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Statistical Methods for Data with Latent Structures

ABSTRACT

This dissertation develops statistical methods to study and utilize the latent struc-
ture of data. Here, the latent structure of our interest include but are not limited to
latent heterogeneity of rank data, latent seasonal components of univariate time series
data, as well as latent factors and change-points of multivariate time series data. We
build all the models from a Bayesian perspective, and develop different types of statis-
tical inferences tailed for different motivations and purposes of real data applications.
This dissertation contains three self-contained chapters.

Chapter 1 studies rank aggregation problem with covariates and heterogeneous
rankers. We propose the Bayesian Aggregation of Rank-data with Covariates (BARC)
and its extensions not only to obtain a complete aggregated ranking list, but also to
study individual reliability and overall consistency of rankers. In specific, the two ex-
tensions consider varying qualities and heterogeneous ranking opinions of rankers,
respectively. We developed efficient full Bayesian inference via parameter-expanded
Gibbs sampler. Simulation studies show the superior performance of our methods
to other existing methods in a variety of scenarios. We finally exploit our proposed
method to solve real-data problems in sports and medical studies.

Chapter 2 studies the forecasting of unemployment initial claims with the help of In-
ternet search data. We presents a novel statistical method, Penalized Regression with
Inferred SeasonalityModule (PRISM) to better forecast (including nowcast) unemploy-
ment initial claims weeks into future. Our method PRISM is semi-parametric, as it
collectively considers a wide range of parametric time series models. We introduce
a general state space formulation that contains a variety of widely used time series
models as special cases, and a joint model with Internet search data to put all con-
temporaneous time series into a same system. We then derive a universal predictive
model for forecasting initial claim data from our general formulation, and develop a
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two-stage estimation procedure using nonparametric seasonal decomposition and L1
penalized regression. PRISM outperforms all alternatives in out-of-sample testing.

Chapter 3 introduces a Bayesian factor model with multiple change-points in the
quest for estimating time-varying covariance of high-dimensional time series. Under
the high-dimensional setting, we exploit spike-and-slab LASSO prior on factor load-
ings such that the estimated factor loadingmatrix is sparse and interpretable. On top of
factor model, we consider piecewise stationary distributions for the factors to accom-
modate the change over time. We then proposed an efficient EM algorithm to estimate
posterior mode of our proposed model by taking advantage of L1 regularized regres-
sion and algorithms for exact change-point detection. The number of factors and the
number of change-points are considered unknown and inferred coherently from ob-
served data and our model specification. In the application to real data examples, our
method delivers highly interpretable latent factor and meaningful change-points.
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Bayesian Aggregation of Rank Data

with Covariates and Heterogeneous

Rankers

1.1 INTRODUCTION

Combining ranking results from different sources is a common problem. Well-known

rank aggregation problems range from the election problem back in 18th century (Borda,

1781) to search engine results aggregation in modern days (Dwork et al., 2001). In this

paper, we tackle the problem of rank aggregationwith relevant covariates of the ranked

entities, as explained in detail in the following two applications.

Example 1 (NFL Quarterback Ranking) During the National Football League (NFL) sea-

son, experts from different websites, such as espn. com and nfl. com , provide weekly ranking

lists of players by position. For example, Table 1.1 shows the ranking lists of the NFL starting

quarterbacks from 13 experts in week 12 of season 2014. The ranking lists can help football

fans better predict the performance of the quarterbacks in the coming week and even place bets

in online fantasy sports games. After collecting ranking lists from the experts, the websites

mostly aggregate them using arithmetic means. Besides rankings, the summary statistics of the

NFL players are also available online. For example, Table 1.2 shows the statistics of the ranked
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quarterbacks prior to week 12 of season 2014. Not surprisingly, in addition to watching football

games, the experts may also use these summary statistics when ranking quarterbacks.

Table 1.1: Ranking lists of NFL starting quarterbacks from 13 different experts, as of week 12 in
the 2014 season.

Player τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13

Andrew Luck 1 1 1 3 3 1 1 1 1 1 1 1 1
Aaron Rodgers 2 3 4 2 1 2 3 3 2 2 3 4 3
Peyton Manning 3 2 5 4 2 3 2 2 3 4 4 2 2

Tom Brady 4 7 3 5 4 5 4 6 4 3 6 8 4
Tony Romo 9 5 6 1 5 4 5 4 5 5 7 6 6
Drew Brees 10 4 2 8 9 7 7 5 7 6 2 3 5

Ben Roethlisberger 6 8 7 7 7 6 6 10 6 7 5 7 7
Ryan Tannehill 5 6 13 6 11 8 8 7 9 9 8 5 8

Matthew Stafford 8 9 11 13 8 9 9 8 8 8 9 9 9
Mark Sanchez 22 10 9 9 16 10 10 9 10 10 12 12 12
Russell Wilson 12 13 17 10 10 12 11 12 11 12 11 14 15
Philip Rivers 7 14 15 20 6 17 17 11 16 15 14 10 10
Cam Newton 18 12 8 17 19 11 14 14 14 16 21 13 14
Eli Manning 17 – 18 19 14 19 12 13 12 13 16 23 11
Matt Ryan 21 17 19 15 20 15 15 15 13 11 20 21 13

Andy Dalton 15 – 14 – 17 14 16 20 15 14 19 22 16
Alex Smith 16 11 21 16 18 18 18 16 20 21 13 11 17

Colin Kaepernick 11 16 16 11 12 16 21 17 19 18 22 16 21
Joe Flacco 24 15 12 14 24 13 13 18 18 20 15 15 19
Jay Culter 13 18 10 12 13 21 19 19 17 17 23 20 18

Josh McCown 14 19 22 18 15 22 22 21 21 19 18 17 23
Drew Stanton 20 20 – 22 22 20 20 23 22 22 10 19 20

Teddy Bridgewater 23 21 20 21 23 23 23 22 23 24 17 18 22
Brian Hoyer 19 – – – 21 24 24 24 24 23 24 24 24

Source: http://fantasy.nfl.com/research/rankings, http://www.fantasypros.com/nfl/rankings/qb.php.

In Example 1, the primary goal is to obtain an aggregated ranking list of all players,

which is hoped to be more precise than the simple method using arithmetic means.

In particular, we want to incorporate the covariates (i.e., the summary statistics here)

of the players to improve the accuracy of rank aggregation. Moreover, according to

Table 1.1, most of the experts give very similar ranking lists, with a few exceptions

such as experts 4 and 5. Therefore, it is also important to discern the varying qualities

of the rankers, in order to diminish the effect of low-quality rankers and make the

aggregation results more robust.
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Table 1.2: Relevant statistics of the ranked quarterbacks, prior to week 12 of the 2014 NFL sea-
son. From left to right, the statistics stand for: number of games played; pass completion per-
centage; passing attempts per game; average passing yards per attempt; touchdown percentage;
intercept percentage; running attempts per game; running yards per attempt; running first down
percentage.

Player G Pct Att Avg Yds TD Int RAtt RAvg RYds R1st

Andrew Luck 11 63.40 42.20 7.80 331.00 6.30 2.20 4.20 4.20 17.50 30.40
Aaron Rodgers 11 66.70 31.10 8.60 268.80 8.80 0.90 2.50 6.40 16.20 50.00
Peyton Manning 11 68.10 40.20 8.00 323.50 7.70 2.00 1.50 -0.50 -0.70 0.00
Tom Brady 11 65.00 37.90 7.20 272.50 6.20 1.40 1.70 0.70 1.30 21.10
Tony Romo 10 68.80 29.50 8.50 251.90 7.50 2.00 1.50 2.50 3.70 20.00
Drew Brees 11 70.30 42.00 7.60 317.40 4.80 2.40 1.70 2.80 4.90 26.30
Ben Roethlisberger 11 68.30 37.50 7.90 297.30 5.80 1.50 1.90 1.10 2.10 19.00
Ryan Tannehill 11 66.10 35.40 6.60 234.70 5.10 2.10 3.70 6.70 25.10 36.60
Matthew Stafford 11 58.80 37.70 7.10 267.50 3.10 2.40 2.80 2.00 5.60 16.10
Mark Sanchez 4 62.30 36.50 8.10 296.80 4.80 4.10 3.50 0.60 2.00 7.10
Russell Wilson 11 63.60 28.50 7.10 202.70 4.50 1.60 7.60 7.70 58.50 45.20
Philip Rivers 11 68.30 33.00 7.80 257.70 6.10 2.50 2.50 2.50 6.40 25.00
Cam Newton 10 58.60 33.30 7.20 239.20 3.60 3.00 6.40 4.60 29.30 37.50
Eli Manning 11 62.30 36.90 7.00 257.50 5.20 3.00 0.80 3.80 3.10 33.30
Matt Ryan 11 65.10 38.50 7.20 278.70 4.50 2.10 1.60 4.30 7.10 33.30
Andy Dalton 11 62.40 30.70 7.10 219.40 3.60 3.00 3.80 2.50 9.50 33.30
Alex Smith 11 65.10 29.70 6.80 201.00 4.00 1.20 3.20 5.50 17.40 25.70
Colin Kaepernick 11 61.70 31.50 7.50 237.70 4.30 1.70 6.80 4.50 30.50 22.70
Joe Flacco 11 63.20 34.10 7.40 251.30 4.80 2.10 2.00 1.70 3.40 45.50
Jay Cutler 11 66.80 36.40 7.10 256.80 5.50 3.00 2.90 3.90 11.30 28.10
Josh McCown 6 60.40 30.30 7.40 225.00 3.80 4.40 2.70 5.80 15.30 50.00
Drew Stanton 6 53.60 25.20 7.10 178.20 3.30 2.00 3.00 2.00 6.00 22.20
Teddy Bridgewater 8 60.30 32.80 6.40 211.10 2.30 2.70 3.50 4.60 16.10 32.10
Brian Hoyer 11 55.90 33.20 7.80 260.40 3.00 2.20 1.80 0.90 1.50 20.00

Source: http://www.nfl.com/stats.

Example 2 (Orthodontics treatment evaluation ranking) In 2009, 69 orthodontics ex-

perts were invited by the School of Stomatology at Peking University to evaluate the post-

treatment conditions of 108 medical cases (Song et al., 2015). In order to make the evaluation

easier for experts, cases were divided into 9 groups, each containing 12 cases. For each group of

the cases, each expert evaluated the conditions of all cases and provided a within-group ranking

list, mostly based on their personal experiences and judgments of the patients’ teeth records.

In the meantime, using each case’s plaster model, cephalometric radiograph and photograph,

the School of Stomatology located key points, measured their distances and angles that are con-

sidered to be relevant features for diagnosis, and summarized these features in terms of peer
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assessment rating (PAR) index (Richmond et al., 1992). Table 1.3 shows 15 of the 69 ranking

lists for two groups, and Table 1.4 shows the corresponding features for these two groups.

Table 1.3: Ranking lists for Groups A and H, two of the 9 groups in Example 2

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15

A1 1 3 5 2 4 1 1 2 5 5 10 8 2 4 2
A2 11 5 10 9 9 12 9 7 11 12 4 7 5 6 5
A3 6 10 8 11 11 8 11 8 12 9 6 11 12 11 11
A4 3 2 4 3 1 4 2 10 1 6 8 2 1 1 1
A5 9 4 7 5 6 6 6 5 3 3 2 5 11 7 9
A6 10 9 3 6 5 11 5 9 6 7 3 1 6 8 7
A7 8 8 11 7 12 9 12 11 8 10 7 9 8 12 12
A8 4 1 1 4 3 2 4 4 2 1 1 6 3 2 6
A9 2 12 9 8 8 5 7 3 9 8 11 12 7 5 8
A10 7 11 6 10 10 7 8 6 7 11 9 3 10 9 4
A11 5 7 2 1 2 3 10 1 10 2 5 4 9 3 3
A12 12 6 12 12 7 10 3 12 4 4 12 10 4 10 10

H1 4 8 5 8 4 11 4 3 8 9 4 4 3 11 8
H2 1 2 4 5 2 7 2 2 1 2 1 1 2 2 1
H3 2 3 2 2 1 4 1 1 2 1 6 5 5 3 3
H4 3 4 3 4 3 3 3 4 3 4 7 7 1 1 2
H5 12 12 12 12 12 12 12 12 12 12 10 12 12 9 12
H6 6 5 1 1 6 2 7 5 7 3 5 3 7 4 6
H7 8 11 6 9 10 9 11 11 10 11 11 11 6 7 10
H8 11 6 8 3 7 1 6 6 6 6 8 8 4 8 9
H9 5 7 10 11 5 10 10 10 11 8 2 6 10 12 4
H10 10 9 9 7 9 5 5 7 5 7 12 9 11 5 7
H11 9 10 7 10 11 8 9 8 9 10 9 10 8 6 11
H12 7 1 11 6 8 6 8 9 4 5 3 2 9 10 5

The rank aggregation problem emerges naturally in Example 2 because the average

perception of experienced orthodontists is considered the cornerstone of systems for

the evaluation of orthodontic treatment outcome as described in Song et al. (2014).

However, Example 2 contains many “local” rankings among non-overlapping sub-

groups, and thus differs from Example 1 and most prevailing rank aggregation appli-

cations. Having been demonstrated to be associated with ranking outcomes by Song

et al. (2015), the covariates information not only helps in improving ranking accuracy,

but also is crucial for generating full ranking lists.
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Table 1.4: Below are 11 covariates measured based on peer assessment rating (PAR) index. From
left to right, the statistics stand for: Upper right segment; Upper anterior segment; Upper left seg-
ment; Lower right segment; Lower anterior segment; Lower left segment; Right buccal occlusion;
Left buccal occlusion; Overjet; Overbit; Centerline.

d1m d2m d3m d4m d5m d6m rbom lbom ojmm obm clm

A1 1.56 0.22 1.44 1.00 0.00 1.22 0.00 0.33 0.00 0.00 0.00
A2 1.33 0.22 1.00 0.33 0.00 0.33 0.00 0.33 0.00 0.33 0.00
A3 1.22 0.33 1.00 0.67 0.11 1.44 0.00 0.00 0.00 0.00 0.00
A4 0.00 0.00 0.11 1.78 0.22 1.89 0.33 0.67 0.00 0.00 0.00
A5 1.33 0.22 0.78 1.22 0.11 1.67 0.33 0.00 0.78 0.00 0.00
A6 1.11 0.56 1.78 0.89 0.22 0.89 0.67 1.00 0.78 0.00 0.00
A7 1.22 0.67 1.89 0.89 0.11 1.00 0.67 0.33 0.67 0.00 0.00
A8 1.44 0.22 1.56 0.89 0.22 0.56 2.00 2.00 0.00 0.00 0.00
A9 1.11 0.33 1.22 0.44 0.00 1.00 2.33 0.67 0.00 0.00 0.00
A10 0.67 0.11 0.89 0.11 0.00 0.00 0.67 1.00 0.00 0.67 0.00
A11 0.67 0.89 1.00 0.67 1.33 2.44 1.33 1.00 0.11 0.00 0.67
A12 0.67 0.11 0.22 1.00 0.00 0.56 0.33 1.33 0.00 0.33 0.00

H1 0.67 0.22 0.78 1.67 0.56 0.78 0.67 0.00 0.78 0.00 0.00
H2 1.56 0.56 0.22 0.44 0.00 0.11 0.00 0.67 0.00 0.00 0.00
H3 0.56 0.22 1.00 0.33 0.11 0.78 0.00 0.67 0.00 0.33 0.00
H4 0.56 0.22 0.67 0.44 0.11 0.44 0.67 1.00 0.00 0.00 0.00
H5 1.22 0.33 0.67 0.44 0.00 0.33 1.00 0.67 0.33 0.00 0.00
H6 0.56 0.11 1.33 1.22 0.00 1.33 1.00 0.67 0.22 0.00 0.00
H7 0.56 0.33 0.78 0.78 0.00 1.22 2.00 1.33 0.44 0.33 0.00
H8 0.78 0.22 1.56 0.89 0.00 0.33 1.67 2.00 0.00 0.00 0.00
H9 0.44 0.22 1.00 0.00 0.11 0.11 1.00 0.00 0.00 0.00 0.00

H10 1.11 0.33 1.78 0.22 0.22 0.33 1.33 1.67 0.00 0.00 0.00
H11 0.67 0.67 1.00 0.67 0.56 0.56 1.00 1.00 0.11 0.00 0.00
H12 1.22 0.78 1.00 0.33 0.33 0.67 1.00 0.67 0.56 0.00 0.00

Moreover, the individual reliability and overall consistency of these orthodontists

(or rankers) are critical concerns prior to rank aggregation (Liu et al., 2012; Song et al.,

2014). There could be heterogeneous quality or opinions among rankers as evidenced

by the ranking discrepancies in Table 1.3. For example, the ranking position of case A9

from the listed 15 experts ranges from 2 to 12. Therefore, Example 2 presents a rank

aggregation problem with covariates information and heterogeneous rankers.

RELATED WORK AND MAIN CONTRIBUTIONS

There are mainly two types of methods dealing with rank data. The first type tries to

find an aggregated ranking list that is consistent with most input rankings according
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to some criteria. For example, Borda (1781) aggregated rankings based on the arith-

metic mean of ranking positions, commonly known as Borda count; and Van Erp &

Schomaker (2000) studied several variants of Borda count. Dwork et al. (2001) pro-

posed to aggregate rankings based on the stationary distributions of certain Markov

chains, which are constructed heuristically based on the ranking lists; and DeConde

et al. (2006) and Lin (2010) extended this approach to fit more complicated situations.

Lin & Ding (2009) obtained the aggregated ranking list by minimizing its total distance

to all the input ranking lists, an idea that can be traced back to the Mallows model

(Mallows, 1957).

The second type of methods builds statistical models to characterize the data gen-

erating process of the rank data and uses the estimated models to generate the ag-

gregated ranking list (Critchlow et al., 1991; Marden, 1996; Alvo & Yu, 2014). The most

popular model for rank data is the Thurstone order statistics model, which includes the

Thurstone–Mosteller–Daniels model (Thurstone, 1927; Mosteller, 1951; Daniels, 1950)

and Plackett–Luce model (Luce, 1959; Plackett, 1975) as special cases. Together with

variants and extensions (Benter, 1994; Böckenholt, 1992), the Thurston model family

has been successfully applied to a wide range of problems (e.g., Gormley & Murphy,

2006, 2008a; Johnson et al., 2002; Gray-Davies et al., 2016). Briefly, the Thurstone model

assumes that there is an underlying evaluation score for each entity, whose noisy ver-

sion determines the rankings. In the Thurstone–Mosteller–Daniels and Plackett–Luce

models, the noises are assumed to follow the normal and Gumbel distributions, re-

spectively. The Plackett-Luce model can be equivalently viewed as a multistage model

that models the ranking process sequentially, where each entity has a unique param-

eter representing its probability of being selected at each stage up to a normalizing

constant.
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Challenges arise in the analysis of ranking data when (a) rankers are of different

qualities or belong to different opinion groups; (b) covariates information are available

for either rankers or the ranked entities or both; and (c) there are incomplete ranking

lists. Gormley&Murphy (2006, 2008a,b, 2010) developed the finitemixture of Plackett–

Luce models and Benter models (Benter, 1994) to accommodate heterogeneous sub-

groups of rankers, where both the mixing proportion and group specific parameters

can depend on the covariates of rankers. Böckenholt (1993) introduces the finite mix-

ture of Thurstone models to allow for heterogeneous subgroups of rankers; Yu (2000)

attempts to incorporate the covariates information for both ranked entities and rankers;

Johnson et al. (2002) examines qualities of several known subgroups of rankers; and

Lee et al. (2014) represents qualities of rankers by letting them have different noise lev-

els. See Böckenholt (2006) for a review of developments in Thurstonian-based analysis,

as well as some further extensions. Recently, Deng et al. (2014) proposed a Bayesian ap-

proach that can distinguish high-quality rankers from low-quality ones, and Bhowmik

& Ghosh (2017) proposed a method that utilizes covariates of ranked entities to assess

qualities of all rankers.

We here employ the Thurstone–Mosteller–Daniels model and its extensions because

they are flexible enough to deal with incomplete ranking list and can provide a unified

framework to accommodate covariate information of ranked entities, rankers with dif-

ferent qualities, and heterogeneous subgroups of rankers. In particular, we use the

Dirichlet process prior for the mixture subgroups of rankers, which can automatically

determine the total number of mixture components. Moreover, in contrast to focus-

ing on inferring parameters of Thurstone models in most previous studies, we focus

mainly on the rank aggregation and the uncertainty evaluation of the resulting aggre-

gated ranking lists.
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Computationally, the estimation for the Thurstone model is generally difficult due

to the complicated form of the likelihood function, especially when there are a large

number of ranked entities. To overcome the difficulty, Maydeu-Olivares (1999) trans-

formed the estimation problem to a one involvingmean and covariance structures with

dichotomous indicators, Yao & Böckenholt (1999) proposed a Bayesian approach based

on Gibbs sampler, and Johnson (2013) advocated the JAGS software to implement the

Bayesian posterior sampling. We here develop a parameter-expanded Gibbs sampler

(Liu & Wu, 1999), which facilitates group moves of the latent variables, to further im-

prove the computational efficiency. As demonstrated in the numerical studies, the

improvement of the new sampler over the standard one is significant.

The rest of this article is organized as follows. Section 2.2 elaborates on our Bayesian

models for rank data with covariates. Section 2.3 provides details of our Markov Chain

Monte Carlo algorithms. Section 1.4 introduces multiple analysis tools using MCMC

samples. Section 2.4 displays simulation results to validate our approaches. Section

1.6 describes the two real-data applications using the proposed methods. Section 2.6

concludes with a short discussion.

1.2 BAYESIAN MODELS FOR RANK DATA WITH COVARIATES

1.2.1 NOTATION AND DEFINITIONS

Let U be the set of all entities in consideration, and let n = |U | be the total number

of entities in U . We use i1 ≻ i2 to denote that entity i1 is ranked higher than entity i2.

A ranking list τ is a set of non-contradictory pairwise relations in U , which gives rise

to ordered preference lists for entities in U . We call τ a full ranking list if τ identifies

all pairwise relations in U , otherwise a partial ranking list. When τ is a full ranking
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list, we can equivalently write τ as τ = [i1 ≻ i2 ≻ . . . ≻ in] for notational simplicity,

and further define τ(i) as the position of an entity i ∈ U . Specifically, a high ranked

element has a small-numbered position in the list, i.e. τ(i1) < τ(i2) if and only if i1 ≻ i2.

Furthermore, for any vector z = (z1, . . . , zn)′ ∈ Rn, we use rank(z) = [i1 ≻ i2 ≻ . . . ≻

in] to denote the full ranking list of zi’s in a decreasing order, i.e., zi1 ≥ . . . ≥ zin .

As introduced in Examples 1 and 2, we also observe some covariates of ranked en-

tities. Let xi ∈ Rp be the p dimensional covariate vector of ranked entity i, and let

X = (x1,x2, . . . ,xn)′ ∈ Rn×p be the covariate matrix for all n entities. For clarification,

in the following discussion we use index i for ranked entities and index j for rankers,

with n and m denoting the total numbers of ranked entities and rankers, respectively.

1.2.2 FULL RANKING LISTS WITHOUT COVARIATES

Suppose we have m full ranking lists τ1, τ2, . . . , τm for entities in U = {1, 2, . . . , n}.

Thurstone (1927) postulated that the ranking outcome τj is determined by n latent

variables Zij’s, for 1 ≤ i ≤ n, where Zij represents ranker j’s evaluation score of the

ith entity, and Zi1 j > Zi2 j if and only if i1 ≻ i2 for ranker j. Define Zj = (Z1j, . . . ,Znj)′

as ranker j’s evaluations of all entities, and rank(Zj) as the associated full ranking list

based on Zj. Similar to Thurstone’s assumption, we assume that Zj follows a multi-

variate Gaussian distribution with mean µ = (µ1, . . . , µn)′ representing the underlying

true score of the ranked entities:

Zij = µi + ϵij, ϵij ∼ N(0, σ2) (1 ≤ i ≤ n; 1 ≤ j ≤ m)

τj = rank(Zj), (1 ≤ j ≤ m)
(1.2.1)
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where ϵij’s are jointly independently. Because we only observe the ranking lists τj’s,

multiplying (µ, σ) by a constant or adding a constant to all the µi’s does not influence

the likelihood function. Therefore, to ensure identifiability of the parameters, we fix

σ2 = 1 and impose the constraint that µ lies in the space Θ = {µ ∈ Rn : 1′µ = 0}.

Model (1.2.1) implies that the τj’s are independent and identically distributed (i.i.d.)

conditional on µ, so the likelihood function is

p(τ1, · · · , τm | µ) =
m

∏
j=1

p(τj | µ) =
m

∏
j=1

∫

Rn
p(τj | Zj,µ)p(Zj | µ)dZj,

where p(τj | Zj,µ) = 1{rank(Zj)=τj}. Specifically, for any possible full ranking list τ on

U = {1, 2, . . . , n}, the probability mass function is

P(τj = τ | µ) =
∫

Rn
1{rank(Zj) = τ} · (2π)−n/2e−

1
2 ∥Zj−µ∥2dZj.

Our goal is to generate an aggregated rank based on an estimate ofµ inmodel (1.2.1).

One approach is to use the maximum likelihood estimate (MLE) µ̂m defined as

µ̂m = argmax
µ

1
m

m

∑
j=1

log p(τj | µ).

We have the following consistency result for µ̂m with the proof deferred to the Supple-

mentary Material.

Theorem 1.2.1 Let true parameter value of model (1.2.1) beµ0 ∈ Θ, and we observe τ1, . . . , τm

generated from model (1.2.1). Let µ̂m be the MLE of µ0. Then, for any ϵ > 0 and any compact

set K ⊂ Θ, we have

P ({∥µ̂m −µ0∥2 ≥ ϵ} ∩ {µ̂m ∈ K}) → 0,
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as n is fixed and m → ∞.

Alternatively, we can employ a Bayesian procedure, which is more convenient to

incorporate prior information, to quantify estimation uncertainties, and to utilize ef-

ficient Markov chain Monte Carlo (MCMC) algorithms including data augmentation

(Tanner & Wong, 1987) and parameter expansion strategies (Liu & Wu, 1999). With a

reasonable prior, the posterior mean of µ is also a consistent estimator under the same

setting as in Theorem 1.2.1. Denote the prior of µ by p(µ). The posterior distribution

of µ and (Z1, . . . ,Zm) is

p(µ,Z1, . . . ,Zm | τ1, · · · , τm) = p(µ) ·
m

∏
j=1

p(Zj | µ) ·
m

∏
j=1

1{τj = rank(Zj)}.

We can then generate the aggregated ranking list as

ρ = rank (µ̃) = rank
(
(µ̃1, µ̃2, . . . , µ̃n)

′) (1.2.2)

where the µ̃i’s are the posterior means of the µi’s.

Let Pn = In − n−11n1′n denote the projection matrix that determines a mapping

from Rn to Θ. We choose the prior of µ, which is restricted to the parameter space Θ,

to be N
(
0, σ2

µPn

)
. The intuition for choosing this prior is that when µ ∼ N (0, σ2

µIn),

we have Pnµ ∈ Θ and Pnµ ∼ N (0, σ2
µPn). For computation, it is equivalent to using

the prior µ ∼ N (0, σ2
µIn) and considering the posterior mean of Pnµ ≡ µ− µ̄, where

µ̄ = n−1 ∑n
i=1 µi1n. In other words,

pπ1(µ | τ1, · · · , τm) = pπ2(µ− µ̄ | τ1, · · · , τm)

where π1 ∼ N
(
0, σ2

µPn

)
and π2 ∼ N (0, σ2

µIn) denote the prior of µ. More generally,
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although we restrict µ to the parameter space Θ, we only need to specify a prior for

unconstrained µ and make inference based on posterior distribution of µ− µ̄. There-

fore, under such Bayesian model setting, it is extremely flexible to extend the model to

incorporate covariate information, as illustrated immediately.

1.2.3 RANKING LISTS WITH COVARIATES

As in both examples, each ranked entity is associated with relevant covariates that are

available systematic information determining how a ranker ranks it. To incorporate the

covariate information into model (1.2.1), we assume that the score of entity i depends

linearly on the p-dimensional covariate vector xi, for i = 1, . . . , n. To avoid being too

restrictive, we allow the intercept term for each entity to be different. In sum, we have

the following over-parameterized model:

µi = αi + x′
iβ, (1 ≤ i ≤ n)

Zij = µi + ϵij, ϵij ∼ N (0, 1), (1 ≤ i ≤ n; 1 ≤ j ≤ m)

τj = rank(Zj), (1 ≤ j ≤ m)

(1.2.3)

where the ϵij’s are mutually independent.

Model (1.2.3) is over-parameterized because µ is invariant if we add a constant vec-

tor c to β and change αi to αi − x′
ic. As a result, the parameters α = (α1, . . . , αn) and

β are non-identifiable. However, the structure between µ and (α,β) help us construct

some informative priors on µ, incorporating the covariate information. Intuitively,

entities with similar xi’s should be close in the underlying µi’s. Such intuition is con-

formed by Model (1.2.3) with suitable priors on (α,β), because similar entities will

have higher correlation among their µi’s a priori. Model (1.2.3) can be helpful when the
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ranking information is weak and incomplete, and the covariate information is strongly

related to the ranking mechanism.

We further illustrate Model (1.2.3) using the quarterback data in Example 1. The

unobserved variable Zij represents ranker j’s evaluation for the performance of quar-

terback i. The expression αi + x′
iβ quantifies a hypothetically universal underlying

”quality” of the quarterback, and each ranker evaluates it with a personal variation

modeled by ϵij. The linear term x′
iβ can explain the part of their performance, but

there are many aspects in a football game that cannot be reflected through a linear

combination of these summary statistics. The term αi can capture the remaining “ran-

dom effect”. Without αi, Model (1.2.3) reduces to a rank regression model in Johnson

(2013), which can be too restrictive in some applications.

We set the prior p(α,β) ≡ p(α)p(β), where p(α) is simply N (0, σ2
α I) and p(β) is

N (0, σ2
β I). The hyper-parameter σα and σβ can reflect prior belief on the relevance of

covariates information to ranking mechanism. Intuitively, the stronger the belief on

the role of covariates, the smaller the ratio σ2
α/σ2

β will be chosen. We address the choice

of hyper-parameters (σ2
α , σ2

β) in the simulation studies. With this prior, the posterior

mean of µ− µ̄ = µ− (n−1 ∑n
i=1 µi)1n is our estimates for µ ∈ Θ. Below we name this

Bayesian approach based on model (1.2.3) as BARC, standing for Bayesian aggregation

of rank data with covariates.

1.2.4 WEIGHTED RANK AGGREGATION FOR VARYING QUALITIES OF RANKERS

In practice, the rankers in consideration may have different quality or reliability. In

these cases, a weighted rank aggregation is often more appropriate, where each ranker

j has a weight wj reflecting the quality of its ranking list. However, it is difficult to

design a proper weighting scheme in practice, especially when little or no prior knowl-
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edge of the rankers is available. To deal with this difficulty, we incorporate weights into

variance parameters in our model, and infer them jointly with other parameters. More

precisely, we model the ranker’s quality by the precision of the noise, i.e, extending

model (1.2.3) to the following weighted version:

µi = αi + x′
iβ, (1 ≤ i ≤ n)

Zij = µi + ϵij, ϵij ∼ N(0,w−1
j ), (1 ≤ i ≤ n; 1 ≤ j ≤ m) (1.2.4)

τj = rank(Zj), (1 ≤ j ≤ m)

where the ϵij’s are mutually independent and wj > 0. Note that the variance of ϵij,

which is the inverse of the ranker’s reliability measure wj, depends only on ranker j’s

quality, but does not depend on entity i.

The prior for the wj’s can be any distribution bounded away from zero and infinity

such as uniform and truncated chi-square distributions. A more restrictive choice is

to let the weights take only on a few discrete values. Our numerical study shows that

the more restrictive prior specification for the weights can lead to a much less sticky

MCMC sampler without compromising much in the precision of aggregated rank as

well as the quality evaluation of rankers. Specifically, we restrict wj to three different

levels for reliable, mediocre and low-quality rankers, separately. The corresponding

weights for these rankers are 2, 1 and 0.5, respectively, with equal probabilities a priori,

i.e.,

P(wj = 0.5) = P(wj = 1) = P(wj = 2) =
1
3
, (1 ≤ j ≤ m) (1.2.5)

where the wj’s are mutually independent. We call this weighted rank aggregation

method as BARCW, standing for Bayesian aggregation of rank data with entities’ co-
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variates and rankers’ (unknown) weights.

1.2.5 RANKER CLUSTERING VIA MIXTURE MODEL

Our previous models assume that the underlying score µ is universal to all rankers,

which can sometimes be too restrictive. Böckenholt (1993) and Gormley & Murphy

(2006, 2008a,b) suggested that there are often several categories of voters with very dif-

ferent political opinions in an election, and subsequently a mixture model approach

should be applied to cluster voters into subgroups. Differing from BARCW, which

studies differences in rankers’ reliabilities, this mixture model focuses on the hetero-

geneity in rankers’ opinions while assuming that all rankers are equally reliable.

A common issue in mixture models is to determine the number of mixture compo-

nents. Here we employ the Dirichlet process mixture model, which overcomes this

problem by defining mixture distributions with a countably infinite number of com-

ponents via a Dirichlet process prior (Antoniak, 1974; Ferguson et al., 1983). We first

extend Model (1.2.3) so that the underlying score of entities is ranker-specific:

µ(j) = α(j) +Xβ(j), (1 ≤ j ≤ m)

Zj = µ(j) + εj, εj ∼ N (0, In), (1 ≤ j ≤ m)

τj = rank
(
Zj

)
, (1 ≤ j ≤ m)

(1.2.6)

where X ∈ Rn×p is the covariate matrix for all ranked entities, µ(j) represents the

underlying true score for ranker j, and εj’s are jointly independent. We then assume

that the distribution of (α(j),β(j)) follows a Dirichlet process prior, i.e.

(α(j),β(j)) | G iid∼ G, G ∼ DP(γ,G0), (1.2.7)
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where G0 defines a baseline distribution on Rn × Rp for the Dirichlet process prior,

satisfying E(G) = G0, and γ is a concentration parameter. For the ease of understand-

ing, we can equivalently view model (1.2.6)-(1.2.7) as the limit of the following finite

mixture model with K components when K → ∞:

(π1, . . . ,πK) ∼ Dir(γ/K, . . . ,γ/K),

qj | π
iid∼ Multinomial (π1, . . . ,πK) , (1 ≤ j ≤ m)

(α⟨k⟩,β⟨k⟩)
iid∼ G0, (1 ≤ k ≤ K) (1.2.8)

µ⟨k⟩ = α⟨k⟩ +Xβ⟨k⟩, (1 ≤ k ≤ K)

Zj = µ⟨qj⟩ + εj, εj ∼ N (0, In), (1 ≤ j ≤ m)

τj = rank
(
Zj

)
, (1 ≤ j ≤ m)

where the latent variable qj ∈ {1, 2, . . . ,K} indicates the cluster allocation of ranker j,

and µ⟨k⟩ corresponds to the common underlying score vector for rankers in cluster k.

We choose the baseline distribution G0 on Rn × Rp using two independent zero-

meanGaussian distributionswith covariances σ2
αIn and σ2

βIp, i.e., G0 ∼ N (0, diag(σ2
αIn, σ2

βIp)).

Clearly, G0 is the same as the prior distribution of (α,β)we use in the previousmodels,

and the conjugacy between G0 and the distribution of Zj’s leads to a straightforward

Gibbs sampler as described in Neal (1992) and MacEachern (1994). Parameter γ rep-

resents the degree of concentration of G around G0 and, thus, is related to the number

of distinct clusters. According to the Pólya urn scheme representation of the Dirichlet

process in Blackwell & MacQueen (1973), the prior probability that a new ranker be-

longs to a different cluster with all m existing rankers is γ/(m+ γ − 1). In addition,

the expected number of clusters with in total m rankers is ∑m
j=1 γ/(j+ γ − 1) a priori.
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We discuss the sensitivity of this hyper-parameter in the simulation studies.

Under this Dirichlet process mixture model, we are interested in rank aggregation

within each cluster as well as rank aggregation across all clusters. The aggregated

ranking in each cluster k is determined by the order of µ⟨k⟩, or equivalently µ(j)’s with

cluster allocation qj = k. The aggregated ranking list across all clusters depends on the

underlying score of all rankers:

ρ = rank

(
m−1

m

∑
j=1

µ̃(j)

)
, (1.2.9)

where µ̃(j) is the posterior mean of the µ(j) for each ranker j. We regard this rank

aggregation method as BARCM, standing for Bayesian Aggregation of Rank data with

Covariates of entities and Mixture of rankers with different ranking opinions.

1.2.6 EXTENSION TO PARTIAL RANKING LISTS

Model (1.2.1),(1.2.3),(1.2.4) and (1.2.6) can all be applied when the observations are par-

tial ranking lists. Because we define ranking list as a set of non-contradictory pairwise

relations among ranked entities, partial ranking lists appear when any of the pairwise

relations is missing. Thus, besides the partial ranking list τj (1 ≤ j ≤ m), we also

observe the δj’s, which indicate which pairwise relationship is missing. Under latent

variable models, we denote τj ≃ rank(Zj) if the partial ranking list τj is consistent

with the full ranking list rank(Zj). Our models, BARC, BARCW and BARCM, for the

observed individual partial ranking lists are the same as in (1.2.3), (1.2.4) and (1.2.6)-

(1.2.7), except that τj = rank(Zj) is replaced by τj ≃ rank(Zj). Let θδ and θτ denote

the parameters for missing indicators δj’s and ranking lists τj’s, respectively. We can
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then write the likelihood of (δj, τj) as

p(δj, τj | θδ,θτ,X) = ∑
r:r≃τj

∫

Rn
p(δj | r,Zj,θδ,X)1{r = rank(Zj)}p(Zj | θτ,X)dZj.

If the pairwise relations are missing at random, in the sense that p(δj | r,Zj,θδ,X) =

p(δj | r̃, Z̃j,θδ,X) for all possible (r,Zj, r̃, Z̃j) such that r = rank(Zj) ≃ τj and r̃ =

rank(Z̃j) ≃ τj, then the likelihood of (δj, τj) can be simplified as

p(δj, τj | θδ,θτ,X) = p(δj | τj,θδ,X)
∫

Rn
1{τj ≃ rank(Zj)}p(Zj | θτ,X)dZj

If the priors for the parameters θδ and θτ are mutually independent, we can further

ignore the δj’s when conducting the Bayesian inference for the parameter θτ of ranking

mechanisms.

1.3 MCMC COMPUTATION WITH PARAMETER EXPANSION

We use Gibbs sampling with parameter expansion (Liu & Wu, 1999) in our Bayesian

computation for the latent variable models with covariates. We start with model (1.2.3)

and then generalize this MCMC strategy to two extended models, (1.2.4) and (1.2.6)-

(1.2.7). To simplify the notation, we define Z = (Z1, . . . ,Zm) ∈ Rn×m, T = {τj}mj=1,

V = (In,X) ∈ Rn×(n+p), and Λ = diag(σ2
αIn, σ2

βIp) ∈ R(n+p)×(n+p).

1.3.1 PARAMETER-EXPANDED GIBBS SAMPLER

The most computationally expensive part in our model is to sample all the Zij’s from

the truncated Gaussian distributions. Furthermore, because Z and (α,β) are inter-

twined together due to the posited regression model, they tend to correlate highly,
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similar to the difficulty of the data augmentation method introduced by Albert & Chib

(1993) for probit regression models.

To speed up the algorithm, we follow Scheme 2 in Liu & Wu (1999) and exploit

a parameter-expanded data augmentation (PX-DA) algorithm. In particular, we in-

troduce a group scale transformation of the “missing data” matrix Z, the evaluation

scores of all rankers for all ranked identities, indexed by a non-negative parameter θ,

i.e., tθ(Z) ≡ Z/θ. The PX-DA algorithm updates themissing dataZ and the expanded

parameters (θ,α,β) iteratively as follows:

1. For i = 1, . . . , n and j = 1, . . . ,m, draw [Zij | Z[−i],j,Z[−j],α,β] from N (αi +

x′
iβ, 1) with truncation points determined by Z[−i],j, such that Zij falls in the cor-

rect position according to τj, i.e., rank(Zj) ≃ τj.

2. Draw θ ∼ p(θ | Z, T ) ∝ p(tθ(Z))|Jθ(Z)|H(dθ). Here, |Jθ(Z)| = θ−nm is the

Jacobian of scale transformation, H(dθ) = θ−1dθ is the Haar measure on a scale

group up to a constant, and

p(tθ(Z)) ∝
∫

p(tθ(Z) | α,β)p(α)p(β)dαdβ ∝ exp
{
− S
2θ2

}
,

is the marginal density of latent variables evaluated at tθ(Z), where

S =
m

∑
j=1

Z ′
jZj −

m

∑
j=1

m

∑
k=1

Z ′
jV (Λ−1 +mV ′V )−1V ′Zk.

We can derive that θ2 ∼ S/χ2
nm.

20



3. Draw (α,β) ∼ p(α,β | tθ(Z)) ≡ N
(
η̂/θ, Σ̂

)
, where

η̂ = (Λ−1 +mV ′V )−1V ′
m

∑
j=1

Zj and Σ̂ = (Λ−1 +mV ′V )−1.

Below we give some intuition on why the PX-DA algorithm improves efficiency.

Without Step 2 and with tθ(Z) in Step 3 replaced by Z, the algorithm reduces to

the standard Gibbs sampler, which updates the missing data and parameters itera-

tively.The scale group move of Z under the usual Gibbs sampler is slow due to both

the Gibbs update for Z in Step 1 and the high correlation between Z and (α,β). To

overcome such difficulty, the PX-DA algorithm introduces a scale transformation of Z

to facilitate its group move and mitigate its correlation with (α,β). To ensure the va-

lidity of the MCMC algorithm, the scale transformation parameter θ has to be drawn

from a carefully specified distribution, such that the move is invariant under the target

posterior distribution, i.e., tθ(Z) follows the same distribution as the original Z un-

der stationarity. To aid in understanding, we provide a proof in the Supplementary

Material that the specified distribution of θ in Step 2 satisfies this property.

1.3.2 GIBBS SAMPLER FOR BARCW

Under Model (1.2.4) for BARCW, the Gibbs steps for [Z,β,α | T ,W ] is very similar

to that for [Z,β,α | T ] in the previous model for BARC, with details relegated to the

Supplementary Material. The additional step is to draw wj given all other variables.

For j = 1, . . . ,m, we draw discrete random variable wj from the following conditional
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posterior probability mass function:

p(wj | Z,w[−j],α,β, T ) ∝ p(wj)p(Z | α,β,w)

∝ w
n
2
j exp

(
−
wj

2

n

∑
i=1

(
Zij − x′

iβ− αi
)2
)
.

1.3.3 GIBBS SAMPLER FOR BARCM

Undermodel (1.2.6)-(1.2.7) for BARCM,we first represent the parameters {α(j),β(j)}mj=1

by cluster allocation vector q = (q1, . . . , qm) and cluster-wise parameters {α⟨k⟩,β⟨k⟩ :

k ∈ {q1, . . . , qm}}, and then use the MCMC algorithm to sample q, (α⟨k⟩,β⟨k⟩)’s and

Z = (Z1, . . . ,Zm).

Let Ak(q) = {j | 1 ≤ j ≤ m, qj = k} denote the set of rankers that belong to cluster

k given cluster allocation q. Due to the conjugacy between G0 and the distribution

of Zj’s, we can integrate out (α⟨k⟩,β⟨k⟩)’s when sampling q, and Gibbs sampling of q

given Z follows from Algorithm 3 in Neal (2000). Specifically, the Gibbs steps are as

follows:

1. For j = 1, . . . ,m, draw qj from

P
(
qj = k | Z, q[−j], T

)

∝ P
(
qj = k | q[−j]

) ∫
p
(
Zj | α⟨k⟩,β⟨k⟩

)
p
(
α⟨k⟩,β⟨k⟩ | Z[−j]

)
dα⟨k⟩dβ⟨k⟩

∝ P
(
qj = k | q[−j]

)
· exp

(
−1
2
Sk(q) +

1
2
Sk(q[−j])

)
,

where

Sk (q) = ∑
j∈Ak(q)

Z ′
jZj − ∑

j∈Ak(q)
∑

l∈Ak(q)

Z ′
jV

(
Λ−1 + |Ak(q)|V ′V

)−1
V ′Zk,
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|Ak(q[−j])| denotes the number of units except j that are in cluster k, and P
(
qj | q[−j]

)

is determined as follows:

If k = qi for some i ̸= j : P
(
qj = k | q[−j]

)
=

|Ak(q[−j])|
(m− 1+ γ)

P
(
qj ̸= qi for all i ̸= j | q[−j]

)
=

γ

(m− 1+ γ)
,

2. For each k ∈ {q1, . . . , qm}, we sample [ZAk(q),α
⟨k⟩,β⟨k⟩ | T , q] using very similar

Gibbs sampling steps as we sample [Z,α,β | T ] in the BARCmodel, with details

relegated to the Supplementary Material.

1.4 RANK AGGREGATION VIA MCMC SAMPLES

Following the Bayesian computation in the previous section, we can obtain MCMC

samples from the posterior distribution of (α,β) under BARC or BARCW, and from

the posterior distribution of (α(j),β(j))’s under BARCM. As described in (1.2.2) and

(1.2.9), we use the posterior mean of µi ≡ αi +x′
iβ’s to generate the aggregated ranking

list in BARC and BARCW, and use the posteriormean ofm−1 ∑m
j=1 µ

(j)
i = m−1 ∑k |Ak(q)|(α

⟨k⟩
i +

x′
iβ

⟨k⟩)’s in BARCM. Moreover, we have some byproducts from the Bayesian inference

besides the aggregated ranking lists, as illustrated below.

1.4.1 PROBABILITY INTERVAL FOR THE AGGREGATED RANKING LIST

In existing rank aggregation methods, people usually seek only one aggregated rank,

but ignore the uncertainty of the aggregation result. When we observe i ≻ j in a single

ranking list ρ, we cannot tell whether i is much better than j or they are close. The

Bayesian inference provides us a natural uncertainty measure for the ranking result.
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Under BARC or BARCW, suppose we have MCMC samples {µ[l]}Ll=1, from the pos-

terior distribution p(µ | τ1, · · · , τm). For each sample µ[l], we calculate a ranking list

ρ[l] = rank(µ[l]). We denote τ[l](i) as the position of entity i in ranking list ρ[l], and

define the (1− α) probability interval of entity i’s rank as

(
τLB(i), τUB(i)

)
=

(
τ( α

2 )
(i), τ(1− α

2 )
(i)

)
,

where τ( α
2 )
(i) and τ(1− α

2 )
(i) are the α

2 th and (1− α
2 )th sample quantiles of {τ[l](i)}Ll=1.

The construction of credible intervals for entities’ ranks under BARCM is very similar,

and thus is omitted here.

1.4.2 MEASUREMENTS OF HETEROGENEOUS RANKERS

In BARCW and BARCM, we aim to learn the heterogeneity in rankers and subse-

quently improve as well as better interpret the rank aggregation results. Both methods

deliver meaningful measures to detect heterogeneous rankers.

In BARCW, we assume that all rankers share the same opinion and the samples from

p(w | T )measure the reliability of the input rankers. In BARCM, we assume that there

exist a few groups of rankers with different opinions, despite all being reliable rankers.

The MCMC samples from p(q | T ) estimate ranker clusters with different opinions.

The number of clusters is determined by the number of distinct values in cluster allo-

cation q. The opinion of rankers in cluster k can be aggregated by the posterior means

of α⟨k⟩
i +x′

iβ
⟨k⟩’s. We compare both methods later in simulation studies and real appli-

cations.
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1.4.3 ROLE OF COVARIATES IN THE RANKING MECHANISM

As discussed in Section 1.2.3, the interpretation of α and β is difficult due to over-

parameterization. However, noting that the αi’s are modeled as i.i.d Gaussian random

variables with mean zero a priori, the posterior distribution of β still provides some

meaningful information about the role of covariates in the ranking mechanism. In-

tuitively, for each ranked entity i, the projection x′
iβ can be seen as the part of the

evaluation score µi linearly explained by the covariates, and αi as the corresponding

residual. The sign and magnitude of the coefficient βk for the kth covariate indicate

the positive or negative role of covariates and its strength in determining the ranking

list. In practice, we can incorporate nonlinear transformations of original covariates to

allow for more flexible role of covariates in explaining the ranking mechanism.

1.5 SIMULATION STUDIES

We adopt the normalized Kendall tau distance (Kendall, 1938) between ranking lists in

evaluation to compare our methods with other rank aggregation methods. Another

popular distance measure Spearman’s footrule distance (Diaconis & Graham, 1977) gives

very similar results and is thus omitted here.

1.5.1 COMPARISON BETWEEN BARC AND OTHER RANK AGGREGATION METH-

ODS

Recall that U is the set {1, . . . , n} of entities, and entity i has true value µi. We generate

m full ranking lists {τj}mj=1 via the following model:

τj = rank(Zj), where Zj
iid∼ N (µ, σ2In).
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We generate i.i.d. vectors xi = (xi1, . . . , xip)′ ∈ Rp from the multivariate normal distri-

bution with mean 0 and covariance Cov(xis, xit) = ρ|s−t| for 1 ≤ s, t ≤ p, and examine

three scenarios. In Scenario 1, the true difference between entities can be linearly ex-

plained by covariates. In Scenario 2, a linear combination of covariates can partially

explain the ranking. In Scenario 3, the ranking mechanism is barely correlated with the

covariates.

1. µi = xT
i β, where β = (3, 2, 1, 0.5)′, p = 4, and ρ = 0.2.

2. µi = xT
i β+ ∥xi∥2, where β = (3, 2, 1)′, p = 3, and ρ = 0.5.

3. µi = ∥xi∥2, where p = 4, and ρ = 0.5.

We first examine the impact of the noise level σ on the performance of BARC and

other rank aggregation methods. Fixing n = 50 and m = 10, we tried four differ-

ent values of σ (= 5, 10, 20, 40). For each configuration, we generated 500 simulated

datasets. We applied Borda Count (BC), Markov-Chain based methods (MC1, MC2,

MC3), Plackett–Luce based method (PL) and our BARC method. A brief review of the

aforementioned methods can be found in the Supplementary Material. When utilizing

BARC and its extensions, we input standardized covariates and set hyper-parameters

σα = 1 and σβ = 100 unless otherwise stated. Intuitively, with a small σα and a large

σβ, BARC would exploit the role of covariates in rank aggregation.

The Kendall’s tau distances between the true rank and the aggregated ranks pro-

duced by the sixmethods, averaged over the 500 simulated datasets, are plotted against

the noise level in Figure 1.1. We can observe that BARC uniformly outperformed the

competing methods in Scenarios 1 and 2 when the linear combination of covariates is

useful, and was competitive in scenario 3. The PL method underperformed all other

methods but MC1 due to its misspecified distributional assumption.
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Figure 1.1: Average distance between true rank and aggregated ranks of different methods. As
the covariates become increasingly dis-associated with the ranking mechanism from Scenarios 1 to
3, the advantage of BARC over existing methods shrank. Under these scenarios, the lines of MC2,
MC3 and Borda Count overlap. In Scenario 3, the results of MC2, MC3, Borda Count and BARC
are extremely close as the ranking does not associate with covariates linearly.

1.5.2 COMPUTATIONAL ADVANTAGE OF PARAMETER EXPANSION

Before we move to more complicated settings, we would like to use the above simu-

lation to demonstrate the effectiveness of parameter expansion in dealing with rank

data. We use Scenario 2 with noise level σ = 5 as an illustration. Figure 1.2 shows

that Gibbs sampler with parameter expansion reduces the autocorrelation in MCMC

samples compared to regular Gibbs sampler.
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Figure 1.2: The left panel is autocorrelation plot of β1 in parameter expanded Gibbs sampler;
The right panel is the autocorrelation plot of β1 in regular Gibbs sampler.
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1.5.3 BARC WITH PARTIAL RANKING LISTS

We further explore how BARC performs for aggregating partial ranking lists, where

subgroups have no overlap with each other. This is a similar situation as we observe

in Example 2. We simulated data from Scenario 2 with n = 80, m = 10 and p = 3.

We randomly divide these 80 entities into k (= 1, 2, 4, 8, 10, 16) subgroups, each with

size n/k. As k increases, the pairwise comparison information decreases. For example,

when k = 16, we have only 5.06% of all the pairwise comparisons in a partial ranking

list. Figure 1.3 displays the Kendall’s tau distances between the true rank and the

aggregated ranking lists inferred by BARC in different cases. BARC is quite robust with

respect to partial ranking lists when unobserved pairwise comparisons are missing

completely at random and the input ranking lists have moderate dependence on the

available covariates. In contrast, denoted by BAR in Figure 1.3, the BARC method

without using covariates is susceptible to partial lists.
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Figure 1.3: We applied BARC with two different settings for hyper-parameter σα to aggregate
partial ranking lists. For comparison, we also applied our method without using covariates, de-
noted as BAR. With the help of covariates, BARC’s performance were relatively unaffected by
the increase of the incompleteness of the ranking lists. BARC is also robust with hyper-parameter
choices—the BARC lines with different values of σα (i.e., 0.5 and 1) were very close to each other.
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1.5.4 BARCM FOR HETEROGENEOUS OPINIONS IN RANKING LISTS

In real world, there can be a few groups of rankers with different opinions, despite

all being reliable rankers. Dirichlet process mixture model (1.2.6)-(1.2.7) clusters the

rankers and can automatically determine the total number of clusters. Here, we use

simulation to study the sensitivity of BARCM to hyper-parameter γ in the Dirichlet

process prior. In addition, we explore the performance of BARCW under this misspec-

ified model setting.

We simulated under the BARC model with three mixture components. Mimicking

the dataset in Example 2, we have m = 69 rankers, p = 11 covariates each entity,

and n = 108 entities divided into 9 non-overlapping groups of equal size. The cat-

egories of rankers are generated with probability π = (0.5, 0.3, 0.2). The covariates

xi’s are generated from multivariate normal distribution with mean 0 and covariance

Cov(xis, xit) = (0.2)|s−t|, and the coefficients are generated from β⟨k⟩ iid∼ N (0, Ip) and

α⟨k⟩
i

iid∼ N (0, 22) for k = 1, 2, 3 and i = 1, . . . , n. The noise level is fixed at σ = 1. Ta-

ble 1.5 shows the average clustering accuracy under different hyper-parameters. The

clustering accuracy here is measured by Rand Index, which is the percentage of pair-

wise clustering decisions that are correct (Rand, 1971). The hyper-parameters clearly

impacts the number of clusters in the mixture model, but the results are quite robust in

terms of the clustering error.

Table 1.5: Clustering analysis under heterogeneous setting: average clustering accuracy and num-
ber of clusters given by BARCM over 100 simulations under each γ value.

γ = m−1 γ = m−1/2 γ = 1 γ = m1/2

Clustering accuracy 0.994 0.990 0.987 0.979
Expected # of clusters a posteriori 3.629 4.162 4.671 5.746
Expected # of clusters a priori 1.069 1.557 4.819 18.986
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We also applied BARCW to this simulated data set. Figure 1.4 shows that the minor-

ity opinions are down-weighted by BARCW, which assumes that all rankers share the

same opinion. As a result, BARCW reinforces the majority’s opinion in rank aggrega-

tion. In practice, we recommend to apply BARCM to check if there are several sizable

ranker subgroups. By studying rankers’ heterogeneity, we can better understand our

ranking data even if we seek only one aggregated ranking list.
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Figure 1.4: Box plot of weights by ranker categories given by BARCW in 100 simulations. Ranker
category with the largest proportion is weighted higher than the other two.

1.5.5 ROBUSTNESS OF BARCM AND BARCW UNDER HOMOGENEOUS SET-

TING

In contrast to the simulation with heterogeneous ranker qualities or opinions, we also

simulated the BARCmodel under the homogeneous setting to verify the robustness of

BARCM and BARCW. The simulation is the same as 1.5.4 except that all rankers are

from one component with equal qualities. Table 1.6 shows the average clustering accu-

racy under different hyper-parameters. Figure 1.5 shows the histogram of the rankers’

weights given by BARCW. Under this homogeneous setting, BARCM clustered the

rankers into one group, and BARCW assigned the rankers’ weights mostly near the

maximum.
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Table 1.6: Clustering analysis under homogeneous setting: average clustering accuracy and num-
ber of clusters given by BARCM over 100 simulations under each γ value.

γ = m−1 γ = m−1/2 γ = 1 γ = m1/2

Clustering accuracy 1.000 0.999 0.998 0.993
Expected # of clusters a posteriori 1.007 1.033 1.057 1.215
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Figure 1.5: Histogram of rankers’ weights given by BARCW in 100 simulations under homoge-
neous setting. Almost all the rankers are learned to be reliable.

1.6 ANALYSES OF THE TWO REAL DATA SETS

1.6.1 AGGREGATING NFL QUARTERBACK RANKINGS

Ranking NFL quarterbacks is a classic case where experts’ ranking schemes are clearly

related to some performance statistics of the players in their games. Information in

Tables 1.1 and 1.2 enables us to generate aggregated lists using both rank data and the

covariates information, as shown in Table 1.7. For quarterbacks at the top and bottom

of the list, these methods mostly agree with each other. Among all compared rank

aggregation results, the PL method has the largest discrepancy with other methods,

especially in the bottom half where the ranking uncertainty is large. Some diagnostics

plots for MCMC convergence are provided in the Supplementary Material.
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Table 1.7: Rank aggregation results of NFL quarterbacks listed in the order of BARCW posterior
means. The rankings are listed to the right of the underlying values given by rank aggregation
methods.

Player BARCW µ Rank BARC µ Rank BC Rank PL.γ Rank MC3.π Rank

Andrew Luck 6.518 1 6.069 1 1.286 1 0.361 1 0.207 1
Aaron Rodgers 4.76 2 4.635 2 2.571 2 0.195 2 0.137 2
Peyton Manning 4.466 3 4.39 3 3 3 0.171 3 0.12 3
Tom Brady 2.937 4 2.942 4 5.071 4 0.072 4 0.071 4
Tony Romo 2.805 5 2.744 5 5.214 5 0.062 5 0.07 5
Drew Brees 2.469 6 2.448 6 5.857 6 0.043 6 0.063 6
Ben Roethlisberger 2.149 7 2.094 7 6.571 7 0.035 7 0.052 7
Ryan Tannehill 1.435 8 1.342 8 8 8 0.020 8 0.04 8
Matthew Stafford 0.965 9 0.72 9 8.857 9 0.015 9 0.034 9
Mark Sanchez -0.005 10 -0.098 10 11.5 10 0.005 11 0.023 10
Russell Wilson -0.716 11 -0.496 11 12.214 11 0.005 10 0.021 11
Philip Rivers -0.93 12 -0.602 12 13.214 12 0.003 12 0.02 12
Cam Newton -1.197 13 -1.136 13 14.5 13 0.002 13 0.017 13
Matt Ryan -1.413 14 -1.474 14 16.357 15 0.001 15 0.014 15
Eli Manning -1.474 15 -1.497 15 16.071 14 0.002 14 0.014 14
Alex Smith -1.793 16 -1.717 17 16.714 16 0.001 17 0.013 16
Colin Kaepernick -1.813 17 -1.601 16 16.786 17 0.001 18 0.013 17
Joe Flacco -1.815 18 -1.778 19 16.929 18 0.001 20 0.013 18
Jay Culter -1.884 19 -1.726 18 17.143 19 0.001 19 0.013 19
Andy Dalton -1.987 20 -2.052 20 17.357 20 0.001 16 0.012 20
Josh McCown -2.733 21 -2.645 21 19.5 21 0.001 21 0.01 21
Drew Stanton -2.812 22 -2.823 22 20.286 22 0.001 22 0.009 22
Teddy Bridgewater -3.476 23 -3.378 23 21.714 23 0.000 23 0.008 23
Brian Hoyer -4.462 24 -4.361 24 23.286 24 0.000 24 0.007 24

Figure 1.6 shows the 95% probability interval for each quarterback’s rank under both

BARC and BARCW. We can see that the interval width is large for mediocre quarter-

backs, and that is exactly where a majority of discrepancies occurred among different

rankers and different rank aggregation methods. The interval estimates of aggregated

ranks can separate several elite quarterbacks from the others.

All methods except BARCW assume equal reliability for all input lists. Figure 1.7

shows the posterior boxplots and posteriormeans of theweights. Out of the 13 rankers,

seven are inferred to have significantly higher quality than the other six rankers. We

further validated our weights estimation using the prediction accuracy of each expert

at the end of the season. Table 1.8 shows the means and standard deviations of two

well separated groups of rankers.

Figure 1.8 gives us intuition about the role of covariates in our rank aggregation. TD

and Int, which stand for percentage of touchdowns and interceptions thrown when
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Figure 1.6: Interval estimates of aggregated ranks of NFL quarterbacks, as of week 12 in the
2014 NFL season. The plot on the left is given by BARC, and the right one is from BARCW. The
differences between these two results are very small. For example, BARCW separates the interval
estimate of Matthew Stafford and Mark Sanchez after down-weighting a few rankers.

Table 1.8: Summary of 13 experts’ prediction accuracy evaluated after the 2014 NFL season.
Throughout the season, FantasyPros.com compare each expert’s player preference to the actual
outcomes. The prediction accuracy is calculated based on the incremental fantasy points implied
by ranking lists.

“reliable” rankers “unreliable” rankers
mean (accuracy) 0.589 0.550
sd (accuracy) 0.013 0.027

attempting to pass, are the most significant covariates; touchdowns have a positive

effect, while interceptions have a negative one. Based on our football common sense,

touchdowns and interceptions can directly impact the result of a game.

1.6.2 AGGREGATING ORTHODONTICS DATA

As mentioned in Section 1, the orthodontics data set contains 69 ranking lists for each

of the 9 groups of the orthodontic cases. With ranking lists produced by a group of

high-profile specialists, the rank aggregation problem emerges because the average

perception of experienced orthodontists is considered the cornerstone of systems for

the evaluation of orthodontic treatment outcome (Liu et al., 2012; Song et al., 2014,
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Figure 1.7: Boxplots of posterior samples of weights given by BARCW. Red cross marks the pos-
terior means of weights. Black points are samples outside of the range between first and third
quartile of the posterior samples, and black lines are collapsed boxes when interquartile range is 0.
Seven experts are learned to be reliable rankers.
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Figure 1.8: Posterior mean and 95% probability interval of β given by BARCW in aggregating
quarterback rankings. Please refer Table 1.2 for the covariates information, and each column of
covariates are standardized when applied in BARCW.

2015). The covariates for these cases are objective assessments on their teeth. It is quite

difficult to aggregate ranking lists of many non-overlapping subgroups, as covariates

are the only source of information available in bridging different groups. In addition,

Table 1.3 shows that the rankers did not have very similar opinions.

Previously, Liu et al. (2012) and Song et al. (2014) assessed the reliability and the

overall consistency of these experienced orthodontists through simple statistics includ-

ing Spearman’s correlation among these highly incomplete ranking lists within each

subgroup of cases. To gain deeper understanding of these ranking lists, we first study
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Figure 1.9: Kendall tau distance of posterior mean of µ(j)s based on BARCM result. The ranking
discrepancy increases as the color shifts from dark to light.

the heterogeneity among rankers using BARCM.We applied Dirichlet process mixture

model with γ = 1. The 69 experts are clustered into 24 subgroups. The sizes of the

leading three clusters are (19, 9, 6). Other clusters have fewer than 5 rankers each. Fig-

ure 1.9 shows the Kendall tau distances among the posterior means of the µ(j)s, which

are the underlying ranking criteria of all rankers. We see that almost half of the rankers

cannot be grouped into sizable clusters, indicating that their opinions are closer to the

baseline distribution in Dirichlet process than to other rankers. Because a ranking lists

drawn from the baseline distribution is just noise, the rankers in the small groups ei-

ther were unreliable rankers, or used information other than the available covariates

in their ranking systems.

We subsequently applied BARCW to this data set. Figure 1.10 shows the box plot of

rankers’ weights by their estimated clusters from BARCM. The rankers in the largest
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Figure 1.10: Boxplots of rankers’ weights by clusters. The weight of ranker j is given by the pos-
terior mean of wj in BARCW. The clusters are estimated from BARCM ordered by their size. The
sizes of clusters 1-3 are (19, 9, 6), while “other” combines all rankers from the remaining 21 frag-
mented clusters.

cluster are mostly considered reliable rankers, while the rankers in the small clusters

are labeled as low-quality rankers. Implied by lower weights, the noisier ranking eval-

uation explains why the small-size clusters are not combined into the big ones. The

weights of rankers in cluster 2 and cluster 3 are around the middle. This result is

similar to our demonstration using simulation in Section 1.5.4. Among clusters 1-3,

BARCW tends to down-weight the minority opinions when heterogeneous opinions

exist. Based on the results from BARCM and BARCW, we conclude that there are three

ranking opinions among half of the experts, while the others have considerable dis-

crepancy that can be attributed to low individual reliability.

Finally, we use both BARCW and BARCM for rank aggregation. The key to aggre-

gate these nine non-overlapping groups of patients is to figure out the rank of patients’

orthodontics conditions using, but not overly relying on, the covariates. Tables 1.9 and

1.10 show the top and bottom cases in aggregated ranking lists. Recall that BARCM

aggregates opinions of the whole sample by averaging over all clusters with their cor-

responding proportions. The results from BARCW and BARCM are quite consistent
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with each other although they employed different assumptions. The Kendall distance

between these two aggregated lists is 0.047. It supports our conclusion that rankers’

discrepancy can be mostly explained by their heterogeneous reliability.

Table 1.9: The five cases that are considered to have the best conditions based on rank aggrega-
tion.

BARC BARCW BARCM Cl. 1 Cl. 2 Cl. 3
1 H2 G7 G7 E2 A1 G7
2 E2 E2 E2 H3 G7 A1
3 G7 H2 H2 G7 H2 E2
4 H3 H3 H3 H2 E2 A4
5 H4 H4 A1 F8 H4 H4

Table 1.10: The five cases that are considered to have the worst conditions based on rank aggre-
gation.

BARC BARCW BARCM Cl. 1 Cl. 2 Cl. 3
108 F4 F4 F4 H5 F4 F4
107 H5 H5 F10 F10 F10 F10
106 F10 F10 H5 F4 H5 E6
105 E6 E6 E6 D11 D11 H5
104 D11 D11 D11 E6 E6 E8

Figure 1.11 shows coefficient plot of β in BARCW. It illustrates the role of covari-

ates in our rank aggregation, especially in positioning those non-overlapping groups.

Among the covariates, overjet, overbite and centerline all measure certain types of

overall displacement, and thus are generally considered to have stronger negative ef-

fect compared to the other local displacements in this study.

1.7 DISCUSSION

We described three model-based Bayesian rank aggregation methods (BARC, BARCW,

BARCM) for combining different ranking lists when some covariates for the entities in
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Figure 1.11: Posterior mean and 95% probability interval of β given by BARCW in aggregating
orthodontics data. Please refer Table 1.4 for the covariates information, and each column of co-
variates are standardized when applied in BARCW.

consideration are also observed. With the help of covariates, these methods can accom-

modate various types of input ranking lists, including highly incomplete ones. Un-

der the assumption of homogeneous ranking opinion, BARCW learns the qualities of

rankers from data, and over-weighs high quality ones in rank aggregation. BARCM, on

the other hand, studies the possibility of having heterogeneous opinion groups among

rankers under the same framework. All three methods generate uncertainty measures

for the aggregated ranks. Our simulation studies and real-data applications validate

the importance of covariate information and our estimation of rankers’ qualities and

their heterogeneous opinions.

We note that our methods consider only the covariate information of the ranked en-

tities. It is of interest to further incorporate available covariate information of rankers,

which can be helpful for detecting rankers’ qualities and clustering rankers into sub-

groups with different opinions. We leave this extension of BARC for a further work.

The foundation of our rank datamodeling is the Thursthone-Mosteller-Danielsmodel,

which can be extended in many ways. Although these models have been around

for a long time, the standard MCMC procedure for their Bayesian inference does not

mix well for our real-data applications due to the entangled latent structure of the
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models. We took advantage of the conjugacy of Gaussian distributions and exploited

parameter-expanded Gibbs sampler to improve the computation efficiency. We can

also speed up the MCMC algorithm through parallelization when there are many

rankers, i.e., when m is large. For all the three models, BARC, BARCW and BARCM,

we can parallelize the Gibbs steps for updating {Zj}mj=1 givenµ, or equivalently (α,β).

However, this full Bayesian inference still has its limitation in computational scalability

when dealing with very large datasets such as those arisen from voting. An interesting

future work is to develop approximate likelihood and Bayesian priors for the BARC

model family under “big-data” settings that can enable us to do both efficient point

estimation and approximate Bayesian inference.
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2
Forecasting unemployment using

Internet search data

2.1 INTRODUCTION

Driven by the growth and wide availability of Internet and online platforms, big data

are generated with an unprecedented speed nowadays. They offer the potential to

40



inform and transform decision making in industry, business, social policy and public

health (McKinsey Global Institute, 2011;McAfee & Brynjolfsson, 2012; Chen et al., 2012;

Khoury & Ioannidis, 2014; Kim et al., 2014; Murdoch & Detsky, 2013). Big data can be

used for developing predictive models for systems that would have been challeng-

ing to predict with traditional small-sample-based approaches (Einav & Levin, 2014;

Siegel, 2016). For instance, numerous studies have demonstrated the potential of using

Internet search data in tracking influenza outbreaks (Ginsberg et al., 2009; Yang et al.,

2015), dengue fever outbreaks (Yang et al., 2017), financial market returns (Preis et al.,

2013), consumer behaviors (Goel et al., 2010), unemployment (Ettredge et al., 2005;

Choi & Varian, 2012) and housing prices (Wu & Brynjolfsson, 2015).

In this article, we focus on using Internet users’ Google search to forecast US unem-

ployment initial claims weeks into the future. Unemployment initial claims measure

the number of jobless claims filed by individuals seeking to receive state jobless bene-

fits. It is closely watched by government and the financial market, as it provides timely

insight into the direction of the economy. A sustained increase of initial claims would

indicate rising unemployment and a challenging economic environment.

Weekly unemployment initial claim is the (unadjusted) total number of actual initial

claims filed under the Federal-State Unemployment Insurance Program in each week

ending on Saturday. The Employment and Training Administration (ETA) of the U.S.

Department of Labor collects the weekly unemployment insurance claims reported

by each state’s unemployment insurance program offices, and releases the data to the

public at 8:30 A.M. (eastern time) on the following Thursday. Thus, the weekly unem-

ployment initial claim data are reported with a one-week delay in the sense that the

number reported on Thursday of a given week is actually the unemployment initial

claim number of the preceding week. For accessing the general economic trend, it is,
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therefore, highly desirable for government agencies and financial institutions to pre-

dict the unemployment situation of the current week, which is known as nowcasting

(Giannone et al., 2008), as well as weeks into the future. In this article, we use the gen-

eral phrase forecasting to cover both nowcasting (the current week) and predicting into

future weeks.

In contrast to the unemployment reports by the Department of Labor, which is one

week behind real time, Internet users’ online search of unemployment related query

terms provides highly informative and real-time information for the current unemploy-

ment situation. For instance, a surge of people’s Internet search of “unemployment

office”, “unemployment benefits”, “unemployment extension”, etc. in a given week

could indicate an increase of unemployment of that week compared to the week be-

fore, as presumably more people unemployed are searching for information of getting

unemployment aid. Therefore, Internet search data, offering a real-time “peek” of the

current week, augments the delayed official time-series unemployment data. In this

article, we study how to effectively combine the real-time Internet search information

and the traditional time series information to forecast unemployment initial claims.

The Internet search data that we use are publicly available from Google Trends, which

will be detailed in Section 2.1.1.

In developing an effective way to forecast weekly unemployment initial claims with

Internet search data, there are several main challenges. First, the volatile seasonality

pattern accounts for most of the variation of the targeted time series. Figure 2.1 plots

the weekly unemployment initial claims from 2000 to 2016; the seasonal spikes are par-

ticularly noteworthy. A prediction method should address and utilize the strong sea-

sonality in order to achieve good prediction performance. Second, the method needs

to effectively incorporate the most up-to-date Internet search data into the modeling
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Figure 2.1: Weekly unemployment initial claims in 2000-2016.

of targeted time series. Third, as people’s search pattern and the search engine both

evolve over time, the method should be able to incorporate this dynamic change.

When dealing with seasonality, most time series models rely on state space models,

where the latent components capture the trend and seasonality (Aoki, 1987; Harvey,

1989). Among the time series models, structural time series models and innovation

state space models are two main frameworks (Harvey & Koopman, 1993; Durbin &

Koopman, 2012; Hyndman et al., 2008). Both frameworks come with various exten-

sions of seasonal pattern modeling and often incorporate exogenous signals as regres-

sion components (see Section 2.2 for more detailed discussion).

For nowcasting time series with seasonal pattern, Scott & Varian (2013, 2014) re-

cently developed a Bayesian method based on the structural time series model, and

applied the method to nowcast unemployment initial claims with Google search data.

Their method took the search data as regressors, and used a spike-and-slab prior for

variable selection. Alternative to this regression formulation, Banbura et al. (2013) pro-

posed a nowcasting method using a factor model, in which targeted time series and

related exogenous time series are driven by common factors.
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In this article, we introduce a novel prediction method PRISM, which stands for

Penalized Regression with Inferred Seasonality Module, for forecasting times series

with seasonality, and use it to forecast unemployment initial claims. Our method is

semi-parametric in nature; it takes advantage of both the state space formulation for

time series forecasting and penalized regression that is effective and computationally

efficient for large datasets. In particular, we formulate a novel state space model that

contains a variety of widely used time series models as special cases, including struc-

tural time series models and additive innovation state space models. We then derive

a universal predictive model for forecasting initial claim data that is coherent with all

possible models under our state space formulation, and develop a two-stage estima-

tion procedure PRISM using nonparametric seasonal decomposition and L1 penalized

regression.

With the semi-parametric method PRISM, we significantly expand the range of time

series models for forecasting, going beyond the traditional approaches, which are often

tailored for individual parametric models. From a methodological standpoint, PRISM

offers a robust and more accurate forecasting alternative to traditional parametric ap-

proaches (owing to its robustness against model misspecification). PRISM effectively

addresses the three aforementioned challenges in forecasting time series with strong

seasonality. First, our method accommodates various nonparametric and model-based

seasonal decomposition tools, and effectively incorporates the estimated seasonal com-

ponents into predictive modeling. It thus can robustly handle complex seasonal pat-

terns. Second, different from the traditional regression formulation, our joint modeling

of the targeted time series and the exogenous variables accommodates the potential

causal relationship between them — people do online Google search in response of

being unemployed. Third, PRISM uses dynamic forecasting — training its predictive
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equation each weak for the forecasting — and utilizes rolling window and exponential

weighting to account for the time-varying relationship between the targeted time series

and the exogenous variables. From an applied standpoint, we applied PRISM to the

forecasting of unemployment initial claim data; our method delivers superior perfor-

mance over all existing forecasting methods for the entire time period of 2007− 2016,

and is exceptionally robust to the ups and downs of the general economic environment,

including the huge volatility caused by the 2008 financial crisis. While we concentrate

the discussion on unemployment initial claims in this article, PRISM can be applied to

forecasting other time series with seasonal pattern.

2.1.1 INITIAL CLAIMS DATA AND INTERNET SEARCH DATA FROM GOOGLE

The weekly (non-seasonally adjusted) initial claims are our targeted time series. The

initial claims for the preceding week are released every Thursday. The time series of

the initial claims from 1967 to present is available at https://fred.stlouisfed.org/

series/ICNSA. Figure 2.1 shows the weekly initial claims data in 2000-2016.

The real-time Internet search data we use were obtained from Google Trends (www.

google.com/trends). The Google Trends website, which is publicly available, pro-

vides weekly (relative) search volume of search query terms specified by a user. Specif-

ically, for a user-specified query term, Google Trends provides integer-valued weekly

times series (after 2004); each number in the time series, ranging from 0 to 100, repre-

sents the search volume of that search query term in a given week divided by the total

online search volume of that week; and the number is normalized to integer values

from 0 to 100, where 100 corresponds to the maximum weekly search within the time

period (also specified by the user). Figure 2.2, the upper panel, illustrates the Google

Trend time series of several search query terms in a 5-year span. Comparing these time
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series to the lower panel of the unemployment initial claims of the same time period,

they evidently provide noisy signal about the latter.

The search query terms that we use in our study are also identified from the Google

Trends tool. One feature of Google Trends is that, in addition to the time series of

a specific term (or a general topic), it also returns the top query terms that are most

highly correlated with the specific term. In our study, we use a list of top 25 Google

search terms that are the most highly correlated with the term ”unemployment”. Table

2.1 lists these 25 terms, which are generated by Google Trends on January 11, 2018; they

include 12 general unemployment related query terms, such as unemployment office,

unemployment benefits and unemployment extension, as well as 13 query terms that are

combinations of state names and “unemployment”, such as California unemployment

and unemployment Florida.

Table 2.1: Top 25 nationwide search query terms associated with the term “unemployment” gen-
erated by Google Trends as of January 11, 2018.

unemployment unemployment benefits unemployment rate
unemployment office pa unemployment claim unemployment
ny unemployment nys unemployment ohio unemployment
unemployment florida unemployment extension texas unemployment
nj unemployment unemployment number file unemployment
unemployment insurance california unemployment unemployed
unemployment oregon new york unemployment indiana unemployment
unemployment washington unemployment wisconsin unemployment online
unemployment login

There is a notable restriction on the length of historical weekly data at the Google

Trends website. The weekly data is available for at most a 5-year span in a query, and it

would be automatically transformed to monthly data if one asks for more than 5 years.

As we are modeling and forecasting the unemployment claims for the entire period

of 2007-2016, we downloaded separate weekly data sets from Google Trends, covering

2004-2008, 2006-2010, 2008-2012, 2010-2014 and 2012-2016, respectively.

46



20
40

60
80

10
0

file unemployment
unemployment office
california unemployment
unemployment florida

G
oo

gl
e 

Tr
en

ds

Jan 07
2006

Jul 01
2006

Jan 06
2007

Jul 07
2007

Jan 05
2008

Jul 05
2008

Jan 03
2009

Jul 04
2009

Jan 02
2010

Jul 03
2010

Dec 25
2010

3e
+0

5
5e

+0
5

7e
+0

5
9e

+0
5

un
em

pl
oy

m
en

t i
ni

tia
l c

la
im

s

Figure 2.2: The upper panel shows the Google Trends data of four unemployment related search
queries in 2006-2010. The lower panel shows the weekly unemployment initial claims data in the
same period.
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2.1.2 ORGANIZATION OF THE ARTICLE

The rest of the article is organized as follows. Section 2.2 presents our general state

space formulation for modeling time series data and highlights a few widely used spe-

cial cases. The general state space formulation serves to motivate PRISM. Section 2.3

introduces a joint model of time series of interest (initial claims) and contemporaneous

exogenous variables (Internet search data). Section 2.4 describes our two-step estima-

tion procedure PRISM for forecasting (including nowcasting) the targeted time series

with (and without) Internet search data. Section 2.5 evaluates the performance of our

proposed method on forecasting the unemployment initial claims and compares it to

the results of other existing time series forecasting methods. Section 2.6 concludes the

article with a summary.

2.2 STATE SPACE FORMULATION FOR TIME SERIES WITH SEASONAL PATTERN

In this section, we introduce a state space formulation for univariate time series with

seasonal pattern, which contains several widely used time series models as special

cases. Let {yt} be the univariate time series of interest, and let {γt} be the unobserved

seasonal component of yt. Define zt
△
= yt − γt as the seasonally adjusted time series,

which is also unobservable. We postulate that {zt} and {γt} each follow a linear state

space model with state vectors {ht} and {st} respectively. The state space formulation

is

yt = zt + γt (2.2.1a)

⎧
⎨

⎩

zt = w′ht + ϵt

ht = Fht−1 + ηt

(2.2.1b)

(2.2.1c)

⎧
⎨

⎩

γt = v′st + ζt

st = Pst−1 +ωt

(2.2.1d)

(2.2.1e)
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where (ϵt, ζt,η′
t,ω′

t)
′ iid∼ N (0,H). The parameters are θ = (w,F ,v,P ,H).

Our state space model contains a variety of widely used time series models, includ-

ing structural time series models and additive innovation state space models. Under

the general formulation (2.2.1), a specific parametric model can be obtained by speci-

fying the state space models for zt and γt along with their dependence structureH .

2.2.1 SPECIAL CASES

We highlight a few special cases of model (2.2.1) in this subsection.

SEASONAL AR MODEL

The state space formulation (2.2.1) contains the following ARmodel with seasonal pat-

tern: modeling zt as an autoregressive process with lag N and assuming a dummy

variable formulation with period S for the seasonal component γt:

yt = zt + γt,

zt = µz +
N

∑
j=1

αjzt−j + ηt, ηt
iid∼ N (0, σ2

η)

γt = −
S−1

∑
j=1

γt−j + ωt, ωt
iid∼ N (0, σ2

ω)

(2.2.2)

The dummy variable model for the seasonal component implies that sum of the sea-

sonal components over the S periods, ∑S−1
j=0 γt−j, has mean zero and variance σ2

ω.

The seasonal AR model (2.2.2) tells us that each time series block of {z(t−N+1):t}t≥N

and {γ(t−S+2):t}t≥(S−1) evolves as a Markov Chain. Under our general state-space

model (2.2.1), if we set ht = (1, zt, zt−1, . . . , zt−N+1) and st = (γt,γt−1, . . . ,γt−S+2),

then it reduces to the seasonal AR model (2.2.2).
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STRUCTURAL TIME SERIES MODELS

The basic structural model assumes that a univariate time series is the sum of trend,

seasonal and irregular components, each of which follows an independent stochastic

process (Harvey, 1989). The model is

yt = µt + γt + ϵt, ϵt
iid∼ N (0, σ2

ϵ ), (2.2.3)

where µt is the trend component, and γt and ϵt are the seasonal and irregular compo-

nents, respectively.

The trend is often specified by a local level model

µt = µt−1 + δt + ηt, ηt
iid∼ N (0, σ2

η), (2.2.4a)

δt = δt−1 + ζt, ζt
iid∼ N (0, σ2

ζ ), (2.2.4b)

where µt is the level and δt is the slope. ηt and ζt are assumed mutually independent.

For time series with S periods, the seasonal component can be specified through the

seasonal dummy variable model

γt = −
S−1

∑
j=1

γt−j + ωt, ωt
iid∼ N (0, σ2

ω). (2.2.5)

which is the same as the seasonal component in the seasonal ARmodel (2.2.2). Alterna-

tively, the seasonal pattern can be modeled by a set of trigonometric terms at seasonal
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frequencies λj = 2π j/S (Harvey, 1989):

γt =
[S/2]

∑
j=1

γj,t, (2.2.6a)

⎛

⎜⎝
γj,t

γ∗
j,t

⎞

⎟⎠ =

⎛

⎜⎝
cosλj sinλj

− sinλj cosλj

⎞

⎟⎠

⎛

⎜⎝
γj,t−1

γ∗
j,t−1

⎞

⎟⎠+

⎛

⎜⎝
ωj,t

ω∗
j,t

⎞

⎟⎠ , (2.2.6b)

where ωj,t and ω∗
j,t, j = 1, . . . , [S/2], are independent and normally distributed with

common variance σ2
ω.

Under our general state-space model (2.2.1), if we take zt = µt + ϵt and ht = (µt, δt),

then it specializes to structural time series models. In particular, for the dummy vari-

able seasonality of equation (2.2.5), st inmodel (2.2.1) corresponds to st = (γt,γt−1, . . . ,γt−S+2);

and for the trigonometric seasonality of equation (2.2.6), st inmodel (2.2.1) corresponds

to st = (γ1,t, . . . ,γ[S/2],t,γ∗
1,t, . . . ,γ

∗
[S/2],t).

ADDITIVE INNOVATIONS STATE SPACE MODELS

An alternative to structural time series models, which have multiple sources of error,

innovation state space model (Aoki, 1987), where the same error term appears in each

equation, is also popular. These innovation state space models underlie exponential

smoothing methods, which are widely used in time series forecasting and have been

proven optimal under many specifications of the innovation state space model (Ord

et al., 1997; Hyndman et al., 2008). Among exponential smoothing methods, Holt-

Winters’ method (Holt, 1957; Winters, 1960) is developed to capture both trend and

seasonality, and it postulates a model specification similar to the basic structural model
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(2.2.3)- (2.2.5). In particular, Holt-Winters’ additive method is

yt = µt−1 + δt−1 + γt−S + ϵt, (2.2.7a)

µt = µt−1 + δt−1 + αϵt, (2.2.7b)

δt = δt−1 + βϵt, (2.2.7c)

γt = γt−S + ωϵt, (2.2.7d)

where the components µt, δt and γt represent level, slope and seasonal components of

time series, and ϵt
iid∼ N (0, σ2) is the only source of error.

Since equation (2.2.7a) can be rewritten as

yt = µt + γt + (1− α − ω)ϵt,

we observe that model (2.2.7) is special case of our general model (2.2.1) with zt =

µt + (1− α − ω)ϵt, ht = (µt, δt) and st = (γt,γt−1, . . . ,γt−S+1).

The Holt-Winters model is among a collection of innovation state space models that

Hyndman et al. (2008) summarizes using the triplet (E,T,S), representing model spec-

ification for the three components: error, trend and seasonality. For instance, equa-

tion (2.2.7) is also referred to as local additive seasonal model or ETS(A,A,A), where A

stands for additive. Our general state space formulation (2.2.1) also incorporates many

useful model extensions as special cases, including the damped trend (Gardner Jr &

McKenzie, 1985) and multiple seasonal patterns (Gould et al., 2008; De Livera et al.,

2011). For example, the damped trend double seasonal model extends model (2.2.7) to
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include a factor φ ∈ [0, 1) and a second seasonal component as follows:

yt = µt−1 + φδt−1 + γ(1)
t−S1 + γ(2)

t−S2 + ϵt,

µt = µt−1 + φδt−1 + αϵt,

δt = φδt−1 + βϵt,

γ(1)
t = γ(1)

t−S1 + ω1ϵt,

γ(2)
t = γ(1)

t−S2 + ω2ϵt.

(2.2.8)

Our general model (2.2.1) contains this extended model as well, where zt = µt + (1−

α−ω1−ω2)ϵt, γt = γ(1)
t +γ(2)

t , ht = (µt, δt) and st = (γ(1)
t , . . . ,γ(1)

t−S1+1,γ
(2)
t , . . . ,γ(2)

t−S2+1).

2.2.2 THE GENERAL FORMULATION

The motivation of our general state space formulation (2.2.1) is to collectively consider

all possible models under it and to semi-parametrically obtain the prediction under this

large class of models. In comparison, traditional time series studies often rely on pa-

rameter estimation of specified models such as those highlighted in the previous sub-

section. For instance, exponential smoothing is tailored for computing the likelihood

and obtainingmaximum likelihood estimates of the innovation state spacemodels. For

other parametric models with multiple sources of error, their likelihood might be eval-

uated by the Kalman filter, but the parameter estimation can be difficult in many cases.

In the traditional parametric times series model setting, model selections are often ap-

plied by optimizing certain selection criteria (e.g. AIC or BIC), but when the class of

models under consideration become really large such as (2.2.1), traditional model selec-

tion methods encounter serious challenges (as they lack scalability) to operate on such

a wide range of models. As a consequence, traditional parametric time series models
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often consider a much smaller collection of models compared to (2.2.1). The cost of

focusing on a small class of models is that the forecasting accuracy can substantially

suffer as the risk of model misspecification is high.

To relieve these challenges and improve the performance of forecasting, we will

use our general state space formulation (2.2.1) as a motivation to introduce a semi-

parametric method for forecasting time series. We will derive and study a linear pre-

dictive model that is coherent with all possible models under (2.2.1). With forecasting

as our main goal, we essentially transfer the question from the inference of a compli-

cated class of state space models into penalized regression and forecasting based on a

linear prediction formulation.

2.3 JOINT MODEL WITH EXOGENOUS TIME SERIES

2.3.1 JOINT MODELING

In this section, we consider modeling of univariate time series yt with contribution

from contemporaneous exogenous variables xt. In the particular case of forecasting

unemployment initial claims, the exogenous variables are the weekly Internet search

data from Google Trends. Let xt = (x1,t, x2,t, . . . , xp,t)′ be the vector of the (normalized)

search volumes of p search terms at week t. We postulate a state space model for

the Google Trends variables xt on top of yt, instead of adding them as regressors as

in traditional models. In particular, at each time t, we assume a multivariate normal

distribution for xt conditional on the level of unemployment initial claims yt,

xt|yt ∼ Np(µx + ytβ,Q) (2.3.1)
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where β = (β1, β2, . . . , βp)′, µx = (µx1 , µx2 , . . . , µxp)
′ andQ is the covariance matrix. xt

is assumed to be independent of {yl ,xl : l < t} conditional on yt. For {yt} following

the general state space model (2.2.1), our joint model for initial claims and Google

Trends search data can be diagrammed as follows:

· · · → (st,ht) → (st+1,ht+1) → · · ·

↓ ↓

yt yt+1

↓ ↓

xt xt+1

(2.3.2)

Our joint model (2.3.2) of xt and yt is related to the factor models of multivariate

time series (Forni et al., 2000; Stock & Watson, 2002; Harvey & Koopman, 1997). It can

be interpreted as that the multivariate time series {xt} is driven by a common factor

{yt}, which is observed with lags.

2.3.2 COMPARING TO TRADITIONAL MODELING OF EXOGENOUS TIME SERIES

In contrast to our joint model, traditional methods usually treat the contemporaneous

exogenous variables as regressors. For example, Harvey & Shephard (1993) regards the

univariate structural time series models as regression models in which the explanatory

variables are functions of time and the parameters are time-varying. Thus, the ad-

dition of exogenous variables became an extension to observation equation (2.2.3) in

traditional methods, leading to

yt = µt + γt + x′
tβ+ ϵt, t = 1, . . . , T, (2.3.3)
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where {µt} and {γt} follows the same transition equations as in (2.2.4) and (2.2.5) or

(2.2.6).

Scott & Varian (2014) developed a full Bayesian inference of model (2.3.3) with vari-

able selection, termed Bayesian Structural Time Series (BSTS).With xt being contempo-

raneous Google search data, BSTS assumes spike-and-slab prior for β, throughwhich a

high degree of sparsity of the regression coefficients is achieved (Scott & Varian, 2013).

The model (2.3.3) can be depicted by diagram (2.3.4) below. Adding contemporane-

ous Google search data as regression components to state space model have been use-

ful for nowcasting economic time series (Scott & Varian, 2014). However, this model

structure (2.3.3) is unlikely to correspond to the data generating process in our case in

the sense that it is quite feasible that people search the Internet for information about

unemployment aid in response to their being unemployed, rather than the other way

around.

· · · →
(
µt, δt,γ(t−S+2):t,xt

)
→

(
µt+1, δt+1,γ(t−S+3):(t+1),xt+1

)
→ · · ·

↓ ↓

yt yt+1

(2.3.4)

2.4 FORECASTING WITH PRISM

Based on our joint model of {yt} and {xt}, in this section we construct a structural

predictive model and propose a two-step estimation procedure PRISM, which stands

for Penalized Regression with Inferred Seasonality Module, for forecasting time series

{yt} using its lagged values and the available exogenous variables {xt} as input. The
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structural predictive model accommodates a collection of state space model of {yt},

including structural time series models and additive innovation state space models, as

we have seen in Section 2.2.

2.4.1 OVERVIEW OF OUR TWO-STAGE METHODOLOGY FOR NOWCAST AND

FORECAST

We first provide an overview of the proposedmethodology for nowcasting yt and fore-

casting yt+l (l ≥ 1), i.e., weeks into the future, using all available information at time

t. The derivation and rationale of each step will be described in the following subsec-

tions.

Input: Target time series {y1:(t−1)} and exogenous time series {xt0:t}. In our fore-

casting of unemployment initial claims, {y1:(t−1)} is the weekly unemployment ini-

tial claim data reported with one-week lag, and {xt0:t} is the multivariate Google

Trends data starting from 2004.

Stage 1 of PRISM. Seasonal decomposition: For a fixed rolling window length

M, nonparametrically decompose {y(t−M):(t−1)} into estimated seasonal component

{γ̂i,t}i=(t−M),...,(t−1) and estimated seasonally adjusted component {ẑi,t}i=(t−M),...,(t−1),

where γ̂i,t and ẑi,t are estimates of γi and zi using data available at time t.

Stage 2 of PRISM. Penalized regression: Forecast (and nowcast) target time series

using the following predictive equation:

ŷt+l = µ+
K

∑
j=1

αj ẑt−j,t +
K

∑
j=1

δjγ̂t−j,t +
p

∑
i=1

βixi,t
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where the coefficients above are estimated by a rolling-window L1 penalized linear

regression using historical data for each forecasting horizon l.

2.4.2 PREDICTIVE MODEL FOR NOWCASTING

Under our general state space model (2.2.1) and (2.3.1), given the historical data of

{y1:(t−1)} and contemporaneous exogenous time series {xt0:t}, the predictive distribu-

tion for nowcasting yt at time t would be p(yt | y1:(t−1),xt0:t). In PRISM, we consider,

instead, the predictive distribution of yt by further conditioning on the latent seasonal

component {γt}:

p(yt | y1:(t−1),γ1:(t−1),xt0:t) ∝ p(xt | yt)p(yt | y1:(t−1),γ1:(t−1)). (2.4.1)

Note that since zt = yt − γt for all t, z1:(t−1) is known given y1:(t−1) and γ1:(t−1). The

advantage of working on (2.4.1) is that we can establish a universal representation of

this predictive distribution as given by the next proposition.

Proposition 1 Under model (2.2.1) and (2.3.1), yt conditioning on {z1:(t−1),γ1:(t−1),xt0:t}

follows a normal distribution with the conditional mean E(yt | z1:(t−1),γ1:(t−1),xt0:t) linear in

z1:(t−1), γ1:(t−1) and xt.

Remark 1 As a partial result that lead to Proposition 1, yt | z1:(t−1),γ1:(t−1) follows normal

distribution with mean linear in z1:(t−1) and γ1:(t−1) under model (2.2.1).

Based on Proposition 1, the predictive distribution p(yt | y1:(t−1),γ1:(t−1),xt0:t) is

given by

yt = µt +
t−1

∑
j=1

αj,tzt−j +
t−1

∑
j=1

δj,tγt−j +
p

∑
i=1

βi,txi,t + ϵt, ϵt
iid∼ N (0, σ2

t ) (2.4.2)

58



where µt, αj,t, δj,t, βi,t and σ2
t are fixed but unknown constants that are determined by

original parameters θ and the initial values of the state vectors.

2.4.3 PREDICTIVE MODEL FOR FORECASTING INTO FUTURE WEEKS

As the exogenous variables xt carry information about time t, they also help forecast

future yt+l (l ≥ 1). Under the same framework as for nowcasting, we can calculate the

predictive distribution of yt+l conditioning on z1:(t−1), γ1:(t−1) and xt0:t.

Proposition 2 Under model (2.2.1) and (2.3.1), the predictive distribution p(yt+l | z1:(t−1),γ1:(t−1),xt0:t)

for l ≥ 1 is normal with the conditional mean E(yt+l | z1:(t−1),γ1:(t−1),xt0:t) being a linear

combination of z1:(t−1), γ1:(t−1) and xt.

Remark 2 Similar to Remark 1, under model (2.2.1), yt+l | z1:(t−1),γ1:(t−1) follows a normal

distribution with mean E(yt+l | z1:(t−1),γ1:(t−1)) linear in z1:(t−1) and γ1:(t−1).

Based on Proposition 2, we can represent p
(
yt+l | z1:(t−1),γ1:(t−1),xt0:t

)
as

yt+l = µ(l)
t +

t−1

∑
j=1

α(l)
j,t zt−j +

t−1

∑
j=1

δ(l)j,t γt−j +
p

∑
i=1

β(l)
i,t xi,t + ϵt, ϵt

iid∼ N (0, σ2
t,l). (2.4.3)

2.4.4 THE TWO STAGES OF PRISM

We now describe our semi-parametric estimation procedure PRISM for nowcasting yt

and forecasting yt+l (l ≥ 1) using all available information at time t.

STAGE 1: SEASONAL DECOMPOSITION

In Propositions 1 and 2, the predictive distribution for yt is universal for all possible

models under our general state space model (2.2.1) and (2.3.1) once conditioned on
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the historical seasonal components γ1:(t−1). Since γ1:(t−1) is unobserved, we estimate

these seasonal components in the first stage of our semi-parametric estimation proce-

dure. For this purpose, various seasonal decomposition methods can be applied here,

including nonparametric methods such as the classical additive seasonal decomposi-

tion (Kendall & Stuart, 1983) and parametric methods based on innovation state space

models.

We used the method of Seasonal and Trend decomposition using Loess (STL) by

Cleveland et al. (1990) as the default choice. The STL method is nonparametric; it is

widely used and robust for decomposing time series with few assumptions owing to its

nonparametric nature. Unlike the classic additive seasonal decomposition, STL allows

the seasonal components to change over time, and the rate of change can be controlled

by the user; the smoothness of the trend-cycle can also be controlled by the user. We

describe the procedure of STL in Appendix B.2, where we also used PRISM with the

classic additive seasonal decomposition. We found that PRISM is robust to the choice

of seasonal decomposition methods with STL performing slightly better. We therefore

take STL as the default choice due to its simplicity and ease of use.

Under the default setting of STL, at every time t for forecasting, we apply STL to

historical initial claims observations y(t−M):(t−1) with M being a large number. For

each rolling window from t− M to t− 1, STL decomposes the univariate time series

y(t−M):(t−1) into three components: seasonal, trend and the remainder. Denote γ̂i,t and

ẑi,t as the estimates of γi and zi using data available at time t. Then, at each t the STL de-

composition generates estimated seasonal component time series {γ̂i,t}i=(t−M),...,(t−1)

and seasonally adjusted time series {ẑi,t}i=(t−M),...,(t−1); the latter is the sum of trend

component and remainder component from STL. In our forecasting of unemployment

initial claims, we take M = 700.
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STAGE 2: PENALIZED LINEAR REGRESSION

In the second stage, we use the predictive equations (2.4.2) and (2.4.3) with the esti-

mated seasonal components and estimated seasonally adjusted components from the

previous stage for prediction. Specifically, for each fixed l (≥ 0), we estimate yt+l by

the following linear predictive equation:

ŷt+l = µy +
K

∑
j=1

αj ẑt−j,t +
K

∑
j=1

δjγ̂t−j,t +
p

∑
i=1

βixi,t, (2.4.4)

where for notational ease we have used the generic notations µy, αj, δj etc. with the

understanding that there is a separate set of {µy,α = (α1, . . . , αK), δ = (δ1, . . . , δK),β =

(β1, . . . , βp)} for each l. At each time t and for each horizon l, the regression coefficients

µy, α, δ and β are obtained by minimizing

1
N

t−l−1

∑
τ=t−l−N

wt−τ

(
yτ+l − µy −

K

∑
j=1

αj ẑτ−j,τ −
K

∑
j=1

δjγ̂τ−j,τ −
p

∑
i=1

βixi,τ

)2

+ λ1 (∥α∥1 + ∥δ∥1) + λ2∥β∥1, (2.4.5)

where N is the length of a rolling window, w is a discount factor, and λ1 and λ2 are

nonnegative regularization parameters.

There are several distinct features of our estimation procedure at Stage 2. First, a

rolling window of length N is employed. This is to address the fact that the parame-

ters in the predictive equation (2.4.4) can vary with time t. In our case, people’s search

pattern and the search engine tend to evolve over time, and it is quite likely that the

same search phrases would contribute in different ways over time to the response vari-

able. Correspondingly, the coefficients in (2.4.4) need to be estimated dynamically each
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week, and the more recent observations should be considered more relevant than the

distant historical observations for inferring the predictive equations of current time.

The rolling window of observations and the exponentially decreasing weights are uti-

lized for such purpose. Our use of exponential weighting is related to the weighted

least square formulation that is usually referred to as discounted weighted regression

in the econometrics literature (Ameen & Harrison, 1984; Taylor, 2010).

Second, since the number of unknown coefficient in (2.4.4) tends to be quite large

compared to the number of observations within the rolling window, we apply L1 regu-

larization in our rolling-window estimation (Tibshirani, 1996), which gives robust and

sparse estimate of the coefficients. Up to two L1 penalties are applied: on (α, δ) and

on β, as they represent two sources of information — information from time series

components {ẑt} and {γ̂t}, and information from the exogenous variables {xt}.

Third, PRISM is a semi-parametric method. The predictive equation (2.4.4) is moti-

vated and derived from our state space formulation (2.2.1). However, the estimation is

not parametric in that (i) the seasonal and seasonally adjusted components are learned

non-parametrically from Stage 1, and (ii) the coefficients in equation (2.4.4) are dynam-

ically estimated each week in Stage 2. Combined together, the two stages of PRISM

gives us a simple and robust estimation procedure. This approach is novel and dif-

ferent from the typical approaches for linear state space models, which often estimate

unknown parameters using specific parametrizations and select a model based on in-

formation criteria (Hyndman et al., 2008).

In the case when exogenous time series {xt} do not exist, PRISM uses Remarks 1
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and 2 and estimates yt+l according to the following linear predictive equation:

ŷt+l = µy +
K

∑
j=1

αj ẑt−j,t +
K

∑
j=1

δjγ̂t−j,t, (2.4.6)

which is a degenerated special case of the predictive equation (2.4.4). Under the same

estimation procedure as in (2.4.5) except that β and xt are dropped, predictive equa-

tion (2.4.6) can be used to forecast univariate time series with seasonal patterns without

exogenous time series. We will later use this predictive equation to quantify the con-

tribution from Internet search data in forecasting unemployment initial claims.

2.4.5 PREDICTIVE INTERVALS

The semi-parametric nature of PRISM makes it more difficult to construct predictive

intervals on PRISM forecasts, as we cannot rely on parametric specifications, such as

posterior distributions, for predictive interval construction. However, the fact that we

are forecasting time series suggests a (non-parametric) method for us to construct pre-

dictive intervals based on the historical performances of PRISM.

For nowcasting at time t, given the historical data available up to time t− 1, we can

evaluate the root mean square error of nowcasting for the last L time periods as

set =

√√√√ 1
52

t−1

∑
τ=t−L

(ŷτ − yτ)
2,

where ŷτ is the pseudo real time PRISM estimate for yτ generated at time τ. Under the

assumption of stationarity, set would be an estimate for the standard error of ŷt. We

can thus use it to construct predictive interval for the current PRISM estimate. An 1− α

predictive interval is given by (ŷt − zα/2 set, ŷt + zα/2 set), where zα/2 is the 1− α/2
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quantile of the standard normal distribution. The predictive intervals for forecasting

into future weeks can be constructed similarly. We will study in Section 2.5.3 the per-

formance of our predictive intervals.

2.5 APPLICATION TO UNEMPLOYMENT INITIAL CLAIM DATA

In this section, we apply PRISM to forecasting weekly unemployment initial claims.

The unemployment initial claims data {yt} is available from 1967 onward, but Google

Trends data xt is available only since 2004. We thus take 2007 − 2016 as the testing

period. In the test, we let the forecasting horizon l = 0, 1, 2, 3 to predict yt up to 3

weeks ahead.

We compare PRISM to four alternative methods: (a) Bayesian Structural Time Series

(BSTS) (Scott & Varian, 2014), (b) and (c), two forecasting methods using exponential

smoothing: BATS and TBATS (De Livera et al., 2011), and (d) the naive method, which

without any modeling effort simply uses yt−1 to predict yt, yt+1, yt+2 and yt+3 at time t.

The naive method serves as a baseline. Both BATS and TBATS are based on innovation

state space framework that containsmodel (2.2.7) and (2.2.8) as special cases. The name

BATS is an acronym for key features of the model: Box-Cox transform, ARMA errors,

Trend, and Seasonal components. TBATS extends BATS to handle complex seasonal

patterns with trigonometric representations, and the initial T connotes “trigonomet-

ric”.
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2.5.1 SPECIFICATION OF PRISM FOR FORECASTING UNEMPLOYMENT INI-

TIAL CLAIMS

In our forecasting of unemployment initial claims, we apply a 3-year rolling window

of historical data to estimate the parameters in (2.4.5), i.e. N = 156 (weeks). We take

K = 52 (weeks) to employ the most recent 1-year estimated seasonal and seasonally

adjusted components, and p = 25 (Google search terms) according to the list of top

25 nationwide query terms related to ”unemployment” in Table 2.1. In addition, we

take w = 0.99 as the default choice of the discount factor following Lindoff (1997),

which suggest that setting the discount factor between 0.95 and 0.995 works in most

applications. We tested the choice of w in Appendix B.3, and indeed found that the

performance of PRISM is quite robust for w ∈ [0.95, 0.995].

For the regularization parameters λ1 and λ2 in (2.4.5), we use cross-validation. We

find empirically that the extra flexibility of having two separate λ1 and λ2 does not

give improvement over fixing λ1 = λ2. In particular, we found that for every forecast-

ing horizon l = 0, 1, 2, 3, in the cross-validation process of setting (λ1,λ2) for separate

L1 penalty, over 80% of the weeks showed that the smallest cross-validation mean er-

ror when restricting λ1 = λ2 is within 1 standard error of the global smallest cross-

validation mean error. For model simplicity, we thus choose to further restrict λ1 = λ2

when forecasting unemployment initial claims.

2.5.2 FORECASTING RESULTS

In generating retrospective estimates of initial claims, we rerun all methods each week

using only the information available up to that week, i.e., we use the same informa-

tion in the retrospective estimation as if we relived the testing period of 2007− 2016.
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The two exponential smoothing methods BATS and TBATS do not offer the option of

including exogenous variable in their forecasting, while BSTS allows the inclusion of

exogenous variables. Therefore, to forecast unemployment initial claims at time t, both

PRISM and BSTS take the initial claim data {y1:(t−1)} and Google Trends data {xt0:t} as

input, whereas BATS and TBATS are trained using available historical initial claim data

{y1:(t−1)} at each week t. For fair comparison, both PRISM and BSTS are fitted with a

3-year rolling window of exogenous variables at each week. The results of BSTS, BATS

and TBATS are produced by their respective R packages under their default settings.

To quantify the contribution of the exogenous variables (i.e., the contemporaneous

Google Trends data) as compared to using time series alone, we also use the degener-

ated predictive equation (2.4.6) for the retrospective forecasting. The predictive equa-

tion (2.4.6) is estimated without the exogenous variables xt — it is fitted under the

same procedure as PRISM except that β and xt are dropped in Stage 2. For simplicity,

we denote this method as “PRISM w/o xt” in the coming exhibitions.

We use root-mean-square error (RMSE) and mean absolute error (MAE) as accuracy

metrics in the evaluation of the performance of different methods. For an estimator

{ŷt} and horizon l, the RMSE and MAE are defined, respectively, as RMSEl(ŷt, yt) =

[ 1
(n2−n1−l+1) ∑n2

t=n1+l(ŷt− yt)2]1/2 andMAEl(ŷt, yt) = 1
(n2−n1−l+1) ∑n2

t=n1+l |ŷt− yt|, where

we denote n1 + l and n2 respectively as the start and end of the forecasting for each l.

Table 2.2 presents the overall performance of forecasting (including nowcasting) un-

employment initial claims over the entire period of 2007− 2016. The RMSE and MAE

numbers reported here are relative to the naive method, which uses yt−1 to predict yt+l

(l ≥ 0) at time t. BSTS does not produce numbers for forecasting yt+l for l ≥ 1, as its

R package gives prediction of the target time series only as far as exogenous variables

are inputed.
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Table 2.2 reveals the following. First, PRISM uniformly outperforms all the other

methods for the entire period of 2007 − 2016 under all forecasting horizons. Sec-

ond, contemporaneous Google Trends data is very helpful for real-time nowcasting,

as PRISM and BSTS have better nowcasting results than the other methods that only

utilize historical initial claim data. Third, the contribution of contemporaneous Google

Trends data becomes less significant in forecasting future weeks, as evidenced by the

performance gap between PRISM and “PRISM w/o xt” shrinking from nowcasting

to forecasting. Fourth, among the three methods that only use historical initial claim

data, the predictive method based on PRISM without xt outperforms the exponential

smoothing methods BATS and TBATS.

Table 2.2: The performance of different methods over the time period of 2007 − 2016. RMSE
and MAE here are relative to the error of naive method; that is, the number reported is the ratio
of the error of a given method to that of the naive method. The naive method use yt−1 to predict
yt+l, and the absolute RMSE and MAE of the naive method are reported in the parentheses. The
boldface indicates the best performer for each forecasting horizon and each accuracy metric.

real-time forecast 1 wk forecast 2 wk forecast 3 wk
RMSE

PRISM 0.498 0.492 0.453 0.467
PRISM w/o xt 0.659 0.534 0.501 0.527
BSTS 0.588 - - -
BATS 1.002 0.897 0.848 0.832
TBATS 0.711 0.559 0.544 0.528
naive 1 (50551.3) 1 (62226.6) 1 (69746.5) 1 (73528.9)

MAE
PRISM 0.542 0.534 0.479 0.465
PRISM w/o xt 0.670 0.561 0.507 0.502
BSTS 0.612 - - -
BATS 0.992 0.898 0.825 0.781
TBATS 0.750 0.599 0.570 0.525
naive 1 (33636.6) 1 (41120.8) 1 (47902.3) 1 (52793.7)

Figure 2.3 shows the RMSE of the yearly nowcasting results of the different meth-

ods. Here, RMSE are measured relative to the error of the naive method. It is seen that
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PRISM gives consistent relative RMSE throughout the 2007− 2016 period. It is note-

worthy that PRISM outperforms all other methods in 2008 and 2009 when the financial

crisis caused significant instability in the US economy.
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Figure 2.3: Yearly nowcasting performance. RMSE are measured relative to the error of the
naive method, i.e., the numbers are the ratio of the error of a given method to that of the naive
method.

For a closer look of the performance of different methods, Figure 2.4 shows how the

absolute errors of nowcasting accumulate through 2007− 2016. Compared to the other

methods, the cumulated absolute error of PRISM rises at the slowest rate. As shown

in the lower panel, the 2008 financial crisis caused significantly more unemployment

initial claims. PRISM handles the financial crisis period well, as the accumulation of

errors is rather smooth for the financial crisis period. Other methods all accumulate

loss in a considerably higher rate during the financial crisis. Furthermore, PRISM han-

dles the strong seasonality of initial claim data well, since the accumulation of error is

smooth within each year. Among all the methods considered, BATS is visibly bumpy

in handling seasonality, as the accumulation jumps when the initial claim data spikes.
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Figure 2.4: The top panel displays the cumulative absolute error of nowcasting given by the dif-
ferent methods. The bottom panel shows the unemployment initial claims yt for the same period
of 2007− 2016.
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2.5.3 ASSESSING THE PREDICTIVE INTERVALS

Using the method of Section 2.4.5, we can construct the predictive intervals for PRISM

estimates. In particular, we take L = 52 and obtain set = ( 1
52 ∑t−1

τ=t−52 (ŷτ − yτ)
2)1/2

based on the estimation result of the past year (52 weeks). Figure 2.5 shows for now-

casting the point estimates and 95% predictive intervals of PRISM based on (ŷt −

1.96 set, ŷt + 1.96 set) for 2008 − 2016, comparing to the true unemployment initial

claims officially revealed a week later (in blue). Note that since we need one year of

historical performance to compute set, we can evaluate the predictive intervals start-

ing from 2008. For 2008− 2016, the actual coverage of the predictive interval is 95.3%,

which is very close to the nominal 95%.

250000

500000

750000

1000000

2008 2010 2012 2014 2016

un
em

pl
oy

m
en

t i
ni

tia
l c

la
im

s

band

actual

nowcast

Figure 2.5: Predictive Interval of PRISIM. The shaded area corresponds to the 95% predictive
interval of PRISM. The red curve is the point estimate of PRISM nowcasting. The blue curve is
the true unemployment initial claims. The actual coverage of the PRISM predictive interval is
95.3% in 2008− 2016.
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2.6 SUMMARY

The wide availability of data generated from the Internet offers great potential for

predictive analysis and decision making. In this article we focus on using Internet

search data to forecast unemployment initial claims weeks into the future. We intro-

duced a novel statistical method PRISM for forecasting time series with strong sea-

sonality. PRISM is semi-parametric and can be generally applied with or without ex-

ogenous variables. PRISM is motivated from a general state-space formulation that

contains a variety of widely used time series models as special cases. The two stages

of PRISM are easy to implement. The numerical evaluation shows that PRISM out-

performs all alternatives in forecasting unemployment initial claim data for the time

period of 2008− 2016. It is noteworthy that PRISM’s performance is robust throughout

the whole testing period, particularly during the 2008− 2009 financial crisis.

Although this article focuses on forecasting unemployment initial claims, PRISM

can be generally used to forecast time series with complex seasonal patterns, owing

to its nonparametric seasonal decomposition at the first stage. The semi-parametric

approach of PRISM covers a wider range of time series models than traditional meth-

ods, as PRISM transfers the inference of a complicated class of state space models into

penalized regression of linear predictive models. In addition, our joint modeling with

contemporaneous exogenous variables accommodates the data generation process; for

example, intuitively, people search online for unemployment benefits related informa-

tion in response of being unemployed. Furthermore, dynamically fitting the predictive

equations of PRISM addresses the time-varying relationship between the exogenous

variables and the underlying time series. The R package that implements the PRISM

method is available at https://github.com/ryanddyi/prism.
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Data derived from the Internet has presented many opportunities and interesting

problems for statisticians. Our study on using Google search data to forecast unem-

ployment initial claims illustrates one such example. The arrival of new data (some-

times in new forms) requires new methodology to analyze and utilize them. PRISM

is an example where traditional statistical modeling are brought together with more

recent statistical tools, such as L1 regularization and dynamic training. We hope our

study will serve to generate further interest in developing statistical methodology to

big data problems.
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3
Bayesian Factor Model with Multiple

Change-points

3.1 INTRODUCTION

In various scientific and industrial applications, it is crucial to obtain an accurate esti-

mation of the covariance among a large number of measurements that varies over time.
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In the financial industry, the estimated covariances among asset returns are key inputs

for portfolio construction and risk management (Markowitz, 1952; Fan et al., 2012). In

cognitive science, estimated correlations from fMRI time series help explain the inter-

active functions of the human brain (Barnett & Onnela, 2016). In both applications,

as the time series unfolds the covariance structure evolves as well, so it is desirable to

determine the points in time when a structural change takes place, in order to model

the full evolution process of the covariance.

To accurately estimate a changing covariance matrix, we are faced with two major

challenges. One concerns the variable dimension of the time series, p, relative to the

length of time series, T. This is otherwise known as the ”p > T” scenario in high-

dimensional statistics, in which the sample covariance matrix estimator is singular

since the number of unknown parameters that remain to be estimated clearly grows

fast with p. The second challenge concerns the principled modeling of the underlying

covariance structure, which changes over time.

For tackling the high-dimensionality issue, well-established methodologies mostly

rely on factor model, which assume individual time series are driven by a small num-

ber of common latent factors and a set of sparsely correlated idiosyncratic errors. With

a long history and wide range of applications, many factor models were proposed for

time series analysis and frequently used in economic and financial studies (Chamber-

lain & Rothschild, 1983; Stock &Watson, 2002; Bai & Ng, 2002). In particular, they were

studied as high-dimensional covariance estimation methods for stationary time series

in statistical literature (Fan et al., 2013).

As for the second challenge, change-point model is arguably the simplest model to

accommodate the time-varying nature of the covariance. Change-point model par-

titions the observational time frame into multiple segments, and the time series is
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modeled as stationary within each segment. Although multiple change-point detec-

tion problems have been studied under general frameworks from both Bayesian and

frequentist perspective (Fearnhead, 2006; Killick et al., 2012), only a very few studies

concerned change-point models for covariance matrices of high-dimensional time se-

ries. Barigozzi et al. (2016) studies high-dimensional time series factor models with

multiple change-points in their second-order structure, while Ma & Su (2016) and Sun

et al. (2017) consider a similar problem for a smaller number of time series. They

exploit multiple stage methodologies, which combine principle component analysis

(PCA)-type factor model estimation and change-point detection methods like binary

segmentation.

The goal of our work is to provide a Bayesian analysis of high-dimensional time se-

ries factor model with multiple change-points. In contrast to PCA-type estimation of

factor models, Bayesian factor analysis can generate interpretable factors by exploiting

patterns of sparsity in factor loading matrix (Carvalho et al., 2008; Knowles & Ghahra-

mani, 2011; Ročková & George, 2016a). Without giving up interpretability of latent

factors, we built our model assuming that the changes in covariance are driven by the

variances of underlying factors and thus are low-dimensional.

Ourwork is also related to a collection ofmultivariate GARCH and stochastic volatil-

ity (SV) models. Reviewed by Bauwens et al. (2006) and Asai et al. (2006), multivari-

ate GARCH and SV models have been much more thoroughly studied than change-

point models for the time-varying covariance estimation, especially for financial time

series data. A leading example in this category is dynamic conditional correlation

(DCC) model which considers the time-varying feature of variance and correlation

separately (Engle, 2002; Tse & Tsui, 2002). However, when the multivariate time se-

ries is in hundreds of dimensions, most existing methods cannot provide satisfactory

75



solutions to the problem of time-varying covariance estimation, as highlighted in En-

gle et al. (2008). In particular, the computational challenges emerge when inverting

large p-dimensional covariance matrices, which is required as part of likelihood esti-

mation by many methods. Bollerslev (1990) and Engle (2007) proposed methodologies

in line with traditional multivariate GARCH setting but with less computation bur-

dens. Simple heuristic methods such as sample covariance matrix of rolling windows

or RiskMetrics exponential smoother (Longerstaey & Spencer, 1996) are widely used in

industry for this type of problems. Another line of work impose factor model structure

on multivariate GARCH and SV models (Harvey et al., 1994; Diebold & Nerlove, 1989;

Aguilar & West, 2000; Chib et al., 2006).

In practice, although GARCH and SV models are generally preferred over change-

point models for financial time series due to the ever-changing volatility, our change-

point model can generate explainable underlying factors and can detect meaningful

structural break when applied on top of a separate volatility model as shown in real

data example later. In addition, we apply our factor model with change-points to fMRI

time series to study the connectivity of human brain and potential structure changes

during a sequence of experiments.

3.2 BAYESIAN CHANGE-POINT MODEL FOR COVARIANCE MATRIX

Before considering high-dimensional time-varying covariance, we study a Bayesian

change-point model for covariance matrix under low-dimensional setting. Let {yt}1:T

be a d-dimensional time series and 1 ≤ τ1 < · · · < τN ≤ T − 1 be N change-points

for the underlying covariance Σt, then the time span is divided into N+ 1 non-overlap

segments. We let τ0 = 0 and τN+1 = T, then the jth segment contains time series
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data y(τj−1+1):τj . We assume the mean of yt is 0, which is the same assumption as in

multivariate GARCH and SVmodels. Then, for all time t in the jth segment, the model

is

yt
iid∼ N

(
0,Σj

)
, τj−1 < t ≤ τj. (3.2.1)

Similar to Fearnhead (2006), we consider a Bayesian analysis for this specific change-

point detection problem. From the Bayesian perspective, we treat the number and the

positions of change-points as random variables instead of fix but unknown constants.

The prior of change points is a point process specified by the probability mass function

g(t) for the time between two successive points. We utilize negative binomial distribu-

tion here,

g(t) =
(
t− 1
k− 1

)
pk (1− p)t−k , (3.2.2)

where t = k, k+ 1, k+ 2, . . . This negative binomial formulation counts the number of

trials given k success. The point process is determined by parameter k and p, and the

expected length between two successive change-points is k/p. Larger k implies that

larger distance between two successive change-points. When k = 1, the point process

is Markov.

Note that τ0 = 0 is not a true change-point, so the gap between τ0 and τ1 is likely to

be shorter than the other gaps τj − τj−1 on average. Thus, the prior probability mass

function for τ1 is specified as

g0(t) =
k

∑
i=1

(
t− 1
i− 1

)
pi (1− p)t−i /k, (3.2.3)

where t = 1, 2, 3, . . . With G(t) = ∑t
s=1 g(s) and G0(t) = ∑t

s=1 g0(s), the probability
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mass function for τ1:T is

p(τ1:N) = g0(τ1)
N

∏
j=2

g(τj − τj−1) (1− G(T − τN − 1)) (3.2.4)

for N ≥ 1, and p(N = 0) = 1− G0(T − 1).

In addition, we assume independent priors for the parameters associated with each

segment. For computation simplicity, we let the prior for Σj be inverse Wishart distri-

bution

p(Σj) ∝ |Σj|−
ν+d+1

2 exp
(
−1
2
tr(SΣ−1

j )

)
(3.2.5)

where S is positive definite and ν > d+ 1.

3.2.1 EXACT BAYESIAN INFERENCE

With the priors specified above, we can carry out a exact and efficient Bayesian infer-

ence for this change-point in covariance problem. Denote

Q(t) = P(yt:T | changepoint at t− 1)

with Q(1) = P(y1:T) and P(t, s) = P(yt:s | t, s in the same segment). With inverse

Wishart prior as (3.2.5), we have

P(t, s) =
∫ s

∏
i=t

p(yi | Σ)p(Σ)dΣ =
|S| ν

2 Γd
(

ν+s−t+1
2

)

π
(s−t+1)d

2 |S +A| ν+s−t+1
2 Γd

(
ν
2
) (3.2.6)

whereA = ∑s
i=t yiy

′
i and Γd is the multivariate gamma function.

With P(·) andQ(·) defined above, previous literatures have developed the recursion

formula to calculate Q(t) for t = 1, . . . , T with computation complexity O(T2) (Yao,
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1984; Barry & Hartigan, 1993; Fearnhead, 2006). The recursion is given by

Q(t) =
T−1

∑
s=t

P(t, s)Q(s+ 1)g(s+ 1− t) + P(t, T)(1− G(T − t)), (3.2.7)

for t = 2, . . . , T, and

Q(1) =
T−1

∑
s=1

P(1, s)Q(s+ 1)g0(s) + P(1, T)(1− G0(T − 1)), (3.2.8)

where G0(t) = ∑t
s=1 g0(s).

Given the values of Q(t) for t = 1, . . . , T, we can sample change-points from the

posterior distribution as following. The posterior of the first change-point is

P(τ1 | y1:T) = P(τ1)P(y1:τ1 | τ1)P(y(τ1+1):T | τ1)/Q(1)

= P(1, τ1)Q(τ1 + 1)g(τ1)/Q(1)

for τ1 = 1, ..., T− 1. The probability of no further change-point being P(1, n)(1−G(T−

1))/Q(1). The posterior distribution of the τj given τj−1 is

P(τj | τj−1,y1:T) = P(τj−1 + 1, τj)Q(τj + 1)g(τj − τj−1)/Q(τj−1 + 1),

for τj = τj−1 + 1, ..., T − 1, and the probability of no further breakpoint is P(τj−1 +

1, T)(1− G(n− τj−1 − 1))/Q(τj−1 + 1).

Due to the matrix determinant computation in (3.2.6), the computation complexity

of this Bayesian analysis is more than quadratic with respect to d. Thus, it is too expen-

sive when d, the dimension of time series is large.
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3.3 BAYESIAN FACTOR MODEL WITH MULTIPLE CHANGE-POINTS

In this section, we study factor model with multiple change-points from a Bayesian

perspective. Let τ1:N be the change-point positions and N be the number of change-

points. Assuming that the multivariate time series y1:T is driven by K common factors,

we study the following factor model

yt = Bd×Kft + ϵt, ϵt ∼ Nd (0,Σ), ft ∼ NK
(
0,Λj

)
(3.3.1)

for τj−1 < t ≤ τj, where B is the matrix of factor loadings, ft is the vector of latent

factors at time t, and ϵt is the vector of idiosyncratic errors that have covariance Σ =

diag
{

σ2
1 , . . . , σ

2
d
}
. Thus, the distribution of yt unconditional on latent factors ft is

yt | Bd×K,Σ, τ1:N ,Λ1:N+1
iid∼ N (0,BΛjB

′ + Σ) (3.3.2)

for τj−1 < t ≤ τj (j = 1, . . . ,N + 1).

Due to identifiability issue, traditional factormodel usually assumes that the K latent

factors ft are independent and have unit variance, i.e. ft ∼ N (0, IK). In contrast, we

assume the K common factors independent, but we allow the variance of factors to be

time-varying. In other words, we impose change-point model to the covariance of the

K independent common factors, and the covariance is Λj = diag
{

λ2
j1, . . . ,λ

2
jK

}
for the

jth segment.

Under this factor model, the change in covariance of a high-dimensional time series

is driven by the variance change of a few major common factors. The similar intuition

can be found in many classic papers about factor multivariate SV models (Jacquier

et al., 1995; Aguilar &West, 2000). In our model, when there is a change point at time t,
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the difference bewteen cov(yt) and cov(yt+1) is at most of rank K. Hence, the change

of a high-dimensional covariance matrix lies in a low-dimensional space.

We first consider the prior distribution for model (3.3.2) with K, the dimension of

latent factor space fixed. We assume the following prior for change-points τ1:N

p(τ1:N) ∝ exp
(
−1
2
NK log T

)
(3.3.3)

where N, K and T are the number of change-points, factors and observations corre-

spondingly. We chose prior (3.3.3) over prior (3.2.4) mainly due to computational con-

venience, as fast change-point detection method can be applied if log p(τ1:N) is linear

in N. In the context of traditional multiple change-point detection setting, log p(τ1:N)

serves the role as a penalty to log-likelihood, and K log T is Bayesian information cri-

terion (BIC; Schwarz et al. (1978)), because K is the number of additional parameters

introduced by adding a change-point.

For the diagonal elements in Σ, we assume independent scaled inverse chi-square

priors

σ2
1 , . . . , σ

2
d

iid∼ Scale-Inv-χ2 (ξ, s2σ
)

(3.3.4)

with the relatively noninfluential choice ξ = 1. For the diagonal elements in Λj in each

segment, we assume scaled inverse chi-square priors

λ2
j1, . . . ,λ

2
jK

iid∼ Scale-Inv-χ2 (η, s2λ
)

(3.3.5)

with η = 1.

To automatically identify interpretable factor orientations, we exploit a spike-and-

slab prior on the individual coefficients in factor loading B so that the coefficients
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have high probability to be zero in their posterior distribution. The spike-and-slab

prior have been used in many Bayesian sparse factor analysis to naturally separate

important coefficients from the coefficients that are ignorable (Carvalho et al., 2008;

Knowles & Ghahramani, 2011; Ročková & George, 2016a). In particular, we assume

that each factor loading βik follows spike-and-slab LASSO (SSL) prior that is a mixture

distribution of two Laplace components: a slab component with a penalty λ1 and a

spike component with a penalty λ0k (Ročková & George, 2016b). The prior is

βik | γik, δ0, δ1 ∼ (1− γik) φ (βik | δ0) + γikφ (βik | δ1) , (3.3.6)

where φ (β | δ) = δ
2 exp {−δ|β|} and δ1 << δ0 (i = 1, . . . , d; k = 1, . . . ,K). This SSL

prior pull the unselected (γik = 0) coefficient βik sharply towards zero with δ0 sub-

stantially larger than λ1, and thus lead to a more sparse factor loading B compared to

traditional factor analysis and spike-and-slab priors with continuous Gaussian spike

distributions (George & McCulloch, 1993). As a result, each learned latent factor can

be linked to a subset of individual time series of {yt}, and many of the factors can

be labeled based on background information. In other words, this technique provides

enhanced interpretability when applied to time series of hundreds of dimensions.

Binary matrix Γ = (γik)d×K is regarded as feature allocation matrix, since γik in-

dicates whether the kth common factor contributes to the ith individual time series.

When the number of factor K is fixed, the prior for γik can simply be

γik
iid∼ Bernoulli(θ), k = 1, . . . ,K, (3.3.7)

with θ = 1
2 , implying equal prior probability for the spike component and the slab
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component.

3.3.1 DETERMINATION OF THE NUMBER OF FACTORS

The remaining issue is how to determine the dimensionality of latent factor space, as

it is generally unrealistic to assume the number of latent factors is known. To de-

termine the number of factors in Bayesian factor analysis, Ročková & George (2016a)

considered a truncated finite dimensional approximation of Indian Buffett Process in

the prior construction for binary matrix Γ = (γik)d×K∗ , with K∗ being a predetermined

maximum possible number of factors and the columns of Γ having decreasing prob-

ability to be nonzero from left to right. The number of nonzero columns essentially

determines the number of factors.

In a similar fashion, we let K∗ being a predetermined maximum possible number of

factors. Then, we introduce random variable K such that

γik
iid∼ Bernoulli(θ1), k = 1, . . . ,K, (3.3.8a)

γik
iid∼ Bernoulli(θ0), k = K+ 1, . . . ,K∗, (3.3.8b)

where θ1 >> θ0, which is close to 0. Under this model, the last K∗ − K columns of

Γd×K∗ are likely to be zero, implying that last K∗ − K columns of factor loading matrix

Bd×K∗ are likely to be zero. We regard the first K factors as active factors and last K∗ −K

factors as inactive ones.

With K∗ being a large number, it is likely that ft contains many inactive factors,

which have little influence to yt. We further assume that the inactive factors follow a

83



stationary distribution through time. In other words, for τj−1 < t ≤ τj (j = 1, . . . ,N)

ft ∼ NK∗
(
0,Λj

)
(3.3.9)

where Λj = diag
{

λ2
j1, . . . ,λ

2
jK,λ

2
0, . . . ,λ

2
0

}
and λ2

0 is a universal variance for inactive

factors. Under this model, change-point occurs only in the K-dimensional subspace of

active factors. Hence, the number of active factors determines the additional effective

number of parameters when adding change-points. Following the same representation

as (3.3.3), we assume that the joint distribution of change-points τ1:N and the number

of active factors K is

p (τ1:N ,K) ∝ exp
(
−1
2
NK log T

)
. (3.3.10)

With model setting (3.3.9) and prior (3.3.10), we have the change-points τ1:N , the co-

variances of factors Λ1:(N+1) and binarymatrix Γ all dependent on the number of active

factors K. We carry out an estimation procedure of our model with unknown number

of factors in the next section.

3.4 EM APPROACH TO FACTOR ANALYSIS WITH CHANGE-POINTS

We estimate the Bayesian factor model with multiple change-points through an EM

approach, which takes advantage of existing implementations for static factor model

(Ročková & George, 2016a) and algorithms for multiple change-point detection (Killick

et al., 2012). For simplicity, we denote Yd×T = (y1, . . . ,yT) and FK∗×T = (f1, . . . ,fT).

The marginal distribution of yt is determined by τ1:N , Λ1:(N+1),B and Σ as in (3.3.2).

Besides marginal distribution of yt, we are also interested in the number of active fac-

tors K. Thus, we consider EM algorithm (Dempster et al., 1977) by treating binary ma-
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trix Γ and factor matrix F as missing data, while treating N, τ1:N , Λ1:(N+1), K, B and

Σ as parameters of interest. With the prior we assumed in the previous section, our

latent factor model with multiple change-points can be depicted by diagram (3.4.1).

τ1:N → Λ1:(N+1) → F → Y

↑ ↗ ↗ ↑

K → Γ → B Σ

(3.4.1)

Let Ω =
(

τ1:N ,Λ1:(N+1),K,B,Σ
)
. We propose EM algorithm to find the parameter

Ω̂ tomaximize the posterior distribution given observed dataY , i.e. Ω̂ = argmaxΩ log p (Ω | Y ).

Given an initialization Ω(0), EM algorithm seeks to find Ω̂ by iteratively applying these

following two steps:

Expectation step (E-step): Calculate the expected logarithm of the augmented pos-

terior with respect to the conditional distribution of unobserved latent data (Γ,F )

given Y and Ω(m) at the mth iteration:

Q
(

Ω | Ω(m)
)
= E

Γ,F |Y ,Ω(m) [log p (Ω, Γ,F ,Y )] (3.4.2)

Maximization step (M-step): Update parameter with Ω(m+1) = argmaxΩ Q
(

Ω | Ω(m)
)
.

We now simplify the calculation of (3.4.2) by decompose it into separate pieces. For

notation convenience, let ⟨X⟩ denote the conditional expectation E
Γ,F |Y ,Ω(m) (X). Ac-

cording the relationship of all parameters and latent variables as in (3.4.1), the param-

eters are separated into two disconnected parts by Γ, F and Y .
(

τ1:N ,Λ1:(N+1),K
)
and

(B,Σ) are independent given Γ, F and Y . Thus, Q
(

Ω | Ω(m)
)
can be decomposed as

Q
(

Ω | Ω(m)
)
= C(m) +Q(m)

1

(
τ1:N ,Λ1:(N+1),K

)
+Q(m)

2 (B,Σ) (3.4.3)
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whereQ(m)
1 (·) andQ(m)

2 (·) are the conditional expectation
〈
log p

(
τ1:N ,Λ1:(N+1),K, Γ,F

)〉

and ⟨log p (B,Σ, Γ,F ,Y )⟩ correspondingly, and C(m) is a constant not involving Ω. We

lay out the E-step and M-step implementation in the coming sections.

3.4.1 THE E-STEP

We calculate the three components of Q
(

Ω | Ω(m)
)

separately. The details are in-

cluded in Appendix C.1. First, under our Bayesian factor model with multiple change-

points, we have

Q(m)
1

(
τ1:N ,Λ1:(N+1),K

)

= C(m)
1 − 1

2

K

∑
k=1

N+1

∑
j=1

⎡

⎣ 1
λ2
jk

⎛

⎝ηs2λ +
τj

∑
t=τj−1+1

〈
f 2tk
〉
⎞

⎠+
(
τj − τj−1 + η + 2

)
logλ2

jk

⎤

⎦

− 1
2λ2

0

(
ηs2λ +

K∗

∑
k=K+1

T

∑
t=1

〈
f 2tk
〉
)
− 1

2
((K∗ − K) T + η + 2) logλ2

0

−1
2
NK log T +

d

∑
i=1

K

∑
k=1

(⟨γik⟩ log θ1 + (1− ⟨γik⟩) log(1− θ1))

+
d

∑
i=1

K∗

∑
k=K+1

(⟨γik⟩ log θ0 + (1− ⟨γik⟩) log(1− θ0)) . (3.4.4)

For the second part, Q(m)
2 (B,Σ) has a similar form to the log-likelihood of multivariate

regression. Explicitly, we have the following equation,

Q(m)
2 (B,Σ)

= C(m)
2 − 1

2

T

∑
t=1

{
(yt −B ⟨ft⟩)′ Σ−1 (yt −B ⟨ft⟩) + tr

[
B′Σ−1B

(〈
ftf

′
t
〉
− ⟨ft⟩ ⟨ft⟩′

)]}

−
d

∑
i=1

K

∑
k=1

|βik| (δ1 ⟨γik⟩+ δ0 (1− ⟨γik⟩))−
T + ξ + 2

2

d

∑
i=1

log σ2
i −

d

∑
i=1

ξs2σ
2σ2

i
, (3.4.5)
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which involves the conditional expectation of Γ, ft and the quadratic terms of ft.

In each E-step, we update the conditional expectation of the sufficient statistics in

⟨·⟩ in (3.4.4) and (3.4.5) given Ω(m). Conditional on Ω(m), latent factors ft follows

multivariate normal distribution: for τj−1 < t ≤ τj (j = 1, . . . ,N),

ft | Ω(m),Y ∼ N
(
µt,Mj

)
,

where µt = MjB
(m)′Σ(m)−1

yt and Mj =
(

Λ
(m)−1

j +B(m)′Σ(m)−1
B(m)

)−1
. Thus, the

conditional mean vector of ft is µt, while the conditional second moment of ft is ob-

tained from ⟨ftf ′
t ⟩ = Mj + ⟨ft⟩ ⟨ft⟩′. In addition, conditional on Ω(m), each entry of

binary matrix Γ follows Bernoulli distribution independently, and thus we have

⟨γik⟩ ≡ P
(

γik = 1 | Ω(m)
)
=

θI{k≤K(m)}φ
(

β(m)
ik | δ1

)

θI{k≤K(m)}φ
(

β(m)
ik | δ1

)
+

(
1− θI{k≤K(m)}

)
φ
(

β(m)
ik | δ0

) .

(3.4.6)

3.4.2 THE M-STEP

Once the latent sufficient statistics have been updated, the M-step consists of maxi-

mizing (3.4.3) with respect to the unknown parameters. The M-step for regular EM al-

gorithm would seek
(

τ(m+1)
1:N ,Λ(m+1)

1:(N+1),K
(m+1)

)
and

(
B(m+1),Σ(m+1)

)
which optimize

Q(m)
1 and Q(m)

2 correspondingly. However, due to the complicated form in (3.4.4) and

(3.4.5), we proceed with the following Conditional Maximization (CM) steps.

Conditional on K(m), the maximization of Q(m)
1 can be transformed to a change-point

detection problem such that τ1:N minimizes ∑N+1
j=1 C

(
τj−1 + 1, τj

)
+ cN. The cost func-
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tion C(·) is the negative maximum expected log-likelihood, i.e.

C
(
τj−1 + 1, τj

)
= −max

Λj

⎡

⎣log p
(

Λj | K(m)
)
+

τj

∑
t=τj−1+1

〈
log p

(
ft | Λj,K(m)

)〉
⎤

⎦

where ⟨X⟩ denotes the conditional expectation E
Γ,F |Y ,Ω(m) (X), and we have linear

penalty c = 1
2K log T according to (3.4.4). Killick et al. (2012) proposed an efficient

algorithm PELT method to solve the above change-point detection problem with lin-

ear computational cost. We applied the PELT method here to find

(
τ(m+1)
1:N ,Λ(m+1/2)

1:(N+1)

)
= argmax

(τ,Λ)

Q(m)
1

(
τ1:N ,Λ1:(N+1),K(m)

)

with details deferred to Appendix C.2.1. Then, conditional on τ(m+1)
1:N , we update

(
Λ

(m+1)
1:(N+1),K

(m+1)
)
= argmax

(Λ,K)
Q(m)

1

(
τ(m+1)
1:N ,Λ1:(N+1),K

)
.

Similarly, we exploit the following conditionalmaximization steps to find
(
B(m+1),Σ(m+1)

)

such that

B(m+1) = argmax
B

Q(m)
2

(
B,Σ(m)

)
,Σ(m+1) = argmax

Σ

Q(m)
2

(
B(m+1),Σ

)

with details deferred to Appendix C.2.2. With the above conditional updates in the

M-step, monotone convergence of EM algorithm is still guaranteed (Meng & Rubin,

1993).
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3.4.3 PARAMETER EXPANSION

A common problem in estimating factor model is that the strong ties between factor

loading and latent factor can cause slowdown the convergence of an EM algorithm.

Our factor model with change-points is vulnerable in the same way. In practice, some

sub-optimal solutions might be obtained due to the rotational invariance of the likeli-

hood of a factor model although our prior should guide the estimation towards sparse

loadings. Liu et al. (1998) proposed parameter expanded EM algorithm (PX-EM) to ac-

celerate the convergence by embedding the complete data model within a larger model

with extra parameters. Ročková & George (2016a) introduced a variant of a PX-EM al-

gorithm, namely PXL-EM, to rotate the factor loading toward orientations which best

match the prior assumptions of independent latent components and sparse loadings.

A key to PXL-EM approach is to employ the parameter expansion only on the likeli-

hood portion of the posterior, while using the SSL prior to guide the algorithm toward

sparse factor orientations. Due to the fact that PXL-EM changes the target function of

the original optimization, we only apply PXL-EM to help us find better initial points.

3.5 SIMULATION STUDIES

In this section, we simulate datasets from factor model (3.3.1) with sparse factor load-

ing, and study the effectiveness of our proposed EM approach in detecting change-

points and recovering true factor loadings.

3.5.1 CHANGE-POINT DETECTION

We generate a dataset with T = 300 observations and three change-points τ1:3 =

{80, 160, 200}, and thus the observations can be divided into four segments. We let
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the number of variables d = 130 and the true number of factors K = 5. The true factor

loading B is a matrix which has a block-diagonal pattern as shown in Figure 3.1, as

the factor loadings are either 0, or follow distribution N
(
1, 0.12

)
. In jth segment, the

covariance of true factors is determined by diagonal matrix Λj = diag
{

λ2
j1, . . . ,λ

2
jK

}

We simulate λ2
j1, . . . ,λ

2
jK

iid∼ Lognormal (0, log(ν)/2), and the parameters of the distri-

bution are chosen so that 95% of the simulated variances are within the range (1/ν, ν).

The covariance matrix of idiosyncratic errors is Σ = diag
{

σ2
1 , . . . , σ

2
d
}
, and it doesn’t

change through time. We simulate σ2
1 , . . . , σ

2
d

iid∼ s2 ·Uniform (0.5, 1.5). Based on (3.3.2),

the distribution of yt is N (0,BΛjB
′ + Σ) for τj−1 < t ≤ τj. We vary v ∈ {2, 5, 10} and

s2 ∈ {1/4, 1/2, 1, 2} in this simulation.

(a) Factor loadings: B (b) Covariance in a segment: BΛ1B
′ + Σ

Figure 3.1: A realization of factor model simulation with multiple change-points

We exploit our proposed EM algorithm to the simulated dataset. The input for our

method is standardized such each variable has mean 0 and unit variance. We let the
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hyper-parameters K∗ = 10, s2λ = s2σ = 1 and δ0 = 20. The sensitivity to δ0 is discussed

in next subsection. In the computation, we follow the guidance in Ročková & George

(2016a) by keeping the slab variance steady and gradually increasing the spike variance

δ0 over a ladder of values {1, 5, 10, 20}. In addition, since the scale of B and Λjs is

unidentifiable in likelihood, we output rescaled Λ̂js and B̂ such that each factor have

unit variance on average throughout the whole periods for better interpratablility, i.e.

1
T ∑N̂+1

j=1
(
τ̂j − τ̂j−1

)
λ̂2
jk = 1.

Figure 3.2 shows the change-point detection results. The change-point detection gets

more accurate as the variation between segments increases from top to bottom, while

the results are robust to the variance of idiosyncratic error.

3.5.2 FACTOR LOADING RECOVERY

In the above simulation, the EM algorithm correctly estimate the number of factors for

more than 99% simulations. Following the simulation described in 3.5.1, we now fix

Λ1 = 4I , Λ2 = I , Λ3 = 3I and Λ4 = I to take a closer look at the factor loading recov-

ery and the sensitivity to hyper-parameter δ0. The recovery of sparse factor loading is

very important to the explainability of factor analysis. Figure 3.3 shows the estimated

factor loadings under different hyper-parameter δ0. We also compare our estimated

factor loading to the results given by PCA and Sparse PCA (Zou et al., 2006) in Figure

3.4.

91



0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

0 50 100 150 200 250 300

0
10

20
30

40
50

Figure 3.2: Change-point detection over 12 different settings of (ν, s2). From left to right, s2 =
1/4, 1/2, 1, 2. From top to bottom, ν = 2, 5, 10.

3.6 REAL DATA EXAMPLES

3.6.1 S&P 100 STOCK RETURN

This example studies the S&P 100 stock daily return in time period 2007-2016. Since the

components of S&P 100 change over time, we use the collection all S&P 100 lists from

2009 to 2016 as our estimation universe, and eliminate the names which was not listed

in the stockmarket until after 2007 or is no longer listed by the end of 2016. The number

of stocks is d = 88 in this study. We denote the time series of daily return as {rt}1:T

where T = 2518. Since the daily returns have rapid volatility change, the original data
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(a) δ0 = 5 (b) δ0 = 10 (c) δ0 = 20 (d) δ0 = 50

Figure 3.3: Estimated factor loadings for different values of δ0.

(a) δ0 = 1 (b) PCA (c) SPCA

Figure 3.4: Estimated factor loadings for δ0 = 1, PCA and SPCA.

should not be modeled by our factor model with change-points. Therefore, we first
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Table 3.1: For each factor, we list the stocks that have factor loadings greater than 0.2 in abso-
lute value.

factor 2 AEP, CL, COST, CPB, ETR, EXC, FCX, JNJ, KO, MCD, MO, PEP, PG, SO, T, VZ, WMT
factor 3 AA, BHI, COP, CVX, DVN, FCX, HAL, NOV, OXY, SLB, WMB, XOM
factor 4 ALL, AXP, BAC, BK, C, COF, GS, JPM, MET, MS, RF, USB, WFC
factor 5 ABT, AMGN, BAX, BMY, GILD, JNJ, MDT, MRK, PFE, UNH
factor 6 AAPL, AMZN, CSCO, GOOG, HPQ, IBM, INTC, MSFT, ORCL, TXN
factor 7 AEP, ETR, EXC, SO
factor 8 COST, HD, LOW, TGT
factor 9 BA, GD, LMT, RTN, UTX
factor 10 BHI, HAL, NOV, SLB

preprocess the return of individual stocks using GARCH(1,1):

ri,t = σi,tyi,t

σ2
i,t = α0 + α1r2i,t−1 + β1σ2

i,t−1.

where i = 1, . . . , d and t = 1, . . . , T. After GARCH estimation, we generate stabilized

daily return yi,t = ri,t/σ̂i,t. We denote yt = (y1,t, . . . , yd,t)′ and exploit our method on

the time series {yt}1:T. For the hyper-parameter settings, we let s2λ = s2σ = 1, δ1 = 0.001,

δ0 = 50 and K∗ = 20 in this study. To relieve the burden of computation, we assume

that the change-points can exist only at t ∈ {5, 10, 15, . . . , 2515}.

The estimated number of factors K̂ = 10, and Figure 3.5 shows the estimated factor

loadings B̂′. The first row of B̂′ is nonzero for all stocks, and it represents the main

index component of stock market. To get a better understanding of this factor model

estimation, we highlight the major stock tickers in the other factors. Table 3.1 list the

stocks that have factor loadings greater than 0.2 in absolute value. Based on the Table

3.1, the main component stocks in a same factor are closely related fundamentally, and

thus we can easily interpret the factors. For example, factor 3-6 can represent energy,

financial, healthcare and technology sector correspondingly.
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Figure 3.5: Estimated factor loadings (transposed): B̂′. For each entry, darker color implies
larger absolute value of factor loading.

The detected change-points are at: 2007/12/28, 2008/09/23, 2010/05/04, 2010/10/08,

2011/07/26, 2011/12/30, 2014/10/07, 2016/02/22. Many of these change-points are

in a neighborhood of critical events that influence the financial market. For example,

2008/09/23 is right after the bankruptcy of Lehman Brothers during the 2008 finan-

cial crisis; 2011/07/26 is around critical moments during the Greek government-debt

crisis.

3.6.2 FMRI ACTIVITY

This example concerns the multivariate time series of fMRI activity in human brain.

The data is collected by the Center for Cognitive Brain Imaging at Carnegie Mellon

University as part of the star/plus experiment for six individuals (Keller et al., 2001).

Each experiment consists of a sequence of 40 trials and resting periods in between.

The typical timing of each such trial can be summarized as: each subject was shown

a picture (or sentence) for four seconds, a blank screen for four seconds, a related sen-

tence (or picture) for four seconds and a resting period for 15 seconds. When shown a

sentence, the subjects are instructed to press a button to indicate whether the sentence
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correctly described the picture. For the first half of the trials, the picture was presented,

and the sentence was presented first on the other half of the trials.

During the experiment of about 1400 seconds, the subjects were positioned inside

an MRI scanner, and magnetic resonance images are collected every 0.5 second. Each

image was partitioned into 4698 voxels of width 3 mm, making the raw data a high-

dimensional multivariate time series. Due to the high-dimensionality of the original

data, existing work usually group the voxels into distinct regions of interest (ROIs) in

the brain, and then average the signals over all voxels within the same ROI. Barnett &

Onnela (2016) used this dataset to illustrate a method detecting change-point in cor-

relation networks. They analyze this dataset by combining the analysis on the eight

trials where the picture is presented first and the sentence agrees with the picture for

all six individuals.

Here, we apply Bayesian factor model with multiple change-points to the whole

experiment for each individual, assuming that structural change may occur only be-

tween trials, or equivalently 51 possible positions. We first apply our method to the

multivariate time series of 25 ROIs with length 2800. Let δ1 = 0.001, δ0 = 50, K∗ = 5

as hyper-parameter setting, then the estimated change-point set is {1375}, which is at

the middle of the experiment when the showing order of pictures and sentences was

switched. Based on our factor model estimation, Figure 3.6 displays the estimated cor-

relation network of Brain region of interest (ROI) before and after the detected change-

point, where the edge indicates that the absolute value of correlation is greater than

0.5.
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Figure 3.6: Correlation network of Brain region of interest (ROI) before and after the detected
change-point. We construct an edge between two ROIs if the absolute value of correlation between
them is greater than 0.5.

3.7 DISCUSSION

In this article, we introduced a Bayesian framework on factor model with multiple

change-points in the quest for solving time-varying covariance estimation of high-

dimensional time series. Different from PCA-type methods, our study focuses on

both the interpretability of latent factors and the time-varying nature of observed data.

Under the high-dimensional setting, we exploit spike-and-slab LASSO prior on fac-

tor loadings such that the estimated factor loading matrix is sparse and interpretable.

On top of factor model, we consider the existence of multiple change-points to accom-

modate the change over time. Furthermore, the number of factors and the number

of change-points are both consider unknown in our Bayesian analysis. We then pro-

posed an efficient EM algorithm to estimate the Bayesian factor model with multiple

change-points. Our EM algorithm takes advantage of existing implementations for

97



sparse factor model and efficient algorithms for multiple change-point detection. In

the application to real data examples, our method delivers highly interpretable latent

factor and meaningful change-points.

In dealing with time-varying covariance of high-dimensional times series data, all

statistical inference would rely on a few assumptions. With change-point model be-

ing arguably the simplest model to accommodate time-varying nature, the Bayesian

change-pointmodel for covariancematrix faces limitations in handling high-dimensional

data in the sense that change-points are hardly detectable. To better exploit the latent

structure under high-dimensional setting, our analysis relies on the factor model and

assumes that the change is driven by the main factors but not the idiosyncratic errors.

It would be interesting to further relax our assumptions under Bayesian frameworks.
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A
Appendix to Chapter 1

A.1 PROOF FOR THE CONSISTENCY OF MLE

We need the following two lemmas to prove Theorem 1.

Lemma 1 Given µ ∈ Θ, for every ϵ > 0, there exists R such that for all v ∈ Θ with

∥µ− v∥ < 1,
∫

B(R)c
e−

1
2 ∥Z−v∥2dZ < ϵ
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where B(R) = {Z ∈ Rn : ∥Z∥ ≤ R}.

Proof: According to the triangle inequality and the fact that ∥v −µ∥ < 1, we have

∥Z − v∥ ≥ ∥Z∥ − ∥u∥ − 1 = ∥Z∥/2+ (∥Z∥/2− 1− ∥u∥) .

Therefore, when R ≥ 2(1+ ∥µ∥), ∥Z − v∥ ≥ ∥Z∥/2 for any Z ∈ B(R)c, and thus

∫

B(R)c
e−

1
2 ∥Z−v∥2dZ ≤

∫

B(R)c
e−

1
8 ∥Z∥2dZ. (A.1.1)

Note that the right hand side of inequality (A.1.1) converges to zero as R goes to infin-

ity. For any ϵ > 0, there exists R such that R ≥ 2(1+ ∥µ∥) and
∫
B(R)c e

− 1
8 ∥Z∥2dZ < ϵ,

which further implies
∫
B(R)c e

− 1
2 ∥Z−v∥2dZ < ϵ for any ∥v −µ∥ < 1. !

Lemma 2 (Identifiability) The true distribution of τ is identifiable on parameter space Θ:

Pµ ̸= Pµ′ for every µ ̸= µ′.

Proof: Suppose µ,µ′ ∈ Θ and Pµ(τ) = Pµ′(τ) for all possible full ranking list τ on U.

Since

Pµ(τ(i1) < τ(i2)) = ∑
τ(i1)<τ(i2)

Pµ(τ),

we have Pµ(τ(i1) < τ(i2)) = Pµ′(τ(i1) < τ(i2)) for any i1, i2 ∈ U. On the other hand,

Pµ(τ(i1) < τ(i2)) = Φ(
µi1−µi2√

2
), where Φ(·) is the Normal CDF. Hence, µi1 − µi2 =

µ′
i1 − µ′

i2 for 1 ≤ i1 < i2 ≤ n, and 1′µ = 1′µ′ = 0. Hence, we have µ = µ′. !

Proof of Theorem 1: We apply Wald’s consistency proof (Van der Vaart, 2000) by veri-

fying the following three conditions.

First, we denote mµ(τ)
de f
= log Pµ(τ) and show that the map µ 9→ mµ(τ) is continu-

ous for all τ. According to Lemma 1, given µ ∈ Θ, for every ϵ > 0, there exists R such
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that for all v ∈ Θ with ∥µ− v∥ < 1,
∫
B(R)c e

− 1
2 ∥Z−v∥2dZ < ϵ/4. Thus, for any A ⊂ Rn

and ∥v −µ∥ < 1,

∫

A∩B(R)c
e−

1
2 ∥Z−µ∥2dZ +

∫

A∩B(R)c
e−

1
2 ∥Z−v∥2dZ < ϵ/2.

Since e− 1
2 ∥Z−µ∥2 is bound by 1 and A ∩ B(R) is a bounded area, by the Bounded Con-

vergence Theorem, we have for any sequence {µk}∞
k=1 converging to µ,

lim
k→∞

∫

A∩B(R)
e−

1
2 ∥Z−µk∥2dZ =

∫

A∩B(R)
e−

1
2 ∥Z−µ∥2dZ.

Hence,
∫
A∩B(R) e

− 1
2 ∥Z−µ∥2dZ is a continuous function ofµ. Thus, for every ϵ > 0, there

exist δ such that for all v ∈ Θ with ∥µ− v∥ < δ,

∣∣∣∣
∫

A∩B(R)
e−

1
2 ∥Z−µ∥2dZ −

∫

A∩B(R)
e−

1
2 ∥Z−v∥2dZ

∣∣∣∣ ≤ ϵ/2

Therefore, given µ ∈ Θ and A ⊂ Rn, for every ϵ > 0, there exists R such that for all

v ∈ Θ with ∥µ− v∥ < min{1, δ},

∣∣∣∣
∫

A
e−

1
2 ∥Z−µ∥2dZ −

∫

A
e−

1
2 ∥Z−v∥2dZ

∣∣∣∣

≤
∣∣∣∣
∫

A∩B(R)c
e−

1
2 ∥Z−µ∥2dZ −

∫

A∩B(R)c
e−

1
2 ∥Z−v∥2dZ

∣∣∣∣

+

∣∣∣∣
∫

A∩B(R)
e−

1
2 ∥Z−µ∥2dZ −

∫

A∩B(R)
e−

1
2 ∥Z−v∥2dZ

∣∣∣∣

≤
∫

A∩B(R)c
e−

1
2 ∥Z−µ∥2dZ +

∫

A∩B(R)c
e−

1
2 ∥Z−v∥2dZ

+

∣∣∣∣
∫

A∩B(R)
e−

1
2 ∥Z−µ∥2dZ −

∫

A∩B(R)
e−

1
2 ∥Z−v∥2dZ

∣∣∣∣ < ϵ.

We conclude that
∫

τ(Z)=τ′ e−
1
2 ∥Z−µ∥2dZ is continuous with respect to µ.
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Second, for every sufficiently small V ⊂ Θ the function τ 9→ supµ∈U mµ(τ) is mea-

surable and satisfies

Eµ0 sup
µ∈V

mµ(τ) < ∞.

The domain of τ a finite set containing all possible ranking lists of n entities. Thus,

for any t ∈ R, the preimage of (t,∞) under τ 9→ supµ∈U mµ(τ) is a finite set. Thus,

τ 9→ supµ∈U mµ(τ) is a measureable function.

Third, because Pµ(τ) ≤ 1, we have supµ∈V mµ(τ) ≤ 0. Since the domain of τ is a

finite set, there exists a lower bound c such that supµ∈V mµ(τ) ≥ c for every τ. Thus,

Eµ0 supµ∈V mµ(τ) exists and Eµ0 supµ∈V mµ(τ) < ∞.

Due to the identifiability of Pµ in Lemma 2, Eµ0mµ(τ) attains its maximum uniquely

at µ0. Then according to Wald’s consistency proof, for every ϵ > 0 and every compact

set K ⊂ Θ,

P ({∥µ̂m −µ0∥ ≥ ϵ} ∩ {µ̂m ∈ K}) → 0, as n is fixed, m → ∞.

A.2 VALIDITY OF THE PARAMETER-EXPANDED GIBBS SAMPLER

Below we show the validity of parameter expanded Gibbs sampler under BARC, and

the validity under BARCW and BARCM follows by the same logic. We use π to denote

the marginal posterior distribution of Z given all the observed ranking lists T , i.e.,

π(Z) = p(Z | T ) ∝ p(Z)p(T | Z) = p(Z)1{τ(Z) = T }.

In order to show the validity of parameter expansion, it suffices to prove that for any

Z following the marginal posterior distribution π(Z), its transformation tθ(Z) also
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follows the same distribution π, as long as θ is draw from the distribution with density

proportional to π(tθ(Z))|Jθ(Z)|θ−1. The proof is as follows.

By construction, the joint density of (Z, θ) is

p(Z, θ) = p(Z)p(θ | Z) = π(Z) · π(tθ(Z))θ−nm−1
∫
R

π(tγ(Z))γ−nm−1dγ
,

which immediately implies the joint density of (Y , θ) ≡ (tθ(Z), θ):

p(Y , θ) = p(Z, θ)|Jθ(Z)|−1 = π(Z) · π(tθ(Z))θ−1
∫
R

π(tγ(Z))γ−nm−1dγ

= π(t−1
θ (Y )) · π(Y )θ−1

∫
R

π(tγ(t−1
θ (Y )))γ−nm−1dγ

. (A.2.1)

Note that tγ(t−1
θ (Y )) = θY /γ = t−1

κ (Y ), where κ = θ/γ. We can then simplify the

denominator in (A.2.1) as

∫

R
π(tγ(t−1

θ (Y )))γ−nm−1dγ =
∫

R
π(t−1

κ (Y ))(θ/κ)−nm−1d(θ/κ)

= θ−nm
∫

R
π(t−1

κ (Y )) · κnm−1dκ,

and thus further simplify p(Y , θ) as

p(Y , θ) = π(Y ) ·
π(t−1

θ (Y ))θ−1

θ−nm
∫
R

π(t−1
κ (Y )) · κnm−1dκ

= π(Y ) ·
π(t−1

θ (Y ))θnm−1
∫
R

π(t−1
κ (Y )) · κnm−1dκ

.

Therefore, the marginal density of Y is

p(Y ) = π(Y ) ·
∫
R

π(t−1
θ (Y ))θnm−1dθ

∫
R

π(t−1
κ (Y )) · κnm−1dκ

= π(Y ),

i.e., Y ≡ tθ(Z) follows the distribution with density π.
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A.3 GIBBS SAMPLER FOR BARCW

The Gibbs sampling with parameter expansion for BARCWmodel is accomplished by

iterating the following steps.

1. For i = 1, . . . , n, j = 1, . . . ,m: Draw [Zij | Z[−i],j,Z[−j],α,β] from N (αi + x′
iβ, 1)

with truncation points determined by Z[−i],j, such that Zij falls in the correct

position according to τP
j .

2. Draw θ ∼ S1/2/χnm where

S =
m

∑
j=1

wjZ
′
jZj −

m

∑
j,k

wjwkZ
′
jV

(
Λ−1 +

m

∑
j=1

wjV
′V

)−1

V ′Zk.

3. Draw (α′,β′)′ ∼ p(α,β | tθ(Z)) ≡ N
(
η̂/θ, Σ̂

)
, where

η̂ =

(
Λ−1 +

m

∑
j=1

wjV
′V

)−1

V ′
m

∑
j=1

wjZj and Σ̂ =

(
Λ−1 +

m

∑
j=1

wjV
′V

)−1

.

4. For j = 1, . . . ,m: Draw wj from

p(wj | Z,w[−j],α,β, T ) ∝ w
n
2
j exp

(
−
wj

2

n

∑
i=1

(
Zij − x′

iβ− αi
)2
)
.

A.4 DETAILED STEP 2 IN GIBBS SAMPLING OF BARCM

For each k ∈ {q1, . . . , qm}, we sample ZAk(q),α
⟨k⟩,β⟨k⟩ | T , q as following:

1. For i = 1, . . . , n, j = 1, . . . ,m: Draw [Zij | Z[−i],j,Z[−j],α⟨qj⟩,β⟨qj⟩] from N (α
⟨qj⟩
i +
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x′
iβ

⟨qj⟩, 1) with truncation points determined by Z[−i],j, such that Zij falls in the

correct position according to τP
j .

2. Draw θ ∼ S1/2/χnm where

S = ∑
k

⎡

⎣ ∑
j∈Ak(q)

Z ′
jZj − ∑

i,j∈Ak(q)

Z ′
jV

(
Λ−1 + |Ak(q)|V ′V

)−1
V ′Zi

⎤

⎦ .

3. For each k ∈ {q1, . . . , qm}: Draw
(
α⟨k⟩′ ,β⟨k⟩′

)′
∼ N

(
η̂k/θ, Σ̂k

)
, where

η̂k =
(

Λ−1 + |Ak(q)|V ′V
)−1

V ′ ∑
j∈Ak(q)

Zj and Σ̂k =
(

Λ−1 + |Ak(q)|V ′V
)−1

.

A.5 RANK AGGREGATION METHODS IN COMPARISON

A.5.1 METHODS BASED ON SUMMARY STATISTICS

Rank aggregationmethods based on summary statistics (e.g. average ranking position)

are easily understood and widely used. Suppose we have m full ranking lists. Let

{τj(i)}1≤j≤m be the ranking positions of entity i received from all m rankers. The Borda

Count method aggregates ranks based on their arithmetic mean, ∑m
j=1 τj(i)/m.

A.5.2 MARKOV CHAIN BASED METHODS

Dwork et al. (2001) proposed three Markov Chain based methods (MC1, MC2, MC3)

to solve the rank aggregation problem. The basic idea behind these methods is to

construct a Markov chain with transition matrix P = {pi1i2}i1,i2∈U , where pi1i2 is the

transition probability from entity i1 to entity i2, based on the pairwise comparison in-

formation from {τ1, . . . , τm}. For example, the transition rule of MC2 is:
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If the current state is i1 then the next state is chosen by first picking a list τ uni-

formly from all the partial lists {τ1, . . . , τm} containing entity i1 then picking an

entity i2 uniformly from the set {i2 | τ(i2) ≤ τ(i1)}.

Then, the authors use the stationary distribution of this Markov chain to generate

the aggregated ranking list ρ. Explicitly,

ρ = sort(i ∈ U by πi ↓),

where π = (π1, . . . ,π|U|) satisfies πP = π, and the symbol ”↓” means that the entities

are sorted in descending order.

A.5.3 PLACKETT-LUCE BASED METHOD

PL model assumes that a ranking list τ = [i1 ≻ i2 ≻ . . . ≻ in] is observed with proba-

bility

P(τ | γ) = γi1
∑n

l=1 γil
× γi2

∑n
l=2 γil

× · · ·× γi1
γin−1 + γin

,

where γi ∈ (0, 1) and ∑n
i=1 γi = 1. Each ranking list from {τ1, . . . , τm} follows the above

distribution independently. We apply the classical Minorize-Maximization (MM) algo-

rithm for PL model estimation (Hunter, 2004).

A.5.4 STOCHASTIC OPTIMIZATION-BASED RANK AGGREGATION

Optimization-based rank aggregation methods are proposed to minimize the average

distance between a candidate list and each of the input lists, i.e.,

ρ = arg min
σ∈S(U)

d(σ, τ1, . . . , τm) (A.5.1)
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where S(U) represents all allowable rankings, and d(·) is either the average Kendall

tau distance or the average Spearman’s footrule distance.

Lin & Ding (2009) used a stochastic search method to optimize (A.5.1) by adopting

the cross entropyMonte Carlo (CEMC) approach (Rubinstein & Kroese, 2004). The cor-

responding optimization methods based on these two distance measures are denoted

as CEMCK and CEMCF.

A.6 MCMC DIAGNOSTIC

In Figure A.1, we present convergence diagnostics for MCMC samples of µ− µ̄, which

BARCW uses to generate aggregated ranking list. In Figure A.2, we present conver-

gence diagnostics for MCMC samples of µ(j) − µ̄(j) in BARCM method when applied

to orthodontics example.
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Figure A.1: Convergence diagnostics from the fit of quarterback ranking data by BARCW. We
explores the convergence of MCMC samples for three typical dimensions of µ− µ̄. The left panel
shows density plots; The middle panel shows trace-plots; The right panel shows autocorrelation
plots. The effective sample size is above 300 (per 1000 saved samples) for any dimension of µ−
µ̄.
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Figure A.2: Convergence diagnostics from the fit of orthodontics data by BARCM. We explores
the convergence of MCMC samples for the underlying evaluation of the same entity A1 by three
different rankers via µ(j) − µ̄(j) (j = 1, 2, 3). The left panel shows density plots; The middle panel
shows trace-plots; The right panel shows autocorrelation plots.
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B
Appendix to Chapter 2

B.1 PROOF OF PROPOSITIONS

Proof of Proposition 1: Let rt = (zt,γt)′. Since yt = zt+γt for all t, so yt | y1:(t−1),γ1:(t−1)

is equivalent to zt + γt | z1:(t−1),γ1:(t−1). By treating rt as 2-dimensional observed

data and αt = (h′
t, s′t)′ as state vector in a state space model, we can rewrite equation
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(2.2.1b)-(2.2.1e) as

rt = Φ′αt + ξt

αt = Λαt−1 + τt

(B.1.1)

where Φ =

⎡

⎢⎣
w 0

0 v

⎤

⎥⎦, Λ =

⎡

⎢⎣
F O

O P

⎤

⎥⎦ and (ξ′t, τ ′
t )

′ iid∼ N (0,H).

We let r1:t = (r′1, . . . , r
′
t)
′ and α1:t = (α′

1, . . . ,α
′
t)
′. According to the property of

Gaussian linear state space model, r1:t and α1:t jointly follows multivariate normal

distribution. Therefore, the sub-vector r1:t also follows multivariate normal distribu-

tion, and rt | r1:(t−1) follows bivariate normal distribution with mean linear in r1:(t−1),

i.e.

rt | r1:(t−1) ∼ N (Γtr1:(t−1),Σt), (B.1.2)

where Γt and Σt are determined by Φ, Λ andH . For any given parameters, this above

distribution can be numerically evaluated through Kalman filter. Here, we focus only

on the general analytical formulation. Following (B.1.2) and yt = 1′rt, we have

yt | r1:(t−1) ∼ N (1′Γtr1:(t−1),1′Σt1).

Thus, given r1:(t−1), or equivalently z1:(t−1) and γ1:(t−1), yt follows univariate normal

distribution with mean linear in z1:(t−1) and γ1:(t−1).

When taking exogenous variable xt into account, we have p(yt | r1:(t−1),x1:t) ∝

p(xt | yt)p(yt | r1:(t−1)). Under model (2.3.1),

p(xt | yt) ∝ exp
(
−1
2
(xt −µx − ytβ)′Q−1(xt −µx − ytβ)

)
.
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Hence,

p(yt | r1:(t−1),x1:t) ∝ exp
(
−1
2
(xt −µx − ytβ)′Q−1(xt −µx − ytβ)−

1
2
(1′Σt1)

−1
(
yt − 1′Γtr1:(t−1)

)2
)
.

yt | r1:(t−1),x1:t follows normal distribution, since the above equation is an exponential

function of a quadratic form of yt. By reorganizing the terms in above equation, we

have

E
(
yt | r1:(t−1),x1:t

)
=

((
1′Σt1

)−1
+ β′Q−1β

)−1
((

1′Σt1
)−1

1′Γtr1:(t−1) + β′Q−1(xt −µx)

)

and

Var
(
yt | r1:(t−1),x1:t

)
=

((
1′Σt1

)−1
+ β′Q−1β

)−1
.

Therefore, yt | z1:(t−1),γ1:(t−1),x1:t also follows normal distribution with mean linear

in z1:(t−1), γ1:(t−1) and xt.

Proof of Proposition 2: Under the same notation as our previous proof, we now con-

sider the following predictive distribution

p
(
yt+l | x1:t, r1:(t−1)

)
∝

∫
p
(
yt+l , rt | x1:t, r1:(t−1)

)
drt

∝
∫

p (yt+l | x1:t, r1:t) p
(
rt | x1:t, r1:(t−1)

)
drt.

Under model (2.3.1), x1:t is independent of yt+l conditional on y1:t. Hence, p(yt+l |

x1:t, r1:t) = p(yt+l | r1:t). Similarly, x1:(t−1) is independent of rt conditional on r1:(t−1),

implying p(rt | x1:t, r1:(t−1)) = p(rt | xt, r1:(t−1)). Note that p
(
rt | xt, r1:(t−1)

)
∝

112



p(xt | rt)p(rt | r1:(t−1)). Thus, we have

p
(
yt+l , rt | x1:t, r1:(t−1)

)
∝ p (yt+l | r1:t) p

(
rt | xt, r1:(t−1)

)

∝ p (yt+l | r1:t) p(xt | rt)p(rt | r1:(t−1)).

In the previous proof, we learned that r1:(t+l) also follows multivariate normal dis-

tribution. Similar to equation (B.1.2), we can write rt+l | x1:t under the following

representation,

rt+l | r1:t ∼ N (Γt,lr1:t,Σt,l), (B.1.3)

where Γt,l and Σt,l are determined by Φ, Λ andH . Hence, yt+l | r1:t ∼ N (1′Γt,lr1:t,1′Σt,l1).

Combining the above results with model (2.3.1), we have

p
(
yt+l , rt | x1:t, r1:(t−1)

)
∝ exp

(
−1
2
(1′Σt,l1)

−1 (yt+l − 1′Γt,lr1:t
)2 − 1

2
(xt −µx − β1′rt)

′Q−1

(xt −µx − β1′rt)−
1
2

(
rt − Γt−1,1r1:(t−1)

)′
Σ−1
t−1,1

(
rt − Γt−1,1r1:(t−1)

))
,

(B.1.4)

which is a exponential function of quadratic form of yt and rt. Therefore, yt+l , rt |

x1:t, r1:(t−1) follows multivariate normal distribution, whereas yt+l | x1:t, r1:(t−1) fol-

lows univariate normal distribution. Moreover, the conditional expectation is

E
(
yt+l | x1:t, r1:(t−1)

)

= E
(
E (yt+l | r1:t) | x1:t, r1:(t−1)

)

= E
(

Γt,l(r
′
1:(t−1), r

′
t)
′ | x1:t, r1:(t−1)

)

= Γt,l

(
r′1:(t−1), E(rt | xt, r1:(t−1))

′
)′

,
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where E(rt | xt, r1:(t−1)) is linear in xt and r1:(t−1). Therefore, yt+l | x1:t, r1:(t−1) follows

univariate normal distribution with mean linear in xt and r1:(t−1).

B.2 ROBUSTNESS TO SEASONAL DECOMPOSITION METHOD CHOICE

We compare the performance of PRISM with two different seasonal decomposition

methods: STL and the classic additive decomposition. Bothmethods decompose target

time series yt into the trend component Tt, the seasonal component St and the irregular

component Rt:

yt = Tt + St + Rt.

In the classic additive decomposition, the trend component Tt is calculated from mov-

ing average of {yt} and the seasonal component St is simply assumed the same each

period. In contrast, STL relies on a sequence of applications of loess smoother to gen-

erate the seasonal and trend components. Both STL and classic additive seasonal de-

composition are options in the R package of PRISMmethod with STL being the default

option.

Table B.1: The performance of PRISM with two different seasonal decomposition methods: STL
and additive decomposition.

real-time forecast 1 wk forecast 2 wk forecast 3 wk
RMSE

additive decompostion 0.496 0.497 0.462 0.460
STL decompostion 0.498 0.492 0.453 0.467

MAE
additive decompostion 0.543 0.538 0.482 0.458
STL decompostion 0.542 0.534 0.479 0.465
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B.3 EFFECT OF THE DISCOUNT FACTOR

We test the effect of discount factor w between 0.95 and 0.995, as suggested in Lindoff

(1997). Table B.2 shows the performance of PRISM with different w. The discount

factor w is an option in the R package that implements PRISMmethod, and the default

value is set to be 0.99.

Table B.2: The performance of PRISM for w ∈ [0.95, 0.995].

real-time forecast 1 wk forecast 2 wk forecast 3 wk
RMSE

w = 0.995 0.512 0.501 0.463 0.462
w = 0.99 0.495 0.491 0.457 0.461
w = 0.985 0.494 0.486 0.462 0.466
w = 0.98 0.506 0.489 0.471 0.472
w = 0.975 0.500 0.485 0.471 0.468
w = 0.97 0.513 0.488 0.475 0.495
w = 0.965 0.516 0.488 0.485 0.479
w = 0.96 0.519 0.492 0.486 0.483
w = 0.955 0.525 0.502 0.502 0.497
w = 0.95 0.540 0.484 0.482 0.491

MAE
w = 0.995 0.556 0.546 0.487 0.467
w = 0.99 0.545 0.532 0.478 0.461
w = 0.985 0.538 0.522 0.480 0.460
w = 0.98 0.543 0.517 0.484 0.460
w = 0.975 0.540 0.516 0.481 0.461
w = 0.97 0.549 0.519 0.488 0.482
w = 0.965 0.555 0.523 0.495 0.465
w = 0.96 0.552 0.524 0.496 0.468
w = 0.955 0.563 0.533 0.511 0.477
w = 0.95 0.572 0.521 0.496 0.474

B.4 COEFFICIENT HEATMAP
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Appendix to Chapter 3

C.1 THE DETAILED E-STEP

We show the details about Q functions in the E-step.

Q(m)
1

(
τ1:N ,Λ1:(N+1),K

)

= E
Γ,F |Y ,Ω(m)

[
log p

(
τ1:N ,Λ1:(N+1),K, Γ,F

)]

= ⟨log p (τ1:N ,K)⟩+
〈
log p

(
Λ1:(N+1) | τ1:N ,K

)〉
+

〈
log p

(
F | Λ1:(N+1)

)〉
+ ⟨log p (Γ | K)⟩ .

In the above equation, the first term ⟨log p (τ1:N ,K)⟩ is given by (3.3.10) as− 1
2NK log T.

In the second term, based on (3.3.5),

p
(

Λ1:(N+1) | τ1:N ,K
)

∝
N+1

∏
j=1

p
(
Λj | K

)
∝

N+1

∏
j=1

K

∏
k=1

p
(

λ2
jk

)
,

where p
(

λ2
jk

)
∝ λ

−2(1+η/2)
jk exp

(
− ηs2λ

2λ2
jk

)
. Based on (3.3.9),

p
(
F | Λ1:(N+1)

)
∝

N+1

∏
j=1

τj

∏
t=τj−1+1

p
(
ft | Λj

)
,

where

p
(
ft | Λj

)
∝

K

∏
k=1

λ−2
jk exp

(
−

f 2tk
2λ2

jk

)
K∗

∏
k=K+1

λ−2
0 exp

(
−

f 2tk
2λ2

0

)
.
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Finally, based on (3.3.8),

p (Γ | K) ∝
K

∏
k=1

d

∏
i=1

θγik
1 (1− θ1)

1−γik
K∗

∏
k=K+1

d

∏
i=1

θγik
0 (1− θ0)

1−γik .

Therefore, we have (3.4.4) from by combining the pieces above. The derivation of

(3.4.5) is very similar to the E-step in Ročková & George (2016a), and thus omitted

here.

C.2 THE DETAILED M-STEP

C.2.1 THE PELT METHOD IMPLEMENTATION

We first explicity define the cost function

C
(
τj−1 + 1, τj

)
= −max

Λj

⎡

⎣log p
(

Λj | K(m)
)
+

τj

∑
t=τj−1+1

〈
log p

(
ft | Λj,K(m)

)〉
⎤

⎦

where

〈
log p

(
ft | Λj,K

)〉
= C+

1
2

K

∑
k=1

[〈
f 2tk
〉

λ2
jk

+ logλ2
jk

]
+

1
2

K∗

∑
k=K+1

[〈
f 2tk
〉

λ2
0

+ logλ2
0

]

and

log p
(
Λj | K

)
= C′ +

1
2

K

∑
k=1

[
ηs2λ
λ2
jk
+ logλ2

jk

]

with constant C and C′ not changing with Λj. Let penalty constant c = 1
2K log T, then

we initialize the process with F(0) = −c, cp(0) = NULL and R1 = {0}. Based on

Algorithm 2 in Killick et al. (2012), we iterate following steps for τ∗ = 1, . . . , T

1. Calculate F(τ∗) = minτ∈Rτ∗ [F(τ) + C(τ + 1, τ∗) + c].
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2. Let τ1 = argminτ∈Rτ∗
[F(τ) + C(τ + 1, τ∗) + c].

3. Set cp (τ∗) =
[
cp

(
τ1) , τ1].

4. Set Rτ∗+1 = {τ∗} ∪ {τ ∈ Rτ∗ : F(τ) + C(τ + 1, τ∗) < F(τ∗)}

Then, we update τ(m+1)
1:N to the change points recorded in cp(T), and update

Λ
(m+1/2)
j = argmax

Λj

⎡

⎢⎣log p
(

Λj | K(m)
)
+

τ
(m+1)
j

∑
t=τ

(m+1)
j−1 +1

〈
log p

(
ft | Λj,K(m)

)〉
⎤

⎥⎦

for j = 1, . . . ,N(m+1) + 1 where N(m+1) is determined by the length of τ(m+1)
1:N .

C.2.2 THE DETAILED M-STEP FOR Q2

Following Theorem 3.1 in Ročková & George (2016a), the maximization of Q2 can be

interpreted as a log-posterior arising from a series of independent penalized regres-

sions. Note that Y = (y1, . . . ,yT)
′, ⟨F ⟩ = (⟨f1⟩ , . . . , ⟨fT⟩)′ and Bp×K =

(
β1, . . . ,βp

)′.

We denote Ỹ =

⎛

⎜⎝
Y

0

⎞

⎟⎠ ∈ R(T+K)×p and its columns be ỹ1, . . . , ỹp. Then, let F̃ =

⎛

⎜⎝
⟨F ⟩

M 1/2

⎞

⎟⎠ ∈ R(T+K)×p where M 1/2 is the square root of ∑T
t=1

(
⟨ftf ′

t ⟩ − ⟨ft⟩ ⟨ft⟩′
)
.

Based on this penalized regression formulation, β(m+1)
i can be obtained conditionally

on Σ(m) by an adaptive LASSO (Zou, 2006), in which

β
(m+1)
i = argmin

βi

{
∥ỹi − F̃βi∥2 + 2σ(m)2

i

K

∑
k=1

|βik|δik

}
.
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Then, conditional onB(m+1), we apply a closed form update Σ(m+1) with

σ(m+1)2
i =

1
T + ξ + 2

(
∥ỹi − F̃β

(m+1)
i ∥2 + ξs2σ

)
.
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