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Novel Astrophysical Constraints on Black Holes

Abstract

While black holes have captured both the public and scientific interest, they are
still counted amongst the most mysterious objects in the Universe. In this disserta-
tion, we study these objects from an astrophysical perspective. Black holes are ac-
tive players in the astrophysical stage. They reshape their environments through the
strength of their gravity, and their immense radiation is important even at cosmolog-
ical distances. The first part of this dissertation is a study of the interplay between
the supermassive black hole at the center of the Milky Way Galaxy and matter at
the Galactic Center. We propose several astronomical observations that could detect
the effects of this central black hole on its surrounding. As black holes are remark-
able natural laboratories for gravitational physics, the second part of this dissertation
focuses on leveraging astrophysical observables to test the validity of our current un-
derstanding of gravity. We study the repercussions of modifying general relativity
on the astrophysical signals of both the plasma in the black hole accretion disk and
stars in orbit around the black hole. The results of such tests will help determine the

next steps in our pursuit for a theory of quantum gravity. Finally, the nascent field of
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gravitational waves astrophysics allows black holes to be studied in a novel way. The

last part of this dissertation is concerned with using gravitational wave observables to
study the population distribution of black holes. By utilizing data collected by gravi-

tational wave observatories instead of conventional telescopes, we show that questions
on the formation and evolution of black holes that were previously untenable can now
be addressed. At the end of this dissertation, we will also discuss the possibility of

observing the gravitational lensing of gravitational waves.
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photosphere with a radius R, and an HI disk. The solid arrow in the top
image indicates the direction towards the observer. The inclination angle

7 is the angle between the observer and the normal to the disk. The dot-
ted arrows in the top image depict photons leaving the photosphere in the
direction of the observer. In their path towards the observer, these pho-
tons encounter the HI disk and their intensity is reduced by absorption.
The region of the HI disk that is illuminated by these photons is shaded
green in both images. The outer radius of this region, as seen from the ob-
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The neutral disk as seen by the observer. Due to the Doppler shift, an ob-
server sees a line of sight velocity profile that traces a dipole on the neu-
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Introduction

While black holes have captured both the public and scientific interest, they are still
counted amongst the most mysterious objects in the Universe. In this dissertation, we
seek to study these objects from an astrophysical perspective.

First, black holes are active players in the astrophysical stage. They reshape their

environments through the strength of their gravity, and their immense radiation is



important even at cosmological distances.The first part of this dissertation is a study
of the interplay between the supermassive black hole at the center of the Milky Way
Galaxy and matter at the Galactic Center. We propose several astronomical observa-
tions that could detect the effects of this central black hole on its surrounding.

As black holes are remarkable natural laboratories for gravitational physics, the
second part of this dissertation focuses on leveraging astrophysical observables to test
the validity of our current understanding of gravity. We study the repercussions of
modifying General Relativity on the astrophysical signals of both the plasma in the
black hole accretion disk and stars in orbit around the black hole. The results of such
tests will help determine the next steps in our pursuit for a theory of quantum grav-
ity.

Finally, the nascent field of gravitational waves astrophysics allows black holes to
be studied in a novel way. The last part of this dissertation is concerned with using
gravitational wave observables to study the population distribution of black holes. By
utilizing data collected by gravitational wave observatories instead of conventional
telescopes, we show that questions on the formation and evolution of black holes that
were previously untenable can now be addressed. Further, we discuss the possibility of
observing the gravitational lensing of gravitational radiation.

In this chapter, we introduce black holes as they are understood in astrophysics.
First, we present the Kerr spacetime of General Relativity (GR), and summarize its

most relevant features. We then proceed with an outline for the rest of this disser-



tation. In this chapter we use geometrized units where G = ¢ = 1, and our metric

signature is (—, +, 4, +).

1.1 Introduction to astrophysical black holes

Black holes are solutions to the equations of a theory of gravitation endowed with
an event horizon. Currently, the most successful theory of gravitation is the Einstein
Field Equations® of GR,

Gy = 87T, (1.1)

where G, is the Einstein tensor and T, is the stress energy tensor. The Einstein
tensor is defined as
1

G/j,l/ = Ry,l/ - §g/ﬂlR ) (12)

where the Ricci tensor R, is defined as a particular contraction of the Riemann cur-
vature tensor RO‘BA{ 5 given by

Ry, = R® (1.3)

pov )

g the metric tensor, and R = g"” R, is the Ricci scalar. While the most famous
black hole solution of the Einstein Field Equation is the spherically symmetric vac-

uum solution known as the Schwarzschild metric, whose line element in Schwarzschild

*Throughout this dissertation, we will suppress the existence of the cosmological constant.



coordinates (t,r,0, ¢) is given by (Schwarzschild 1916)

ds? = —(1 — 2M)dt® + (1 — 2M) " rdr?® + r2dQ) , (1.4)

where M is the mass of the black hole, and df is the round metric on 52, the Schwarzschild
metric is woefully inadequate to model astrophysical black holes.

Astrophysical black holes, formed either through the natural progression of the life
cycle of massive stars (Oppenheimer & Snyder 1939) or through a direct collapse of
dense gas (Haehnelt & Rees 1993; Umemura et al. 1993; Loeb & Rasio 1994; Eisen-
stein & Loeb 1995; Bromm & Loeb 2003; Begelman et al. 2006), would naturally pos-
sess angular momentum as a result of their formation mechanisms. Further, black
holes in binaries or at the center of galaxies could obtain angular momentum through
mergers or accretion of gaseous materials. Because the Schwarzschild black hole is a
static solution possessing no angular momentum, it is incapable of capturing the as-
trophysics of realistic black holes.

The next section of this chapter introduces the Kerr metric (Kerr 1963), which is a
vacuum solution of the Einstein Field Equations describing a rotating black hole. Due
to its angular momentum parameter, the Kerr metric can more accurately capture the
physics of an astrophysical black hole than the Schwarzschild metric. The Kerr met-
ric is at the heart of a variety of astrophysical models, including models of emissions

around galactic centers (Yuan & Narayan 2014), tidal disruption flares (e.g. Leloudas



et al. 2016), and X-ray binaries (Shakura & Sunyaev 1973; Davis et al. 2006). Re-
cently, the Kerr black hole has also been shown to accurately model the end result of
binary black hole mergers (Pretorius 2005).

A generalization of the Kerr metric allowing the presence of nonzero electric or
magnetic charge is known as the Kerr-Newman metric (Newman & Janis 1965; New-
man et al. 1965). While the physical properties of the Kerr-Newman metric is inter-
esting in its own right, the electromagnetic charge of an astrophysical black hole is ex-
pected to be miniscule. This is because an astrophysical black hole is expected to be
surrounded by ionized gas. If the black hole develops a nonzero charge, it will quickly

neutralize itself by accreting the opposite charge from its surrounding.

1.2 The Kerr metric

The Kerr metric for an uncharged, rotating black hole, given in Boyer-Lindquist coor-

dinates (t,7,0,¢) as (Kerr 1963; Chandrasekhar 1983)

2Mr 4Mar sin® 6 b
2 — 1 2 2
ds — ( - dt* — — dtdep + —dr

2Ma?rsin? 6

+ 2do* + (rz—l—az—i- >

> sin? 0d¢? |

(1.5)

where G =c=1,a=J/M, ¥ =1r?+a?cos? 0, A = r?> —2Mr + a?, and we have taken

the (—, 4, +,+) as the metric signature. M is the mass of the black hole, and «a is the



spin of the black hole defined as

(1.6)

where J is the angular momentum of the black hole. In the units where G = ¢ =1, a
has the dimensions of mass. Note that when a = 0, equation (1.5) reduces to the line

element for a Schwarzschild black hole.

1.3 Asymptotic flatness and symmetries of the Kerr black hole

The Kerr black hole is an asymptotically flat, stationary, axisymmetric solution of

the Einstein Field Equations (Chandrasekhar 1983). Asymptotic flatness means that
far from the black hole, the Kerr geometry approaches the geometry of Minkowski
spacetime. To demonstrate this property of the Kerr metric, we make an expansion of

equation (1.5) with r/M and r/a as a small parameter,

2M 2M aM
d52 = — (1 — > dtQ =+ <1 + T) d7°2 -+ TQdQ — TT(I Sin2 Q(Y’d(ﬁ)dt + ... s (17)

r

where dSQ is the round metric on S2. From this form, it is easily seen that as r — oo,
the Kerr metric reduces to flat spacetime.

A metric is stationary if it possesses an asymptotically timelike Killing vector. For



the Kerr metric in Boyer-Lindquist coordinates, it is obvious that

¢’ =(1,0,0,0), (1.8)

is a Killing vector, as the metric is independent of ¢. Similarly, the existence of the

axisymmetric spacelike Killing vector

n” =(0,0,0,1), (1.9)

is obvious in Boyer-Lindquist coordinates. These two Killing vectors generate con-
served quantities in the orbits of test particles in the Kerr spacetime. For a particle
with four-velocity u”, the stationary nature of the Kerr metric enforced the conserva-
tion of energy,

e = —&"u, (Conservation of Energy) , (1.10)

while the axisymmetric property generates the conservation of angular momentum,

Il =n"u, (Conservation of Angular Momentum) , (1.11)

The Kerr metric possesses another symmetry generated by the Killing tensor

KM = o5ip¥) 4 p2ghv (1.12)



where the brackets (...) in the indices indicate symmetrization, and {* and n” are the

principal null vectors

r? 4+ a? a
V=(—F—,1,0,— 1.13
< A ) ) ,A) M ( )
r? 4+ a? A a
v __ - N
n’ = < oy 22,0, 22) . (1.14)

With these definitions, one could verify that K" satisfies V(,Kpg,) = 0, and thus is
a Killing tensor. Projecting the Killing tensor to the four-velocity of a test particle

produces the conserved quantity,

C = K"™uu,, (1.15)

known as the Carter’s constant (Carter 1968).

Aside from the symmetries associated with £” (stationary), n” (axisymmetry), and
K" (the ’hidden’ symmetry generating the Carter’s constant), the last important
symmetry in the Kerr metric is the discrete reflection symmetry in the equatorial
plane § = 7/2. This last symmetry can be easily deduced through an inspection of

the line element, equation (1.5).



1.4 Important surfaces and regions of the Kerr black hole

The Kerr metric in Boyer-Lindquist coordinates is endowed with two coordinate singu-

larities, known as the outer and inner horizons at

ry =M=+ M?—a?. (1.16)

As one approaches these surfaces, A — 0, and the metric components in Boyer-
Lindquist coordinates becomes singular. However, at these surfaces, the contraction
of the Riemann curvature tensor, RaﬁwRa,@ya remains finite!. The outer event hori-
zon, r4 is the event horizon, defined as the boundary of the causal past of future null
infinity. Setting a = 0, one recovers the Schwarzschild event horizon ry(a = 0) =
Rg = 2M. The inner horizon is also the Cauchy horizon for the Kerr metric, and thus
initial data cannot be evolved past it (Hawking & Ellis 1973).

At r = 0, 0 = 7/2, the quantity p becomes zero, and there is another singularity
in the Kerr metric. This ring singularity is a curvature singularity in the sense that
ROZBW;RO‘BV‘S — o0. Unlike the coordinate singularities at r, it is impossible to remove
this singularity through a change of coordinates.

Due to the rotation of the black hole, there are locations in the spacetime in which

it is impossible to be unmoving. That is, there are locations in the Kerr spacetime in

fThis quantity is known as the Kretschmann scalar.



which the trajectory given by

q"(r) = (t(r),7(7),0(7), (7)) = (7, 70,00, P0) , (1.17)

where (19, 6p, ¢9) are constants is impossible. This is because the four-velocity vector

of such trajectories, given by d¢”(t)/dr = (1,0,0,0) must satisfy the timelike condi-

tion,
dg”(7) dg¢” (7
G d7(- ) d7(- ) =91 <0. (1.18)
However, solving the equation
2Mr
gtt=—<1— > >=0, (1.19)

one can show that gy actually becomes positive when

rp <r<rh, (1.20)

where

re=m=+vm? —a2cos?6 . (1.21)

In this region, the trajectory given by equation (1.17) is not timelike, and is thus im-
possible. Crucially,

ry <rj, (1.22)



and thus the region where one cannot be unmoving extends beyond the event hori-
zon. The region ry < r < TE is known as the ergosphere, and from these regions

energy could be extracted from the black hole to power astrophysical processes (Pen-

rose 1969; Blandford & Znajek 1977).

1.5 Black holes and their interactions with their environments

Black holes do not exist in vacuo. They are embedded in astrophysical environments
resulting from both their formation processes and subsequent migrations. Further, as
exemplified by the energy extraction from a black hole through its ergosphere, black
holes and their environments interact with each other. The first part of this disserta-
tion is concerned with the study of black holes within this astrophysical context.

Chapter 2 is focused on the effect of Sgr A* on the phase-space distribution of
stars around it, and how this effect can be detected in signals from Galactic Center
(GC) pulsars. The gravitational field of Sgr A* affects a pulsar’s signal directly due
to the Doppler shifts induced by its orbital motion. It also affects the pulsar indi-
rectly, through perturbing the motion of stars in the the star cluster at the GC. We
computed that by monitoring a ~few millisecond pulsars at the GC, one can con-
straint the total mass enclosed in the pulsars’ orbits. If ~tens of millisecond pulsars
are found, one can also constraint the GC mass function.

Chapter 3 proposed that a disk of neutral gas might exist around the supermassive
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black hole, and that they could produce absorption features in the black hole’s emis-
sion spectrum. We showed that this disk can be detected as absorption features in
21-cm spectroscopic observations of the GC, even if it is spatially unresolved. Further,
these observations will be able to discern the disk’s parameters, such as inclination

angle, optical depth, temperature, and existence of gaps in the disk.

1.6 Astrophysical constraints on strong gravity and black hole spacetime param-

eters

The second part of this dissertation is concerned with astrophysical constraints that
could be placed close to a black hole. In Chapter 4 we studied how one can leverage
the orbits and expansions of plasma ejectas from black holes to map spacetime param-
eters. We computed the orbital velocities and expansion rates of ejected plasma blobs
close to Sgr A* and M87, which could be compared with observations from the Event
Horizon Telescope (EHT). If the alignment of the ejected blob is favorable, one could
even use them to probe beyond-GR strong gravity effects.

The next couple of chapters is on testing the no-hair theorem of GR in an astro-
physical context. The no-hair theorem states that isolated, stationary black holes in
GR are described by only three parameters: M, the mass of the black hole; J, the spin
of the black hole; and Q, the charge of the black hole (Israel 1967, 1968; Carter 1971;

Hawking 1972; Robinson 1975). In addition to GR, in the derivation of this theorem,
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it is necessary to also add the conditions that singularities are hidden beneath the
black hole horizon and that closed time-like loops allowing time travel into the past
are non-existent (Johannsen 2013). If an astrophysical black hole is observed to vio-
late the no-hair theorem, it will imply that either GR or the other two assumptions
are incorrect. The violation of any of these assumptions carry weighty repercussion to
both fundamental physics and philosophy, and as such testing these assumptions are
both important and of wide interest.

Chapter 5 focused on testing GR by studying the magnetic field configuration
around black holes that violate the no-hair theorem. A Kerr black hole can be turned
into a no-hair violating black hole by adding an extra quadrupole moment on the
spacetime (Johannsen 2013), and in this chapter we computed the effect of this modi-
fication on magnetic fields around the black hole. We showed that the magnetic field
is distorted in such a way that they also exhibit an extra quadrupolar pattern, and
that the distortion could be large close to the black hole horizon.

Chapter 6 is concerned with computing the signal of pulsars orbiting a no-hair the-
orem violating black hole. This chapter showed that an extra time delay analogous
to the classical Shapiro delay is imposed on the pulsar signal due to this modification.
For pulsars orbiting Sgr A*, this signal is at the level of ~ 0.01 seconds, which is de-

tectable if the pulsar is of the millisecond variety.
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1.7 Studying black holes through gravitational waves

The nascent field of gravitational wave physics allows a new avenue for the study of
black holes. In addition to various tests of GR, gravitational wave observables could
also be used to study the formation and population of black holes. This is because
gravitational wave observatories allow for the detection of binary black holes. While
a significant amount of black holes are thought to be in such systems, they are im-
possible to detect using conventional telescopes because they produce little to no elec-
tromagnetic radiation. The final part of this dissertation is on utilizing gravitational
waves to study the black holes that produce them and the cosmos that they traverse.
The biggest puzzle of the recent Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) detections are the extreme masses of the detected black holes. While
previously known stellar mass black holes possess masses of at most 10 Solar Masses,
some of the black holes in the LIGO binaries exceed that by a factor of 3 (Abbott
et al. 2016b,a, 2017b,d,c). This tension generated a large amount of interest as most
binary black hole formation scenarios would require these black holes to be born out
of stars with masses in excess of 100 Solar Masses. If conventional stellar mass dis-
tributions are assumed, these supermassive stars should be exceedingly rare. This is
compounded with the fact that there are multiple competing formation mechanisms.
In Chapter 8, we used the LIGO detections to constrain the population of stel-

lar mass binary black holes in the Milky Way Galaxy that can potentially be LISA
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sources. Assuming that binary black holes possess orbits that continually harden due
to emission of gravitational radiation, we computed the number of Galactic binary
black holes as a function of semimajor axis. This calculation allows a constraint of the
total number of binary black holes and gravitational wave rate that is independent of
population synthesis models to be formulated. Our calculation predicted that there is
~ 1 Galactic binary black hole in the LISA range.

In Chapter 9 we calculated the impact of BH mergers on the BH mass function.

In particular, supernova theory predicts the existence of a mass gap in the BH mass
function between masses of M ~ 50M to M ~ 130Ms* because the would-be stellar
progenitors undergo pair-instability supernovae (Woosley 2017). We investigated how
this gap could be filled by mergers of BHs in dynamical star clusters.

Finally, Chapter 10 is on the gravitational lensing of gravitational waves. In this
chapter, we showed that the modification to a gravitational radiation waveform as it
travels through a gravitational potential is potentially observable by ground-based
observatories. The gravitational lensing of light has seen widespread use in astronomy,
and the detection of the analogous phenomena for gravitational radiation will open a

new way to observe the cosmos.

fThese numbers are for stars in close binaries. For stars in globular clusters, the lower
bound of the gap might increase by a few tenths of Solar masses.
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Pulsar timing constraints on masses in

the Galactic Center

We consider the time derivatives of the period P of pulsars at the Galactic Center
due to variations in their orbital Doppler shifts. We show that in conjunction with a

measurement of a pulsar’s proper motion and its projected separation from the super-
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massive black hole, Sgr A*, measuring two of the three derivatives P, P, or P sets a
constraint that allows for the recovery of the complete six phase space coordinates of
the pulsar’s orbit, as well as the enclosed mass within the orbit. Thus, one can use
multiple pulsars at different distances from Sgr A* to determine the radial mass distri-
bution of stars and stellar remnants at the Galactic center. Furthermore, we consider
the effect of passing stars on the pulsar’s period derivatives and show how it can be

exploited to measure the characteristic stellar mass in the Galactic Center.

2.1 Introduction

The recent discovery of J1745-2900, a magnetar orbiting the supermassive black hole
Sgr A* at a projected separation of 0.09 pc (Mori et al. 2013; Rea et al. 2013; Kennea
et al. 2013) stimulated much interest in its timing and astrometry. Pulsars close to
Sgr A* could allow for a precise measurement of the black hole’s mass and spin, in ad-
dition to a host of relativistic effects (Pfahl & Loeb 2004; Cordes et al. 2004; Kramer
et al. 2004; Psaltis & Johannsen 2011; Liu et al. 2012).

Unfortunately, the timing of the magnetar J1745-2900 is not sufficiently stable for
dynamical measurements (Kaspi et al. 2014). Furthermore, it is located too far from
Sgr A* (with a Keplerian orbital period of ~ 500 years) for it to be useful as a probe
of strong field gravity. Calculations imply that there could be ~ 200 pulsars within a

parsec from Sgr A* (Chennamangalam & Lorimer 2014), although perhaps only ~ 20

17



of them being bright enough to be detected (Dexter & O’Leary 2014). Most of these
pulsars might also be located too far from Sgr A* for testing strong field gravity.

Nevertheless, one can still use pulsars at these larger distances to probe the astro-
physical environment of the Galactic Center. In particular, the orbital dynamics of a
pulsar is determined by the mass distribution within its orbit. Therefore, by measur-
ing the imprint of the orbital Doppler effect on the pulsar’s period, P, one should be
able to constrain the radial mass profile of stars and stellar remnants around Sgr A*.
A previous study (Chanamé & Gould 2002) considered this possibility, but neglected
the contributions of closely passing stars. In this letter, we evaluate the limitations of
this technique due to this extra source of uncertainty, and also show that one can con-
strain the characteristic stellar mass in this environment by measuring the third time
derivative of the pulsar’s period, P.

This paper is organized as follows. In §2.2 we discuss the orbital contribution to
the first, second, and third period derivatives P, ]5, and P by the mean field, and
discuss how it can be used to measure the mass enclosed within the pulsar’s orbit.

In §2.3 we calculate the effects of passing stars on the period derivatives, and how
it could be used to constrain the characteristic stellar mass in the Galactic Center.

Finally in §2.4 we offer some concluding remarks.
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2.2 Measuring the enclosed mass via the mean field contribution to period deriva-

tives

We begin with the equation for classical Doppler shift relating the observed period Pp

to the intrinsic (rest frame) period P;:
Po=P(1- i), (2.1)

where 5 is the velocity of the pulsar in units of ¢, and 7 is the unit vector pointing
from the pulsar to the observer (see Figure 2.1 for geometry). In general, pulsar tim-
ing measurements are done with respect to the solar system barycenter. However,
since the motion of the solar system barycenter is well constrained (Reid et al. 1999),
in writing equation (2.1) we shifted to the frame where the observer is at rest with re-
spect to the black hole. This could be done by the substitution P — P(1 — Bas - n),
where B_;s is the velocity of the solar system barycenter in units of ¢. Since both B
and 7 changes with time, the orbit of the pulsar induces nonzero time derivatives on
Pp. Since the orbital time is much longer than the observation time, we can use a
Taylor expansion in time t to write,

Po(t) = Po(0) + Po(0)t + %150(0)t2 + éﬁo(O)t?’ + . (2.2)
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The first two derivatives have been previously studied in the context of globular clus-
ters (Phinney 1993). In this section we provide a treatment of P, P, and P for pul-
sars at the Galactic Center. In general, these time derivatives depend on the pulsar’s
6 position and velocity phase space coordinates, as well as the enclosed mass. While
throughout this paper we focus on the period derivatives themselves, we note that
they are not the observables in pulsar timing measurements. Rather, timing measure-
ments measure the frequency, v = 1/P, and its derivatives (Lorimer & Kramer 2004).
The period derivatives depend not only on the frequency derivative of the same order,
but on all successive frequency derivatives up to that order.

Direct imaging (e.g. Rea et al. 2013) yields the projected separation of the pulsar
from Sgr A*. The proper motions of pulsars have been measured previously both in
the context of quantifying the pulsar’s natal kick (e.g. Kaplan et al. 2008) and for
astrometric purposes (e.g. Du et al. 2014). In particular, the proper motion of J1745-
2900 is currently being measured (Bower et al. 2014a).

Line of sight distances to pulsars can be obtained via parallax (see Du et al. 2014
for an example of the technique applied to a millisecond pulsar not at the Galactic
Center), and progress has been made to measure the parallaxes of pulsars at large
distances (up to 7.2 kpc) using very-long-baseline interferometers (Chatterjee et al.
2009). The recently launched GAIA satellite* is also expected to further improve the

prospect of measuring pulsar parallaxes for pulsars with sufficiently bright optical

*http://sci.esa.int/gaia/
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companions. Further, for millisecond pulsars with high timing precision, timing analy-
sis can also determine line of sight distances (Verbiest et al. 2008).

In addition, the distance to pulsars can be estimated from their pulse dispersion
measure. The delay in pulse arrival time as a function of frequency, along with a
model of the free electron distribution (e.g. the NE2001 model of Cordes & Lazio
2002, 2003), can be used to estimate distances. This method was recently applied to
the Galactic Center for the magnetar J1745-2900 (Eatough et al. 2013a; Shannon &
Johnston 2013). However, we note that the accuracy of the pulse dispersion measure
distances depends strongly on knowledge of the free electron distribution. The elec-
tron distribution at the Galactic center is highly unconstrained, and thus the distance
measured might not be reliable enough for our purposes.

Based on the above measurements, one can determine 5 out of 6 of the pulsar’s
phase space coordinates. Another constraint can be placed via a measurement of one
of the period derivatives, thereby constituting a full determination of its 6 phase space
coordinates. Furthermore, we will show that with the measurement of another period

derivative, one could directly measure the mass enclosed.
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- Observer
Sgr A* d

Figure 2.1: The geometry under consideration. Note that the pulsar’s velocity vector (in units
of ¢), 3, is not constrained to lie in the pulsar-Sgr A*-observer plane.

2.2.1 The first period derivative

The first time derivative of the pulsar’s period P is given by:

Bsin@— —- > , (2.3)

where § = | E | the subscript O denotes the orbital contribution to P, in difference

from the intrinsic pulsar spindown, P;. The acceleration of the pulsar is given by:

96  GM
E = —WT’ s (24)

where M(r) = Mpn + M, (r) is the total mass, namely the mass of the supermas-

sive black hole Sgr A*, Mpy = (4.31 4+ 0.36) x 10M, (Gillessen et al. 2009; Ghez
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et al. 2008), plus the mass of the stars within the pulsar’s orbit. Substituting this into

equation (2.3) gives:

Po .. 90 GM _ .. 90 GM
?i—5smﬁa+m(n-r)—Bsmﬁ——ﬁcosqﬁ, (2.5)

where ¢ is the angle between the pulsar’s radius vector 7 and 7. The negative sign
arises from the direction of #. Noting that
00
5 % sin @, (2.6)
where d is the displacement of the solar system barycenter from the supermassive
black hole Sgr A*, we obtain
P, cf?  GM cf? GM
—O:ﬁ——cosqbzﬂ— sin® ¢ cos ¢ , (2.7)

P, d r2c d d2c

where 3| is the transverse component of 5 and we have used the definition of the
projected distance: d, = rcosy ~ rsin¢ in the second equality. Solving for ¢, we

obtain:

Cﬁi PO
d P;
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Defining r; as the component of 7 in the line of sight direction:

8 Po

d B

T C

B GM

(2.9)

Note that in addition to the spindown rate due to the orbital Doppler effect, a por-
tion of the observed P is due to intrinsic radiative losses. The overall spindown rate
is the sum of the intrinsic P; and the orbital Po components. Given this perspective,
we view equation (2.9) as providing Pp as a function of M(r) and the pulsar’s phase
space position: Pp (r,dp, B, M). For a specific 3, , the value of Py is bounded from
above. For example, consider the magnetar J1745-2900 with an observed spindown
rate of Pobs/Pz- =1.73x 1072 57! and d, = 0.09 pc (Mori et al. 2013). Approximating
M ~ Mgy and ¢, ~ 150 km s}, we find that equation (2.9) obtains a maximum at
Po/P; ~ 10713 s~1, This means that the orbital contribution to P can account for at
most ~ 17% of the observed P (assuming the observed Pyys value of Mori et al. 2013).
In this context, we can therefore be certain that measurements of the magnetar’s mag-
netic field strength is not contaminated significantly by the orbital component Pp.

If there is a way to measure Pp on its own (e.g. if the magnetic field of the pulsar
is small, and the orbital contribution dominates), or in the case of millisecond pulsars,

where Pp dominates Py, equation (2.9) provides a new constraint to the pulsar’s
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Figure 2.2: Constraints on the line-of-sight componet of the pulsar’s orbital radius r; and
velocity v, based on P (dashed lines) and P (solid lines) for a case where the pulsar is orbiting
in the Sgr A*-observer plane with P = 5 x 10715, P = 1072* s7! d,, = 0.01 pc, and v, =

150 km s~!. Orbits in the shaded region are gravitationally bound to Sgr A*. The pulsar’s
period Pp is taken to be 1 second.
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phase space position. For example, if it is observed that:

Py B
—_— = 2.1
P, d ’ (2.10)
then
r=d,. (2.11)

Another case where the pulsar is orbiting in the Sgr A*-observer plane with P = 5 x

107" and M ~ Mgy is presented in Figure 2.2.

2.2.2  The second period derivative

If Pp is measured, equation (2.9) constitutes a new constraint on the pulsar’s phase
space coordinates, allowing all 6 components to be determined. This last constraint

is a function of the enclosed mass, M, which can be solved via a measurement of an-
other period derivative. Taking the derivative of equation (2.3) and noting that r < d

we find:

Po GM O [cos¢
?i = — c a |: 7‘2 :| (212)
GM [sinp0¢p 2 or
= T I: 7‘2 E ng COS ¢8t:| . (213)
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A pulsar on a purely circular orbit with an orbital frequency 2 = S¢/r orbiting in the

pulsar-Sgr A*-observer plane, has

or 0¢ c

5% =0 ; = =-5-, (2.14)

implying

Po  GMsing d,
BT e g2 2= GMS, (2.15)

which can be solved trivially for either M (r) or r(M) given /3 (or limits of the quan-
tity given the proper motion, 5; < /) and the projected separation dp. For a pulsar
with Po = 1 s at the projected separation of J1745-2900 (d, = 0.09 pc), that is cur-

rently at a phase of its orbit where r ~ d,, and 8 ~ 0.3 x 1073, we find that:

|P|~5x10"2 571, (2.16)

Within 1 year, the drift in P is:

|IAP| ~ 1.5 x 10715 (2.17)

which is within the precision attainable in pulsar measurements (Taylor et al. 1993;
Manchester et al. 2005). If a millisecond pulsar is found at the Galactic Center, then

P could be measured to a precision of 10720 (e.g. Champion et al. 2005). In general,
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r? = (dZ +r}), therefore:

or 1 or?
o w ol (2.18)
1 )
= (& +1]) (2.19)
+9, /a2 +r2 Ot
1 7 - d,
= i; dpv | do +rvu |, (2.20)

where ¥ is the proper velocity and v; is the velocity in the line of sight direction.

Furthermore we note that:

singpd¢ d )
2 g = r—ivcosz , (2.21)

where 7 is the inclination of the pulsar’s orbit. This factor of cosi can be written as:

v2 — 2 V2 + v — v
cosi = + T . (2.22)
v v
where,
’17J_ X J
Voop = ’dp| (2'23)
P

is the component of the proper velocity v, that is off the pulsar-Sgr A*-observer

plane. This quantity can be obtained directly from the proper velocity by a projec-
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tion to the pulsar-Sgr A*-observer plane. Combining, we obtain,

— +2

Rt |

Measuring Py / P; provides another constraint on the orbital phase space coordinates

P, GM -
© i (UJ_ dp + rm) + dp\ /03 + vF — 02 ) (2.24)

oop

and the enclosed mass of the pulsar’s orbit. An example of constraining r;(v;) where

~1and

the pulsar is orbiting in the pulsar-Sgr A*-observer plane with P=102%¢
M =~ Mpy is plotted in Figure 2.2.

If we instead assume that r; is known (e.g. from parallax), the constraints from Po
and Pp can be used to solve simultaneously for v; and the mass enclosed within the

orbital radius. This corresponds to the intersection of the two constraints in Figure

2.3.

The intrinsic P

While the observed P of a young pulsar is typically dominated by its intrinsic timing
noise, the intrinsic P for old or millisecond pulsars can be dominated instead by ra-
diation losses (Lorimer 2008). Assuming the vacuum dipole model, we can estimate
the intrinsic contribution, P;. If we assume that Bsina does not change significantly
with time (i.e. that magnetic field decay timescales are long), the quantity (PP); is
constant:

_ 8m*R%(Bsina)?

(PP); = 337 = constant , (2.25)
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Figure 2.3: Constraints on the mass distribution based on Po and Po. Supposing that the
other 5 phase space coordinates are known, the constraints from Py (solid line) and Py
(dashed line) can be solved simultaneously for v; and M, corresponding to the intersection

of the two constraints. In this case, the pulsar is orbiting in the pulsar-Sgr A*-observer

plane with P = 107, P = 1072 s~ d, = 0.01 pc,vy = 150 km s~ ! and

r; = 0.2 pc. Due to the sign degeneracy, the P constraint in this case corresponds to two
solid lines in the M versus v; plane. This degeneracy can be resolved by fixing v;, for example,
through the third derivative constraint. Note that enclosed masses below the mass of Sgr A*,
Mpg = (4.31 £0.36) x 10°M, (Ghez et al. 2008) should be excluded from the analysis.
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where « is the magnetic axis inclination angle, B the magnetic field strength, I the
moment of inertia, and R the neutron star radius. Taking another time derivative, we

obtain:

647 R12(B sin a)*

P =
‘ 9912 P,

(2.26)

Considering P ~ P; ~ 1 s, a magnetic field B = 10'2 G, and the typical radius,
R = 10 km, and mass, M = 1.4M, for a neutron star, and adopting sina = 1, we

obtain the maximum B to be:

P omax = 7.6 x 10731 s71 (2.27)

which is very small compared to the orbital contribution. This suggests that unlike P,
P is much less contaminated by the intrinsic contribution, allowing a clean measure-
ment of Pp. In general, the inclination angle o can be inferred by various methods

(Taylor et al. 1993; Lyne & Manchester 1988; Rankin 1990; Miller & Hamilton 1993).

2.2.3 The Third period Derivative

We now supply the third period derivative. This third timing constrain can be used in
lieu of the P constraint in cases where Pobs is too contaminated by B In addition,
all three timing constraints can be used in cases where only 4 phase space coordi-

nates are measured (e.g. for pulsars with no measured parallax). We also note that
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the third derivative P is even less affected by its intrinsic contribution than P, since

P; o< B%/P3. The derivative of equation (2.13) is:

Po GM ]2 ?r 1 . 9%
P e [Mos%tzwsm%ﬁ
6 ar\> 1 dp\> 4 . Ordg
—1 cosgb(m) +ﬂcos¢(at> — o gsingg oo (2.28)
with the following equalities:
0*r 2 - or 1 -
52 = —T—Q(dp U+ rwl)a + . [’Ui +dy-d; + v? + rlacosqb} , (2.29)
0%y 0 v . Jwvor 10v
w = a <—; COSZ) = COS1? |:7’28t — rat:| N (230)
and
v 1 T
5% = o [vlacosqb—asmqb i, ] ) (2.31)

where a = GM/r? and @, is its components perpendicular to the line of sight. The

magnitude of this orbital contribution can be estimated as (Phinney 1993):

Po
rt | ¢

GM7 v?
2|~ 2 { ] Y n31x 10738573, (2.32)
[

where for the second equality we plugged in numbers for a pulsar at 0.1 pc from the
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black hole moving at v ~ 200 km s~!. If the pulsar has period Pp = 1 s, in a year
this induces a drift on Py of magnitude Po x (1 year) ~ 9.4 x 10726 s=1 which is
comparable in magnitude to the measured P’s of many observed pulsars (Manchester
et al. 2005).

For a well studied pulsar with both a measured P and P, we get two timing con-
straints on the phase space coordinates. If the pulsar has a low magnetic field strength
or if Pp dominates, there will be a third timing constraint. Treating M (r) as an un-
known function, these extra constraints can be used to directly measure the mass en-

closed within the pulsar’s orbit. The method is analogous to that presented in §2.3.

2.3 Contributions by stellar kicks and measuring the characteristic stellar mass at

the Galactic Center

As pointed out in Phinney (1993), stars passing close to the pulsar can gravitationally
kick the pulsar, adding another contribution to the time derivatives of the pulsar’s
period. In this section we quantify the probability for these stochastic effects to signif-
icantly affect the mean field contribution. The probability of a star being a distance

< b away from the pulsar located a distance r away from Sgr A* is:

Pr(r) =1 — exp[—(47/3)n.mb*] (2.33)
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where n, is the number density of stars. Using a density profile for stars around Sgr
A* n, = ng(r/ro) 1%, and the fact that the total stellar mass at 1 pc is measured to
be Mip. ~ 2 x 10° Mg (Genzel et al. 2010), the probability represented in equation
(2.33) becomes:

47 1.2M; —
P =1- - 18] 2.34
r(r) exp [ 3 b <47rm*(1 pc)1-2> r (2.34)

The contribution of the nearest neighboring star to P equals the mean field contribu-
tion at a distance that satisfies,

nm 2

L —
M.(r) + Mg

(2.35)

where M, (r) is the total stellar mass within the orbit. The probability for this separa-

tion is,

1.2 Miper/Mn r\"?
P =1- - . 2.36
T(T) eXp 3 (Mlpc(r/l pC)1'2 + MBH)3/2 <1 pC> ( )

For all reasonable values for m,, this probability is negligibly small at all radii, show-
ing that the first derivative is uncontaminated by stellar kicks. We corroborated this
analytical analysis with a numerical N-body simulation utilizing the Salpeter mass

function for stars. The initial conditions for this simulation were generated using the

star cluster integrator, bhint (Lockmann & Baumgardt 2008) with density profile
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p o r~18 and a supermassive black hole of mass 4.3 x 10°M, located at the center

of the cluster.
However, the contributions of stellar kicks to the higher derivatives is larger. The

nearest neighbor contribution to P/P is (Phinney 1993):

P

P

N Gy vy
B o’

(2.37)

nn

where v, is the relative velocity between the star and the pulsar. Similarly, the mean

field contribution is:
s

4 ~ G(M*(Y’)-FMBH)E
P

. (2.38)

~

mf

r3

where v is the pulsar’s orbital speed relative to Sgr A*. Equating the two contribu-

tions, we find that the nearest neighbor contribution equals the mean field at,

TNy Vx 3

¥ 2.39
M* (T) + MBH (Y ( )
The probability for this separation is again obtained from equation (2.34):
120, Mipe ro\ "
P =1- - . 2.40
r(r) eXp 3 v Mipe(r/1 pc)t2 4+ Mpp \ 1 pc ( )

The probability decreases with r, so that pulsars closer to Sgr A* are less disturbed

by perturbing stars. At a distance of 0.01 pc, the probability for the associated jerks
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is less than 0.1%. To corroborate this result, we performed a numerical simulation
utilizing the Salpeter mass function as displayed in Figure 2.4. This simulation shows
that passing stars scatter P about its mean field value, and its contribution is large at
distances larger than ~ 0.03 pc.

While the analysis of §2 is largely unaffected at small r, the contribution of pass-
ing stars adds a significant source of uncertainty to the interpretation of measured
period derivatives at large r. Due to the stochastic nature of this contribution, mea-
suring M (r) at large distances necessitates the use of multiple pulsars, whose average

P should reveal the mean field.

2.3.1 Effect of changing m, on P

Although the probability for P to be significantly contaminated by perturbing stars is
independent of the characteristic stellar mass, m,, this is not true for all time deriva-

tives. Here we show that the third period derivative is sensitive to changes in m., and
that this dependence can be used to probe the characteristic stellar mass at the Galac-

tic Center. The nearest neighbor contribution to P/P is (Phinney 1993):

P Gme Uz
[P] ~ 2 . (2.41)
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Figure 2.4: Numerical simulation of P/Pp. The Galactic Center was modeled as a star clus-

ter generated by the post-Newtonian integrator bhint (Lockmann & Baumgardt 2008) with
density profile p o< =18 and a central supermassive black hole of mass 4.3 x 106 M.

The mean field contribution is:

[ja}mf o [G(M*(ri:— MBH)] Ucz . (2.42)

The nearest neighbor and the mean field contributions are equal when,

m, Vs 3/4
o= [ () 2
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In this case, the probability for a star to pass at distance < b from the pulsar is:

1.2 Ve \ 3/2 M. ro\ M2
P =1- - (= P . (244
r(r) exp [ 3mi/4 ( v ) (Mype(r/1 pc)t2 + MBH)3/4 <1 pc) ] ( )

Figure 2.5 shows this probability as a function of pulsar-Galactic Center distance for
my = 1, 5, & 10Mg. The differences between cases of different m,’s maxes out at
around r = 2 pc, thus making this the optimal location to perform this study. We
note that the difference between Pr(0.2 pc) with m, = 1My and m, = 10Mg is

~ 20%, and so with Poisson statistic one needs tens of pulsars to distinguish between

the two cases.

0.0 0.5 1.0 15 2.0
F (pc)

Figure 2.5: The probability for a large nearest neighbor contribution to P/P versus pulsar’s
orbital radius r for characteristic stellar masses of m, = 1, 5, & 10My in solid, dashed, and
dotted lines, respectively.
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2.4 Summary and Implications

If the pulsar’s projected separation from Sgr A*, proper velocity, and line of sight
distance are measured, then 5 of the 6 pulsar’s phase space coordinates are known.
One of the period derivative constraints represented by equations (2.9), (2.24), or
(2.28) can then be used to derive a final constraint on the pulsar’s phase space coor-
dinates. Another constraint can be used to limit the mass enclosed within the pulsar’s
orbit. In this case, the line of sight velocity v; = v;(M) depends on M itself. As such,
M (7, 0) = M(7, U, v (M,7,v,)) = M(7,7.). Due to this complicated dependence, an
analytic solution is not feasible and the related analysis has to be done numerically.

The mass distribution itself can be determined if the above measurements are per-
formed at multiple times for a pulsar on a plunging orbit. However, unless the pulsar
is located very close to Sgr A*, the orbital timescale is too long for such a study. Nev-
ertheless, by performing this measurement on multiple pulsars, one would still be able
to probe the radial mass distribution. In particular, the difference in the measured
M (r)’s of two pulsars located at two radial distances determines the mass enclosed in
the spherical shell between these radii. This can be used to constrain the distribution
of low-mass stars or stellar remnants (black holes, white dwarfs, and neutron stars)
that are too faint to be detected directly.

An extra source of uncertainty in measuring M (r) comes from the effects of pass-

ing stars. These scatter P about the mean field value, and the contribution is large
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for r greater than ~ 0.03 pc. As such, measurements should be taken close to Sgr A*,
where they can constrain cumulative mass of stars and stellar remnants surrounding
the black hole. Measuring M (r) further away from Sgr A* will require multiple pul-
sars, and thus be a challenging task.

Finally, we note that the scatter of P about the mean field value due to passing
stars is affected by the characteristic stelar mass, m,. As such, measurements of P of
multiple pulsars at the Galactic Center will allow us to probe the charasteristic mass
of stars and remnants in this extreme environment. Such measurements can also place
exquisite constraints on the existence of intermediate-mass black holes in the vicinity

of Sgr A*.
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Mapping the dynamics of cold gas

around Sgr A* through 21 e¢m absorption

The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems
near other black holes indicates that dense neutral disks can be found in galactic nu-

clei. We show that depending on their inclination angle, optical depth, and spin tem-
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perature, these disks could be observed spectroscopically through 21 cm absorption.
Related spectroscopic observations of Sgr A* can determine its HI disk parameters
and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2

could could also be detected in 21 cm absorption against Sgr A* radio emission.

3.1 Introduction

The presence of a disk of massive young stars around the Galactic Centre (Levin &
Beloborodov 2003) and various megamaser systems (Miyoshi et al. 1995; Moran et al.
2007; Herrnstein et al. 2005; Kuo et al. 2011) indicates that dense neutral disks can
be found in galactic nuclei. These disks could be produced by the tidal disruption of
molecular clouds passing close to the central supermassive black hole (Yusef-Zadeh &
Wardle 2012). The disk could be an outer extension of the hot accretion disk closer to
the black hole, and possess a large amount of neutral hydrogen. Indeed, a significant
portion of the HoO megamasers show X-ray absorption with large column densities of
10%* — 10%® em~2(Loeb 2008). Further, the discovery of the G2 cloud (Gillessen 2014)
indicates that dense clouds of self-shielded neutral hydrogen may exist around Sgr A*.
Here we present a method to observe HI disks in the intermediate region of 10% —
10 Schwarzschild radii around nuclear black holes through their 21 cm absorption.
The inherent brightness of such a disk is too weak to be detectable, however the black

hole’s inner accretion flow emits synchrotron radiation (Bower et al. 2014b) that acts

42



To Observer

1 el Side View

Photosphere .r

Observer View

Figure 3.1: A sketch of the geometry from the side (top image) and as seen by the observer
(bottom image). The black hole is surrounded by an optically thick photosphere with a radius
R,y and an HI disk. The solid arrow in the top image indicates the direction towards the
observer. The inclination angle i is the angle between the observer and the normal to the disk.
The dotted arrows in the top image depict photons leaving the photosphere in the direction

of the observer. In their path towards the observer, these photons encounter the HI disk and
their intensity is reduced by absorption. The region of the HI disk that is illuminated by these
photons is shaded green in both images. The outer radius of this region, as seen from the
observer’s point of view (bottom image), is referred to as Rqz-

as a background source upon which the neutral systems can be seen in absorption.
We examine how observations of the absorption spectrum allows one to determine the

parameters of the HI absorber without the need to spatially resolve the system.
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3.2 21 c¢m absorption profile

The accretion flow near Sgr A* is optically-thick to synchrotron self-absorption at a
wavelength of 21 cm, and this photosphere illuminates the outer HI disk. At a dis-

tance D, the photosphere intensity I, yields a flux of

rd@dr

F fry —_— 06_7-1’
Yoo Ja D2
rd@dr
~ I (1 - T ) 3
A D277 v

where I, is the photospheric specific intensity, (r, ) are coordinates on the disk plane
centered on Sgr A* and the integral is over the area A of the disk that is illuminated

by Sgr A*’s photosphere. The frequency dependent optical depth is given by (Loeb

V—E\/GM sinicos@] , (3.1)
cV o r

where M is the black hole mass, ¢ the disk inclination defined as the angle between

2008),
5 W Na
327 E?2 kT,

vo

T (r,0) =

the observer and the normal to the disk (refer to Figure 3.1), Ag; = 2.85x1072° 571 is
the Einstein coefficient of the 21 cm transition, E/k = 0.068 K is the 21 cm transition

energy, Ny is the HI column density in the disk, v is the frequency, and Ty is the gas
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spin temperature. For our calculations, the line function ¢ is a gaussian,

gﬁ[u—lwmsinicosG] = (3.2)
cV r
2
1 [1/—1/21 (1—i Gi\/[sinicos€>]

———exp — ,
V2oro P 202

with ¢ < v91 = 1.4 x 10° Hz. For a black hole with a photosphere radius Rpp, the
area A can be evaluated geometrically. Assuming that the disk is larger than the
photosphere, the amount of disk that is illuminated by the photosphere is the half-
circular area spanned by the photosphere projected onto the disk. Only half a circle is
required because the other half the disk is positioned behind the photosphere. For a

disk with an inclination ¢, the projection gives

O=m r=R
maz rdldr
F, :/ / — 0, (1—7,), 3.4
o J TDr e (3.4
where
Rmaz = Rph, Vsin2 ftan2i + 1 , (3.5)
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is the outer radius of the region in the disk that participates in absorption (see Figure

3.1). The absolute value of the term proportional to 7, can be written as

6=n rr=R
mazx dad
oF, E/ / %L,OTV
0=0 r=Ry,p D
B /9” / r=Rmaz pd0dr 7
00 Jr—gr,, D? "

3 h302A21 NH 1 GM ..
X [%kasygb U—E\/ " sin i cos . (3.6)

In general, Ny and Ts may depend on the radial coordinate r. In addition, I, also

depends on both r and 6 due to limb darkening.

3.2.1 Homogeneous disk with no limb darkening

For simplicity, we focus our attention to a homogeneous disk where Ny, T, and I,

are constants. From equation (3.6),

s 3 B3¢ Ay, Nu <I> /9=” "
0

327 E? kT, \D? -0
r=R
max 1 M
X / drro|v—— ¢ sinicosf | . (3.7)
r=Ry,p, c r

NHIIJO
TSDQ )

Besides the multiplicative factor the problem possesses only two free param-
eters: the disk inclination angle, 7, and the radius of the photosphere, R,,. Although

the intrinsic size of of Sgr A* was never measured at a wavelength as long as 21 cm,

46



we extrapolate from the results of Bower et al. (2014b) and find Ry, ~ 10 cm. The
depth of the line profile relative to the continuum, §F, /F),,, is shown in Figure 3.3 for
Ny = 102! ecm 2 and Ty = 8 x 10° K. Note that 6F, Npg/Ts more generally.
The distance to the Galactic center is taken as D = 8 kpc. A physical understand-
ing of the absorption profiles can be obtained by looking at the line of sight velocity
structure of the disk as shown in Figure 3.2. Due to the Doppler shift, an observer
would detect a line of sight velocity that varies like a dipole on the disk (contours of
~ cos6/+/r). The portion of the disk that is illuminated by the photosphere, i.e. be-
tween 0 < 6 < mand Ry, < 7 < Ry, is seen in absorption. At every point in

the illuminated disk (parameterized by the disk coordinates r and ), there is a corre-

sponding drop of flux in the frequency profile at v = \/ GM sinicos6/rc? due to the
absorption at that point.

The change in the shape of the absorption profile when one changes R, and 7 can
be explained by the shape of Ryqz(Rph, 1) on the neutral disk. As Figure 3.2 shows,
the outer bounds of the illuminated disk increases with increasing R,;,. This increases
the area of the illuminated disk, generating a deeper absorption profile. However, as
Ry, increases, a larger portion of the inner disk is hidden behind the photosphere.
This removes high velocity components from the integral, causing a thinner spectral
profile. Indeed, Figure 3.3 demonstrates that increasing R, produces a deeper and
thinner absorption profile. A more edge-on (higher i) disk also possesses a larger il-

luminated disk. In this case, the inner bound is not changing, thus the wider illumi-
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Figure 3.2: The neutral disk as seen by the observer. Due to the Doppler shift, an observer
sees a line of sight velocity profile that traces a dipole on the neutral disk (The black hole is
located at z,y = 0). The color describes the magnitude of the line of sight velocity; areas
with larger (lower) redshifts are redder (bluer). The value in the color bar is normalized to
v/GM sini/r. The boundary of the disk that is illuminated by the photosphere, Ryqz, is plot-
ted in dashed lines for a variety of photosphere radii, R, (top) and a variety of inclinations,
(bottom). The outermost R,,q, in the top panel corresponds to R,, = 10 cm, and the suc-
cessively smaller contours are for R, = 5 X 10 c¢m and Ryp = 3 % 10 cm. The outermost
R,naz in the bottom panel corresponds to ¢ = 15°, and the successively smaller contours corre-
sponds to i = 30°, 45°, 60°, & 75°. The x and y axes are Cartesian coordinates on the disk,
in units of 10'® cm. The portion of the disk that is seen in absorption is within 0 < § < 7
and Ry, < r < Ryyqq. Increasing Ry, samples a wider region of the disk, but a larger part of
the high velocity portion of the disk close to the black hole is hidden behind the photosphere.
This results in an absorption profile that is deeper and thinner. A more edge-on (higher )
disk samples a wider region of the disk. Furthermore, the shape of the illuminated portion of

a more edge-on disk covers higher velocity features, generating a deeper and wider absorption
profile (see Figure 3.3).
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nated disk also contains more high velocity portions. This generates a deeper and

wider profile, as seen in Figure 3.3.

3.2.2 Disks with gaps

Using the formalism of equation (3.7) we can also calculate the resulting 21 cm ab-
sorption profile in the case where there are gaps in the HI disk. This is done by sim-

ply breaking the radial integral into parts,

=7 rr=Rmax
6=0 fT‘:RPh I Rm(liE < RM’L
~ 0= rr=R;n
Ty 6=0 Jr=R,, I Rin < Rmaz < Rout

0=m r=Rip r=Rmaz
6=0 |: T':Rph I _I_ fr:Rout I] ROUt < Rmax )

where [ is the integrand of equation (3.7), Ry, is the inner radius of the gap, and
Rout is the gap’s outer radius. The integral can be broken to more pieces if more
gaps are present. An example profile for a disk with a gap is shown in Figure 3.4. A
disk with a gap lacks absorption on the region where the gap is located. Based on
the dipolar contours of Figure 3.2, the velocities corresponding to a portion between
Rin < 17 < Ry is excluded from the integral, generating a profile with visible wings.
The detection of a gap can be used to constraint the presence of an intermediate
mass black hole companion of Sgr A* orbiting with a semimajor axis of ~ 103 — 10°

Schwarzschild radii.
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Figure 3.3: Absorption profile of the Sgr A* photosphere for R,;, = 10'® cm and an inclination
angle of i = m/4 (solid), Ry, = 2 x 10' c¢m and i = /4 (dashed), as well as R, = 10'°
cm and ¢ = 7/3 (dotted). v, denotes the line-of-sight velocity. Since the disk is behind the
photosphere when r < R, a larger photosphere samples less of the high velocity regions of
the disk, resulting in a thinner profile. However, a larger photosphere illuminates a larger disk
area, resulting in more absorption. Increasing R, therefore results in a deeper, but thinner
profile. Edge-on geometry implies a larger portion of the disk is illuminated by the photo-
sphere, therefore increasing the angle ¢ results in a deeper profile. A disk with higher i sam-
ples higher velocity regions, resulting in a wider profile. These extra high velocity regions are
sampled at the edges of the illuminated disk, in contrast to the high velocity regions sampled
in systems with larger R,, where the extra regions are located closer to the black hole (see
Figure 3.2).
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Figure 3.4: 21 cm absorption profile for a disk inclined by 80 degrees and R,;, = 2 x 10'® cm
with a gap of width ~ R, (solid) overplotted against a disk with no gap (dashed). v, denotes
the line-of-sight velocity.
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3.2.3 Orbiting dense cloud

Another source of HI is a dense cloud that orbits in front of the 21 cm photosphere.
This dense spot could be a feature in the neutral disk or a clump of self-shielded gas
similar to the G2 cloud (Gillessen 2014). The resulting profile will be like that of Fig-
ure 3.3, but with an extra absorption feature located where the spot resides in fre-
quency space, as shown schematically in Figure 3.5. The core of this feature travels in
v-space as the cloud orbits the black hole. If the spot orbits in a perfect circular orbit,

the frequency position of the center of the feature, v,, obeys

ve(t) = 1.4 x 10°Hz

C I'c

1— 1 /GM sinicos ( Ci—BM(t — t0)>] , (3.8)

where r. is the radial position of the dense spot, and ¢ the time coordinate relative to
an arbitrary initial time ty3. The resulting effect in frequency space is a feature that

oscillates sinusoidally around the 21 c¢m rest frame frequency. The amplitude of the

oscillation is 4/ CGQ—T]VCI sin¢ and the temporal frequency is ,/ (’;]3” . Since both of these are
observables, one can use them to measure simultaneously the orbital radius and the
black hole mass up to a factor of sini. Plunging orbits can be treated by adding a

time dependence to r,

ve(t) = 1.4 x 10°Hz

1—i\/%sinicos <\/C:;/I(t—to)>] , (3.9)
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v

Figure 3.5: A schematic illustration of an orbiting dense spot. As the spot orbits, it covers
different portions of the line of sight velocity structure. This resulted in extra absorption on
top of the neutral disk profile. The feature corresponding to the dense spot travels in v space
according to v.(t) in equation (3.9), while the HI disk profile is stationary. For a cloud on

a circular orbit, the spot absorption feature oscillates sinusoidally in frequency space. The
amplitude and frequency of the oscillation can be used to simultaneously measure the spot
orbital radius and the black hole mass up to a factor of sini. Note that a dense spot can exist
in the absence of a disk.

where a is the semimajor axis of the orbit and

a(l —e?)
1+ ecos ( i—%)

r(t) = (3.10)

with e being the orbital eccentricity. In addition to the inclination angle, the orbit
possesses three parameters: M, a, and e (or equivalently, the orbital energy, angular
momentum, and the black hole mass). If the mass of the black hole is known, the os-
cillation amplitude and frequency can be used to determine the orbital parameters of

the cloud up to the unknown inclination factor.
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3.2.4  Detectability

The signal to noise ratio of such a system is given by

S OF,
N = sppp V2leAV (3.11)

where SEFD is the System Equivalent Flux Density of the telescope, Av the band-
width, t, the observing time, and the factor of v/2 results from the use of dual polar-
ization observations. If Sgr A*’s intrinsic (unabsorbed) 21 c¢cm flux density is ~ 1 Jy,
Ny = 10! em™2, T = 8 x 10° K, i = 80 degrees, and Ry, = 10'® cm, we find
that §F, ~ 0.6 mJy. The Square Kilometer Array (SKA) possesses a collecting area
of 1019 cm?. A system temperature of ~ 50 K will then give SEFD = 0.3 Jy. Assum-
ing Av ~ 10 MHz, we obtain S/N 2 10 over 30 minutes of observations. We also
note that the signal to noise ratio scales with column density, spin temperature, and

observation time as

Ny

S

As such, the detectability of the signal would depend on Ny and Tg of the observed

system. In particular, for i = 80 degrees disk, the signal to noise is given by

Ny ] |:8>< 103 K} { to ]1/2 _ (3.13)

S
2 ~9
N 1021 cm—2 Ty 1 second
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As we have no constraints on the values of Ny and T at the Galactic Center, the
fiducial values of Ny and Ts considered are taken from observations of megamaser
systems and theoretical considerations in our Galactic Center (Loeb 2008; Yusef-
Zadeh & Wardle 2012). Note that the fiducial value of Ny in our calculation is mod-
est, and column density in excess of 10%> cm™2 might be possible. The spin temper-
ature, Tyg, is even less constrained than Ng; while it could be coupled to the actual
gas temperature, our model considers Tg as a free parameter that is not necessarily
equal to the gas temperature. Our method promises to constrain the combination of

the two parameters, N /T5s.

3.3 Conclusions

We have calculated the 21 c¢cm absorption profile corresponding to a disk of neutral hy-
drogen around black holes. Spectroscopic measurements of a disk absorption profile
can be used to determine the disk parameters, or to ascertain the presence of gaps in
the disk even when the black hole-disk system is spatially unresolved. Furthermore,
we demonstrated how an orbiting dense cloud of gas could also be detected through
its time-dependent 21 cm absorption. In this case we delineated a method to deter-
mine the spot’s orbital parameters from the absorption spectrum.

Our methodology does not require the system to be spatially resolved. While the

angular size of Sgr A*’s photosphere is ~ 10 milliarcseconds, interstellar blurring
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could render even Sgr A* unresolveable. Interstellar absorption would also deepen
the absorption profile at low velocities. However, the absorption profile near the su-
permassive black hole is wide, and at higher velocities (= 1000 km/s) the absorption
should be purely from HI near the black hole.

While we presented results for a homogeneous neutral disk with no limb darkening,
our formalism is general and could be used for systems where Ny or I,9 are nontrivial
functions of the disk coordinates, or where the line function has a significant velocity

width.
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Probing the spacetime around SMBHs

with ejected plasma blobs

Millimeter-wavelength VLBI observations of the supermassive black holes (SMBH) in
Sgr A* and M87 by the Event Horizon Telescope could potentially trace the dynamics

of ejected plasma blobs in real time. We demonstrate that the trajectory and tidal
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stretching of these blobs can be used to test general relativity and set new constraints

on the mass and spin of these black holes.

4.1 Introduction

The planned Event Horizon Telescope (EHT)* will possess angular resolution com-
parable to the Schwarzschild radius of the supermassive black holes (SMBHs), Sgr

A* and the one at the center of M87, and temporal resolution on minutes timescales
(Johnson et al. 2014). This is expected to open a new avenue for studying a multitude
of transient phenomenae under extreme gravity.

Sgr A* is known to exhibit variability with tens of minutes timescale correspond-
ing to accretion disk activity at the innermost stable circular orbit (ISCO) (Gillessen
et al. 2009; Johnson et al. 2014). Here we study a hypothetical class of short timescale
events corresponding to plasma blobs ejected near the ISCO radius. Although such
blobs were never observed from a supermassive black hole, they may exist based on
the analogy with microquasars, which are known to propel blobs at relativistic speeds
(Mirabel et al. 1992; Mirabel 2003, 2004).

In addition to microquasars, plasma blob ejection is also observed in the Sun dur-
ing coronal mass ejection (CME) events (Babu 2014; Savani et al. 2012). Microquasars
and stars have very different magnetic field and gas properties, and the presence

of blob ejections in both of them leads us to believe that plasma blob ejections is a

*http://www.eventhorizontelescope.org/
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generic phenomenon in magnetized environments. In particular, it has been suggested
that plasma ejections for both microquasars and CMEs is caused by magnetic recon-
nection (de Gouveia dal Pino & Lazarian 2005; Babu 2014), and in the past CME has
been argued to be analogous to blob launching in microquasars (Yuan et al. 2009).
Since magnetic reconnection is likely operating in the turbulent accretion disk around
both Sgr A* and M87, plasma blob ejections can be expected to occur in these envi-
ronments.

The second target of the EHT is the supermassive black hole at the center of the
elliptical galaxy M87. In contrast to Sgr A* M8T7 possesses a jet, and it is likely that
blobs are ejected along the jet’s symmetry axis.

In this Letter, we demonstrate that if ejected plasma blobs were detected, one
could use their dynamics to probe the spacetime around the black holes. Furthermore,
if the mass and spin of a given black hole are known, one can use observations of the
blob’s dynamics to test general relativity or infer the presence of non-gravitational
sources such as gas pressure or magnetic stress. These constraints would be compli-
mentary to constraints from pulsar timing (Pfahl & Loeb 2004; Cordes et al. 2004;
Kramer et al. 2004; Psaltis & Johannsen 2011; Liu et al. 2012) or observations of the
black hole shadow (Lu et al. 2014; Psaltis et al. 2015; Johannsen 2012).

There are two elements of dynamical information: the trajectory of the blob’s cen-
ter of mass, and its lateral expansion. Both can be used to independently constraint

the black hole’s spacetime. We discuss the former in §4.2 and §4.3, and the later in
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Black hole mass Distance Time Space Angle

Sgr A* | (4.31 £ 0.36) x 10°M,, | 7.94 £ 0.42 kpc | 21s | 0.043 AU | 5.3 pas
MS7 (3.5709) x 10°M, | 16.74+0.9 Mpc | 4.8 hr | 35 AU | 2.1 pas

Table 4.1: The conversion of black hole mass, M, to units of time, space, and angular size
on the sky for Sgr A* and M87 (Gillessen et al. 2009; Ghez et al. 2008; Walsh et al. 2013;
Eisenhauer et al. 2003; Bird et al. 2010), for G = ¢ = 1.

§4.4. Throughout the discussion, we will assume general relativity. Deviations from
our results would indicate the presence of non-gravitational forces or corrections to
the theory of gravity. We use units where G = ¢ = 1, and the conversion from these

units to physical units is given in Table 4.1.

4.2 Center of Mass Motion

First we consider the motion of the blob’s center of mass (COM). If the blob is ejected
above the escape speed from the ISCO radius, Rrsco, its azimuthal velocity will be
negligibly small at r > Rrsco, so we focus our discussion on the radial equation of
motion. For a Schwarzschild black hole (Chandrasekhar 1983),

dr\? 2M dt e
e I T 41
(m) P R e Ty (41)

where M is the black hole mass, e the energy per unit rest mass of the blob, r the
black hole-blob distance, ¢ the coordinate time, and 7 the blob’s proper time. These

two equations can be solved for dt/dr and integrated to obtain the coordinate time as
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a function of the orbital radius of the blob’s COM,

tsen(r) = / < dr' . (4.2)
usco (1- 2) /B~ (1= )

If the blob is ejected out of a Kerr black hole, a similar set of equations can be solved

to obtain its COM motion in the equatorial plane,

r P24 a2+ 2a2/M
tiern (1) = / % r dr’ (4.3)
Risco \/62 + 2]\{# + a2e2 _ A

T‘/2 T‘/2

where a is the black hole’s spin parameter and A(r) = 72 — 2Mr + a?. In general,
there is no reason for the blob to be ejected in the equatorial plane of the black hole,
and in fact blobs should preferentially be ejected along the spin axis. But, as shown
in Figure 4.1, the effect of the black hole spin is weak. At ¢ = 10M, the trajectory of
a blob with e = 2 launched from an a = 0.999 black hole is only 0.36 M apart from

one launched from an a = 0 black hole.

4.3 Ray Tracing

In simulating what would be seen by radio interferometers, we project the COM mo-
tion of the blob to the sky plane far from the black hole. We utilize the geokerr code
(Dexter & Agol 2009) to trace rays from the observer plane located at infinity to the

position of the blob. The coordinates (x,y) parameterize positions in this observer
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Figure 4.1: The radial motion of blobs with e = 2 in the equitorial plane of a black hole with
a =0 (solid line) and @ = 0.999 (dotted line).
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plane. The Fourier transform of this plane yields the visibility of a radio interferome-
ter.

The blob itself is modeled as a small sphere that is emitting isotropically in its rest
frame. The result for blobs with velocity vectors at angles # = 0 and § = 7/8 away
from the observer are presented in Figure 4.2. For a blob moving along the § = 0
axis, the image is briefly lensed into a ring with radius R,y ~ 5M. Previous calcu-
lations by Johannsen & Psaltis (2010) showed that the eccentricity of this ring is not
sensitive to the spin of the black hole (except for a ~ 1), but is very sensitive to the
black hole’s quadrupole moment. Thus, if detected, the ring can be used as a test of
the no-hair theorem. As the ring only appears when the blob is still close to the black
hole, its lifetime is short (~ 40M for a blob with e = 10, but longer for slower moving
blobs). It is therefore necessary to have temporal resolutions on minutes timescale to
detect the ring.

In addition, if the motion is fast enough and is launched at a small angle relative to
the observer, the apparent trajectory can appear superluminal (e.g. Rees 1966). Close
to the black hole, this apparent superluminal motion will be obscured by the bright
photon ring. Thus, the detection of superluminal motion will require either waiting
for the ring to dim or a manual removal of the ring.

The projected distance as a function of observed times, shown in Figure 4.3, can
be compared with observations to determine the presence of non-gravitational forces

(e.g. due to magnetic fields or hydrodynamic friction on background gas). In addition,
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it can be used to constrain gravitational theories that predict changes on the orbit of

test particles close to a black hole (e.g. Giddings 2014).

4.4 Tidal effects

If the forces holding the blob together are much smaller than the tidal gravitational
forces, the blob will be tidally sheared. The magnitude of this tidal shear depends on
the black hole’s mass and spin, and thus can be used to probe the black hole metric.
Under the approximation that the force per unit mass keeping the blob together is <«
(2M R/r3), where R is the radius of the blob, the elements of the blob can be treated
as if they are moving along geodesics.
If the blob is small, we can define the geodesic deviation vector £ between the

geodesic followed by the particle at the center of the blob and the different geodesic

followed by particles at the blob’s edge by,

ox®

éa = g ) (44)

where s is the parameter indexing neighboring geodesics. We can calculate the rate of

change of £ with respect to the affine parameter of the geodesic,

dOA (6% (6%
g;g = u’Vpe® — TG, 7 (4.5)

= PVau® —T5,80° (4.6)
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Figure 4.2: Blobs with e = 10 and radius M launched with # = 0 and § = 7/8 as seen in the
observer plane with the black hole located at (0,0). The observer’s time axis (in units of M)
is indicated by the color bar. For a blob moving with # = 0, the image is briefly lensed into a
ring. The eccentricity of this ring can be used to test the no-hair theorem.
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Figure 4.3: The projected position of blobs with e = 10 launched at a variety of angles versus
observer time.
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where we have used the identity (Poisson 2004),

uPV 5 = PV gu (4.7)

which is valid for geodesic deviation vectors. Writing explicitly,

ou®
IVt = &5 + T ", (4.8)
yields
d ou®
L BT

The four velocity of a blob ejected from a Schwarzschild black hole with negligible

angular momentum is:

r
T

oM “
e — (ew /= 62),0,()) : (4.10)

For relative motion between particles at the center of the blob and particles at the

edge of the blob in the radial direction:

¢* = (0,R,0,0)* . (4.11)
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Plugging equation (4.11) into equation (4.9) gives:

1d M
R | (4.12)

R dA 7”21/—14-62+¥

Note that substituting ¢ for A in equation (4.12), then taking a derivative with respect

to t with M /r — oo reproduces the tidal acceleration of Newtonian gravity: atjqq ~
MR/r3.
Substituting the orbital radius 7 in place of A in equation (4.12) and integrating,

we get:

R / r !
dR Md
/ / :_/ 2 2 2M (4.13)
rRo B ro M2 (=14 e+ 27)

T,/

where Ry < r is the initial size of the blob and r(y the starting orbital radius of the
blob. Assuming that the blob is ejected from the ISCO radius, ro = 6 M for a = 0, we

obtain:

Ry |6M +3(e2—1

R (=2 + 3e)r 2
)T] (4.14)

This change in radius is in principle observable, and can therefore be used to find the
mass of the black hole if e is inferred from the COM trajectory. The constant e can
be inferred far away from the black hole where it obeys e = 1/4/1 — v2,;, where

voom is the COM velocity of the blob at r > M. Figure 4.4 shows the radial growth

factor for blobs with specific energy e = 1.0001, 1.001, 1.01, and 10. Because blobs of
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Figure 4.4: The growth factor of the blob radius due to gravitational tide as a function of

distance from the black hole for a blob moving with negligible angular momentum. The blob’s

specific energy is e = 1.0001, 1.001, 1.01, and 10 for the solid, dashed, dotted lines, and dot-
dashed lines, respectively.

()

smaller e spend more time close to the black hole, the tidal effect is larger the closer

e is to unity. In the case of e ~ 1, one can get a growth factor of R/Ry ~ 10 at

r = 1000M. This is a change that is observable by the EHT. Assuming that the
biggest source of uncertainty is in measuring R/Ry, an error propagation calculation
implies that the precision of mass measured using this method is ~ 25% /v N, where
N is the number of blobs observed. This is competitive with the current measurement
precision for M87 (Walsh et al. 2013). In general, one can also compute the relative
motion between the center and the edge of the blob in the qg and 6 direction via an

analogous calculation.
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We can extend this calculation to the case of a spinning black hole with a blob
moving radially in the equatorial plane. For this configuration, the relevant compo-

nents of u® are,

2a>M
ut = % <r2 tat ar > , (4.15)
2M a2ez A
Ur: \/€2+T3(a€)2+7a2—712 . (416)
Again we adopt,
£ =(0,R,0,0)*. (4.17)
Performing an analogous calculation as in the a = 0 case, we obtain,
R _
7=
0 (4.18)

Rov/a? (=3 + 4e%) M + 36 (—2 + 3¢2) M3r3/2
6M3/2\/3r2[2M + (=1 + €2) 7] + 3a% [-r + e2(2M + )] ‘

If the mass of the black hole and the blob energy e are known, this equation can be
used to measure the spin of the black hole. Figure 4.5 shows the growth factor R/ Ry
for blobs with dimensionless spin parameter a = 0, 0.5, and 1. The effect of spin is
weak, and its measurement would be challenging. Again, assuming that the biggest
uncertainty is in measuring R/Ry, we performed an error propagation calculation to
estimate the precision of the dimensionless spin parameter, a, measured using this

technique to be ~ 0.6/v/N, where N is the number of blobs observed. The current
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Figure 4.5: The growth factor of the blob radius as a function of distance from a spinning
black hole for a blob trajectory with a negligible angular momentum. The black hole’s spin

isa = 0, 0.5, and 1 for the solid, dashed, and dotted lines, respectively. The blob energy is
e = 1.2 for all curves.

constraint on the spin parameter of M87 is a > 0.5 (Doeleman et al. 2012).

4.5 Conclusion

We have shown that observations of ejected plasma blobs from the supermassive black
holes Sgr A* and M87, can be used to constrain the spacetime near these black holes.
There are two pieces of information that can be obtained from these observations: the
blob’s trajectory and the tidal effects on the blob’s shape.

The trajectory of the blob can be used to limit the presence of non-gravitational

forces around the black hole or to constrain theories of gravity that predict anomalies
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in the orbit of test particles in the vicinity of black holes (e.g. Giddings 2014). If a
photon ring is detected, its eccentricity could be used as a test of the no-hair theorem.
Furthermore, observations of the tidal stretching of the ejected blob can be used to

determine both the mass and spin parameter of the black hole.
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Magnetic field probe of the no-hair

theorem

We discuss the consequences of violating the no-hair theorem on magnetic fields sur-
rounding a black hole. This is achieved by parametrically deforming the Kerr space-

time and studying the effects of such deformations on asymptotically uniform mag-
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netic fields around the black hole. We compute the deformed electromagnetic field for
slow spins and small deformation parameter, and show that the correction is of order

the deformation parameter and mimics the angular structure of a quadrupole.

5.1 Introduction

The no-hair theorem of General Relativity (GR) states that isolated, stationary black
holes are described by only three parameters: M, the mass of the black hole; J, the
spin of the black hole; and @, the charge of the black hole (Israel 1967, 1968; Carter
1971; Hawking 1972; Robinson 1975). In terms of the metric, this means that the
most general black holes satisfying the no-hair theorem is the Kerr-Newman metric
describing a charged, rotating black hole. However, in typical astrophysical settings,
charge neutrality is expected. This reduces the metric to the Kerr metric describing

an uncharged, rotating black hole, given in Boyer-Lindquist coordinates (t,r,0, ¢) as

2Mr 4Mar sin® 6 b
2 — 1 2 2
ds — ( - dt* — — dtdep + —dr

2Ma?rsin? 6

+ 2do* + (rz—l—az—i- >

) sin? 0d¢? |
(5.1)

where G =c=1,a=J/M, ¥ =1r?+a?cos? 0, A = r?> —2Mr + a?, and we have taken

the (—, 4, +,+) as the metric signature.
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In the derivation of the no-hair theorem, it is necessary to assume that the black
hole spacetime does not possess either naked singularities or closed timelike curves
outside of a horizon. Therefore, the detection of a black hole which violates the no-
hair theorem implies that either GR, the Cosmic Censorship Conjecture, or the Chrono-
logic Censorship Conjecture is invalid (Johannsen 2013).

There has been multiple proposals in the past for testing the black hole no-hair the-
orem, with most of them focusing on methods to observe the black hole quadrupole.
For an uncharged black hole, the no-hair theorem demands that all multipole mo-
ments of the black hole depend only on M and J. In particular, the dimensionless

black hole quadrupole, ¢ is given by

(5.2)

) |:CJ ]2
q= = )

G2M3 GM?
where @ is the black hole’s quadrupole moment, and we have reintroduced the factors
of ¢ and G. Violations of equation (5.2) causes astrophysical observables like the rel-
ativistically broadened iron lines (Johannsen & Psaltis 2013), the shape of the black
hole shadow (Johannsen & Psaltis 2010), and the Shapiro delay to be modified from
their Kerr counterparts (Christian et al. 2015).
In this work we propose that the magnetic field structure around the black hole

will also be modified by the presence of a non-Kerr quadrupole. This change could in

principle be detected by observational campaigns designed to probe magnetic fields
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close to the black hole horizon (Gold et al. 2017). Furthermore, this calculation is
important for testing force-free numerical computations.

In particular, we are interested in black holes immersed in an asymptotically uni-
form external magnetic field which shares the same symmetries of the spacetime. The
magnetic field is considered to be a test field that does not affect the spacetime geom-
etry, and is assumed to satisfy the source-free Maxwell’s equations. Examples where
such a condition is realized in an astrophysical setting is when a magnetar orbits a
black hole within its light cylinder (D’Orazio & Levin 2013; D’Orazio et al. 2016) or
for a black hole immersed in tenuous plasma (Morozova et al. 2014).

The main machinery of this work is a theorem by Wald (Wald 1974) which states
that in GR the behavior of electromagnetic test fields around an asymptotically flat,
axisymmetric, vacuum spacetimes is related to the spacetime Killing vectors. While
this theorem has been extended to a variety of non-GR gravitational theories (Azreg-
Ainou 2016; Abdujabbarov et al. 2011; Abdujabbarov & Ahmedov 2010), we will only
need the GR version here. The reason for this is twofold: first, we want to be agnos-
tic towards the particular theoretical extension of GR; and second, it is possible that
even within GR the no-hair theorem is violated (Manko & Novikov 1992). To this end
we employ a metric that parametrically deforms the Kerr spacetime, and compute the
effects of the deformation parameter on the test magnetic field. This approach was
first attempted by Abdujabbarov et al. (2013) for the Johannsen-Psaltis (JP) met-

ric (Johannsen & Psaltis 2011). However, the JP metric is not Ricci flat (Johannsen
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2013; Johannsen & Psaltis 2011), rendering the Wald solution invalid.

The organization of this article is as follows: in §5.2 we discuss the quasi-Kerr (QK)
metric, a parametric deformation of the Kerr metric that we employ in our calcula-
tion; in §5.3 we review the Wald solution; in §5.4 we compute the Wald solution for
the QK metric in the Boyer-Lindquist like coordinates; in §5.5 we transform the solu-
tion to the Zero Angular Momentum Observer (ZAMO) frame; and in §5.6 we provide

some concluding remarks.

5.2 The quasi-Kerr metric

The QK metric (Glampedakis & Babak 2006) is a parametric deformation of the Kerr
metric given by

G = 9K 4 ehy (5.3)

Kerr

where g,

is the Kerr metric, € a small parameter, and h,, is given by

W= (1—=2M/r)"" [(1 = 3cos™ ) Fu(r)]
BT — (]_ _ QM/T’) [(1 — 3(3082 (9)./—"1(7')] )
R0 — 2 [(1- 3 cos? 0)Fa(r)]

h?? = —(rsinf) > [(1—3cos? 0) Fa(r)] , (5.4)

77



where the coordinates (t,r,0, ¢) are Boyer-Lindquiest like, and the functions Fi(r)

and Fa(r) are given in Appendix A of Glampedakis & Babak (2006) as

5(r— M) 9 9y 15r(r —2M) r
= 7 _(2M?+6Mr — 3r?) — 1 .
Fir) = = Sapr —oany M+ 6Mr =3 e\ Tar) 0 O
5 15 r
= 2M? — 3Mr — 3r? 2 _2M?)1 : .
Fo(r) 8Mr< 3Mr —3r*) + 16M2(T ) n(r—2M) (5.6)

The € parameter of the QK metric modifies the quadrupole moment, Q, of the black
hole into (Johannsen 2013)

Q= —M(a®+eM?), (5.7)

where the a? piece is the quadrupole moment of the standard Kerr black hole.

The QK metric is stationary and axisymmetric, admitting a timelike Killing vector
1" and an axisymmetric Killing vector ¥”. Furthermore, it is asymptotically flat and
satisfy the vacuum Einstein equation for low spins and small €. Indeed, neglecting
terms of order O(a?), O(ea), and O(€?), the metric is Ricci flat (Johannsen 2013). In

this article we will work exclusively in these regimes.

5.3 Wald magnetic field solution

If we immerse a black hole in an external magnetic field, the immense curvature of

the spacetime modifies the magnetic field close to the black hole. If the magnetic field
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is a test field (i.e. small enough to not disturb the spacetime itself), it is required to

satisfy the source-free Maxwell’s equations,
V,FF¥ =0, (5.8)

where F'* is the electromagnetic tensor. Wald found that for a magnetic field that is

asymptotically parallel to the rotation axis of the black hole (Wald 1974),
B =Bz, (5.9)

at spatial infinity, where Z is the direction parallel to the black hole’s rotation axis,

the solution of the source-free Maxwell’s equations is given by
1
F = §B0 (dyp + 2adn) , (5.10)

where a is the spin of the black hole, while dy and dn refers to the one-forms corre-

sponding to the Killing vectors ¥* and n”, defined by

n=ndz” (5.11)

Y =1ydz” . (5.12)
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This solution is valid as long as the spacetime satisfies the vacuum Einstein equation
(Ricci flat),

R =0. (5.13)

As the QK metric is Ricci flat when the spin and deformation parameter are small, we
can use this method to solve the source-free Maxwell’s equations for QK black holes

in these regimes.

5.4 QK black hole immersed in magnetic field

In the coordinates we are using, the Killing vectors of the QK black hole is identical

to the usual Kerr Killing vectors in Boyer-Lindquist coordinates,

, 0
, 0
V=56 (5.15)

Therefore, we can rewrite the Wald solution in terms of the metric components via

the identifications

T = gut » (5.16)

Vv = Gug - (5.17)
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In particular, due to its dependence on dvy and dn, the electromagnetic tensor F' will
consist of terms proportional to derivatives of the metric 0,9, -
Churning through these derivatives, we obtain the following components of F' up to

second order in the spin parameter a:

4aM (sin? 6 — 1)

Fy,. = —Bg 2 . (5.18)
M fsind
Flp— Bo8a cos f sin ’ (5.19)
r

(M + 7)1+ 3cos(20)]

5
F,4 = 2Bor sin 6 + eBy SMZ(2M — 1)

sin?(#)

,
x [2M (M? — 6Mr + 3r?) — 3r (2M? — 3Mr + 1*) log (—2M+r)] (5.20)

5r

Fyy = 2Bor?sinf cos + eBy——
8¢ or“smecost + e 032M2

[25in(26) — 3sin(40)]

.
X {ZM (2M? — 3Mr — 3r%) + 3r (—=2M? + %) log <_2M+T>] (5.21)

Note that to order a2, the electric field is identical to the Kerr solution. This is
because the electric field is generated by the frame dragging of the magnetic field by
the rotation of the black hole. Therefore, the electric field terms are at least of order

a. Higher order corrections to the electric field due to violations of the no-hair theo-
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Figure 5.1: B%x (solid) and B*ex (dashed) as a function of radius from the black hole for
0 = m/4. Close to the black hole, the corrections due to the quadrupole modification is of
order e.

rem is neglected in our approximation. As a result, the Wald charge accumulated by a

slowly spinning QK black hole is identical to that of a Kerr black hole.

5.5 Fields in the ZAMO Frame

In order to obtain the electric and magnetic fields from F', a frame must be specified.
To this end, we specify the Zero Angular Momentum Observer (ZAMO) frame of the

QK metric up to order e:
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Figure 5.2: The ratio of B% x (solid) and BZ) x (dashed) to the Kerr solution as a function of
radius from the black hole for § = 7 /4. Close to the black hole, the corrections due to the
quadrupole modification can exceed that of the Kerr contribution.

5 [—1+ 3cos?(0)] [—2M(M —7) (2M? + 6Mr — 3r?) + 3r?(—2M +r)?log <%)}

32M2, /1 — 2My2

(5.22)

83



o — T
" —2M +r
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(5.23)
2 9 ) L,
) :T—e5 [—1 + 3cos?(9)] {QM(QM —3Mr —3r%) +3r (—2M? +r )log(ﬁ)}
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(5.24)
4 2aMsin? 6
)= "
2
5a [—1+ 3cos®(0)] [QM (2M? — 3Mr — 3r?) 4 3r (—2M? + r?) log (%)} sind 0
B 16Mr3 .
(5.25)
6(%;5 =rsinf

5[~1+3cos?(9)] [2M (2M2 = 3Mr — 3r2) + 31 (~2M2 + 12) log (—f ) | sin 6
. 7

32M?

(5.26)
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where the hatted coordinates are that of the ZAMO frame, and all other components
of e% is zero.

Projecting F},, to the ZAMO frame, we obtain the following
K
Fup = FEST 4 eF o (5.27)

. QK .
where the quasi-Kerr components Fﬂﬁ are given by

5Boy/ =5 [1 + 3 cos(26)] sin 6
2 [2M (M — 3r) (5M2 + 3Mr — 3r?)

QK _ _npd  _

g = Pox = 160273/
3 2 2 3 r
—|—3’I" (—6M + M*r + TMre — 3r ) IOg <—2]M—|—7“>:| 5
(5.28)
oK X 158y cos 0 sin? § [2M (2M2 —3Mr — 37"2) + 3r (—2M2 + 7"2) log (#ﬂ)}
— T —

Fgé = Bok = 8M2r 7

(5.29)

where B%ex and Bg 5 are the 6 and 7 components of the magnetic field three-vector
in the ZAMO frame. We plotted these components as a function of distance from the
black hole in Figure 5.1 for § = 7/4. We also plot the ratio between the QK compo-
nents and the Kerr component in Figure 5.2 to show that there are points close to the
black hole where the QK components of the magnetic field become as large as that of

the Kerr component. Note that this does not invalidate our approximation of working
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in the limit where € is a small parameter, as we do not impose that Bgg is small, but

Kerr

rather that ehy,, is small compared to g,,;"".

In order to present our result in an invariant way, we calculate the electromagnetic
invariant

I=_F"F, =B*-E*, (5.30)

1
2
of the e part of the solution as a function of angle and distance from the black hole

and plotted them in Figure 5.3. From the angular structure of I, the quadrupolar

nature of the electromagnetic field is revealed.

5.6 Conclusion

We computed the asymptotically uniform magnetic field solution for a black hole
that is parametrically deformed from Kerr spacetime using the Wald formalism. We
showed that no-hair deformations of the spacetime generates extra fields of strength
~ ¢ that mimics the quadrupolar structure of the spacetime. Finally, we would like
to note that our solution can be transformed to that of an asymptotically uniform

electric field by simply taking a Hodge dual of F},, .
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Figure 5.3: The electromagnetic invariant I = %F“”F,“, = B? — E? as a function of distance
from the black hole and angle for a = 0 (solid) and @ = 0.9 (dashed). The quadrupolar nature
of the electromagnetic field is revealed by the angular structure of I.
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Shapiro delay tests of the Kerr spacetime

using pulsars

One avenue for testing the Kerr spacetimes of astrophysical black holes is obtained
through timing a pulsar orbiting close to a black hole and fitting for the properties of

the Kerr metric on the time-of-arrival of pulses. To this end, we derive an expression
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for the light travel time delay for a pulsar orbiting in a black-hole spacetime described
by the Butterworth-Ipser metric, which has an arbitrary spin and a free parameter 3
which can be used to parameterize deviations of the metric from Kerr. We consider
terms up to second order in (GM /rc?), where M is the black hole mass and r the dis-
tance from the black hole, and derive the time-delay expression in a closed analytic
form. This allows for fast computations that are useful in fitting time-of-arrival obser-
vations of pulsars orbiting close to astrophysical black holes. We apply our results to
pulsars in circular orbits to determine possible signatures of deviations from the Kerr

metric in the pulsar time delay.

6.1 Introduction

The no-hair theorem of general relativity Israel (1967, 1968); Carter (1971); Hawking
(1972); Robinson (1975) states that the metric of an electromagnetically neutral black
hole depends only on its mass, M, and its angular momentum, S. If it is found to
be violated, one of the following possibilities must occur: either the theory of general
relativity needs to be modified, or one of our assumptions regarding black-hole solu-
tions to the Einstein equation is invalid (e.g., the cosmic censorship conjecture or the
non-existence of closed timelike curves).

While so far there is an agreement between astrophysical observations and the no-

hair theorem, in the near future higher observational precision via the analysis of
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of-arrival (TOA) analysis of pulsars (Wex & Kopeikin 1999) orbiting close to the su-
permassive black hole, Sgr A*, at the center of the Milky Way (Pfahl & Loeb 2004;
Cordes et al. 2004; Liu et al. 2012) might challenge this statement. The recent dis-
covery of PSR J1745—2900, a magnetar orbiting close to Sgr A* (Kennea et al. 2013;
Mori et al. 2013; Eatough et al. 2013b; Shannon & Johnston 2013), generated further
interest towards this possibility. While PSR, J1745—2900 is both too unstable for pre-
cise time delay measurements (Kaspi et al. 2014) and located too far from the black
hole for relativistic effects to be significant™, the cluster of stars around Sgr A* should
still harbor a significant number of pulsars (Pfahl & Loeb 2004; Cordes et al. 2004;
Wharton et al. 2012; Chennamangalam & Lorimer 2014; Psaltis et al. 2016).

The biggest drawback in calculating the Shapiro time delay for arbitrary space-
times is related to the fact that the presence of a Carter-like constant is, in general,
not guaranteed. Unlike the case for Petrov-type D spacetimes, such as the Kerr met-
ric, the Hamilton-Jacobi equation is not separable and the null geodesic motion is
challenging to solve. For discussions on the deflection of light by quadrupoles, we re-
fer the reader to (Kopeikin et al. 1999; Kopeikin & Makarov 2007). Moreover, testing
the no-hair theorem of black holes (especially when dealing with near-horizon tests)
requires using special spacetimes that do not have any pathologies near the horizon.

In order to avoid pathologies, such spacetimes do not have necessarily the same behav-

*Astrophysical implications of timing delays of pulsars at large distances from their black
holes have been considered in a previous work (Christian & Loeb 2015).
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ior as Parametrized Post-Newtonian (PPN) metrics at the second or higher order Jo-
hannsen (2013).

In this paper we took a different approach and instead start with the general axis-
symmetric family of Ricci flat metrics first discussed by Butterworth & Ipser Butter-
worth & Ipser (1975) of which the Kerr metric is a particular solution. By changing
the Butterworth & Ipser parameters of the Kerr metric, we can deform the black hole
and calculate the the effect of such deformations on the orbits of null geodesics.

This deformed metric will not necessarily possess a Carter-like constant, so di-
rectly solving the Hamilton-Jacobi equation for the light rays is difficult. However,
Ref. Teyssandier & Le Poncin-Lafitte (2008) showed that the coordinate travel time
for a null geodesic obeys a Hamilton-Jacobi like equation of motion that allows for the
solution to be written in terms of iterative integrals (see Klioner & Kopeikin (1992);
Kopeikin (1997); Kopeikin et al. (2006) for a different approach to integrating null
geodesics). In this paper, we use this iterative approach to obtain an expression de-
scribing the time delay of light as it propagates in the vicinity of a black hole up to
second order in GM /rc?. For the Butterworth & Ipser metric, we obtain an expres-

sion that is analytical and allows for fast calculations to be performed.
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6.2 Calculations

6.2.1 The metric and inverse metric to second order

Any asymptotically flat metric that is both stationary and axisymmetric can be writ-
ten up to order (GM/rc?)? in the quasi-isotropic coordinates (t, 7,0, ¢) as (AlGendy

& Morsink 2014; Butterworth & Ipser 1975),

(fé‘fﬂ , (6.1)

gt =—14+—5-—2
rc

2G M <GM>2
+

2GM (3 GM\? GM\?
grr =1+ + (= —-28+4Bcos?0) | — ) +0O , (6.2)
rc2 2 rc2 rc2
2GM 3 GM\? GM\*
2.2 2 2 2 2
Gpp = r~sin” 0 4 r=sin QW—FT sin 9(24—25) <7‘02) + <r02>] )
(6.3)
aGM? , GM GM\?
g¢t = —QWT Sin 9 <1 -+ 7“02 ) -+ O < TC2 > s (64)
geo = T2grr (6'5)

where a, = ¢S/(GM?) and, following AlGendy & Morsink (2014), we have defined

B = (1/4) + By/M? (6.6)

as the dimensionless parameter characterizing the black-hole where By is a multipole

of Ref. (Butterworth & Ipser 1975). Notably, for the Kerr metric, and thus for black
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holes obeying the no-hair theorem (Pappas & Apostolatos 2012),

/BKerr = az . (67)

Our approach in this paper is to take the metric equation (6.1)-(6.5) as an ansatz
and to identify the deviation of the parameter 8 from Pkerr as an indication of the
violation of the no-hair theorem. Note that the parameter S is a parameter with a
known value in the Kerr metric that can obtain different values in a different theory
of gravity that possesses black holes disobeying the no-hair theorem.

We will now convert this to Cartesian coordinates, set G = ¢ = 1, use geometric
units (so that distances and times are measured in units of M), and write the metric

order by order. To first order, we get

2
i = o) =) = = 69

VaZ 4+ y? + 22

where the contravariant metric to first order

(= nenPel) (6.9)

93



gives identical components. Similarly, the second order metric gf?y) is

@ _ _ 2

Gt (2 4+ y?+22)"’
@) _ 2a.y

Jot = G2 {2 4 22372
2 20,

Wt = TR 2y 22

dayp
o = -

@ _ [22(3 —48) + (v* + 2%) (3 +4P)]
9z2 9 (IL’Q + y2 + 22)2

2 _ [y%(3 —48) + (2 + 2%) (3 + 48]
Gyy 2 (22 + 4 + 22)°

@ _ (@ + )3 —48) + 2°(3 + 46)]
2 (a2 +y? + 22)°

9

9

and the contravariant metric to second order

v 2 1
gl =009 + gl ey
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(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)



becomes

90 = —MM ) (6.18)
g@t) - (@2 jngQ)?)/z ’ (6.19)
g?at) T (a2 +§Sf22)3/2 ’ (6.20)
Qg) T (@2 _1_4;2yf_ 22)2 0 (6.21)

ve P21 —48) + (v* + 2%) (11 + 48)]
9i2) = 2 (2 4y + z2)2 ) (6.22)

vy [y2(11 — 48) + (2 + y?) (11 + 4B)]

2) = 2(x2+y? + z2)2 ’ (6.23)
2 2 _ 2
gt = [(22 +9%) (11 — 48) + 2%(11 + 4] | (6.24)

2(x24+y? + 22)2

The geodesic equation involves terms, via the Christoffel symbols, that are of sec-
ond order in the metric and its derivatives. As such, the equation for the null geodesics
to second order will, in principle, involve terms that are proportional to M and M?
(describing the effects of mass), to a, and a? (describing frame dragging), to 3, and

cross terms proportional to a,M.

6.2.2 Parametrization of the pulsar orbit

In this paper, we concentrate on the effect of the black-hole metric on the light prop-

agation and treat the pulsar orbit parametrically. Relativistic effects on the orbit,
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Figure 6.1: The geometry used in the calculation. The z-axis of the coordinate system is
aligned with the spin of the black hole, the position vector of the pulsar is r 4, and the posi-
tion vector of the distant observer is rp and lies on the y — z plane.

calculated in Refs. Wex & Kopeikin (1999); Liu et al. (2012), can be added to our cal-
culation to lowest order by adding time dependences on the orbital parameters. To
focus on the effects of the time delays along geodesics, we also neglect phenomena
that arise from the velocity of the pulsar.

In the following, we will set a Cartesian coordinate systems centered on the black
hole, with the z—axis parallel to the black-hole angular momentum vector (see Fig-
ure 6.1). We also set the y-axis such that the line connecting the black hole and the
observer lies on the y — z plane (even though we write our expression in a general
vector notation that allows for an arbitrary orientation of the observer). We focus
our discussion on the light propagation delay from the pulsar at position r4 to the

observer at rpg.
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For a pulsar in an eccentric orbit with semi-major axis a and eccentricity e, the
magnitude of the distance between the pulsar and black hole at an orbital phase corre-

sponding to a true anomaly v is given by

a(l —e?)
= — 6.25
AT +ecosv ( )

while the direction of the vector r4 is given by

0
Ay = %‘1 = R,()Ry ()R, (V) Ry (W) Ry (=) - | 1 | (6.26)
0

where we have made use of the following definitions for the rotation matrices

cos@ 0 sinf cosf@ —sinf 0
Ry(a) = 0 1 0 ; Rz(0)=]sing® cos® 0] - (6.27)
—sinf 0 cosf 0 0 1

In this expression, w is the argument of periapsis, €2 is the longitude of the ascending
node, and ¢ is the inclination of the orbit with respect to the black hole spin.

Our expressions will depend on the angle between r4 and rp, which we will leave
expressed as the dot product ng - ng, where ng = rp/rp. For most of the numerical

examples shown in the figures, we will set, for simplicity, the observer along the y axis,
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such that

nA-nB:g]-ﬁA:<0 1 0)-7%,4. (6.28)

We further define the geometric distance between r4 and rp as

Rip = \/ri+r23—2rAanA-nB ) (6.29)

6.2.3 The first order Shapiro delay

Because arbitrary stationary, axisymmetric spacetimes do not generally admit a fourth
constant of motion, solving analytically the null geodesic equation of motion is dif-
ficult. However, it was recently observed by Ref. Teyssandier & Le Poncin-Lafitte
(2008) that the coordinate time travelled by light rays obeys Hamilton-Jacobi like
equations that allows the light propagation time delay to be written in terms of it-
erative integrals. In particular, the propagation time delay to first order is given by
(Teyssandier & Le Poncin-Lafitte 2008)

1 ! i 0i i Ard id
A (ry,1p) = 2RA3/0 [9??) — 2N}palh) + NABN,Z;BQ({)L+(N) dp (6.30)

where N'p = (r'ly; —r%)/Rap and z4(p) =14 + pu(rp —r4).
Looking at the contravariant metric to first order, we can identify the first and last

term as the well known Shapiro delay effect for non-rotating bodies (up to order 1).
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This is given by (Shapiro 1964; Teyssandier & Le Poncin-Lafitte 2008)

1
AWM (y ,T E/ 00 4+ Ni NI g% d
(ra,rp) ) [9(1) AB ABg(1)]Z+(#) K

ra+re+ Rap
=21 6.31
8 <TA+7’B—RAB> ’ ( )

where r4 and rp are the magnitudes of r4 and rp respectively.
In this section, we will express the magnitudes of the various effects on the Shapiro
delays in terms of their dependences on the Euclidian distance of closest approach to

the light ray from the black hole

re= 2810, x np|. (6.32)
Rap

We, therefore, rewrite equation (6.31) as

(6.33)

A(l)(rA,I‘B) ~ 210g <Tc +rAna X HB)

Te —TANA X NIB

where we used the approximation that for astronomical applications, r4 << rp. This
shows explicitly the known fact that the magnitude of the first order Shapiro delay is

logarithmic in 7..
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6.2.4 The second order time delay

The second order contribution to the light time travel delay is given by Teyssandier &

Le Poncin-Lafitte (2008)

1 L i 0 i iU
A(Z)(rA, I.B) — iRAB A { |:g(0£)) — 2NABg(02) + NABNiBg(%)]ZJ'_(#)
PINCIPING .

ozt  Oxd

} oA
zi () Ox

(x4, 24 (1) + 17 dp .

+2 [Nng 90,
(xa.2+ (1)

This includes terms that are of second order in the mass and spin of the black hole,
as well as terms that are of first order in the parameter 5. As such, it describes the
second order corrections to the Shapiro time delays, the increase in the light paths

because of gravitational lensing, as well as the cross terms between these effects. In
this section we obtain analytical forms for this second order time delay for spinning

black holes with arbitrary S parameters.

Mass contribution

We will first consider the second order mass terms in equation (6.34). These are the
terms in the second line of equation (6.34) together with the g?g) term in the first line.

These terms are identical to those evaluated in Ref.(Teyssandier & Le Poncin-Lafitte
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2008; Brumberg 1987), i.e.,

1 1 ; o
AQ = QRAB/O {9?20) + NABNZKBQ(;),M

o FING J [0AMW 9A®
J i = K
2 [NABg(l)L+(M) o XA 2+ (1) + 0| = s dp
(xa,z+ (1))

1 15arccos(ny - ng) 8
= —-Rap - '

2 2rarpy/1—(na-np)?2  rarp(l+ns np)

(6.35)

Here, ggL 1y refers to the mass contribution to the spatial metric, i.e., the terms
that are not proportional to the parameter 5. Equation (6.35) takes into account the
effect of gravitational lensing on the Shapiro delay. Writing this second order mass
contribution as

_ |na xnp| | 15arccos(ny - np) 4

AR = — , 6.36
mass e 4./1 — (nA'nB)2 (1+nA'nB) ( )

we find that this effect is of order 1/r.
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Figure 6.2: The second-order contribution due to (Left) lensing and (Right) frame dragging
to the light travel time delay for a pulsar in a circular orbit around a spinning black hole, as a
function of orbital phase. The green and red lines in the right panel correspond to black-hole
spins of a = 0.5 and a = 1, respectively, whereas the blue line corresponds to a black hole
spinning at a = 1 but in the opposite sense with respect to the pulsar orbit. In both panels,
the pulsar orbital radius is 1000M and its inclination is 80 degrees; the observer is set on the
equatorial plane of the black hole; superior conjunction occurs at an orbital phase of /2.

Spin contribution

The spin contribution to the second order light propagation delay is given by

1
(2) _1 _opri 0
Agpin(rarp) = gRap /0 { 2NABQ(2):|Z+(M) dp (6.37)

204 d
$2+y2+22)3/2 K-

1 2a.
_ _/0 [(xB —x4) @212 4:2)3/2 —(yp — yA)(

(6.38)

102



Replacing y and x with y = ya4 + pu(yp — ya) and x = x4 + p(rp — x4), we obtain

A®)

spin

! —22BYA + 27 4YB
(ra,rp) = —/0 . [ CERTEREIE du . (6.39)

In order to perform this integral, we follow the integration scheme of Ref.Teyssandier
(2014) with a small modification. We rotate the coordinate axis to the plane defined

by r4 and rp.

() = V@@ ¥ g2+ 22) = —— (6.40)

cos(y = 7e)’

where 7 is the angle between r4 and rp (defined to be 0 at rp) and ~. is the angle to
the point of closest approach. With these expressions and noting that the differential

can be expressed as

2
e 2P

6.41
Rag (6.41)

the integral becomes

/1 dys /1 du /VB cos (7 — 7e) gy TATTB (1 )
o (@2+y2+2232 o 24P/, réRap réRip

A
(6.42)
Incorporating this to equation (6.39), we obtain the second order spin correction to

the propagation time delay,

+7"B (l—IIA~nB)
A®) =2 - A
opin(T4,TB) = 2a:(TBYa — TAYB) 272 o x ngP?

(6.43)
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We can obtain the magnitude of the effect described by this equation by noting that

A~

(xpya —xayp) = rarpnp — (np - 2)2] x [na — (na - 2)2], (6.44)

allowing us to rewrite equation (6.43) as

2a, [np — (np-2)Z] X [na — (na-2)2](1 —n4 -np)
Te ng Xng '

AD) (va,rp) ~ (6.45)

This demonstrates that the second-order effect on the Shapiro delay that is due to
frame dragging is of order a,/r.. This term corresponds to the gravitomagnetic time
delay first discussed in (Ciufolini et al. 2003).

The right panel of Figure 6.2 shows the second-order contribution to the light time
travel delay due to frame dragging for a pulsar in a circular orbit around a black
hole as a function of orbital phase. We also compare it (left panel) to the second-
order contribution due to lensing derived in the previous section. For the purposes
of this figure, we set the pulsar orbital radius to 10000, its inclination to 80°, and
the observer on the equatorial plane of the black hole. We also varied the spin of the
black hole from being retrograde to the orbital motion (¢ = —1) to being prograde
(a=0,0.4,1.04).

As expected, the contribution due to frame dragging changes sign around orbital

phases v = 7/2, as the photons from the pulsar to the distant observer change from
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moving with the direction of frame dragging to moving against it. The fact that at,
these two phases in a circular orbit, the contribution due to frame dragging vanishes
while the contribution due to lensing has its maximum value, makes the overall am-
plitude of the former to be significantly suppressed compared to the amplitude of the

latter effect, even though they both have the same scaling with ..

Contribution from the g parameter

The terms we are interested now in equation (6.34) are the gg) terms that are propor-

tional to the parameter 5. In order to evaluate them, we write

1 . S
—Rup |N4YsN’ g7 =
2 B AB ABg(g),Q 2 (1)

(wp —xa)® =2 +y*+ 2% | (ys—ya)® —y* +a®+2°

b Rap (224 y? 4 22)? +8 Rap (2% +y% + 22)2
B B(ZB —z4)® =22+t 4y 85 (zp —2a)(ys —ya) Ty
Rap (22 +y%+ 22)? Rap (22 + 9%+ 22)%7

(6.46)
where gg) Q refers to the spatial metric components that are proportional to 8. After
substituting r = r4 + u(rp — ra), we perform the same mathematical trick as before,

but this time separating the terms proportional to x°, i, and p?, and writing them in
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terms of their coefficients, A, B, and C, i.e.,

1 ! i J L ij
2RAB/O [NABNABQ(?)LJF(M) dp

= /1 - + u + < d
L@ i e T g
(6.47)

where

A=2[-4dxa(ra — 2B)yalya —yB) — (x4 — xB)* (2% — Y4 — 2)
+(ya —yp)* (2% — i +27) — (@h +yh —23)(za — 2B)°)8
B = 4{zy — 32%wp — waxp(ah + 3y3 — Ways + yh — 2 + 2B)
+ 2% (32% + 23 — 3yays + vb — 2azB + 23)
+ (@B + Y4 — 2yayp + yB + 25 — 2202 + 2B) YA — yays+
za(—2a + 2B)]}8
C = Z{xi — 4mi:ﬂ3 + :L’4B + yﬁl — 4xAxB[:1323 + (ya — yB)2]+
— dyhyp22% [3h + (ya — yB)*] + 22%(ya — yB)®

+ Gyiy% — 4yij°’3 + y% — 23 + 42’@323 — 6232123 + 4zaz% — zf_‘;}ﬂ .
(6.48)

We can, therefore, write the second order contribution in this case as

A(;)(TA, rp)=[lo+ I + Iy , (6.49)
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where the indefinite integrals

A

Iy E/Mdu, (6.50)
B

I = %du, (6.51)
e

can be found in Section 6.4.

Figure 6.3 shows the second-order contribution due to changes in the 8 parameter
to the light travel time delay for a pulsar in a circular orbit around a black hole. We
consider black holes characterized by 8 = —0.5, 0.2, and 0.5. The orbital distance of
the pulsar is 1000M, its inclination is 80°, and the observer is placed on the equato-
rial plane of the black hole.

The overall magnitude of the excursion due to variations in the 8 parameter is
much smaller than lensing and frame-dragging contributions and increases with the
magnitude of 5. The complicated expressions shown in Section 6.4 make it hard to
obtain the scaling of this effect in an analytical manner. However, as we show in 6.5,
comparing our results with those of Ref. Zschocke & Klioner (2009), which were ob-
tained using a different approach with harmonic coordinates, allows us to simplify

expression (6.49), for the particular configuration that we are considering here as an
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Figure 6.3: The second order § contribution to the light travel time delay for a pulsar in a
circular orbit around black holes with different values of the parameter 5. The orbital radius
of the orbit is 1000M, its inclination is 80°, and the observer is at the equatorial plane of the
black hole; superior conjunction occurs at an orbital phase of /2.

example, to

2 2 2 2 2
9 15} 5 —rs— R T T R
A,(B) —ox < A 32 AB 4 A2 AB) (6.53)
AB s L
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At the astrophysically relevant limit rp > r4, this expression reduces to

AP = —TinA ‘ng . (6.54)

Comparing this second-order contribution, which scale as the inverse of the orbital
distance to the pulsar, to the mass and spin effects derived in the previous subsec-
tion, which scale as the inverse of the distance of closest approach of light to the black
hole, accounts for the fact that the effect of the 5 parameter is significantly smaller

for high-inclination observers than those of the mass and the spin.

6.3 Conclusion

In this paper we have provided formulae for the light time travel delays for pulsars
orbiting in the spacetime of a black hole, taking into account terms that are up to the
(GM /rc?)? order. We identified three effects that are, in principle, of the same order.
The first effect is expressed in terms that are proportional to the square of the black-
hole mass and describe the additional delays due to the lensed trajectories of the pho-
tons. The second effect is expressed in terms that are proportional to the black-hole
spin and describe the effects of frame dragging. Finally, the last effect describes the
influence of the deformation parameter 8 of the spacetime on the time delays.

We reproduce our expression here for ease of reading, under the astrophysically
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relevant assumption rg > r4:

A = 2log <Tc t7rang X nB> ,
Te —TANA X B
AD ng X np | 15arccos(ny - np) B 4
mass e 4\/m)2 (14+n4-np)
A@  _ 20:[p—(np-2)f x[n4—(na-2)2(1 —n4-np)
spin Te n, X ng
A P P
B ra A BB (6.55)

Even though the second-order effects are significantly smaller than the traditional
Shapiro delay, their amplitude for the case of a pulsar orbiting a supermassive black
hole is not negligible. This is shown in Figure 6.4, where we plot the amplitude of
each effect (defined as the difference between the time delays calculated at the points
of superior and inferior conjunction) for different pulsars orbiting the black-hole in the
center of the Milky Way, Sgr A*. For reasonable distances of closest approach (see,
e.g, discussion in Pfahl & Loeb (2004); Cordes et al. (2004); Liu et al. (2012); Psaltis
et al. (2016)), the amplitudes of these effects are of the order of 100 ms—10 s. These
are much larger than the ~ 1 ms measurement uncertainties expected for observations
of a pulsar in orbit around Sgr A* with a 100-m dish or the < 0.1 ms uncertainties
expected with SKA Liu et al. (2012).

At large distances from Sgr A*, the time delay in the pulsar signal may be contam-

inated by the presence of additional mass between the pulsar and the black hole. The
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Figure 6.4: The amplitudes of the various contributions to the light travel time delay for a
pulsar in different circular orbits around a black hole, as a function of the closest approach dis-
tance r.. The inclination of the orbit is 80°, the observer is at the equatorial plane of a Kerr
black hole, and the spin of the black hole is maximal. The right axis shows the amplitudes of
the various contributions in seconds, for the 4.3 x 10° M mass of Sgr A*. Even though these
higher-order effects are small compared to the traditional Shapiro delay, they are much larger
than the expected measurement uncertainties for pulsars around Sgr A*.

ratio between the leading second-order terms in the metric due to the gravitational

field of the black hole and the first-order terms due to the additional enclosed mass
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scale as Psaltis et al. (2016)

M, ac? M ag a2 \?
enc —4 1 -8 enc .
SV <GM> 810 <1o6 M@> <1 pC) (GM) ’ (6.56)

where Mgy is the enclosed mass within a distance ag from the black hole and we have

assumed a radial profile in the density of matter proportional to »—2. In order for the
gravitational effects of the enclosed mass to be negligible compared to the second-
order effects due to the gravitational field of the black hole, the above ratio has to be

smaller than unity, or

ac? M, -1 ag
<4 enc ' )
GM ~ 5U0 <1O6 M@> (1 pc> (6.57)

For pulsars in orbits with larger separations from the black hole, the second order
effects we calculated here will not be measurable. The magnitude of the effects shown
in Figure 6.4 are larger than the orbital effects due to the spacetime quadrupole that
were discussed in Ref. Psaltis et al. (2016).

As a final validity check of our analytic expansion, we compared our analytic result
to a numerical calculation of light time travel delays using the numerical algorithm
of Ref. Psaltis & Johannsen (2012). In Figure 6.5 we plot the difference between the
light travel time at superior and inferior conjunctions as a function of orbital radius,

for a pulsar in circular orbits around a non-spinning black hole at an inclination of
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Figure 6.5: The difference between the light travel time delay at superior and inferior con-
junction as a function of orbital radius for a pulsar in circular orbits around a non-spinning
black hole at an inclination of 80°. The green line is the first order Shapiro delay and the red
line is our second order calculation. The blue line with the filled circles is the result of a nu-
merical calculation using the Psaltis-Johannsen algorithm (Psaltis & Johannsen 2012). The
difference between the numerical result and the first order solution is significant even at large
radii. The second order solution becomes inaccurate only at distances of closest approach that
are . < 60 M.

80 degrees. It is clear even from this comparison that second-order effects become
important at orbital radii that are of interest to pulsars around the black hole in the
center of the Milky Way. Moreover, this comparison demonstrates that our second-

order results remain accurate down to distances of closest approach r. ~ 60M and
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will, therefore, be useful in the analysis of pulsar observations in this context.

6.4 Expression for the integrals of the 3 contribution

The indefinite integrals required to calculate the propagation time delay to second

order in equation (6.52) is given by

/ %dﬂ = (—4za(za — 2B)yalya —yp) — (x4 —2p)* (2% — y3 — 23)
+(ya —yp)*(2h — va +24) + (24 + yA +24) (24 — 2B)°)

B((=24 + zaz + 24 (=1 + 1) + vA(—1 + p) + B+ ypu + 24
—2zpzpp+ 2ppu+xa(rp — 2xpp) +yalys — 2ysp)) /(2B (V2 + 23) + (yBza — yazp)®
—22008(YayB + 2a28) + 24 (yB + 2B)) (24 + 24 (=1 + 1)* + YA (=1 + p)* — 22534
+2z42pp—22 425 (—1+p)p—2yays(—1+p)p+app’ +ypp’ +240° —22azpp% +251%) )

+ ((93124—21:A:U3+x23+yi—2yAyB—|—yj23—|—2124—2zAzB—|—z%)ArcTan{ (—zﬁ—i—zAzB—l—mi(—l—i—,u)

FYA(—1+p) + 2+ ypu+ 2hpn — 2zazpp+ zpp+ xa(zp — 2epp) + ya(ys — 2ysp))
/[(9023 (3/,24 + 2,24) + (ypza — yazB)® — 2242B(YayB + 242B) + 54 (y% + Z]23))(1/2)] })/

(5323 (’yi + Zi) + (ypza — yazp)* — 2zarp(yays + 2a2p) + 14 (%29 + 2129))3/2)
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B
/ %du =2(2(za — zB)(ya — yB)(2TAYA — TBYA — TAYB)
— (xi —2aTp + Y4 — Yays + za(za — 28)) (24 — 2B)*
+ (ya —yB)* (=22 + xazp + Y4 — yays + za(—24 + 2B))
+ (24— 2p)* (2% — vaTB — Y4 + yays + 2a(—24 + 28)))
B((«4(=1+ p) + yA(=1+ p) — zazpp — yaysp + za(za(—1+ p) — zpp))/
2 2 2 2 2
((zB(ya + 24) + (yBza — yazB)® — 2x42B(YayB + 242B) + 4

(yp+2%)) (2A+a5 (= 1+p0) 2 +y5 (= 1+p) 2 =223 p+2242ppu—23 47 5 (— 1+1) p—2y ayp (— 1+1)
+appd Hypu’ + 240 = 2za2p0° + 250%)) + (2% — wazp + Y4 — yays + 2a(24 — 2B))

2 2 2 2 2 2 2
xArcTan [(—25 + zazp + 2% (=14 p) + yA(=1+ p) + Thp + yppu + 240 — 224240 + 2h

+za(zp — 2zpp) + yalys — 2ypn))/ (zB (VA + 23) + (ypza — yazp)?
1/2
—2z425(yays + zazp) + 25 (v + 2129))( / )D

/(@% (VA + 23) + (UBza — yazB)? — 2zazp(yays + 2a2B) + 254 (y5 + 2123))3/2)
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2C
/Md# = —2(zy—4azptoptyi—dzarp (vh+(ya—yp)?)+22% (3xh+(ya—ys)?)
+225(ya —yp)? — Whys + 6yAYE — dyayh +yp — 24 + 42528 — 62325 + 42425 — 25)
B((—2%h + 2hap — 20%y3 + zazpyi — v + 24yays + yiys — 20523
+ waBzi — 2y1242,24 + yAszfl — zfﬁl + wizAzB + yizAzB + zlezg + xi,u — 2xf’4
2 2 2.2 2 2 2 4 2 3
TRUFTYTRUA2TAY AN — 2T AT BYAN— TRYANFY AN —2TAYAYBUAATATBYAYBU—2Y AYBI
— DAY+ YAYBI T 20200 — 20 ATp2AN — THEAN + 2YAZ AN — 2YAYBZ AL
2.2 4. 52 6,2 0.3 2.2 9 92
YBZANTZAU—2042A2BUHAT AT BZAZBI—2Y A2 AZB U+ AYAYBZAZBI—224 2Bl — T AZBH—YAZ B
+23250) [ (2(2% — 22428 + o5 + Y4 — 2yayB + YB + 23 — 22428 + 2)
(mZByE‘ — 2xATBYAYB + xiy% + xQBzi + y%zi —2xATBZAZB — 2YAYBZAZB + xiz%
+y525) (2h+ya+23— 203 0422 AT BU—2y 5 1+ 2y Y BU— 225 -2z Az p A5 1P — 27 AT
+ o’ + yan® — 2yaysi’ + yp’ + Zap” — 2zazpp° + 250%)) + (2% + v + 23)

AvcTan [ (— 2 2 2 2. o 2 2, o 2 2
reTan[(—23+2a2B—YA+yayp—2a+242B+T4 1= 28 AT BUATHUAYIH—2YAYBIU+Y B U221
—22A23u+z]23u)/(((:U2By124—2J:A$ByAyB+xiy%+x23z31+y?32124—ZxAszAzB—2yAszAzB+a:izj23

+A2B) )Y ) (2(2hyh 22 ax pyays+atyh+ah ety — 20 AT B2A2E —2YAYBZAZE

+ 252+ vh28) ")
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6.5 Comparison with other calculations

In this section, we compare the results of our calculations to those of other analytic
efforts that employed different approximations and/or methods of solution. We also
compare our results to numerical calculations that take into account all multipole
moments of a spinning spacetime, in order to explore tha range of validity of our ap-
proximations.

We do not attempt to compare our results to those of Refs. Rafikov & Lai (2006);
Lai & Rafikov (2005) for two reasons. First, those calculations combine the first-order
Shapiro delay terms with the lensing equation, making it hard to identify and com-
pare the effects of individual orders. Second, the lensing equation gives accurate re-
sults when the pulsar is behind the black hole, at a distance that is much larger than
the distance of closest approach for light. This approximation is valid only for a very
narrow range of orbital phases (very close to w/2) and observer inclinations (very
close to m/2) and introduces significant errors in more general configurations (see dis-
cussion in Masooma (2011)).

Our results are in detail agreement with the PPN calculations of Ref. Richter &
Matzner (1982a,b, 1983), who also used a quasi-isotropic coordinate system, when
expressed in the appropriate variables.

Ref. (Zschocke & Klioner 2009) calculated the light travel delay for the Schwarzschild
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metric using the PPN formalism in de Donder (harmonic) coordinates. Their result is

D
Appn = Rip

o1 rB +rB + RY,
28 r? +rP — RE
A B AB

coTHB (0B _ 22 _(RR,)

’errA|
4 \I'BXI'A’ ~(ma-ns)
1 1 #DY2 _ (;DY2 _ (RD )2 D2 _ (pDY2 _ (RD )2
P [ <B;2<AB>+<B> R = (RRP) g
Rip (TB) (TA)

where the superscript D denotes the r-coordinate in the de Donder gauge.

The first term in the above expression corresponds to the geometric delay, while
the second term is the first order Shapiro delay. This second term is identical to our
first order mass contribution to the time delay given by equation (6.31), even though
they are written in different coordinates. The reason is that the conversion between
the r-coordinates of de Donder, 7, and the radial Schwarzschild coordinate, rga,, is
(where for clarity, we have temporarily reintroduced the black hole mass M into our

equations)

M
P = rea (1 s h) , (6.59)

while the conversion between the isotropic radial coordinate (which we use here), r,
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and the radial Schwarzschild coordinate, rgqp, 18

1
M M\ ?
r = [Sh [1 L (1 —2 > ] (6.60)
2 T'Sch T'Sch
M
=~ T'Sch 1-— ren y (6.61)
C
D

As a result, to first order in M/r, r = r”, and our expression is algebraically identical
to that of Ref. Zschocke & Klioner (2009).

To second order in mass, the transformation between 7 and P is given by

(6.62)

It is easily verifiable that plugging this transformations to our equation for the second

order mass term in the time delay does not change the algebraic expression, i.e.,

A@ _ fip |15arccosma-np) i (6.63)
mass 2712,,,,? 2 1_(nA.nB)2 (1+nA'nB) . .

Using the definition of RE 5, the third term of the delay in equation (6.58) can be

manipulated to read

RRp D .D\2_ pD2 4R%p 1
__YAB__ D Dy gDz AR S 6.64
IrD x rJ? [0 —74) AB] rBrE 1+ cosf’ (6.64)

which is the same as the second term of equation (6.63). Similarly, a trigonometric
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identity can be used to transform the fourth term of the delay in equation (6.58) into

15 RE; 15RY 1
os (ng-n 6.65
4 |rB><rA| (na-np) = 4rBrl /T = cos? 0 (6.65)

which is the same as the first term of equation (6.63).

If the orbital configuration of the binary system is such that the g( ) term can be
ignored, i.e. when the term proportional to (25 — 24)? in equation (6.46) is small, it is
straightforward to identify the last term of equation (6.58) with the 8 = —1/4 case of

equation (6.49) and write

1 r2 —r% — R? r —r2 — R?
Ao+ L+ D)o (= (A B_—AB . B~ 4 AB). 6.66
B [0 1 2],8_—1/4 8RAB T% T124 ( )

We are inspired to seek a similar equivalence for arbitrary 8, and by inspection we

found that arbitrary 8 contributions of (6.49) in this limit can be written as

B 2Rup 2

2 _ 2 p2 2 _ 2 _ R2
A® _ _ B <7’A "B AB _1_7“3 TAQ AB) . (6.67)
Lz TA

This serves as a simplification of the complicated equation (6.49), valid for all orbital
(2)

configurations in the limit where the g;7;’ term can be ignored. Indeed, for astrophysi-

cal purposes where rg > r4, the 8 contribution to the delay in this limit is given by
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the extremely simple expression

A(ﬂ2)‘7'B>>TA = —inA -np . (668)
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Introduction to gravitational wave

astrophysics

The detections of gravitational radiation from merging black holes by the Laser Inter-
ferometer Gravitation-Wave Observatory (LIGO) (Abbott et al. 2016b,a, 2017b,d,c)

signaled the beginning of gravitational wave astrophysics. In this chapter, we provide
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a brief introduction to gravitational waves. We begin with a description of gravita-
tional waves as spacetime perturbations in GR, before proceeding with a discussion
of their sources. We also describe some unique features of gravitational radiation that
make them distinct from the more familiar electromagnetic radiation. In this chap-
ter we again adopt geometrized units where G = ¢ = 1, and our metric signature is

(_a +7 +7 +)

7.1 Linearized Einstein Equations and plane gravitational waves

In astrophysics, gravitational waves are formulated as small spacetime perturbations
that propagate in the background spacetime. Consider a small perturbation of Minkowski
spacetime,

G = Muv + Py (7.1)

where 7, is the Minkowski metric, and hy,, is a perturbation satisfying |h,,| < 1.

Using the fact that up to linear order in h,,,, the Christoffel symbols are
re L 0 0 0
aB — 577 ( ﬁhozl/ + ahﬁy - l/hoz,b’) ; (72)
and the fact that the Ricci tensor is given by
Ry = R4, = 015, — 0,15, + 4,10, —T5,T (7.3)

pa s
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one can show that the Ricci tensor to linear order is

1

RMV = (auaoch,ua + 8Maahua - 8aao‘h/“’ B auayh) ’ (74)

N |

where h = h,“, and the raising and lowering of indices are done using the background
metric, 7, instead of g,,. Note also that 0,0 is simply [J,,, the d’Alembertian of
Minkowski spacetime.

We can plug in equation (7.1) to the Einstein Equation (with the cosmological con-
stant suppressed),

G,Lw = 87TT,uz/ s (75)

to obtain an equation for h,,. In order to simplify the resulting equation, it is conve-
nient to define the quantity

1
h,uu = h,uzx - inuuh ) (76)

and to work in the coordinates satisfying the Lorenz gauge condition
Do =0 (7.7)

The end result is an equation for ﬁw known as the linearized Einstein Field Equa-
tions,

—000%hy = 167}, . (7.8)
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In vacuum, this equation reduces to the wave equation

Oyl = 0. (7.9)

The simplest solution to this equation is the tensor plane-wave,

hyw = Ay exp(ikaz®) (7.10)

where k¢ is a null vector denoting the wave vector, and A, is a tensor of amplitudes
satisfying A,,k* = 0. While this equation is complex, only the real part is taken as

physical. This solution is analogous to the wave equation in electromagnetism,

E = Ege!kT=t) | (7.11)

where the electric field E is proportional to an amplitude vector Eq that is orthogonal
to the wave vector, Eg - k = 0.

The Lorenz condition, equation (7.7) does not fully specify the gauge. Customar-
ily, the leftover gauge freedom is used to impose the transverse-traceless (TT) gauge,

where only the spatial components of h,, is nonzero,

hoy =0 5 n™hiy =0 5 il =0. (7.12)
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One can always convert h,, in any gauge to the TT gauge as long as the system un-

der consideration is far from any sources, 7, ~ 0. Importantly, in the TT gauge,

7TT TT
RTT = BT (7.13)

7.2 Polarization of plane gravitational waves

For a plane wave moving in the k direction, one can choose a Cartesian coordinate

(t,z,y,z) where the spatial component of the wave vector is in the z direction,

k' = (w,0,0,k) . (7.14)
Because k k¥ = 0,
wi=k2, (7.15)
thus the wave vector is simply
k' = (w,0,0,w) . (7.16)

In the traceless transverse gauge, ha, = 0 implies that

AdT =0. (7.17)
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This condition along with the transversality of the plane-wave solution, AEE k¥ =0

gives us the condition that

ATl =0.

Because A, is symmetric and traceless, we can further identify that
TT TT ) TT _ 4TT
Apy = —Ay, ; Ay = Ay -
By convention, these two propagating degrees of freedom are renamed to be

hy=AT ("plus” polarization) ,

hyx = Agr ("cross” polarization) .

7.3 Sources of gravitational radiation

The linearized Einstein equation in the Lorenz gauge,
Ohi; = —167T;5 ,
can be solved by the retarded Green’s function, giving

- 1
hij (1, x =4/ﬂ~t—x—y,y dy
03 =4 [ (Tl x - yly)
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(7.19)

(7.20)

(7.21)

(7.22)

(7.23)



where x (field point) and y (source point) are 3-vectors in space only, and the integral

over dy are taken over the source. Taking the Fourier transform with respect to time

defined as
- 1 .
flw,x) = — /e“"tf(t,x)dt , (7.24)
27
gives us
T iw|x— T l/(w y)
B (w, x :4/6“"'" YIZRE T By 7.25

In astrophysics, typically our field points x are far from the source of the gravitational
wave. If in addition, if the source is isolated and slowly moving, it is justifiable to take
the following approximation: defining r as the distance between x and the "location

of the of the source” (e.g. the center of mass of the source),

~ wr

EW(w, x) =4

r

/Tuu(w, y)d3y . (7.26)

Integrating the right hand side by parts, we obtain that the spatial components of i:LW

is given by
ilij = —2w2€ fij(w) y (727)
T
where
1) = [y T y)dy (7.28)
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is the quadrupole moment tensor. As before, the integral over d®y is taken over the

source. The timelike components of f:LW, can be obtained using the constraint

wh = id;h (7.29)

enforced by the Lorenz gauge condition. Performing the inverse Fourier transform on
equation (7.27) gives us the famous quadrupole formula for the generation of gravita-
tional radiation, which in units where we have reintroduced factors of G’s and ¢’s is
given by

. ~2G &

hij(t, X) = Eﬁ [Iij(t — T’/C)] . (7.30)

This equation states that sources of gravitational radiation are time varying energy

density quadrupoles.
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7.4 Gravitational waves from binary inspirals

The quadrupole moment tensor of a circular binary system orbiting in the x-y plane

in the Kepler problem is

I, — %an[l + cos(201)] | (7.31)
I, = %,uaz[l — cos(2Qt)] (7.32)
Iy = %mﬁ sin(20) , (7.33)
L. =0, (7.34)

where p is the reduced mass, a the semimajor axis, and §2 the orbital period. Plug-
ging this to equation (7.30) gives us gravitational waves that depend on the trigono-
metric factors cos(2Qt,) and sin(2Q4,), where the trigonometric function depends on

if we are looking at the x-x, x-y, or y-y components, i.e. it takes the form
- 2
hij = ~pa®Q? x [trigonometric factors];; , (7.35)
r

where the trigonometric factors are:

oo = —Byy ox — cos 204, , (7.36)

hay o< — sin 20, . (7.37)
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The amplitude of the wave with factors of G’s and ¢’s reintroduced is

— 2G
|hij| = e

pa*Q? (7.38)

and the gravitational wave frequency is twice the orbital frequency, 2€2. The circular
two-body problem in Newtonian physics is therefore a source of gravitational radia-
tion that is both monochromatic and unchanging in time. Further, it is easy to see
(either intuitively or through a direct computation of I;;) that if the orbital motion
is elliptical, the resulting gravitational radiation power will be spread over multiple
frequencies.

As gravitational waves carry energy away from the system, the Keplerian two-body
problem is only a good assumption when the energy of the orbiting bodies is large
compared to the energy carried away by gravitational radiation®. In this limit, the
gravitational waves are essentially non-dynamical, i.e. they do not affect the dynamics
of the orbiting bodies. In all other cases, the loss of orbital energy through gravita-
tional radiation will shrink the binary orbit. As gravitational waves also carry angular
momentum, an eccentric binary will also evolve into a circular one (Peters 1964).

The energy-momentum of gravitational radiation can be given by the Landau-

Lifshitz pseudotensor, ¢,,,, which in the TT gauge can be averaged over many wave-

*In addition to the standard approximations of Newtonian physics e.g. ignoring relativistic
precessions.
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lengths to give (Landau & Lifshitz 1975).
1 TT
s = 5= (Ol OB (7.39)

where (...) denotes averaging over many wavelengths. For a plane wave with wave

vector k¥, this quantity is (Carroll 2004)

1

Choosing a Cartesian coordinate so that the spatial component of k¥ points in the
z axis, one obtains that A} TAf7 = 2(h3 + h%). This results in the only nonzero
components of 7, to be

1
ttt - tzz — _ttz — _tzt - Ecﬂ(hi + hi) s (741)

where again w is the angular frequency of the gravitational radiation. For the binary
problem, w = 2.
If we treat t,, as any other energy-momentum tensor, its t;, components represent

an energy flux vector. The power radiated through a surface A is then

m:/%wm, (7.42)
A
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where dA is the differential area of a surface element and n” its normal vector. There-

fore, we can compute the power radiated away to null infinity to be

(P) = /S terr2dSY (7.43)

where the integral is taken over S, the two sphere with radius » — oo, and we have
switched to spherical coordinates (t, 7,6, ¢). Note that the (...) around P is necessary
as the ¢, of equation (7.39) is only defined over many wavelengths. Plugging in ¢,,
for a circular binary, we obtain

32G4 e

py =22
(P) 55 H ,

(7.44)

where p is the reduced mass, M the total mass, and a the semimajor axis of the bi-
nary. For ease of comparison with physical units, we have also temporarily reintro-
duced G’s and ¢’s in this equation and for the rest of this section. In the binary prob-
lem, we have to average over a longer timescale than many wave periods. In this case,
(...) indicates an average over the orbital period.

Since orbital energy is radiated away, the binary tightens, and the semimajor axis

changes following the formula (Peters 1964)

da 64G3 pM?
a = — 5@5 a3 . (745)
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Integrating this equation from a = a; to a = 0, where q; is the current semimajor axis

of the binary, one obtains the merger time of the binary

5¢° af

7.5  Why gravitational radiation goes down as 1/distance

The first point is that h;; goes down as 1/r. As argued in the previous section, when
the source is much smaller than the distance between the source and the observer, the
|x — y| in equation (7.23) is essentially ~ r, the distance between the observer and the
center of the source, so that

(7.47)

This is completely analogous to E&M, in which the radiative part of the electric field
goes down as 1/r for the Lienard-Wiechert fields. Now, the reason the signal LIGO
detects goes down as 1/r is because it is sensitive to the proper lengths of the interfer-
ometer arms, which in turn are sensitive to h;;. If the two ends of one arm are sepa-

rated by a distance § in the x-axis, then the four displacement is

Azt = (0,8,0,0)" . (7.48)
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The proper length along the arm is given by:

As = \/gudxtAx? (7.49)

= \/(77#1/ + huu)Aﬁ'uA-TV 5 (7.50)

= V(1 + hge)d . (7.51)

Since we are now in the TT gauge, the metric perturbation h,, is equal to its trace-

reverse (hy,, = hy,y) so that

As = \/(1+ hgy)d . (7.52)

1-
~ [1 + th] 5. (7.53)

Since h;; goes down as 1/r, then the extra proper length induced on the LIGO inter-

ferometer by the passing gravitational wave is
gy X ~ . (7.54)
7.6 Why the signal for electromagnetic telescopes goes as 1/distance?, and the anal-

ogous gravitational radiation problem

In the electromagnetic case, the radiative electric field goes down as 1/r (c.f. the

Lienard-Wiechert field). The problem is that conventional telescopes care about fluxes
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(i.e. energy per time per area) instead of the pure electric field. The Poynting vector
is

c

S_47r

ExB, (7.55)

and has units of energy per time per area. This is the quantity that goes down as
1/7? because

1
S| o | E* 5 (7.56)

Similar to the electric field E;, the h;; of gravitational wave does not have units of
energy per time per area; it is not the energy flux of gravitational radiation. How-
ever, analogously to the E&M case, we can write down a "Poynting vector” for grav-
itational wave to get to the energy flux. As discussed in the previous sections, the
Poynting vector of E&M radiation is just ¢ times the 0¢ part of the energy-momentum
tensor, the analogous construction for gravitational wave (where we have specified the
wave to move in the z direction and reintroduced factors of G’s and ¢’s) is therefore

GW t:  1¢ 5 0, 2

where ¢, is the gravitational wave energy-momentum pseudotensor, w is the grav-
itational wave frequency, and the subscripts 4+/x denotes the two polarizations of
gravitational radiation.

SSW is analogous to the E&M Poynting vector in the z direction, and has units
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energy per time per area: it is the energy flux of gravitational radiation. In particular,
because it depends on ~ h?,

1
SEW 5 (7.58)

Thus, the reason why the LIGO signal does not drop off as 1/7? is because LIGO does
not care about the energy flux (energy per time per area), in contrast to conventional
telescopes. It cared simply of h;;, which goes down as 1/r. This is completely analo-
gous to the E&M case: if one cares only of the electric field, one will get something
that goes down as 1/r. We only get the usual 1/7? if we cared about the energy flux,

with units of energy per time per area.
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LISA detection of binary black holes in

the Milky Way Galaxy

Using the black hole merger rate inferred from LIGO, we calculate the abundance of
tightly bound binary black holes in the Milky Way galaxy. Binaries with a small semi-

major axis (S 10Rg) originate at larger separations through conventional formation
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mechanisms and evolve as a result of gravitational wave emission. We find that LISA
could detect them in the Milky Way. We also identify possible X-ray signatures of

such binaries.

8.1 Introduction

The Laser Interferometer Gravitation-Wave Observatory (LIGO) discovered gravita-
tional waves from binary black holes (Abbott et al. 2016b,a), composed of black holes
with masses 2 10M.

Two stars in an isolated binary can evolve to produce the progenitors of the LIGO
sources. To possess the observed parameters of the LIGO sources, these binaries must
have progenitors with high masses (M ~ 40 — 100M;)) and low metallicities (Bel-
czynski et al. 2016b). The binary evolution could be initially affected by mass transfer
through a common envelope phase.

However, in the chemically homogeneous evolution model (de Mink & Mandel 2016;
Mandel & de Mink 2016), two massive stars in a near contact binary spin rapidly due
to tidal spin-orbit coupling. The rapid rotation of a star mixes its interior, allowing
transport of hydrogen from the envelope to the core and metals from the core to the
envelope (Maeder 1987). In contrast to the standard binary evolution model, the stars
do not follow a common envelope phase, due to their contraction within their Roche

lobes.
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Regardless of the formation mechanism, none of the progenitor systems could di-
rectly produce two black holes at arbitrarily small separations. Here we focus on tight
binary black holes with a semimajor axis smaller than could feasibly be created di-
rectly by conventional stellar evolution mechanisms. These binary black holes were
born at a larger semimajor axis through standard evolution, and then migrated to
smaller separations via gravitational wave emission. Most of these binary black holes
reside in an intermediate regime, where their coalescence time is shorter than the
Hubble time but longer than the LIGO operation lifetime before they become de-
tectable in the LIGO frequency band.

We focus our analysis on binary black holes within the Milky Way galaxy. While
most of our equations could be applied to binaries at arbitrary distances, the signa-
tures of the systems under consideration are not observable outside of the Milky Way.
We will assume circular orbits, as the detected LIGO binaries are constrained to pos-
sess low eccentricities (Abbott et al. 2016b). This means that we neglect binary black
hole production via many body encounters and strong interactions in globular clusters
(Sigurdsson & Hernquist 1993; Rodriguez et al. 2015). Aside from these assumptions,
we will remain agnostic as to the specific mechanism producing the binaries.

Recently, Seto (2016) used an estimate of the population of Galactic binary black
holes to predict that LISA will have the sensitivities required to detect binaries like
GW150914. In this article, we used a more sophisticated population analysis to show

that the result can be generalized to more complicated population models. Further-
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more, we extend the calculation to black hole populations with varying masses and
take into account the black hole mass function.

In §8.2 we perform a population analysis of tight binary black holes in the Milky
Way. In §8.3 we show that the gravitational wave signatures of these tight binaries
are observable by LISA. In §8.4 we examine possible X-ray signatures of these bina-

ries. Finally, §8.5 summarizes our conclusions.

8.2 Population analysis

The number of binary black holes at a given time ¢ with semimajor axis between a

and a + da can be written as,

dN(a,t) = p(a,t)da . (8.1)

Assuming that their dynamical evolution is dominated by the emission of gravita-

tional radiation, p(a,t) obeys a simple advection equation,

dpla,t) 0 pla,t)
ot Oa K (M, My)
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where M; and M, are the masses of the two black holes, S(a,t) is a source term that

parameterizes the production of binaries at a semimajor axis a, and K is given by,

64 G3
K(Ml,Mg) = Eg(MlngMl + Mg) .

In the simple case of S = 0, the solution of equation (8.2) is given by

pla,t) = a®*F [4 + t] , (8.3)

where F' is some arbitrary function. The simplest solution can be obtained in a steady

state, where equation (8.2) reduces to

9 [,.pla)
— |K—==| =0. 8.4
da [ a3 (84)
Integrating this equation gives
(@) = €% (®5)
p - K ’ .

where C' is an arbitrary constant. This is a special case of the solution in equation
(8.3), with F' = C/K.

The inferred merger rate from LIGO for two 30M, black holes is between 2 and
600 Gpc™ yr~! (Abbott et al. 2016d) in comoving units. We can estimate the Galac-

tic merger rate by adopting the number of Milky Way-like galaxies to be 1072 per
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comoving Mpc? (Montero-Dorta & Prada 2009). Adopting 100 Gpc=2 yr—! as a fidu-
cial LIGO inferred merger rate gives the LIGO Galactic merger rate to be ~ 1075 Ry
mergers per galaxy per year.

A merger is detected by LIGO when the semimajor axis of the binary is small
enough that it enters the LIGO frequency band. Denoting this critical semimajor axis

as ap,, the merger rate R is equal to the flux in a-space at a = an,,

plam) 5 =R (8.6)
Therefore,
3
p(a) = plam) [(ﬂ = %ﬁ’ : (8.7)

where we have substituted p(a,,) from equation (8.6). Using the inferred Galactic
merger rate and specializing to binary black holes of mass My = My = 30M), we can
integrate over a to obtain the number of Galactic binary black holes with semimajor
axis < a,

a

4
N(S CL) ~ 3 X 1072R100 |::| , (88)
Ro

where R is the solar radius and Rjqg is the rate in units of 100 Gpc™3 yr— L.
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8.2.1 Source functions with a minimum injection scale

Next, we generalize the population analysis to cases with a source function. Most for-
mation mechanisms cannot produce binaries that are very tight. We model this situa-
tion with a source function that is proportional to a step function, S = S(a)©(a — ag),
where ag is the minimum binary separation for the formation mechanism, © is the
Heavyside step function, and S(a) is an arbitrary function.

Given this source function, the general solution is,

1 a 4
pla,t) = —Ea?’ [A@(a —ap) /ao Sda] +a’F [ZK + t] , (8.9)
as long as the function S(a) is not singular at a = ag. For example, a power law

source with normalization A and index n, S = Aa"O(a — ag), admits the general

solution,

a—a a4
pla,t) = —%a?’ AM(CWH - ag“)} +dF [41( + t] . (8.10)

Note also that in the case of a delta function source injected at a = ag, the solution is
given by,

__L13 3 Ci
pla,t) = e AB(a —agp) +a F[4K+t} . (8.11)

The most important feature of equation (8.9) is that the solution below the injection
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point, a < ag is unchanged from the sourceless case. This implies that as long as
we restrict our analysis to a < ag, we can simply use the sourceless solution. Our
results will therefore be robust due to its insensitivity to the particular binary black

hole production mechanism.

8.2.2 Power-law source functions with a maximum injection scale

For the sake of generality, we also consider a source function without a minimum
scale, namely S(a) x a™ with positive n that extends all the way to a = 0. In prin-
ciple, n is related to the power law index of the binary separation of massive stars
(Sana et al. 2012). However, as not all massive binaries evolve into binary black holes,
the mapping between the two indices is unknown. Since binaries are not produced up
to arbitrarily high semimajor axis, we truncate our source function at high values of a

by an exponential factor,

S(a) o a™ exp {—“] : (8.12)

Q¢

where a., is some large semimajor axis above which binary black holes are rarely pro-
duced. This source function corresponds to a mechanism that produces binaries over a
broad range of a, where instead of a minimum injection scale, ag, we now have a max-
imum injection scale, a.. At large semimajor axes, this distribution corresponds to the
end states of binary star evolution, whereas at small a it corresponds to more exotic

processes such as direct collapse (Loeb 2016).
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The binary population with this source term obeys

ot e |K MM

dp(a,t) 9 p(“;)t)} — Kya"exp [—a] , (8.13)

C

where K5 and n are constants that in principe can be constrained by observations.
The general solution to this equation is given by,

4 3+l [,
pla,t) = a®F [ZILK + t} + %F [1 +n, a] ) (8.14)

where F' is an arbitrary function and I is the incomplete Gamma function. As before,
we can look for a steady state solution by setting the function F' to be a constant C,
giving

pla) = a’C +

wr [ a} (8.15)

1+n,—
K nac

In this case, the merger rate R equals the flux in a-space at a = a,, plus a term corre-
sponding to the source,

K
to=R, (8.16)

a3
am

plam)

where ¢ is the rate of binary black holes created with a < a,,, given by,

Qm, a
o= / Ksa" exp [—] da
0 Qc

= Kya™! [F(l—i—n) T (1+n,am>] . (8.17)

Q¢
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Since a,, < a., we get,

_R- Koa™ T (1 +n,am/ac)

1
C e (8.18)
The number density of binary black holes is then given by,
R  aPa"tK a a
R c 2 _ m
pla) =a —K—l—iK [F <1+n,ac> I‘<1+n,ac)]
R
3
R 1
a5, (8.19)

where in the second equality we used the fact that both a/a. and a,,/a. are much
smaller than unity. This result shows that in the case of a power law source function,

3 remains valid even if the source function

the scaling of the sourceless solution p « a
does not have a minimum scale as long as there is a maximum injection scale. The

case of a power law with neither a maximum or minimum injection scale is treated in

the §8.7.

8.2.3 Population analysis for varying black hole masses

In the previous sections, the abundance of binaries was derived for a given value of
K (M, Ms). In reality, the black hole population spans a range of masses with a prob-
ability given by the black hole mass function. Thus, the binaries possess varying val-

ues of K. In this section we incorporate this diversity of K values. Note that there is
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a single advection equation for every value of K, i.e. there are many copies of equa-
tion (8.2), each for a different value of K. To make explicit its dependence on K, we
label the density p in equation (8.2) as px(a, K). The total number of binary black

holes per semimajor axis is given in terms of px(a, K) by,

pla) = | " Jicocla, KK (8.20)

where fx is the probability of finding a binary black hole with a particular value of K.
As K = K (M, M>) is a function of the two black hole masses, its probability distribu-
tion is determined by the mass functions of the first and second black holes, fy;, and
[, respectively. For simplicity, we adopt far, = fa, = ®ar, and the distribution fx
can be obtained from ®j; by a series of convolutions. Adopting a phenomenological

power-law relation, fx = K3K™ with an index m < —1 and a normalization,

/OO frdK =1, (8.21)

K’min

we can derive the normalization constant K3 in terms of K,,;,. Theoretically, the
minimum K value is obtained when both black holes are at the limit imposed by the
Tolman-Oppenheimer-Volkoff equation of a Chandrasekhar-Landau mass (~ 3Mg)
each. However, there is evidence that there exists a mass gap under ~ 5Mg (Ozel

et al. 2010; Farr et al. 2011; Kreidberg et al. 2012). We thereby chose the minimum
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K to be that when both black holes are ~ 5M, each.
For our phenomenological model with m < —1, the integral converges and can be
solved to give,
Ky = U gl (8.22)

Km—H min

min

The merger rate is given by the sum over all masses of the fluxes in a-space,

/oo prK(am,K)gdK =R. (8.23)

Kmin m

For the sourceless steady-state solution, p(a) = Ca3/K, we can find C in the phe-

nomenological fx = K3K™ model by noting that,

0 3
R= K3 K™ [C“m} Kok

Koo K | a3,
= (glj?»l) Kerl‘C;(omm . (8.24)
For (m + 1) < 0, this integral converges to
- K (8.25)
which implies that for (m + 1) < 0,
pr(a, K) = —w;j : (8.26)
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The number of binary black holes per unit semimajor axis is therefore given by,

pla) = — dK

_ (m+1) Ra®
= K (8.27)

R(m +1)a3 /°° K3K™

min

The number of Galactic binary black holes with semimajor axis < a is given by

(m+1) Ra*
N(<a)= = (8.28)

Aside from numerical factors of order unity the only change from the single K case
is that K,,;, appears in the denominator in place of K. Since K,,;, is ~ 200 times
smaller than the K for two 30 solar mass black holes, this number is of order 200

larger than in equation (8.8).

8.2.4 Population analysis for varying black hole masses: Chabrier/Kroupa IMF

Next, we proceed beyond the phenomenological toy model for fx assuming that the
black hole mass function follows the power-law dependence of massive stars, ®,; =
kM =23 (Chabrier 2003), where k is a constant. We define the quantity,

5¢°
64G3

K K = (M + My)M M, , (8.29)
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so that the respective distribution f follows,

5¢0 5¢°
FlK) = o g [64@*34 | (8.30)

If the masses M7 and My are independently distributed, fx can be derived from ®,,

as follows. We first switch from the random variables M; and M, to K and W, where

W = M; and,

W VWA AWK

M2 oW )

(8.31)

where the positive root was chosen since W, Ms, and K are positive definite. The

distribution function fj;, is then given by,

W24 VWA AWK

frw = 1J[2u(W) x @y ST : (8.32)
where the determinant of the Jacobian of the transformation,
1
|| = —/—— . (8.33)
VWA 4+ AWK
The marginal distribution fj is therefore,
Mmax
I :/ frwdW, (8.34)
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Figure 8.1: The probability function fj for the Chabrier/Kroupa IMF, ®5/(m) = km™2-3
(black), compared with the fitting function AK~* for A = 159 and a = 2.14 (blue).

which for the assumed mass function is given by,

W . (8.35)

Wma,x _W2 + A /W4 _'_4WR —23
: —/ kw23 d

K oW

min

Here, Wiin/max corresponds to the minimum and maximum black hole masses; in par-
ticular, Wi, is again chosen to be ~ 5Mg and Wi ~ 100M, respectively.

Although the integral in equation (8.35) could only be solved numerically, the dis-
tribution is well represented by a power law form between Wi, and Wi with a
negative index —a ~ —2.1 (see Figure 8.1). In order to simplify the analysis, we will
therefore adopt,

fr(K) ~K2AK ™, (8.36)



where A = 159. This gives

5¢° 2/3 9
= K3K ™ . (8.38)

We proceed analogously to the previous section, where the main difference is that we
now have an upper cutoff on black hole masses at Wi ax.
For the steady state solution, p(a) = Ca®/K, the rate of binary black holes entering

the LIGO band is given by,

Kmax K
R [ fionlan K) g di
K’min 0

m

Kmax
= / CK3K “dK

K’min
Kl—a _ Klfa
oK, Wﬁ_amm). (8.39)

In equation (8.39), the integration limits refer to the maximum and minimum black
hole masses that LIGO is sensitive to. The assumption that LIGO is sensitive to all
black hole masses available in the black hole mass function translates to substitut-

ing Ky and K, as these limits. Note that as the IMF is dominated by low mass

black holes, our result is only weakly dependent on the exact value of K,,4,. Using R
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to eliminate the constant C yields,

R(1 - «a) a?
K3(Kmay — K0 K

min

pk(a, K) = (8.40)

The abundance of binaries is therefore given by,

Kmaac
pla) :/ fxpk(a, K)dK
Kmin
_ (1-a)Rd? /me K«
(Kmas = Kpii) Sy K
- Q(Kl—a - Kl—a) ’ ( ' )
max

min

dK

The number of binary black holes with semimajor axis < a is then,

(1—a)Ra*(K_ ¢ — K,..9)

min max

da(KLag — Ko

min

N(<a)=

(8.42)

4
a
~3x10°R ) 8.43
% 100 {101%@} (8.43)

While this result is derived by assuming that the black hole mass function follows the
power-law mass function of massive stars, simulations indicate that not all massive
stars form black holes, and that stars above ~ 50M, blow off too much of their mass
to produce black holes (Sukhbold et al. 2016). These complications could lower the
abundance of black holes relative to that predicted by equation (8.42). This means

that our prediction should be interpreted as an upper bound to the number of binary
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black holes in the Galaxy.

8.2.5 Comparison with population synthesis models

In order to compare our result to population synthesis models, we first transform our
variable from a to the frequency f. The number of binary black holes with semimajor
axis < amax 18 equal to the number of binary black holes with frequency > fumin, where
fmin 18 the orbital period of the smallest black holes in the population with separation
Gmax-

For the systems under consideration, apax = 10Rs and the smallest black hole
mass is 5M, resulting in a minimum frequency of fum = 2 x 107°Hz. Equation (8.42)
therefore predicts =~ 3 x 10*Rygo binary black holes in the Galaxy with frequency
greater than 2 x 10~°Hz.

The population synthesis model A of Belczynski et al. (2010a) predicts ~thousands
of binary black holes with frequencies greater than 2 x 1075Hz. Noting that the LIGO
rate Rigp ranges from 0.02 to 6, this is consistent with our result. An earlier calcula-
tion by Nelemans et al. (2001) predicts a number that is an order of magnitude larger

than model A of Belczynski et al. (2010a), which is still consistent with our result.
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8.3 Gravitational wave signal from Milky Way binaries

Most of the 3 x 10*R1o9 Galactic binary black holes with orbital separation a < 10R,
will not enter the LIGO bandpass in a short enough time for them to be observed by
LIGO. For example, the timescale for two 30M black holes to coalesce from a ~ a
few Rg is thousands of years. These binaries, however, will be observable by LISA*
which is sensitive to lower frequencies than LIGO.

Focusing on the case of two ~ 300 black holes, we find from equation (8.8) that
the tightest binary black hole in our Galaxy has a ~ 2.5Rg. For such a binary con-
sisting of two 30M, black holes, the gravitational wave frequency is f ~ 3 x 104 Hz,
which is within the LISA bandpass (Farmer & Phinney 2003). The angular-averaged
gravitational wave strain for the n = 2 mode is given by (Peters & Mathews 1963;

Seto 2016),

_ 8 kpc M. \°? f 2/3
A~r21x107% < 8.44
8 ( d ) (28M@) 5x104Hz) (8.44)

where M. = (M) My)3/(M; + Ms)~1/? is the chirp mass. Integrating the signal over

an observational period 7, the signal to noise ratio becomes (Seto 2016),

A h(f) T\
SNR~T0 <2.1 X 1020) (3 x 10—18 Hz1/2> 3 years ’ (8:45)

*http://www.elisascience.org
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where h(f) is the LISA instrumental noise, with a value of ~ 3 x 10718 Hz~ /2 at 0.5
mHz (Amaro-Seoane et al. 2012). Scaling the noise with frequency as the power law

h(f) oc f=2 (Seto 2016), the signal to noise ratio becomes,

A f 2 .o\ U2
SNR =70
<2.1 X 10_20> (5 X 10_4HZ) (3 years)

5/3 8/3 1/2
~ 70 (SR (_Me S T . (8.46)
d 28 M, 5 x 10~ Hz 3 years

For observations across the Milky Way with d = 20 kpc, we find,

20 kpc T 1/2
NR =~ 12 . A4
SNE . ( d > <3 years) (8:47)

Figure 8.2 shows the expected number of such Milky Way binaries as a function of

their SNR.

8.3.1 Confusion with cosmological sources

A supermassive binary black hole at cosmological distances can possess similar values
of strain amplitude and frequency to a Galactic binary black hole, thus masquerading
as a Galactic source. However, this confusion can be eliminated by measuring the
change in gravitational wave frequency as a function of time, f .

The time derivative of the gravitational wave frequency is given by (Cutler & Flana-
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Figure 8.2: Expected number of Milky Way binaries composed of two 30M black holes as a
function of the SNR at a distance d = 20 kpc.

gan 1994)
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) 8/3 £11/3 5/3
jo Yo <GMC> o M3 (8.48)

Supermassive binary black holes possess chirp masses that are much greater than
that of Galactic binaries. As such, their frequency changes at a much faster pace than

Galactic binaries.
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8.4 Electromagnetic flag

8.4.1 Binary black hole accretion in a hierarchical triple system

A binary black hole could accrete gas if it resides in a hierarchical triple system, where
the third object is a main sequence star. The wind of the third star would lead to ac-
cretion at the Bondi-Hoyle-Lyttleton rate (Hoyle & Lyttleton 1939; Bondi & Hoyle

1944),
M= ArG® M pu

Ve, +vg)?

where Mot = M1 + Mo, p,, the mass density of the stellar wind, v,, the wind speed,

(8.49)

and ¢, = (5kT,,/3m,) is the sound speed, with T3, be the wind temperature. Scaling
the wind parameters to solar values at a distance of 1 AU and assuming an efficiency
of 0.1 for converting rest mass into radiation, the luminosity produced by the binary

where both black holes are ~ 30 solar masses is,

;72
L~2x10% [1AU] ergs b, (8.50)

where [ is the separation of the star from the binary. The maximum luminosity is

given by the Eddington limit,

My, _
Lp ~ 10% [60](4;] ergs ! . (8.51)
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Due to the orbital motion of the black holes around the center of mass, the observed
flux would be modulated by Doppler beaming. Assuming that the emitted flux, Flg

scales with frequency as Fyo o< v?, the Doppler modulation is given by
F,=D3>PF,, (8.52)

where F), is the observed flux, and D is the Doppler factor. To first order, the flux

modulation is given by (D’Orazio et al. 2015),

AFI/ ~ /GMtot COSQZ) s
FVO ~ (3 /8) T c sz, (853)

where ¢ is the orbital phase and 7 the inclination.

At the Eddington luminosity, the amplitude of the flux modulation of two 30M,

binary, is given by,

1 1/2 2
OfQ] [pc} ergs ' cm™? (8.54)

AF =~ 0.
06[ 7

where d is the distance to the object and we have assumed § ~ 1 (Sobolewska et al.

2011; D’Orazio et al. 2015). Given the flux sensitivity of XRM-Newton of 2x1071% erg ecm 2 s=1
for a semimajor axis of a ~ 10R, the flux modulation of these objects will be observ-

able out to d ~ 10 Mpec.

Realistically, it is unlikely for such binaries to emit at the Eddington luminosity.
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For general Bondi-Hoyle-Lyttleton accretion, the flux modulation depends on the bi-

nary and stellar wind parameters,

A 01003 = Be \/G57Mt50tsmi (8.55)
?/(cf +vp)? Vo a | |

Substituting the solar wind parameters at d = 1 AU and the XRM-Newton sensitiv-

ity for AF yields for the observer distance of d ~ 300 pc at which a pair of 30M,
black holes will be detectable. The X-ray surveyor!, a next generation x-ray observa-
tory with a flux sensitivity of ~ 10719 erg cm™2 s~!, will be able to detect this flux
modulation out to a distance of ~ 30 kpc, which allows their detection throughout the
entirety of the Milky Way galaxy.

Owing to the fact that most massive stars are in multiple systems (Raghavan et al.
2010; Tokovinin 2014), and that there is precedent for X-ray binaries in triple systems
(Grindlay et al. 1988; Thorsett et al. 1999; Chou & Grindlay 2001; Zdziarski et al.
2007; Prodan & Murray 2015), most binary black holes will likely possess a third
companion. Further evidence of this comes from observations of superorbital modula-
tions in high-mass X-ray binary systems, which could be caused by a third companion
(Farrell et al. 2006; Corbet & Krimm 2013). However, only a fraction of binary black
holes in a hierarchical triplet would host companions in the relevant mass range for

accretion to be efficient. Since only companions with masses ~ 1M and above gener-

thttp: / /wwwastro.msfc.nasa.gov /xrs/
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ates sufficient luminosity to be observed throughout the Milky Way, the percentage of

observable systems is
100M,
1Mo OTe(M)Pps(M)dM

100M
Joomr: Ta®a(M)dM

fe= , (8.56)

where @/ is the stellar IMF, Ty ~ 1.4 x 10'° yr is the Hubble time, and 7, is the
main sequence lifetime of the companion star, given by the broken power law (Laugh-

lin et al. 1997; Salaris & Cassisi 2006; Loeb et al. 2016)

T.=7mm™, (8.57)

where (7,T) = (10'° years, 2.5) for stars less massive than 3M, and (7,T') = (7.6 x
10% years, 3.5) for more massive stars. The ratio in equation (8.56) takes into account
both the stellar IMF and the fact that more massive stars live a shorter amount of

time. Substituting the Chabrier IMF for ®,;, we obtain,

foer 6x1072. (8.58)

This implies that out of the ~ 300 black holes with a < 10R predicted by equa-
tion (8.8), only a few systems would host the appropriate companion to be observable
throughout the entirety of the Milky Way. This number is further diminished by the
fact that only a fraction of all triple systems have the stars at a close enough distance,

as the signal scales as p,, o< [72. We therefore conclude that the most efficient method
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to detect these binaries is through their gravitational wave emission with LISA.

8.4.2 Tidal disruption flares from planets and asteroids

Another source of electromagnetic activity could be associated with the tidal disrup-
tion of planets and asteroids by the black holes. White dwarfs and neutron stars are
known to host rocky debris around them (Vanderburg et al. 2015; Zuckerman et al.
2010; Farihi et al. 2009; Koester et al. 2014; Wolszczan & Frail 1992; Podsiadlowski
1993; Phinney & Hansen 1993). Orbits around binary black holes can be chaotic and
are subject to Kozai-Lidov oscillations, leading to an enhanced tidal disruption rate
(Ivanov et al. 2005; Chen et al. 2009; Li et al. 2015).

For a planet or asteroid of mass m,, and radius 7, being tidally disrupted by a
black hole of mass M, the length of the flare is defined as the time it takes for the

emission to drop under the Eddington limit. This is given by (Ulmer 1998),

tf 19 (lp>6/5 <Tp>3/5 (Tnp>1/5
lt Rg Me

€ \3/5 [ Mo —2/5
X (0—1) <106M®> yIsS (8.59)

where [, the pericenter distance and [; the tidal radius. Assuming a Neptune-like

029 029

planet with m, ~ 10*" g and r}, ~ 10*” cm, the flare time becomes t; ~ 1.4 years.
Since this timescale is much longer than the orbital timescale, lightcurves from

these events will possess amplitude modulation due to the Doppler effect, as described
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in section 8.4.1. The Doppler modulation of such systems is bright enough to be de-
tectable from throughout the Milky Way by existing telescopes such as the XMM-
Newton and the Chandra X-ray Observatory. As the number of sources in the sky
per unit time will depend on the duty cycle of such flares, a monitoring campaign of
a large patch of the sky is required to find such flaring sources. Confusion with other

sources would make the identification of such binaries difficult.

8.5 Conclusions

By calibrating the population of binary black holes based on the merger rate infered
by LIGO, we have found that LISA could detect a handful of such binaries in the
Milky Way galaxy (see Figure 8.2). A lack of detections will set constraints on the
binary production mechanisms.

We also considered electromagnetic flags of these tight binary black holes in the
Milky way, and found them to have weaker observational prospects. Gravitational
wave signals could be leveraged to provide both the system’s masses and semimajor

axis.
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8.7 Power law sources

8.7.1 Power law source functions without a minimum or maximum scale

Consider a nonzero, time-independent power-law source term S(a) o< a” that extends
all the way from a = 0 to co. Unlike the example considered in the main text, we
consider a case without a smallest injection scale or an upper cutoff scale. The binary

black hole population with this source term obeys

dp(a,t) 0 pla, )] _ . 4
o 0 | KMy, My) == | = Fpa” (8.60)

where K5 and m are constants that in principe can be either derived or estimated
from observations. The general solution to this equation is given by

a4 t:| K, a4+n

p(a,t) = CL3F |:4}.{ + m 5 (861)

where F' is an arbitrary function. As before, we search for a steady state solution by
setting the function F' to be the constant C, giving

K2a4+n

pla) = a>C — K+n)

(8.62)
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In this case, the merger rate R is equal to the flux in a-space at a = a,, plus a term
corresponding to the source term,

K
+o=R, (8.63)

p(am)a

where o is the rate of binary black holes created per year with semimajor axis a < ay,

given by

Am K
o= /0 Kya™da = - +21a71n+” . (8.64)

In this case,

ad R Koattm
plam) = —— ~ Ki+n) (8.65)

which allows us to deduce that C' = R/K. Therefore, the number of Galactic binary

black holes with semimajor axis < a is given by

a4R K2a5+n
N(<La)= — .
(9= Ik " KaitnG+n (8.66)
5+n
= Nhom(s CL) - K2a (867)

K1+n)6+n)’

where Npom (< a) is the number of Galactic binary black holes in the source-less case.
Note that when we set the source term to zero by using Ko = 0, we will recover the
sourceless solution. The effect of such a source term with n > 0, i.e. where there is a

higher rate of binary black hole production at large semimajor axis, is paradoxically
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a suppression of the number of binary black holes in the steady state solution due

to the requirement that the rate R be kept unchanged. Since a source function that
does not have a maximum injection scale is unphysical, the solution we obtain is also
unphysical. In this case, there is a scale, acit, above which N(< a) becomes negative.
This calculation should be viewed only as a pedagogical toy model to illustrate an

example of the ramifications of modifying one of our assumptions.

8.7.2 Population analysis for varying black hole masses: Power law source

We can repeat the analysis for the case of a power law source term. In this case we
have,

pr(a, K)=a"— — Kitn) (8.68)

where, inspired by our previous solutions, we have explicitly written out the 1/K
dependency of C so that it is now a constant with respect to K. The merger rate is

therefore given by,

Rz/ KsK™
K

min

a3 g B K2a;4n+n
K  K(1+n)

Km-H K3K2a3n+nKm+1 0

(m+m_u+mu+m]

K
:|3dK+O'

m

:a+[CK3 , (8.69)

Kmin
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which converges when (m + 1) < 0 to

_ K3K:11i47_11 K3K2a71n+nKzzi—ir_11 (8.70)

R=ot | = T A e m)

Here o is again the rate of binary black holes created per year with semimajor axis

a < am,. However, in order to be consistent with our choice of the black hole mass
function, we need to take into account the fact that different amounts of binary black
holes are created for different black hole masses. Equivalently, binary black holes with
different K’s are produced at different abundances. As a result, o has to include an
extra integral over K,

a:/oo f K2 at K

x K
= / K3K™ =2 alimdK

K 1+ +17°
=K oy TET (8.71)
When m + 1 < 0, this integral converges to,
KK 1+nKm‘+1
o= —3020m Rmin_ (8.72)

(I+n)(1+m)
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Following through, this gives the number of binary black holes per unit semimajor

axis to be,

Rm+1)a®  Kya*™"
K3K™H1 K K(14n)

min

pla, K) = — , (8.73)

when m < 0. Note that when we set the source term to zero through Ky = 0, we will
recover the sourceless solution. The number of binary black holes per unit semimajor
axis is therefore,

Kalya ™ Koy (8.74)
(14+n)m '

p(a) = phom(a) +

where phom(a) is the solution in the sourceless case and the number of binary black

holes with semimajor axis < a is given by,

K3K2a5+"Km-
N(L a) = Nhom men 8.75
(= @) = Noom + 3G+ nym (8.75)

where as before Ny, is the sourceless solution. This solution is again pathological
due to the presence of a critical semimajor axis above which N(< a) becomes nega-

tive.
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Evolution of the black hole mass function

in star clusters from multiple mergers

We investigate the effects of black hole mergers in star clusters on the black hole mass
function. As black holes are not produced in pair-instability supernovae, it is sug-

gested that there is a dearth of high mass stellar black holes. This dearth generates
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a gap in the upper end of the black hole mass function. Meanwhile, parameter fitting
of X-ray binaries suggests the existence of a gap in the mass function under 5 solar
masses. We show, through evolving a coagulation equation, that black hole mergers
can appreciably fill the upper mass gap, and that the lower mass gap generates po-
tentially observable features at larger mass scales. We also explore the importance of
ejections in such systems and whether dynamical clusters can be formation sites of

intermediate mass black hole seeds.

9.1 Introduction

The discovery of merging black holes (BHs) by the Laser Interferometer Gravitation-
Wave Observatory (LIGO) signaled the beginning of gravitational wave astrophysics
(Abbott et al. 2016b,a, 2017b,d,c). The masses of these binaries are much larger than
those previously discovered as X-ray binaries (Ozel et al. 2010; Farr et al. 2011; Krei-
dberg et al. 2012). The existence of these massive BHs was anticipated by previous
calculations of BH mergers (Belczynski et al. 2010b,c; Dominik et al. 2015), and their
detection spurred a growing interest on their formation mechanisms. One promising
mechanism that allows binary BHs of such masses to form is the dynamical merger
scenario, where BHs in dense star clusters gravitationally interact with each other

to produce very hard binaries (O’Leary et al. 2006; Rodriguez et al. 2015, 2016a,b;

Sukhbold et al. 2016; Samsing et al. 2018).
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In such systems BHs borne out of mergers can merge again, producing second gen-
eration BHs (Antonini & Rasio 2016; Gerosa & Berti 2017; Fishbach et al. 2017; Ro-
driguez et al. 2017). These multiple mergers necessarily increase the number of mas-
sive BHs while simultaneously lowering the number of less massive BHs, making the
BH mass function (BHMF) more top-heavy in the process.

Supernova theory also predicts the existence of a mass gap in the BH initial mass
function (IMF) between 50 — 130M¢, because the stellar progenitors of BHs in this
mass range undergo pair-instability supernovae (Belczynski et al. 2016a; Woosley
2017). Recently, parameter fitting of four LIGO data points suggests the existence
of a cutoff at M ~ 40M), bolstering the validity of this theoretical calculation (Fish-
bach & Holz 2017). Further, more massive binary BHs can be observed by LIGO to
a greater distance, and so the absence of LIGO events at M Z 40Mg within the in-
creased survey volume can be used to set an upper limit on the BHMF. Analysis on
the redshift distribution of LIGO events corroborates the existence of this mass gap
(Bai et al. 2018).

In the dynamical merger scenario, multiple merger events might be able to ap-
preciably fill the upper mass gap. In addition, while binary BHs in isolated binaries
can merge to produce BHs in the upper mass gap, the lack of multiple merger events
results in a very different BHMF within the upper mass gap. As such, the BHMF
within the upper mass gap could be an effective test for the dynamical merger sce-

nario.
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Finally, parameter fitting of X-ray binaries suggests the existence of a lower mass
gap in the BHMF between the most massive neutron stars and the least massive
BHs (Ozel et al. 2010; Farr et al. 2011). Under certain scenarios, supernova explo-
sions can naturally produce this gap (Belczynski et al. 2012). According to Ref. Bel-
czynski et al. (2012), Rayleigh-Taylor instabilities could appear early after the initial
bounce of a supernova, and drive explosions < 100 — 200 ms after the collapse. In such
rapid explosions, stars of mass ~ 14 — 20M, are thought to produce strong explosions
that result in high mass neutron stars (M ~ 1.5 — 2M)). However, stars of mass
~ 20 — 40My, fail to explode in this scenario, forming BHs of mass M ~ 5 — 10M.

This gap has also been successfully reproduced by numerical simulations of neutrino-
driven supernova explosions (Sukhbold et al. 2016). Neutrino-driven explosions sug-
gests that smaller stars never implode to form BHs, a prediction that has also been
corroborated by the observed BH and neutron star distributions (Raithel et al. 2017).
If multiple mergers are allowed, the lack of BHs in this range will have repercussions
to the BHMF even at larger mass scales, as heavier BHs cannot merge with BHs in
the lower mass gap to produce more massive BHs.

To answer such questions, a method to quickly compute the evolution of the BHMF
is needed. In this work, we will employ the Smoluchowski coagulation equation Smolu-
chowski (1916), a rate equation describing the time evolution of the number of parti-
cles of a certain size as the particles are allowed to interact and ‘coagulate’, merging

to form larger particles. The calculations performed in this formalism are much faster
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than those required in N-body simulations of dynamical clusters, allowing a large pa-
rameter space to be covered efficiently.

This paper is organized as follows: in §9.2 we describe the Smoluchowski coagula-
tion equation formalism, and in §9.3 we discuss our results for the evolution of the
BHMF assuming constant kernel. Subsequently, §9.4 presents our results with top-

heavy kernels. Finally, §9.5 summarizes our conclusions.

9.2 Methods

The evolution of the BH mass function due to mergers can be modeled by a coagula-

tion equation,

ON (M, 1)
a1

1 M
3 / K(M — M',M')N(M — M’ t)N(M',t)dM’
0

- /Oo K (M, M")N(M,t)N(M',t)dM' — S(M, 1), (9.1)
0

where N (M, t)dM is the number of black holes in the star cluster of mass € [M, M +
dM) at time t, K(x,y) — the coagulation kernel — is the rate of two BHs of masses x
and y to merge, and S(M,t) represents possible source or sink terms. The first term
of this equation describes BHs of mass < M merging to form BHs of mass M, while

the second term describes removal of BHs of mass M merging to form BHs with mass
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Npg | R [100 Gpe™3 yrt ] | Ne | fe Kernel Figure Number
1000 100 100 | 0 Constant Figure 9.1 (top)
1000 300 33 | 0 Constant Figure 9.1 (bottom)
100 100 100 | 0O Constant Figure 9.3
1000 300 33 105 Constant Figure 9.4 (top)
1000 300 33 109 Constant Figure 9.4 (middle)
1000 300 1 109 Constant Figure 9.4 (bottom)
1000 100 100 | 0.9 | Equation (9.7) Figure 9.5
1000 10 100 | 0.5 | Equation (9.8) Figure 9.6

Table 9.1: List of parameters for the different scenarios under consideration in this paper.
Npy is the number of BHs per cluster, Ry is the cosmological LIGO rate, N¢ is the number
of clusters per galaxy, f,; is the ejection fraction, and Kernel denotes the coagulation kernel
we used.

> M.

Equation (9.1) is called the Smoluchowski (1916) coagulation equation, a general
integro-differential equation that describes the statistical time-evolution of the distri-
bution (as a function of mass, size, etc.) of a coagulating population of objects. The
detailed physics of the coagulation process is encoded in the coagulation kernel, allow-
ing one to just evolve the statistical ensemble. The numerical method used to solve
Equation (9.1) is described in §9.6.

We solve the coagulation equation for a variety of physical scenarios, and study its
evolution over 10 Gyrs. Our IMF follows the Salpeter function (N o« M%, o = —2.35;
Salpeter 1955) with an upper mass gap for 50M; < M < 130M; and a lower mass
gap for M < 5My. The different scenarios considered in this paper are summarized in

Table 9.1.
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9.3 Constant kernel evolution

First we study the evolution of the BHMF assuming that the kernel K (M, M') = K
is a constant. This assumption is equivalent to the statement that the merger proba-
bility of two BHs is independent of their masses. In order to calibrate the constant K,
we enforce the condition that the merger rate is equal to the LIGO merger rate per
cluster, Ryjgo. This is done by noting that the total number of mergers per unit time

is

Ruco = / / K (2, y)n(z, )n(y, t)dedy
0 0

= K x N3y, (9.2)

where Npy is the number of BHs in the cluster. To estimate the LIGO rate per clus-
ter, we adopt ~ 1072 per comoving Mpc? as the number density of Milky Way-Like
Galaxies (MWEG) (Montero-Dorta & Prada 2009). Adopting 100 Gpc™3 yr~! as a
fiducial LIGO inferred merger rate gives the LIGO Galactic merger rate as Nyweg ~
107° Ryg9 mergers per galaxy per year. For Ry, being the reported LIGO rate, the

LIGO rate per cluster is therefore given by

_ Riot 1 1
=10"° S )
0 [100 Gpe™3 yrl} [NC] e (0:3)
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where N¢ is the number of star clusters per galaxy.

9.3.1 No ejections

The simplest system that we can study using this formalism is obtained by setting
S(M,t) = 0 in Equation (9.1). This is equivalent to saying that the BHs exist in a
closed system, and that no mergers are violent enough to eject BHs out of the system.
This situation is expected in cases where the star cluster is massive enough that the
merger kick velocities are small compared to the escape velocity, e.g. for a star cluster
at the core of a galaxy. Regardless of its limited usability, this simple case illustrates

many of the general features that are also present in more complicated cases.

Effects of the mass gaps on the BHMF

The lower mass gap (LG), and the upper mass gap (UG; see Figure 9.1) affect the
mass function evolution and produce features at various scales. First, the absence of
BHs in the LG reduces the number of BHs of all scales. This is because no BH be-
yond the LG can merge with BHs in the LG to produce a more massive BH. The size
of this reduction depends on the size of the LG, but is degenerate with the normaliza-
tion of the IMF. As such, it is difficult to conclude anything about the LG, or even
infer its existence, through this phenomenon.

Due to the self-similar nature of the constant coagulation kernel, one might expect

that the resulting BHMF to also be self similar. However, the gaps in the IMF spoils
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Figure 9.1: The evolution of the BHMF starting from the IMF (black) to 10 Gigayears (solid
blue) for a cluster with 1000 BHs. Dotted blue lines represent the BHMF at intervening times.
The top figure shows evolution of the mass function with a LIGO rate of 100 Gpc~ yr=! and
the number of clusters per MWEG to be No = 100, while the lower figure shows evolution of
the mass function with a LIGO rate of 300 Gpc™ yr~! and N¢ = 33, i.e. a LIGO rate per
cluster that is ~10 times higher. Varying N¢ is equivalent to changing the LIGO rate by the
reciprocal factor.
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this self-similarity. The plots of Figure 9.1 display a break at M ~ 10Mg, which we
call the lower break (LB). This break is caused because the BH formation channel
where two BHs within the LG merge to form a BH beyond the LG is missing. Be-
cause the largest BH that could be formed by this channel is twice the largest BH

in the LG, the LB is located at M = 2M,.x Lq, Wwhere the largest BH in the LG,
Mpax e = 5Mg. Changing M.« Lc results in pushing the LG to larger masses. If
detected, the existence of the LB can be used to diagnose both the existence and size
of the LG.

The interaction of the LG and the UG generates a break at M ~ 60Mg in Figure
9.1. Because the most massive BHs in the IMF cannot merge with BHs in the LG,
there is a dearth of BHs of mass Myinuvg < M < (Mupin vc + Mmax LG ), Where
Min v is the most massive BHs in the IMF (the start of the UG). As the mass scale
of the UB encodes the mass scale of the LG, an observation of the UB can be used to
indirectly measure the size of LG.

The dearth of BHs that caused the LB and UB is also responsible to generating
many more weaker breaks. Through a similar mechanism as was discussed in the pre-
vious paragraphs, anytime there is a dearth of BHs over a certain mass scale, there is
a break due to there being fewer mergers than if the dearth is not present. However,
these successive breaks are very weak, and are most probably not observable. Figure

9.2 depicts all of the missing channels discussed in this section.
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Figure 9.2: Missing BH formation channels due to the existence of the lower mass gap (LG)
and the upper mass gap (UG). Case (a) shows that the number of BHs at all scales are low-
ered because no BH can merge with BHs in the LG to form a larger BH. Case (b) depicts

the missing channel responsible for the break at M = 10Mg in Figure 9.1, which we call the
lower break (LB). Because BHs generated by the mergers of two BHs within the LG is miss-
ing, there is a dearth of BH of mass 5Mgs < M < 10Mg. Case (c) shows the missing channel
that results from the interaction of LG and UG. Because BHs from the top of the IMF cannot

merge with BHs within LG, there is a dearth of BHs with mass 50M5 < M < 60Mg), causing
the break at M = 60M¢ in Figure 9.1.
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Effects of varying the number of BHs per cluster

Because the merger rate is calibrated to the observed LIGO rate, clusters containing
fewer BHs need to have more efficient mergers than clusters containing more BHs.

This is manifested in Equation (9.2) as

1

Ko —. 9.4
* N o4

Due to this increase in efficiency, for the same LIGO rate clusters can develop a flat
BHMF if they contain few BHs. Figure 9.3 shows the evolution of the BHMF over

10 Gyr with the same Ryigo as the first plot of Figure 9.1 with Ngg = 100. If one
assumes that the BHMF is a power law, then situations as shown in Figure 9.3 have
to be excluded. Assuming a Ryigo of 107° yr~! and N¢ = 10 requires each cluster to

contain at minimum ~ 1000 BHs.

9.3.2 Evolution with ejections

In the process of assembling a dynamical binary, or due to the merger kicks experi-
enced by a merged BH, a star cluster is continuously losing BHs. We model the ejec-
tion of BHs from the system by introducing a source function, S(M,t), that reduces

the number of BHs of mass M by a number that is proportional to the amount of
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Figure 9.3: The evolution of the BHMF starting from the IMF (black) to 10 Gigayears (solid
blue) for a cluster with 100 BHs. Dotted blue lines represent the BHMF' at intervening times.
The LIGO rate is taken to be 100 Gpc™2 yr~!, and the number of clusters per MWEG is
taken to be No = 100. Lowering the number of BHs per cluster flattens the BHMF in a
similar way as increasing the LIGO rate.
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mergers that produce BHs of mass M,

S(M,t) =

fe' M
- j / K(M —M' M YN(M — M, t)N(M',t)dM’, (9.5)
0

where f¢; is the ejected fraction. In effect, this source function parameterizes the phe-
nomenon that for every merger, a fraction fe; of the BHs are ejected. While we kept
the parameter f; as a single number, in reality the recoil kicks of binary BHs depend
on the spins of the individual BHs. For simplicity, we will neglect the spin depen-
dence of fq;.

Note that this parameterization is agnostic toward the actual ejection mechanism.
For a given merger, the two BHs that participate in the merger event can be kicked
out during their assembly process, or the two BHs can merge, producing a gravi-
tational wave recoil that ejects the merged BH from the cluster. Figure 9.4 shows
the evolution of the BHMF for a cluster with an ejection fraction of fo; = 0.5 and
fej = 0.9.

There are a few main differences between a cluster without ejections and a cluster
with efficient ejections. First, ejections lower the normalization of the BHMF, as there
are less BHs at all scales. Next, ejections prevent the BHMF from being flattened.
Indeed, as shown in the bottom plot of Figure 9.4, even a scenario with a merger rate

at the top of the LIGO range (Rt = 300 Gpe™ yr~1) fails to flatten the BHMF if
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fej is allowed to be very high. This allows clusters with a low number of BHs (N <
100), or scenarios with very high merger rate per cluster, to be consistent with the
cutoff at ~ 40Mq.

In addition to the global properties described in the previous paragraph, efficient
ejections also change the properties of the BHMF at certain scales. The LB turns
into a step function when ejections are efficient, which might make its detection in
the BHMF difficult. As seen in Figure 9.4, for the first few Gigayears there is now a
discontinuity at the end of the UB. Because channel (c) in Figure 9.2 is missing, BHs
with masses 50Ms < M < 60M, (those between the start of the UG and the UB) are
generally formed by fewer mergers than BHs generated beyond the UB. As for every
merger, there is a chance to be ejected out of the systems, BHs beyond the UB suffer
more ejections than those below the UB. This discontinuity is a signature that the
system is efficiently ejecting their BHs, and the drop is larger for higher f.;. However,
the evolution of the coagulation equation tends to smooth out discontinuities, and the

magnitude of the drop is heavily suppressed after 10 Gyr.

9.4 Evolution with top-heavy kernels

Many phenomena responsible for dynamical mergers, such as gravitational capture,
mass segregation, and three-body relaxation are mass dependent. Therefore, we would

expect that the coagulation kernel in equation (9.1) is in reality a function of mass,
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Figure 9.4: The evolution of the BHMF starting from the IMF (black) to 10 Gigayears (solid
blue) for a cluster with 1000 BHs. Dotted blue lines represent the BHMF at intervening times.
The LIGO rate is taken to be 300 Gpc™2 yr~!, and the number of clusters per MWEG is
taken to be N¢ = 33 (top, middle) and N = 1 (bottom). The ejection fraction is taken to be
fej = 0.9. Even for a LIGO rate per cluster of 300 Gpc™2 yr~!, the BHMF fails to flatten in
10 Gigayears.
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Figure 9.5: The evolution of the BHMF starting from the IMF (black) to 10 Gigayears (solid
blue) for a cluster with 1000 BHs for the top-heavy coagulation kernel given by equation (9.7).
Dotted blue lines represent the BHMF at intervening times.. The LIGO rate is taken to be
100 Gpc—2 yr—', and the number of clusters per MWEG is taken to be Ng ~ 100. The ejec-
tion fraction is taken to be fe; = 0.9.

K = K(M,M'). While the actual form of the coagulation kernel depends on the
dominant merging mechanism, it has to be symmetrical with respect to M and M’.
In general, this symmetry along with physical considerations forces the functional

form of the coagulation kernel to be

K oc (MM')*(M + M")? | (9.6)

186



with power-law indices v and 5. The effectiveness of gravitational processes increases
with increasing mass. Gravitational capture, for example, is more efficient for larger
M and M’. This implies that heavier BHs merge preferentially, and that K is top-
heavy. For example, the coagulation kernel due to gravitational radiation capture

scales as (Mouri & Taniguchi 2002)

Keap o (MM')®/ Y (M 4+ M) (9.7)

Figure 9.5 shows the evolution of the BHMF with the coagulation kernel given by
equation (9.7). While the specific values of o and 5 would matter for the numerical
values of f, the salient features of the calculation are valid for general top-heavy ker-
nels. The most important change introduced by the top-heavy kernel is the loss of the
power-law behavior in the mass range bMgo < M < 50M.

Another example is the coagulation kernel from three-body relaxation, which is

computed through numerical simulations to scale as (O'Leary et al. 2016)

K—ody o (M + M')* . (9.8)

However, Ref. O’Leary et al. (2016) did not fit for the (M M')® component. In the co-
agulation equation, the (M M')® term acts as a regularizer, and its absence generates

a runaway growth of BHs that concentrates most of the cluster’s mass in a single BH
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of extremely large mass M 2 1000M. Observationally, we do not see such runaway
growth. Thus, in order for this kernel to be consistent with observational bounds in
the absence of the (M M')® term, there must be some maximum My, above which
this kernel is suppressed. We impose this regularization by setting the kernel to be
(Mmax + M ’)4 for M > Myax. While this introduces a new parameter to the prob-
lem, Figure 9.6 shows that even with a very conservative choice of Mpyax = 100Mg,

a significant population of BHs can be formed within the UG. Indeed, the use of this
kernel does not change the main qualitative features of the other kernels, which is the
possibility of intermediate mass BH seed formation in dynamical clusters. This echoes
a previous result showing that in nuclear star clusters it is possible to obtain BHs in
the intermediate mass ranges through multiple mergers (Antonini & Rasio 2016). Our
calculations extend this conclusion to the statement that globular clusters are also

capable of producing intermediate mass BHs.

9.5 Conclusion

Through evolving a coagulation equation, we have shown that the BHMF in clusters
could evolve to fill the gap in the IMF of BHs at 50Ms < M < 130My. Further-
more, we have found that the upper range of the LIGO rate is not consistent with the
dearth of BHs with masses M > 40Mg reported by Fishbach & Holz (2017) unless

ejection is efficient. The coagulation equation also implies that the mass gap between
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Figure 9.6: The evolution of the BHMF starting from the IMF (black) to 10 Gigayears (solid
blue) for a cluster with 1000 BHs for the 3-body coagulation kernel given by equation (9.8).
Dotted blue lines represent the BHMF at intervening times.. The LIGO rate is taken to be 10
Gpc~2 yr~!, and the number of clusters per MWEG is taken to be Ng ~ 100. The ejection
fraction is taken to be fe; = 0.5 and Myax = 100M.

the most massive neutron stars and the least massive BHs produces potentially ob-
servable features at larger scales. In addition, we show that that for top-heavy kernels,
the mass function between 5Mg < M < 50M, is driven away from self-similarity, and
that a power-law will not be sufficient to fit the BHMF in this regime. With param-
eters that are consistent with realistic globular clusters, we showed that it is possible

to form intermediate BH seeds through mergers of smaller BHs.
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9.6 Coagulation equation numerical solver

The coagulation equation is solved using a finite volume method based on Keck &
Bortz (2013). The coagulation equation can be written in conservative form as a func-

tion of G(M,t) = M x N(M,t):

0,G + 0 J(G) = MS (9.9)

where

/ /me K(u G(t,u)G(t,v) dvdu (9.10)

is the mass flux across mass bins. G is a conserved quantity in the absence of source

terms and conserved by our numerical finite-volume method.
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The solution is discretized into mass bins and in time as G2 (t;) which represents
the mean value of G(ty, M) in the mass bin [M;, M;;1) at time t;. The mass bin
has center M,iq¢). The left boundary flux is zero: JN(ty) = 0. In general, the flux
JN (t1,) across each discrete boundary x, can be computed as follows, by consider-
ing the aggregation of M,;jq) and My,jq(j). For each fixed r, and a fixed 4 such that
Myiai) < My, then each j such that My,iq¢) = My — My,q(;) gives a contribution to
the flux of:

M+t K (Miiag),
Afo-V(tk)/ ’ May(tk)dy (9.11)

M; Y

A small exception occurs for the lowest j, where the lower limit of integration is Myq(j)
instead of M;. The integral is evaluated for an arbitrary kernel numerically using a
quadrature rule.

The equations are explicitly evolved from time step ti to t541 as:

G = G (tk) + (At/2) x M;S;i(ty, G\ (1)) (9-12)

GN// _ GN/ + At‘]z‘]yi—l - Jz‘N(tk)
(A (A A:I:

(9.13)

GN(tpy1) = GN" + (At/2) x M;S;(t,, GN'") (9.14)
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that is, adding the source term in two half-steps that sandwich the flux term to result

in a second-order method.
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10

Detecting gravitational wave lensing with

oround-based observatories

We investigate the ability of ground based gravitational wave observatories to detect
gravitational wave lensing events caused by stellar mass lenses. We show that LIGO

and Virgo possess the sensitivities required to detect lenses with masses as small as
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~ 30M provided that the gravitational wave is observed with a signal-to-noise ratio
of ~ 30. Third generation observatories will allow detection of gravitational wave
lenses with masses of ~ 1M . Finally, we discuss the possibility of lensing by multiple
stars, as is the case if the gravitational radiation is passing through galactic nucleus or

a dense star cluster.

10.1 Introduction

The recent Laser Interferometer Gravitation-Wave Observatory (LIGO) discoveries

of gravitational waves from black hole binaries (Abbott et al. 2016¢,a) opened a new
frontier for the study of astrophysical objects using gravitational radiation. Much like
electromagnetic (EM) radiation in classical astrophysics, gravitational radiation can
be lensed by massive objects. Lensing of gravitational radiation in linearized General
Relativity can be computed with the same techniques as those employed in the famil-
iar lensing of EM waves.

Much of the previous literatures on gravitational lensing of gravitational waves
(GWs) focused on lensing in the geometric optics limit (Sereno et al. 2010; Piérkowska
et al. 2013), where the wavelength of gravitational waves is small compared to the spa-
tial scale of the lenses and ray optics is sufficient. The lenses responsible for much of
the optical depth in this regime are galaxies, which split the gravitational wave signal

into copies separated by a time delay of order a few months.
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In the wave-optics regime, the Laser Interferometer Space Antenna (LISA) pos-
sesses the necessary sensitivities to extract the lens’ mass from a lensed signal (Taka-
hashi & Nakamura 2003). The goal of our study is to show that such observations can
also be achieved by ground based observatories.

The sensitivities of advanced LIGO (LIGO Scientific Collaboration et al. 2015) and
advanced Virgo (Acernese et al. 2015) to lensing by intermediate mass black holes
(IMBH) are explored in Ref (Lai et al. 2018), which found that current generation
observatories are capable of detecting the lensing IMBH with 98% confidence. Fur-
ther, Ref (Lai et al. 2018) found that LIGO and Virgo can distinguish between a
point mass lens and a singular isothermal lens provided that the redshifted lens mass
is 200Mp.

In this work, we focus on the capabilities of ground based GW detectors to detect
stellar mass lenses. While stellar mass lenses are more numerous than IMBHs, the
amplitude of their lensing signal is much smaller. This require us to extend our study
to include upcoming third generation gravitational wave detectors.

This paper is organized as follows: in §10.2 we describe our lensing formalism, in
§10.3 we discuss our method for inferring the sensitivities of the GW detectors to lens-
ing events. Subsequently §10.4 presents our results. In §10.5 we discuss the possibility

of lensing by multiple lenses. Finally §10.6 summarizes our conclusions.
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10.2  Background and notations

We consider GWs in the perturbed Friedmann-Lema tre-Robertson-Walker (FLRW)

metric, written in terms of the conformal time 7,
ds* = a® [— (1 +2U) dn* + (1 — 2U) dr?] , (10.1)

where r is the spatial coordinate, U is the gravitational potential of the lenses, and a

encodes the universal scale factor. Considering linear perturbation on this metric,
9aBB = 955 + hyuw, (10.2)
where hy,, is separated into its amplitude ¢ and polarization e,
huw = deu , (10.3)

one can obtain that the equation of motion for ¢ is simply given by the wave equa-

tion,

0, (\/?gg”aycp) —0, (10.4)
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where gP is the determinant of the metric. In Fourier space, q;( f,r), the equation
reads

(V2 + &%) ¢ = 40°U , (10.5)

where @ = 27 f is the GW frequency. Following (Takahashi & Nakamura 2003), we
define the amplification factor F'(w,r) as the ratio between the lensed and unlensed .
The setup of our problem consists of three parallel planes, called the source, lens,
and observer planes. The angular diameter distances along the normal from the ob-
server plane to the source and lens planes are labelled Dg and Dy, respectively, while
the distance between the source and lens planes is labelled as Djg. GWs are emitted
by a point in the source plane, travel freely to the lens plane, where they are lensed
by a gravitational potential U that is assumed to be localized in the thin (width
< ¢/ f) lens plane, before reaching the telescope at the observer plane.
Coordinates can be set up on the three planes. We use the notation of Ref (Nambu
2013; Takahashi & Nakamura 2003), where £ is the coordinate at the source plane, 7

is the coordinate at the lens plane, and d is the coordinate in the observer plane. We
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also employ the following dimensionless coordinates,

x=2
&’

yoPrn
Ds &’

D\ A
d= <1 - L) =,
Ds ) &
where £y is some characteristic length-scale defined by &y = Dp0g where 0 is the

Einstein angle for a point mass lens,

0% = . 10.6
Furthermore, we will work with the dimensionless frequency,
Ds&f
w= w . 10.7
DrsDry, 10.7)

Note that for the point mass lens, w = 4M (1 + z)@, where My, and z are the lens’
mass and redshift, respectively, and we adopt units where G = ¢ = 1 from now on.

Using this setup, the solution of Equation (10.5) is given by the Fresnel-Kirchhoff
integral,

F(w,y) = % /de exp [iwT' (x,y)] , (10.8)
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where the time delay function, T'(x,y) is given by

T(x,y)==(x—y—d)’—¥(x), (10.9)

N =

with W being the lensing potential.

10.2.1 Wave optics lensing

Integrating Equation (10.8) with the stationary phase method is valid when the wave-
length is much smaller compared to the characteristic scale of the lens. For a point

mass, this condition requires,

_AGM(1+2) .

1 10.10
w 3 w>1, ( )

where we have reintroduced factors of G and ¢ just in this equation. A detector op-
erating in the frequency band of LIGO, with a characteristic frequency of f ~ 100

Hz, is capable of detecting lenses where w < 1. In this regime, the geometric optics
approximation breaks down and one has to integrate Equation (10.8) in full.

For a point mass lens located at n = 0, ¥(x) = log|x|, and Equation (10.8) inte-
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grates to (Peters 1974; Takahashi & Nakamura 2003),

W W w 7
F(w) =exp {T + 15 [log (5) — 2¢m(y)} }F <1 — 2w>
%1 Fi (2w, 1; Ly (10.11)
1141 201, ; 2wy ) .
where
Om(y) = (@m —y)*/2 —log xp (10.12)
and
2
Ty = y+tvy +4 ] (10.13)

2

The amplification for w ~ 0.01 — 0.1 and a variety of y values is plotted in Figure
10.1. For a frequency of 100Hz, this corresponds to lenses of mass 1 — 10Mg,. If the
projected separation between the source and the lens is small, the amplification is ap-
proximately linear in w. For large separations, the amplification factor hovers around
1, as expected from the notion that distant lenses with large impact parameter should

not affect the GW signal.

10.3 Method

To verify if and to which extent the presence of stellar-mass lenses can be inferred
from GW measurements, we have modified the parameter estimation algorithm cur-

rently used by the LIGO and Virgo collaborations Veitch et al. (2015); Abbott et al.
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Figure 10.1: The amplification as a function of w for a point mass lens where y = 1,5,10,40
(dashed, dotted, dot-dashed, and solid). When the position of the source projected to the lens
plane is small (y ~ 1), one can obtain amplification that is ~linear in w. In the LIGO band
(w ~ 0.01 — 0.1 for a solar mass lens) this results in a deviation from the unlensed signal of a
few percent. As the distance increases, the amplitude of the deviation becomes smaller.
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(LIGO and Virgo Scientific Collaboration) (2016) to allow for the presence of a lens
along the line of sight to the source. This is a stochastic sampler that explores the
parameter space and produces posterior distributions for the unknown parameters

on which the gravitational-wave signal depends. In absence of a lens, these include
masses and spins of the two compact objects, the sky position, distance, orientation
and polarization of the source, as well as the time and phase at coalescence Abbott et
al. (LIGO and Virgo Scientific Collaboration) (2016). Throughout this work, we use
the effective-precession waveform IMRPhenomPv2 Hannam et al. (2014).

Our lens model allows for two extra parameters: the mass of the lens, My, and the
parameter iy = yM[, which are sampled together along the other. Once a waveform
corresponding to the unlensed signal is generated, hynjensed _'), the two lens parame-
ters are used to calculate Eq. (10.11), which yield the lensed signal Ay epged (5, Miens, y') =
F(Mens, v’ )hUnlensed(_'), where 6 are the Compact Binary Coalescence (CBC) parame-
ters in absence of lens.

Given a GW signal (real or simulated) the algorithm can be run with the lens pa-
rameters (“Lens” model) to measure or put an upper bound on the lens mass. After

the evidence Jaynes (2003) for both the “Lens” and “No lens” model is calculated,

one can compute the odds ratio defined as

P(lens|data)

Odds = :
i P(no lens|data)

(10.14)
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For sources with an odds ratio much larger than unity, the lensed model is pre-

ferred over the model without lensing.

10.4 Results

10.4.1 Current Generation Observatories

We ran our code on simulated signals observed by LIGO and Virgo with signal-to-
noise (SNR) values of 15,30, and 60, where we injected lenses of 0, 1, 10, 20, 30, 60 and
100M;, with an impact parameter of an Einstein angle, . The masses of the simu-
lated CBC signal are compatible with heavy binary source similar to GW150914.

The results are plotted in Figure (10.2). At a SNR ratio of 30, which is moderately
high for current generation observatories, lenses can be detected at > 30 when they
possess masses larger than ~ 30My. Higher SNR events allowed smaller lenses to be
detected. At SNR= 60, lenses as small as ~ 10M can be detected. LIGO and Virgo
can potentially detect smaller lenses if the impact parameter is significantly smaller
than an Einstein radius, but such cases are expected to be rare.

The GW SNR scales as

M3
SNR oc ——, (10.15)

S

where M, is the chirp mass and Dy the source angular diameter distance. Requiring
a high SNR amounts to either limiting the search volume to small Dy or requiring

mergers of massive black holes. Explicitly, if lenses are uniformly distributed in space,
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the number of lensing events, Neps, scales as Dg, which results in

5/3
MY

1/3 °

lens

SNR o< (10.16)

Furthermore, while the explicit form of the binary black hole mass function is still
uncertain, it is expected to inherit the bottom-heavy characteristic of the mass func-
tion of massive stars. Therefore, requiring a high chirp mass will further reduce the
number of detectable lensing events.

As a straightforward application, we ran our algorithm on the stretch of public
LIGO data containing the gravitational wave event GW150914 Abbott et al. (2016);
LIGO Collaboration (2016). We found that the waveform detected for GW150914 is
consistent with a lens mass of M = 0, i.e. GW150914 is most probably not a lensed

event with an upper bound 90% confidence interval for the lens mass of 50Mq.

10.4.2 Third Generation Observatories

Proposed ground based third-generation (3G) GW observatories, such as the Einstein
Telescope Punturo et al. (2010) and the Cosmic Explorer Abbott et al. (2017a), allow
detections of BBH events from high redshift Abbott et al. (2017a); Vitale & Evans
(2017); Team (2011), and will detect nearby events with SNR of hundreds or thou-
sands Vitale (2016). Such high SNR events can potentially allow much smaller lenses

to be detected. To show this, we ran our algorithm on a simulated GW150914-like
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Figure 10.2: The odds ratio computed as defined by Equation (10.14). The dashed, dot-
dashed, and dotted lines denote SNR, values of 10, 30, and 60, respectively. Odds values > 1

indicate that the lensed model is preferred over the unlensed model. The dashed line indicates
the 30 line.
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source as observed by a third generation observatory, with an injected lens of 1 M.
Figure 10.3 shows the resulting posterior distribution for the lens mass. As seen in
Figure 10.3, 3G observatories can detect lenses as small as 1M. As there are much
more lenses with such masses than those with masses of ~ 30Mg,, we expect that
detection of lensing events by stellar mass lenses will be mostly confined to 3G detec-
tors. If the lenses obey the mass function for stars, the number of events that we can
expect from a 3G detector is greater than that of current generation detectors by a
factor ¢, where

o 923

_ Rag Jug, ™ Pdm Ry

" Reg [, m~23dm " R
CG fsoM@ CG

100 , (10.17)

where R3q is the rate of gravitational wave detection by 3G observatories, Rcg is
the rate of gravitational wave detection by current generation observatories, and we
have taken the stellar mass function to be of the Salpeter form (Salpeter 1955). Note
that we have not fully explored the lower limit of the masses of the lenses that is still
detectable by third generation observatories. It is likely that these observatories will

detect lenses with masses even smaller than 1Mg.

10.5 Wave optics lensing by multiple masses

The centers of galaxies are dense enough that the Einstein ring of stars (on an angular

scale of ~ lpuarcsecond) can overlap. Indeed, the probability for there to be another
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Figure 10.3: The resulting posterior distribution of lens mass for an event with an M = 1Mg
lens observed by a third generation observatory. SNR is set to 3000 and impact parameter is
an Einstein radius. Note that a vanishing lens mass is clearly excluded.
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star an Einstein radius, &, away from a particular star is (Phinney 1993; Christian &
Loeb 2015)

Pa1—exp|-ongl], (10.18)

which approaches unity for a stellar mass density, o, corresponding to ~ 1 g cm™2.

In this regime, it is important to understand the effects of lensing by multiple
masses. Assuming that the lensing happened in a thin plane, the lensing potential

by N point masses is given by

N
Y(x) = Z log |x — xj| . (10.19)

To simplify our calculation, we employ the fact that distant lenses do not affect the
signal by imposing a cutoff on ¢ (x). In particular, we will ignore any lenses that are

more than an Einstein radius away from the source,
N
b(x) ~ 3 H(lx - xi) log x - xi| . (10.20)
i

where H(|x — x;|) is a tophat kernel that is unity when |x — x;]| is less than an Ein-
stein radius, and zero otherwise. In doing so, we do not need to include all the point
masses in the lensing galaxy in ¢ (r), but only the lenses whose Einstein rings inter-
sect. Obviously, this number depends on the surface density number of stars in the

lensing galaxy.
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Figure 10.4: The lensing plane of a galactic nucleus within ~ 100 Einstein radii. The circles
correspond to the Einstein rings of ~ 1M, stars randomly distributed in the plane. The num-
ber of stars in the field corresponds to the upper limit of Ref (Hopkins et al. 2010). For this
extremely dense system, the probability of intersections of Einstein rings is only a few tenths
of a percent.
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Figure 10.5: The amplification factor due to lensing as a function of w for 1 (analytical solid
line), 2, 3, and 10 (dotted, dot-dashed, and dashed, respectively) point mass lenses. For 1M,
lenses, the w range corresponds to the LIGO frequency range. The lenses are distributed ran-
domly, but consistently in the lens plane, so that the two lens case corresponds to the single
lens case plus a randomly distributed second lens, and similarly for the 3 and 10 lenses cases.
The position of the source in the source plane is (0,1), and the position of the observer in the
observer plane is (0,0) in Einstein angle units. In this regime where F(w) « w, more lenses

generally generate a larger lensing effect.
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The upper limit on the stellar surface mass density in a dense system is Xpax ~
10" Mg, /kpc? (Hopkins et al. 2010). Assuming that most of the stellar mass is in stars
of mass ~ 1M, this gives a surface number density of ~ 10° pc~2. Using the fact
that at cosmological distances, the Einstein angle of such stars are ~ 1puarcsecond,
and that stars are randomly distributed in the lensing plane, we created realizations
of star fields in the lensing plane. One such realization is shown in Figure 10.4. Even
for such a dense system, the number of Einstein ring intersections is of order a few.
The expected number of overlapping Einstein rings, Np, can be estimated as follows.

If Ay =1/0 is the area where only one star is expected, then

No = = 7(2&)%0 (10.21)

=43 x <105jp02> . (10.22)

We therefore expect GWs to be significantly lensed by only a few lenses. However, as
a Poisson process, N is Poisson distributed. Therefore, for a o = 10° pc—? system,
there is a ~ 1% chance for the beam to interact with ~ 10 lenses.

To this end we calculate the lensing amplitude F'(w) by numerically integrating
Equation (10.8) using a Levin method integrator (Moylan et al. 2008). The resulting
magnification amplitudes for 2, 3, and 10 lenses are plotted in Figure (10.5). For 1M
lenses in the LIGO band, F'(w) scales linearly with w. The general trend is that more

lenses yield a larger deviation in amplitude. This means that if a lensing event is de-
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tected at low w, it might be difficult to distinguish between lensing by a single point
mass or lensing by multiple point masses. However, if a larger range of w is observed,

these two models will differ significantly.

10.6 Conclusions

We have shown that in order for current generation GW observatories to detect grav-
itational wave lensing events, a lens mass of at least ~ 30M is required, provided
that the gravitational waveform is detected at a signal to noise of ~ 30. If the grav-
itational wave source is weaker or is located further away, this number will increase
correspondingly.

Furthermore, we have shown that 3G detectors can detect lenses of masses as small
as 1Mq. Since 1M lenses are much more numerous than ~ 30Mg lenses, many more
lensing events will be detected by third generation detectors than current generation
detectors.

Finally, we discussed the possibility that a GW signal can be lensed by multiple
stars. We have shown that when detected at small w, multiple lenses can masquerade

as a larger lens.
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11

Conclusions

In this dissertation, we have proposed methods to peel back the mystery behind black
holes through a variety of astronomical observations. In this chapter we conclude this

dissertation with a synopsis of its results and a description of future work that could

be done to extend said results.

In Chapters 2 and 3, we have shown that the effects of the supermassive black hole
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Sgr A* at the center of the Milky Way on its surroundings can be probed by astro-
nomical observations. Following that, Chapter 4 showed that the effects of such super-
massive black holes on the trajectory of hot plasma close to their horizons could be
used to constraint their spacetime parameters.

Chapter 5 and 6 questioned whether we have the correct understanding of gravity
to model astrophysical black holes. In these chapters we proposed some astronomical
tests that could address such queries. We showed that a "perturbation” of Einstein’s
General Relativity could lead to modifications in both the electromagnetic fields sur-
rounding a black hole, as well as in signals of pulsars orbiting close to a black hole.

The next three chapters in this dissertation are concerned with gravitational radi-
ation. Chapters 8 and 9 proposed that the population and distribution of black holes
can be constrained by gravitational observables. In Chapter 8, we showed that the
merger rate measured by LIGO is consistent with a LISA detection of a binary black
hole in the Milky Way. In Chapter 9, we demonstrated that this merger rate is large
enough that the black hole mass function in dynamical clusters can be heavily mod-
ified by mergers. Finally, Chapter 10 proposed the possibility of detecting gravita-
tional lensing events of gravitational waves. Such events could be used to probe both
the structure and population of the lenses, as well as provide a novel way to study

gravitational radiation themselves.
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11.1 Future outlook

I intend to build on the line of research presented in Chapters 2 and 3. In particu-
lar, the black hole influence on the GC region causes it to possess extreme levels of
density and temperature. In addition, the orbits of stars and gas in the GC are also
heavily modified by the black hole gravity. I intend to study the GC region to better
understand how the black hole affects astrophysical phenomena such as star formation
and stellar migration. One way to accomplish this is to have a direct comparison be-
tween theoretical models and 21-cm observation of the neutral gas in the GC. As neu-
tral disks are hotbeds of star formation, the effects of the black hole on the neutral
disk will modify the resulting star formation at the GC. I plan to expand our previous
calculations to facilitate these comparisons. In particular, numerical simulations of
the photosphere are required in lieu of the simple model used in previous works, and
gravitational instabilities of the neutral disk need to be further explored through both
analytical and numerical computations to properly understand the black hole effects
on star formation.

Further, the interaction of Sgr A* with its surrounding plasma generates highly
variable emissions at a vast range of wavelengths (e.g Yusef-Zadeh et al. 2006; Hora
et al. 2014; Capellupo et al. 2017), and I intend to improve theoretical models of
these variabilities. Popular models describing these emissions include the expanding

plasmon model (Yusef-Zadeh et al. 2006) and the orbiting hotspot model (Broderick
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& Loeb 2005). In the expanding plasmon model, a plasma blob of relativistic elec-
trons emits via synchrotron radiation. This blob expands adiabatically, producing
the temporal variability observed in Sgr A* flares. In the orbiting hotspot model, the
existence of bright inhomogeneities, called hotspots, in the black hole accretion disk
is posited. These hotspots move along with the accretion flow, and the observed flux
variabilities result from a combination of the Doppler effect and gravitational lensing
as the bright hotspots orbit the black hole.

Currently, the effects of the black hole tidal field are neglected in these models.
However, in the expanding plasmon model, the black hole tidal field can strongly
modify the expansion of the plasma blob. Similarly, the tidal shear can shred orbit-
ing hotspots as they travel around the black hole. I intend to add this crucial element
to these models. The tidal field of the black hole can be computed in GR through the
geodesic deviation formalism. In Chapter 4, we had used this method to study the ex-
pansion of generic blobs as it is ejected from the black hole. I intend to further apply
this formalism to the expanding plasmon and orbiting hotspot systems. This calcula-
tion will include the magnetic forces in the plasma as well as relativistic computations
of the radiation field. Linking this project with my interest on tests of strong grav-
ity, I also plan to explore the effects of violations of the no-hair theorem on the black
hole tidal field. These studies will culminate in better theoretical models of Sgr A*
variabilities that can be tested against observations across multiple wavebands.

Further, the study in Chapters 5 was conducted in an idealized system where the
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magnetic field is produced by faraway sources that are not affected by the black hole
gravity. In contrast, realistic magnetic fields are flux-frozen to the plasma in the black
hole accretion disk, requiring us to solve the plasma equations subject to the black
hole gravitational field in addition to the Maxwell’s equations. I intend to follow this
work with more sophisticated computations that allow evolution of the black hole
plasma. A first step will be to utilize the equations of force-free electrodynamics,
valid in regions of strong magnetic fields. In the past, geometric methods had been
employed to study force-free electrodynamics around no-hair compliant black holes
(Gralla & Jacobson 2014; Lupsasca et al. 2014), and I intend to apply the technique
to black holes with arbitrary quadrupoles.

In addition to studies of the magnetosphere, I also plan to explore previously un-
examined signatures of violations of the no-hair theorem. In particular, a non-Kerr
quadrupole can modify both the spectral signature and rates of tidal disruption events.
In addition, I also intend to study the production of high energy particles through
both plasma effects and the Banados-Silk-West effect (Banados et al. 2009) around
no-hair violating black holes.

These studies will facilitate comparisons with observational data, including the sub-
millimeter polarimetric images taken by the Event Horizon Telescope, signals of X-ray
outbursts detectable by the Chandra X-ray Observatory, and variabilities in the in-
frared observable by the Spitzer Space Telescope or the upcoming James Webb Space

Telescope.

218



On the gravitational waves front, I plan to use detections from Advanced LIGO
and Virgo, 2nd generation gravitational wave observatories that have just started tak-
ing data, to markedly improve these constraints presented in Chapter 8. Further, the
current formalism does not take into account the possibility of particular formation
mechanisms that produce extremely eccentric binary BHs. Through further analytical
study aided with some numerical simulations, I intend to generalize the formulation
to allow for these possibilities, as well as extend the analysis to cosmological distances.
The computations in Chapter 9 can also be improved by considering more realistic
prescriptions for the coagulation kernel and ejection efficiency. With such realistic
parameters in place, one can then use the coagulation formalism to investigate the
possibility of forming intermediate mass black hole seeds through black hole mergers.

Finally, now that Chapter 10 has established the possibility of detecting gravita-
tional waves lensing events, the next step is to ask what could be learned from events.
Historically, the gravitational lensing of light was used as a test of gravity (Dyson
et al. 1920). In similar veins, the signal from a gravitational wave lensing event could
be used to test the validity of our gravitational wave solutions. If it is observed that
gravitational waveforms are lensed differently than predicted by general relativity,
then we will know that either our knowledge of gravity or the propagation of space-
time perturbations is flawed. In addition, as with the gravitational lensing of light, a
gravitational wave lensing event will also carry information about the lensing mass,

allowing us to study the nature of these lenses. In this ironic way, merging black holes
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will illuminate the cosmos.
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