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Abstract

As growing populations continue to drive demand for water, managers of this fundamen-

tal resource face the dual challenge of providing both sufficient and clean supplies. In this

dissertation, I undertake two analyses exploring a policy aimed at maintaining sufficiency

of supply through conservation, and a third analysis evaluating a regulatory approach to

promote water quality.

Because lawns comprise a large share of residential water demand, water utilities across

the western United States offer subsidies to replace lawns with less water intensive landscape.

In my first analysis, I estimate the water savings and property value effects of one such

subsidy, the Southern Nevada Water Authority’s “Cash-for-Grass” rebate program. Using

event studies and panel fixed-effects models, I find that the average conversion reduces

baseline water consumption by 21 percent and increases property values by about 1 percent,

however I find little evidence of property value spillovers to neighboring properties. I

also show that the smallest savings coincide with years in which many conversions took

place, suggesting a possible trade-off between program participation and maintaining the

effectiveness of individual conversions. I also find that participants with high pre-conversion

water demand save more water than participants with lower pre-conversion water demand.

Conservation subsidies present attractive alternatives to price-based approaches to water

conservation. However, I find that a relatively modest 6 percent price increase may have

achieved equivalent savings. Finally, combining my water savings and housing price impact

results, I show that the program generates net benefits of $2.00 per square foot of desert

landscape converted. My results expand our knowledge of water conservation rebates and,
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more generally, contribute to our understanding of the long-term dynamics of conservation

rebate program savings as well as how heterogeneous participant characteristics affect

conservation rebate program performance.

In my second analysis, which is joint work with Sheila Olmstead, we study the effect

that an information disclosure policy has on national water quality violations. Since the

1980’s, information disclosure policies have grown in popularity as a means by which to

promote policy outcomes where direct regulation is a challenge. In this spirit, the 1996

amendments to the Safe Drinking Water Act require water utilities to disclose drinking water

violations to their customers in annual water quality reports. We explore the impact of these

reports on health-based drinking water quality violations in a differences-in-differences

framework using a nationally comprehensive data set of water quality violations and water

systems. Our results suggest that reports published in local newspapers or mailed directly

to customers may have reduced violations, but we uncover less evidence that posting reports

online had any impact. We also show that reductions in violations remain stable over time,

and that the effect of the reports appears to be stronger for those water systems serving

higher-income counties. Finally, we provide evidence that implies reports induce reductions

in microbial contaminants without increasing disinfection byproducts. Our analysis is

among the first to explore the long-term impacts of information disclosure policies, and

builds on the small but growing literature exploring heterogeneity in the responsiveness to

these policies.

I return to the Las Vegas Cash-for-Grass program in my third analysis. Following

the empirical framework and analysis of Bollinger and Gillingham (2012), I estimate the

presence of peer effects in the Cash-for-Grass program. Like Bollinger and Gillingham, I

find positive peer effects that grow with time when defining the peer network by a zip code,

but unlike these authors, I show that only the cumulative conversions rather than the area

of conversions drive these effects. Overall, however, my results largely validate the method

of Bollinger and Gillingham. Going beyond their results, I also estimate peer effects within

zip codes interacted with deciles of assessed home values. At the zip code-decile, I find
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peer effects to be even stronger than at the zip code, suggesting that a possible driver of

the peer effect works through a desire to maintain competitiveness with other homes in an

individual’s housing market. I also show that my estimated peer effects are at least an order

of magnitude larger than the impact of several targeted marketing campaigns administered

by the Southern Nevada Water Authority. To my knowledge, mine is the first analysis to

compare a peer effect with the impact of advertising efforts.

Overall, my dissertation contributes to environmental economists’ understanding of

water conservation and water quality policies and aims to improve the management of one

of civilizations’ most critical resources.
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Chapter 1

Subsidies for Succulents: Evaluating

the Las Vegas Cash-for-Grass Rebate

Program

1.1 Introduction

Water is not an abundant resource. In the western United States, municipal water

demand threatens to outstrip supplies as new water customers increase service populations

and droughts decrease reservoir levels. In the past, water utilities relied on large, often

federally funded, water supply augmentation projects. Today, however, these projects are

costly and unpopular. And while agriculture holds large amounts of historical water rights,

legal institutions, social perceptions and equity concerns appear to inhibit free trade between

agricultural and urban users (Libecap, 2007; Howe et al., 1990). Faced with essentially fixed

supplies and growing demand, water utilities have responded with various incentive-

based and command-and-control demand-side-management strategies. Common strategies

include drought awareness campaigns, lawn irrigation and other water use restrictions, and

subsidies for water saving capital investments (Price et al., 2014).

I estimate the savings and impacts on property values of the Southern Nevada Water
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Authority’s Water Smart Landscapes program, or Cash-for-Grass program. The program

aims to reduce water demand by offering Las Vegas water customers a subsidy for replacing

lawns with desert landscape. Of all the water demand management strategies, those that

target lawn irrigation may achieve the greatest reductions in demand. Residential lawn

irrigation accounts for over half of all residential water consumption in southwestern cities

(Sovocool et al., 2006), and in Las Vegas, nearly 40 percent of total water deliveries goes

towards residential outdoor uses.1 Especially in light of the growing popularity of turf

replacement subsidies, comprehensive evaluations of programs targeting outdoor water use

are relevant and timely.

I combine over 25 years of single-family monthly water consumption data for the Las

Vegas Valley Water District (LVVWD) with single-family rebate participant information since

the beginning of the program in 1996 to estimate water savings associated with Cash-for-

Grass subsidized conversion to desert landscape. I use event study and panel fixed-effects

models to visualize and quantify average water savings. I further test robustness of my

results to three additional control samples that endeavor to account for any remaining

concerns over selection bias not accounted for in my main specification. First, I estimate a

model without non-participants. Second, I build a control sample from non-participants

who applied for the rebate, but never completed the conversion process. Third, I develop a

matched sample of non-participants, matching on pre-conversion water consumption and

lot size.

I find an average conversion reduces monthly water consumption by 21 percent, or 5,000

gallons per month, with this result robust to my three alternative control samples. Savings

remain stable over time, suggesting that program participants do not increase other water

intensive activities after conversion, but simply reduce outdoor irrigation. I also find that

water savings fall over time as rising rebate levels increase the number of annual rebate

recipients. The inverse relationship between savings and incentive to participate highlights

1The water authority estimates that 59 percent of total water deliveries go to residential customers (SNWA,
2009). Mansur and Olmstead (2012) find that outdoor water use accounts for two thirds of total water use in
arid environments. The product of these two values approximately equals 40 percent.
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a possible trade-off between expanding the reach of the subsidy and maintaining the

effectiveness of conversions. In addition to exploring heterogeneity in savings across time, I

also explore heterogeneity in savings across participant type. I find that participants with

high pre-conversion water demand save more water (relative to lot size) than participants

with low pre-conversion water demand.2 Finally, using a partial equilibrium framework, I

estimate that a 6 percent price increase experienced by the entire service population in place

of the rebate program would have achieved the same aggregate savings as did conversions

subsidized by the program. 3

Most evaluations of demand-side-management strategies focus on electricity programs.4

Furthermore, these studies tend to estimate short-term impacts and there exist few analyses

exploring the effect of participant heterogeneity on program outcomes (Allcott and Green-

stone, 2012).5 My results expand our knowledge of water conservation rebates and, more

generally, contribute to our understanding of the long-term dynamics of conservation rebate

program savings as well as how heterogeneous participant characteristics affect conservation

rebate program performance.

I also estimate the effect of conversion to desert landscape on property values in the

LVVWD. The impact of conversion on property values will incorporate all private impacts

associated with conversion such as water bill savings, reduced lawn maintenance costs,

negative energy spillovers from increased urban heat island effects (Klaiber et al., 2015), and

any non-monetary impacts such as aesthetic appeal. Because energy spillovers and aesthetic

2Deoreo et al. (2000) come to a similar conclusion.

3After completing my analysis, I became aware that another dissertation explores water savings from the
Cash-for-Grass program (Brelsford, 2014). While Brelsford uses different methods and census tract consumption
data, similar to my results Brelsford finds substantial savings due to the rebate program. But in contrast to my
results, Brelsford finds that savings erode over time. Brelsford acknowledges, however, that “a difference in
differences approach on household level data would provide a more rigorous estimate of the long term water
savings generated through the [Cash-for-Grass] program.” I use this approach in my analysis. And while I have
not found a paper to reference, I am aware that ongoing work by Brelsford and Josh Abbott of Arizona State
University also use this differences-in-differences approach to estimate Cash-for-Grass induced water savings.

4For example, see Alberini and Towe (2015), Davis et al. (2014), and Arimura et al. (2011).

5Reflecting the broader demand-side-management program evaluation literature, most studies of which
I am aware that give attention to heterogeneity derive their conclusions from energy conservation programs
(Allcott, 2011; Allcott et al., 2015).

3



appeal may impact neighboring homes, I also estimate the spillover effect of conversion

to desert landscape by modeling the impact of conversions on adjacent property values.

While past studies have explored peer effects in capital investment subsidies (Bollinger

and Gillingham, 2012) and researchers have recognized the importance of policy induced

externalities in other contexts (Miguel and Kremer, 2004), to my knowledge my analysis is

the first empirical investigation to explore the spillover effects of capital investment subsidies

on neighboring properties.

I use Cash-for-Grass program enrollment information combined with Clark County

Assessor data on property sales to estimate the value of desert landscape within a he-

donic property framework. I employ a differences-in-differences strategy, controlling for

unobserved characteristics with a rich set of spatial and temporal fixed-effects. I find that

conversion increases the value of a home by about 1 percent, or $3,700, and has little impact

on neighboring homes. I additionally find that the existence of a conversion, rather than the

area converted, drives the increase in property values. I estimate that the present discounted

value of annual water bill and lawn maintenance savings approximately equals the increase

in home values, suggesting that the hedonic estimate of the direct effect of conversion

reflects little more than the monetary savings associated with conversion.

Considering water savings, administrative costs, rebate outlays, and out-of-pocket

conversion costs to the rebate recipient, I find that the Cash-for-Grass program costs

$4.84/kgal-saved. I estimate the cost of water supply as the sum of the annual water bill for

an average single-family customer and the opportunity cost of scarce water, which I base

on Nevada agriculture to urban water sales. Comparing the two cost estimates, I find that

the program saves water for less than the cost of supply. I also calculate net benefits by

subtracting the sum of administrative and conversion costs from the sum of the direct effect

of conversion and the value of scarce water. The program generates net benefits equal to

$2.00/ft2 of desert landscape converted.

I organize the remainder of the paper as follows. Section 1.2 provides background on

the Cash-for-Grass program. I present my analysis of water savings in section 1.3. Section
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1.4 describes my estimates of the direct and spillover effect of conversion to desert landscape

on property values. Section 1.5 estimates program costs per gallon saved and program net

benefits. Section 1.6 concludes.

1.2 The Cash-for-Grass rebate program

The Southern Nevada Water Authority’s (SNWA) Cash-for-Grass rebate program is a

voluntary, incentive based demand-side-management program that provides a cash rebate

for Las Vegas area water customers that replace their lawns with desert landscape.6 of The

program began as a pilot study in 1996 and was rolled out to all customers beginning in 1998.

Though the program has undergone several administrative regime changes,7 throughout

most of the program’s history participants have received a one-time check from the water

authority determined by the size of the conversion. Currently, program participants receive

$2.00 per square foot of lawn replaced8 and can receive a maximum rebate of $300,000.9 The

program also stipulates customers convert a minimum area and requires that conversions

6Current and historical program details derive from conversations with and information sent by SNWA
staff members.

7At the beginning of the program, single-family participants received a $5 water bill credit for every 1000
gallon reduction relative to baseline average water use. Halfway through the year 2000, however, the water
authority began issuing rebates (still in the form of a water bill credit) based on the size of the conversion.
Cash-for-Grass program participants continued to receive rebates in the form of a water bill credit until March,
2003, when the water authority began sending one-time checks.

8https://www.snwa.com/rebates/wsl.html. The $2.00 per square foot rebate is valid for conversions of
5,000 square feet or less. Beyond 5,000 square feet, the rebate falls to $1.00 per square foot.

9There has always been a maximum allowable rebate, but this limit does not appear to affect participant
decision making, at least since the Fall of 2001 when the limit was set at $25,000. Since this date, no participant
has even approached 75 percent of the limit. Early on in the program, however, limits may have been binding.
Initially, single-family participants could receive no more than $400, and during this stage of the program, 38
percent of participants received a rebate of $400. Program requirements soon changed such that single-family
participants received $0.40 per square foot of lawn converted to desert landscape for the first 2,500 square feet
of lawn replaced. In other words, participants could earn up to $1,000, even if they converted more than 2,500
square feet. Under this regime, 11 percent of participants converted more than 2,500 square feet. For both
the $400 and $1,000 limits, however, the distributions of area converted appear to be reasonably continuous,
suggesting that these early limits on the allowable rebate had little effect on participants’ decision of how large
a conversion to undertake.
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remain in place in perpetuity.10 Very few customers renege on their agreement to maintain

their conversion.11

Figure 1.1: Illustration of the process required for a single-family customer to become enrolled in the Cash-for-
Grass program.

To become a program participant, single-family applicants undergo a multi-step process

illustrated in Figure 1.1 that begins with submitting an application and culminates with

receiving their check. In between, program applicants review and verify requirements with

water authority staff during pre- and post-conversion site visits as well as undertake the

conversion itself. Most applicants hire a professional landscaper. In 2014, for example,

only about a quarter of applicants performed the conversion themselves.12 For those that

employ a landscaper, conversions cost around $3 per square foot, though the cost can be

higher for those installing artificial turf (which does qualify as “desert landscape” under

the terms of the Cash-for-Grass program).13 It takes the average applicant a little over 5

10The water authority relaxed the minimum conversion requirement in 2004. I explore the impact of this
change in Appendix A.2. Prior to June, 2009, customers agreed to keep the conversion in place for 10 years. I
explore the impact of this change in Appendix A.3.

11I have “back conversion” data since 2004. These data show that the average number of back conversions
occur at an annual rate of 4.5 back conversions per year, or less than one tenth of one percent of all conversions
(pers. comm. K. Sovocool, February 2015).

12pers. comm. K. Sovocool, February 2015.

13Cost estimates derive from conversations the author had with several Las Vegas area landscape professionals
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months from the date of application to the receipt of the check.14 In the empirical models

that follow, I attempt to account for the transient behavior likely present between when

applicants first signal interest in the program (application) to when applicants complete the

process (enrollment date).

1.3 Water savings

1.3.1 Data and summary statistics

I derive estimates of water savings using single-family Cash-for-Grass program partic-

ipant information and monthly single-family residential water consumption data for the

Las Vegas Valley Water District (LVVWD), the largest water utility in the Las Vegas region.

The Southern Nevada Water Authority provided both data sets. Program participation

data include all participants from the inception of the pilot study in 1996 through June 12,

2014. These data include the parcel identifier, size, and rebate value of the conversion, the

participant type (e.g. single-family), for most conversions the date the program participant

applied for the rebate, and for all conversions the date the program participant became

enrolled in the program.

I focus on single-family participants that undertake one conversion. Single-family

participants comprise nearly 90 percent of all conversions, and nearly 90 percent of single-

family participants perform one conversion.15 80 percent of the observations of single-family

participants undertaking one conversion include both the application and enrollment dates.

Among these observations, the average period between application and enrollment date

spans about 5 months (150.6 days). Since I use time relative to application date in my event

studies, I proxy for missing application dates by subtracting the average 5-month time

in March, 2016.

14pers. comm. M. Morgan, October 27, 2015.

15About 10 percent of single-family participants undertake two or more conversions. Golf courses, however,
are the most likely participant category to undergo multiple conversions. Of the 33 golf courses that have
participated in the Cash-for-Grass program, 27 have undertaken multiple conversions.
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period from the enrollment date for observations missing an application date.

Monthly single-family consumption runs from January, 1988 through April, 2014. I

restrict consumption data to those service meters that supply a single parcel. Meters that

serve multiple parcels or parcels served by multiple meters are primarily associated with

larger properties.16 I reassign negative water consumption values (less than 0.01 percent of

observations) to ‘zero’ upon recommendation from water authority staff. Negative water

consumption values can occur due to billing adjustments or corrections for over-estimated

meter readings, which sometimes arise if a utility staff member cannot read a meter and

must instead estimate that month’s consumption.17 Because I observe water consumption

at the service meter level and match service meter identifiers with parcel identifiers, my

unit of analysis is a parcel, not an individual. Service meter identifiers do not change when

customers move and I do not observe changes in the name of the individual connected to a

service meter.

Table 1.1: Summary of water consumption panel.

All Participating Non-participating

parcels parcels parcels

Monthly water use obs. (N) 64,135,652 6,580,788 57,554,864

Number of parcels 309,608 26,488 283,120

Mean water use (kgal/mo) 15.7 23.8† 15.1
† Derived from pre-enrollment water consumption observations.

Merging the water consumption with program enrollment information yields a panel of

over 64 million monthly water use observations from 309,608 parcels. Of the 309,608 parcels,

26,488 parcels participate in the Cash-for-Grass program (about 9 percent). In addition,

prior to program enrollment, participating parcels demand more water on average than

non-participating parcels (23.8 kgal/month vs. 15.1 kgal/month). Table 1.1 summarizes

16pers. comm. M. Morgan, June 30, 2014.

17pers. comm. M. Morgan, October 28, 2015.
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Figure 1.2: Cumulative number of conversions over time performed under the Cash-for-Grass program
(single-family parcels that converted only once).

these results. Figure 1.2 illustrates the cumulative number of conversions over time. Few

conversions took place in the late 1990s and early 2000s, however the number of annual

participants increased sharply after 2003. A second jump in participation occurred between

2006 and 2008, but after 2008, program participation has steadily declined. Figure 1.3

illustrates the annual number of conversions and associated major changes in the subsidy

rate and average water bill. In February of 2003, the rebate was increased from $0.40 to

$1.00 per square-foot converted, and in September of the same year, the average water bill

increased over 25 percent. These changes were followed by an increase in the number of

conversions from 225 in 2002 to 945 in 2003 to 4,456 in 2004. The subsidy rate increased

again in December, 2006 to $2.00 per square-foot. This was followed by an approximate

8 percent increase in the average water bill in February, 2007. The number of conversions

subsequently increased from 1,735 in 2006 to 2,958 in 2007. In January, 2008, the subsidy

decreased to $1.50 per square-foot and effectively remained at this level through June, 2014.

Water rates, however, continued to increase. In May 2008, January 2010, and January 2011,
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Figure 1.3: Number of conversions by year performed under the Cash-for-Grass program (single-family parcels
that converted only once). ‘Plus’ signs indicate increases in the subsidy level; the hollow circle indicates a
decrease in the subsidy level; solid triangles indicate dates of major increases to a customer’s average water bill.
2014 participation data only run through June 12.

the average water bill increased by approximately 17.5 percent, 6 percent and 5.5 percent

respectively. Despite these increases in price, participation steadily declined since 2008.

An average participant converts 1,348 square feet of lawn to desert landscape (approxi-

mately 0.03 acres), but average conversion area has fluctuated since program inception. As

illustrated in Figure 1.4, in 2003 the average converted area peaked at 1,703 square feet, but

declined to just over 1,000 square feet by 2014. Falling converted area could be because

recent participants have less grass area to convert. The average property size in the LVVWD

has shrunk in the past 30 years, and in 2004, communities began restricting new homes

from planting grass in front yards.18 Both factors would contribute to newer homes having

smaller yards.19

18pers. comm. SNWA staff, March 14, 2016 and May 8, 2017.

19Additionally, since 2004, the water authority has allowed participants to convert less than 400 square feet
provided the conversion covers an entire front or back yard. Relaxing the minimum conversion size requirement
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Figure 1.4: Average size of conversions in each year of the Cash-for-Grass program. No averages are shown
before 2000 since only one conversion has a recorded area in 1998 and none of the conversions undertaken in
1999 record the area converted (averages derived from single-family parcels that converted only once).

Average water use among participating parcels prior to program enrollment runs strik-

ingly parallel to average water use among non-participating parcels, especially before the

program begins in 1998. Figure 1.5 summarizes annual water consumption since 1988 for

participating parcels prior to Cash-for-Grass program enrollment, and non-participating

parcels. Sample sizes for each group change over time due to new home construction, homes

being removed from the LVVWD service area,20 or enrollment of participating parcels into

the rebate program. In the empirical models described below, I rely on a differences-in-

differences design. In my context, the validity of a differences-in-differences design relies

critically on the assumption that average water use among participating parcels would have

paralleled average water use among non-participating parcels in the absence of the rebate

program. The parallel trends in water use between both groups prior to the inception of the

may also contribute to falling average conversion size.

20In 1998, a large number of meters were transferred from the LVVWD to the Henderson water utility (pers.
comm. M. Morgan, May 17, 2016).
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program illustrated in Figure 1.5 provides at least a necessary (if not sufficient) condition

for credibly assuming parallel trends.

1.3.2 Event study

I first illustrate water savings using an event study. Specifically, I estimate the following

model:

Qit =
60

∑
j=−60

κj1
[
τit = j

]
it + µi + δt + εit (1.1)

where Qit describes water use in 1000 gallons for parcel i in month of sample t, µi are parcel

fixed-effects, δt are month of sample fixed-effects and εit is the error. I define event time

τit in relation to application date (thus τ is undefined for non-participants). For example,

τ = −12 for a parcel observed 12-months before the month of application.21 κj describes

average water use across all participants j months relative to the application date (net of

parcel and seasonal fixed-effects). To avoid collinearity, I omit κj=0. κj therefore represents

average water use relative to the application month. Month of sample fixed-effects soak up

average seasonal fluctuations in water use and parcel fixed-effects control for average water

consumption differences across parcels. I select a five-year window around the application

month, dropping all participant observations outside the five-year window. Finally, I cluster

standard errors at the parcel level.22

Figure 1.6 plots resulting point estimates and 95 percent confidence intervals of κj from

Eq. (1.1), and clearly illustrates a reduction in water use resulting from conversion to desert

landscape. Apart from seasonality not fully captured by the time fixed-effects, there does not

appear to be any noticeable trends in water consumption prior to program application. An

absence of pre-trends lends credibility to fully attributing the drop in water use illustrated

in Figure 1.6 to conversion. And while the water savings achieved by conversion looks to be

21I could also define event time in relation to enrollment date. However, since the date of application
indicates the first time I observe participants signaling interest in the program, defining the event relative to
application seems most sensible. I present event study results defining τ in relation to enrollment date in
Appendix A.2.

22McCrary (2007) suggests clustering at the parcel level to account for bias caused by a changing sample size
throughout the event window.
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Figure 1.6: Event study, illustrating water savings from the Cash-for-Grass program. Point estimates and 95
percent confidence intervals of κj’s are derived from estimating Eq. (1.1). Standard errors are clustered at the
parcel level. The omitted category is κ0 = 0. Observations are limited to single-family participating parcels
that converted only once and all non-participants. Participating parcel observations are further restricted to a
five-year window around the month of application; that is −60 ≤ κ ≤ 60. The vertical solid line indicates the
month of application. The vertical dashed line indicates the average month of enrollment, five months after the
application date.

largely maintained, the central tendency of the coefficient estimates in months following

application exhibits a mild increase, suggesting a small erosion in savings in the months

following application and subsequent conversion. Overall, Figure 1.6 implies conversion to

desert landscape saves about 5,000 gallons per month.

The event study exhibits transient behavior around the month of application. Conversion

takes place sometime between the application date (solid vertical line in Figure 1.6) and

the enrollment date, which occurs on average five months later (indicated by the dashed

vertical line in Figure 1.6). Between application and enrollment, a steady decline in water
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use can be explained by two factors; conversion, and the possibility that applicants reduce

or stop irrigating their lawns following application. But much of the decline I attribute to

conversion takes place before the date of application, suggesting some anticipatory behavior

on the part of applicants. It could be that applicants stop watering their lawns even prior

to application.23 It could also be that the conversions for which I imputed an application

date took much longer than the average five months. In my models that follow, I attempt to

eliminate this transient behavior from my savings estimates, both in my model specification

and in robustness checks to my main results.

1.3.3 Empirical approach

To quantify average savings, I estimate a panel fixed-effects model, a generalization of

the canonical two-period differences-in-differences design.

Qit = α[pre-period]it + β[post-enroll]it + µim + δtc + εit (1.2)

In Eq. (1.2) Qit is again monthly water consumption (in kgal) for parcel i in month-of-

sample, t. Post-enroll is an indicator for months following program enrollment. Estimates

of β therefore describe the change in water use due to conversion to desert landscape. Since

the event study illustrated some transient behavior prior to enrollment, I further include a

pre-period indicator that describes months between the application date and enrollment

date. µim and δtc are parcel by month-of-calendar year and month-of-sample by cohort fixed-

effects, and εit is the error. Parcel by month-of-calendar year fixed-effects control for average

seasonal differences across parcels. Month-of-sample by cohort fixed-effects attempt to

control for possible compositional differences in parcel characteristics that would invalidate

the differences-in-differences design. Newer homes in Las Vegas tend to be built on smaller

23But un-watered grass dies quickly in Las Vegas, and to be eligible for the rebate, residents must show that
they have been maintaining a lawn. However, water authority staff conducting pre-conversion site visits have to
make judgment calls regarding this requirement, and some variation regarding what constitutes a maintained
lawn may have allowed for approval of some applicants that ceased watering lawns well before the date of
application. Though this is purely speculative, a water authority staff member did explain to me that in earlier
years, the standards for what constituted a maintained lawn were not held to as strictly as they are now.
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lots and may have more water efficient appliances. Furthermore, since 2003, new home

construction regulations preclude lawns in the front yard. Such newer home characteristics

may induce differential trends in water use compared to older homes. Including month-of-

sample by cohort fixed-effects attempts to control for any such differential trends. Since I

match service meters to parcels, new home construction corresponds with the first year in

which I observe a parcel in my data. I define five cohorts based on the year a parcel first

appears in my panel: 1988-1989 define cohort 1 and comprise 45 percent of observations,

1990-1994 define cohort 2 and comprise 15 percent of observations, 1995-1999 define cohort 3

and comprise 16 percent of observations, 2000-2004 define cohort 4 and comprise 15 percent

of observations, and 2004-2014 define cohort 5 and comprise the remaining 9 percent of

observations.24

The event study results suggest that initial water savings may erode over time. To

quantify any erosion in water savings I additionally interact my post-enrollment indicator

with a monthly linear time trend describing the number of months past enrollment. I further

include a quadratic term to explore the rate at which any erosion in savings takes place.

Qit = α[pre-period]it + β1[post-enroll]it

+ β2[post-enroll]itTit + β3[post-enroll]itT
2
it + µim + δtc + εit

(1.3)

1.3.4 Building alternative control samples

Participants voluntarily join the rebate program and may therefore possess systematically

distinct characteristics from non-participants that would bias my water savings estimates.

While I believe Figure 1.5 illustrates strong evidence of parallel trends and my month-of-

sample by cohort fixed-effects further address concerns regarding compositional differences

over time, one may still be concerned that there remains underlying differences between

participating and non-participating parcels that would result in biased estimates. To address

24The year when a parcel enters the panel will approximate the time of construction for most of the parcels
in my sample in cohorts 2 and above. Exceptions include homes previously on groundwater that switch to city
water. Many homes in cohort 1, however, will have been built prior to 1988. Cohort 1 homes should therefore be
interpreted as homes built in or before 1989.
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any remaining concerns, I construct three additional control groups intended to better reflect

underlying characteristics of the sample of participating parcels.25

First, I drop non-participants. By dropping non-participants, I avoid selection problems

since my sample now includes only those who participate in the program. The control

sample becomes those participants yet to convert.26 Second, I build a control sample

from a group of non-participating parcels that applied for the rebate, but did not become

enrolled. I refer to these non-participating parcels as do-not-finishers, or DNF’s. Among

all non-participants, these DNF parcels are arguably the most similar to participants since

they were not only aware of the rebate, but applied for the rebate as well. DNF’s make

an imperfect control, however. Among DNFs, over 70 percent do not finish because their

application expired or they dropped out of the program and the reasons for dropping out

or not following through may be correlated with water use.27

Third, I match participating parcels with non-participating parcels on lot size and

July water consumption 2, 3, 4, and 5 years prior to enrollment into the Cash-for-Grass

rebate program.28 I use the Mahalanobis nearest-neighbor distance metric and match with

replacement. I begin with a balanced panel to ensure that parcels have consumption data 5

25In other words, in constructing additional control samples, I attempt to avoid any remaining selection bias
not accounted for by my main differences-in-differences specification. To address selection bias, researchers
often pursue a matching strategy or seek an appropriate instrument. Matching essentially balances the treatment
and control group along observable dimensions, and therefore assumes that unobservable characteristics of the
treatment group equal unobservable characteristics of the control group (on average), or that any unobservable
characteristics of the treatment group do not affect the selection process and outcome variable. Instrumental
variable strategies require instruments uncorrelated with any unobservables (i.e. exogenous instruments). In
essence, both approaches select a control group that would have been affected by the policy in the same way as
the treated group. Addressing selection, therefore, becomes an exercise in building a valid control.

26Dropping non-participants is not without its problems. As shown and discussed by the ongoing work of
Borusyak and Jaravel (2016), differences-in-differences estimates derived from samples without a control can
underweight long-term impacts, which in my context could lead to over-estimating savings.

27A further 16 percent of DNF’s ineligible. Among those that are ineligible, the most common reason is a
lack of turf. To be approved, applicants must demonstrate that they have been maintaining a lawn. If the grass
is dead, or non-existent, the water authority staff may reject the applicant during the pre-conversion site visit. I
do not consider ineligible DNF’s as part of my control sample.

28For example, I match parcels that convert in 2010 with non-participating parcels on lot size and water
consumption in July of 2005, 2006, 2007 and 2008. For parcels that convert in 1998, I match on July consumption
in 1994, 1995 and 1996. Additionally including July 1993 consumption encountered collinearity issues. Davis
et al. (2014) also matches on pre-conversion (electricity) consumption in their study of an appliance rebate
program in Mexico City.
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years prior to conversion, and extract matches by running the Stata teffects command

on a dummy outcome variable. I do not match on the year immediately prior to conversion

since the event study suggests that water consumption may start to fall as much as a year

before application and subsequent enrollment. Matching on 4 years of pre-enrollment

consumption attempts to capture the downward trend in water use exhibited by Figure 1.5,

and I match on July water consumption since parcels with similar peak consumption tend

to have corresponding water use patterns throughout the other months of the year. Also,

choosing only one month each year keeps the number of matching variables to a minimum.

I build my matched control sample by pooling all non-participating parcel matches, keeping

track of parcels matched more than once and weighting such parcels by the appropriate

frequency in my regressions.

Figure 1.7 and Figure 1.8 compares annual water use of participating and non-participating

parcels for the DNF and matched control samples, respectively. Both the DNF and matched

control sample exhibit more similar average water consumption patterns than the full sam-

ple of non-participating parcels, and generally exhibit parallel trends prior to the beginning

of the program in 1998.

1.3.5 Results

Water savings: main results Table 1.2 shows results from estimating my main model, Eq.

(1.2).29 In all models, I report parcel clustered standard errors in parentheses and suppress

the coefficient estimate on the pre-period indicator. The pre-period indicator does little more

than control for transient water behavior and is unimportant for understanding savings.

Focusing on the first five columns, the negative point estimates of the post-enroll

indicator imply that conversion to desert landscape saves water. Column 1 shows results

from estimating Eq. (1.2) with the full panel described in section 1.3.1. In column 2 and

3, I drop observations of program participants within 12 and 24 months of the month of

29I implement these and all following panel fixed-effect models, as well as my hedonic models discussed in
section 1.4, using reghdfe (Correia, 2016).
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enrollment. These two “donut” specifications attempt to capture the difference between

steady state behavior before and after conversion to desert landscape by avoiding any

transient behavior around the time of conversion not already accounted for by the pre-

period indicator. The consistency between the estimates in columns 1, 2, and 3 indicate that

there remains little biasing transient behavior around the time of conversion after controlling

for the pre-period between application and enrollment dates. In column 4, I estimate Eq.

(1.2) using a balanced sample. Column 4 aims to test for the robustness of water savings

to differences across users not captured by the month-of-sample by cohort fixed-effects.

The similarity between the estimates in column 1 and 4 indicate that any differences across

cohorts do not affect my results, or that my time-cohort fixed-effects adequately control for

any such differences. In Column 5, I limit observations to parcels that only have positive

values of consumption throughout the panel. Excluding parcels experiencing zero water

consumption attempts to control for properties under foreclosure that may have been vacant

for some time. Though less precise, the estimate of savings in column 5 compare favorably

to the savings estimate in column 1.

In columns 6 and 7 of Table 1.2 I test the stability of savings for a given conversion by

estimating Eq. (1.3) with the full sample. Results from these two models demonstrate that

the average conversion experiences about a 5 gallon per month erosion in water savings,

but that this erosion rate decreases over time (row 3, col. 7). The erosion rate is statistically

significant, and possibly makes sense as larger, mature plants will require more water than

younger plants. However, at one tenth of a percent of total savings, the erosion rate hardly

seems practically relevant. I conclude that conversions to desert landscape maintain their

savings over the long term.

Overall, water savings estimates in Table 1.2 display remarkable consistency across

specifications, and demonstrate an average conversion to desert landscape saves about 5,000

gal/month, confirming the results from the event study.30 5,000 gal/month represents

30I also run a set of falsification tests to examine the validity of the parallel trends identifying assumption
behind Eq. (1.2). See footnote 148.
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an approximate 21 percent decrease in baseline water use, and for a customer in 2013,

corresponds to about $150 in annual water bill savings, or a 30 percent reduction. Appendix

A.1 provides details of these calculations. Appendix A.2 includes further water savings

results. In particular, I explore the effects of various fixed-effects specifications, robustness to

parcels that exit before the end of the sample, and the effect of two program policy changes.

Table 1.3: Water savings from converting to desert landscape (results from alternative control samples).

(1) (2) (3) (4)
post-enroll -4.92 -5.22 -4.15 -4.11

(0.06)*** (0.08)*** (0.09)*** (0.14)***
Sample full participants DNF match
Fixed-effects

µim yes yes yes yes
δt - - - yes
δtc yes yes yes -

adj. R2 0.30 0.64 0.33 0.70
Parcels 309,201 26,414 32,368 16,774
Observations 64,120,344 6,579,892 8,022,520 5,568,552
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Parcel clustered standard errors (reported in parentheses).
µim parcel by month-of-calendar year fixed-effects.
δt, δtc month-of-sample and month-of-sample by cohort fixed-effects.
Cohorts based on parcel’s first year in sample: 88-89, 90-94, 95-99, 00-04, 05-14.
participants: includes only rebate program participants.
DNF: uses a control sample of non-participants that apply, but do not finish.
match: uses a control sample of matched non-participating parcels.

Water savings: additional control samples Table 1.3 shows results from estimating Eq.

(1.2) with each of the three alternative control samples discussed above. All estimates

are significant at the 1 percent level, and I cluster standard errors at the parcel level. For

purposes of comparison, column 1 replicates the main specification result with the full

sample. Column 2 includes only participating parcels. Column 3 shows estimates based

on a control sample constructed from DNFs. This sample of DNF’s includes only DNF’s

that do not later become rebate program participants. Finally, column 4 presents results

derived from my matched sample. The estimates derived from the DNF and matched
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control samples fall about 15 percent lower than the estimate from the main specification.

However, each alternative control sample still demonstrates a clear reduction in water use

due to conversion to desert landscape. I therefore conclude that my estimates of savings

remain generally consistent across different control samples.

Heterogeneous effects across time Since the program has been in place for over fifteen

years, one might expect savings to have fluctuated over time. Landscape professionals

may have become more skilled at installing water saving landscapes (a learning-by-doing

argument), and variation in the subsidy level may induce participants with heterogeneous

characteristics that differentially affect program outcomes. To explore the impact of time, I

estimate the following model:

Qit = α[pre-period]it + ∑
k

βk[post-enroll]it × 1 [k] + µim + δtc + εit (1.4)

where the index k represents program enrollment years. The coefficient estimate on the

interaction of the post-enrollment indicator and the enrollment year describes savings

achieved by conversions taking place for that enrollment year. Absolute savings, however,

depend upon the conversion size, and as Figure 1.4 demonstrates, the average conversion

area has changed over time. In order to make appropriate comparisons across years,

therefore, I normalize the estimates of savings by the average converted area in each year.

Figure 1.9 shows the results of this exercise, illustrating savings achieved in each year of the

program normalized by the corresponding annual average conversion area, scaled up to a

per annum basis in order to compare my estimates with water authority estimates.31 The

31Normalized savings equals f (β̂k, Ak) = c β̂k
Ak

, where β̂k represents the estimate of savings in 1000 gal/month
per average conversion in year k derived from Eq. (1.4), Ak represents average converted area in year k, and
c = −12, 000, which converts a negative change in water use in kgal/month to a positive savings in gal/year.
Because I have the universe of conversion records within the LVVWD, I consider Ak a fixed parameter

and calculate standard errors as: Var
[

c
Ak

β̂k

]
= c2

A2
k
Var

[
β̂k
]
= c2

A2
k
σ̂2

βk
=⇒ ŝek =

√
c2

A2
k
σ̂2

βk
= c

Ak
σ̂βk

. If

instead, I consider Ak a random variable I would apply the Delta method to estimate standard errors for

f (β̂k, Âk) = c β̂k

Âk
. In particular, if

√
n(θ̂− θ0)

d−→ N (0, V), then
√

n( f (θ̂)− f (θ0))
d−→ N (0, AVA′). Dropping hats,

k subscripts, and c for clarity, in my context, f (·) = β
A , θ = (β A)′, V =

(
σ2

β σβA

σβA σ2
A

)
, and A =

(
δ f
δβ

δ f
δA

)
.
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Figure 1.9: Average water savings achieved by participants in each year of the program (derived from Eq.
(1.4)) and normalized by the corresponding average annual conversion area (see Figure 1.4). 95 percent
confidence intervals are derived considering average converted area a fixed parameter. Horizontal gray dotted
lines show the water authority’s two point estimates of normalized savings: 55.8 and 54.7 gal/ft2/year. The
horizontal solid line represents my estimate of 5,000 gal/month normalized by the overall average converted
area, 1,348 ft2, and then scaled up to gal/ft2/year.

figure demonstrates a distinct ‘U’-shaped pattern, achieving an initial peak of 60 gal/ft2/year

in 2001, early in the program. Savings then fall quickly to a low of 39 gal/ft2/year in 2005.

Since 2008, however, normalized savings have a exhibited steady upward trend.32

The ‘U’-shaped pattern observed in Figure 1.9 does not appear consistent with a learning-

by-doing story among landscape professionals because savings achieved a peak value early

AVA′ =
(

1
A

−β
A2

)( σ2
β σβA

σβA σ2
A

)(
1
A
−β
A2

)
, implying that AVA′ = 1

A

(
σ2

β

A −
βσβA

A2

)
− β

A2

(
σβA
A −

βσ2
A

A2

)
= 1

A2 σ2
β +

β2

A4 σ2
A − 2 β

A3 σβA and ŝealt =

√
1

A2 σ2
β +

β2

A4 σ2
A − 2 β

A3 σβA. Note that ŝealt reduces to the expression for ŝek for fixed

Ak, since then σA = σβA = 0. How ŝek compares to ŝealt depends upon the relative size of σβA and σ2
A. For

example, σβA � σ2
A implies that my simple estimate of the standard error, considering Ak fixed, may be larger

than ŝealt. A similar argument holds for Figure 1.10.

32Though not shown, I observe similar behavior for the participant only, DNF, and matched control samples.
Appendix A.2 provides further discussion.
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in the program, implying that landscape professionals already knew how to design and

implement efficient conversions.33 Rather, the ‘U’-shaped pattern seems most consistent

with heterogeneous participants effecting program outcomes over time. Middle period

participants received the largest subsidies. In order to participate, therefore, early and late

period participants may have derived some (or more) non-monetary benefits not experienced

by middle period participants. Such non-monetary benefits could be correlated with greater

awareness regarding water scarcity or a stronger desire to conserve, both of which could

explain more efficient conversions. This discussion also highlights a trade-off between

increasing participation, and increasing program efficiency. Participation was high in the

mid to late 2000’s (Figure 1.3), but this period also corresponds to the lowest per unit savings,

implying the lowest “bang for the buck”.

Figure 1.9 also presents a comparison between my estimates and two estimates derived by

the water authority (Sovocool et al., 2006). Beginning in 1995, the water authority conducted

a pilot study that recruited participants and measured irrigation specific application rates.

Sovocool et al. conclude that conversion to desert landscape saves 55.8 gal/ft2/year. In

a follow-up analysis, Sovocool et al. re-estimate savings, finding that desert landscape

saves 54.7 gal/ft2/year. The re-estimate draws from participants converting in 2003 and

not recruited for the pilot program. I illustrate these two estimates in Figure 1.9 with

horizontal dashed lines. The horizontal solid line represents my estimate of 5,000 gal/month

normalized by the overall average conversion area (1,348 ft2) and scaled to gal/ft2/year.

While the Sovocool et al. estimates lie well above my overall average estimate, their estimates

fall within the confidence intervals for my annual estimates in 2001 and 2002. Therefore,

water authority estimates may not be overstated, at least for early program participants.34

33Or highly skilled do-it-yourselfers performed the early conversions, and landscape professionals did not
expand their services to include conversions until the early to middle 2000’s, after which they improved their
ability to install efficient desert landscape.

34Arguing for the importance of including confidence bounds on estimates derived from statistical methods,
Auffhammer et al. (2008) make a similar finding in the context of energy demand-side-management programs.
That is, utility based estimates may not be misstated once researchers calculate bounds on their analyses
(Auffhammer et al., 2008).
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These results stand in contrast to a general finding in the demand-side-management program

evaluation literature that utility based estimates often overstate savings (Joskow and Marron,

1992; Loughran and Kulick, 2004; Allcott and Greenstone, 2012). But my results also

demonstrate the importance of continued program assessment; as Figure 1.9 illustrates,

savings may fluctuate throughout the life of the program.

Heterogeneous effects across pre-treatment consumption I also estimate a form of Eq.

(1.4) for savings achieved by participants within pre-enrollment consumption deciles. I

derive pre-enrollment consumption deciles from a 12-month average of water use beginning

24 months prior to the month of enrollment. I normalize water use, Qit, by lot size, and

define pre-enrollment consumption based on this normalized water use. Since I define

lot size in 1000 ft2, my outcome variable becomes monthly water use in gal/ft2 of lot size.

Compared to high demand-small lot consumers, similarly high demand-large lot consumers

use water more efficiently, and therefore may not achieve the savings realized by their

high demand-small lot counterparts from an equally sized conversion to desert landscape.

Normalizing water use by lot size distinguishes the high demand-small lot consumers from

the high-demand large lot consumers and avoids potentially downward biasing estimates of

savings achieved by higher pre-enrollment consumption deciles.

Figure 1.10 illustrates that high-demand consumers, relative to lot size, achieve the

greatest savings.35 I find this result robust to a series of pre-enrollment consumption

decile definitions and to the different control samples discussed above.36 To the extent

that consumers in the high pre-enrollment consumption deciles over-water relative to their

35Investigating the Cash-for-Grass pilot study conducted in the late 1990’s, Deoreo et al. (2000) make a similar
finding, and in the context of the OPOWER experiment, Allcott (2011) also uncovers a positive relationship
between savings and pre-treatment consumption.

36I additionally derive pre-enrollment consumption deciles based on a 24, 36, and 48-month average and find
a similar relationship between normalized water use and pre-enrollment deciles. I also run models that consider
non-normalized water use, deriving pre-enrollment consumption deciles from a 12, 24, 36, and 48-month average.
Similar to my procedure for deriving Figure 1.9, I then normalize my resulting savings estimates by the average
conversion area within each pre-enrollment consumption decile. I again find a positive relationship between
savings and pre-enrollment consumption decile. Finally, I perform the above analyses with my participant only,
DNF, and matched samples. For each sample and normalization method, savings continue to be positively
related to pre-enrollment consumption decile. I provide further discussion in Appendix A.2.
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Figure 1.10: Average water savings per square foot of lot size achieved within each pre-enrollment water
consumption decile. Point estimates and 95 percent confidence intervals are derived from a model based on
Eq. (1.4) with the dependent variable, Qit, normalized by 1000 ft2 of lot size. Pre-enrollment consumption
deciles are defined based on a 12-month average of water use for participating parcels (normalized by lot size)
beginning 24 months prior to the month of enrollment.

low decile counterparts, high decile users will save more water than low decile users with

the same conversion to desert landscape. The positive relationship between savings and

pre-enrollment consumption decile therefore suggests that consumers in the higher deciles

use water inefficiently relative to their low decile counterparts. This further implies that

the highest savings from a program like Cash-for-Grass arise from the least efficient water

using customers.37

1.3.6 Rebates versus prices

If instead of implementing the Cash-for-Grass program the water authority had raised

prices, what price increase would have induced the same aggregate savings? To answer this

37I am indebted to Peter Mayer for a clarifying discussion regarding the explanation for the relationship
between savings and pre-enrollment consumption decile.
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question, I begin with a partial equilibrium (i.e. supply-demand) framework, shown in Eq.

(1.5).

%∆P =
%∆Q

ε
≈ ∆Q

εQ
(1.5)

Since the first conversions in my panel begin in 1998 I take the baseline quantity of

water, Q, to be the average water use among all single-family residential customers in

1997, or 19,047 gallons/month. In 1997, 12 percent of the service population were future

Cash-for-Grass program participants. But since all customers experience a price increase,

to reduce consumption by the same aggregate amount as eventually achieved by the share

of the service population that would participate, ∆Q = 5, 000× 0.12 = 600, the product

of the share of the service population that became program participants and the savings

these program participants achieved.38 In their respective meta-analyses of residential water

demand price elasticities, Espey et al. (1997) find a mean elasticity of -0.51 and Dalhuisen

et al. (2003) find a mean elasticity of -0.41. Long-term elasticities are generally higher, and

since this analysis asks how consumers in 1997 would have responded over a nearly 20-year

period, I take the elasticity to be -0.5.39 Based these values, Eq. (1.5) predicts that a 6 percent

price increase would have achieved equivalent aggregate savings.

This hypothetical percentage price increase is relatively modest. Since 1958, customers

of the LVVWD have experienced actual average price increases between 5.6 percent in 2011

and 26.8 percent in 2003.40 Since all customers experience and respond to a price increase,

large aggregate savings require comparatively small individual cutbacks. This fact drives

the modest hypothetical price increase estimated by Eq. (1.5). As the share of the service

population that participates in the rebate program increases (and continues to achieve the

same average savings), so does the price increase required to induce the same aggregate

38Consider a service population of N and define aggregate monthly savings as Nσ, where σ is the per-parcel
monthly savings. The aggregate savings of 12 percent of this service population saving 5,000 gallons per month
is 0.12× N × 5, 000. Equating the two implies: Nσ = 0.12× N × 5, 000 =⇒ σ = 0.12× 5000 = 600.

39It would be preferable to derive an estimate of elasticity using Las Vegas specific data. While my data
include historical water rates and consumption, I do not have individual income data. For this reason, I select
elasticity estimates from the literature.

40pers. comm. SNWA staff, July 2014.
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savings. If the entire service population participates in the program, Eq. (1.5) predicts that a

53 percent price increase is needed to realize the savings achieved by the rebate.

The price increase analysis assumes homogeneous customers. But lower income house-

holds with little to no landscape may not be able to achieve much if any savings regardless

of the price increase. Eliminating these households from the analysis above would increase

∆Q since it would decrease the effective service population saving water due to the price

hike. Demand elasticity would also decrease, since wealthier customers tend to have lower

water demand elasticities than poorer customers (Mansur and Olmstead, 2012). Both factors

would drive up the estimate of the hypothetical price increase.

Price increases may also cause regressive outcomes. If both wealthy customers and

poorer customers experience the same price increase, the ratio of wealthy customer demand

elasticity to poorer customer demand elasticity roughly approximates the ratio of the change

in Marshallian surplus of poorer to wealthier customers.41 Taking at face value the point

estimates of wealthy and poor residential water demand elasticities derived by Mansur and

Olmstead implies that the reduction in surplus for poorer customers could be as much as

67 percent greater than the reduction in surplus for wealthier customers. So despite the

fact that modest price increases could achieve large aggregate savings, heterogeneity in

customer characteristics may increase the estimated price hike and create large differential,

and arguably inequitable, welfare effects across customer types.

41In a standard partial equilibrium framework that assumes linear demand, the reduction in Marshallian
surplus from reducing water consumption given a change in price is approximated by 1/2× (Q/P)∆P2e−1,
where ∆P is the change in the price of water, P and Q are initial prices and quantities of water consumed,
respectively, and e is the demand elasticity. If wealthy and poorer customers experience similar unit prices of
water, i.e. Pw/Qw ≈ Pp/Qp, where w refers to wealthy and p refers to poor, then the ratio of the two changes in
Marshallian surplus is given by ew/ep. Under block pricing, it may be that Pw/Qw > Pp/Qp since wealthier
customers tend to use more water than poorer customers, and this increased usage is priced at a higher marginal

rate. If Pw/Qw > Pp/Qp, the ratio of Marshallian surplus is (ew/ep)×
Qp/Pp
Qw/Pw

> ew/ep. The estimate of ew/ep

could therefore be thought of as a lower bound on the differential welfare effect.
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1.4 Value of desert landscape

1.4.1 Motivation

Desert landscape can affect participants’ utility outside water bill savings. Those choos-

ing to convert may find desert landscapes aesthetically pleasing (Walls et al., 2015) or value

signaling a commitment to environmental stewardship (Mustafa et al., 2010). Desert land-

scapes also tend to require less maintenance than lawns.42 However, replacing grass with

drought tolerant flora may lead to increased energy costs. Because of the higher evapotran-

spiration rates43 of lawns versus desert landscapes, conversion to desert landscape could

increase local air temperatures (Bonan, 2000), leading converting properties to demand

more air-conditioning. Importantly, neighbors of desert landscaped properties may also

experience these negative energy spillovers and derive aesthetic utility from neighboring

desert landscapes. Therefore, simply calculating the value of saved water will not neces-

sarily capture the full value of desert landscape to participants and will fail to reflect any

externalities that conversions impose upon neighbors.

Formalized by Rosen (1974), the hedonic property method provides a theoretically

consistent method for estimating the private benefits of converting to desert landscape.

Modeling property values as a function of the property’s individual characteristics, Rosen

showed that the effect of an individual characteristic on property values represents the

benefit a consumer receives from the characteristic. Since Rosen, hedonics has become a

widely used strategy for valuing non-market goods, especially environmental characteristics

of properties (Davis, 2004; Greenstone and Gallagher, 2008; Muehlenbachs et al., 2015).

Hedonic estimates, however, will fail to capture benefits not communicated through housing

prices, such as benefits from reduced water-transport costs44 and the ability to reallocate

42Cash-for-Grass program staff noted that reduced lawn maintenance appears to be a primary driver for
individuals who apply for the rebate (pers. comm. K. Sovocool, February 2015).

43A process of simultaneous evaporation and plant transpiration.

44Water requires substantial energy to deliver, and reducing water use decreases greenhouse gas emissions
and other pollutants through lower energy production. Reduced energy consumption also implies lower energy
bills for the utility, freeing up funds for alternative uses.
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scarce water to alternative or future uses. My hedonic estimates, therefore, may understate

the true effect of conversion.

In the following analysis, I estimate the private, direct and spillover effects generated by

conversions to desert landscape subsidized by the Cash-for-Grass program.45 To estimate the

direct effect of conversion, I make use of the variation in conversion status across properties.

To estimate the spillover effect, I make use of the variation in a property’s adjacency to a

conversion. In other words, I characterize properties by their conversion status and whether

they lie adjacent to properties that convert. I focus on single-family participants as they

account for over 90 percent of all conversions, have received the largest share of rebate

monies (41 percent) and are responsible for the largest share of area converted (36 percent).46

To maintain consistency with the water savings analysis, I limit my analysis to the LVVWD

service area.

1.4.2 Data

I construct a panel of residential sales occurring within the LVVWD from historical

Las Vegas area sales data provided by the Clark County Assessor’s Office. I include sale

price and date, home age, parcel, home, garage, and pool square footage, and finally the

number bedrooms and bathrooms (full and half bathrooms). I convert all sale prices to $2014

using the CPI housing index, and drop observations outside of the first and ninety-ninth

percentiles of the sale price distribution. I restrict my observations from January 1, 1996

to June 12, 2014, the latest program enrollment date.47 I keep arms-length, single-family

45I am not the first to estimate the impact of desert landscape on property values. Both Baker (2004) and
Rollins (2008) find that desert landscape increases Las Vegas home values. In particular, using a hedonic
framework with neighborhood characteristics defined at the zip code level, Rollins finds that desert landscape
increases home values by about 7 percent. Using a larger data set which includes more recent home sales as well
as a highly spatial and temporally refined set of fixed-effects (quarter of sample by census block fixed-effects), I
find smaller effects on home values due to desert landscape.

46Multi-family participants have received 29 percent of total rebate monies and have converted 31.5 percent
of the total converted area; golf courses received 20 percent of total rebate monies and converted 21.5 percent of
the total converted area, and commercial and industrial participants have received 10 percent of total rebate
monies and converted the remaining 11 percent of total converted area.

47The rebate pilot program begins in 1996, and the first enrollment occurred on May 6, 1996.
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transactions, and further drop all parcels with a negative age, a parcel area of zero, or a

home size of zero. Finally, I associate parcels with 2010 U.S. Census block areas using GIS

software. On average, approximately 29 properties fall within each block.

Including properties that undergo unobserved structural changes may bias my analysis.

Since the assessor data do not record changes in property characteristics, I develop three

criteria for assessing whether a property may have undergone a structural change. The

assessor data include the square footage of any additions made to a parcel, which often

occurs if the property owner converts a garage to living space.48 I drop parcels with positive

addition area. The assessor data also provide the year of home construction, as well as

the effective year of home construction. For most homes, these years are equivalent. If

the construction year does not equal the effective construction year, I conclude the parcel

likely underwent an addition, and drop such parcels. I drop remaining parcels that have

a detached garage if the year built or effective year built of the detached garage does not

equal the home construction year.

I merge the resulting panel of sales with the enrollment panel described in section 1.3

and a “neighbors” dataset that I construct using GIS software. I consider all single-family

participating parcels, some of which undertook more than one conversion.49 Illustrated

in Figure 1.11, I define neighbors as parcels that lie directly adjacent to any single-family

participating parcel. Importantly, neighbors may themselves be participating parcels. The

neighbors dataset contains enrollment dates and converted areas of conversions adjacent to

the parcel.50

Six variables characterize conversion to desert landscape. Pit takes one if parcel i has

converted by the sale date, t. Nit takes one if parcel i lies adjacent to a conversion by the sale

date, t. DPi and DNi describe parcel i’s status as an eventual program participant (i.e. the

48pers. comm. E. Martinet, May 2016.

49A small number of enrollments that the water authority considered non-single-family match with the
single-family assessor data. I drop these observations. In general, though, the water authority’s classification of
single-family agrees closely with that of the assessor’s office.

50Some neighboring enrollments occurred on the same date. For these cases, I include the total rebate and
converted area for that particular enrollment date.
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Figure 1.11: Illustration of neighboring parcels. Dark shaded parcels eventually participate in the Cash-for-
Grass program. Lightly shaded parcels neighbor participating parcels. Empty parcels are neither participating
parcels nor neighbors, and thus make up my control sample. Note that neighboring participating parcels are
neighbors of the other, participating parcel.

parcel converts at some point in the panel) or eventual neighbor of a program participant,

respectively.51 Pait and Nait describe the total converted area and total adjacent converted

area for parcel i at sale date t.52 If a parcel neighbors multiple participating parcels prior to

the sale date, the total converted area from all adjacent participating parcels define Nait.

51In the language of differences-in-differences, Pit and Nit describe an interaction between the treatment
indicator DPi or DNi, and a post-treatment period indicator.

52For example, consider a parcel that sells three times and undergoes two conversions of 500 square feet
between the first and second sale, and another conversion of 500 square feet prior to the third sale, and lies
adjacent to a property that converts 500 square feet between the second and third sale. In this illustrative example,
DPi = DNi = 1 for each sale observation. In addition, for the first sale observation, Pit = Nit = Pait = Nait = 0.
For the second sale observation, Pit = 1 and Pait = 1000, and Nit = Nait = 0. Finally, for the third sale
observation, Pit = Nit = 1, Pait = 1500, and Nait = 500.
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Table 1.4: Summary statistics for hedonic panel: sale years 1996 - 2014

(a) All sales Participant Neighbor

Full P = 0 P = 1 p-val N = 0 N = 1 p-val

sale price 309,077 309,823 268,839 0.00 311,356 274,165 0.00

age 6.3 6.1 17.3 0.00 5.6 16.6 0.00

lot sqft 5,755 5,725 7,361 0.00 5,662 7,181 0.00

home sqft 2,042 2,042 2,017 0.04 2,042 2,035 0.32

bedrooms 3.39 3.39 3.43 0.00 3.39 3.45 0.00

full bath 2.26 2.26 2.26 0.65 2.26 2.27 0.20

half bath 0.53 0.53 0.36 0.00 0.54 0.37 0.00

pool 0.19 0.19 0.33 0.00 0.19 0.32 0.00

garage sqft 465 464 505 0.00 463 498 0.00

Observations 199,037 195,410 3,627 186,840 12,197

(b) Repeat sales Participant Neighbor

Full P = 0 P = 1 p-val N = 0 N = 1 p-val

sale price 295,867 297,054 239,803 0.00 299,783 241,908 0.00

age 5.9 5.7 15.1 0.00 5.3 14.5 0.00

lot sqft 5,072 5,037 6,743 0.00 4,970 6,484 0.00

home sqft 2,047 2,047 2,055 0.75 2,047 2,057 0.44

bedrooms 3.36 3.36 3.46 0.00 3.35 3.45 0.00

full bath 2.26 2.25 2.30 0.02 2.25 2.27 0.06

half bath 0.63 0.63 0.42 0.00 0.64 0.44 0.00

pool 0.16 0.16 0.33 0.00 0.16 0.29 0.00

garage sqft 452 450 500 0.00 449 487 0.00

Observations 40,755 39,910 845 37,998 2,757

Summary statistics in panel (a) reflect the sample used in estimating Eq. (1.6). Panel (b) reflect summary
statistics from estimating Eq. (1.6), additionally including parcel fixed-effects (and dropping time-invariant
property specific controls). Prices adjusted to 2014 dollars and further restricted to the 1st and 99th percentiles
of the sale price distribution. I further drop parcels meeting criteria for undertaking additions.
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Table 1.4 displays summary statistics for the resulting panel described above, comparing

average home characteristics across non-participants and participants (P = 0 vs. P = 1) and

non-neighbors and neighbors (N = 0 vs. N = 1). Panel (a) shows results from estimating

Eq. (1.6). Panel (b) shows results from estimating a model with repeat sales (i.e. including

parcel fixed-effects in Eq. (1.6)). The repeat sales model contains fewer observations because

not every home observed in the assessor data sells multiple times.

Compared to non-participants or non-neighbors, panel (a) and panel (b) demonstrate that

participating homes and homes neighboring participants are lower priced, older, sit on larger

lots, have larger garages, and more likely have a pool. In both panels, the average magnitude

of the remaining home characteristics excepting half bathrooms compare similarly across

participants and non-participants, and across neighbors and non-neighbors. Despite the

large difference in means for the age and lot size variables, I show in Appendix A.3 that the

distributions of age and lot size overlap for participants and non-participants and neighbors

and non-neighbors.

Table 1.5 displays summary statistics after restricting sales to pre-2007.53 Similar to Table

1.4, Table 1.5 shows that participating and neighboring homes selling before 2007 are older,

sit on larger lots, have larger garages, and more likely include a pool, compared to their

non-participating or non-neighboring counterparts. But unlike in Table 1.4, participating

and neighboring homes sell for higher average prices, suggesting that the housing crash may

have disproportionately affected areas concentrated with rebate program participants. The

average magnitude of the remaining home characteristics excepting half bathrooms compare

similarly across participants and non-participants, and across neighbors and non-neighbors.

Table 1.4 and Table 1.5 suggest that participants in the Cash-for-Grass rebate program

and their immediate neighbors reside in older sections of Las Vegas. Older areas of Las

Vegas may be correlated with unobserved characteristics that influence the value of desert

landscape. Below I propose an empirical strategy with a rich set of spatial and temporal

53I exclude summary statistics for a pre-2007 repeat sales model since so few observations exist. Under
repeat sales, NP=1 = 15 and NN=1 = 87.
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Table 1.5: Summary statistics for hedonic panel: sale years 1996 - 2006.

All sales Participant Neighbor

Full P = 0 P = 1 p-val N = 0 N = 1 p-val

sale price 344,873 344,449 399,708 0.00 343,415 393,853 0.00

age 5.3 5.2 13.8 0.00 5.0 13.9 0.00

lot sqft 5,959 5,949 7,219 0.00 5,920 7,275 0.00

home sqft 2,024 2,025 1,910 0.00 2,027 1,939 0.00

bedrooms 3.40 3.40 3.37 0.22 3.40 3.41 0.86

full bath 2.26 2.26 2.20 0.00 2.26 2.21 0.00

half bath 0.48 0.48 0.34 0.00 0.49 0.34 0.00

pool 0.21 0.21 0.30 0.00 0.21 0.31 0.00

garage sqft 467 467 491 0.00 466 487 0.00

Observations 124,742 123,785 957 121,136 3,606

Summary statistics reflect the sample used in estimating Eq. (1.6). Insufficient observations preclude estimating
a model with parcel fixed-effects. Prices adjusted to 2014 dollars and further restricted to the 1st and 99th

percentiles of the sale price distribution. I further drop parcels meeting criteria for undertaking additions.

fixed-effects to address concerns over unobserved characteristics.

1.4.3 Empirical strategy

I estimate the direct and spillover effect of conversion to desert landscape with the

panel fixed-effects model shown in Eq. (1.6). I regress the natural log of sale price in $2014

for parcel i on sale date t on the indicators characterizing conversion to desert landscape

described above, home characteristics, Zi and census block-by-quarter fixed-effects, biq. For

each property, the vector Zi includes parcel, home, pool, and garage square footage, home

age, and the number of bedrooms, full bathrooms, and half bathrooms.

ln pit = α1DPi + β1Pit + α2DNi + β2Nit + δZi + biq + εit (1.6)
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The intuition behind Eq. (1.6) is differences-in-differences.54 β1 describes the approxi-

mate55 average percentage change in the value of a parcel that converts to desert landscape.

β2 describes the approximate average percentage change in the value of a home that lies

directly adjacent to a property that converts to desert landscape. β2 therefore describes the

spillover effect, or externality associated with neighboring conversions.

Census block-by-quarter fixed-effects control for average differences across 2010 U.S.

Census block boundaries in each quarter of the sample. I am able to group parcels within

6,819 blocks, with the average block in each sample containing about 29 parcels. By

controlling for neighborhood effects at such a refined geographic level, I endeavor to

minimize concerns that unobserved neighborhood fixed-effects will bias results.

Larger conversions may have stronger impacts than smaller conversions. To explore this

possibility, I interact the variables describing area converted or area adjacent at the time of

sale (Pait and Nait) with Pit and Nit, as shown in Eq. (1.7). θ1 and θ2 describe the percentage

change in the value of a home from an additional square foot of desert landscape, or an

additional adjacent square foot of desert landscape.

ln pit = α1DPi + β1Pit + θ1(Pit × Pait)

+ α2DNi + β2Nit + θ2(Nit × Nait) + δZi + biq + εit

(1.7)

1.4.4 Results

In the results below, I show that Cash-for-Grass subsidized conversion to desert landscape

increases property values by about 1 percent with little evidence for any spillovers. In

appendix A.3, I explore the potential effect of two policy changes on the value of desert

54In their investigations into the impact of crime on property values, Linden and Rockoff (2008) and Pope
(2008) employ a differences-in-differences strategy that considers “treatment” properties to be within a 0.1
mile radius of a residence of a sex offender, and “control” properties to be between 0.1 and 0.3 miles of a sex
offender. In principle, my exploration of the spillover effect of desert landscape mirrors this strategy, but instead
of defining treatment and control based on distance, I define treatment and control based on adjacency. My
modeling of the direct and spillover effects of desert landscape is in part inspired by the model of health and
education externalities proposed by Miguel and Kremer (2004).

55In semi-log models with explanatory indicators variables, Halvorsen and Palmquist (1980) show that
the coefficients on these indicators do not directly describe percentage effects. However, for small coefficient
estimates, the bias is minimal.
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landscape, investigate heterogeneous effects over time, and demonstrate robustness of my

results to additional specifications.

Main results Table 1.6 shows estimates of the direct and spillover effects of conversion

to desert landscape. In all models, the coefficient estimates on the control variables effect

housing prices in expected ways56 and I cluster standard errors at the block level. Column

1, my preferred specification, shows results from estimating Eq. (1.6) with the full range of

sale years, 1996 to 2014. Column 2 runs a similar model, but for sales restricted from 1996

to 2006. Restricting sales to pre-housing crisis dates tests the robustness of my column 1

estimates to any additional mortgage spillovers associated with the housing market crash

not absorbed by the quarter-block fixed-effects. In column 3, I further address concerns

regarding potential unobserved neighborhood and household characteristics by estimating

a model that additionally includes parcel fixed-effects (i.e. a repeat-sales model). Across

each specification, Table 1.6 demonstrates similarly positive estimates of the direct effect,

suggesting my results are robust to concerns over unobserved neighborhood effects and

housing crisis impacts.

Cash-for-Grass program requirements preclude conversions to barren landscapes. Fur-

thermore, property owners in Las Vegas often leave potentially landscaped areas uncul-

tivated, or covered in rock. Preference for desert landscape over barren landscape could

partially explain my positive coefficient estimates for the direct effect. In columns 4 and 5, I

test whether barren landscapes drive results by re-estimating the models in columns 1 and

2 with a subset of non-participants and non-neighbors that applied for the rebate program,

were approved for the rebate, but never became enrolled. Since the water authority only

approves applicants that have been maintaining a lawn prior to application, estimating

my hedonic model with the control group of non-enrolled applicants creates a more direct

comparison between desert landscape and turf landscape. The estimate of the direct effect

56The two exceptions involve the negative coefficient on full bathrooms in columns 1, 2, and 4, and the
negative coefficient on half bathrooms in column 1. Toilets make up the largest share of indoor water use
(Bennear et al., 2013), and the negative coefficient on bathrooms may reflect consumers’ recognition of higher
water bills associated with an increased number of water-intensive fixtures.
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Table 1.6: Regression results for the effect of conversion to desert landscape on home property values.

(1) (2) (3) (4) (5)
DP (ever converts) 0.0048 0.0040 0.0027

(0.0013)*** (0.0013)*** (0.0019)

Direct effect 0.012 0.018 0.021 0.015 0.014
(0.0034)*** (0.0040)*** (0.012)* (0.0044)*** (0.025)

DN (neighbors DP) 0.0016 0.0019 0.0012
(0.0010) (0.0010)* (0.0022)

Spillover effect -0.0018 0.00040 -0.011 -0.0018 -0.0040
(0.0022) (0.0026) (0.0072) (0.0031) (0.026)

age (years) -0.0090 -0.0042 -0.0069
(0.00070)*** (0.00055)*** (0.00093)***

parcel sqft 1.7e-05 1.5e-05 1.4e-05
(7.6e-07)*** (6.9e-07)*** (8.3e-07)***

house sqft 2.5e-04 2.3e-04 2.5e-04
(4.0e-06)*** (3.7e-06)*** (4.8e-06)***

bedrooms 0.0041 0.0054 -0.00072
(0.0016)** (0.0015)*** (0.0020)

full bath -0.018 -0.0091 -0.020
(0.0028)*** (0.0026)*** (0.0050)***

half bath -0.0064 0.0043 0.0037
(0.0027)** (0.0024)* (0.0036)

pool sqft 1.1e-04 9.1e-05 1.2e-04
(3.2e-06)*** (3.1e-06)*** (5.0e-06)***

garage sqft 2.0e-04 1.9e-04 1.6e-04
(1.3e-05)*** (1.5e-05)*** (1.5e-05)***

Control group All All All DNF DNF
Sale years 1996-2014 1996-2006 1996-2014 1996-2014 1996-2014
Fixed-effects

quarter-block yes yes yes yes yes
parcel - - yes - yes

adj. R2 0.95 0.95 0.93 0.94 0.73
Observations 199,037 124,742 40,755 36,608 2,639
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. 2014 adjusted sale prices trimmed at the 1st and 99th percentiles.
Fixed-effects: 2010 U.S. Census Blocks (blocks) by quarter of sample (e.g. 1st quarter of 1997 is quarter 5).
Sample excludes parcels undertaking additions (see section 1.4.2). Block clustered standard errors.
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in column 4, however, compares quite favorably to the estimates in columns 1 through

3. And while the estimate of the direct effect in column 5 is not statistically significant

due to the reduced sample size, the magnitude of the point estimate falls within the range

of the estimates in columns 1 through 3. These two results provide evidence that barren

landscapes do not drive the positive, direct effect of desert landscape on property values.57

In absolute terms, my results in column 1 imply that conversion to desert landscape increase

the value of a home by $3,700, with 95 percent confidence bounds approximately between

$1,600 and $5,700.58

Turning to the spillover effect, results in Table 1.6 show statistically insignificant and

fairly precisely estimated zero effects across specifications. Klaiber et al. (2015) find positive

spillovers associated with lawns in Phoenix and that consumers value cooler temperatures.

One might therefore expect negative spillovers from converting grass to desert landscape,

which may increase ambient temperatures around a property. My finding of no spillovers of

desert landscape imply that conversion to desert landscape has no effect on micro-climates

in Las Vegas, or that a combination of positive aesthetic or other positive spillover effects

and negative micro-climates counterbalance each other. I am currently working towards

securing electricity demand data to test for an effect of conversion to desert landscape on

electricity consumption.

57Importantly, I assume that non-enrolled applicants continued to maintain a lawn. But non-enrolled
applicants may have converted to desert landscape and not taken the rebate. This seems unlikely to have
taken place on a large scale. First, if approved, applicants would have little incentive to decline the rebate
unless the terms of the rebate were sufficiently burdensome to them. My discussions with water authority staff
suggest that only a very few individuals do not follow through on account of program requirements. Second, if
non-enrolled applications were converting on a large scale, one would not expect positive point estimates on the
direct effect, since there would be little difference between treated observations and control observations. To
develop a more precise sense of the relationship between subsidized conversions and total conversions, the
water authority provided me with a summary of aerial footage analysis done in 2006, 2008 and 2010. Between
2006 and 2008, the total converted areas are about 50 percent of the change in turf determined by aerial footage.
But between 2008 and 2010, aerial footage detected only about 25 percent of the total converted area subsidized
by the Cash-for-Grass program (Brand, J. ASPRS Annual Conference, May 3, 2011 - slide deck). The accuracy of
aerial footage may therefore make it challenging to directly assess the assumption I make that only those that
enroll in the program undertake a conversion to desert landscape.

58Absolute increases represent the product of the average home sale and percentage effect corrected for the
fact that in log-linear models, estimates on indicator variables do not have a direct interpretation as percentage

effects (Halvorsen and Palmquist, 1980). $309, 077×
(

eβ − 1
)
≈ $3, 700.
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Effect of an additional square foot of desert landscape I present results of estimating

the direct and spillover effects of an additional square foot of desert landscape in Table 1.7.

The point estimates for the additional direct and spillover impact of an extra square foot of

desert landscape (rows 3 and 6 of Table 1.7, respectively) are statistically indistinguishable

from zero at the 5 percent level, implying that the presence, rather than the size, of the

conversion primarily drives the effect of conversion to desert landscape. Furthermore, the

estimates for the direct and spillover effects (rows 2 and 5 respectively), generally agree

with those of Table 1.6, reinforcing the conclusion that the direct effect of desert landscape

raises the value of a home by small a percentage.59 And while not shown, the coefficient

estimates on each covariate effect housing prices in expected ways.60

Relationship between water savings and capitalization In principle, hedonic estimates

will capture all private benefits associated with conversion to desert landscape. Two

obvious benefits include water bill savings and reduce lawn maintenance costs. Saving 5,000

gal/month yields $150 in annual savings, and I estimate reduced lawn maintenance to be

$79 per year.61 The present discounted value of an infinite stream of these savings with a 5

percent discount rate equals $4,800. This value falls within the confidence interval of the

increase in value from converting to desert landscape derived by the hedonic model above.

For the present discounted value of water bill and maintenance savings to equal $3,700, the

consumers would need to be applying a 7 percent, which seems reasonable. These results

suggest that prices of desert landscaped homes reflect monetary savings, but little to no

59I do estimate positive, though very small, spillover effects in column 2, significant at the 10 percent level,
and negative area effects in columns 1 and 2, also significant at the 10 percent level. While these results provide
some evidence for a positive spillover effect that decreases in the size of the conversion, the weight of the
evidence I present seems to point towards the conclusion of zero spillover effects.

60The two exceptions involve negative coefficient estimates on full and half bathrooms in columns 1 and 2.
As explained above, this could arise from consumers’ recognition that more water-intensive fixtures, like toilets,
may lead to higher water bills.

61A quick internet search for average lawn care costs in the Las Vegas area revealed that mowing and
maintenance required $37.52 per visit per quarter acre and a fertilization visit per quarter acre cost $61.57. I
normalize these values to costs per square feet, and multiply by the average conversion size, 1,348 ft2. I further
assume 3 fertilization applications (based on a posting about lawn care) and 12 mowing visits. The total annual
cost comes out to $78.60.
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Table 1.7: Regression results for the effect (in percentage terms) of an extra square-foot of conversion to desert
landscape on home property values conditional on the presence of desert landscape.

(1) (2) (3)
DP (ever converts) 0.0049 0.0040

(0.0013)*** (0.0013)***

Direct effect 0.016 0.029 0.018
(0.0053)*** (0.0074)*** (0.015)

Direct×area effect -4.3e-06 -8.3e-06 5.2e-06
(4.1e-06) (5.3e-06) (1.7e-05)

DN (neighbors DP) 0.0015 0.0018
(0.0010) (0.0010)*

Spillover effect 0.0030 0.0071 -0.015
(0.0031) (0.0039)* (0.0093)

Spillover×area effect -3.7e-06 -4.8e-06 5.6e-06
(1.9e-06)* (2.6e-06)* (8.3e-06)

Sale years 1996-2014 1996-2006 1996-2014
Fixed-effects

quarter-block yes yes yes
parcel - - yes

adj. R2 0.95 0.95 0.93
Observations 198,519 124,375 40,685
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Standard errors clustered at the block level.
blocks: 2010 United States Census Block boundaries.
quarter: quarter of sample (e.g. 1st quarter of 1997 is quarter 5).
2014 adjusted sale prices trimmed at the 1st and 99th percentiles.
Sample excludes parcels undertaking additions (see section 1.4.2).

other benefits associated with conversions. This finding is consistent with Myers (2016),

who shows that home buyers fully capitalize differences in energy costs between homes

utilizing different heating sources.
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1.5 Estimates of cost per gallons saved and net benefits

Cost per gallons saved Since the beginning of the program, the water authority has

rebated single-family residents converting once a total of $53M ($2014 dollars). I estimate

that the resources required to administer the program equal 22.5 percent of total outlays,

or about $12M.62 The average conversion saves 5,000 gallons per month, implying that

total savings for the 26,488 conversions equal 1.6M kgal/year. Following Bennear et al.

(2013), I convert total rebate outlays plus administrative costs to an annual equivalent by

annuitizing $65M using a 5 percent discount rate and a 30-year time horizon.64 Dividing

annual equivalent expenditures by total annual savings yields an annual program cost of

$2.65/kgal-saved.65 If I additionally include out-of-pocket conversion costs to the rebate

recipient (about $54M) and repeat the calculations above, annual program costs increase

from $2.65/kgal-saved to $4.84/kgal-saved. The water bill for an average customer in 2013

equals $3.54/kgal. If the bill reasonably reflects the cost of supplying water, from the water

authority’s perspective, the Cash-for-Grass program saves $0.89/kgal every year. But from a

societal perspective, conserving water with the Cash-for-Grass program costs more than

supplying the same amount. Appendix A.4 provides further details.

Two caveats bear discussion. On the one hand, water bills tend not to incorporate the

opportunity cost of scarce water supplies (Griffin, 2001), which Griffin suggests can be

estimated using water market transactions. Edwards and Libecap (2015) report that the

62I calculate the percentage based on the ratio of total labor costs and overhead to the budget for rebate
outlays during the 2015/2016 fiscal year.63 Since most of the rebates were funded through one-time connection
charges, I ignore financing costs. Appendix A.4 provides further discussion.

64Similar to the argument that Bennear et al. make for toilets, it is unlikely that savings from desert landscape
will last indefinitely. I calculate annualized rebate outlays using the following formula: r×Costs

1−(1+r)−t , where r = 0.05
refers to the discount rate and t = 30 equals the number of years of assumed sustained savings.

65Bennear et al. (2013) find a high-efficiency toilet rebate program costs $7.33/kgal-saved, and Price et al. (2014)
find that a range of rebate programs cost $0.39/kgal-saved (for low flow shower heads) to $8.33/kgal-saved (for
an additional low flow toilet), and that a desert landscape rebate costs $4.51/kgal-saved, assuming the desert
landscape stays in place for 25 years (assuming 25 years of sustained savings, the Cash-for-Grass program costs
$2.89/kgal-saved, or $5.28/kgal-saved if I include the opportunity cost of scare water). Price et al. estimate
cost-effectiveness using a levelized-cost method which divides the present value of costs by the present value of
savings.
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median price of a series of agriculture to urban water sales in Nevada during the 2000s

equals $0.06/gal. Most water sales grant the buyer a perpetual right to a certain amount of

water each year. Therefore, I assume $0.06/gal reflects the present discounted value of an

infinite stream of benefits arising from the right to withdraw a gallon of water each year in

perpetuity. Assuming a 5 percent discount rate, $0.06/gal implies an annual measure of

about $3/kgal.66 Including an estimate of the opportunity cost of scarce water therefore

increases the real annual cost of supply from $3.54/kgal to $6.54/kgal. The program now

appears economical, since it saves water for less than the cost of supply.

On the other hand, the measure of program costs per gallon saved ignores the possibility

that some rebate recipients may have converted to desert landscape without the subsidy.

Savings and associated out-of-pocket conversion costs from any such free-riders should not

be attributed to program savings or program costs. I estimate that if free-riders account

for over 39 percent of program participants, the program costs more than the cost of

supply. In other contexts, free-riding has been found to account for at least half of all rebate

recipients (Bennear et al., 2013; Houde and Aldy, 2014; Boomhower and Davis, 2014). These

studies, however, explore free-riding in rebates for relatively small ticket items (Bennear

et al. investigate toilet rebates and Houde and Aldy and Boomhower and Davis examine

energy appliance rebates). In contrast, re-landscaping poses substantial costs and occurs

infrequently. It therefore seems reasonable to hypothesize a small share of individuals

planning to convert to desert landscape apart from the subsidy. However, estimating

free-riding would be a valuable extension to this research.67

Net benefits While hedonic theory promises to recover willingness to pay for a non-

market good, in practice, identifying welfare effects from hedonic analyses pose empirical

challenges. Because I exploit panel variation, my estimates of the effect of desert landscape

on property values measure a capitalization rate, not necessarily real benefits (Kuminoff

66Present discounted value (PDV) = B(1+r)
r =⇒ B = 0.05×0.06

1+0.05 = $2.84/kgal/year.

67One way forward is to estimate a demand model for desert landscape, and then extrapolate to demand at
zero subsidy. Boomhower and Davis (2014) essentially take this approach.
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and Pope, 2014; Muehlenbachs et al., 2015). Kuminoff and Pope explain this capitalization

rate can only be interpreted as a measure of benefits if the hedonic price schedule remains

fixed throughout time.68 Following the suggestion of Kuminoff and Pope, I test for a stable

hedonic price schedule by estimating the direct effect of conversion in each year. Figure

A.5 in Appendix A.3 illustrates consistent point estimates of the direct effect across time. I

therefore assume that the hedonic price schedule is stable and the estimated direct effect

reflects real benefits. I estimate the benefits per square foot of desert landscape by dividing

the average increase in home values by the average conversion area.69 I find benefits equal

$2.67/ft2, with 95 percent confidence bounds ranging from $1.18/ft2 to $4.16/ft2.

Because the hedonic estimate of the direct effect of conversion only captures monetary

savings from reduced water bills and maintenance expenditures (section 1.4), my measure

of benefits does not reflect the value of scarce water. As above, I assume the $0.06/gal

median sale price reported by Edwards and Libecap reflects the value of the right to use

a gallon of water every year in perpetuity. If one assumes that savings do not erode over

time, then my results in section 1.3 imply that conversions save 44.5 gal/ft2 every year in

perpetuity. The product of the sale price ($0.06/gal) and the average savings per square

foot (44.5 gal/ft2) therefore yields a rough approximation of the scarcity value of water

embedded in converting one square foot to desert landscape, or $2.66/ft2.

I estimate total costs to be $3.33/ft2. The largest share of program costs arises from

conversion costs, $3.00/ft2. I again estimate administrative cost to be 22.5 percent of total

rebate outlays, then divide by the number of conversions and the average conversion area.70

Administrative costs come to $0.33/ft2. Rebates are simply transfers from the utility to the

customer, and therefore do not represent costs from a societal perspective.

68A second challenge associated with hedonic estimation of welfare effects involves estimating demand
parameters for the purpose of deriving aggregate welfare impacts. Epple (1987) and Bartik (1987) provide
clarifying discussions.

69Since my hedonic estimates include parcels undertaking more than one conversion, I include data from
this larger set of participants in my analysis of net benefits. Total rebate outlays equal $62M, the number of
conversions equals 31,049, and the average conversion size equals 1,379 ft2.

70See footnote 69.
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Ignoring scarcity, program net benefits equal -$0.66/ft2, with a 95 percent confidence

interval of -$2.15/ft2 to $0.84/ft2. Including scarcity, net benefits increase to about $2.00/ft2.

My estimate of net benefits, however, may not accurately reflect true net benefits. One the

one hand, I have not incorporated any positive health and climate externalities arising from

reducing the energy needed to treat and distribute water. Including positive externalities

would increase net benefits.71 On the other hand, I have ignored free-riders. Including

free-riders would reduce the benefits arising from conversions as well as the associated

conversion costs, leading to lower estimates of net benefits. But provided most rebate

recipients would not convert to desert landscape without the subsidy, my analysis suggests

that the Cash-for-Grass program may enhance welfare.

1.6 Conclusion

I have analyzed the water savings and net benefits generated by the Southern Nevada Wa-

ter Authority’s Cash-for-Grass rebate program. Using event studies and panel fixed-effects

models, I estimate an average conversion saves about 5,000 gallons per month. Furthermore,

these savings remain stable over time, and are robust to a series of specifications and

control samples. The stability of savings suggests that program participants do not substi-

tute to other water intensive activities, but simply cut back on outdoor irrigation. Finally,

since savings per square foot are inversely related to incentives to participate, encouraging

greater participation over the life of the program may have come at the expense of program

cost-effectiveness.

Consumers value conversions to desert landscape. I find that a conversion increases

the value of a Las Vegas single-family home by $3,700 (about 1 percent), and that the

present discounted value of estimated water bill and lawn maintenance savings essentially

accounts for the entire increase in home values. I also find little evidence that conversions

to desert landscape have any net impact on neighboring properties. To further explore

71I may also be understating net benefits if reductions in utility revenue are less than benefits from reduced
operating costs. Appendix A.4 provides further discussion.
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desert landscape externalities, I am securing electricity demand data for the Las Vegas

area and plan to test for any impact that conversion to desert landscape has on electricity

consumption, both on converting and neighboring homes.

When I incorporate an estimate of the value of scarce water, the Cash-for-Grass program

yields positive net benefits. But I also find that a modest 6 percent price increase would have

achieved similar savings over the life of the program. Increasing prices raise distributional

concerns, but subsidies also pose issues of equity. I show that program participants with

higher pre-conversion water demand achieve the most savings, and thus targeting these

individuals would increase program cost-effectiveness (Allcott, 2011). However, higher

water users also tend to earn larger incomes. Public utility managers deciding between

prices and subsidies may therefore face a trade-off between regressive price policies and

subsidizing wealthy individuals.
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Chapter 2

Impacts of Information Disclosure on

Drinking Water Violations72

2.1 Introduction

The recent crisis in Flint, Michigan concerning toxic levels of lead in the city’s drinking

water thrust water quality into the national spotlight. Ever since the passage of the Safe

Drinking Water Act (SDWA) in 1974, however, the U.S. Environmental Protection Agency

has endeavored to limit the occurrence of Flint-like crises by regulating drinking water

quality across the thousands of the country’s public water systems (Tiemann, 2014). In

1996, Congress substantially amended the SDWA. One of the new requirements mandated

community water systems–a category of public water system serving a non-transient

population more than 6 months per year–to submit annual water quality reports to their

customers. The move in part reflected a growing trend among regulators to achieve

policy goals through information disclosure, especially in contexts where direct, centralized

regulatory control pose challenges (Fung et al., 2007). While all community water systems

are required to generate reports, the method of disclosure required by the 1996 amendments

depends upon the water system service population. Systems serving up to 500 customers

72Co-authored with my committee member, Sheila Olmstead.
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must make a report available upon request; systems serving between 501 and 9,999 customers

must publish a report in a local newspaper; systems serving at least 10,000 customers must

mail the report; and systems serving at least 100,000 customers must additionally make the

report available on the internet. The amendments first required water systems to submit

reports in 1998.

In our analysis, we estimate the change in national, health-based water quality violations

due to the annual disclosure of water quality reports required by the 1996 SDWA amend-

ments. We collect data on all water systems and all water quality violations in the United

States from the U.S. Environmental Protection Agency (EPA) through a Freedom of Informa-

tion Act request. We build a panel of community water systems active from 1990 through

2001, matching the number of health-based water quality violations with the violating water

system in each year of our panel. We use these data in differences-in-differences models that

exploit the timing of the information disclosure policy as well as the discontinuity in the

method of disclosure to estimate the impact of the publication, mailing, and online posting

disclosure requirements. We find that the publication and mailing requirements reduce

water quality violations by around 30 percent relative to pre-disclosure policy levels. We

further show that these reductions remain stable over time. We find less evidence that the

online posting requirement had any effect on water quality violations.

We also explore heterogeneity in water system response along dimensions of service

population income and contaminant types. We match water systems with the county in

which the water system operates, and then use median income census data by county to

categorize water systems in median income deciles. We find that water systems serving

higher income counties respond more strongly to the publishing and mailing requirements

compared to systems serving lower income counties. Regarding heterogeneity in response

across contaminant types, we focus on violations pertaining to microbial contaminants (such

as cryptosporidium or e. coli) and contaminants created as byproducts of the disinfection

process (primarily trihalomethanes). Using a seemingly unrelated regression framework, we

show that the publication and mailing requirements reduce violations, but that violations
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from disinfection byproducts do not increase as a result. While this could indicate only

a weak link between the disinfection process and disinfection byproducts, it could also

indicate that water utilities used disinfection processes that created disinfection byproducts

other than those regulated by the EPA.73

Our analysis contributes to two main areas in the literature. Our first area of contri-

bution lies with empirical investigations of information disclosure policies. The effects of

information disclosure have been studied in a wide range of contexts, including finance,

health, and education (Dranove and Jin, 2010), energy (Allcott and Sweeney, 2016), and the

environment (Mastromonaco, 2015). But little empirical work exists regarding the long-term

impacts of information disclosure policies (Dranove and Jin, 2010). In our analysis, we

begin to fill this gap by estimating the impacts of water quality reports several years after

the reports were first required. We also offer some insight into the most salient methods

of information disclosure by exploring the impacts of the publishing, mailing, and online

information disclosure methods. Finally, we contribute to the growing, but still somewhat

limited literature investigating heterogeneity in responsiveness to information disclosure.74

Our second area of contribution lies within the broad economics literature covering water

quality. Much of this literature explores issues regarding ambient water quality (Leggett and

Bockstael, 2000; Cho et al., 2011), with some analyses focusing specifically on the Clean Water

Act (Chakraborti and McConnell, 2012; Keiser and Shapiro, 2017).75 A second component of

the water quality literature explores issues surrounding drinking water quality. Research

points to the substantial benefits from providing drinking water infrastructure (Olmstead,

2010), and investigates the impacts of drinking water contaminants (Muehlenbachs et al.,

2015; Wrenn et al., 2016). But at least in developed countries, there seems to be less work

73Until 2002, the only disinfection byproducts the EPA regulated were trihalomethanes. Depending upon the
disinfectant used, however, bromate and chlorite can also be byproducts of the disinfection process. The EPA
began regulating these two chemicals in 2002.

74Examples of analyses exploring heterogeneity in responsiveness include Shimshack et al. (2007), Delmas
et al. (2010), Powers et al. (2011), and Doshi et al. (2013).

75The Clean Water Act regulates the surface waters of the United States.
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exploring efficacy of drinking water quality regulations.76 We assess a specific intervention

designed to improve drinking water quality at the national scale.

We organize the remainder of the paper as follows. In section 2.2 we discuss our policy

context, the amendments to the Safe Drinking Water Act. We describe our water system

and water quality violations data in section 2.3 and our differences-in-differences empirical

models in section 2.4. We present and discuss results in section 2.5. In section 2.6 we

conclude.

2.2 Policy Context: 1996 Safe Drinking Water Act Amendments

Ever since the passage of the Safe Drinking Water Act (SDWA) in 1974, the EPA has

regulated the quality of drinking water delivered by water utilities across the United States.

Initially, the SDWA regulated 22 contaminants, such as lead, arsenic, coliform bacteria,

and mercury. New contaminants have been added to the regulated list as the act has been

amended over time, such as radioactive isotopes, copper, and cryptosporidium. As of 2013,

the EPA regulates 91 contaminants under the SDWA.77

In 1996 Congress undertook a major overhaul of the SDWA. Among other requirements,

the 1996 Amendments instituted a rule stipulating that all community water systems78

submit annual water quality reports to their customers. Sometimes referred to as Consumer

Confidence Reports (CCR), these annual water quality report cards are intended to “Improve

public health protection by providing educational material to allow consumers to make

educated decisions regarding any potential health risks pertaining to the quality, treatment,

76Innes and Cory (2001) explore the optimal design of public notification in the context of the SDWA. They
explore these issues in a theoretical context, rather than in an empirical setting as in our analysis.

77A timeline of regulated contaminants can be found at: https://www.epa.gov/sites/production/files/2015-
10/documents/dw_regulation_timeline.pdf.

78Though discussed in more detail in section 2.3, community water systems comprise one category of public
water systems, the other two being transient non-community water systems, and non-transient, non-community
water systems. Community water systems serve the vast majority of the American population.
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and management of their drinking water supply”.79 In addition to including information

about the water system and contaminants, the water quality report must make note of any

water quality violations that occurred during the reporting period.80

The required method of disseminating the annual water quality report depends upon the

service population of the water system, with requirements changing at service populations

of 501, 10,000, and 100,000 customers. Water systems serving few customers face the least

stringent requirements; below a service population of 501, water systems “may provide a

notice stating the CCR is available upon request”.81 In fact, systems of all sizes face this

requirement,82 making the “available upon request” requirement the baseline disclosure

requirement to which we make comparisons. Between a service population of 501 and 9,999

customers, water systems “may publish their CCR in a local newspaper”.83 Water systems

must mail their report if they serve 10,000 or more customers, and systems “serving 100,000

or more persons must also post its current year’s report on a publicly accessible site on the

Internet”.84 We refer to these three information disclosure requirements as the publishing,

mailing, and online posting disclosure requirements, respectively.85

Why might these information disclosure methods reduce water quality violations? Benn-

ear and Olmstead (2008) explore the impact of the mailing requirement on Massachusetts

drinking water violations. They postulate that the most likely mechanism through which

information disclosure has an effect is a desire by water systems to avoid customer com-

plaints. Many water systems are publicly owned, and elected officials often sit on the

79EPA Quick Reference Guide No. 816-F-09-009. http://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100529A.txt

80EPA 816-F-09-009

81EPA 816-F-09-009

82See EPA 816-F-09-009.

83EPA 816-F-09-009

84EPA 816-F-09-009

85To be precise, the default disclosure method involves mailing, with the additional online disclosure
required for large systems, and the less stringent disclosure requirements available to smaller systems. See EPA
816-F-09-009.
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public utility commissions that govern non-public, investor-owned utilities. Thus whether

directly or indirectly, water systems are beholden to their customer base, and demonstrating

compliance with EPA regulations in the required annual water quality reports would be one

way to maintain customer satisfaction.

2.3 Community water system and water quality violation data

We obtained characteristics of public water systems as well as associated violations from

the EPA via a Freedom of Information Act request in July 2014. The water system data covers

the universe of U.S. public water systems and provides information such as population

served, whether the system is operational, system deactivation date if applicable, system

location by state, whether the system uses surface water or groundwater, and the ownership

structure (e.g. either public or private). The violation data contains every violation recorded

by the EPA since the agency began keeping records.

In our analysis, we focus on health-based water quality violations from community

water systems serving all fifty U.S. States.86 Community water systems comprise a subset

of public water systems that serve a non-transient community for more than six months

out of the year. As of July 2014, community water systems make up about 34 percent of

all active water systems, but serve nearly 300 million persons. In contrast, non-community

water systems serve about 19 million persons. So while community water systems make up

only a third of all public water systems, they serve the majority of the American population.

Health-based water quality violations occur either because the concentration of a reg-

ulated contaminant exceeds a specified threshold or a water system fails to follow an

established technique for treating a contaminant. A water system would incur a maximum

contaminant level (MCL) violation if a regulated contaminant such as arsenic exceeds the

maximum contaminant level set by the EPA. The EPA regulates other contaminants, such as

lead and copper, through treatment techniques rather than contaminant thresholds. A water

86We therefore exclude water systems managed by Native American tribes and other territories.
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system failing to apply the appropriate treatment technique would result in a treatment tech-

nique (TT) violation. While not the focus of our analysis, the EPA also collects information

on two additional types of violations; monitoring and reporting (MR) violations and “Other”

violations. MR violations make up the vast majority of all violations and essentially amount

to procedural violations. For example, if a utility fails to take a water quality reading at a

specified time or does not monitor the quality of its water source, it incurs an MR violation.

“Other” violations also involve procedural violations. Water systems that do not submit

an annual water quality report, or fail to notify its customers of any acute health risks

discovered in its water would incur violations classified as “Other”.

We match water system information with violations data, generating a panel of water

quality violations in each system-year from 1990 to 2001 for systems that remained active

throughout this time frame. Beyond 2001, changes in water quality standards for various

contaminants complicate identifying an effect of the disclosure policy. By keeping water

systems that have remained active between 1990 and 2001, we also ensure that we have a

balanced panel. Some water utility systems report deactivation dates in the early 1900s.

Since the EPA did not exist before 1970, we reason these dates could be a product of a Y2K

bug, and drop such utilities.87

The full panel includes 46,900 water systems observed over 12 years, for a total of 562,800

observations. Table 2.1 provides summary statistics for water systems in the full panel.

The average water system serves 6,104 customers. Most water systems, however, are small.

About 55 percent of systems (25,847 systems) serve 500 or fewer individuals. A further 36

percent (16,906 systems) of systems serve between 501 and 9,999 customers, 8 percent (3,732

systems) serve between 10,000 and 99,999 customers, and the final 1 percent (415 systems)

serve at least 100,000 customers.88 Public institutions govern about half of the water systems

in our panel, and most systems source their water from groundwater. We also categorize

87Specifically, we drop 21 utilities with deactivation dates prior to 1950.

88We also describe our systems in terms of the three information disclosure thresholds. 45 percent of systems
serve over 500 customers, 9 percent serve at least 10,000 customers, and the final 1 percent serve at least 100,000
customers.
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Table 2.1: Summary of water system characteristics.

Mean SD Min Max Obs

service population (all systems) 6,104 59,471 0 8,271,000 46,900

service population (0-500) 160 132 0 500 25,847

service population (501-9,999) 2,630 2,288 501 9,999 16,906

service population (10k-99,999) 28,285 19,684 10,000 99,750 3,732

service population (≥100k) 318,394 540,420 100,000 8,271,000 415

Tpub = 1(service pop. > 500) 0.45 0.50 0 1 46,900

Tmail = 1(service pop. ≥ 10k) 0.09 0.28 0 1 46,900

Tweb = 1(service pop. ≥ 100k) 0.01 0.09 0 1 46,900

publicly owned systems 0.50 0.50 0 1 46,661

systems using surface water 0.23 0.42 0 1 46,869

median income (decile 1) 24,878 2,054 17,434 27,209 1,801

median income (decile 2) 28,582 703 27,217 29,714 2,230

median income (decile 3) 30,753 579 29,724 31,645 2,753

median income (decile 4) 32,549 466 31,649 33,285 3,159

median income (decile 5) 34,417 547 33,297 35,260 3,528

median income (decile 6) 36,257 559 35,268 37,293 3,809

median income (decile 7) 38,379 652 37,296 39,497 4,791

median income (decile 8) 41,206 975 39,508 42,723 5,236

median income (decile 9) 45,389 1,611 42,742 48,452 6,529

median income (decile 10) 57,246 7,568 48,515 93,383 7,681
median income: 2003 median income of the county where the water system operates.

our panel of water systems based on the median income of the county in which the water

system operates. We first categorize United States’ counties into deciles based on 2003

median income values (thus county income in Table 2.1 is in 2003 dollars) and then match

water systems to these deciles based on the county in which the water system operates.89

89We are unable to match all water systems with a county, and even though some water systems serve more
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As Table 2.1 shows, water systems are concentrated in the higher income deciles.

Table 2.2: Summary of violations for system-years.

Totals Mean SD Min Max Pr(vit > 0) Obs

Health violations 63,922 0.114 0.59 0 29 0.069 562,800

systems serving 0-500 33,933 0.109 0.55 0 21 0.067 310,164

systems serving 501-9,999 23,350 0.115 0.63 0 29 0.067 202,872

systems serving 10k-99,999 6,244 0.139 0.63 0 24 0.087 44,784

systems serving ≥100k 395 0.079 0.42 0 10 0.053 4,980

Tpub = 1(service pop. > 500) 29,989 0.119 0.63 0 29 0.071 252,636

Tmail = 1(service pop. ≥ 10k) 6,639 0.133 0.61 0 24 0.084 49,764

MCL violations 47,452 0.084 0.40 0 17 0.058 562,800

TT violations 16,470 0.029 0.42 0 29 0.011 562,800

Microbial violations 53,398 0.095 0.54 0 29 0.058 562,800

DBP violations 642 0.001 0.05 0 8 0.001 562,800

MR violations 485,282 0.862 6.71 0 1,247 0.167 562,800

Other violations 26,393 0.047 0.52 0 59 0.032 562,800

All violations 575,597 1.023 6.80 0 1,247 0.228 562,800
DBP violations are disinfection byproducts, primarily Trihalomethanes.

For each water system-year in our panel, we record the number of health-based violations

incurred by each system during that calendar year. Table 2.2 summarizes these health-

based violations. Health-based violations take place infrequently, occurring in 6.9 percent

of system-years. And though the smaller systems generate the most violations, smaller

systems are not appreciably more likely to incur a violation than larger systems. In fact,

the class of system most likely to incur a violation are those systems serving between

10,000 and 99,999 customers. MCL violations account for 74 percent (47,452 violations) of

health-based violations, with TT violations making up the remaining 26 percent (16,470

than one county, our data associates only one county with a water system. See section 2.4.
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violations). Breaking down violations another way, most health-based violations represent

violations of microbial standards (53,398 violations). Disinfectants used to remove pathogens

from drinking water react with other substances, producing harmful byproducts regulated

by the EPA. Violations associated with disinfection byproducts (DBP violations in Table

2.2) are rare in our sample. In fact, health violations in general make up a small share of

all violations reported to the EPA. MR violations comprise the largest share with 485,282

recorded violations. A further 26,393 are “Other” violations. Depending upon the specific

nature of the violation and response of the water utility, violations can remain “open” for

several months or even a year or more before the water system comes back into compliance.

If a water system first reports a health-based violation to the EPA in March 1999 and came

back into compliance in January 2000, we count this health-based violation as a single

violation recorded in 1999.90

Figure 2.1 visualizes our panel, illustrating total violations in each year for four categories

of community water systems; systems serving between 0 and 500 customers, systems serving

between 501 and 9,999 customers, systems serving between 10,000 and 99,999 customers,

and systems serving over 100,000 customers. Since there are many more systems serving

fewer customers and since regulatory stringency has changed over time, we normalize

violations by the number of systems in the four categories described above as well as the

number of MCL regulations systems must comply with in each year of our panel. For all

categories of water systems, normalized violations increase sharply after 1990. Becoming

effective at the end of 1990, both the Surface Water Treatment Rule and the Total Coliform

Rule drive this early increase in normalized violations. Beginning in the early to mid-1990s,

normalized violations fall for all categories of water systems, with the largest declines

experienced by those water systems serving the most customers, and the smallest declines

experienced by the systems serving the fewest customers.

We motivate our empirical models below with two additional summaries of our panel.

First, in Figure 2.2, we plot average violations as a function of water system size (in logs) for

90Considering how the disclosure policy impacted the duration of violations is the subject of future work.
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Figure 2.1: Number of health-based water quality violations in each year of the panel for community water
systems serving between 0 and 500 customers, between 501 and 9,999 customers, between 10,000 and 99,999
customers, and over 100,000 customers. We normalize violations by the total number of water systems within
each population service category and the annual number of MCL rules (the number of MCL rules grew from
31 in 1990 to 83 in 2001).

1997 and 1998. We bin water systems within each of the four service population categories,

calculating the average service population for each bin as well as the average number of

violations for that bin in 1997 and 1998. We then plot average violations as a function of

the average water system service population for each bin for each year.91 Blue vertical lines

illustrate the three information disclosure thresholds. Since the information disclosure policy

takes effect in 1998, we may expect to observe substantial changes in violations in 1998

relative to 1997 on either side of each disclosure threshold. Probably the most noticeable

pattern, however, is the noisy nature of the data.

91For ease of visualization, we remove water systems serving under 25 customers and over 1 million
customers.
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Figure 2.2: Average number of violations as a function of the natural log of a water system’s service population.
We first categorize systems into four groups defined by the information disclosure service population thresholds;
501, 10,000 and 100,000 customers. Within each group, we bin water systems, calculating the average service
population for each bin as well as the average number of violations. We then plot average violations as a
function of water system service population. Blue vertical lines illustrate the three information disclosure
thresholds. Before categorizing systems into our four groups, we remove water systems serving under 25
customers and over 1 million customers.

Second, we explore the raw differences in means on either side of each information dis-

closure threshold. As such, these calculations represent the most basic form of a differences-

in-differences design testing for an effect of the information disclosure policy. Table 2.3

illustrates our results. At the publishing threshold, average violations for those systems

serving over 500 customers fall by -0.023 violations after 1998. In contrast, average vio-

lations increase slightly for systems serving 500 or fewer customers after 1998, leading

to a differences-in-differences estimate of -0.032 violations for systems serving over 500

customers. Raw differences in means also imply reductions in violations at the mailing and

online posting thresholds. The empirical tests in section 2.4 examine whether these patterns

in the raw data are borne out in quasi-experimental models testing for causal impact.
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Table 2.3: Raw differences in means for each disclosure threshold.

Above threshold Below threshold

Post-1998 Pre-1998 ∆1 Post-1998 Pre-1998 ∆2 ∆1 − ∆2

Publishing 0.103 0.127 -0.023 0.115 0.107 0.008 -0.032

Mailing 0.101 0.149 -0.048 0.110 0.112 -0.002 -0.046

Online Posting 0.042 0.098 -0.056 0.110 0.116 -0.006 -0.050

2.4 Empirical strategy

2.4.1 Differences-in-differences empirical approach

We employ a differences-in-differences model to assess the impact of the publishing,

mailing, and online disclosure thresholds on health-based drinking water quality violations.

Our empirical strategy therefore exploits the variation in violations before and after the

policy for those systems “treated” with a method of information disclosure relative to

those systems that remain untreated. Our main model, Eq. (2.1), follows that of Bennear

and Olmstead (2008). In particular, we regress the number of health-based violations, vit,

from water system i in year t on an interaction between a treatment indicator, Ti, and an

indicator Postt that describes observations in or after 1998, a flexible function of system size,

∑k
j=0 δj (Postt × sizei)

j, where size describes the service population in 100,000s, system fixed-

effects, ui, state-by-year fixed-effects, sti × dt, and an error term, εit. The treatment indicator

Ti equals one if the system serves a population exceeding one of the three disclosure

thresholds; 501, 10,000, or 100,000 customers.

vit = θ (Ti × Postt)it +

(
k

∑
j=0

δj (Postt × sizei)
j

)
+ (sti × dt) + ui + εit (2.1)

In Eq. (2.1), θ describes the differences-in-differences estimate of the impact of requiring

the respective disclosure method (publishing, mailing, or online posting) on health-based

drinking water quality violations, net of the differential effect of system size. To see this
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mathematically, considering the following derivation, where for the sake of example, we

choose a quadratic function of system size:

E[vit|Ti = 1, Postt = 1] = θ + δ1E[sizei|Ti = 1] + δ2E[size2
i |Ti = 1]+

E[sti × dt|Postt = 1] + E[ui|Ti = 1]

E[vit|Ti = 1, Postt = 0] = E[sti × dt|Postt = 0] + E[ui|Ti = 1]

E[vit|Ti = 0, Postt = 1] = δ1E[sizei|Ti = 0] + δ2E[size2
i |Ti = 0]+

E[sti × dt|Postt = 1] + E[ui|Ti = 0]

E[vit|Ti = 0, Postt = 0] = E[sti × dt|Postt = 0] + E[ui|Ti = 0]

DD = ∆1 − ∆2

∆1 = E[vit|Ti = 1, Postt = 1]− E[vit|Ti = 1, Postt = 0]

∆2 = E[vit|Ti = 0, Postt = 1]− E[vit|Ti = 0, Postt = 0]

∆1 = θ + δ1E[sizei|Ti = 1] + δ2E[size2
i |Ti = 1] + E[sti × dt|Postt = 1] + E[ui|Ti = 1]

− E[sti × dt|Postt = 0]− E[ui|Ti = 1]

= θ + δ1E[sizei|Ti = 1] + δ2E[size2
i |Ti = 1] + E[sti × dt|Postt = 1]− E[sti × dt|Postt = 0]

∆2 = δ1E[sizei|Ti = 0] + δ2E[size2
i |Ti = 0] + E[sti × dt|Postt = 1] + E[ui|Ti = 0]

− E[sti × dt|Postt = 0] + E[ui|Ti = 0]

= δ1E[sizei|Ti = 0] + δ2E[size2
i |Ti = 0] + E[sti × dt|Postt = 1]− E[sti × dt|Postt = 0]

DD = ∆1 − ∆2 =⇒

θ + δ1E[sizei|Ti = 1] + δ2E[size2
i |Ti = 1] + E[sti × dt|Postt = 1]− E[sti × dt|Postt = 0]

−
(
δ1E[sizei|Ti = 0] + δ2E[size2

i |Ti = 0] + E[sti × dt|Postt = 1]− E[sti × dt|Postt = 0]
)

DD = θ + δ1
(
E[sizei|Ti = 1]− E[sizei|Ti = 0]

)
+ δ2

(
E[size2

i |Ti = 1]− E[size2
i |Ti = 0]

)︸ ︷︷ ︸
differential effect of system size
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If we derive the above without the flexible function f (size), θ takes on the standard

differences-in-differences interpretation. With the flexible function of system size, the

differences-in-differences estimator includes θ, as well as an estimate of the differential effect

of system size. The differential effect captures any post-treatment differences across systems

due to size, apart from the disclosure requirement. For example, larger systems may be

equipped with additional administrative resources enabling compliance with water quality

standards, or economies of scale in drinking water treatment may reduce compliance costs

and make compliance more likely (Bennear and Olmstead, 2008).92 By including the flexible

function of system size, θ isolates the effect of the disclosure requirement immediately

around the threshold, similar to a regression discontinuity design (Bennear and Olmstead,

2008).

Because systems below information disclosure thresholds may voluntarily undertake

more comprehensive disclosure than required, θ represents a lower bound on the effect of

the information disclosure. That is, it is entirely possible that some systems serving fewer

than 10,000 customers elect to mail their water quality reports. While we believe that a water

system would have little incentive to voluntarily mail its water quality report on account

of the additional costs incurred, any such voluntary behavior by systems serving less than

10,000 customers would dilute the impact of the mailing requirement picked up by θ in Eq.

(2.1) leading to estimates that understate the true impact of mailing. The same argument

also applies to the publishing and online posting requirements.

In addition to quantifying the individual effect of each disclosure requirement, we also

explore the impact of the information disclosure requirements simultaneously. For the

publishing requirement, Ti = 1 includes systems that must publish, mail, and post online

the water quality report. Therefore, the estimate on the interaction between the publishing

treatment indicator and the post-1998 information disclosure requirement indicator will

potentially pick up some of the effect of the mailing and online posting requirement.

92See also Table 1 in Raucher et al. (2011). Here the authors show the costs per household associated with
complying with the updated arsenic MCL. The costs range from $407/household for the smallest systems to
$1/household for the largest system.
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Similarly, for the mailing requirement, Ti = 1 includes systems that must mail the water

quality report, as well as some systems that must post the report online. Therefore, the

interaction between the mailing treatment indicator and the post-1998 information disclosure

requirement indicator may contain some of the effect of the online posting requirement. To

distinguish the effects of publishing, mailing, and online posting requirements, we estimate

a model that includes an interaction between each treatment indicator and the post-1998

indicator, as shown in Eq. (2.2). The subscripts on θ and T now refer to specific publishing

(501) mailing (10k) or online posting (100k) requirement thresholds.

vit = θ501 (T501 × Post)it + θ10k (T10k × Post)it + θ100k (T100k × Post)it

+

(
k

∑
j=0

δj (Postt × sizei)
j

)
+ ui + (sti × dt) + εit

(2.2)

2.4.2 Persistence of information disclosure

We also explore the impact of the information disclosure policy over time. At the outset,

it is unclear whether we should expect any effect to erode, persist, or strengthen over time.

One the one hand, a service population may become accustomed to poor water quality

reports and instead of voice concern, engage in some form of avoidance behavior (Zivin

et al., 2011). The poorly performing water system may then learn over time that less than

stellar reports have few consequences, thereby reducing or eliminating any effect associated

with being required to distribute water quality reports. On the other hand, water quality

reports may increase water system operators’ attentiveness to violations, leading to increased

expertise associated with reducing violations. This learning based response would then lead

to an increasing impact of the disclosure policy over time.93

To assess the persistence of any impacts for each disclosure threshold, we estimate

Eq. (2.3) and Eq. (2.4). In Eq. (2.3), we interact our treatment indicator, Ti, with an

annual linear time trend describing the number of years since 1998. The estimate on this

93We should distinguish between learning how to address violations from learning about the existence of
violations. Water systems have been reporting violations to the EPA for many years prior to 1998, so it seems
unlikely that the information disclosure would cause utilities to learn about the existence of violations (Bennear
and Olmstead, 2008).
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interaction describes whether the incentive to reduce water quality violations due to the

information disclosure requirement increases (β < 0) or decreases (β > 0) with time. In Eq.

(2.4), we interact our treatment with annual dummy variables beginning in 1998. Rather

than providing an average annual effect, Eq. (2.4) estimates the impact of the information

disclosure policy in each post-disclosure year.

vit = θ (T × Post)it + β(yrsPostt × Ti) + δ ( f (size)) + (sti × dt) + ui + εit (2.3)

vit =
2001

∑
t=1998

βt(yeart × Ti) + δ ( f (size)) + (sti × dt) + ui + εit (2.4)

2.4.3 Heterogeneity in water system response

Empirical analyses of information disclosure policies have begun to explore response

heterogeneity (Dranove and Jin, 2010; Doshi et al., 2013). For example, Delmas et al. (2010)

show that investor owned utilities shift away from fossil fuels to cleaner fuels when required

to disclosure their fuel mixture, and that this effect becomes more pronounced in utilities

serving primarily residential customers. Powers et al. (2011) finds that large pulp and paper

manufactures in India reduce pollution in response to an environmental quality rating

program, especially in higher income areas. Building on these studies, we test for whether

water systems heterogeneously respond to information disclosure as a function of service

population income levels. We specifically choose service population income for two reasons.

First, it allows us to test whether the results found by Powers et al. generalize to a developed

country context. Second, income is a readily available proxy for education and newspaper

readership, high levels of which Shimshack et al. (2007) suggest drive stronger responses

to information disclosure. Based on the empirical finding of Powers et al. and the fact that

income tends to be correlated with education levels, which appear to drive responsiveness

to information, we would expect water systems to reduce violations more in higher income

areas as a response to the water quality reporting requirements.

To explore the impact of customer income level we estimate Eq. (2.1) separately for each
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income decile of the county within which the water system resides.94 We source income

data from the 2003 census data96 and categorize each county into income deciles based

on the median county income. Finally, we match these county-decile data to our water

system information, assigning each water system an income decile based on the water

system-county match.97

We also hypothesize that there may exist heterogeneity in response at the level of indi-

vidual contaminants. Adamowicz et al. (2007) find that individuals have higher willingness

to pay to reduce microbial contaminants compared to known carcinogens, and as a con-

sequence, water systems may be more eager to reduce microbial contaminants than other

contaminants that increase the risk of cancer or contribute to other long-term deleterious

health conditions. This is particularly relevant to the problem of drinking water regula-

tions, because the disinfectants used to reduce the presence of disease-carrying pathogens

(such as chlorine and chloramine) are, themselves, the sources of carcinogenic disinfection

byproducts, which are also regulated drinking water contaminants. Thus, there is a direct

trade-off between disinfecting drinking water supplies so as to reduce the probability that

end-users are exposed to bacterial, viral and other pathogens, and the degree of exposure to

carcinogens resulting from the disinfection process.

To explore this trade-off, we employ the following seemingly unrelated regression

framework shown by Eq. (2.5). All the coefficients are analogous to those of Eq. (2.1),

however each equation now refers to either microbial health-based violations, denoted

by superscript m, or disinfection byproducts,98 denoted by superscript dbp. In addition

94We take these water system-county matches from EPA’s 2013 GPRA pivot tables. For large water systems
that serve multiple counties, the GPRA table simply picks one county at random and assigns that county to the
water system.95 While this possibly introduces mismatches between water systems and the appropriate income
decile, we believe the error introduced to be small since only a few water systems are sufficiently large to span
multiple counties.

96Accessed in January, 2017 at https://www.census.gov/did/www/saipe/data/statecounty/data/2003.html.
We selected 2003 since these data were the closest to 1998 (the date of the policy change) provided in a usable
format.

97We are unable to match 5,383 systems (about 11 percent of our sample) with county names.

98Trihalomethanes are the most relevant disinfection byproduct in our sample. Other disinfection byproducts
such as bromate, chlorite, and haloacetic acids were not regulated until after 2001.
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to estimating the impact of information disclosure on microbial contaminants, θm, and

disinfection byproducts, θdbp, our model also includes model-specific flexible functions of

system size, state-by-year fixed-effects, and water system fixed-effects. To estimate this

system of equations, we follow the method suggested by Blackwell (2005).99

vm
it = θm (Ti × Postt)it + δm f (size) + (sti × dt)

m + um
i + εm

it

vdbp
it = θdbp (Ti × Postt)it + δdbp f (size) + (sti × dt)

dbp + udbp
i + ε

dbp
it

(2.5)

Evidence of water systems reducing microbial contaminants at the expense of disinfection

byproducts depends upon the sign and relative magnitudes of θm and θdbp. If water systems

reduce both types of violations in response to the information disclosure requirement

equally, we expect θm ≈ θdbp < 0 (relative to their respective baseline levels of violations). If

water systems reduce microbial violations at the expense of disinfection byproducts, and

do so differentially in response to disclosure, we would expect θm < 0 < θdbp. If both

coefficients indicate reductions in violations, but the magnitude of microbial violations is

larger than that of disinfection byproducts (for example, θm < θdbp < 0), then there may

be simultaneously real reductions in water quality violations along with some trade-off of

disinfection byproducts for fewer microbial contaminants.100

99In particular, we construct a matrix of regressors for each model, Xm and Xdbp, and then place these

matrices along the diagonal of a larger matrix as follows: X =

[
Xm 0
0 Xdbp

]
. In Stata, we then regress

v = [vm
it vdbp

it ]′ on X, using the reghdfe command (Correia, 2016) (we also use reghdfe to implement our
other differences-in-differences models with the exception of the simple pooled model.).

100Water systems may also differ in their response across management structure. Konar and Cohen (2001)
find that firms with higher environmental performance achieve higher stock market values. To the extent
that water quality violations reflect a water system’s environmental performance, a publicly managed water
system would not enjoy a boost in market value if it incurred few water quality violations, but a privately
managed firm might. If the incentive to reduce violations induced by the water quality report and the incentive
induced by market value identified by Konar and Cohen are substitutes, publicly managed firms may reduce
violations more than privately managed firms on account of the water quality report (this is because privately
managed firms would not experience any additional incentive to reduce water quality violations on account of
the annual water quality report). On the other hand, if the annual water quality report and market incentive
are compliments, privately managed water systems may reduce water quality violations more than publicly
managed water systems. Exploring the heterogeneity in response across management structure is the subject of
ongoing work.
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2.5 Results

2.5.1 Main results

Table 2.4: Regression results illustrating the impact of the publishing requirement.

(1) (2) (3) (4) (5) (6)
Tpub × Post -0.032 -0.032 -0.032 -0.034 -0.033 -0.032

(0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.004)***

Post 0.008 0.008
(0.003)*** (0.003)***

Tpub 0.020
(0.003)***

f (size) -0.007 -0.011
(0.001)*** (0.003)***

f (size)2 7.9e-05
(4.0e-05)**

Fixed-effects
ui - yes yes yes yes yes
dt - - yes - - -
sti × dt - - - yes yes yes

adj. R2 0.00 0.23 0.24 0.25 0.25 0.25
Systems 46,900 46,900 46,900 46,900 46,900 46,900
Observations 562,800 562,800 562,800 562,800 562,800 562,800
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
Fixed-effects: system (ui), year (dt), and state-by-year (sti × dt).
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.

We present our main results of the impact of the publication, mailing, and online posting

requirement in Table 2.4, Table 2.5, and Table 2.6, respectively. For each table, in column 1 we

show results from a simple pooled model where we include indicators for post-1998 years

(Post) and systems above the disclosure threshold (Tpub, Tmail , or Tweb). In column 2 we show

results from a model that includes system fixed-effects (thus T cannot be independently

identified). In column 3 we add annual fixed-effects (thus Post cannot be independently
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identified), and column 4 includes state-by-year fixed effects. In columns 5 and 6 we present

results from estimating our main model, Eq. (2.1), including linear and quadratic forms of

our flexible function of system size.101

Table 2.5: Regression results illustrating the impact of the mailing requirement.

(1) (2) (3) (4) (5) (6)
Tmail × Post -0.046 -0.046 -0.046 -0.043 -0.040 -0.040

(0.006)*** (0.006)*** (0.006)*** (0.006)*** (0.006)*** (0.007)***

Post -0.002 -0.002
(0.002) (0.002)

Tmail 0.037
(0.006)***

f (size) -0.005 -0.006
(0.001)*** (0.003)**

f (size)2 1.4e-05
(3.7e-05)

Fixed-effects
ui - yes yes yes yes yes
dt - - yes - - -
sti × dt - - - yes yes yes

adj. R2 0.00 0.23 0.24 0.25 0.25 0.25
Systems 46,900 46,900 46,900 46,900 46,900 46,900
Observations 562,800 562,800 562,800 562,800 562,800 562,800
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
Fixed-effects: system (ui), year (dt), and state-by-year (sti × dt).
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.

The results illustrated in Table 2.4 demonstrate that the publishing requirement reduces

health-based water quality violations by about 0.03 violations per system-year. Given our

preferred estimate of 0.032 reductions per system-year, and an average violation count of

101While not shown, we include up to a fifth-order form of our flexible function of system size and find
results robust to the higher order specifications for the publishing and mailing thresholds. Results associated
with the online posting threshold are more sensitive to higher orders of systems size, though robust up through
a cubic specification.
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Table 2.6: Regression results illustrating the impact of the online posting requirement.

(1) (2) (3) (4) (5) (6)
Tweb × Post -0.050 -0.050 -0.050 -0.056 -0.031 -0.012

(0.014)*** (0.014)*** (0.014)*** (0.014)*** (0.017)* (0.021)

Post -0.006 -0.006
(0.002)*** (0.002)***

Tweb -0.018
(0.012)

f (size) -0.008 -0.016
(0.002)*** (0.005)***

f (size)2 1.5e-04
(6.3e-05)**

Fixed-effects
ui - yes yes yes yes yes
dt - - yes - - -
sti × dt - - - yes yes yes

adj. R2 0.00 0.23 0.24 0.25 0.25 0.25
Systems 46,900 46,900 46,900 46,900 46,900 46,900
Observations 562,800 562,800 562,800 562,800 562,800 562,800
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
Fixed-effects: system (ui), year (dt), and state-by-year (sti × dt).
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.

0.119 violations for systems subject to the publishing requirement (see Table 2.2), these

reductions correspond to a 27 percent decrease in violations on account of the publishing

requirement. The estimate of reductions in violations is robust across model specification,

illustrating the stability of these estimates.

Table 2.5 shows that requiring water systems to mail their water quality report reduces

violations by around 0.04 violations per system-year, respectively, or about a 30 percent

reduction in violations in each system-year.102 The estimate of reductions in violations is

102Like the publishing requirement, we divide our preferred estimate of violation reductions, 0.040, by the
average violations experienced by those systems serving at least 10,000 customers, which Table 2.2 reports to be
0.133 violations per system-year.
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robust across model specification.

There is less evidence that posting water quality reports online reduces water quality

violations. While the first four columns in Table 2.6 suggest that the online requirement

reduces water quality violations by about 0.05 violations per system year, the effect dissipates

with the inclusion of linear and quadratic forms of the flexible function of system size.

Table 2.7: Regression results illustrating the impact of considering information disclosure thresholds simulta-
neously.

(1) (2) (3) (4)
Tpub × Post -0.028 -0.028

(0.004)*** (0.004)***

Tmail × Post -0.041 -0.040 -0.025 -0.024
(0.006)*** (0.007)*** (0.007)*** (0.007)***

Tweb × Post -0.019 -0.003 -0.017 -0.006
(0.015) (0.021) (0.015) (0.021)

f (size) -0.006 -0.003
(0.004) (0.004)

f (size)2 8.0e-06 -2.0e-05
(4.8e-05) (4.6e-05)

adj. R2 0.25 0.25 0.25 0.25
Systems 46,900 46,900 46,900 46,900
Observations 562,800 562,800 562,800 562,800
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
All models include water system and state-by-year fixed effects.
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.

In Table 2.7, we consider the effect of including multiple disclosure thresholds simulta-

neously. In column 1 and column 2, we explore the additional impact of requiring water

systems to post their report online. The results in row 3 indicate that requiring water

systems that already mail their water quality reports to post the report online does not

have a significant additional marginal impact on violations. In column 3 and column 4,

we estimate the effect of each disclosure threshold simultaneously. The results confirm the
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results discussed above; the publishing and mailing requirement appear to reduce water

quality violations, but the additional requirement to post water quality reports online has

no noticeable impact.

2.5.2 The persistence of the information disclosure

Table 2.8: Regression results illustrating the persistence of each disclosure method.

(1) (2) (3) (4) (5) (6)
Tpub × Post -0.027 -0.026

(0.005)*** (0.005)***

Tpub × yrsPost -0.004 -0.004
(0.002)* (0.002)*

Tmail × Post -0.043 -0.040
(0.008)*** (0.008)***

Tmail × yrsPost 1.4e-04 1.4e-04
(3.6e-03) (3.6e-03)

Tweb × Post -0.051 -0.007
(0.019)*** (0.026)

Tweb × yrsPost -0.003 -0.003
(0.006) (0.006)

f (size) -0.011 -0.006 -0.016
(0.003)*** (0.003)** (0.005)***

f (size)2 7.9e-05 1.4e-05 1.5e-04
(4.0e-05)** (3.7e-05) (6.3e-05)**

Threshold 501 501 10k 10k 100k 100k
adj. R2 0.25 0.25 0.25 0.25 0.25 0.25
Systems 46,900 46,900 46,900 46,900 46,900 46,900
Observations 562,800 562,800 562,800 562,800 562,800 562,800
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses). Water system and state-by-year fixed effects.
Threshold: systems serving ≥ 501, 10k, and 100k customers must, respectively, publish in a local venue,

mail, or mail and post online the water quality report.
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.
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We present results of estimating Eq. (2.3) for each disclosure threshold in Table 2.8. In

particular, we illustrate estimates for models including system and state-by-year fixed-effects

in columns 1, 3, and 5, and then our main specification including the flexible function

of system size in columns 2, 4, and 6. Considering first the publishing requirement, the

estimate on the interaction between our treatment indicator and the annual linear time

trend describing the number of years after 1998 (yrsPost) is negative and significant at the

10 percent level. Thus there appears to be a small, but imprecisely estimated increase in the

effect of the publication disclosure policy over time. For both the mailing and online posting

requirements, the estimate on the interaction between our treatment indicator and the annual

linear time trend describing the number of years after 1998 (yrsPost) is indistinguishable

from zero, implying that the effects of the mailing and online posting requirement have

been sustained over time.103

Figure 2.3 illustrates results from estimating Eq. (2.4), plotting the estimates and 95

percent confidence intervals of the impact of each disclosure requirement in 1998-2001.

Confirming the results from Table 2.8, Figure 2.3 illustrates slightly increasing effects due to

the publishing requirement and stable impacts over time for the mailing and online posting

requirements.

Taken together, these results imply that the primary impact of the disclosure policy takes

place directly after the policy came into effect, with the effect then remaining relatively

unchanged through the end of our sample. Johnson (2003) finds that the annual water

quality reports have little impact on customers’ perceptions of water quality or customers’

perceptions of the water system. If a concern over customer complaints drives the reductions

we observe in water quality violations, as suggested by Bennear and Olmstead (2008), then

the stability of reductions over time may suggest that water systems miscalculate customers’

propensity to complain, or that water systems overestimate customers’ ability to comprehend

the water quality report. More broadly, few empirical analyses study the persistent effects

103These results stand in contrast to Fung et al. (2007), who postulate that this information disclosure policy
will have less of an effect over time on account of few disclosure-associated benefits realized by water systems
and the absence of citizen groups to give voice to concerns over water quality.
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Figure 2.3: Annual impact of the publishing (diamond), mailing (hollow circle), and online posting (solid
circle) disclosure requirements. 95 percent confidence intervals are indicated with the same symbol as the
respective point estimate. We derive point estimates and confidence intervals from estimating estimating Eq.
(2.4) for each disclosure requirement.

of information disclosure policies (Dranove and Jin, 2010). By showing that impacts of

information disclosure policies can be sustained over time, our results begin to build our

understanding of the long-term ramifications of such policies.

2.5.3 Response heterogeneity

We illustrate results of the effect of information disclosure as a function of customer

income in Figures 2.4 through 2.6. In particular, we plot point estimates of the main effect

(T × Post) and associated 95 percent confidence intervals from estimating Eq. (2.1) for each

customer service base income decile. In each plot, we further normalize point estimates by

the average number of health-based violations in all system-years for the respective income
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decile. Normalizing point estimates enables us to compare estimates across deciles. We

match water systems with income by first associating water systems with the county served

by the water system.104 We then group counties into deciles based on each county’s 2003

Census reported median income.
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Figure 2.4: Heterogeneity in response to the publishing requirement by income decile. We illustrate point
estimates and 95 percent confidence intervals from estimating Eq. (2.1) for each income decile defined by the
median income of the county within which the water system resides. We further normalize point estimates by
the average number of health-based violations in all system-years for the respective income decile.

While there seems to be little heterogeneity in response due to the online posting

requirement, there does appear to be a stronger response from the publishing and mailing

requirements among water systems serving higher income counties.105 Regarding Figure

104See section 2.4, in particular footnotes 94 and 96.

105Our results are therefore generally in agreement with those of Powers et al. (2011), who find that an
information disclosure policy drove comparatively higher responses from Indian pulp and paper firms located
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Figure 2.5: Heterogeneity in response to the mailing requirement by income decile. We illustrate point
estimates and 95 percent confidence intervals from estimating Eq. (2.1) for each income decile defined by the
median income of the county within which the water system resides. We further normalize point estimates by
the average number of health-based violations in all system-years for the respective income decile.

2.4, which shows the publishing requirement, all estimates associated with the lower income

decile counties, deciles 1 through 5, cannot be distinguished from zero. However, the

effects in the higher income deciles, especially in deciles 6, 8, 9, and 10, are negative and

significant. The effect is even more pronounced for the mailing requirement, shown in

Figure 2.5. The highest income deciles (7 through 10) generate the strongest impacts due to

the mailing requirement; the impacts in the other deciles are estimated imprecisely.106 And

in higher-income areas. To the extent that income is correlated with education levels, our results also provide
suggestive evidence in support of Shimshack et al. (2007)’s findings that education and news readership levels
drive responsiveness to information disclosure.

106This could in part be driven by the fact that our panel contains fewer observations in the lower income
deciles.
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Figure 2.6: Heterogeneity in response to the online-posting requirement by income decile. We illustrate point
estimates and 95 percent confidence intervals from estimating Eq. (2.1) for each income decile defined by the
median income of the county within which the water system resides. We further normalize point estimates by
the average number of health-based violations in all system-years for the respective income decile.

finally, Figure 2.6 illustrates that there is no relationship between income and water quality

reductions due to the online posting requirement.107

In Table 2.9, we illustrate results of running our trade-off analysis, exploring whether wa-

ter systems decrease microbial violations at the expense of increasing disinfection byproducts.

For each threshold, we show regression results from estimating our system of equations, Eq.

(2.5), with and without the flexible function of system size. In each specification, we show

that microbial violations fall, but that levels of disinfection byproducts remain essentially

unchanged. Our results provide at least suggestive evidence that microbial violations and

107We also estimate Eq. (2.1) for each decile including only system and state-by-year fixed-effects (i.e. we
exclude the flexible function of system size). The resulting figures lead to largely similar conclusions, though
the results for the online posting requirement do show precisely estimated negative impacts in deciles 8 and 9.
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Table 2.9: Regression results illustrating how water systems trade off reductions in disinfection byproducts
(primarily trihalomethanes) with microbial contaminants.

(1) (2) (3) (4) (5) (6)
Tpub × Post (microbial) -0.029 -0.028

(0.004)*** (0.004)***

Tpub × Post (DBP) 1.6e-04 1.7e-04
(3.6e-04) (3.5e-04)

Tmail × Post (microbial) -0.041 -0.039
(0.005)*** (0.006)***

Tmail × Post (DBP) 1.6e-03 1.9e-03
(1.7e-03) (1.9e-03)

Tweb × Post (microbial) -0.050 -0.013
(0.013)*** (0.019)

Tweb × Post (DBP) -8.9e-04 -1.6e-03
(2.2e-03) (3.2e-03)

Threshold 501 501 10k 10k 100k 100k
f (size) - yes - yes - yes
adj. R2 0.26 0.26 0.26 0.26 0.26 0.26
Systems 93,800 93,800 93,800 93,800 93,800 93,800
Observations 1,125,600 1,125,600 1,125,600 1,125,600 1,125,600 1,125,600
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses). Water system and state-by-year fixed effects.
Threshold: systems serving ≥ 501, 10k, and 100k customers must, respectively, publish in a local venue,

mail, or mail and post online the water quality report.
DBP: disinfection byproducts, primarily trihalomethanes.
f (size): 2nd order flexible function of system size: ∑2

j=1(Postt × sizei)
j

size refers to the water system service population in 100,000s.

disinfection byproduct violations are not direct substitutes. That is, reducing microbial

violations need not necessarily come at the expense of increasing disinfection byproducts.

But it is also possible that water systems employed alternative disinfection processes that

created other, at the time unregulated disinfection byproducts, such as chlorite and bro-

mate.108 While Bennear et al. (2009) present evidence of strategic behavior in the context of

108These disinfection byproducts were regulated beginning in 2002.
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avoiding water quality violations, further research is needed to determine whether strategic

avoidance of certain disinfection processes helps to explain our results.

2.5.4 Robustness checks

Because the method of information disclosure depends upon the service population of

the water system, systems that gain or lose customers over time may move into different

information disclosure regimes. But we only observe the service population in the first

quarter of 2014, so it remains possible that we assign water systems to treatments inappro-

priately. Provided systems do not undergo substantial population growth, however, this

potential misassignment of treatment will only affect water systems around our respective

service population thresholds. To test the sensitivity to possible treatment misassignment,

we run models that exclude systems with service populations (as of 2014) that are within 10

percent, 20 percent, and 30 percent of the mailing threshold service population cutoff. The

results of this analysis, illustrated in Table 2.10, show that our estimates are insensitive to

dropping systems around the service population threshold. We therefore conclude that any

misassignment of treatment does not substantially impact our results.109

On the subject of service populations, the EPA defines public water systems as those

systems serving at least 25 customers. Many water systems in our sample, however, serve

less than 25 customers. To test the sensitivity of our results, we estimate models the exclude

all systems that serve fewer than 25 customers (as reported in 2014). While not shown, we

find that our results are insensitive to excluding these small systems.

The validity of our identification strategy relies on treated and non-treated water systems

exhibiting parallel trends in average annual violations. While impossible to check for

the full range of data, we can check for parallel trends in the pre-period. Specifically,

we impose a proxy policy in 1994, and run our model (with and without the flexible

109We also test for the impact that treatment misassignment may have on our estimates of the publishing
and online posting requirements. Though not shown, we find that estimates of the publishing and online
posting impacts are insensitive to dropping systems with service populations within 10, 20, and 30 percent of
the respective service population cutoffs.
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Table 2.11: Regression results illustrating the effect of a proxy policy applied in 1994 on all systems in the
pre-period (i.e. 1990 through 1997).

(1) (2) (3) (4) (5) (6)
Tpub × Proxy 0.018 0.021

(0.006)*** (0.006)***

Tmail × Proxy -0.031 -0.024
(0.009)*** (0.009)***

Tweb × Proxy -0.061 -0.021
(0.018)*** (0.025)

f (size) -0.024 -0.013 -0.016
(0.004)*** (0.004)*** (0.006)***

f (size)2 3.7e-04 2.1e-04 2.7e-04
(5.5e-05)*** (5.7e-05)*** (7.1e-05)***

Threshold 501 501 10k 10k 100k 100k
adj. R2 0.26 0.26 0.26 0.26 0.26 0.26
Systems 46,900 46,900 46,900 46,900 46,900 46,900
Observations 375,200 375,200 375,200 375,200 375,200 375,200
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses). Water system and state-by-year fixed effects.
Threshold: systems serving ≥ 501, 10k, and 100k customers must, respectively, publish in a local venue,

mail, or mail and post online the water quality report.
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.
Proxy policy imposed in 1994.

function of system size) on our pre-period sample. Statistically insignificant coefficient

estimates on the interaction between the treatment indicator and the proxy policy indicator

would provide evidence for parallel trends in the pre-period data. Table 2.11 shows

statistically significant coefficient estimates on the treatment-proxy interaction variable for

each disclosure requirement.110

These results seriously temper the confidence we place in the preceding results. Another

way to support our conclusions would be to employ an alternative empirical strategy, and

110The one exception is for the model that explores the impact of the online requirement and that includes
the flexible function of system size.
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towards that end we present results from a linear and quadratic parametric regression

discontinuity design in Appendix B.1. Though not without flaws, our RD results demon-

strate water quality reductions due to the publishing requirement, but provide less evidence

of any impact due to mailing or posting the water quality report online. Thus, while

not necessarily conclusive evidence by themselves, taken together the results from the

differences-in-differences model and regression discontinuity approach present reinforcing

evidence that requiring water systems to publish their water quality report reduces water

quality violations.

2.6 Conclusion

The 1996 Amendments to the Safe Drinking Water Act require community water systems

to disclose annual water quality reports to their customers. The method of distribution

depends upon the water system’s service population. Relative to water systems not subject

to any direct information disclosure requirements, we have shown that water systems

required to publish reports in local newspapers reduce water quality violations by about 27

percent as a direct result of being required to publish the report. In the Appendix B.1, we

present evidence from a regression discontinuity design consistent with these results. We

also show that the publication requirement is stronger for systems serving higher median

income counties. Similar to the publishing requirement, water systems required to mail

water quality reports reduce water quality violations by 30 percent due to the mailing

requirement. This response appears to be particularly strong for systems serving higher

median income counties. However, our regression discontinuity design shows no impact due

to mailing. Thus while the mailing requirement appears to be as salient as the publication

requirement in differences-in-differences models, we have less confidence in the robustness

of our conclusions regarding the mailing requirement. Finally, we show that the requirement

to post a water quality report online does not cause any reductions in violations. This is

likely because water systems required to post their report online must already mail their

reports to customers, and are thus not providing customers with any new information by
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posting the report online.

Despite there being a direct trade-off between reducing microbial contaminants and

increased levels of disinfection byproducts, we have shown that water systems are able

to reduce microbial contaminant violations without experiencing increases in disinfec-

tion byproduct violations. But among all possible disinfection byproducts, the only ones

regulated during our time frame were trihalomethanes. Systems could have used other

disinfection methods producing other disinfection byproducts such as haloacetic acids,

chlorite, and bromate, which were not regulated until after 2001. We plan to investigate

in the future whether non-regulated disinfection byproducts increased coincident with

reductions in microbial contaminants.

Finally, we have shown that at least in the three years following the imposition of

the information disclosure policy, the reductions in water quality violations appear to be

maintained over time. From the overall perspective of information disclosure programs,

sustained effects are of great import. It would be desirable, however, to be able to assess the

effects in the longer term.
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Chapter 3

Does Desert Landscape Encourage

More Desert Landscape? Evidence of

Peer-Effects in the Las Vegas

Cash-for-Grass Rebate Program

3.1 Introduction

In response to growing concerns over water scarcity, water utility managers are increas-

ingly turning to demand-side-management programs to encourage resource conservation.

In large part due to the substantial share of water required by outdoor landscaping, many

utilities have begun to administer rebate programs that subsidize their customers to replace

lawns with less water intensive desert landscape. While the level of the subsidy, poten-

tial savings, and conservation preferences are all obvious drivers of customers’ decision

to participate in such programs, another potentially important driver is the behavior of

surrounding individuals. In other words, individuals’ preferences for desert landscape may

be affected by their peers’ decisions to convert (Leibenstein, 1950).

In this analysis, I explore the extent to which peer effects drive participation in the
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Southern Nevada Water Authority’s Water Smart Landscapes program. Perhaps one of the

most well known “Cash-for-Grass” rebate programs, the Water Smart Landscapes program

currently offers a $2.00 per square foot subsidy to customers who replace their lawns with

desert landscape. I focus my analysis on single-family residents served by the Las Vegas

Valley Water District, the largest water district in the Las Vegas valley. The water authority

provided me with data concerning program participation from the program’s inception in

1996 to about mid-way through 2014, as well as information regarding post card mailings

and door hanger advertising efforts administered to selected residents to encourage program

participation.

In a closely related context, Bollinger and Gillingham (2012), henceforth referred to

as BG, investigate the presence of peer effects in the adoption of solar panels under a

California rebate program aimed at promoting solar installations. The authors propose a first-

differences empirical model that requires the researcher to observe the timing of the decision

to install solar panels as well as the installation. Importantly, their strategy overcomes

many of the empirical challenges associated with identifying peer effects (Bollinger and

Gillingham, 2012; Narayanan and Nair, 2013; Jackson et al., 2017). As my context is nearly

identical to theirs, I adopt BG’s empirical framework and several of their analyses in my

analysis of the Las Vegas Cash-for-Grass program.

In order to compare my results with those of BG, I define a peer network by zip code. I

also define a peer network at a more refined level. In particular, I group single-family homes

within the Las Vegas Valley Water District into deciles based on the Clark County Assessors

Office’s assessed property value (as opposed to sale price). I then define my peer network

as a zip code interacted with home value deciles. Within the average zip code or average zip

code-decile, conversions to desert landscape take place infrequently. The average number of

conversions to desert landscape as a share of eligible converters on any given day is about

20×10−6.

Like BG, I define the peer effect as the change in an unconverted property’s application

probability due to a new conversion to desert landscape in the same peer network. For a zip
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code, I find the peer effect to be 2.6×10−6, or about 14 percent of the baseline application

probability in a zip code. For a zip code-decile, I find the peer effect to be 12.3×10−6, or

about 47 percent of the baseline application probability in a zip code-decile. The larger

increase in the conversion probability within a zip code-decile versus a zip code suggests

that the peer effect may at least in part operate through homeowners’ desire to maintain the

competitiveness of their homes to homes in a similar housing market. Similar to what BG

show in solar panel installations, I also show that my estimated peer effects increase over

time as the number of conversions increases. In contrast to BG’s findings, however, I find

that the number of conversions rather than the total area of conversions drive my results.111

As an extension to the work of BG, I show that my estimated peer effect is at least an order

of magnitude larger than any of the five marketing campaigns administered by the water

authority.

Peer effects encompass a broad range of behavior and mechanisms. Researchers have

explored the presence of peer effects in education (Fafchamps and Mo, 2017), entrepreneurial

activity (Field et al., 2014), pro-environmental behavior (Narayanan and Nair, 2013) and

labor market outcomes (Cornelissen et al., 2017). Regarding mechanisms, some analyses

focus specifically on the role of social norms (Arimura et al., 2016; Dolan and Metcalfe,

2015), the impact of social comparison on behavior (Brent et al., 2015), and social pressure

(Bursztyn and Jensen, 2016). While my analysis abstracts from the mechanisms driving the

peer effect, in the context of pro-environmental behavior my analysis is the first of which I

am aware to compare the strength of a peer effect to the impact of alternative interventions

designed to encourage the behavior influenced by the peer effect.

I organize the rest of the paper as follows. In section 3.2, I describe the Cash-for-Grass

rebate program and summarize program data. In section 3.3, I summarize BG’s empirical

strategy adopted to my context. I discuss results in section 3.4, and conclude in section 3.5.

111To be precise, BG are unable to determine whether size of installation or the number of installations have a
larger impact on their estimated peer effect.
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3.2 Data

The Southern Nevada Water Authority’s (SNWA) Water Smart Landscapes, or “Cash-for-

Grass” program offers Las Vegas area water customers a rebate in exchange for replacing

grass lawns with desert landscape. The water authority initiated a pilot study in 1996112

and began to offer the rebate to its entire customer base in 1998. I obtained participation

and marketing data from the SNWA from the program’s inception through mid-June 2014.

I focus on single-family customers within the Las Vegas Valley Water District (LVVWD), the

largest water district in the Las Vegas valley.113

Adopting BG’s empirical strategy requires that I proxy for when customers decide to

participate in the program and the date of conversion to desert landscape. Since the rebate

application date is the first time I observe a customer express interest in the rebate program,

I proxy for the day a customer decides to convert his or her lawn to desert landscape with the

application date. After completing a conversion, a customer schedules a post-conversion site

visit, during which a water authority staff member verifies that all program requirements

have been met. After a successful post-conversion site visit, the customer receives the rebate

and the water authority designates the customer as enrolled. Since the post-conversion site

visit most closely approximates the date a customer completes a conversion,114 I proxy for

the conversion date with the post-conversion site visit date. For those conversions where I

do not observe the post-conversion site visit date, I proxy for the date of conversion with

the enrollment date.115

The validity of BG’s empirical strategy applied to my context hinges upon sufficient time

between decisions to apply for the rebate and the conversion date. In Table 3.1, I show that

112Sovocool et al. (2006) and Deoreo et al. (2000) provide analyses of early program results.

113Thus I will exclude any “peer” effect that operates on single-family residents via their exposure to other
types of properties that convert to desert landscape, for example golf courses or multi-family residences.

114pers. comm. water authority conservation staff, February 2016. Staff members explained that while
sometimes participants must correct for a minor failure to comply with all program requirements, the post-
conversion site visit generally marks the completion of the bulk of most conversions.

115I also use the enrollment date for any conversion where the post-conversion site visit is listed after the
enrollment date, or for any conversion where the application date is recorded after the post-conversion site visit.
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Table 3.1: Summary statistics for the span of days between application and conversion (as proxied by the
post-conversion site visit), between application and enrollment, and between conversion and enrollment.

Mean Stnd. dev. Min Max N

Application to conversion (days) 116.70 84.76 3 607 22,738

Application to enrollment (days) 149.79 90.86 9 800 22,738

Conversion to enrollment (days) 33.09 26.61 0 765 22,738

Values calculated after proxying for conversion date with post-conversion site visit.

the average property undertaking a conversion applies for the rebate a little less than four

months (117 days) before completing the conversion. The shortest time between application

and conversion is 3 days, however, as Figure 3.1 illustrates, most converting properties for

which I observe applications applied for the rebate at least one week if not more before

completing the conversion to desert landscape. Finally, I also show in Table 3.1 that it takes

an average of one additional month after conversion for properties to become enrolled into

the program. As I will show below in my results, using the enrollment date as a proxy for

the conversion date severely biases my estimates of the peer effect.

Figure 3.2 illustrates the cumulative number of conversions and cumulative number of

applications over time. Though I observe conversions beginning in 1996, I do not observe

application dates until July 2003. Because application dates are critical to the empirical

strategy, I begin my analysis when I first observe applications. As demonstrated by the figure,

the number of conversions increases steadily over time.116 The last conversion takes place

on May 30, 2014. Cumulative applications also track steadily upwards, but the differences

in the slope of the cumulative applications and cumulative conversions demonstrate that I

do not observe application dates for all conversions. I will thus understate the total number

of applications in my analysis.117 The last observed application occurs on May 3, 2014. In

116The marked increase in conversions in 2004 corresponds to an increase in the rebate and water rates.

117About 16 percent of post-July 2003 conversions do not have applications linked to them.
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Figure 3.1: Frequency plot of the distribution of the number of days between the date of application and the
date of conversion (as proxied for by the post-conversion site visit).

total, I observe 22,738 applications out of a total of 28,944 conversions.118

Between April 2007 and April 2008, the SNWA ran several marketing campaigns aimed

at increasing program participation. Figure 3.2 and Table 3.2 summarize these marketing

efforts. In April 2007, the water authority sent out about 15,000 post cards. In August and

September of 2007, the water authority distributed around 2,100 door hangers. It sent a

second series of post cards in October 2007, and a third series of post cards in April 2008.119

118I actually observe 22,741 conversions, however I drop these additional three conversions since the year of
application takes place before year the assessor indicated the property was built.

119The Cash-for-Grass program participation data I received from the SNWA is identified by the Clark County
Assessor’s Office parcel identifier. The SNWA marketing data is identified by address. Using Clark County
Assessor data, which matches parcel id to location address, I endeavored to match SNWA marketing addresses
to assessor location addresses, so that I could then link my marketing data addresses with properties served by
the LVVWD. While I believe the matching was overall very good, I was unable to match all of the marketing
data addresses with assessor addresses. One primary reason is that while the marketing literature was sent to
residents within all water districts under SNWA purview, I confine my analysis to the largest water district,
the LVVWD. Another reason for imperfectly matching to SNWA marketing addresses is that some marketing

89



0
10

20
30

co
un

t (
10

00
's

)

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

applications conversions promotional campaigns

Figure 3.2: Cumulative applications, cumulative conversions, and total number of promotional campaign
materials sent. The first conversion was recorded on 5/29/1996, and cumulative conversions increase nearly
linearly until mid-2003. I do not observe applications before 7/31/2003. After this date, most conversions
include the associated date of application. I observe five promotional campaigns between April 2007 and
April 2008; post cards in April 2007, door hangers in August and September of 2007, and two final postcard
campaigns in October 2007 and April 2008. The figure illustrates the number of these materials sent to
LVVWD customers.

Table 3.2: Ratio of first-floor square footage to property size.

Mean Stnd. dev. Min Max N

All LVVWD properties 0.23 0.068 0.00 0.91 314,307

Receiving April 2007 post card 0.18 0.057 0.02 0.85 15,072

Receiving Aug. 2007 door hanger 0.22 0.068 0.06 0.42 398

Receiving Sep. 2007 door hanger 0.22 0.065 0.05 0.38 1,704

Receiving Oct. 2007 post card 0.18 0.056 0.02 0.85 14,432

Receiving April 2008 post card 0.18 0.060 0.01 0.85 26,668
LVVWD: Las Vegas Valley Water District.
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Since the water authority is trying to incentivize lawn removal, one would expect the water

authority to send marketing materials to those properties most likely to achieve substantial

savings by removing grass. To test this intuition, I first match my list of properties served

by the LVVWD to Clark County Assessor property data, and then calculate the ratio of

the home footprint (typically just the first-floor square footage) to the property lot size for

all LVVWD properties. Small ratios indicate larger potentially landscape-able areas. Table

3.2 shows that on average, the water authority sent post cards to properties with smaller

home footprint ratios, suggesting the water authority endeavored to target those homes

with the greatest potential for the largest lawns. And while the mean footprint ratio for the

two door hanger campaigns approximately equals the average footprint ratio for the entire

LVVWD, the maximum footprint ratio is a little less than the maximum footprint ratio I

observe among those customers participating in the program. This further suggests the

water authority targeted properties with comparatively large lawns.

Using the data described above, I create two panels at the peer network-day following the

structure of the panel created by BG. My dates of observation range from July 2003 to June

2014. For each peer network-day, I construct variables describing cumulative conversions,

cumulative area converted, cumulative number of marketing materials for each marketing

campaign, and finally the ratio of the number of applications to the remaining number

of eligible properties that can convert.120 BG define this last variable as the probability of

adoption, or in my case, application probability. Like BG and Narayanan and Nair (2013), I

addresses are out of state. There is also the possibility that my matching strategy did not capture all addresses
within the LVVWD, either due to address typos, different abbreviations, or other contingencies my address
matching strategy does not account for. The numbers illustrated in Table 3.2 should therefore be taken as lower
bounds on the number of materials sent out during each marketing campaign.

120As properties convert to desert landscape, they are removed from the count of eligible properties. I define
eligible properties as the number of properties in a peer network in each year that would have sufficient
landscape-able area to consider applying for the rebate program. Using Clark County Assessor data on years in
which homes were built, as well as a list of properties served by the LVVWD provided by the SNWA, I develop
the number of properties in a peer network in each year, assuming that a property enters my sample on the first
of the year. Next, I calculate the ratio of the home footprint to the property lot size (using assessor data). I drop
any non-participating properties with footprint ratios greater than the maximum footprint ratio I observe in
properties that participated in the rebate program, reasoning that such non-participating properties would not
have sufficient landscape-able area to consider applying for the rebate program. Dropping these “infeasible”
properties removes less than one half of one percent of properties within the LVVWD.
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Table 3.3: Summary statistics for 2017 Clark County Assessor property values categorized by decile. Considers
single-family properties located in the LVVWD service district.

Mean Stnd. dev. Min Max N

1st decile 70,045 12,834 0 89,449 31,453

2nd decile 106,596 9,511 89,451 122,380 31,453

3rd decile 136,079 7,269 122,383 147,820 31,458

4th decile 157,586 5,373 147,823 166,391 31,448

5th decile 175,437 5,241 166,394 184,380 31,455

6th decile 194,079 5,798 184,383 204,157 31,453

7th decile 215,645 7,084 204,160 228,717 31,447

8th decile 246,707 11,246 228,723 267,837 31,453

9th decile 299,449 20,366 267,840 339,797 31,452

10th decile 553,559 495,287 339,803 25,645,306 31,452

define a peer network at the zip code level. But individuals may also tend to interact with

those who share similar socioeconomic status, and may be as much or more influenced by

the conversion decisions of friends and neighbors who own a home of similar value than

the conversion decisions of those whose homes fall well outside the individuals’ housing

market.121 Thus I also define the peer network by a zip code interacted with categories of

home value. I define home value categories by binning properties within the LVVWD into

deciles based on their 2017 assessed value calculated from Clark County Assessor data.122

Table 3.3 describes the resulting home value deciles for the LVVWD, which range from

a mean of $70k for the first decile to about $550k for the tenth decile. Interacting each

property’s zip code and home value decile defines my zip code-decile peer network.

121I am grateful to Patrick Behrer for a helpful discussion on this point.

122Following assessor data documentation, I calculate the assessed value by adding total assessed land value
to total assessed improvement value, and divide the result by 0.35.
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Table 3.4: Summary of the zip code, and zip code-decile panels.

Mean Stnd. dev. Min Max N

Zip code

Pr(apply)×10−6 18.58 94.54 0 7,194 186,901

eligible properties 6,195.87 4,358.25 7 14,544 186,901

cumulative conversions 383.73 450.77 0 2,296 186,901

cumulative area (sq-ft) 548,781.06 679,326.10 0 3,502,223 186,901

post cards (Apr. ’07) 212.02 309.79 0 1,239 186,901

door hangers (Aug. ’07) 5.29 9.10 0 50 186,901

door hangers (Sep. ’07) 22.45 175.73 0 1,543 186,901

post cards (Oct. ’07) 186.96 289.89 0 1,191 186,901

post cards (Apr. ’08) 320.85 495.31 0 1,949 186,901

Zip code by decile

Pr(apply)×10−6 26.06 1,117.93 0 1,000,000 1,445,454

eligible properties 794.89 817.50 1 5,619 1,445,454

cumulative conversions 49.58 66.86 0 538 1,445,454

cumulative area (sq-ft) 70,902.81 105,036.99 0 1,348,976 1,445,454

post cards (Apr. ’07) 27.39 55.94 0 484 1,445,454

door hangers (Aug. ’07) 0.68 1.88 0 28 1,445,454

door hangers (Sep. ’07) 2.90 28.13 0 436 1,445,454

post cards (Oct. ’07) 24.15 52.16 0 463 1,445,454

post cards (Apr. ’08) 41.45 85.97 0 951 1,445,454
Decile refers to LVVWD 2017 home value decile.
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Table 3.4 describes the resulting panels.123 The average daily application probability is

small, about 19×10−6 for the zip code panel and 26×10−6 for the zip code-decile panel.

These daily application probabilities translate to annual application probabilities of 0.68 and

0.95 percentage points, respectively.124 Thus within any given zip code or zip code-decile,

applications take place infrequently. The average number of eligible properties is just

over 6,000 in the zip code panel and about 800 for the zip code-decile panel. The average

cumulative of conversions in a zip code is just under 400 with an associated area of about 549

thousand square feet. For the zip code-decile panel, the average cumulative of conversions

is about 50, with an associated area of just under 71 thousand square feet. And consistent

with Figure 3.2 and Table 3.2, zip codes and zip code deciles mostly receive post cards. For

example, the water authority sent the average zip code 212 post cards in April 2007, but less

than 30 door hangers.

In a departure from BG’s analysis, I also construct a panel at the individual property

level. This allows me to run models controlling for unobservables at the parcel (i.e. property)

level, rather than at the zip code, or zip code-decile level. In particular, I construct a panel

of all parcels for which I observe an application and subsequent enrollment into the Cash-

for-Grass program.125 For each parcel, my observations run daily from the first month in

which I observe any application, July 2003, to the day the particular parcel applies for the

rebate. For each parcel-day, I construct an application indicator that describes whether the

parcel applied for the rebate, indicators for whether the parcel had received any marketing

material on or before the day of observation, and finally variables describing the cumulative

123Some properties undertake more than one conversion. However, it seems most reasonable to assume that
the impact of any peer effect would be present for the first of any multiple conversions. Thus I consider only
those applications associated with an initial conversion to desert landscape.

124The probability of not applying each day is of course Pr(not apply) = 1−Pr(apply). The probability of not
applying every day for the entire year is the union of all individual probabilities of not applying each day, or
Pr(not apply)365 = (1− Pr(apply))365. Since the probability of applying at some point during the year is the
compliment of the probability of never applying during the year, the annual application probability can be

calculated by
(

1− (1− Pr(apply))365
)

. Plugging the values of Pr(apply) for the zip code and zip code-decile
reported in Table 3.4 into the preceding formula results in annual application probabilities of 0.68 and 0.95
percentage points, respectively.

125As above, I consider only those applications associated with an initial conversion to desert landscape.
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number of conversions associated with the parcel’s zip code or zip code-decile. Since the

resulting panel contains nearly 40 million observations, for computational tractability I draw

a random sample of 20 percent of parcels in the full data set.

Table 3.5 describes the resulting panel. The mean value for the application indicator

represents the application probability, or about 0.06 percentage points. A converting parcel

resides in zip codes with an average of 501 conversions, and within zip code-deciles of about

76 conversions. Consistent with Table 3.4, few converting parcels are exposed to marketing

materials. For example, the first round of post cards had arrived on or before 5 percent of

parcel-day observations.

Table 3.5: Summary statistics for the 20 percent sub-sample of the individual level panel.

Mean Stnd. dev. Min Max N

application indicator, Pr(apply) 0.00058 0.024 0 1 7,890,379

zip cumulative conversions 500.9 451.8 0 2,494 7,890,379

zip-dec cumulative conversions 75.5 77.7 0 600 7,890,379

Apr. ’07 post card indicator 0.051 0.220 0 1 7,890,379

Aug. ’07 door hanger indicator 0.00073 0.027 0 1 7,890,379

Sep. ’07 door hanger indicator 0.0017 0.041 0 1 7,890,379

Oct. ’07 post card indicator 0.039 0.193 0 1 7,890,379

Apr. ’08 post card indicator 0.056 0.230 0 1 7,890,379
Statistics reflect a sub-sample comprising 20 percent of applying parcels.

Lastly, consider Figure 3.3, which illustrates conversions126 over time within the LVVWD

service population. BG present a similar figure, arguing that clustering may indicate the

presence of peer effects. While certainly not conclusive, the three panels illustrated in Figure

3.3 provide some visual evidence that areas concentrated with desert landscape conversions

become increasingly concentrated with desert landscape conversions over time. In the next

126To be precise, I generated Figure 3.3 exclusively using enrollment dates, rather than post-conversion site
visit dates.
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section, I describe an empirical strategy adopted from BG that tests whether peer effects

and the marketing campaigns may contribute to the observed pattern of conversions.

3.3 Methods

BG estimate a peer effect by modeling the impact of prior solar panel installations in a

zip code, the so-called “installed base”, on current decisions to install solar panels within

that same zip code. In particular, BG propose a first-differences framework that overcomes

many of the empirical challenges that make credibly identifying peer effects a challenge.127

I adopt their empirical strategy shown below in Eq. (3.1):

(Ypt −Ypt−1) = β(Cpt − Cpt−1) +
5

∑
j=1

µj(Mjpt −Mjpt−1) + (ξt − ξt−1) + (εpt − εpt−1) (3.1)

where Ypt describes the number of applications128 for the Cash-for-Grass rebate program

divided by the total number of remaining eligible properties in peer network p (either a zip

code or zip code-decile as discussed in section 3.2) on day t. Cpt describes the cumulative

number of conversions to desert landscape in peer network p on day t. The coefficient

estimate on β therefore describes the peer effect. ξt describes first-differenced year-by-month,

day-of-month, and day-of-week fixed effects.129 BG motivate their first-differences model

with a fixed-effects model that includes zip code by quarter fixed-effects. In order for the

zip code by quarter indicators to drop out of the first-differences model, BG remove the

first observation of each quarter. I also drop the first observation of each quarter, thus

implicitly modeling zip code by quarter, or zip code-decile by quarter, fixed-effects in the

first-differences specification. Finally, Mjpt describes the total number of marketing materials

127For an elaboration of these challenges, see BG, Narayanan and Nair (2013), and Jackson et al. (2017).

128Following BG, I multiply Ypt by 106 so that coefficient estimates are more readable.

129These fixed-effects will capture unobserved changes over time that are common to all peer networks such
as changes in the rebate level. And since I limit my analysis to one water utility service district (the LVVWD),
any effects arising from water rate changes will also be absorbed by the time level fixed-effects.
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for campaign j in peer network p on day t.130 Thus I define Mjpt analogous to Cpt, and the

interpretation of the coefficient estimate µj is analogous to that of the peer effect, β.131

If the order of auto-correlation of εpt is larger than the time between application and

conversion, β would be estimated inconsistently (see BG for a proof). The shortest time

between application and conversion is three days (Table 3.1), and Figure 3.1 illustrates

the vast majority of converting properties apply for the rebate at least one week prior to

completing the conversion. Ideally then, the order of auto-correlation would be less than

3. For each peer network, I estimate Eq. (3.1) and then run a Cumby-Huizinga test for

auto-correlation using actest (Baum and Schaffer, 2015) up through the fifteenth lag,

clustering at the peer network level. At the zip code level, the first and seventh lag are

statistically significant at the or below the 5 percent level. At the zip code-decile level, only

the first lag is significant, and only at the 10 percent level. Since most applications take place

at least a week before conversion, I conclude that my data satisfies BG’s auto-correlation

requirement.132

I apply two more of BG’s analyses to my context, the first of which explores the impact

of conversion area. I define a variable Apt, which describes the cumulative square footage

of desert landscape in peer network p on day t, and estimate the following models:

130 j = 1 for the first post card campaign, j = 2 for the first door hanger campaign, j = 3 for the second door
hanger campaign, j = 4 for the second post card campaign, and j = 5 for the third post card campaign.

131Alternatively, I could define Mjpt with indicators, letting Mjpt equal one on the day when peer network
p received any of the marketing materials j. However, this would overweight the impact of a peer network
receiving only a few materials compared to one that received several hundred. To avoid over-weighting in this
way, I model Mjpt as the cumulative number of marketing materials in each peer network. But by modeling
marketing materials in the same way as the peer effect, I implicitly allow for the same mechanism driving the
peer effect to drive the impact of the marketing materials. This may misstate the impact of marketing materials
because while everyone can observe a conversion (unless it takes place in a back yard), not everyone can observe
which properties receive a post card or door hanger. An alternative modeling approach could be to interact
marketing campaign descriptors with cumulative conversions to explore if marketing strengthens the peer effect.
Another approach could be to define the marketing materials as some share of eligible properties. The difficulty
with modeling impacts of marketing materials in an aggregate model in part motivates the individual level
model (presented below) where it becomes possible to model an individual property’s receipt of marketing
materials, thereby avoiding the problems just discussed.

132This discussion follows closely an analogous discussion in BG (see BG section 4.1).
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∆Ypt = α∆Apt +
5

∑
j=1

µj∆Mjpt + ∆ξt + ∆εpt (3.2a)

∆Ypt = α∆Apt + β∆Cpt +
5

∑
j=1

µj∆Mjpt + ∆ξt + ∆εpt (3.2b)

The second analysis I replicate from BG explores the impact of peer effects over time. BG

do this in two ways. First, they include a quadratic term in their main estimation framework,

arguing that if peer effects are present, the strength of the peer effect should be growing as

more solar panels become installed. They also interact annual dummies with their variable

describing the number of cumulative solar panel installations to visualize the dynamics of

the peer effect. Accordingly, I estimate the following models, where dy describes annual

indicators:

∆Ypt = β∆Cpt + β∆C2
pt +

5

∑
i=1

µi∆Mipt + ∆ξt + ∆εpt (3.3a)

∆Ypt =
2014

∑
y=2003

βy∆(Cpt × dy) +
5

∑
i=1

µi∆Mipt + ∆ξt + ∆εpt (3.3b)

The preceding models implicitly assume that unobserved drivers of applications are

homogeneous at the level of the peer network. Because I observe individual application and

conversion decisions, I can model the effect of the cumulative number of conversions on

individual decisions to apply for the rebate program, and thereby control for unobserved

drivers of applications at the individual level using parcel-level fixed-effects. In particular, I

estimate the model in Eq. (3.4):

applyit − applyit−1 = β(Cpt − Cpt−1) +
5

∑
j=1

µj(IM
jit − IM

jit−1)

+ (ξt − ξt−1) + (εit − εit−1)

(3.4)

where applyit indicates parcel i’s application status on day t, and I define Cpt, and ξt as in Eq

(3.1). IM
jpt is an indicator describing whether parcel i has received material from marketing

campaign j on, or any day prior to, day t. Unlike Eq. (3.1), here I am only concerned with
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the direct impact of marketing campaign j on a particular parcel. Thus I will not capture

any difference in the effect of marketing materials for those parcels located in peer networks

that receive many marketing materials compared to those parcels located in peer networks

that receive few materials.

I select a first-differences framework, thereby controlling for parcel-level unobservables.

Since I only observe a parcel up until the day it applies, I never observe that parcel’s

conversion date. The order of auto-correlation in my error should therefore always be less

than the time period between application to conversion (since in a sense, the time between

application and conversion is infinite). Thus BG’s first-differences approach, applied here in

Eq. (3.4), should produce consistent estimates of β.

3.4 Results and discussion

3.4.1 Main results

Table 3.6 shows my primary results of estimating Eq. (3.1). The model in column 1

defines the peer network by zip codes. The model in column 2 defines the peer network by

zip code-deciles. The models in columns 3 and 4 are analogous to 1 and 2, however instead

of defining conversions by the post-conversion site visit as described in section 3.2, I define

conversions exclusively using the enrollment date. I cluster standard errors at either the zip

code (columns 1 and 3) or zip code-decile (columns 2 and 4). Following BG, my results in

column 1 imply “that every additional [conversion] increases the probability of a household

[application] in the same zip code by” 2.6×10−6 (since I define Y in millionths) or a 14

percent change relative to a zip code’s average daily application probability of 18.58×10−6.

These results compare favorably to those of BG.133 Column 2 shows that the peer effect

within a zip code-decile is an order of magnitude stronger, 12.3×10−6, or 47 percent change

relative to a zip code-decile’s average application probability.

Two implications follow from my results. First, my estimated peer effects are substantial

133They find a peer effect of 1.567× 10−6.
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Table 3.6: Effects of cumulative number of conversions and marketing materials on decisions to participate in
the Cash-for-Grass rebate program. Estimates derived from Eq. (3.1).

(1) (2) (3) (4)
conversions 2.621 12.326 0.392 0.950

(0.271)*** (1.681)*** (0.129)*** (1.306)

post card (Apr. ’07) 0.158 0.673 0.157 0.669
(0.051)*** (0.210)*** (0.051)*** (0.209)***

door hanger (Aug. ’07) 4.752 17.389 4.794 17.448
(3.518) (10.275)* (3.502) (10.252)*

door hanger (Sep. ’07) 0.004 0.008 0.004 0.008
(0.002)* (0.018) (0.002)* (0.018)

post card (Oct. ’07) 0.056 0.448 0.057 0.447
(0.026)** (0.159)*** (0.025)** (0.158)***

post card (Apr. ’08) -0.047 -0.357 -0.047 -0.354
(0.027)* (0.181)** (0.027)* (0.181)*

Conversion date proxy post-conversion post-conversion enrollment enrollment
adj. R2 0.01 0.00 0.01 0.00
Cluster level zip zip-decile zip zip-decile
Number of clusters 47 364 47 364
Observations 184,845 1,429,553 184,845 1,429,637
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Outcome variable, Ypt, defined as Pr(apply)×10−6. Ȳzip,t = 18.58× 10−6 Ȳzip-decile,t = 26.06× 10−6.
Zip code or zip code-decile clustered standard errors reported in parentheses.
Decile refers to deciles of Clark County Assessor assessed property values (2017).
I drop three zip codes with no conversions. I also drop the first observation of each quarter.
All models include (first-differenced) year-by-month, day-of-month, and day-of-week fixed-effects.

compared to baseline application probabilities. Thus not only are my estimated peer effects

significant in a statistical sense, they also appear to have a substantial impact on Cash-for-

Grass program uptake.134 Second, the results in column 2 relative to column 1 provide

134Though fluctuating somewhat over time, participation (number of conversions in a year) has waned since
2008. More people converting early in the program implies that the change in application probabilities are large
when the change in cumulative conversions are large, and small when they are small, leading to a positive
dependence of ∆Y on ∆C. The coefficient estimates on cumulative conversions could therefore be due to this
mechanical correlation and not due to any peer effect. Controlling for time effects helps, but only insofar as
time trends are common across peer networks (which while perhaps not the strongest of assumptions, is an
assumption nonetheless). In this same spirit, BG note that “if correlated unobservables are time-varying...then
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suggestive evidence that at least part of the mechanism behind the peer effect may be

operating though people’s desire to ensure their home compares favorably to other homes in

a similar housing market. But since homes of similar value tend to be located near each other,

the larger peer effect in a zip code-decile may simply indicate that peer effects are stronger

at more spatially localized levels. BG’s street-level analysis supports this explanation.

In columns 3 and 4, I re-estimate Eq. (3.1) using the enrollment date as a proxy for the

date of conversion. While columns 3 and 4 show the same general pattern as columns 1 and

2, these estimates fall one to two orders of magnitude below the estimates in the first two

columns. As such, columns 3 and 4 demonstrate the bias introduced by using the enrollment

date rather than the post-conversion site visit to proxy for the date of conversion. At least for

the empirical strategy proposed by BG, my results in column 3 and 4 compared to those of

column 1 and 2 highlight the necessity of developing accurate proxies for conversion. Even

mis-specifying the conversion by as little as one month (on average) can have substantial

impacts on estimates of peer effects.

The second set of results shown by Table 3.6 relate to the impact of the five targeted

marketing campaigns.135 At either the zip code or zip code-decile, I estimate impact of

door hangers with little precision, which is unsurprising since so few door hangers were

distributed.136 I do, however, calculate precise estimates for the impact of post cards, with

each coefficient estimated at or below the 5 percent level for the first two post card campaigns.

Column 1 shows that an additional post card from the first two campaigns increases a

property’s application probability between 0.06×10−6 and 0.16×10−6, respectively, or less

than a 1 percent change in the baseline application probability. Compared to the 14 percent

change associated with the zip code peer effect, post cards appear to have a comparatively

peer group-time effects would be necessary” and their first-differences model includes zip code by quarter
fixed-effects, which I also include. But while zip code by quarter fixed-effects reduce the concern over spurious
correlation discussed here, they do not completely eliminate it. My peer effect results should be interpreted
with this caveat in mind.

135However, due to the challenges associated with modeling the marketing campaigns discussed in footnote
131, the following results should be taken as suggestive only.

136The magnitude of the estimates associated with the August 2007 door hanger campaign are on the order of
the peer effects shown in row 1, but these door hanger estimates are imprecise.
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small, even negligible impact on applications within an average zip code. I find similarly

when defining the peer network by a zip code-decile. Column 2 shows that both estimates

on the impact of the first two post card campaigns fall two orders of magnitude lower

than the estimated peer effect, implying that these post cards had very little impact on

the probability of application within an average zip code-decile. Regarding the third post

card campaign, my results suggest these may have decreased the probability of application,

at least within a zip-code decile. However, at the zip code and zip code-decile level, my

estimated impacts due to the third post card campaign imply that the impact of these post

cards were at most a 1.4 percent change relative to the baseline application probability.

Overall, then, my results imply that despite estimating the impacts of post cards precisely

in a statistical sense, post cards appear to have minimal meaningful impact, at least when

compared to the strength of the peer effect.137

Two broad implications follow from my analysis of the impact of marketing materials.

First, my results provide evidence that post cards may have the greatest positive impact.

While determining the exact mechanism driving this result is beyond the scope of my

analysis, I offer the following speculation. Door hangers can fall off and may never reach the

property owner. Post cards, however, have a greater chance at reaching the homeowner and

can be quickly and easily internalized if the message is simple and straightforward. Figure

3.4 illustrates an example post card sent to customers in 2015 and 2016, and to the extent

that the earlier post cards contained similar design and messaging, it suggests the post

cards could be readily digestible. The negative impacts estimated for the third post card

campaign, however, suggest that messaging may also deter individuals from conversion.138

The second broad implication is that the peer effect dominates the impact of any of the

137The negligible effects due to the marketing campaigns could be explained by the fact that the water
authority may have sent advertising materials to customers with the least inclination to convert to desert
landscape. Thus the small estimated effects due to marketing may be primarily driven by (albeit unobserved)
preferences of recipients and as a result, should not necessarily be taken as evidence of the effects of marketing
in general.

138I do not have precise information regarding the content of these post cards. Thus suggesting that the
content of post cards may influence decisions remains speculative at best.
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Figure 3.4: Example of a post card sent by the water authority marketing the Cash-for-Grass rebate program.
This particular post card was sent in the Fall of 2015, and the Spring and Summer of 2016. The front matter
text reads: “Still holding on to your lawn? The Southern Nevada Water Authority is now offering a $2
rebate for every square foot of grass you replace with water-smart landscaping. You’ll save dollars
for yourself and water for our community. Plus, your home will look beautiful while doing your
part to conserve.” Post card image provided by the SNWA.

marketing campaigns. To my knowledge, my results are the first to make such a comparison.

But this should not necessarily imply that marketing campaigns achieve little and should be

abandoned. If, for example, post cards motivate even a few individuals to convert, these

post card induced conversions will then subsequently influence remaining unconverted

properties through the comparatively strong peer effect.139
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Table 3.7: Effects of the total area of the cumulative number of conversions on decisions to participate in the
Cash-for-Grass rebate program. Estimates derived from Eq. (3.2a) and Eq. (3.2b).

(1) (2) (3) (4)
total area converted 1.5e-03 -5.3e-04 7.2e-03 3.9e-03

(1.7e-04)*** (5.1e-04) (1.3e-03)*** (2.4e-03)

conversions 3.357 6.986
(0.839)*** (3.416)**

adj. R2 0.01 0.01 0.00 0.00
Cluster level zip zip zip-decile zip-decile
Number of zip codes 47 47 364 364
Observations 184,845 184,845 1,429,553 1,429,553
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Outcome variable, Ypt, defined as Pr(apply)×10−6. Ȳzip,t = 18.58× 10−6 Ȳzip-decile,t = 26.06× 10−6.
Zip code or zip code-decile clustered standard errors reported in parentheses.
Decile refers to deciles of Clark County Assessor assessed property values (2017).
I estimate, but do not report, the effect of the marketing campaigns.
Conversion date proxied by the post-conversion site visit.
I drop three zip codes with no conversions. I also drop the first observation of each quarter.
All models include (first-differenced) year-by-month, day-of-month, and day-of-week fixed-effects.

3.4.2 Total converted area’s effect on application probability

BG find evidence that larger solar module installations have a stronger peer effect. Is

the same true of desert landscape? Table 3.7 shows results from estimating Eq. (3.2a) and

Eq. (3.2b). Columns 1 and 2 illustrate results from models defining the peer network by zip

code, while columns 3 and 4 illustrate results from models defining the peer network by zip

code-decile. Consistent with Table 3.6, defining the peer network by zip code-deciles yields

139In my calculations of the variables Ypt, ait, and Cpt, I only consider the first conversion associated with any
parcel (some properties undertake more than one conversion). First conversions account for 93 percent of all
conversions I observe. After converting once, it is difficult to think about how or why any peer effect would be
relevant for subsequent conversions. But multiple conversions on other properties may influence an individual
just like any other conversion. For all my results, I also run models that redefine Cpt to include all conversions,
not just first conversions. My results change very little. In addition, I also estimate fixed-effect versions of my
main models, and like BG, find my fixed-effect estimates of peer effects to be substantially smaller than my
first-differences estimates of fixed effects. While fixed-effect and first-difference models should produce similar
results if all the underlying assumptions for model validity are met, BG note their fixed-effect estimates likely
suffer from the negative bias that Narayanan and Nair (2013) show to be present in fixed-effects estimates of
pre-determined variables (of which BG’s solar installations and my cumulative conversions are examples). My
fixed-effects estimates likely suffer from this same bias.
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larger peer effects than defining the peer network by zip codes. And though columns 1 and

3 suggest that area positively impacts the probability of application, when I additionally

include the number of conversions in columns 2 and 4, the precision associated with the

impact of area disappears. Furthermore, the estimate on conversions becomes significant at

the 5 percent level or lower and appears consistent with the analogous estimates presented

in Table 3.6. Opposite to BG’s finding, my results suggest that the presence of conversions

exclusively drives the peer effect. Conversion size appears not to be a factor when both

variables are included in the model.140

3.4.3 Impact of an increasing number of cumulative conversions

Table 3.8: Effects of cumulative number of conversions and the square of cumulative number of conversions,
on decisions to participate in the Cash-for-Grass rebate program. Estimates derived from Eq. (3.3a).

(1) (2)
conversions -0.391 4.247

(0.247) (2.157)**

conversions2 5.6e-03 6.3e-02
(7.7e-04)*** (9.6e-03)***

adj. R2 0.01 0.00
Cluster level zip zip-decile
Number of clusters 47 364
Observations 184,845 1,429,553
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Outcome variable, Ypt, defined as Pr(apply)×10−6. Ȳzip,t = 18.58× 10−6 Ȳzip-decile,t = 26.06× 10−6.
Zip code or zip code-decile clustered standard errors reported in parentheses.
Decile refers to deciles of Clark County Assessor assessed property values (2017).
I estimate, but do not report, the effect of the marketing campaigns.
Conversion date proxied by the post-conversion site visit.
I drop three zip codes with no conversions. I also drop the first observation of each quarter.
All models include (first-differenced) year-by-month, day-of-month, and day-of-week fixed-effects.

Table 3.8 presents results from estimating Eq. (3.3a). For both definitions of the peer

network, the estimate on the square of conversions is positive and significant at the 1 percent

140I estimate, but do not show, impacts of the effect of the program advertisements. Effects are similar to
those reported in Table 3.6.
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level. These results are consistent with the findings of BG, and imply that as the number of

conversions increases, each additional conversion has a stronger influence on the application

probability.

Figure 3.5 generally reinforces this conclusion. In particular, Figure 3.5 illustrates an

increasing annual peer effect. I derive these annual estimates from running Eq. (3.3b),

where I interact the cumulative number of conversions with annual indicators.141 BG show

a similarly increasing peer effect in their plot of the annual peer effect.142

3.4.4 Modeling peer effects at the individual level

Table 3.9 illustrates results from estimating Eq. (3.4) using the panel described by Table

3.5 where I define cumulative conversions based on zip codes (row 1) and zip code deciles

(row 2).143 I find positive, statistically significant estimates for cumulative conversions at

both the zip code and zip code-decile peer network definition. Like my results in Table

3.6, the estimates in Table 3.9 imply that the peer effect is stronger within a zip code-decile

compared to a zip code. But for both definitions of a peer network, Table 3.9 implies that

the peer effect is about an order of magnitude larger compared to what I estimated using

the approach detailed by BG. However, relative to the average application probability, my

estimated peer effects represent a 17 percent change when defining a peer network by zip

codes and 43 percent change when defining a peer network by zip code-deciles. These

141My conversion data for 2014 is incomplete, covering conversions through late May. The significant decline
in the peer effect in 2014 could therefore be driven by only observing about 6 months of conversion data.

142BG also find evidence that past solar panel installations increase the size of current solar panel installations.
They explain this result by suggesting that as more installations take place, the uncertainty surrounding solar
installation falls, and customers become more willing to undertake larger installations. I would not expect such
a mechanism to be operating in the Cash-for-Grass context. Compared to solar panel installations, conversion
to desert landscape involves more tangible resources. Homeowners can see the water they use to irrigate
their lawns, whereas energy is not a resource homeowners readily observe. Compared to installing solar
panels, the ramifications of converting to desert landscape would therefore be more salient to homeowners. In
addition, many if not most homeowners would have re-landscaped their property in the past, or at least heard
of others doing so, and thus would have a clearer sense of the necessary steps involved in converting to desert
landscape compared to installing solar panels. To test this intuition, I replicate BG’s analysis of the effect of
solar installations on the size of the installation. While not shown, I find that cumulative conversions have no
impact on the area of individual conversions.

143Recall this panel is a subset of the full panel, which contains nearly 40 million observations.
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Figure 3.5: Annual peer effect, derived from running the model defined in Eq. (3.3b). In particular, the plot
illustrates point estimates and 95 percent confidence intervals of my interaction of cumulative conversions
with annual indicators.
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relative effects compare favorably to the relative effects I find in section 3.4.1. I conclude,

therefore, that my estimates of peer effects when controlling for unobserved drivers of

application at the individual level are broadly consistent with my results derived from BG’s

approach.

Turning to the impact of the marketing materials, Table 3.9 implies that each set of

materials had a negative influence on decisions to apply for the rebate. Furthermore, the

Table 3.9: Effects of cumulative number of conversions on individual decisions to apply for the Cash-for-Grass
rebate program. Estimates derived from Eq. (3.4).

(1) (2)
conversions 9.9e-05 2.5e-04

(1.2e-05)*** (4.0e-05)***

post card (Apr. ’07) -7.6e-04 -7.8e-04
(5.4e-05)*** (5.1e-05)***

door hanger (Aug. ’07) -5.0e-04 -5.1e-04
(5.8e-05)*** (4.7e-05)***

door hanger (Sep. ’07) -1.4e-04 -1.3e-04
(5.9e-05)** (5.7e-05)**

post card (Oct. ’07) -3.3e-04 -3.4e-04
(3.9e-05)*** (4.8e-05)***

post card (Apr. ’08) -7.7e-04 -7.7e-04
(5.8e-05)*** (5.6e-05)***

adj. R2 0.00 0.00
Cluster level zip zip-decile
Number of clusters 42 323
Observations 7,885,831 7,885,831
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Mean value of dependent variable: applyit = 5.764× 10−4.
Zip code or zip code-decile clustered standard errors reported in parentheses.
Decile refers to deciles of Clark County Assessor assessed property values (2017).
I randomly draw 20 percent of converting parcels for computational tractability.
Conversion date proxied by the post-conversion site visit.
All models include (first-differenced) year-by-month, day-of-month, and day-of-week fixed-effects.

magnitude of these effects are on par with the those of the peer effect (row 1). I would
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expect my estimates of the impact of marketing to be at least non-negative. Determining the

sources of inconsistency between Table 3.9 and my main results in Table 3.6 is the subject of

ongoing work.144

3.5 Conclusion

In the preceding analysis, I investigate the presence of peer effects in the Southern

Nevada Water Authority’s Cash-for-Grass rebate program. I find that the peer effect within

a zip code is consistent with the peer effect identified by BG in their analysis of solar

panel installations. Like BG, I also show that the peer effect grows stronger with time, but

unlike BG, I find that the only driver of the peer effect in desert landscape is the number

of conversions. The area of cumulative conversions does not drive my results. While this

could signal some differences in the specifics of solar panel installations compared to desert

landscape conversions, overall my results validate the applicability of BG’s proposed method

in an alternative setting where peer effects may be important, namely conservation rebate

programs.

I also show that the peer effect in a zip code-decile is stronger than the peer effect I find

in a zip code. These results provide suggestive evidence that part of the mechanism behind

the peer effect may work though an individual’s desire to ensure his or her home compares

favorably to other homes in a similar housing market. It could also be evidence that peer

effects are stronger at more spatially localized scales, since homes of similar value tend to

be built near each other.145

144Since properties do not often apply for the rebate on the day they receive marketing materials, in my
first-differences specification estimating peer effects at the individual level, Eq. (3.4), the first-differenced
marketing indicator will typically be one when the first-differenced application indicator is zero and vice versa.
This could explain the strong negative dependence of the marketing materials on application probability shown
in Table 3.9. One possible solution is to define my individual level model at a more aggregate time scale (such
as weekly or monthly). Like the marketing campaign results derived from the aggregate level model above, the
marketing campaign results derived from the individual model should be taken as suggestive only.

145It also bears mentioning that in both the aggregate and individual models, defining a peer group by a zip
code or zip code-decile may over-weight the peer effect from some conversions and ignore peer effects from
other conversions. Regarding over-weighting of peer effects, a conversion on one end of a sufficiently large
peer network may have negligible effect on the probability of conversion for a property located on the other
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Finally, I explore the effect that advertising has on Cash-for-Grass program participation.

Two of the post card campaigns have the greatest influence on rebate recipients’ decision to

apply for the rebate, but a third post card campaign may have had the opposite effect. I also

show that the estimated peer effect is much stronger than the advertising campaigns. To my

knowledge, mine is the first analysis to compare the impact of advertising campaigns to a

peer effect.

Conservation rebate programs such as the Southern Nevada Water Authority’s Cash-

for-Grass program will only grow in popularity as utilities increasingly face imbalances

between their resource supply and customer demand. Thus uncovering the drivers of

program uptake is not only interesting from an economic perspective, but also contributes

to our understanding of the optimal design of subsidy programs.

end of the same peer network. Regarding ignoring peer effects, if a property is located near the border of its
peer network, a nearby conversion to desert landscape in another peer network will not, in the models I have
presented above, have any impact on the property’s application probability. To avoid both problems, a preferred
approach may be to define a peer network for each property in my sample, either by some visibility metric, or
simply by a geometric boundary such as a circle. By re-estimating the peer effect for increasingly large radii,
one could also determine the relationship between the peer effect and distance. By additionally comparing
these results to results derived from limiting properties within such peer circles to those of a similar value as
the property being analyzed, one could distinguish between the impact of the spatial dimensions of the peer
effect and whether the peer effect operates through a competitive housing market channel.
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Appendix A

Appendix to Chapter 1

A.1 Volumetric and water bill savings calculation details

I calculate baseline water use from the average water use for all participants converting

once prior to enrollment, or 23,818 gallons per month. Dividing my savings estimate of

5,000 gal/month by the baseline value yields the 21 percent reduction reported in section

1.3.

I calculate water bill savings for an average LVVWD customer in 2013 that experiences

a constant 5,000 gal/month savings throughout each month of the year. Water charges

depend upon the meter size. In 2013, over 99 percent of single-family LVVWD customers in

my panel have a 1 inch, 3/4 inch or 5/8 inch meter. Of these customers, 4 percent have a

1 inch meter, 47 percent have a 3/4 inch meter, and the remaining 49 percent have a 5/8

inch meter. Using a bill calculator provided by the water authority, I estimate the annual

water bill for each meter size (1”, 3/4” and 5/8”) for average monthly water use in 2013.

I also calculate the water bill for each meter size using average water use net of the 5,000

gal/month savings estimate. Finally, I calculate a weighted average water bill, with weights

defined by the share of customers associated with each meter size.

The average customer in 2013 pays a $501.03 water bill. Saving 5,000 gal/month reduces

the water bill by $150.44 (about 30 percent) to $350.59. The present discounted value of an
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infinite stream of these savings equals $3,159 assuming a 5 percent discount rate.

I likely overstate water bill savings. My water use data demonstrate a high degree of

variability in demand over the calendar year, and to the extent that most of the increase

in summer water use arises from outdoor landscape irrigation, applying average savings

evenly throughout the year will likely understate water savings in the summer and overstate

water savings in the winter.146 Since LVVWD customers experience block pricing, I likely

underestimate summer bill savings more than I overestimate winter bill savings, producing

a net underestimate in the annual water bill. The water bill savings should be interpreted

with this caveat in mind, however I do not believe this bias to grossly distort the predicted

water bill savings.

A.2 Additional water savings results

A.2.1 Fixed-effects, early exits, and program changes

In this section I present savings estimates that explore the impact of various fixed-effects,

parcels that exit before the end of the sample, and two program policy changes.

In July, 2000, the water authority began rebating participants based on the size of their

conversion; prior to this the water authority determined rebates based on how much water

the participant saved relative to participant specific past average monthly water use. In

March, 2004, the water authority relaxed a 400 square foot minimum conversion requirement,

allowing conversions less than 400 square feet provided the conversion comprised an entire

front or back yard.147 To study the impact of these program changes, I estimate Eq. (A.1)

and Eq. (A.2), where I interact my post-enrollment indicator with indicators for enrollment

dates corresponding to dates on or after the change in determining the rebate amount, ‘sqft’,

146Sovocool et al. (2006) find that much of the savings due to conversion to desert landscape comes from
savings in the summer.

147This restriction appears to have constrained participants. Histograms of converted areas for single-family
participants (not reported here) show a sharp cutoff at 400 square feet for conversions taking place prior to
March 2004. After March 2004, a similar histogram shows a more continuous distribution around 400 square
feet.
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and relaxing the 400 ft2 minimum, ‘min conv’.

Qit = α[pre-period]it + β1[post-enroll]it

+ β2[post-enroll]it × [sqft]i + µim + δtc + εit

(A.1)

Qit = α[pre-period]it + β1[post-enroll]it

+ β2[post-enroll]it × [min conv]i + µim + δtc + εit

(A.2)

Table A.1 displays results. Compared to the results in column 1, including either

month-of-sample by cohort fixed-effects (column 2) or parcel by month-of-calendar year

fixed-effects (column 3) reduces the estimate of savings compared to the specification that

includes only parcel and month-of-sample fixed-effects (column 1). These results suggest

that variation in seasonal fluctuations as well as time-varying characteristics among different

aged houses affect results. I therefore control for both in my main specification (column

4).148 In column 5 I eliminate from my main specification any parcels that drop out before

the end of the sample (April, 2014). Dropping early exits has little impact on savings. In

column 6 and 7 I explore the impact of the two program administrative changes discussed

above. The negative point estimate associated with the effect of the subsidy remuneration

method (column 6, row 2) suggests that rebating customers based on the size of their

conversion may have increased savings, however I cannot statistically distinguish the effect

from zero. The rebate remuneration method therefore likely had little effect.149 Allowing

conversions under 400 square feet, however, appears to have decreased savings by about

1,500 gallons per month per average conversion (column 7, row 3). As more participants

convert areas less than 400 square feet, one expects average savings per conversion to fall,

since the average conversion area falls. In terms of savings per square foot of converted area,

6,300 gallons per month corresponds to about 46 gal/ft2/year (the mean conversion area

148In addition, results from a falsification test show that a proxy policy defined as a proxy enrollment 5 years
prior to actual enrollment has no effect only for the fixed-effect specifications represented in columns 2 and 4.
This further validates the importance of controlling for cohort effects.

149I am unable to determine the impact on savings per square foot of converted area since the water authority
did not record converted area for conversions prior to 2000.
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for conversions prior to March, 2004 equals 1,653 square feet). After relaxing the minimum

conversion requirement, savings become 4,800 gallons per month (−6.320 + 1.54 = −4.78)

which corresponds to 43 gal/ft2/year (the mean conversion area throughout the life of the

program equals 1,348 ft2), however, this value falls within the 95 percent confidence interval

of the pre-March, 2004 estimate. Relaxing the minimum conversion requirement does not

appear to have affected savings efficiency.

A.2.2 Additional event studies

Figure A.1 illustrates results of an event study derived from Eq. (1.1), but defining τ

with respect to the enrollment date rather than the application date. The solid vertical

line indicates the date of enrollment, while the dashed vertical line indicates the average

month of application, 5 months prior to the date of enrollment. These results exhibit less

oscillations prior to the enrollment date compared to Figure 1.6, however overall Figure 1.6

and Figure A.1 lead to the same conclusion; there appears to be an absence of pre-trends

prior to the application-enrollment period, savings remain relatively stable after enrollment,

and there exists some transient behavior at least one year prior to the enrollment date.150

I also implement an alternative event study using my matched sample. In particular, I

calculate the difference in water use in each month-of-sample between individual participat-

ing parcels and their respective matched non-participating pairs. Then for each participating

parcel, I associate the month-of-sample with event time. Finally, I calculate the average of

the pairwise differences in water use in each event month.151 Figure A.2 illustrates results

of this procedure, defining event time with respect to application (panel a) and enrollment

(panel b). Both figures illustrate an absence of pre-trends prior to the application-enrollment

period, and some transient behavior at least one year prior to the enrollment date. In

150Though not shown, event studies derived from the three alternative control samples (participants only,
DNF, and matched control samples) display largely similar patterns as in Figure 1.6 and Figure A.1, however
they show greater instability prior to conversion and exhibit strikingly more pronounced erosion in savings
after enrollment. Also, the event studies derived from the DNF and matched control samples illustrate savings
closer to 4,000 gal/month, consistent with the estimates shown in Table 1.3.

151In particular, I regress my ‘difference’ variable on a constant, and cluster standard errors at the parcel level.
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Figure A.1: Event study, illustrating water savings from the Cash-for-Grass program. Point estimates and
95 percent confidence intervals of κj’s are derived from estimating Eq. (1.1), with event time defined with
respect to the month of enrollment. Standard errors are clustered at the parcel level. The omitted category
is κ0 = 0. Observations are limited to single-family participating parcels that converted only once and all
non-participants. Participating parcel observations are further restricted to a five-year window around the
month of enrollment; that is −60 ≤ κ ≤ 60. The vertical solid line indicates the month of enrollment. The
vertical dashed line indicates the average month of application, five months prior to the enrollment date.

contrast to Figure 1.6 and Figure A.1, however, Figure A.2 illustrates a more pronounced

erosion in savings after conversion.

A.2.3 Additional discussion regarding impact of time and pre-enrollment con-

sumption characteristics

Because estimating Eq. (1.4) essentially compares participants in a given year with

participants in all years, one may be concerned that higher water demand early in the

program biases estimates of later year annual program savings. To test robustness of my
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(a) Event study w.r.t. application date
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(b) Event study w.r.t. enrollment date

Figure A.2: Event study based on the average difference in water use between treated and matched pairs,
defining event time with respect to application date (a) and enrollment date (b). The vertical solid line
indicates the month of application (a) or enrollment (b). The vertical dashed line indicates the average month of
enrollment (a) or application (b).
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Figure A.3: Average water savings achieved in each year of the program derived from my main specification
model, Eq. (1.2), run separately for each enrollment year. In each year, my sample is comprised from pooling
all participating parcels in that year and their respective matched non-participating parcels. Results are further
normalized by the corresponding average annual conversion area. I derive 95 percent confidence intervals
considering average converted area a fixed parameter.

results to this concern, I estimate Eq. (1.2) separately for each enrollment year with a pooled

sample of parcels enrolling in that year and their matched non-participating parcel pairs

(with any duplicate non-participating parcels weighted accordingly by frequency). As in my

main results, Figure A.3 shows that savings across years exhibit a ‘U’-shaped pattern over

time, though less pronounced.152

One may be similarly concerned that in deriving savings as a function of pre-enrollment

consumption decile (Figure 1.10), comparing high (or low) decile converters with everyone

else may bias results. Ideally, one would want to compare high decile converters with

comparable non-participants. In Figure A.4, I implement such a procedure. I first derive

pre-enrollment consumption deciles (based on a 12-month pre-enrollment average of water

152Of course, because of the wide confidence intervals, I cannot rule out the possibility of initially low savings,
producing instead of a ‘U’-shaped pattern a steady increase in savings across years.
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Figure A.4: Average water savings per square foot of lot size achieved within each pre-enrollment water
consumption decile. I derive point estimates and 95 percent confidence intervals by pooling the participating
parcels with their matched non-participating parcels, and then estimating Eq. (1.2) separately for each decile. I
normalize the dependent variable, Qit, by 1000 ft2 of lot size. Pre-enrollment consumption deciles are defined
based on a 12-month average of water use per lot size beginning 24 months prior to the month of enrollment.

use normalized by lot size), and then for each decile, pool the participating parcels with

their matched non-participating parcels. With this pooled sample, I run Eq. (1.2) separately

for each decile. Like my main results, Figure A.4 illustrates a positive relationship between

savings and pre-enrollment consumption decile.153

153This result is robust to whether I define pre-enrollment consumption deciles with a 12, 24, 36, or 48-month
average, and whether I estimate Eq. (1.2) with water use normalized by lot size, or simply water use, and then
post-estimation normalizing by average conversion area for each given pre-enrollment consumption decile.

126



A.3 Additional hedonic results and robustness checks

A.3.1 Effect of two policy changes

In 2004, Las Vegas communities restricted new home construction from planting a front

lawn.154 This policy may increase the prevalence of desert landscape after 2004, and thereby

effect how the market values properties that participated in the Cash-for-Grass program

and/or the neighbors of these properties. I estimate the effect of the 2004 prohibition on

front yards with Eq. (A.3), including an indicator for homes built in or after 2004 and

interacting this indicator with Pit and Nit.

ln pit = ψ[post-2004]i + α1DPi + β1Pit + β1p04Pit × [post-2004]i

+ α2DNi + β2Nit + β2p04Nit × [post-2004]i + δZi + biq + εit

(A.3)

Since June, 2009, rebate recipients must agree to maintain their conversions in perpetuity.

Prior to this date, customers agreed to maintain the conversion for five, then ten years, with

the agreement voided upon transfer of ownership.155 By removing the option value that

prospective buyers previously had regarding a pre-existing conversion, the June, 2009 policy

may reduce the value of conversions. To explore the effect of this policy, I estimate Eq. (A.4),

interacting indicators for enrollments and neighboring enrollments from June, 2009 onward

with Pit and Nit, respectively.

ln pit = α1DPi + β1Pit + β1jun09Pit × [post-June ’09]i

+ α2DNi + β2Nit + β2jun09Nit × [nbr post-June ’09]i + δZi + biq + εit

(A.4)

Table A.2 shows that neither policy had any additional impact on the direct or spillover

effect of conversion to desert landscape. In columns 1 and 2 I present results from estimating

154pers. comm. SNWA staff, March 14, 2016 and May 8, 2017.

155The November 2008 application states: “The converted area must remain in compliance with all program
conditions for a period of ten years. This requirement is void upon transfer of ownership. You agree to return
the incentive payment if this requirement is violated.” The February 2012 application states: “Rebate is subject to
owner’s grant of a conservation easement that restricts certain uses of the conversion project areas in perpetuity.”
The specific language in the applications since June 2009 has changed slightly. The June 2009 and September
2010 applications refer to the agreement as a “restrictive covenant” rather than a conservation easement.
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Table A.2: Regression results for the direct and spillover effect of conversion to desert landscape on home
property values and the additional effects of policy changes.

(1) (2) (3) (4)
post-2004 -0.046

(0.0093)***

DP (ever converts) 0.0043 0.0048
(0.0013)*** (0.0013)***

Direct effect 0.011 0.017 0.010 0.014
(0.0035)*** (0.013) (0.0035)*** (0.014)

Direct×post-2004 -0.0040 0.034
(0.015) (0.028)

Direct×post-June ’09 0.013 0.030
(0.0095) (0.024)

DN (neighbors DP) 0.0011 0.0016
(0.0010) (0.0010)

Spillover effect -0.0021 -0.016 -0.0016 -0.0067
(0.0023) (0.0084)* (0.0024) (0.0087)

Spillover×post-2004 -0.010 0.024
(0.0095) (0.020)

Spillover×nbr post-June ’09 -0.0016 -0.014
(0.0055) (0.013)

Sale years 1996-2014 1996-2014 1996-2014 1996-2014
Fixed-effects

quarter-block yes yes yes yes
parcel - yes - yes

adj. R2 0.95 0.93 0.95 0.93
Observations 199,037 40,755 199,037 40,755
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Standard errors clustered at the block level.
blocks: 2010 United States Census Block boundaries.
quarter: quarter of sample (e.g. 1st quarter of 1997 is quarter 5).
2014 adjusted sale prices trimmed at the 1st and 99th percentiles.
Sample excludes parcels undertaking additions (see section 1.4.2).
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Eq. (A.3). Both columns include the full sample, and column 2 additionally includes parcel

fixed-effects. I cluster standard errors at the Census block level. The statistically insignificant

estimates on the interaction of the direct and spillover effect with the post-2004 indicator

demonstrate that the front lawn restriction does not affect the direct or spillover value

of desert landscape, though the restriction does appear to reduce the overall value of a

home by about 5 percent (row 1). In columns 3 and 4 I present results from estimating Eq.

(A.4). Both columns include the full sample, and column 4 additionally includes parcel

fixed-effects. I again cluster standard errors at the Census block level. The statistically

insignificant estimates on the interaction of the direct and spillover effect with their respective

indicators for enrollments (or neighboring enrollments) after June 2009 demonstrate that

the requirement to keep the conversion in place in perpetuity does not affect the direct or

spillover value of desert landscape.156 And while not the primary coefficient of interest in

this exercise, the estimates of the direct and spillover effect demonstrate consistency with

those presented in Table 1.6. The one exception is the negative and statistically significant

estimate of the spillover effect in column 2. This result raises the possibility that negative

spillovers from desert landscape do exist, however the weight of the evidence presented in

my analysis points to no spillover effects.

A.3.2 Heterogeneous effects across time

The Cash-for-Grass program has been in place for nearly 20 years, making it reasonable

to expect that characteristics of residents changed in ways that impact the value of desert

landscape. To estimate the impact of changing consumer preferences, I interact year of

sale indicators (yosj) with Pit and Nit, as shown in Eq. (A.5). The vector of β1j’s and β2j’s

156While not shown, the coefficient estimates on each covariate effect housing prices in expected ways. The
two exceptions involve negative coefficient estimates on full bathrooms in columns 1 and 3, significant at the
1 percent level, and the negative coefficient on half bathrooms in column 1 and 3, significant at the 5 percent
level. Toilets make up the largest share of indoor water use (Bennear et al., 2013), and the negative coefficient on
bathrooms may reflect consumers’ recognition of higher water bills associated with an increased number of
water-intensive fixtures.

129



describe the annual direct or spillover effect of conversion to desert landscape, respectively.

ln pit = α1DPi +
2014

∑
j=1996

β1j(yosj × Pit)

+ α2DNi +
2014

∑
j=1996

β2j(yosj × Nit) + δZi + biq + εit

(A.5)

Figure A.5 illustrates the direct and spillover effect of Cash-for-Grass subsidized conver-

sions to desert landscape in each year. Though imprecise, the estimates show little noticeable

pattern over time, generally fluctuating around the point estimate (solid horizontal line)

for the overall average direct or spillover effect shown in Table 1.6. Furthermore, the point

estimate of the overall average effect generally falls within the confidence intervals of the

annual estimates. These results suggest that the effect of conversion to desert landscape

under the Cash-for-Grass rebate program has remained stable over time.157

A.3.3 Overlap of covariate distributions

Table 1.4 shows very different mean age and lot size between participating or neighboring

parcels prior to sale (P = 1 and N = 1) and parcels not participating or neighboring a

conversion prior to sale (P = 0 and N = 0). The imbalance raises a concern regarding

distributional overlap. In the following figures, I illustrate the distributional overlap for

age, lot size, and the outcome variable, price. I conclude that the distributions overlap for a

substantial portion of each variables’ domain.

Age Figure A.6 demonstrates that new homes comprise the majority of non-participating

or non-neighboring parcels. The distributions of participating and non-participating parcels,

and neighboring and non-neighboring parcels, however, overlap throughout the majority of

the distributions’ domain. While not shown, I observe a similar distributional overlap for

the repeat sales model and the model that restricts sales to pre-2007.

157Though not shown, figures derived from estimating Eq. (A.5) with parcel fixed-effects show a similar
pattern.
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(b) Annual spillover effect

Figure A.5: Annual effect of conversion to desert landscape. Point estimates and 95 % confidence intervals
for the direct effect (panel a) and spillover effect (panel b) of Cash-for-Grass subsidized conversion to desert
landscape in each year. Results derived from estimating Eq. (A.5). The solid blue line represents the point
estimate from Table 1.6, and the dotted red line highlights zero on the y-axis (i.e. no effect). The coefficients for
1996 and 1997 in panel (a) and for 1996 in panel (b) are dropped due to collinearity.
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Figure A.6: Density distribution of home age for the model including quarter-block fixed-effects and sale years
1996-2014.
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Lot Area Figure A.7 shows a fairly high degree of overlap between the lot size distributions

of participants and non-participants, and between the lot size distributions of neighbors

and non-neighbors. This conclusion holds for the repeat sales model and the model that

restricts sales to pre-2007.

Price Finally, I compare the distribution of the sale price (in levels) for participants and non-

participants, as well as for neighbors and non-neighbors. Figure A.8 illustrates substantial

distributional overlap. Though not shown, the same can be said of the repeat sales model

and the model that restricts sales to pre-2007.

A.3.4 Robustness to alternative specifications

In this section, I test the sensitivity of my estimates to fixed-effect specifications and

other restrictions I placed on the data in section 1.4. For each sensitivity analysis, I hold

constant with the main specification all characteristics of the model net of the characteristic

under investigation.

Robustness to fixed-effects Quarter-block and quarter-block & parcel fixed-effects control

quite flexibly for fixed or varying unobserved neighborhood characteristics, but ask a lot

of the data. Figure A.9 illustrates the robustness of the estimates of the direct effect (panel

A) and spillover effect (panel B) for the full range of sales (1996-2014) to three sets of

fixed-effects. Quarter & block and quarter & parcel fixed-effects absorb average unobserved

dynamics in home prices across the LVVWD, and average block or parcel effects. Quarter

& block-year and quarter & block-year & parcel fixed-effects absorb average unobserved

dynamics across the LVVWD, average block effects in each year of the sample, and average

parcel effects for the specification that additionally includes parcel fixed-effects. Finally,

quarter-block and quarter-block & parcel fixed-effects, the main specification, control the

most flexibly for changes across time and space.

Figure A.9 generally illustrates consistency across fixed-effect specifications. The two

exceptions are the quarter & block and quarter & parcel fixed-effect specifications that illus-
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Figure A.7: Density distribution of lot size for the model including quarter-block fixed-effects and sale years
1996-2014.
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Figure A.8: Density distribution of sale price for the model including quarter-block fixed-effects and sale years
1996-2014.
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trate a positive estimate for the spillover effect. As the least flexible fixed-effect specification,

however, these estimates could be biased by unobserved changes across time at the block

level. The weight of the evidence still suggests no net spillovers.

Robustness to additions Figure A.10 shows the point estimates and 95 % confidence

intervals for estimates with and without the parcels that meet my criteria for undertaking

an addition. The estimates do not appear sensitive to the inclusion or exclusion of parcels

undertaking additions. To the extent that my addition criteria misses parcels undergoing

major structural changes, Figure A.10 suggests any such missed parcels will have only a

small impact on my results.

Vacant parcel sales Beginning in 2005, the assessor’s office distinguishes sales by the

vacancy status of the parcel. I test the sensitivity of my estimates to removing all sales

not indicated as “improved” (i.e. not vacant). Dropping such parcels removes all sales of

vacant properties after 2005 and nearly all sales of all properties prior to 2005. Since the

assessor data designate about 88 percent of post-2004 sales as improved, it is likely that

many of my pre-2005 dropped sales are sales of non-vacant properties. However, I have no

way of determining with certainty the vacancy status of these pre-2005 sales. Figure A.11

shows the results from dropping all sales not designated as “improved”. While I lose some

precision when I keep only sales of non-vacant properties, the results appear consistent

across vacancy status.

Robustness to data trimming Figure A.12 illustrates the point estimates and 95 % confi-

dence intervals for estimates with no variables trimmed, all variables trimmed (price and all

control variables) at their 1st and 99th percentiles, and only the price variable trimmed at the

1st and 99th percentile (the main specification). Though I lose some precision when I do not

trim the distribution of any variables, the figure illustrates that estimates are robust to the

choice of data trimming. Trimming attempts to prevent outliers from driving results. My

estimates here suggest that results are generally robust to outliers.
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Figure A.9: Robustness of the direct (A) and spillover (B) effect to various fixed-effect specifications. Point
estimates and 95 % confidence intervals shown. Sales range from 1996 through 2014. The rightmost two
points (black) represent the main specification.
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Figure A.10: Robustness of the direct (A) and spillover (B) effect to including parcels that meet criteria for
having undertook an addition. Point estimates and 95 % confidence intervals shown. Sales range from 1996
through 2014. The rightmost two points (black) represent the main specification.
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Figure A.11: Robustness of the direct (A) and spillover (B) effect to the designation of vacant or improved
parcel sales. Point estimates and 95 % confidence intervals shown. For the estimates that include only sales of
improved properties, dates range from 2005 through 2014 (though a very few sales are designated as improved
prior to 2005). For the estimates that include all sales regardless of the sale designation (the main specification),
sales range from 1996 through 2014. The rightmost two points (black) represent the main specification.
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Figure A.12: Robustness of the direct (A) and spillover (B) effect to how many variables in the model are
trimmed at the 1st and 99th percentiles. Point estimates and 95 % confidence intervals shown. Sales range
from 1996 through 2014. The rightmost two points (black) represent the main specification.
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Figure A.13: Plot of point estimates and 95 % confidence intervals for quarter of sample fixed-effects (qrt)
estimated from the following model (where blk refers to census block fixed-effects): ln pit = α1DPi + β1Pit +
α2DNi + β2Nit + δZi + blk + qrt + εit (which I estimate using areg; all other hedonic models I estimate
using reghdfe (Correia, 2016)). Point estimates are relative to the first quarter (i.e. quarter 1 in 1996).

Robustness to choice of pre-Crash date The housing market crash hit Las Vegas especially

hard. Figure A.13 illustrates point estimates and 95 % confidence intervals of quarterly

fixed-effects for a model akin to Eq. (1.6) that includes census block and quarter of sample

fixed-effects. The figure clearly illustrates the housing bubble in the Las Vegas valley. Out

of a concern that my quarter-block fixed-effects do not completely absorb all the effects of

the housing crisis, in my main specification I additionally include models that limit sales to

pre-housing crisis years. I choose pre-2007 sales since the most precipitous drop illustrated

in Figure A.13 occurs after 2006. In Figure A.14, I illustrate the robustness of this selection by

further estimating models that limit sales to pre-2006 and pre-2008. Specifically, Figure A.14

shows the point estimates and 95 % confidence intervals for estimates derived from sale
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years 1996 to 2005, 1996 to 2006 (my main specification), and 1996 to 2007. I only estimate

models with quarter-block fixed-effects; including parcel fixed-effects severely reduces the

precision of the estimates since so few data exist in the samples limited to pre-crash years.

Results appear robust to the choice of the beginning of the housing crisis.
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Figure A.14: Robustness of the direct (A) and spillover (B) effect to the choice of the pre-housing market crash
period. Point estimates and 95 % confidence intervals shown. Sales range from 1996 through 2005, 2006 or
2007. The rightmost two points (black) represent the main specification.
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A.4 Calculation details of $/kgal-saved and net benefits

In this appendix, I provide further discussion regarding the details of my calculation of

the annual cost per gallon saved and estimate of net benefits.

Additional details regarding annual cost per gallon saved

• Total rebate outlays: I assume rebate totals reported by the water authority are

nominal to the year the rebate was granted (i.e. a rebate administered in 2007 would be

recorded in 2007 dollars). I therefore adjust rebates to reflect 2014 dollars using the CPI

index for all urban consumers (Bureau of Labor Statistics Series Id: CUUR0000SA0).

• Financing costs:158 I ignore financing costs. Up until 2009, the rebate was funded

through one-time connection charges applied to new service meters. These new

connection fees would introduce little market distortion, and therefore negligible

additional cost. Starting in 2009, the rebate was funded through bond measures. But

the bond issue for the 2015/2016 fiscal year could be paid off entirely with only a

small percentage increase in water rates. Since the water authority would pay off a

bond over many years, I consider costs due to paying off bonds to be small. For these

reasons, I ignore financing costs in my analysis (both in the estimate of cost per gallon

saved and my estimate of net benefits).

• Average water bill: I calculate the water bill per 1000 gallons for an average LVVWD

customer in 2013. Water charges depend upon the meter size and in 2013, over 99

percent of single-family LVVWD customers in my panel have a 1 inch, 3/4 inch or

5/8 inch meter. Using a bill calculator provided by the water authority I estimate

the annual water bill per 1000 gallons for each meter size (1”, 3/4” and 5/8”) and

calculate a weighted average water bill, with weights defined by the share of customers

associated with each meter size (see Appendix A.1). The weighted average annual

158I am grateful to Joe Aldy for a helpful discussion on this point.
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water bill equals $3.54/kgal. Note that I assume 2013 dollars are equivalent to 2014

dollars.

• Out-of-pocket conversion costs: The average rebate from the 26,488 conversions that

make up my water savings panel falls just under $1,996. Since the average conversion

size equals 1,348 ft2, the average rebate per square-foot equals about $1.50/ft2. I assume

total conversion costs equal $3/ft2, implying that the out-of-pocket expenditure for

an average rebate recipient equals about $1.50/ft2. Using the average conversion size

(1,348 ft2) and the total number of conversions (26,488), I estimate that total out-of-

pocket expenditures equal about $54M. I add this to total costs to the utility reported

in section 1.5 ($65M), re-compute annualized cost using a 30-year time horizon and

a 5 percent discount rate, and divide by total annual savings (1.6M kgal/year). The

resulting program costs come to $4.84/kgal-saved.

• Estimate of the opportunity cost of scarce water: Edwards and Libecap (2015) report

that in the Truckee river basin, “the median price of 1,025 agriculture-to-urban water

rights sales between 2002 and 2009 (2008 prices) was $17,685/Acre Foot (AF)”. I adjust

this value to 2014 dollars,159 and then divide by 325,851 gallons per acre-foot, resulting

in the estimate of $0.06/gal reported in section 1.5. Using sales occurring in Nevada

would seem to best approximate the value of water for a Nevada water utility, and for

a municipal water utility, agriculture to urban sales is a more relevant proxy for the

value of water than what would be reflected in intra-agricultural sales.

Additional details regarding net benefits To be precise,160 benefits associated with con-

verting to desert landscape include the private benefits to the household reflected in the

hedonic estimates, the scarcity value of water, as well as reduced operating and maintenance

costs associated with lower delivery requirements (and any positive externalities which I

ignore for the purposes of this discussion). Costs include conversion costs, and reduced

159http://data.bls.gov/cgi-bin/cpicalc.pl

160Many thanks to Nick Hagerty for the insights into net benefits contained in this discussion.
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revenue for the utility (which should equal the benefits consumers receive from lower water

bills). However, most water utilities endeavor to price water such that revenues cover costs.

Thus, the benefits from reduced operating and maintenance costs should be approximately

equal to lost revenue. In my analysis in section 1.5, I implicitly make this assumption. But

because the SNWA has other sources of revenue, it may be that operating costs exceed water

bill revenue, leading me to understate net benefits.161

161To make matters more complicated, the SNWA does not actually distribute water to customers. The
LVVWD and other Las Vegas area water districts supply tap water to residents’ homes, buying treated water
wholesale from the SNWA. In my analysis, I have assumed that the LVVWD and the SNWA are essentially one
financial entity.
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Appendix B

Appendix to Chapter 2

B.1 Regression discontinuity design

As a robustness check on our differences-in-differences approach, we apply a regression

discontinuity design (RD) to test for effects of the publishing, mailing, and online posting

requirements. Because the policy affects water systems differently based on size, and

because the number of customers served by water systems varies more or less continuously,

the information disclosure policy shock provides an ideal setting for applying an RD.

To motivate our RD analysis, consider average violations as a function of system size in

1998 illustrated in Figure 2.2. A clear drop in violations on the right side of the threshold

(blue vertical lines in the figure) compared to the left would provide evidence in the raw

data that an impact due to the information disclosure policy exists. Figure 2.2 does not

illustrate such a drop in violations. In fact, average violations increase immediately after

each threshold. And while average violations in 1998 fall sharply in the second bin to the

right of each disclosure threshold, the same appears to be true for average violations in

1997. At the very least, Figure 2.2 weakens the expectation we might have of finding an

effect from an RD, and due to the noise in the data illustrated by the figure, also implies

that results of any RD may be highly sensitive to functional form.

In each year of our sample we implement a linear and quadratic parametric RD, corre-
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sponding to Eq. (B.1) and Eq. (B.2) respectively.162 In each model, vi describes health-based

water quality violations from water system i for a given year in our sample, Ti refers to the

information disclosure treatment category, spi corresponds to the service population of water

system i, and k refers to information disclosure service population cutoff corresponding to

the publishing, mailing, or online posting requirement.

vi = βTi + α (spi − k) + γ (spi − k) Ti + εi (B.1)

vi = βTi + α1 (spi − k) + α2 (spi − k)2

+ γ1 (spi − k) Ti + γ2 (spi − k)2 Ti + εi

(B.2)

In the two models above, the estimate on T describes the average effect of the information

disclosure requirement at the cutoff k. If k = 501, the estimate on T describes the effect of

the publishing requirement. For k = 501, Ti = 1 for water systems serving more than 500

customers. If k = 10, 000, the estimate on T describes the effect of the mailing requirement.

For k = 10, 000, Ti = 1 for water systems serving at least 10,000 customers. Finally, if

k = 100, 000, the estimate on T describes the effect of the online posting requirement. For

k = 100, 000, Ti = 1 for water systems serving at least 100,000 customers.

Figure B.1 illustrates results from estimating the linear RD model, Eq. (B.1), in each year

of our sample. There appears to be little impact of being on either side of the publishing

threshold prior to the advent of the information disclosure policy (pre-1998),163 and a

noticeable drop in violations after the policy came into effect in 1998. And while the

magnitude of the violation reductions shrinks in each year after 1998, we cannot rule out the

possibility that reductions remain stable given the confidence intervals around our estimates.

Furthermore, our preferred differences-in-differences estimate of the reduction in violations

at the publishing threshold (indicated by the black dashed line in Figure B.1) falls within

the confidence intervals of our RD results in each year after 1998. Our RD results therefore

162Gelman and Imbens (2014) recommend against using higher order polynomials.

163The decrease in violations in 1997 may suggest some anticipatory behavior on the part of water systems,
though the impact in 1997 is nearly indistinguishable from zero.

148



-.1
-.0

5
0

.0
5

ch
an

ge
 in

 v
io

la
tio

ns
 a

t p
op

ul
at

io
n 

th
re

sh
ol

d

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Figure B.1: The effect of the publishing requirement considering a linear regression discontinuity. The figure
shows estimates and associated 95 percent confidence intervals of T from Eq. (B.1) with k = 501. We estimate
Eq. (B.1) separately for each year in our sample. The solid horizontal light gray line indicates zero effect, the
dashed black line illustrates our preferred point estimate from our differences-in-differences model, and the blue
vertical line delineates the post-information disclosure policy period.

validate the reductions we estimate in our differences-in-differences models, and at least

weakly support our conclusion that reductions in violations remain stable over time. We also

estimate (but do not show) a quadratic RD model, Eq. (B.2), and observe a nearly identical

pattern to what we observe in Figure B.1. The stability of the estimates across the linear

and quadratic specifications demonstrates the robustness of the RD results, which further

validates our differences-in-differences estimates of the effect of the publishing requirement.

We also test the robustness of the RD results at the publishing threshold by limiting the

sample to those water systems serving between 25 and 9,999 customers and re-estimating Eq.

(B.1) and Eq. (B.2). This limited set of water systems faces only the publishing information
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disclosure threshold and therefore avoids any bias stemming from including water systems

facing a different disclosure threshold. While not shown, the results from re-estimating Eq.

(B.1) with the limited sample demonstrate the same general pattern illustrated in Figure B.1.

However, estimating Eq. (B.1) and Eq. (B.2) with the limited sample produces imprecise

results, perhaps due to the smaller sample size.
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Figure B.2: The effect of the mailing requirement considering a linear regression discontinuity. The figure
shows estimates and associated 95 percent confidence intervals of T from Eq. (B.1) with k = 10, 000. We
estimate Eq. (B.1) separately for each year in our sample. The solid horizontal light gray line indicates zero
effect, the dashed black line illustrates our preferred point estimate from our differences-in-differences model,
and the blue vertical line delineates the post-information disclosure policy period.

Figure B.2 and Figure B.3 provide no evidence of any effect of the mailing or online

threshold. While not shown, we also generate quadratic RD estimates, as well as linear

and quadratic RD estimates with a limited sample, and find no effect due to the mailing

or online thresholds. These results validate our differences-in-differences estimates of the
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effect of the online threshold, but not of the mailing threshold. Overall then, our RD results

confirm the effect we estimate with the differences-in-differences models at the publishing

and online posting requirements, but do not support the results we find for the mailing

requirement. Resolving these discrepancies is the subject of ongoing investigation.
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Figure B.3: The effect of the online posting requirement considering a linear regression discontinuity. The
figures shows estimates and associated 95 percent confidence intervals of T from Eq. (B.1) with k = 100, 000.
We estimate Eq. (B.1) separately for each year in our sample. The solid horizontal light gray line indicates zero
effect, the dashed black line illustrates our preferred point estimate from our differences-in-differences model,
and the blue vertical line delineates the post-information disclosure policy period.

B.2 Additional robustness check

In our main results we include water systems subject to multiple disclosure methods. To

address any concern that including the full sample of systems biases our results, we run

models that include only those water systems affected by a single information disclosure
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requirement. To explore the publication requirement, we consider water systems that serve

up to 9,999 customers (i.e. we exclude water systems subject to the mailing and online

posting requirement). To isolate the effect of the mailing requirement, we consider two

samples: water systems serving more than 500 customers, and water systems serving

between 501 and 99,999 customers.164 To isolate the effect of the online posting requirement,

we consider systems serving 10,000 or more customers. Thus each sample considers water

systems impacted by only one form of information disclosure on either side of the service

population threshold.

Table B.1: Regression results illustrating the impact of the publishing requirement with systems limited to
those only impacted by the publishing requirement (i.e. we ignore systems required to mail or post the water
quality report online).

(1) (2) (3) (4)
Tpub × Post -0.034 -0.028 -0.032 -0.004

(0.004)*** (0.004)*** (0.004)*** (0.008)

f (size) -0.011 -1.689
(0.003)*** (0.513)***

f (size)2 7.9e-05 1.4e+01
(4.0e-05)** (6.2e+00)**

Service pop. range full < 10k full < 10k
adj. R2 0.25 0.25 0.25 0.25
Systems 46,900 42,752 46,900 42,752
Observations 562,800 513,024 562,800 513,024
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
All models include water system and state-by-year fixed effects.
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.

We find mixed evidence for our results being robust to sample size limitations. Table

B.1 shows that estimates of the publication requirement are consistent between the full

and limited samples when excluding the flexible function of system size (columns 1 and

164Systems subject to the online requirement must still mail the water quality report. Both samples therefore
compare systems that must mail to systems that must publish. The second sample perhaps isolates the mailing
requirement more precisely, since it considers systems that only must mail the report.
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2), but when including the flexible function of system size (columns 3 and 4), the effect

of the publication requirement vanishes under the limited sample. We observe similarly

in Table B.2; the estimates of the mailing requirement for the models that exclude the

Table B.2: Regression results illustrating the impact of the mailing requirement considering systems only
impacted by the mailing requirement.

(1) (2) (3) (4) (5) (6)
Tmail × Post -0.043 -0.023 -0.021 -0.040 -0.021 0.009

(0.006)*** (0.007)*** (0.007)*** (0.007)*** (0.007)*** (0.015)

f (size) -0.006 -0.004 -0.202
(0.003)** (0.003) (0.097)**

f (size)2 1.4e-05 -1.6e-05 1.7e-01
(3.7e-05) (3.6e-05) (1.1e-01)

Service pop. range full > 500 500-100k full > 500 500-100k
adj. R2 0.25 0.27 0.27 0.25 0.27 0.27
Systems 46,900 21,052 20,638 46,900 21,052 20,638
Observations 562,800 252,624 247,656 562,800 252,624 247,656
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
All models include water system and state-by-year fixed effects.
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.

flexible function of system size are consistent across sample size (columns 1, 2, and 3), but

with the flexible function of system size, the effect of the mailing requirement becomes

statistically indistinguishable from zero under increasingly limited samples (columns 4, 5,

and 6). We argue in section 2.4 that the flexible function of systems size isolates the effect at

the disclosure threshold. If this is true, then why does the presence of the flexible function

of systems size seem to render the results so sensitive to sample size? We suggest that

it could be a result of non-linearity in our data. The coefficient estimates of f (size) and

f (size)2 change by several orders of magnitude between the full sample and limited sample

in both Table B.1 and Table B.2. This suggests that non-linearity in our data from systems

serving between 500 and 100,000 customers drastically influence the shape of the flexible

function of system size that then ceases to influence results in the full sample.
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Finally, in Table B.3 we estimate the robustness of our online posting estimates to sample

limitations. Unlike the publishing and mailing requirements, estimates of the impact of

the online posting requirement are consistent across sample size for the model including

the flexible function of system size (columns 3 and 4). Estimates are not consistent across

sample size when considering the models that exclude the flexible function of system size

(columns 1 and 2). This suggests that the small systems drive the result in column 1. But

when we are able to isolate the effect at the online posting requirement, either by limiting

the sample size in column 2 or by including the flexible function of system size in columns

3 or 4, we find that the true effect of the online posting requirement is minimal.

Table B.3: Regression results illustrating the impact of the online posting requirement considering systems
only impacted by the online posting requirement.

(1) (2) (3) (4)
Tweb × Post -0.056 -0.017 -0.012 -0.010

(0.014)*** (0.016) (0.021) (0.021)

f (size) -0.016 -0.002
(0.005)*** (0.004)

f (size)2 1.5e-04 -5.0e-05
(6.3e-05)** (4.6e-05)

Service pop. range full ≥ 10k full ≥ 10k
adj. R2 0.25 0.24 0.25 0.24
Systems 46,900 4,146 46,900 4,146
Observations 562,800 49,752 562,800 49,752
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01
Water system clustered standard errors (reported in parentheses).
All models include water system and state-by-year fixed effects.
Flexible function of system size: f (size)n = Postt × sizen

i
size refers to the water system service population in 100,000s.
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