of risk

In response to a rapidly evolving financial crisis and worldwide recession, in late 2008 and

early 2009, central banks around the world announced their intention to aggressively purchase

government bonds and other long-term debt securities. A crucial question in assessing the

e�ectiveness of these asset purchase programs is whether they impacted securities prices

beyond government bonds. Suppose, for example, that the impact of asset purchase programs

was limited to markets in which the purchases were being made (Treasury bonds and MBS),

perhaps because these markets are highly segmented from other financial markets. Such a

finding should dampen central bankers’ enthusiasm for these programs, and cast doubt that

asset purchases could a�ect broader economic activity.

Our model provides a natural framework for understanding how these asset purchase pro-

grams should spill across di�erent financial markets over time. According to our model, the

largest short-run e�ects of these programs should be in the securities being purchased. In the

long run, however, changes in risk premia in the market being targeted should spill over to

non-targeted markets. Di�erences between the short-run and long-run price impact should

reflect the degree to which the programs were anticipated, the length of time between the

announcement date and implementation, and the e�ective degree of segmentation between

di�erent financial markets.

Most empirical studies of these purchase programs have used an event study methodology,

focusing on the 1-day or even intraday impact on bond yields following announcements of

future asset purchases. In one of the first of these event studies, Gagnon, Raskin, Remache,

and Sack (2011) report interest rate changes around a set of Federal Reserve announcement

days between November 2008 and January 2010. Cumulating over all announcement dates
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associated with the Fed’s first round of quantitative easing (QE1), they report a 62 basis

points decline in 10-year US Treasury yields, a 123 basis points decline in agency MBS

yields, and a 74 basis points decline in Baa-rated corporate bond yields. Krishnamurthy and

Vissing-Jorgensen (2011) extend this analysis to the Fed’s second round of quantitative easing

(QE2) and also discuss the impact on other assets, including high yield corporate bonds.

After controlling for other factors, Krishnamurthy and Vissing-Jorgensen conclude that the

e�ects of asset purchases were most pronounced among the assets being purchased (MBS

and Treasuries in QE1 and Treasuries in QE2), suggesting a high degree of segmentation

between di�erent fixed income markets.

At the same time, some researchers have recognized that short horizon announcement returns

may not capture the full impact of these asset purchase programs. In their empirical assess-

ment of the Bank of England’s quantitative easing program, Joyce, Lasoasa, Stevens and

Tong (2010) suggest that it may have impacted corporate bonds and equities. Fratzcher, Lo

Duca, and Straub (2013) suggest that the Fed’s QE programs triggered portfolio flows that

ultimately impacted emerging market asset prices and foreign exchange rates. Mamaysky

(2014) suggests that QE might ultimately spill into the asset markets through portfolio

allocation, but notes that “it is unlikely that such portfolio flows can take place quickly.”

Researchers have used di�erent approaches to measure the long-run e�ects of QE. Joyce,

Lasoasa, Stevens and Tong (2010) report the cumulative change in asset prices for the longer

period between March 4, 2009 and May 31, 2010 in addition to 1-day announcement returns.

They show that corporate bond yields fall by a cumulative 70 basis points around asset

purchase announcements, but by 400 basis points over the longer period. Mamaysky (2014)

takes a more tailored approach to each asset market: he chooses an announcement window

that maximizes the statistical power of the measured return. Using this approach, he shows

that the impact of QE on both equity and high yield bond markets is much larger after

15 days than what one would measure using a 1-day window. But even this approach may
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significantly understate the long-run e�ect, because, as we have noted, the full impact of

supply shocks may easily take quarters or years to be felt.

Our model clarifies the broader issue at stake: event studies are a useful methodology for

detecting short-run price changes, but often lack the statistical power to detect changes

in risk premia occuring at longer horizons. The event study methodology was originally

developed in the 1970s to tackle questions of informational e�ciency of stock prices, not

changes in risk premia, but has increasingly been used in other settings, such as in event

studies assessing QE.

The limitations of event studies are particularly severe when there is noise from "cash flow"

news. For instance, consider the e�ects of ‡z—the volatility of fundamental cash-flow shocks

in market B—on our ability to detect the impact on prices in market B stemming from a

supply shock that hits market A . When ‡z is large relative to ‡r, there is insu�cient power

to detect changes in risk premia in market B. The statistical power would increase with the

number of events, but power is nonetheless decreasing in ‡z. Thus, our model suggests that

short-run event studies may have a hard time detecting spillover e�ects on markets, such

as equities and high yield bonds, where there can be significant confounding news. More

generally, our framework suggests that event studies are an inappropriate methodology for

measuring cross-market price impact, at least in the short run.

Figure 2.4 illustrates more formally the potential inability of event studies to detect cross-

market spillover e�ects from an unanticipated supply shock in market A. In an environment

with low short-rate volatility, a supply shock to market A can have statistically significant

impact on market A but not on market B.22 Even though the shock to the supply of A

impacts yields in the B market, the short-term e�ect is not statistically significant—e.g., the

confidence interval for the 1-day change includes zero—and, thus, it would not be detected
22The parameter values used to generate Figure 13 reflect the low interest rate volatility during QE when
short rates were pinned down at zero and supply risk was low. In addition, arbitrageur risk tolerance (·)
was small during this period.
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by conventional event study techniques. In addition, the long-term e�ect, while economically

meaningful, is also statistically insignificant.

In summary, our model suggests that we should be extremely cautious in using event studies

to assess the long-run impact of supply shocks on market prices and risk premia. However,

measuring the long-run impact of supply shocks across markets is inherently di�cult because

the full economic impact may occur over such a long time that it is swamped by other factors.

2.5 Conclusion

Modern financial markets are highly specialized. While specialization brings many benefits,

the boundaries of securities markets are tested when there are large shocks to the supply

of an entire asset class. In this paper, we develop a model to describe securities prices

when shocks must draw in arbitrageurs from other related asset markets. We use the model

to study the process by which capital flows across markets, and how quickly and by what

magnitude prices adjust in di�erent markets. Unlike textbook theories in which asset prices

are determined solely by the stock of risky assets supplied, our approach suggests that supply

flows—i.e., the rate at which the supply stock is changing—also matter in the short run.

Even when a large amount of capital is mobile in the long run, di�erent asset markets need

not be fully integrated because market segmentation creates risks for arbitrageurs.

Our model explores the consequences of specialization when markets are hit with large

shocks. However, we have taken the existence of specialists as given. But what determines

the boundaries of specialists’ expertise and, hence, the fault lines between di�erent asset

classes? Answering this question remains an important task for future research.
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Figure 2.4: Event study confidence interval following an unanticipated shock to the supply
of asset A

The yields of markets A and B and their respective 95% confidence intervals are shown.
An unanticipated shock that doubles the supply of asset A is delivered in period 10. The
following parameters are used: · = 0.5, ‡sA = ‡sB = 0, ‡r = ‡z = 0.2%. All other
parameters are the same as those listed in Table 2.1. For period t > 9, we compute the
model-implied confidence interval for the cumulative changes in yields for market A and B
from period 9, yA,t ≠ yA,9 and yB,t ≠ yB,9, assuming that all shocks are normally distributed.
These confidence intervals are shaded in gray.
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3 Options-Pricing Formula with

Disaster Risk1

3.1 Introduction

We derive a new options-pricing formula that applies when disaster risk is the dominant force,

when the size distribution of disasters is characterized by a power law, and when the economy

has a representative agent with Epstein-Zin utility with a constant coe�cient of relative

risk aversion. Specifically, we consider far-out-of-the-money put options on the overall stock

market, corresponding empirically to the S&P 500 in the United States and analogous indices

for other countries. The pricing formula applies when the option is su�ciently far out of

the money (operationally, a relative exercise price or moneyness of 0.9 or less) and when the

maturity length is not too long (operationally, up to 6 months).

In the prescribed region, the elasticity of the put-options price with respect to maturity is

close to one. The elasticity with respect to the exercise price is greater than one, roughly

constant, and depends on the di�erence between the power-law tail parameter, denoted –,

and the coe�cient of relative risk aversion, “. (This di�erence has to be positive for various
1This paper was written jointly with Robert J. Barro. We appreciate helpful comments and assistance with
data from Josh Coval, Ben Friedman, Xavier Gabaix, Tina Liu, Matteo Maggiori, Greg Mankiw, Robert
Merton, Richard Roll, Steve Ross, Emil Siriwardane, Jessica Wachter, and Glen Weyl, and participants in
the macroeconomics seminar at Harvard University and finance seminar at MIT.
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rates of return not to blow up.)

The options-pricing formula involves a term that is proportional to the disaster probability,

p. This term depends also on three other parameters: “, –, and the threshold disaster size,

z
0

. If these three parameters are fixed, we can use estimated time fixed e�ects to gauge the

time variations in p. Our analysis modifies the options-pricing formula to allow for potential

changes in p. Specifically, sharp increases in p can get far-out-of-the-money put options into

the money without the realization of a disaster.

We show that the theoretical formula conforms with data from 1983 to 2017 on far-out-of-

the-money put options on the U.S. stock market and analogous indices over shorter periods

for other countries. Our analysis relies on two types of data—indicative prices on over-the-

counter (OTC) contracts o�ered to clients by a large financial firm and market data provided

by OptionMetrics, Bloomberg, and Berkeley Options Data Base. A key advantage of the

OTC source is its provision of a rich array of contracts by exercise price and maturity. In

particular, the relative exercise price goes down to 0.5, and the maturity can be 12 months

or more. A downside of these data is that the reported prices do not necessarily correspond

to actual trades. An advantage of the market data is the correspondence with actual trades,

but there are problems with stale prices and sizes of bid-ask spreads. The most serious

disadvantage of these data is the limited information on far-out-of-the-money options, which

rarely trade. The market data (and trades) are also concentrated on short maturities; for

example, about half of the OptionMetrics contracts have maturity of two months or less. In

any event, we find that the main results are similar from the two types of data sources.

Extensions of the empirical analysis would allow for second-order terms. These terms involve

the possibility of multiple disasters, the presence of a di�usion term, and allowances for

discounting and expected growth.
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3.2 Baseline Disaster Model and Previous Results

We use a familiar setup based on rare-macroeconomic disasters, as developed in Rietz (1988)

and Barro (2006, 2009). The model is set up for convenience in discrete time. Real GDP,

Y , is generated from

log Yt+1

= log Yt + g + vt+1

+ ut+1

(3.1)

where, g Ø 0 is the deterministic part of growth, ut+1

(the di�usion term) is an i.i.d. normal

shock with mean 0 and variance ‡2, and vt+1

(the jump term) is a disaster shock. Disasters

arise from a Poisson process with probability of occurrence p per period. When a disaster

occurs, GDP falls by the fraction b, where 0 < b Æ 1. The distribution of disaster sizes is time

invariant. (The baseline model includes disasters but not bonanzas.) This jump-di�usion

process for GDP is analogous to the one posited for stock prices in Merton (1976, equations

[1] [3])2.

In the underlying Lucas (1978)-tree model, which assumes a closed economy, no investment,

and no government purchases, consumption, Ct, equals GDP, Yt. The implied expected

growth rate of C and Y is given, if the period length is short, by

gú = g ≠ pE [b] + 1
2‡2

u (3.2)

where E [b] is the mean of b. In this and subsequent formulas, we use an equal sign, rather

than approximately equal, when the equality holds as the period length shrinks to zero. The

representative agent has Epstein-Zin/Weil utility3, as in Barro (2009):
(1 ≠ “)Ut =

I

C1≠◊
t + 1

1 + fl
[(1 ≠ “)EtUt+1

]
1≠◊
1≠“

J 1≠“
1≠◊

(3.3)

where “ > 0 is the coe�cient of relative risk aversion, ◊ > 0 is the reciprocal of the

intertemporal-elasticity-of-substitution (IES) for consumption, and fl > 0 is the rate of time

preference. As shown in Barro (2009) (based on Giovannini and Weil [1989] and Obstfeld
2Related jump-di�usion models appear in Cox and Ross (1976).
3Epstein and Zin (1989) and Weil (1990)
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[1994]), with i.i.d. shocks and a representative agent, the attained utility ends up satisfying

the form:

Ut = �C1≠“
t

1 ≠ “
(3.4)

where the constant � > 0 depends on the parameters of the model. Using equations (3.3) and

(3.4), the first-order condition for optimal consumption over time follows from a perturbation

argument as

C

Et

3
Ct+1

Ct

4
1≠“

D( “≠◊
“≠1

)
= 1

1 + fl
Et

C3
Ct+1

Ct

4≠“

Rt+1

D

(3.5)

where Rt+1

is the gross rate of return on any available asset from time t to time t+1. When

“ = ◊—the familiar setting with time-separable power utility—the term on the left-hand

side of equation (3.5) equals one.

The process for C and Y in equation (3.1) implies, if the period length is negligible:

Et

3
ct+1

ct

4
1≠“

= 1 + (1 ≠ “) g ≠ p+ pE [1 ≠ b]1≠“ + 1
2 (1 ≠ “)2 ‡2. (3.6)

This condition can be used along with equation (3.5) to price various assets, including a

risk-free bond and an equity claim on a perpetual flow of consumption (that is, the Lucas

tree).

Equations (3.5) and (3.6) imply that the constant risk-free interest rate is given by

rf = fl+ ◊gú ≠p

C

E (1 ≠ b)≠“ ≠ “ ≠ ◊

“ ≠ 1 + E (1 ≠ b)1≠“ ≠ ◊Eb+
A
1 ≠ ◊

“ ≠ 1

BD

≠ 1
2“ (1 + ◊)‡2.

(3.7)

Let Pt be the price at the start of period t of an unlevered equity claim on the Lucas tree. Let

Vt be the dividend-price ratio; that is, the ratio of Pt to Ct. In the present model with i.i.d.

shocks, Vt equals a constant, V , so that the growth rate of Pt equals the growth rate of Ct.

The reciprocal of V equals the dividend-price ratio and can be determined from equations
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(3.5) and (3.6) to be

1
V

= fl≠(1 ≠ ◊) gú+p

CA
1 ≠ ◊

“ ≠ 1

B

E (1 ≠ b)1≠“ ≠ (1 ≠ ◊)Eb ≠
A
1 ≠ ◊

“ ≠ 1

BD

+1
2“ (1 ≠ ◊)‡2. (3.8)

The constant expected rate of return on equity, re, is the sum of the dividend yield, 1/V ,

and the expected rate of capital gain on equity, which equals gú, the expected growth rate

of the dividend (consumption). Therefore, re is the same as equation (3.8) except for the

elimination of the term gú.4 The constant equity premium is given from equations (3.7) and

(3.8) by:

re ≠ rf = “‡2 + p
Ë
E (1 ≠ b)≠“ ≠ E (1 ≠ b)1≠“ ≠ Eb

È
(3.9)

The disaster or jump term in equation (3.9) is proportional to the disaster probability, p.

The expression in brackets that multiplies p depends on the size distribution of disasters, b,

and the coe�cient of relative risk aversion, “. These e�ects were calibrated in Barro (2006)

and Barro and Ursua (2012) by using the long-term history of macroeconomic disasters for

40 countries to pin down p and the distribution of b. The results accord with an observed

average unlevered equity premium of 0.04 0.05 per year if “ is around 3-4.

The di�usion term, “‡2, in equation (3.9) is analogous to the expression for the equity pre-

mium in Mehra and Prescott (1985) and is negligible compared to the observed average equity

premium if “ and ‡2 take on empirically reasonable values. For many purposes—including

the pricing of far-out-of-the-money stock options—this term can be ignored.

4The transversality condition, which ensures that the value of tree equity is positive and finite, is re > gú.
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3.3 Pricing Stock Options

3.3.1 Setup for pricing options

We now discuss the pricing of stock options within our model, which fits into the class of

jump-di�usion models. Options pricing within this general class goes back to Merton (1976)

and Cox and Ross (1976). The use of prices of far-out-of-the-money put options to infer

disaster probabilities was pioneered by Bates (1991). This idea has been applied recently

by, among others, Bollerslev and Todorov (2011); Backus, Chernov, and Martin (2011); Seo

and Wachter (2016); and Siriwardane (2015).

We derive a pricing solution for far-out-of-the-money put options under the assumption that

disaster events (jumps) are the dominant force. Key underlying conditions for the validity

of the solution are that the option be su�ciently far out of the money and that the maturity

not be too long. Under these conditions, we derive a simple pricing formula that reflects

the underlying Poisson nature of disaster events, combined with an assumed power-law

distribution for the sizes of disasters. This formula generates testable hypotheses—which we

subsequently test—on the relation of the put-options price to maturity and exercise price.

The formula also allows for a time-fixed-e�ects procedure to back out a time series for disaster

probability.

Consider a put option on equity in the Lucas tree. To begin, suppose that the option has

a maturity of one period and can be exercised only at the end of the period (a European

option). The exercise price or strike on the put option is
exercise price = ÁPt (3.10)

where we assume 0 < Á Æ 1. We refer to Á, the ratio of the exercise price to the stock price,

as the relative exercise price (often described as “moneyness”).

The payo� on the put option at the start of period t+1 is zero if Pt+1

Ø Á ⇧Pt. If Pt+1

< Á ⇧Pt,

the payo� is ÁPt ≠ Pt+1

. If Á < 1, the put option is initially out of the money. We focus
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empirically on options that are su�ciently far out of the money (Á su�ciently below one) so

that the di�usion term, u, in equation (3.1) has a negligible e�ect on the chance of getting

into the money over one period. The value of the put option then hinges on the disaster term,

v. Specifically, the value of the put option depends on the probability, p, of experiencing

a disaster and the distribution of disaster sizes, b. Further, what will mostly matter is the

likelihood of experiencing one disaster. As long as the period (the maturity of the option)

is not too long, the chance of two or more disasters has a second-order pricing impact that

can be ignored as a good approximation5.

Let the price of the put option at the start of period t be � ⇧ Pt. We refer to �, the ratio of

the options price to the stock price, as the relative options price. The gross rate of return,

RO
t+1

, on the put option is given by

Ro
t+1

= 0 if Pt+1

Pt

Ø Á

Ro
t+1

= 1
�

3
Á ≠ Pt+1

Pt

4
if Pt+1

Pt

< Á. (3.11)

If there is one disaster of size b, the put option is in the money at the start of period t+1 if

Pt+1

Pt

= (1 + g) (1 ≠ b) < Á.

In most cases, the length of the period (maturity of the put option) will be short enough so

that, for reasonable growth rates, we can ignore the term g.

When expressed in terms of z, the gross rate of return on the put option is modified from

equation (3.11) to:

5Similarly, if we allowed for possible bonanzas, we could neglect the chance of a disaster and a bonanza both
occurring over the period.
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Ro
t+1

= 1
�

3
Á ≠ 1 + g

z

4
if 1 disaster occurs and z >

1 + g

Á
(3.12)

Ro
t+1

= 0 otherwise.

To determine W, we use the first-order condition from equation (3.5), with Rt+1

given by

RO
t+1

from equation (3.12). The results depend on the form of the distribution for z, to which

we now turn.

3.3.2 Power-law distribution of disaster sizes

Based on the findings for the distribution of observed macroeconomic disaster sizes in Barro

and Jin (2011), we assume that the density function for z conforms to a power law:

f (z) = Az≠(1+–) (3.13)

where A > 0,– > 0, z Ø z
0

> 1.

The general notion of this type of power law was applied by Pareto (1897) to the distribu-

tion of high incomes. The power-law distribution has since been applied widely in physics,

economics, computer science, and other fields. For surveys, see Mitzenmacher (2003) and

Gabaix (2009), who discusses underlying growth forces that can generate power laws. Ex-

amples of applications include sizes of cities (Gabaix and Ioannides [2004]), stock-market

activity (Gabaix, et al. [2003, 2006]), CEO compensation (Gabaix and Landier [2008]), and

firm size (Luttmer [2007]). The power-law distribution has been given many names, including

heavy-tail distribution, Pareto distribution, Zipfian distribution, and fractal distribution.

The parameter z
0

> 1 in equation (3.13) is the threshold beyond which the power-law

density applies. For example, in Barro and Ursua (2012), the floor disaster size of b
0

= 0.095
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corresponds to z
0

= 1.105. We treat z
0

as a constant. The condition that f(z) integrate

to one from z
0

to infinity implies A = –z–
0

. Therefore, the power-law density function in

equation (3.13) becomes
f (z) = –z–

0

z≠(1+–). (3.14)

The key parameter in the power-law distribution is the Pareto tail exponent, –, which governs

the thickness of the right tail. A smaller – implies a thicker tail.

The probability of drawing a transformed disaster size above z is given by
1 ≠ F (z) =

3
z

z
0

4≠–

. (3.15)

Thus, the probability of seeing an extremely large transformed disaster size, z (expressed as

a ratio to the threshold, z
0

), declines with z in accordance with the tail exponent – > 0.

One issue about the power-law density is that some moments related to the transformed

disaster size, z, might be unbounded. For example, in equation (3.7), the risk-free rate

depends inversely on the term E(1 ≠ b)≠“. Heuristically (or exactly with time-separable

power utility), we can think of this term as representing the expected marginal utility of

consumption in a disaster state relative to that in a normal state. When z © 1/(1 ≠ b) is

distributed according to f(z) from equation (3.14), we can compute

E (1 ≠ b)≠“ = E (z“) (3.16)

=
A

–

– ≠ “

B

z“
0

if – > “

The term on the right side of equation (3.16) is larger when “ is larger (more risk aversion)

or – is smaller (fatter tail for disasters). But, if – Æ “, the tail is fat enough, relative to the

degree of risk aversion, so that the term blows up. In this case, rf equals minus infinity in

equation (3.7), and the equity premium is infinity in equation (3.9). Of course, in the data,

the risk-free rate is not minus infinity and the equity premium is not infinity. Therefore, the

115



empirical application of the power-law density in Barro and Jin (2011) restricted g to a range

that avoided unbounded outcomes, given the value of a that was estimated from the observed

distribution of disaster sizes. That is, the unknown g had to satisfy g<a in order for the

model to have any chance to accord with observed average rates of return6. This condition,

which we assume holds, enters into our analysis of far-out-of-the-money put-options prices.

Barro and Jin (2011, Table 1) estimated the power-law tail parameter, a, in single power-

law specifications (and also considered double power laws). The estimation was based on

macroeconomic disaster events of size 10% or more computed from the long history for many

countries of per capita personal consumer expenditure (the available proxy for consumption,

C) and per capita GDP, Y. The estimated values of a in the single power laws were 6.3,

with a 95% confidence interval of (5.0, 8.1), for C and 6.9, with a 95% confidence interval of

(5.6, 8.5), for Y.7 Thus, the observed macroeconomic disaster sizes suggest a range for a of

roughly 5-8.

3.3.3 Options-pricing formula

To get the formula for �, the relative options price, we use the first-order condition from

equations (3.5) and (3.6), with the gross rate of return, Rt+1

, corresponding to the return

RO
t+1

on put options in equation (3.12). We can rewrite this first-order condition as

1 + fl̂ = (1 + g)≠“ Et

1
z“Ro

t+1

2
(3.17)

6With constant absolute risk aversion and a power-law distribution of disaster sizes, the relevant term has
to blow up. The natural complement to constant absolute risk aversion is an exponential distribution of
disaster sizes. In this case, the relevant term is bounded if the parameter in the exponential distribution
is larger than the coe�cient of absolute risk aversion. With an exponential size distribution and constant
relative risk aversion, the relevant term is always finite.

7Barro and Jin (2011, Table 1) found that the data could be fit better with a double power law. In these
specifications, with a threshold of z0=1.105, the tail parameter, a, was smaller in the part of the distribution
with the largest disasters than in the part with the smaller disasters. The cuto� value for the two parts was
at a value of z around 1.4.
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where z © 1/(1 ≠ b) is the transformed disaster size and 1 + fl̂ is an overall discount term,

given from equations (3.5) and (3.6) (when the di�usion term is negligible) by

1 + fl̂ = 1 + fl ≠ (“ ≠ ◊) g + p

A
“ ≠ ◊

“ ≠ 1

B Ë
E (1 ≠ b)1≠“ ≠ 1

È
. (3.18)

We can evaluate the right-hand side of equation (3.17) using the density f(z) from equation

(3.14) along with the expression forRO
t+1

from equation (3.12). The result involves integration

over the interval z Ø (1 + g)/Á where, conditional on having one disaster, the disaster size

is large enough to get the put option into the money. The formula depends also on the

probability, p, of having a disaster. Specifically, we have:

(1 + fl̂) (1 + g)“ = p

�

⁄ Œ

1+g
Á

;
z“

5
Á ≠ 1 + g

z

6
–z–

0

z≠(1+–)
<
dz. (3.19)

Evaluating the integral (assuming “ < – and Á < [1 + g]/z
0

) leads to a closed-form formula

for the relative options price:

� = –z–
0

(1 + fl̂ + –g)
pÁ1+–≠“

(– ≠ “) (1 + – ≠ “) . (3.20)

3.3.4 Maturity of the option

Equation (3.20) applies when the maturity of the put option is one “period.” We now take

account of the maturity of the option. In continuous time, the parameter p, measured per

year, is the Poisson hazard rate for the occurrence of a disaster. Let T , in years, be the

maturity of the (European) put option. The density, h, for the number of hits (disasters)

over T is given by8

8See Hogg and Craig (1965, p. 88).
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h (0) = e≠pT

h (1) = pTe≠pT (3.21)

h(x) = (pT )x e≠pT

x! , x = 0, 1, ...

If pT is much less than 1, the contribution to the options price from two or more disasters

will be second-order, relative to that from one disaster. For given p, this condition requires

a consideration of maturities, T, that are not “too long.” In this range, we can proceed as

in our previous analysis to consider just the probability and size of one disaster. Then, in

equation (3.20), p will be replaced as a good approximation by pT .

The discount rate, fl̂, and growth rate, g, in equation (3.20) will be replaced (approximately)

by fl̂T and gT . For given fl̂ and g, if T is not “too long,” we can neglect these discounting

and growth terms. The impacts of these terms are of the same order as the e�ect from two

or more disasters, which we have already neglected.

When T is short enough to neglect multiple disasters and the discounting and growth terms,

the formula for the relative options price changes from equation (3.20) to:

� = –z–
0

pTÁ1+–≠“

(– ≠ “) (1 + – ≠ “) . (3.22)

Here are some properties of the options-pricing formula:

• The formula for W, the ratio of the options price to the stock price, is well-defined if

– > “, the condition noted before that ensures the finiteness of various rates of return.

• The exponent on maturity, T, equals 1.

• The exponent on the relative exercise price, Á, equals 1+– ≠ “, which is constant and
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greater than 1 because – > “. We noted before that – ranged empirically between 5

and 8. The corresponding range for “ (needed to replicate an average unlevered equity

premium of 0.04-0.05 per year) is between 2.5 and 5.5, with lower “ associating with

lower a. The implied range for – ≠ “ (taking account of the association between “ and

–) is between 2.5 and 4.5, implying a range for the exponent on Á between 3.5 and 5.5.

• For given T and Á, � depends on the disaster probability, p; the shape of the power-law

density, as defined by the tail coe�cient, –, and the threshold, z
0

; and the coe�cient

of relative risk aversion, “. The expression for � is proportional to p.

• For given p and “, � rises with a once-and-for-all shift toward larger disaster sizes;

that is, with a reduction in the tail coe�cient, a, or an increase in the threshold, z
0

.

• For given p, –, and z
0

, � rises for sure with a once-and-for-all shift in “ if Á Æ 1,

which is the range that we are considering for put options. Note that, in contrast, the

Black-Scholes options-pricing formula implies that � is independent of “.9

We can look at the results in terms of the “risk-neutral probability,” pn, defined as the value

of p that would generate a specified relative options price, �, when “ = 0. The formula for

the ratio of the risk-neutral to the objective probability, pn/p, implied by equation (3.22) is:

pn

p
= –(1 + –)

(– ≠ “)(1 + – ≠ “)Á≠“. (3.23)

Note that pn/p depends on the relative exercise price, Á, but not on the maturity, T . If

we assume parameter values consistent with the previous discussion—for example, a=7 and

g=3.5—the implied pn/p is 5.1 when e=0.9, 7.8 when e=0.8, 12.4 when e=0.7, 21.3 when

e=0.6, and 40.3 when e=0.5. Hence, the relative risk-neutral probability associated with

far-out-of-the-money put options is sharply above one.

To view it another way, the relative options price, �, may seem far too high at low e, when
9See, for example, Hull (2000, pp. 248 �.). However, this standard result depends on holding fixed the
risk-free rate, rf . Equation (7) shows that rf depends negatively on g.
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assessed in terms of the (risk-neutral) probability needed to justify this price. Thus, people

who are paying these prices to insure against the risk of an enormous disaster may appear

to be irrational. In contrast, the people writing these far-out-of-the-money puts may seem

to be getting free money by insuring against something that is virtually impossible. Yet the

pricing is reasonable if people have roughly constant relative risk aversion with g around

3.5 (assuming a tail parameter, a, for disaster size around 7). The writers of these options

will have a comfortable income almost all the time, but will su�er tremendously during the

largest rare disasters (when the marginal utility of consumption is extremely high).

3.3.5 Di�usion term

Recall that the derivation of the formula for W, the relative options price, in equation (3.22)

neglected the di�usion term, u, in the process for GDP (and consumption and the stock

price) in equation (3.1). This omission is satisfactory if the put option is su�ciently far

out of the money so that, given a reasonable variance ‡2 of the di�usion term, the chance

of getting into the money over the maturity T is negligible. In other words, the tail for

the normal process is not fat enough to account by itself for, say, 10% or greater declines

in stock prices over periods up to, say, a few months. Operationally, our main empirical

analysis applies to options that are at least 10% out of the money (eÆ0.9) and to maturities,

T, that range up to 6 months.

If we consider put options at or close to the money, the di�usion term would have a first-

order impact on the value of the option. If we neglect the disaster (jump) term—which will

be satisfactory here—we would be in the standard Black-Scholes world. In this setting (with

i.i.d. shocks), a key property of the normal distribution is that the variance of the stock price

over interval T is proportional to T, so that the standard deviation is proportional to the

square root of T. This property led to the result in Brenner and Subrahmanyam (1988) that
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the value of an at-the-money put option would be roughly proportional to the square root

of the maturity. We, therefore, have two results concerning the impact of maturity, T, on

the relative options price, �. For put options far out of the money (operationally for eÆ0.9),

the exponent on T is close to 1. For put options close to the money (operationally for e=1),

the exponent on T is close to one-half. These predictions turn out to hold empirically for

put options on the S&P 500 and on analogous market indices for eight other stock markets.

3.3.6 Stochastic Volatility

The asset-pricing formula in equation (3.22) was derived under the assumption that the

disaster probability, p, and the size distribution of disasters (determined by – and z
0

) were

fixed. We focus here on shifting p, but the results are isomorphic to shifting disaster intensity

(reflecting changes in – and z
0

). We can rewrite equation (3.22) as
� = ATÁ1+–≠“, (3.24)

where A > 0 is constant. We can estimate equation (3.24) with data on � for far-out-of-

the-money put options on, say, the S&P 500. Given ranges of maturities, T, and relative

exercise prices, Á, we can estimate elasticities of � with respect to T and e. We can also

test the hypothesis that the coe�cient, A, is constant. For example, using monthly data,

we estimated a time fixed e�ect for each month and tested the hypothesis that these fixed

e�ects were all equal. The result, detailed in a later section, is a very strong rejection

of the hypothesis that A is constant. Instead, the estimated time fixed e�ects fluctuate

dramatically, including occasional sharp upward movements followed by gradual reversion

over a few months toward a baseline value. From the perspective of the model, we interpret

these shifts as reflecting variations in the disaster probability, p.

If “ > 1, as we assume, equation (8) implies that a once-and-for-all rise in disaster prob-

ability, p, lowers the price-dividend ratio, V , if ◊ < 1, so that the intertemporal elasticity

of substitution, 1/◊, exceeds 1. Bansal and Yaron (2004) focus on IES>1 because it corre-
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sponds to the “normal case” where an increase in the expected growth rate, gú, raises V.

Barro (2009) argues that IES>1 is reasonable empirically and, therefore, also focuses on this

case.

Generally, the e�ects on options pricing depend on ◊ and other parameters and also on the

stochastic process that generates variations in p, including the persistence of these changes.

However, for purposes of pricing stock options, we need only consider the volatility of the

overall term, A, which appears on the right side of equation (3.24). Our first-round look

at the data—that is, the estimated time fixed e�ects—suggests that this term looks like a

disaster process. On rare occasions, this term shifts sharply and temporarily upward and

leads, thereby, to a jump in the corresponding term in equation (3.24). We think of this

shock as generated by another Poisson probability, q, with a size distribution (for changes

in stock prices) involving another power-law distribution, in this case with tail parameter

–ú > “. If this process (for changing p) is independent of the disaster realizations (which

depend on the level of p), then equation (3.22) is modified to

� = –z–
0

ptTÁ1+–≠“

(– ≠ “) (1 + – ≠ “) +
–ú (zú

0

)–ú
qTÁ1+–ú≠“

(–ú ≠ “) (1 + –ú ≠ “) . (3.25)

The first term on the right side of equation (3.25) reflects put-option value associated with the

potential for realized disasters, and the second term gauges value associated with changing

pt and the e�ects of these changes on stock prices.10

From the perspective of equation (3.24), we have the revised specification:

� = ATÁ1+–≠“
Ë
pt +BqÁ–ú≠–

È
, (3.26)

where A > 0 and B > 0 are constants11. The new term involving B > 0 is important

for fitting the data on put-options prices. This term implies � > 0 if pt = 0 because

10The formulation would also encompass e�ects on stock prices from changing a or g.
11These values are constant if –, –ú, z0, (z0)ú, “, and q are all constant. – ≠ –ú is identified because we have
sample variation in relative exercise prices, e.
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of the possibility that pt will rise a lot during the life of the option. The preclusion of

changing pt (corresponding to B = 0) leads, as emphasized by Seo and Wachter (2016),

to overestimation of the average level of pt in the sample. Moreover, this overstatement

of the average pt associates with an underestimation of disaster sizes; that is, – looks two

high. Hence, overall, disasters are gauged to be too frequent and too small.12 Finally, our

hypotheses about elasticities of � with respect to T and Á in equation (3.26) accord better

with the data when B > 0 is admitted.

3.4 Empirical Analysis

The model summarized by equation (3.26) delivers some testable predictions. First, the elas-

ticity of the price of a far out-of-the-money put option with respect to maturity, T—denoted

—T—is close to one. Second, the elasticity of the price of a far-out-of-the-money put op-

tion with respect to the relative exercise price, Á—denoted —Á—is greater than one and is a

weighted average of 1 + – ≠ “ and 1 + –ú ≠ “. Given a value of “ and the estimated value

of –ú ≠ – from equation (3.26), the results can be used to back out estimates of the tail

parameters – and –ú. Finally, time fixed e�ects provide estimates of each period’s disaster

probability, pt. We assess these theoretical results empirically by analyzing prices of far-

out-of-the-money put options on the U.S. S&P 500 and analogous broad indices for other

countries.

3.4.1 Data and methodology

Our primary data source is a broker-dealer with a sizable market-making operation in global

equities. We utilize over-the-counter (OTC) options prices for nine equity-market indices for
12As Seo and Wachter (2016) argue, these problems appear, for example, in Backus, Chernov, and Martin
(2011).
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developed and emerging markets—S&P 500 (U.S.), FTSE (U.K.), DAX (Germany), Euro

Stoxx 50 (Euro zone), Nikkei (Japan), OMX (Sweden), SMI (Switzerland), Nifty (India),

and Bovespa (Brazil). We check the results with OTC data against those with market-based

information from OptionMetrics for the United States and from Bloomberg for the United

States and other countries. This check is useful because the OTC data do not necessarily

correspond to actual trades.

Our primary data derive from implied-volatility surfaces generated by the broker-dealer for

the purpose of analysis, pricing, and marking-to-market.13 These surfaces are constructed

from transactions prices of options and OTC derivative contracts.14 The dealer interpolates

these observed values to obtain implied volatilities for strikes ranging from 50% to 150% of

spot and for a range of maturities from 15 days to 2 years and more. Even at very low strikes,

for which the associated options seldom trade, the estimated implied volatilities need to be

accurate for the correct pricing of OTC derivatives such as variance swaps and structured

retail products. Institutional-specific factors are unlikely to influence pricing in a significant

way because other market participants can profitably pick o� pricing discrepancies among

dealers. Therefore, sell-side dealers have strong incentives to maintain the accuracy of their

implied-volatility surfaces.

As mentioned, the OTC data source is superior to market-based alternatives in the breadth

of coverage for exercise prices and maturities. Notably, the market data tend to be unreliable

or entirely unavailable for options that are far out of the money and for long maturities. For

example, OptionMetrics has very limited information on far out-of-the-money put options

prices due to the lack of market transactions and methodological challenges. Specifically,
13A common practice in OTC trading is for executable quotes to be given in terms of implied volatility instead
of the actual price of an option. Once the implied volatility is agreed on, the options price is determined from
the Black-Scholes formula based on the readily observable price of the underlying security. Since the Black-
Scholes formula provides a one-to-one link between price and volatility, quotes can be given equivalently in
terms of implied volatility or price.

14Dealers observe prices through own trades and from indications by inter-dealer brokers. It is also a common
practice for dealers to ask clients how their prices compare to other market makers in OTC transactions.

124



their volatility surface is mainly limited to 20-delta options volatilities at the extreme, which

correspond to options that are close to the money,15 whereas the OTC data contain implied

volatilities for 5 delta and even 1-delta options.

The broad range of strikes in the broker-dealer data is important for our analysis because

it is the prices of far-out-of-the-money put options that will mainly reflect disaster risk. In

practice, we focus on put options with exercise prices of 50%, 60%, 70%, 80%, and 90% of

spot; that is, we exclude options within 10% of spot.

For maturities, we focus on a range between 30 and 180 days; specifically, for 30 days, 60

days, 90 days, and 180 days.16 Our main analysis excludes options with maturities greater

than six months because the prices in this range may be influenced significantly by the

possibility of multiple disaster realizations and also by discounting. However, in practice,

the results for 1-year maturity accord reasonably well with those for shorter maturities.

Using the data on implied volatilities, we re-construct options prices from the standard

Black-Scholes formula, assuming a zero discount rate and no dividend payouts. We should

emphasize that the use of the Black-Scholes formula to translate implied volatilities into

options prices does not bind us to the Black-Scholes model of options prices. The formula is

used only to convert the available data expressed as implied volatilities into options prices.

Our calculated options prices are comparable to directly quoted prices (subject to approxi-

mations related to discounting and dividend payouts).

15A 20-delta option has a price that changes by 0.20% for a 1% change in the underlying security price.
OptionMetrics Volatility Surface uses interpolation to generate the implied volatility for each security on
each day, based on a kernel-smoothing algorithm. The lower bound of this volatility surface is 20-delta. In
our use of the OptionMetrics data, we expand on the range of option strikes by applying linear interpolation
whenever there are two or more observations for a single trading date. This procedure enlarges the volatility
surface.

16We omit 15-day options because we think measurement error is particularly serious in this region in pinning
down the precise maturity. Even the VIX index, which measures short-dated implied volatility, does not
track options with maturity less than 23 days.
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3.4.2 Basic model fit

We estimate the model based on equation (3.26) with non-linear least-squares regression. In

this form, we think of the error term as additive with a constant variance. Log-linearization

with a constant-variance error term (that is, a shock proportional to price) is problematic

because it understates the typical error in extremely far-out-of-the-money put prices, which

are close to zero. That is, this specification gives undue weight to puts with extremely low

exercise prices.

In the non-linear regression, we allow for time fixed e�ects to capture the unobserved time-

varying probability of disaster, pt, in equation (3.26). We allow the estimated pt to di�er

across countries; that is, we estimate country-time fixed e�ects. Note that, for a given

country and date, these e�ects are the same for each observed maturity, T , and relative

exercise price,Á.

We sample the data at monthly frequency, selecting only month-end dates, to allow for ease

of computation with a non-linear solver. The selection of mid-month dates yields similar

results. The sample period for the United States in our main analysis is August 1994-

February 2017. Because of lesser data availability, the samples for the other stock-market

indices are shorter. Subsequently, we expand the U.S. sample back to 1983, particularly to

assess pricing behavior before and after the global stock-market crash of 1987. However, we

do not use this longer sample in our main analysis because the data quality before 1994 is

substantially poorer.

Table 3.1 shows the model estimation using non-linear least-squares regression. The esti-

mated elasticities with respect to maturity, —T , are close to one. For example, the estimated

coe�cient for the United States is 0.986 (s.e.=0.036) and that for all nine indices jointly

is 0.944 (0.038). These results indicate that far-out-of-the-money prices of put options on

broad market indices are roughly proportional to maturity, in accordance with our rare-
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disasters model. This nearly proportional relationship between options price and maturity

for far-out-of-the-money put options is a newly documented fact that cannot be explained

under the Black-Scholes model. To our knowledge, other theoretical models of options prices

also do not predict this behavior.

The results with respect to maturity can be visualized in Figure 3.1, Panel A, which plots

ratios of put prices to spot prices against maturity, assuming an exercise price of 80% of spot.

The blue curve corresponds to the historical data that underlie Table 3.1. The red curve

shows values generated by the Black-Scholes model, assuming a log-normal distribution of

shocks and a constant volatility of 30% (chosen to accord with the average observed level of

put prices). Most importantly, the Black-Scholes model predicts that these far-out-of-the-

money put prices will have a convex relationship with maturity. This pattern deviates from

the nearly linear relationship shown by the historical data.

In contrast, as discussed in Brenner and Subrahmanyam (1988), prices of at-the-money

put options in the Black-Scholes model are roughly proportional to the square root of the

maturity. This result arises because, with a di�usion process driven by i.i.d. normal shocks,

the variance of the log of the stock price is proportional to time and, therefore, the standard

deviation is proportional to the square root of time. This pattern implies the concave relation

between put price and maturity as shown by the red curve in Figure 3.1, Panel B. In this

case, the Black-Scholes prediction accords with the historical data, shown by the blue curve

in Panel B.

Table 3.2 provides detailed regression estimates for the nine indices for at-the-money put

prices. The estimated coe�cient on maturity is 0.521 (s.e.=0.007) for the United States

and 0.497 (0.006) for the nine indices jointly. Hence, as predicted by Black-Scholes, these

coe�cients are close to 0.5. For exercise prices between 80% and 100% of spot, the Black-

Scholes prediction for the relation between put price and maturity shifts from convex to

concave at around 90% of spot (with the exact shift point depending on the underlying
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Figure 3.1: Comparison of Prices with Black-Scholes Predicted Prices
These figures compare the mean of observed put prices across maturities with predicted prices
from the Black-Scholes model. Black-Scholes prices are generated assuming flat volatility
across maturities (30% for out-of-the-money options and 19% for at-the-money options).
For ease of comparison, the volatilities are chosen so that the prices scale appropriately to
historical prices. Panel A graphs relative put prices on the S&P 500 with strike of 80% of
spot. Panel B graphs relative put prices with strike of 100% of spot. We introduced spacing
between the two curves in Panel B solely for visual comparison.
Panel A: Out-of-the-Money Put Prices

Panel B: At-the-Money Put Prices
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volatility). The predicted relation turns out to be nearly linear for an exercise price around

90% of spot. In contrast, as implied by Table 3.1 and Figure 3.1, Panel A, the relation in the

data is roughly linear in maturity for a broad range of exercise prices below 90%—down to

at least 50%. These results accord with the rare-disasters model but not with Black-Scholes.

Table 3.2: Estimation with At-The-Money Put Options

This table presents non-linear least-squares regression estimates for at-the-money put options
only for the nine stock-market indices used in Table 3.1. We use put options prices with
maturity ranging from 30 to 180 days and strike equal to spot price. The estimation includes
a country-time multiplicative fixed e�ect. Time-clustered standard errors are in parentheses.

To summarize, the fit of the Black-Scholes model is good for at-the-money put options but

poor for put options with exercise prices at 90% or less of spot. These patterns arise because

the di�usion component of shocks dominates pricing of at-the-money put options, whereas

disaster (jump) risk, not captured in Black-Scholes, dominates the pricing of far-out-of-the-

money put options. As discussed earlier in the modeling section, the roughly proportional

relationship between far-out-of-the-money put prices and maturity arises because, in a Pois-

son context, the probability of a disaster is proportional to maturity. The resulting formula

is only approximate because it neglects the potential for multiple disasters within the time

frame of an option’s maturity, omits a di�usion term, and also ignores discounting. However,

for options that are not “too long,” these approximations will be reasonably accurate.

Table 3.1 also shows estimates of the elasticity with respect to the relative exercise price,

—Á. This coe�cient corresponds in the model to 1 + – ≠ “, where – is the tail coe�cient for

disaster sizes and “ is the coe�cient of relative risk aversion. The estimates are all positive
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and greater than one, as predicted by the model. The estimated coe�cients are similar

across indices, except for Brazil. For the other indices, the estimated values fall in a range

from 3.99 (s.e.=0.40) for Japan to 5.31 (0.12) for the United States. The joint estimate

across the nine countries is 4.67 (0.18).

Rare-disasters research with macroeconomic data, such as Barro and Ursua (2008) and Barro

and Jin (2011), suggested that a g of 3-4 would accord with observed average (unlevered)

equity premia. With this range for g, the estimated values of —Á= 1 ≠ – ≠ “ from Table

3.1 (aside from Brazil) imply tail coe�cients, a, between 6 and 8. This finding compares

with a direct estimate for a based on macroeconomic data on consumption in Barro and Jin

(2011, Table 1) of 6.3 (s.e.=0.8). Hence, the estimates of a coe�cients implied by Table 3.1

accord roughly with those found from observation of the size distribution of macroeconomic

disasters (based on GDP or consumption).

3.4.3 Estimated disaster probabilities

We can use the estimated monthly fixed e�ects for each country from the regressions in Table

3.1, along with equations (3.25) and (3.26), to construct time series of (objective) disaster

probabilities, pjt, where j now denotes the country. The assumption here is that the other

parameters that multiply pjt in equation (3.25) are constant over time for country j. In that

case, the estimated pjt will be proportional to the time fixed e�ect for country j.

To get a ballpark idea of the level of pjt, we assume that, in each country, the threshold

for disaster sizes is fixed at z
0

=1.1 (as in Barro and Jin [2011]) and that the coe�cient of

relative risk aversion is g=3. We allow the tail coe�cient, –j, to di�er across countries; that

is, we allow countries to di�er with respect to the size distribution of potential disasters. We

use the estimated coe�cients from Table 3.1 for —Á (which equals 1 + – ≠ “ in the model)

to back out the implied tail coe�cient, –j, for country j. (Aside from Brazil, these values
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range from 6.0 to 7.3.) Figure 3.2, Panel A, presents the resulting time series of disaster

probabilities for each of the nine stock-market indices. For clarity, Panel B presents the

results just for the United States. Table 3.3 provides summary statistics for the estimated

disaster probabilities. Note that the levels of the series, but not the time patterns, depend

on our assumed parameter values.

Table 3.3: Means, Standard Deviations, Quantiles of Estimated Disaster Probabilities

This table presents summary statistics on estimated disaster probabilities and the implied
estimated a (tail) coe�cients from the regressions in Table 3.1. The disaster probabilities
are calculated as indicated in the notes to Figure 3.2.

The disaster probabilities shown in Figure 3.2, Panel A, have high correlations among the

countries, with an average pair-wide correlation of 0.88. For pairs that include the United

States (SPX), the correlations are even higher: 0.98 with the United Kingdom (FTSE), 0.97

with the Euro area (ESTX50), 0.96 with Germany (DAX), 0.90 with Japan (NKY), 0.94

with Sweden (OMX), 0.96 with Switzerland (SWX), 0.93 with Brazil (Bovespa), and 0.86

with India (NIFTY). These high correlations indicate that the main part of the inferred
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Figure 3.2: Estimated Disaster Probabilities
Panel A graphs the estimated disaster probabilities for nine stock-market indices associated
with the regressions in Table 3.1. The annualized disaster probability, pjt for index j, is
calculated from the time fixed-e�ect coe�cients in the form of equation (3.26), assuming in
equation (3.25) that z

0

= 1.1, “ = 3, and —Á = 1 + –j ≠ “. Panel B is for the United States
only (SPX).
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disaster probability reflects the chance of a common (global) disaster.

The median estimated disaster probability is 8.6% per year for the S&P 500. For the other

indices, the medians range from 3.9% for Japan to 7.6% for the U.K. and 11.0% for Brazil

(see Table 3.3). These estimates can be compared with average disaster probabilities of 3-

4% per year estimated from macroeconomic data on rare disasters—see, for example, Barro

and Ursua [2008]). However, this earlier analysis assumed that disaster probabilities were

constant across countries and over time.

The estimated disaster probabilities in Figure 3.2, Panel A, are volatile and right-skewed,

with spikes during crisis periods. The U.S. disaster probability hit a peak of 48% per year

in November 2008. Other countries had their highest disaster probabilities in the range of

21% to 53% in October and November 2008. These patterns mirror the options-derived U.S.

equity premia in Martin (2015) and the U.S. disaster probabilities found by Siriwardane

(2015). Another sharp peak occurred around the time of the Russian and LTCM crises in

August-September 1998. In this case, the estimated U.S. disaster probability reached 30%

in August 1998.

Figure 3.2, Panel A, suggests a lower bound on disaster probability around 1-2% per year

(except for Brazil, which has a minimum of 6%). These lower bounds compare with the

(constant) disaster probability of 3-4% per year found by Barro and Ursua (2008).

The estimated first-order AR(1) coe�cient for the estimated U.S. disaster probability in

Figure 3.2, Panel B, is 0.88 (s.e.=0.03), applying at a monthly frequency. This coe�cient

implies that rare-disaster shocks have a half-life of 6 months. The persistence of disaster

probabilities for the other countries (Figure 3.2, Panel A) is similar to that for the United

States, with the estimated AR(1) coe�cients ranging from 0.85 to 0.90, except for Japan,

which is at 0.81.

Although we attributed the time pattern shown in Figure 3.2 to variable disaster probability,
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pjt, the variations in the time fixed e�ects may also reflect changes in the other parameters

contained in the term that multiplies pjt in equation (25), –z–
0

/[(– ≠ “)(1 + – ≠ “)].17 For

example, outward shifts in the size distribution of disasters, generated by reductions in the

tail parameter, a, or increases in the threshold disaster size, z
0

, work like increases in p.

Similarly, increases in the coe�cient of relative risk aversion, g, would raise the overall term.

This kind of change in risk preference, possibly due to habit formation, has been stressed

by Campbell and Cochrane (1999). Separation of changes in the parameters of the disaster

distribution from those in risk aversion require simultaneous consideration of asset-pricing

e�ects (reflected in Figure 3.2) with information on the actual incidence and size of disasters

(based, for example, on movements of macroeconomic variables).

3.4.4 Model robustness

Tables 3.4-3.7 explore the empirical robustness of the baseline model from Table 3.1 under

various scenarios. Table 3.4 shows the e�ects from eliminating the lowest relative exercise

price, e= 0.5. This change has minor e�ects on the estimates. In particular, the estimated

coe�cients —T and —Á are similar to those reported in Table 3.1. For example, for all indices

jointly, —T in Table 3.4 is 0.943 (0.038), compared with 0.944 (0.038) in Table 3.1. For be,

the value for all indices jointly is 4.62 (0.18) in Table 3.4, compared with 4.67 (0.18) in Table

3.1.

Table 3.5 does the estimation separately for two ranges of maturity, T—30 and 60 days

(Panel A) versus 90 and 180 days (Panel B). In this case, the estimated —T is higher when

the maturity values are lower. For example, for all indices jointly, —T is 1.07 (0.06) in the
17In the model with i.i.d. shocks, this term does not depend on the intertemporal elasticity of substitution for
consumption, 1/j, or the rate of time preference, r. Kelly and Jiang (2014, p. 2842) assume a power-law
density for returns on individual securities. Their power law depends on a cross-sectional parameter and
also on aggregate parameters that shift over time. In contrast to our analysis, they assume time variation
in the economy-wide values of the tail parameter, analogous to our a, and the threshold, analogous to our
z0. (Their threshold corresponds to the fifth percentile of observed monthly returns.)
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lower range and 0.90 (0.03) in the upper range (compared with 0.94 [0.04] for the full range

in Table 3.1). These results likely reflect the approximations in the model that relate to

possibilities for multiple disasters, discounting, and the omission of a di�usion term. These

approximations are best at short maturities, such as the range considered in Table 3.5, Panel

A.

Table 3.6 carries out a related analysis in which the structure of included maturities goes

out to one year. In this case, the estimated —T is similar to that found in Table 3.5, Panel

B, which applied to maturities of 90 and 180 days.

Table 3.7 explores the stability of the baseline results from Table 1 with regard to sample

period. Results apply to the pre-financial-crisis period before 2008 (1994-2007 for the United

States), the crisis period, 2008-2010, and the post-crisis period, 2011-2017. With respect to

the estimated coe�cients —T and —Á, the main finding is the somewhat lower values for the

crisis interval of 2008-2010. For example, for the United States, the estimates of —T are 1.03

(s.e.=0.04), 0.89 (0.05), and 1.15 (0.07), respectively, for the three periods. For all countries

jointly, the corresponding estimates are 0.98 (0.03), 0.85 (0.06), and 1.10 (0.04). Possibly

the low estimated —T during the crisis period can be explained by a disaster probability,pjt,

that was high in the short term but projected to fall more quickly than usual in the near

future. This interpretation accords with the low estimated values in the 2008-2010 period

for the B coe�cient (which picks up the potential for a rise in pjt in the future).

The estimates in Table 3.7 of —Á for the three samples for the United States are 5.76

(s.e.=0.16), 4.86 (0.10), and 5.06 (0.28), whereas those for all countries jointly are 5.21

(0.12), 4.33 (0.17), and 4.86 (0.17). Possibly the low estimated values of —Á during the crisis

interval reflect a perceived fatter tail than usual for bad outcomes (represented by a low tail

exponent a and a correspondingly low value of —Á, which equals 1 + – ≠ “).

A lot of analysis of options pricing, starting with Bates (1991), suggests that the nature of
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Table 3.5: Robustness: Two Ranges of Option Maturity

This table modifies Table 3.1 to present regression estimates for two ranges of maturity, T .
Panel A uses T = 30 and 60 days. Panel B uses T = 90 and 180 days.
Panel A: T=30 and 60 days

Panel B: T=90 and 180 days
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pricing changed in character following the 1987 stock-market crash. In particular, a “smile”

in graphs of implied volatility against exercise price is thought to apply only post-1987. To

examine this idea, we expanded our analysis to the period June 1983 to July 1994, using

quotes on S&P 100 index options from the Berkeley Options Data Base.18 These data derive

from CBOE’s Market Data Retrieval tapes. Because of the limited number of quotes on

far-out-of-the-money options in this data base, we form our monthly panel by aggregating

quotes from the last five trading days of each month.

Table 3.8, Panel A presents the regression estimates for the United States for 1983-2017 in

the context of our baseline model. In this estimation, the data from Berkeley Options Data

Base related to the S&P 100 for June 1983 to July 1994 are treated as comparable to the

OTC data related to the S&P 500 for August 1994-February 2017. The estimate for —T is

0.985 (s.e.=0.034) and that for —Á is 5.14 (0.54). These results are close to those in Table

3.1 with U.S. OTC data on the S&P 500 for 1994-2017.

As before, we back out a time series for estimated disaster probability, pt, based on monthly

fixed e�ects, assuming that the parameters other than pt in the term- for options prices in

equation (3.25) are fixed. We also use levels for these other parameters as specified before.

Figure 3.3 graphs the time series of estimated disaster probability. Readily apparent is the

dramatic jump in pt at the time of the October 1987 crash, in which the S&P 500 declined by

20.5% in a single day. The estimated pt reached 119% per year but fell rapidly thereafter.19

The Persian Gulf War of 1990 1991 caused another rise in disaster probability to 19-20%.

Table 3.8, Panel B, shows statistics associated with the time series in Figure 3.3. A com-

parison pre-crash (June 1983-Sept 1987) and post-crash (Oct 1988-July 1994), based on the

data related to the S&P 100 from Berkeley Options Data Base, shows an increase in the

18Direct access to this database has been discontinued. We thank Josh Coval for sharing his version of the
data. We have the data from Berkeley Options Data Base through December 1995.

19Note that a disaster probability above 100% per year is well defined in the context of a continuous-time
Poisson specification.
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Table 3.8: U.S. Regression estimates, 1983-2017

This table presents regression estimates of our baseline model and summary statistics on
the estimated disaster probabilities for the United States from June 1983 to February 2017.
The data from June 1983 to July 1994 are based on the S&P 100 index, from the Berkeley
Options Database. We form monthly panels of put-options prices by aggregating quotes from
the last five trading days of each month. Consistent with the methodology used to analyze
OptionMetrics data, we apply a bivariate linear interpolation on the implied volatility surface
to obtain put prices with granular strikes at every 5% moneyness interval and maturities
ranging from one to six months. The U.S. data from August 1994 to February 2017 are those
used in Table 3.1. The monthly fixed e�ects capture the variations in disaster probability,
which are shown in Figure 3.3 and summarized in Panel B. Because of missing data, many
months before August 1994 do not appear in the figure. Time-clustered standard errors are
in parentheses.
Panel A: Coe�cient estimates

Panel B: Disaster probabilities, summary statistics
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Figure 3.3: Estimated U.S. Disaster Probabilities, 1983-2017
This figure presents the estimated U.S. disaster probabilities, pt, associated with the regres-
sion in Table 3.8. The underlying data from June 1983 to July 1994 associate with the S&P
100 and are from Berkeley Options Data Base. The data from August 1994 to February
2017 are the OTC data based on the S&P 500 and are the same as those used in Figure 3.2.
The methodology corresponds to that used in Figure 3.2.
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typical size and volatility of the estimated disaster probability, pt. The pre-crash mean and

median are 0.028 and 0.029, respectively, whereas the post-crash values are 0.054 and 0.041.

Moreover, the minimum value pre-crash, 0.010, is lower than that, 0.017, post-crash. These

patterns continue in the period August 1994-February 2017, using the OTC data related to

the S&P 500. Thus, the overall suggestion is that the October 1987 crash “permanently”

raised the average disaster probability and also increased the minimum level to which the

disaster probability tended to revert. These changes likely account for the introduction of

a smile (or at least an intensified smile) into the graph of implied volatility against exercise

price following the October 1987 stock-market crash.

3.5 Conclusions

Options prices contain rich information on market perceptions of rare disaster risks. We de-

velop a new options-pricing formula that applies when disaster risk is the dominant force, the

size distribution of disasters follows a power law, and the economy has a representative agent

with Epstein-Zin utility. The formula is simple but its main implications about maturity and

exercise price accord with U.S. and other data from 1983 to 2017 on far-out-of-the-money

put options on broad stock-market indices.

If the coe�cient of relative risk aversion and the size distribution of disasters are fixed, the

regression estimates of time fixed e�ects provide information on the evolution of disaster

probability. The estimated disaster probability is highly correlated across nine major stock-

market indices, applicable to the United States, United Kingdom, Euro area, Germany,

Japan, Sweden, Switzerland, Brazil, and India. All of these series show a sharp peak during

the financial crisis of 2008-09. Using U.S. data, the peak in the estimated disaster probability

is much more dramatic in the stock-market crash of October 1987. This market-based

assessment of disaster risk should be a valuable indicator of aggregate economic shocks

144



for practitioners, macroeconomists, and policymakers. For example, in February 2017, the

estimated U.S. disaster probability is only 4.7% per year, compared to the median of 8.6%

from 1994 to 2017 and the peak of 48% in November 2008.

145



Bibliography
[1] Acharya, V., H. S. Shin, and T. Yorulmazer, 2013, “Fire-sale FDI,” Korean Economic Review

27, 163-202.

[2] Adrian, T., Etula, E., and Muir, T. (2014). Financial intermediaries and the cross-section of
asset returns. The Journal of Finance, 69(6):2557–2596.

[3] Akhtar, M., 1997, “Understanding Open Market Operations”, Federal Reserve Bank of New
York,Public Information Department.

[4] Avdjiev, S., Du, W., Koch, C., and Shin, H. S. (2016). The dollar, bank leverage and the
deviation from covered interest parity.

[5] Baba, N., Packer, F., and Nagano, T. (2008). The spillover of money market turbulence to
fx swap and cross-currency swap markets. BIS Quarterly Review, March.

[6] Bacchetta, P., van Wincoop, E., 2017, “Gradual Portfolio Adjustment: Implications for
Global Equity Portfolios and Returns”, NBER Working Paper 23363.

[7] Backus, David, Mikhail Chernov, and Ian Martin. 2011. “Disasters Implied by Equity Index
Options,” Journal of Finance, 66(6), 1969–2012.

[8] Baker, M. (2009). Capital market-driven corporate finance. The Annual Review of Financial
Economics, 1:181–205.

[9] Baker, M. and Wurgler, J. (2000). The equity share in new issues and aggregate stock returns.
The Journal of Finance, 55(5):2219–2257.

[10] Baker, M., Foley, C. F., and Wurgler, J. (2009). Multinationals as arbitrageurs: The ef-
fect of stock market valuations on foreign direct investment. Review of Financial Studies,
22(1):337–369.

[11] Bansal, Ravi and Amir Yaron. 2004. “Risks for the Long Run: A Potential Resolution of
Asset Pricing Puzzles,” Journal of Finance, 59(4), 1481–1509.

[12] Barro, Robert J. 2006. “Rare Disasters and Asset Markets in the Twentieth Century,” Quar-
terly Journal of Economics, 121(3), 823–866.

[13] Barro, Robert J. 2009. “Rare Disasters, Asset Prices, and Welfare Costs,” American Economic
Review, 99(1), 243–264.

[14] Barro, Robert J. and Jose F. Ursua. 2008. “Macroeconomic Crises since 1870,” Brookings
Papers on Economic Activity, 255–335.

[15] Barro, Robert J. and Tao Jin. 2011. “On the Size Distribution of Macroeconomic Disasters,”
Econometrica, 79(5), 1567–1589.

146



[16] Barro, Robert. J. and Jose F. Ursúa. 2012. “Rare Macroeconomic Disasters,” Annual Review
of Economics, 4, 83–109.

[17] Bates, David S. 1991. “The Crash of ’87: Was It Expected? The Evidence from Options
Markets,” Journal of Finance, 46(3), 1009–1044.

[18] Bollerslev, Tim and Viktor Todorov. 2011. “Estimation of Jump Tails,” Econometrica, 79
(6), 1727–1783.

[19] Bollerslev, Tim and Viktor Todorov. 2011. “Tails, Fears, and Risk Premia,” Journal of Fi-
nance, 66(6), 2165–2211.

[20] Bordalo, P., Gennaioli, N., and Shleifer, A. (2010). Salience theory of choice under risk.
Technical report, National Bureau of Economic Research.

[21] Brenner, Menachem and Marti G. Subrahmanyam. 1988. “A Simple Formula to Compute the
Implied Standard Deviation,” Financial Analysts Journal, 44, 80–83.

[22] Brunnermeier, M. K. and Pedersen, L. H. (2009). Market liquidity and funding liquidity.
Review of Financial studies, 22(6):2201–2238.

[23] Bräuning, F. and Ivashina, V. (2016). Monetary policy and global banking. Working paper.

[24] Campbell, J. Y. and L. Viceira, 2002, Strategic Asset Allocation: Portfolio Choice for Long-
Term Investors, Clarendon Lectures in Economics, Oxford University Press.

[25] Campbell, J. Y. and R. J. Shiller, 1988, “Stock Prices, Earnings, and Expected Dividends,”,
Journal of Finance 43, 661-76.

[26] Campbell, J. Y., 1991, “A Variance Decomposition for Stock Returns”, Economic Journal
101:157–179.

[27] Campbell, John Y. and John H. Cochrane. 1999. “By Force of Habit: A Consumption-Based
Explanation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107(2),
205-251.

[28] Chernenko, S. and Sunderam, A. (2014). Frictions in shadow banking: Evidence from the
lending behavior of money market mutual funds. Review of Financial Studies, 27(6):1717–
1750.

[29] Cieslak, A., Morse, A. and Vissing-Jorgensen, A., 2016, “Stock Returns over the FOMC Cycle
”, Working Paper.

[30] Co�ey, N., Hrung, W. B., and Sarkar, A. (2009). Capital constraints, counterparty risk, and
deviations from covered interest rate parity. Sta� Reports. Federal Reserve Bank of New
York.

[31] Corradin, S. and Rodriguez-Moreno, M. (2016). Violating the law of one price: the role of
non-conventional monetary policy.

[32] Cox, John C. and Stephen A. Ross. 1976. “The Valuation of Options for Alternative Stochastic
Processes,” Journal of Financial Economics, 3(1-2), 145-166

[33] De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J. (1990). Noise trader risk
in financial markets. Journal of political Economy, pages 703–738.

147



[34] DeLong, J. B., A. Shleifer, L. H. Summers, and R. J.Waldmann, 1990, “Noise Trader Risk in
Financial Markets,” Journal of Political Economy 98, 703-738.

[35] Du, W., Tepper, A., and Verdelhan, A. (2016). Covered interest rate parity deviations in the
post-crisis world. Working paper.

[36] Du�e, D. (2010). Presidential address: Asset price dynamics with slow-moving capital. The
Journal of finance, 65(4):1237–1267.

[37] Du�e, D., and B. Strulovici, 2012, “Capital Mobility and Asset Pricing”, Econometrica 80:
2469-2509.

[38] Du�e, D., and K. Singleton, 1999, "Modeling Term Structures of Defaultable Bonds" , Review
of Financial Studies 12: 687-720.

[39] Du�e, D., “Asset Price Dynamics with Slow-Moving Capital”, Journal of Finance 2010, 65:
1238-1268.

[40] D’avolio, G. (2002). The market for borrowing stock. Journal of financial economics,
66(2):271–306.

[41] Epstein, Larry G. and Stanley E. Zin. 1989. “Substitution, Risk Aversion, and the Temporal
Behavior of Consumption and Asset Returns: A Theoretical Framework,” Econometrica,
57(4): 937–69.

[42] Errunza, V., and E. Losq, 1985, “International Asset Pricing under Mild Segmentation:
Theory and Test” Journal of Finance 40, 105-124.

[43] Fletcher, D. J. and Taylor, L. W. (1996). " swap" covered interest parity in long-date capital
markets. The Review of Economics and Statistics, pages 530–538.

[44] Fratzscher, M., M. Lo Duca, and R. Straub, 2013, “On the International Spillovers of US
Quantitative Easing,” European Central Bank Working Paper.

[45] Gabaix, Xavier and Augustin Landier. 2008. “Why Has CEO Pay Increased So Much?,”
Quarterly Journal of Economics, 123(1), 49-100.

[46] Gabaix, Xavier and Yannis Ioannides. 2004. “The Evolution of City Size Distributions,” in
V. Henderson and J.F. Thisse, eds., Handbook of Regional and Urban Economics, v. 4,
Amsterdam, North-Holland.

[47] Gabaix, Xavier, Parameswaran Gopikrishnan, Vasiliki Plerou, and H. Eugene Stanley. 2003.
“A Theory of Power Law Distributions in Financial Market Fluctuations,” Nature, 423, 267
270.

[48] Gabaix, Xavier. 2009. “Power Laws in Economics and Finance,” Annual Review of Economics,
1, 255–293.

[49] Gabaix, Xavier. 2012. “Variable Rare Disasters: an Exactly Solved Framework for Ten Puzzles
in Macro-Finance,” Quarterly Journal of Economics, 127(2), 645–700.

[50] Gagnon, J., M. Raskin, J. Remache, and B. Sack, 2011, “The Financial Market E�ects of the
Federal Reserve’s Large-scale Asset Purchases,” International Journal of Central Banking 7
, 3–43.

148



[51] Garleanu, N. and Pedersen, L. H. (2011). Margin-based asset pricing and deviations from the
law of one price. Review of Financial Studies, 24(6):1980–2022.

[52] Garleanu, N., L. H. Pedersen, and A.M. Poteshman, 2009, “Demand-Based Option Pricing,”
The Review of Financial Studies 22, 4259-4299.

[53] Geanakoplos, J. (2010). The leverage cycle. In NBER Macroeconomics Annual 2009, Volume
24, pages 1–65. University of Chicago Press.

[54] Giovannini, Alberto, and Philippe Weil. 1989. “Risk Aversion and Intertemporal Substitution
in the Capital Asset Pricing Model,” National Bureau of Economic Research, Working Paper
2824.

[55] Greenwood, R. and D. Vayanos, 2014, “Bond Supply and Excess Bond Returns,” Review of
Financial Studies 27, 663-713.

[56] Greenwood, R. and Hanson, S. G. (2013). Issuer quality and corporate bond returns. Review
of Financial Studies, 26(6):1483–1525.

[57] Greenwood, R. and Vayanos, D. (2010). Price pressure in the government bond market.
The American Economic Review, 100(2):585–590. He, Z. and Krishnamurthy, A. (2013).
Intermediary asset pricing. American Economic Review, 103(2):732–70.

[58] Greenwood, R., Hanson, S. G., and Jin, L. J. A model of credit market sentiment. Working
Paper.

[59] Greenwood, R., Hanson, S. G., and Liao, G. Y. (2015). Price dynamics in partially segmented
markets. Working paper.

[60] Greenwood, R., Hanson, S., and Stein, J. C. (2010). A gap-filling theory of corporate debt
maturity choice. The Journal of Finance, 65(3):993–1028.

[61] Greenwood, R., S. G. Hanson, and D. Vayanos, 2015, “Forward Guidance in the Yield Curve:
Short Rates versus Bond Supply,” Working Paper.

[62] Greenwood, R., S. G. Hanson, J. Rudoplh, and L. H. Summers, 2015, “The Optimal Matu-
rity of Government Debt,” in The $13 Trillion Question: How America Manages Its Debt,
Brookings Institution Press.

[63] Greenwood, R., S.G. Hanson and J.C. Stein, 2010, “A Gap-Filling Theory of Corporate Debt
Maturity” Journal of Finance 65, 993-1028.

[64] Gromb, D. and D. Vayanos, 2002, “Equilibrium and Welfare in Markets with Financially
Constrained Arbitrageurs,”Journal of Financial Economics 66, 361-407.

[65] Gromb, Denis and Dimitri Vayanos, 2015, “The Dynamics of Financially Constrained Arbi-
trage,” Working paper.

[66] Grossman, Sanford J & Miller, Merton H, 1988. “Liquidity and Market Structure,” Journal
of Finance 43, 617-37.

[67] Hanson, Samuel G., 2014, “Mortgage Convexity,” Journal of Financial Economics 113(2),
270-299.

[68] Harvey, C., and Huang, R., 2002, “The Impact of the Federal Reserve Bank’s Open Market
Operations”, Journal of Financial Markets, 5, 223-257.

149



[69] He, Z. and Krishnamurthy, A. (2013). Intermediary asset pricing. American Economic Review,
103(2):732–70.

[70] Hogg, Robert V and Allen T. Craig. 1965. Introduction to Mathematical Statistics, 2nd
Edition, Macmillan, New York, 103-104.

[71] Hu, X., Pan, J., and Wang, J., 2013, “Noise as Information for Illiquidity”, Journal of Finance,
68, 2223-2772.

[72] Hull, John C. (2000). Options, Futures, & Other Derivatives, 4th ed., Upper Saddle River
NJ, Prentice Hall.

[73] Iida, T, T. K. and Sudo, N. (2016). An upsurge in a cip deviation during the noncrisis period
and the role of divergence in monetary policy. Bank of Japan Working Paper Series.

[74] Ivashina, V., Scharfstein, D. S., and Stein, J. C. (2015). Dollar funding and the lending
behavior of global banks. The Quarterly Journal of Economics, 1241:1281. 36

[75] Joyce, M. A. S., A. Lasaosa, I. Stevens, and M. Tong, 2011, “The Financial Market Impact
of Quantitative Easing in the United Kingdom,” International Journal of Central Banking 7,
113-161.

[76] Kelly, Bryan and Hao Jiang. 2014. “Tail Risk and Asset Prices,” Review of Financial Studies,
27(10), 2841–2871.

[77] Kim, Y. C. and Stulz, R. (1988). The eurobond market and corporate financial policy: A test
of the clientele hypothesis. Journal of Financial Economics, 22(2):189–205.

[78] Kou, S.G. (2002). “A Jump-Di�usion Model for Option Pricing,” Management Science, 48(8),
1086-1101.

[79] Krishnamurthy, A. (2002). The bond/old-bond spread. Journal of Financial Economics,
66(2):463–506.

[80] Krishnamurthy, A. and A. Vissing-Jorgensen, 2011, “The E�ects of Quantitative Easing
on Interest Rates: Channels and Implications for Policy,” Brookings Papers on Economic
Activity, Fall 2011, 215-265.

[81] Krishnamurthy, A. and A. Vissing-Jorgensen, 2012, “The Aggregate Demand for Treasury
Debt,” Journal of Political Economy, 120, 233–267.

[82] Krishnamurthy, A., O. Vigneron and X. Gabaix, 2007, “Limits of Arbitrage: Theory and
Evidence from the Mortgage-Backed Securities Market”, Journal of Finance, 62(2), 557-595.

[83] Lamont, O. A. and Thaler, R. H. (2003). Anomalies: The law of one price in financial markets.
The Journal of Economic Perspectives, 17(4):191–202.

[84] Levich, R. M. (2012). Fx counterparty risk and trading activity in currency forward and
futures markets. Review of Financial Economics, 21(3):102–110.

[85] López-Salido, D., Stein, J. C., and Zakrajöek, E. (2016). Credit-market sentiment and the
business cycle. Technical report, National Bureau of Economic Research.

[86] Lucas, Robert E. 1978. “Asset Prices in an Exchange Economy,” Econometrica, 46,
1429–1445.

150



[87] Luttmer, Erzo G.J. 2007. "Selection, Growth, and the Size Distribution of Firms," Quarterly
Journal of Economics, 122(3), 1103-1144.

[88] López-Salido, D., Stein, J. C., and Zakrajöek, E. (2016). Credit-market sentiment and the
business cycle. Technical report, National Bureau of Economic Research.

[89] Ma, Y. (2015). Non-financial firms as cross-market arbitrageurs. Working paper.

[90] Maggiori, M. and Gabaix, X. (2015). International liquidity and exchange rate dynamics.
Quarterly Journal of Economics, 130(3).

[91] Mamaysky, H. (2014). The time horizon of price responses to quantitative easing. Working
paper.

[92] Mamaysky, Harry, 2014, “The Time Horizon of Price Responses to Quantitative Easing”,
Working Paper.

[93] Martin, Ian. 2015. “What is the Expected Return on the Market?” working paper, London
School of Economics, June.

[94] McBrady, M. R. and Schill, M. J. (2007). Foreign currency-denominated borrowing in the
absence of operating incentives. Journal of Financial Economics, 86(1):145–177.

[95] Mehra, Rajnish, and Edward C. Prescott. 1985. “The Equity Premium: A Puzzle,” Journal
of Monetary Economics, 15, 145–161.

[96] Merton, Robert C. 1976. “Option Pricing when Underlying Stock Returns Are Discontinu-
ous,” Journal of Financial Economics, 3, 125–144.

[97] Mitzenmacher, Michael. 2003. “A Brief History of Generative Models for Power Law and
Lognormal Distributions,” Internet Mathematics, 1(2), 226-251.

[98] Nagel, S. (2005). Short sales, institutional investors and the cross-section of stock returns.
Journal of Financial Economics, 78(2):277–309.

[99] Obstfeld, Maurice. 1994. “Evaluating Risky Consumption Paths: The Role of Intertemporal
Substitutability,” European Economic Review, 38(7), 1471–1486.

[100] Pareto, Vilfredo. 1897. Cours d’Economie Politique, v.2, Paris, F. Pichou.

[101] Pedersen, L.H., M. Mitchell , and T. Pulvino, 2007. “Slow Moving Capital,” American Eco-
nomic Review 97, 215-220.

[102] Plerou, Vasiliki, Parameswaran Gopikrishnan, Xavier Gabaix, H. Eugene Stanley. 2004. “On
the Origins of Power Law Fluctuations in Stock Prices,” Quantitative Finance, 4, C11-C15.

[103] policy. Working Paper.

[104] Pozsar, Z. and Smith, S. (2016). Global Money Notes #5. Credit Suisse Fixed Income Re-
search, (April 13).

[105] Rietz, Thomas A. 1988. “The Equity Risk Premium: A Solution,” Journal of Monetary
Economics, 22(1), 117-131.

[106] Ross, S. A., 1976, “The Arbitrage Theory of Capital Asset Pricing,” Journal of Economic
Theory 13, 341-360.

151



[107] Seo, Sang Byung and Jessica A. Wachter. 2016. “Option Prices in a Model with Stochastic
Disaster Risk,” working paper, University of Pennsylvania.

[108] Shleifer, A. and Vishny, R. W. (1997). The limits of arbitrage. The Journal of Finance,
52(1):35–55.

[109] Shleifer, A., and R. W. Vishny, 1997. “The Limits of Arbitrage,” Journal of Finance 52, 35-55.

[110] Siriwardane, Emil. 2015. "The Probability of Rare Disasters: Estimation and Implications,"
Harvard Business School, working paper 16-061.

[111] Sokolov, V., 2009, “The Impact of Open Market Operations on the Government Bond Market:
Microstructure Evidence”, Working Paper, Higher School of Economics.

[112] Stapleton, R.C., and M. G.. Subrahmanyam, 1977, “Market Imperfections, Capital Market
Equilibrium and Corporation Finance,” Journal of Finance 32, 307-319.

[113] Stein, J. C. and Sunderam, A. (2016). The fed, the bond market, and gradualism in monetary

[114] Stein, J. C., 2005, “Why Are Most Funds Open-End? Competition and the Limits of Arbi-
trage,” Quarterly Journal of Economics 120, 247-272.

[115] Sushko, V., Borio, C., Mccauley, R., and Mcguire, P. (2016). Whatever happened to covered
interest parity ? Hedging demand meets limits to arbitrage. Working paper

[116] Tuckman, B. and Porfirio, P. (2003). Interest rate parity, money market basis swaps, and
cross-currency basis swaps. Fixed income liquid markets research, Lehman Brothers.

[117] Vayanos, D. and J. Vila, 2009, “A Preferred-Habitat Model of the Term Structure of Interest
Rates,” NBER Working Paper No. 15487.

[118] Vayanos, D. and Vila, J.-L. (2009). A preferred-habitat model of the term structure of interest
rates. NBER Working paper.

[119] Weil, Philippe. 1990. “Nonexpected Utility in Macroeconomics,” Quarterly Journal of Eco-
nomics, 105(1), 29–42.

[120] Woodford, M., 2012, “Methods of Policy Accommodation at the Interest-Rate Lower Bound,”
in The Changing Policy Landscape, Federal Reserve Bank of Kansas City.

[121] Wurgler, J. and E. Zhuravskaya, 2002, “Does Arbitrage Flatten Demand Curves for Stocks?”
The Journal of Business 75, 583–608.

152


