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Abstract

This dissertation studies the design of mecanisms in settings where information acquisition

or communication are significant features of the environment.

The first chapter, coauthored with Xiaosheng Mu, studies a dynamic pricing model

where buyers have the ability to learn about their value for a product over time. A seller

commits to a pricing strategy, while buyers arrive exogenously and decide when to make a

one-time purchase. The seller seeks to maximize profits against the worst-case information

arrival processes. We show that a constant price path delivers the optimal profit, which is

also the optimal profit in an environment where buyers cannot delay.

The second chapter develops a model of costly information acquisition, focusing on an

application to scientific research. It shows that non-transparency can induce a scientist to

undertake a costlier but more informative experiment if it also enables her to commit to

acting scrupulously. Using this insight, this chapter demonstrates the general existence of

non-degenerate experiment costs such that greater transparency in scientific methodology

results in research choices that are worse for those interested in the results.

The third chapter develops a model of delegated project choice with mulitple agents, con-

sidering the impact of competition in these settings. Under an alignment assumption (which

ensures the optimality of full discretion in the single-agent case), optimal mechanisms entail

stochastic agent choice but deterministic project choice. Without alignment, deterministic

project choice may be suboptimal. Without the ability to randomize allocations, competition

can be harmful for the principal.
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Introduction

The first chapter of this dissertation studies the question of optimal dynamic monopoly

pricing under informational robustness. Consumers may be unsure of their willingness-

to-pay for a product if they are unfamiliar with some of its features or have never made a

similar purchase before. How does this possibility influence optimal pricing? To answer

this question, we introduce a dynamic pricing model where buyers have the ability to learn

about their values for a product over time. A seller commits to a pricing strategy, while

buyers arrive exogenously and decide when to make a one-time purchase. The seller does

not know how each buyer learns about his value for the product, and seeks to maximize

profits against the worst-case information arrival processes. We show that a constant price

path delivers the optimal profit, which is also the optimal profit in an environment where

buyers cannot delay. We discuss the role of price-dependent information for this result, and

consider an extension with common values and informational externalities.

The second chapter develops a model of costly information acquisition, focusing on

an application to scientific research. When dimensions of an experiment that may bias

a scientific result are not verified, scientists are incentivized to make their experiments

more susceptible to false positives, even though they obtain higher surplus from more

informative experiments. On the other hand, non-transparency can induce a scientist to

undertake a costlier but more informative experiment if it also enables her to commit to

acting scrupulously. Using this insight, this paper demonstrates the general existence of

non-degenerate experiment costs such that greater transparency in scientific methodology

results in research choices that are worse for those interested in the results.

1



The third chapter studies a model of delegated project choices with multiple agents,

motivated by an application to the procurement of new technologies. These allocations

are often done prior to the total resolution of uncertainty regarding ultimate viability.

A common method of allocation involves prototyping—demonstrating some preliminary

version of the project with the intention of bringing it to completion. This considers the value

of competition in these settings, relating the results to challenges faced by policymakers.

When agents share the same ordinal preferences over their projects as the principal (for

instance, if surplus is ultimately divided according to Nash bargaining between the principal

and selected agent), an optimal mechanism need not feature stochastic project choice when

randomizations across agents are feasible. Such mechanisms may be suboptimal without

the alignment of the principal’s and agent’s incentives. The resulting policy requires

commitment whenever randomization is involved, despite the optimality of deterministic

mechanisms in the single agent case.

2



Chapter 1

Informational Robustness in

Intertemporal Pricing 1

1.1 Introduction

Suppose a monopolist has invented a new durable product, and is deciding how to set

prices over time to maximize profit. Consulting the literature on intertemporal pricing,2 the

monopolist would find that keeping the price fixed (at the single-period profit maximizing

price) is an optimal strategy when consumers understand the product perfectly (provided

willingness-to-pay does not vary over time). But a wrinkle arises if consumers may learn

something that influences how much they like the product after pricing decisions have been

made, a salient issue since the monopolist’s product is completely new. For example, when

the Apple Watch, Amazon Echo, and Google Glass were released, most consumers had little

prior experience to inform their willingness-to-pay. In such a situation, the monopolist might

suspect that the buyers’ purchasing decisions will depend on the available information–e.g.,

journalist reviews about the product–which may in turn depend on the pricing decisions.

1Co-authored with Xiaosheng Mu

2E.g., Stokey (1979), Bulow (1981), Conlisk, Gerstner and Sobel (1984), among others. These papers show
that a seller with commitment does not benefit from choosing lower prices in later periods.

3



The potential for information arrival presents a challenge to the monopolist’s problem.

In isolation, components of this setting have been studied extensively. The literature

on advertising, for instance, has considered the value of information for new products,

treating it as given that there is some information that would inform consumers of their

willingness-to-pay (see Bagwell (2007) for a thorough discussion of informative advertising).

In the intertemporal pricing literature, Stokey (1979) recognized that willingness-to-pay

may change over time, and that such changes can influence the optimal pricing strategy.

And other papers on intertemporal pricing, such as Biehl (2001) and Deb (2014), have used

exogenous learning by consumers to motivate their studies of stochastic changes in buyer

values.

Despite this apparent interest, we are not aware of any papers that study dynamic

pricing while modeling information arrival explicitly. We suspect one major reason for this

absence relates to technical difficulties. Buyers’ purchasing decisions depend on the value

of information, something that is complicated in static environments and (as far as we are

aware) intractable in most general dynamic environments. While Deb (2014) and Garrett

(2016) restore tractability by considering specific evolution of buyer values, the stochastic

processes they consider violate the martingale condition imposed by Bayesian updating.

Their approaches are suitable for studying settings with taste shocks, but they do not fully

capture learning. So the question of how to price optimally in the face of information arrival

is left unanswered.

We introduce a model of intertemporal pricing that incorporates dynamic information

arrival, and proceed to demonstrate a benchmark result on the optimality of constant price

paths. To do this, we adopt the approach of the active literature on robust mechanism design.

A seller commits to a pricing strategy, while buyers observe signals of their values, possibly

over time, each according to some information structure (or more precisely, information

arrival process). We assume that the seller does not know any part of the information arrival

processes that inform the buyers of their values,3 and is concerned with the worst possible

3While we assume each buyer knows her entire information arrival process, we show in Appendix A.4.2

4



information structures given the pricing decisions. One justification for this worst-case

analysis is that the seller may want to guarantee a good outcome, no matter what the

information structures actually are.4 For our application, another justification would be that

an adversary (e.g. a competitor or disgruntled journalists) may be interested in minimizing

the seller’s profit. If the firm did not have total control over what information consumers

might have access to, our framework would be appropriate.5 As for the commitment

assumption, introducing it circumvents issues related to the Coase conjecture. Without seller

commitment, this result implies that the worst-case is approximately achieved when buyers

know their values, delivering profit to the seller equal to the minimum buyer valuation.6

Our first result is that a longer time horizon does not increase the amount of profit

the seller can obtain from each buyer. One explanation is as follows: in each period, the

adversary could release information that minimizes the profit in that period. Doing so

would make the seller’s problem separable across time, eliminating potential gains from

decreasing prices. This intuition is incomplete, because the worst-case information structures

for different periods need not be consistent, in the sense that past information may prevent

the adversary from minimizing profits in the future. While this feature makes it difficult

to find the exact worst case for arbitrary price paths, we use partitional information arrival

processes to demonstrate how the adversary can hold the seller to a profit no larger than the

single period benchmark. These information arrival processes involve the buyer learning

whether his value is above or below a given threshold, with this threshold declining over

time. As long as the seller desires robustness against this restrictive (yet intuitive) class of

information arrival processes, our results would continue to hold.

that the results continue to hold if buyers face maxmin uncertainty over what information they will receive in
the future.

4A more complete discussion of this justification can be found in the robust mechanism design literature,
in particular: Chung and Ely (2007), Frankel (2014), Yamashita (2015), Bergemann, Brooks and Morris (2017),
Carroll (2015, 2017).

5In Appendix A.4.2, we show that our solution also emerges in an alternative game where the information
disclosure policy is set to help the buyer (rather than hurt the seller). This interpretation is inspired by (though
distinct from) Roesler and Szentes (2017), which we discuss in depth.

6See Section 1.3.1 for a more complete discussion of the commitment assumption.
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While the above argument shows that selling only once (at the single-period optimal

price) is an optimal strategy with only a single buyer, this pricing strategy forgoes potential

future profit when multiple buyers with i.i.d. values arrive over time. In the classic setting

with known values, a constant price path maximizes the profit obtained from each arriving

buyer, who either buys immediately upon arrival or not at all. This argument does not

extend to our problem, since nature7 can induce delay by promising to reveal information

to the buyer in the future. Such delay could be costly for the seller, due to discounting.

However, we show that as nature attempts to convince the buyer to delay her purchase,

it must also promise a greater probability of purchase to satisfy the buyer’s incentives. It

turns out that, from the seller’s perspective, the cost of delayed sale is always offset by the

increased probability of sale. We thus show that a constant price path ensures the greatest

worst-case profit, equal to the profit when buyers can only possibly buy upon arrival. We

refer to this profit guarantee as the no-delay guarantee.

Together, this analysis delivers a result qualitatively similar to one that has been shown

under known values (e.g., Stokey (1979)): The seller’s optimal strategy is to hold the price

fixed at the single-period optimal price, and (in the worst-case) buyers purchase either

immediately or never. This holds even though the single-period optimum in our problem is

different from Stokey (1979) due to buyer learning.

A crucial assumption in our main model is that buyer information in each period can

depend on the entire history of realized prices. In Section 1.7, we consider several variants

of the model, which allow for less interaction between prices and information. These

alternative setups generalize the single-period models studied by Du (2018) and Roesler and

Szentes (2017). Though their (single-period) profit guarantee is typically higher than ours,

we discuss conditions on the information arrival process that ensure the no-delay guarantee

is still achievable.

Section 1.8 shows that the difference between our profit guarantee and that of Roesler

and Szentes (2017) and Du (2018) disappears when players are patient and informational

7It is convenient to think of “nature” choosing the information arrival process to hurt the seller.
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externalities are present. Specifically, we consider a variant of the model where the value

for the product is common across buyers and information is publicly observed. In this

alternative model, whether or not information can depend on the current period price does

not influence the optimal profit guarantee when all players are sufficiently patient.

We begin by reviewing the literature, and then proceed to present the main model. The

one period benchmark is studied in Section 1.4, and we show that intertemporal incentives

do not help the seller in Section 1.5. Using this result, we demonstrate that constant price

paths are optimal in Section 1.6. The remaining sections discuss our timing assumptions,

informational externalities and other modifications. Section 1.10 concludes.

1.2 Literature Review

This paper is part of a large literature that studies pricing under robustness concerns, where

the designer may be unsure of some parameter of the buyer’s problem. Informational

robustness is a special case, and one that has been studied in static settings. The most

similar to our one-period model are Roesler and Szentes (2017) and Du (2018). Both papers

consider a setting like ours, where the buyer’s value comes from some commonly known

distribution, but where the seller does not know the information structure that informs the

buyer of her value.8 Taken together, these papers characterize the seller’s maxmin pricing

policy and nature’s minmax information structure in the static zero-sum game between

them.9 The one-period version of our model differs from these papers, since we assume that

nature can reveal information depending on the realized price the buyer faces (see Section

1.3.1 for further discussion). Moreover, our paper is primarily concerned with dynamics,

which is absent from Roesler and Szentes (2017) and Du (2018).

8Du (2018) extends the analysis to a one-period, many-buyer common value auction environment. He
constructs a class of mechanisms that extracts full surplus when the number of buyers grows to infinity, despite
the presence of informational uncertainty. This is solved in the special case of two buyers and two value types
by Bergemann, Brooks and Morris (2016), and in the general case by Brooks and Du (2018).

9Roesler and Szentes (2017) actually motivate their model as one where the buyer chooses the information
structure; they show that this solution also minimizes the seller’s profit. See Appendix A.4.2 for a related
interpretation of our model.
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Other papers have considered the case where the value distribution itself is unknown

to the seller. For instance, Carrasco et al. (2017) consider a seller who does not know the

distribution of the buyer’s value, but who may know some of its moments. If the distribution

has two-point support, our one-period model becomes a special case of Carrasco et al. (2017)

in which the seller knows the support as well as the expected value. But in general, even in

the static setting, assuming a prior distribution constrains the possible posterior distributions

nature can induce beyond any set of moment conditions. This point is elaborated on in

Section 1.9.2.

In our model, nature being able to condition on realized prices is sufficient to eliminate

any gains to randomization (even if the randomization is to be done in the future). This

may be reminiscent of Bergemann and Schlag (2011), who show (in a one-period model)

that a deterministic price is optimal when the seller only knows the true value distribution

to be in some neighborhood of distributions.10 However, the reasoning in Bergemann and

Schlag (2011) is that a single choice by nature yields worst-case profit for all prices. This

is not true in our setting, but we are able to construct an information structure for every

pricing strategy that shows randomization does not have benefits.

While most of this literature is static, some papers have studied dynamic pricing where

the seller does not know the value distribution. Handel and Misra (2014) allow for multiple

purchases, while Caldentey, Liu, Lobel (2016), Liu (2016) and Chen and Farias (2016) consider

the case of durable goods. As discussed above, information arrival restricts how the value

evolves, and rules out the cases considered in the literature. In addition, these papers look

at different seller objectives; the first three study regret minimization, whereas the last one

looks at a particular mechanism that approximates the optimum.

The literature on robust mechanism design has become popular in recent years in part

due to its ability to provide foundations for the optimality of simple mechanisms, which

tend to be observed in practice. For instance, Carroll (2017) shows how uncertainty over

10Their result applies to maxmin profit as in our model. The authors also show that if the seller’s objective is
instead to minimize regret, then random prices do better.
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the correlation between a buyer’s demand for different goods leads to the seller pricing the

goods independently.11 In Carroll (2015), uncertainty over the mapping from an agent’s

actions into output leads to the principal aligning the agent’s compensation directly with

output. In Frankel (2014), similar alignment arises when there is uncertainty over the agent’s

bias, and Yamashita (2015) shows how uncertainty about bidders’ higher order beliefs may

favor second price auctions even with interdependent values. At the moment, however, this

literature has had much less to say about dynamic environments. Important exceptions

are Penta (2015), who considers the implementation of social choice functions in dynamic

settings, and Chassang (2013), who shows how dynamics allow a principal to approximate

robust contracts which may be infeasible in the presence of liability constraints. These are

both rather different from our setting, and we suspect there is much work left to be done in

this area.

Several intertemporal pricing papers allow for the value to change over time without

explicitly modeling information arrival (absent robustness concerns). Stokey (1979) assumes

the value changes deterministically given the initial type. Deb (2014) assumes the value

is independently redrawn upon Poisson shocks. For Garrett (2016), the value follows a

two-type Markov-switching process. As mentioned above, these papers do not impose

the martingale condition for expectations. We are not aware of how to determine buyer

purchasing behavior under an arbitrary information arrival process. But the maxmin

objective allows us to focus on simple and intuitive information structures, making the

buyer’s problem tractable.

Finally, it is well known that the literature on informational robustness is related to the

literature on information design, which has also recently begun to study dynamics (see

Ely (2017) and Ely, Frankel and Kamenica (2015)). While we are ultimately concerned with

pricing strategies, this connection is relevant because we describe how a receiver’s (buyer)

11The general link between dynamic allocations and multi-dimensional screening has been long noted in
Bayesian settings (see, for instance, Pavan Segal and Toikka (2014) for a discussion of this point). While it
is interesting that we obtain a result that is similar to his, we note that our focus on information arrival and
single-object purchase are significant differences.
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behavior varies depending on how a sender (nature) chooses the information structure.

Several of our results (in particular, the proof of Lemma 2) bear resemblance to this literature,

and they may be of interest outside of our setting.

1.3 Model

A seller sells a durable good at times t = 1, 2, . . . , T, where T  •. At each time t, a single

buyer arrives and decides if and when to buy the object.12 All parties discount the future at

rate d. The product is costless for the seller to produce,13 while each buyer has unit demand.

Throughout what follows, we let t denote calendar time, and let a index a buyer’s arrival

time. Each buyer has an independently drawn discounted lifetime utility from purchasing

the object. We let v denote some unspecified buyer’s value, and assume that each buyer’s

value is drawn from a distribution F supported on R+, with 0 < E[v] < •. We let v denote

the minimum value in the support of F. The distribution F is fixed and common knowledge,

and buyer values for the object do not change over time.

However, the buyers do not directly know their v; instead, they learn about it through

signals they obtain over time, via some information structure. To be precise, a dynamic

information structure Ia for a buyer arriving at time a is:

• A set of possible signals for every time t after a, i.e., a sequence (St)Tt=a, and

• Probability distributions given by Ia,t : R+ ⇥ St�1
a ⇥ Pt ! D(St), for all t with a  t 

T.

Without loss of generality, we assume that all buyers are endowed with the same signal sets

St, although each one privately observes any particular signal realization. Note that the buyer

observes signal realization st at time t, whose distribution depends on (their own) true value

12Our basic analysis is unchanged if the number of arriving buyers varies over time, or is stochastic, provided
the value distribution is fixed.

13Introducing a cost of c per unit does not change our results: it is as if the value distribution F were “shifted
down" by c, and the buyer might have a negative value. The transformed distribution G in Definition 1 below
would also be shifted down by c.
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v 2 R+, the history of (their own) previous signal realizations st�1
a = (sa, sa+1, . . . , st�1) 2

St�1
a , as well as the history of all previous and current prices pt = (p1, p2, . . . , pt) 2 Pt. In

particular, this definition allows for information structures to display history dependence.14

The timing of the model is as follows. At time 0, the seller commits to a pricing strategy

s, which is a distribution over possible price paths pT = (pt)Tt=1. We allow pt = • to mean

that the seller refuses to sell in period t. Note that the price the seller posts at time t must be

the same for all buyers that have the ability to buy in that period. After the seller chooses

the strategy, nature chooses a dynamic information structure for each buyer. In each period

t � 1, the price in that period pt is realized according to s(pt | pt�1). A buyer arriving

at time a with true value v observes the signal st with probability Ia,t(st | v, st�1
a , pt) and

decides whether or not to purchase the product (and if so, when).

Given the pricing strategy s and the information structure Ia, the buyer arriving at time

a faces an optimal stopping problem. Specifically, they choose a stopping time t⇤
a adapted

to the joint process of prices and signals, so as to maximize the expected discounted value

less price:

t⇤
a 2 argmax

t
E
⇥
dt�a(E[v|st

a , p
t]� pt)

⇤
.

The inner expectation E[v|st
a , pt] represents the buyer’s expected value conditional on

realized prices and signals up to and including period t. The outer expectation is taken

with respect to the evolution of prices and signals. We note that the stopping time ta is

allowed to take any positive integer value  T, or ta = • to mean the buyer never buys.

The seller evaluates payoffs as if the information structure chosen by nature were the

worst possible, given his pricing strategy s and buyer’s optimizing behavior. Hence the

seller’s payoff is:

sup
s2D(pT)

inf
(Ia),(t⇤

a )

T

Â
a=1

E[dt⇤
a �apt⇤

a ] s.t. t⇤
a is optimal given s and Ia, 8a.

Note that when a buyer faces indifference, ties are broken against the seller. Breaking

14To avoid measurability issues, we assume each signal set St is at most countably infinite. All information
structures in our analysis have this property.
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indifference in favor of the seller would not change our results, but would add cumbersome

details.15

1.3.1 Discussion of Assumptions

Several of our assumptions are worth commenting on. First, following the robust mechanism

design literature, we assume that the buyer has perfect knowledge of the information

structure whereas the seller does not. More precisely, each buyer knows the information

structure, and is Bayesian about what information will be received in the future. In contrast,

the seller is uncertain about the information structure itself. Our interpretation is that the

buyers understands what information they will have access to; for instance, someone may

always rely upon some product review website and hence know very well how to interpret

the reviews. The seller, on the other hand, knows that there are many possible ways buyers

can learn, and wants to do well against all these possibilities. In Section 1.9.1, we will show

that our results extend even if the seller knows the buyer begins with extra prior information

(say, through advertising). Thus, a deterministic constant price path remains optimal when

nature is constrained to provide some particular information (but could provide more) in

the first period. In Appendix A.4.2, we also show that, as long as the buyer is uncertainty

averse and knows how to interpret all signals they have received, the worst case for the seller

involves a Bayesian buyer. Our results only require that the buyers know what information

they receive at any given time.

Second, we assume that the value distribution is common knowledge. This restriction is

for simplicity, allowing us to focus on information arrival and learning. The assumption

also enables us to compare our results to the classic literature on intertemporal pricing. In

fact, the classic setting where the buyer knows her value can be seen as an extreme case of

our extended model in Section 1.9.1.

Third, we assume that the information structure for a buyer arriving at a only depends

15When ties are broken against the seller, it follows from our analysis that the sup inf is achieved as maxmin.
This would not be true if ties were broken in favor of the seller.
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on his value, his signal history and the price history. In principle, one may want the

information structure to depend on more variables, such as the purchasing history or the

signals and values of other buyers. However, because of our worst case objective and the

i.i.d. assumption, allowing for nature to condition on more variables would not hurt the

seller further. In contrast, these variables are important in Section 1.8, when we allow

common values and public information.

Fourth, we assume that the seller commits to a pricing strategy that the buyer observes.

This avoids certain technical difficulties related to formalizing (seller) learning under ambi-

guity (see Epstein and Schneider (2007)). But in practice, firms like Amazon and Apple are

widely followed by consumers and industry experts, meaning that they are typically able to

credibly announce (and stick to) consistent pricing strategies. And while some strategies

may be difficult for a seller to commit to, constant price paths are significantly simpler to

implement since deviations are straightforward to detect. On the other hand, we restrict the

seller to using pricing mechanisms, and rule out, for instance, mechanisms that randomly

allocate the object as a function of reports. We view this as a restriction on the environment,

and one that tends to be quite common in our applications.

Finally, our key timing assumption is that the information structure in each period is

determined after the price for that period has been realized. As in the literature review, if the

information structure is determined before the price is realized, then the one-period optimal

seller strategy would follow from Roesler and Szentes (2017) and Du (2018). The question

of timing is more delicate under dynamics; should a buyer’s second period information

depend on the first period price they observed? What about buyers that arrive later? These

questions motivate the analysis in Section 1.7, which discusses these issues in more depth.

In any event, we believe that information could depend (at least somewhat) on price in

practice. When shopping online, a consumer’s information about a product may depend on

how prominently it is displayed in the search results. If the buyer sorts products by how

expensive they are, then the information structure will depend on the realized price.
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1.4 Single Period Analysis

We start with the case where the seller does not worry about intertemporal incentives.

For simplicity, we do this by taking T = 1, although the results are identical if buyers

are myopic or could only purchase upon arrival. To solve this problem, we define a

transformed distribution of F. For expositional simplicity, the following definition assumes

F is continuous. All of our results in this paper extend to the discrete case, though the

general definition requires additional care and is relegated to Appendix A.1.

Definition 1. Given a continuous distribution F, the transformed distribution G = P(F) is defined

as follows. For y 2 R+, let L(y) denote the conditional expectation of v ⇠ F given v  y. Then G

is the distribution of L(y) when y is drawn according to F. We call G the “pressed” version of F,

and refer to the mapping P as “pressing.”

The pressed distribution G is useful because for any (realized) price p, nature can only

ensure that the object remains unsold with probability G(p). This holds since the worst-

case information structure has the property that a buyer who does not buy has expected

value exactly p. To see why, consider an information structure where the buyer’s belief

following a recommendation to not buy is vN < p and the recommendation following a

recommendation to buy is vB(> p). Then nature could, with some small probability # > 0,

give the recommendation to not buy whenever buy would have been recommended, hurting

the seller. The buyer would have a higher belief following a recommendation to not buy,

but would still follow it if # were sufficiently small. This logic holds as long as vN < p.

In fact, the worst-case information structure following a price p is a partition with a

threshold that induces a belief p following the recommendation not to buy. One can show

(e.g., Kolotilin (2015)) that partitional information structures minimize the probability the

buyer is recommended to buy, whenever the belief following the recommendation to not

buy must be some fixed value (in our case, p). This observation allows us to show that the

worst-case information structure involves telling the buyer whether her value is above or

below F�1(G(p)), making 1� G(p) the probability of sale.
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These remarks give us the following proposition:

Proposition 1. In the one-period model, a maxmin optimal pricing strategy is to charge a determin-

istic price p⇤ that solves the following maximization problem:

p⇤ 2 argmax
p

p(1� G(p)). (1.1)

For future reference, we call p⇤ the one-period maxmin price and similarly P⇤ = maxp p(1� G(p))

the one-period maxmin profit.

It is worth comparing the optimization problem (1.1) to the standard model without

informational uncertainty. If the buyer knew her value, the seller would maximize p(1�
F(p)). In our setting, the difference is that the transformed distribution G takes the place of

F, which will be useful for the analysis in later sections. The following example illustrates:

Example 1. Let v ⇠ Uniform[0,1], so that G(p) = 2p. Then p⇤ = 1
4 and P⇤ = 1

8 . With only one

period to sell the object, the seller charges a deterministic price 1/4. In response, nature chooses an

information structure that tells the buyer whether or not v > 1/2.

In Example 1, relative to the case where the buyer knows her value, the seller charges a

lower price and obtains a lower profit under informational uncertainty. In Appendix A.4.2,

we show that this comparative static holds generally.

Finally, also note that there are other information structures which induce the same

worst-case profit for the seller. For example, the buyer could be told her value exactly if it is

above the threshold, since she will still buy. However, any worst case information structure

involves the buyer being told if her value is below the threshold (i.e., the lowest element of

the partition cannot be refined further on a set of positive measure).
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1.5 Intertemporal Incentives Do Not Help

In this section we present our first main result, that having multiple periods to sell does

not allow the seller to extract more surplus from each buyer.16 Stokey (1979) demonstrated

that this result holds when buyers know their values, provided they do not change over

time. On the other hand, she also demonstrated that if values do change over time, letting

buyers delay purchase could enable a seller to obtain higher profits by facilitating price

discrimination.17 One may wonder whether information arrival, which affects the buyers’

value over time, could similarly make price discrimination worthwhile.

However, it turns out for worst case information structures, these concerns do not arise.

For simplicity, we focus on the case where there is a single buyer at time 1, since the

argument readily extends to the case where buyers arrive at every time. With only the first

buyer, the seller could always sell exclusively in the first period, the one-period profit P⇤

forms a lower bound on the seller’s maxmin profit from this buyer. To show that P⇤ is also

an upper bound, we explicitly construct a dynamic information structure for any pricing

strategy, such that the seller’s profit under this information structure decomposes into a

convex combination of one-period profits. Our proof takes advantage of the partitional form

of worst-case information structures from the single period problem:

Proposition 2. For any pricing strategy s 2 D(pT), there is a dynamic information structure I
and a corresponding optimal stopping time t⇤ that lead to expected (undiscounted, per-buyer) profit

no more than P⇤. So, for a single buyer, the seller’s maxmin profit against all dynamic information

structures is P⇤, irrespective of the time horizon T and the discount factor d.

We will present the proof of this proposition under the assumption that the seller charges

16We highlight that the dynamics of information arrival are crucial for this result. For instance, suppose the
seller knew that information would not be released in some period t. Then he could sell exclusively in that
period and (by charging random prices) obtain the Roesler and Szentes (2017) profit level, which is generally
higher than P⇤ (see Section 1.7 for details). For d sufficiently close to 1, this pricing strategy does better than a
constant price path.

17It is interesting to note in our worst case information structures, buyers who do not buy actually do
have a positive continuation value, even though this need not hold for arbitrary (non-worst case) partitional
information arrival processes.
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a deterministic price path (pt)Tt=1. This is not without loss, because random prices in the

future may make it more difficult for nature to choose an information structure in the

current period that minimizes profit. However, our argument does extend to random prices

and shows that randomization does not help the seller. We discuss this after the (more

transparent) proof for deterministic prices.

Let us first review the sorting argument when the buyer knows her value. In this case,

given a price path (pt)Tt=1, we can find time periods 1  t1 < t2 < · · ·  T and value cutoffs

wt1 > wt2 > · · · � 0, such that the buyer with v 2 [wtj ,wtj�1 ] optimally buys in period tj

(see e.g. Stokey (1979)). This implies that in period tj, the object is sold with probability

F(wtj�1)� F(wtj).

Inspired by the one-period problem, we construct an information structure under which

in period tj, the object is sold with probability G(wtj�1)� G(wtj) (that is, where G replaces

F). The following information structure I has this property:

• In each period tj, the buyer is told whether or not her value is in the lowest G(wtj)-

percentile.

• In all other periods, no information is revealed.

This information structure is similar to the one period problem, in that a buyer is told

whether her value is above a given threshold. In the dynamic setting, this threshold is

now declining over time. We refer to these information structures as partitional information

arrival processes, since different signal realizations partition the support of the buyer’s

value distribution into disjoint intervals. Note that the thresholds are chosen to make

the buyer indifferent between purchasing and continuing without further information. The

buyer therefore prefers to delay purchase when her value is below the threshold. On the

other hand, a buyer whose value is above the threshold does not expect to receive further

information, and hence purchases immediately. These observations are summarized in the

following lemma:
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Lemma 1. Given prices (pt)Tt=1 and the information structure I constructed above, an optimal

stopping time t⇤ involves the buyer buying in the first period tj when she is told her value is not in

the lowest G(wtj)-percentile.

The proof of this lemma can be found in Appendix A.1, where we actually prove a more

general result for random prices.

Using this lemma, we can now prove Proposition 2 by computing the seller’s profit

under the information structure I and the stopping time t⇤:

Proof of Proposition 2 for Deterministic Prices. Since the buyer with true value v in the per-

centile range (G(wtj),G(wtj�1)] buys in period tj, the seller’s discounted profit is given by

(assuming T = •):

P = Â
j�1

dtj�1ptj ·
⇣
G(wtj�1)� G(wtj)

⌘

= Â
j�1

(dtj�1ptj � dtj+1�1ptj+1) · (1� G(wtj))

= Â
j�1

(dtj�1 � dtj+1�1)wtj · (1� G(wtj))

 dt1�1 · P⇤,

(1.2)

where the second line is by Abel summation,18 the third line is by wtj ’s indifference between

buying in period tj or tj+1, and the last inequality uses wtj(1� G(wtj))  P⇤, 8j. For finite
horizon T, the proof proceeds along the same lines except for a minor modification to Abel

summation. ⌅

Relative to the potential complexity of arbitrary information arrival processes, we find

it noteworthy that the information structures constructed here are reasonably intuitive:

Consumers buy when they find out that their value is above some (price contingent)

threshold. Intertemporal pricing cannot help the seller as long as she is concerned (at least)

with these particular information arrival processes.

18Abel summation says that Âj�1 ajbj = Âj�1

⇣
(aj � aj+1)Âj

i=1 bi
⌘
for any two sequences {aj}•

j=1, {bj}•
j=1

such that aj ! 0 and Âj
i=1 bi is bounded. We take aj = dtj�1ptj and bj = G(wtj�1 )� G(wtj ).
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Despite the appeal of the analogy to the known value case, it is worth noting that for

an arbitrary declining price path, these information structures we construct in the proof

above may not be the worst-case. The following example illustrates (we use a discrete value

distribution for simplicity):

Example 2. Let T = 2, v 2 {0, 1} with P[v = 1] = 1/2 and d = 1/2. Suppose the seller were to

use a price path p1 = 11/40 and p2 = 1/10. Since a buyer would be indifferent between purchase

and delay with a true value of 9
20 , the information structure constructed in Lemma 1 applied to this

example induces posterior expected value 9
20 when the buyer is recommended to not purchase in the

first period, and expected value p2 when recommended to not purchase in the second period. One can

show that the (overall) expected profit is:19

p1 · 1
11

+ (dp2) ·
✓
1� 1

11

◆✓
7
18

◆
⇡ 0.0427 < 0.0858 ⇡ P⇤.

Now suppose that instead, nature were to provide no information in the first period and reveal the

value perfectly in the second period. Note that the buyer would be willing to delay, since

E[v]� p1  d ·P[v = 1] (1� p2) .

In fact, equality holds. Under this information structure, the seller’s profit is therefore dp2P[v =

1] = 1
40 = 0.025 < 0.0427.

The important feature of the example is that in the second period, the buyer strictly prefers

following the recommendation they are given to disobeying it. Such an information structure

creates option value, and potentially hurts the seller by inducing delay in dynamic settings.

While we can show that the above information structure is indeed worst case in this example,

finding the worst-case information structures against a given price path seems challenging

in general, and is not necessary for our main result on the optimality of constant prices.

We note that random prices introduce a technical difficulty in applying the sorting

19If the probability of being recommended to buy in period t is rt, we have 1
2 = r1 + 9

20 (1 � r1) and
9
20 = r2 + 1

10 (1� r2). These equations give r1 = 1
11 and r2 = 7

18 .
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argument directly. Since the threshold values wtj depend on both the realized price and the

distribution of future prices, they are in general random variables. More problematically,

these thresholds may be non-monotonic if they are defined using the buyer’s indifference

condition. If such non-monotonicity occurs, we will not be able to express the seller’s

discounted profit as a convex sum of one-period profits, and the profit bound will not be

valid.

In Appendix A.1 we show that the intuition from the deterministic case still works when

prices can be random, but we develop additional technical tools in order to generalize the

construction appropriately. Specifically, we modify the relevant indifference thresholds so

that they are forced to be decreasing. To be precise, we define vt to be the smallest value

(in the known-value case) that is indifferent between buying in period t at price pt and

optimally stopping in the future, and then let wt = min{v1, v2, . . . , vt}. We think of this as

keeping track of the “binding” thresholds, above which all consumers have already bought.

This circumvents the monotonicity issue that arises with randomizations, so that we can

use the redefined wts in our specification of the (otherwise identical) dynamic information

structure. The rest of the proof is as before, with the assistance of Lemma 9, which expresses

the price at any period as the expectation of a convex sum of the present and future wts.20

Proposition 2 thus continues to hold for random prices.

1.6 Optimality of Constant Prices

We now demonstrate the optimality of constant price paths. By Proposition 2, the seller’s

discounted profit from the buyer arriving at time a is bounded above by da�1 · P⇤. This

gives us an upper bound for the seller’s worst case profit. Furthermore, if the seller were

able to set personalized prices (i.e., conditioning on the arrival time), this upper bound

could be achieved by selling only once to each arriving buyer. We will show that the seller

can achieve the same profit level by always charging p⇤, without conditioning prices on the

20This identity replaces the indifference condition utilized to derive the third line of Equation (1.2).
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arrival time.

Under known values, any arriving buyer facing a constant price path would buy

immediately (if she were to buy at all), due to impatience. However, the promise of future

information may induce the buyer to delay, even with constant prices. Nevertheless, in the

following lemma, we show that against non-decreasing price paths, it is enough to consider

information structures which only release information upon arrival:

Lemma 2. In the multi-period model with one buyer, the seller can guarantee P⇤ with any deter-

ministic price path (pt)Tt=1 satisfying p⇤ = p1  pt, 8t.

We present the intuition here and leave the formal proof to Appendix A.1. Fixing a

non-decreasing price path and an arbitrary dynamic information structure nature could

choose, we consider an alternative information structure that only gives a recommendation

to the buyer (to purchase or not) when they arrive. The probability that the buyer is

recommended to purchase at time 1 in this replacement information structure leaves the

discounted probability of sale unchanged. In other words, we “push and discount” nature’s

recommendation to the buyer’s arrival time.

The proof shows that for non-decreasing prices, the buyer would follow the recommen-

dation of this replacement, while the seller’s profit is weakly decreased. Since the seller

receives at least P⇤ under any information structure that releases information only in the

first period, we obtain the lemma. Note that Example 2 demonstrates this argument relies

upon non-decreasing prices.

Armed with this lemma, we can show our main result of the paper. The proof is

straightforward given our results:

Theorem 1. The seller can guarantee P⇤ · 1�dT

1�d with a constant price path charging p⇤ in every

period. This deterministic pricing strategy is optimal, and it is uniquely optimal whenever the

one-period maxmin price p⇤ is unique.

Facing a constant price path, a worst-case dynamic information structure simply involves

giving each buyer the same information structure they would have obtained with only a
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single period. This completes our analysis of the baseline model.

1.7 Timing

This section analyzes the implications of our assumption regarding the timing of information

acquisition relative to pricing. This assumption is captured in how we define dynamic

information structures, since we allow them to be contingent on all past prices as well as

the current price, but not future prices. When T = 1, the benchmark where information

cannot depend on price is studied in Roesler and Szentes (2017) and Du (2018), which

together solve the seller’s (and nature’s) problem in this benchmark.21 For completeness,

we recall their result. To make the connection with our paper most clear, we impose as in

these papers that the buyer’s value distribution F is supported on [0, 1]. Roesler and Szentes

(2017) observe that in choosing an information structure, nature is equivalently choosing a

distribution F̃ of posterior expected values, such that F is a mean-preserving spread of F̃.22

They solve for the worst-case distribution F̃ as summarized below:

Theorem 1 in Roesler and Szentes (2017). For 0  W  B  1, consider the following

distribution that exhibits unit elasticity of demand (with a mass point at x = B):

FB
W(x) =

8
>>>>>><

>>>>>>:

0 x 2 [0,W)

1� W
x x 2 [W, B)

1 x 2 [B, 1]

(1.3)

In the one-period zero-sum game between the seller and nature, an optimal strategy by nature is to

induce posterior expected values given by the distribution FB
W for some W, B, such that W is smallest

possible subject to F being a mean-preserving spread of FB
W.

21In principle, these may not be the only two benchmarks of interest, since one could also study cases where
information interacts somewhat, but not arbitrarily, with the price. We do not do so here since we are not aware
of any reasonable, compelling alternative restrictions.

22This equivalence is separately observed by Gentzkow and Kamenica (2016) in the context of Bayesian
persuasion. These authors attribute the result to Rothschild and Stiglitz (1970).
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The seller’s optimal single-period profit guarantee is found by computing the smallest W

defined above, which we denote by PRSD. Conversely, Du (2018) constructs a particular

mechanism the seller can use to guarantee profit PRSD against any information structure.

In Appendix A.4.1, we represent Du’s “exponential mechanism" as an equivalent random

price mechanism. We also note that PRSD � P⇤ in general, and in Appendix A.4.1 we

characterize when the inequality is strict.

As alluded to in the Introduction and Section 1.3.1, specifying the role of prices in

dynamic information structures is more subtle than for static information structures. Over

time, there are many more ways for information to interact with price (or not). Our

benchmark corresponds to the most cautious case, but other cases are worth commenting

on as well (particularly for readers interested in how Roesler and Szentes (2017) and Du

(2018) extend to dynamic settings).

In this Section, we re-define a dynamic information structure to be a sequence of signal sets

(St)Tt=1 and probability distributions Ia,t : R+ ⇥ St�1
a ⇥ Pt�1 ! D(St). The crucial distinction

from our main model is that the signal st depends on previous prices pt�1 but not on the

current price pt. The seller chooses a pricing strategy that achieves maxmin profit against

these information structures (and optimal stopping times of the buyer).

Before moving to the full model with arriving buyers, as a warm up we note that a more

direct argument can be used in this setting to show a seller does no better with a longer

horizon than our main model required (i.e., avoiding the constructions in Proposition 2).

Proposition 3. Suppose there is a single buyer. For any time horizon T and any discount factor

d, the seller’s maxmin profit when nature cannot condition on the current period price is given by

PRSD.

The reasoning is as follows: With multiple periods and a single buyer, the seller can

guarantee PRSD by selling only once in the first period (using Du’s mechanism). On

the other hand, suppose nature provides the Roesler-Szentes information structure in the

first period and no additional information in later periods. Then the seller faces a fixed

23



distribution of values given by FB
W . By Stokey (1979), selling only once is optimal against

this distribution, and the seller’s optimal profit is at most W = PRSD. This proves the result.

While both Proposition 2 and Proposition 3 show a longer selling horizon does not help

the seller, here the argument is more direct due to the duality between Roesler-Szentes and

Du. In other words, without price dependence and with only one buyer, the transformation

of the distribution can be done without reference to future prices. But in our baseline

seting, this does not hold, as evidence by the fact that the dynamic information structures

in Proposition 2 must depend on the seller’s future pricing strategy. With arriving buyers,

however, withholding future sales is costly, as in our baseline model, and we again need to

worry about the possibility the future sales provides a channel for information arrival to

harm the seller. We consider three different cases; in the first two, the no-delay profit is still

achievable, but in the third it is not.

1.7.1 Case One: Information only upon arrival, but possibly contingent on past

(though not current) prices

Our first benchmark considers the subset of dynamic information structures defined prior

to Proposition 3 which only provide each buyer with a single signal. Hence each buyer is

endowed with a single probability distribution Ia : R+ ⇥ Pt�1 ! D(Sa). These are dynamic

in the sense that they respond to prices, but not in the sense that information arrives over

time. Note that if the seller used a constant price path, nature can provide FB
PRSD

and the

worst-case partition to later buyers. The seller’s profit from all buyers after the first is then

no larger than P⇤, and since P⇤ < PRSD with v ⇠ U[0, 1], a constant price path would not

achieve the no-delay guarantee.

However, by changing the way the seller randomizes over the price, the no-delay

guarantee is achievable:

Theorem 2. Suppose there are arriving buyers, and suppose each buyer only receives information

once upon arrival (before the price realizes in that period). For any time horizon T and any discount

factor d, the seller has a pricing strategy that ensures profit at least PRSD from each buyer. Thus the
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seller’s maxmin profit is PRSD ·
⇣
1�dT

1�d

⌘
.

The proof is based on a key lemma (Lemma 10 in Appendix A.2) relating the outcome

under a static price distribution to that under a dynamic price distribution. This outcome-

equivalence property enables us to construct a dynamic pricing strategy that replicates

Du’s mechanism for each arriving buyer, achieving PRSD as profit guarantee. Essentially,

we consider randomization over threshold indifference conditions instead of randomization

over price itself, and then use this to construct the dynamic random pricing strategy of the

seller. This intuition—namely, to consider the buyer’s indifference conditions instead of

the prices—bears some resemblance to the intuition behind Proposition 2 and Lemma 9,

although we are not aware of any formal equivalence between the two.

1.7.2 Case Two: Information cannot depend on prices at all

Next, we consider the case where we define a dynamic information structure to be completely

price independent—that is, a probability distribution Ia,t : R+ ⇥ St�1
a ! D(St)—but allow

for buyers to obtain information over time. While this case is in some sense the polar

opposite of what we study, the resulting optimum is remarkably similar. Specifically, an

optimal strategy for the seller is to utilize a constant price path, but drawing the price path

randomly according to a Du distribution instead of setting it equal to p⇤ (as opposed to

in our main model). It turns out that again, intertemporal incentives disappear when this

strategy is employed:

Theorem 3. Suppose there are arriving buyers, and suppose that all information is independent of

all realized prices (though may depend on the pricing strategy). For any time horizon T and any

discount factor d, the seller has a pricing strategy that ensures profit at least PRSD from each buyer.

Thus the seller’s maxmin profit is PRSD ·
⇣
1�dT

1�d

⌘
.

This theorem involves new techniques that may be of independent interest. Recall that, in

allowing for random pricing strategies in Section 1.5, we defined cutoff values (forced to be

decreasing) in two steps—first using the buyer’s indifference condition, and then keeping

track of the lowest realized value arising from this indifference condition. Intuitively, these
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were the relevant “binding thresholds,” above which consumers would have already bought.

Inspired by this technique, the proof of Theorem 3 introduces the dual definition of cutoff

thresholds, namely cutoff prices. This approach is natural since the Du mechanism gives a

natural guess for the worst case pricing strategy (circumventing the need to construct an

information structure against an arbitrary price path as in Section 1.5). Having this guess

is not enough, however, since we still need to consider a much larger set of information

structures than in Du (2018), and in particular cannot directly appeal to strong duality as

a result. Despite this, we are able to use the cutoff prices to show that the lower bound

from an arbitrary dynamic information structure coincides with the benchmark without

information arrival. The remaining details are left to the appendix.

1.7.3 Case Three: Information can depend upon past (though not current) prices

and is dynamic

Lastly, we consider allowing arbitrary dynamic information structures, with the restriction

that information in any period not depend on that period’s price, as described prior to the

statement of Proposition 3. Here, the no-delay profit is not achievable. This may be expected

since this is a hybrid of the previous two cases (i.e., allowing for past price dependence and

multiple periods of information arrival), and since each required a different generalization

of the Du mechanism:

Claim 4. Consider a model with two periods and one buyer arriving in each period. Suppose nature

can provide information dynamically (to the first buyer). Assume that PRSD > P⇤ and that Du’s

mechanism is uniquely maxmin optimal in the one-period problem. Then the seller’s maxmin profit

in this two-period model with arriving buyers is strictly below (1+ d)PRSD for any d 2 (0, 1).

While the proof of this claim is fairly involved, the information structure chosen by

nature is simple. When a buyer arrives, nature provides her with the Roesler-Szentes

information structure. This yields profit at most PRSD from the second buyer, and similarly

from the first buyer if she expects no additional information in the second period. However,

nature promises to reveal the value perfectly, in the second period, to any buyer who would
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have purchased in the first period without any additional information. The key technical

step of the proof shows that delay always hurts the seller, and it occurs with strictly positive

probability.23 Since this requires the ability to release some payoff-relevant information to

the buyer, this step is only valid if the seller utilizes random prices (as would have to be

part of the optimum since PRSD > P⇤). Claim 4 can thus be interpreted as saying that

whenever randomization is required, the one-period profit benchmark PRSD is unattainable

with arriving buyers and dynamic learning.

On the other hand, we have stated Claim 4 with an extra assumption that Du’s mecha-

nism is strictly optimal. This is for technical reasons that we explain in Appendix A.2, and

it may not be necessary for the conclusion. In any event, we show this assumption holds for

generic F (see Appendix A.4.1 for details).

1.8 Informational Externalities

This section modifies the model from Section 3.1 to allow for interdependent preferences

and information to be conveyed across buyers. Notice that both modifications must be made

in order for the solution to the seller’s problem to be altered. Any information generated by

other buyers is simply a restriction on nature’s problem, and the worst case profit could

only go up by introducing constraints. And such information is meaningless unless one

buyer’s value influences the conditional distribution of the other buyer’s value. In contrast,

we will show that when both features are present, then the seller will be able to achieve a

higher expected discounted profit.

We replace the independent value assumption with the other extreme, where all buyers

share the same value, assuming that v ⇠ F is drawn at the beginning of the interaction.

We also assume that nature chooses a single information arrial process, I , consisting of

signal sets (St)1tT and distributions It : R+ ⇥ St�1 ⇥ Pt ! D(St) that are observed by

23We are only able to show that for this specific information structure, total profit is strictly below (1+ d)PRSD.
Since this is generally not the worst-case information structure for every pricing strategy, we do not know how
to solve for the actual maxmin profit in the model considered here.
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all parties. In particular, there are two additional restrictions we are imposing on nature’s

choice of information arrival processes. First, a buyer that arrives at time t observes the

signals observed by any buyer at time t0  t. Second, all buyers that have the opportunity

to buy at time t observe the same signal realization. We return to this in Example 3.

Our first result restricts the set of relevant information arrival processes we need to

consider. It turns out that for increasing price paths, it is sufficient to provide a single signal

at time 1, which is observed by all subsequent buyers:

Lemma 3. Consider the model with common values and public signals suppose buyers are short

lived. Fix a weakly increasing price path (p1, . . . , pT) with p1  p2  · · ·  pT. Then the worst

case profit is achievable by an information structure that involves a single signal that is observed by

all buyers.

This result is the analog of Lemma 2 for this setting. The steps are similar, but the exact

form of the replacement differs since buyers share the same set of information. Instead, we

conclude that the worst case is achieved by in an information structure consisting of a single

public signal.

Lemma 3 implies that for increasing price paths, it is sufficient to look at a single

distribution of posterior valuations to find optimal price paths. We can write the seller’s

discounted profit from an increasing price path as:

PC = min
F̃

T

Â
t=1

ptdt�1(1� F̃(pt)), (1.4)

where F̃ is some distribution of posterior expected values arising from an information

structure.

Against decreasing price paths, the partitional threshold information arrival processes

we used in the independent values setting can also be used here to show that P⇤ is the most

the seller could achieve with a declining price path. In general, however, the seller can do

better with a strictly increasing price path. 24 Intuitively, since information is shared across

24This result was included in an earlier version of this paper, which also showed that introductory pricing is
strictly optimal with two periods.
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periods, using the worst-case partitional information structure against p1 (with threshold

y1) makes it impossible to use the worst-case information structure against p2 > p1 when

p2 < y1. While we conjecture that introductory pricing is in fact strictly optimal, the

difficulty is to a provide meaningful upper bound for the seller’s maxmin optimal profit

against non-monotonic pricing strategies. This was not a concern in the independent value

setting, because information structures were constructed buyer-by-buyer. On top of this,

it is difficult to conjecture a tight upper bound to the profit guarantee, at least for fixed

parameters.

However, we are able to show that there is a sequence of introductory pricing strategies

that become optimal as d ! 1 when T = •. We do this by appealing to a different upper

bound on the seller’s profit, namely PRSD, which can be ensured if nature ignores price

dependence:25

Theorem 5. Consider the model with common values and public signals. Let PC(d, T) be the seller’s

optimal payoff and discount factor d and time horizon T. We have:

lim
d!1

(1� d)PC(d,•) = PRSD (1.5)

which is achieved by a sequence of introductory (i.e., strictly increasing) price paths.

The proof of this theorem uses that an upper bound for the left hand side of (1.5) is

obtained via a public Roesler-Szentes information structure for all buyers. We then use

our (random price) Du mechanism to construct a sequence of price paths such that as

d ! 1, the expression for the average per-period profit converges to the single period profit

under a Du mechanism. These price paths, for uniformly distributed values, are shown

in Figure 2, for d = 9/10 and d = 95/100 (fixing the initial price to be PRSD). We see that

they involve the monopolist raising prices steeply at first, eventually leveling out. When

the public signal is the Roesler-Szentes information structure, then the probability that the

monopolist sells in every period is bounded away from 0, since the largest value in the

25The same result could be obtained if we replaced the left hand side of (1.5) with limT!•
1
T PC(1, T)
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Figure 1.1: Illustration of constructed price paths. Blue is d = 9/10, orange is d = 95/100.

support of the constructed price distribution is strictly below the supremum of the support

in the Roesler-Szentes distribution (see the Appendix for details).

The problem of optimal pricing when information is conveyed across buyers has been

studied in several other papers in other Bayesian settings, such as Bose et al. (2006, 2008)

(as well as papers cited therin). A major difference between this literature and our setting

is that we allow buyers to delay purchase. While some papers do allow for buyers to

make decisions over time, as far as we are aware, these all involve “small” buyers who

have a negligible impact on the information structure. This feature does not hold in our

setting, since delay by any buyer would influence information arrival. One can show that

for increasing price paths, the profit levels coincide in the worst-case.

We conclude by discussing the assumption that information is public (in that all buyers

observe the same signals). The following shows that without this assumption, the possibility

that buyers observe imperfectly correlated signals can lower the profit guarantee:

Example 3. Take T = 2, and suppose the common value is v 2 {0, 1} with P[v = 1] = 1/2

with d = 1 (the same conclusion will hold for d sufficiently high). Suppose the seller utilizes prices

p1 = 2/5 and p2 = 1/2 > p1. With short lived buyers, if the first buyer observed the second buyer’s

signal following any delay, the worst case information structure would involve a signal observed by
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both buyers, whose posterior expected value is supported on {2/5, 1/2, 1}. Under this restriction,

one can show that the worst case information structure induces posterior value equal to 2/5 with

probability 5/6, and posterior value of 1 otherwise, yielding profit to the seller of 3
20 .

We show that if the second period signal need not be public, the seller does strictly worse. First,

suppose no information is provided to the first period buyer in the first period, and no information is

provided to the second buyer in the second period. However, in the second period, the buyer from

the first period obtains a signal such that the probability of having posterior expected value 1 in the

second period is 1/5. The first buyer is willing to delay, since purchasing in period 1 yields payoff

1/10, whereas the payoff from delay is (1/5) · (1/2) = 1/10. In this case, the seller’s profit is
1
10 < 3

20 .

This example shows that the equivalence to the short-lived benchmark of Boes et al. (2006,

2008) requires public information. Whether information is public within the same period is only

matters for profit when delay is possible, and when buyer behavior influences information.

Example 3 emphasizes distinction between public signals and outcome observations.

1.9 Our Robustness Concept

1.9.1 Seller Initial Information

Our model so far assumes that the seller has no knowledge over the information the buyer

receives. In practice, however, the seller may know that the buyer has access to at least some

information. For example, he may conduct an advertising campaign, and understand its

informational impact very well (Johnson and Myatt (2006)). While it may be impossible

or difficult for such an advertising campaign to remove all uncertainty, the seller may

nevertheless know that the buyer has access to some baseline information.26 In this section

we show that this possibility does not change our conclusions.

We modify the model in Section 3.1 by assuming that in addition to having the prior

26Note that if the seller has complete control over what information he provides, it would be impossible to
do better than the full information outcome because nature could always reveal the value.
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belief F, the buyer observes some signal s0 2 S0 at time 0. The signal set S0 as well as the

conditional probabilities of s0 given v are common knowledge between the buyer and the

seller, and we denote this initial information structure by H. We allow nature to provide

information conditional on s0 but keep all other aspects of the model identical. Equivalently,

the seller seeks to be robust against all dynamic information structures in which buyer

learns H and possibly more information in the first period.

A signal s0 induces a posterior belief on the buyer’s value, which we denote by the

distribution Fs0 . Define Gs0 to be the transformed distribution of Fs0 , following Definition 1.

The same analysis as in Section 1.4 yields the following result:

Proposition 1’. In the one-period model where the buyer observes initial information structure H,

the seller’s maxmin optimal price p⇤H is given by:

p⇤H 2 argmax
p

p(1�Es0 [Gs0(p)]). (1.6)

We denote the maxmin profit in this case by P⇤
H.

The expression (1.6) is familiar in two extreme cases: if H is perfectly informative, then

Fs0 is the point-mass distribution on s0. This means Gs0(p) is the indicator function for

p � s0, so that Es0 [Gs0(p)] = F(p). In contrast, if H is completely uninformative, we return

to Equation (1.1).

For the multi-period problem, our previous proof also carries over and shows that the

seller does not benefit from a longer selling horizon.

Proposition 2’. In the multi-period model where the buyer observes initial information structure H,

the seller’s maxmin profit against all dynamic information structures is P⇤
H, irrespective of the time

horizon T and the discount factor d.

The proofs of these results are direct adaptations of those for the model without an

initial information structure. Thus we omit them from the Appendix.
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1.9.2 Information versus Taste

An equivalent (albeit more abstract) formulation of our model would be to assume that each

buyer observes her value perfectly, but where the value follows a stochastic process, with the

buyer instead drawing a vector of values (v1, . . . , vT) ⇠ F, where each coordinate denotes

the value from purchasing the object at a given time. Nature’s problem can then be thought

of as choosing the stochastic process from some set of possible stochastic processes. Of

course, some restrictions on the stochastic processes must be made to avoid a degenerate

solution. However, one could instead follow Carrasco et al. (2017) and assume instead

that the distribution of buyer values must have some fixed mean and support. We give

an example of such a calculation in the Appendix, where we show that if the seller only

knows E[v] = 1/2 with the distribution having support [0,1], the robustly optimal price is

1
2 (2�

p
2) > 1/4 and profit is 3

2 �
p
2 < 1/8.

In this section, we argue that the restriction on how the buyer’s value evolves over

time (as implied by information arrival) is the significant feature that separates information

arrival from taste shocks. Consider the following formulation with a single buyer that

highlights the restrictions imposed by information arrival. For simplicity, we focus on the

case of T = 2. Suppose the first period buyer’s surplus from purchasing in the first period,

v1, is distributed according to F̃, a distribution chosen by nature to minimize the seller’s

profits given the pricing strategy. Suppose, in addition, F̃ must second order stochastic

dominate the distribution F (as in our single period model). Now let the second period value

be v2 ⇠ F̃(· | v1), where this random and need only respect the condition that E[v2 | v1] = v1.

In particular, we do not assume the second period value changes due to information arrival.

The second buyer’s problem is as before.

In this setting, the proof of Proposition 2 carries over without change, since any stochastic

process for the buyer’s value can be induced by the dynamic information structures we

construct. But actually the seller can be hurt much worse when there are arriving buyers:

Claim 6. Consider the two period model, with one buyer arriving in each period, and suppose each

buyer’s initial value is distributed according to a distribution F̃ that second order stochastically
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dominates F. Suppose the only restriction on the first period buyer’s value in the second period is

that the expectation is the equal to the first period problem. Then the maxmin optimal profit for the

seller when there are two buyers is P⇤. Hence the seller does not benefit at all from the presence of a

second buyer.

This case is extreme due to the lack of support restrictions for the second period value,

although similar (but less sharp) results could be obtained under more stringent restrictions

on the evolution of the buyer’s value process. When nature is not restricted by information

arrival, non-purchasing buyers delay because their second period value may result in

negative surplus from purchasing (similar to Section 1.7.3). In particular, in this benchmark,

we are not able to “push the recommendation to time 1” as we are in Lemma 2. We consider

a value process such the first period buyer’s purchase probability is approximately 0 as

long as d > 0 against a constant, non-negative price path. But for information structures, we

cannot have E[v | Don’t buy]  p and P[Don’t buy] ⇡ 1 whenever p < E[v] < •.27

For general models with taste shocks, it may not make sense to restrict the mean in the

second period to be equal to the mean in the first period. The restriction was made here to

relate the model where the value evolution is restricted by information arrival to one where

it is not. Finding sensible restrictions on the evolution of values under taste shocks that

avoids degenerate solutions (or more general conditions that would yield our same results)

is left to future work.

1.10 Conclusion

In this paper, we have studied optimal monopoly pricing with dynamic information arrival

while utilizing a maxmin robustness approach. With no known informational externalities,

we show that the monopolist’s optimal profit is what he would obtain with only a single

period to sell to each buyer, and that a constant price path delivers this optimal profit. The

27This is seen by recalling that for a given price, the probability a buyer does not purchase is maximized by a
partitional information structure which tells the buyer whether or not the value is below F�1(G(p)).. Whenever
p < E[v] < •, there must be some positive probability that v is above this threshold.
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inability to condition on a buyer’s arrival time therefore imposes no cost on the seller (in

our main model). These conclusions depend on our assumptions regarding the timing of

information release, and we have illustrated how this is the case.

The question of how to design optimal mechanisms under general information structures

is one that we hope will be studied in other contexts and under other modeling assumptions.

One could also ask similar questions in settings where the agent’s problem may not be

represented by the choice of a stopping time. And settings with competition, changing

values, richer population dynamics and different seller objectives all seem intriguing as well.

This paper contributes to a growing literature which employs the maxmin approach in

analyzing the optimal design of mechanisms. The literature has mostly focused on static

settings, although we suspect dynamic settings will receive significant attention in the future.

For us, the maxmin objective is useful in two respects:

• Motivating our focus on partitional information structures, and

• Simplifying the set of relevant information structures with increasing price paths.

We hope our analysis has suggested ways that such models could be analyzed to produce

new economic insights.
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Chapter 2

False Positives and Transparency in

Scientific Research

Any analysis that relies upon statistical inference inevitably risks arriving at an incorrect

conclusion. Nevertheless, as argued in Ioannidis (2005), there are compelling reasons to

believe that mistakes in published research cannot be explained by statistical error alone,

and arise due to decisions in experimental design leading to bias (with bias referring to a

higher probability of positive results, irrespective of hypothesis validity). A natural question

arises as to how to evaluate policies designed to combat false positives and improve research

quality.

Toward that end, the medical research journal The Lancet published a series of articles

in January 2014 discussing guidelines to improve the efficiency of scientific research.1 The

prevalence of false positives was one particular focus, and partially attributed by Ioannidis

et. al. (2014) to the lack of documentation requirements for experimental conduct. During

any experiment, researchers make a number of decisions that could lead to bias, and not all

of them will be described in the resulting publication. Examples discussed by Ioannidis et.

al. (2014) include selecting samples for high-risk patients, failing to adapt significance levels

1The biologist Ed Wilson wrote a letter in response that, while praising the series in general, specifically
lamented the lack of involvement from economists.
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to the number of tests run, selective reporting of results, or insufficient training of clinical

researchers.

Ioannidis et. al. (2014) suggest implementing registration requirements to combat these

issues, with the understanding that scientists typically need some kind of external certifi-

cation to make credible claims regarding research activity.2 But given the varying degree

of difficulty in verifying distinct activities that could lead to bias, these requirements are

not a simple yes-or-no matter. Instead, implementation would occur on specific dimensions

of an experiment. It may be easy for some outside authority to verify properties of certain

samples. But it may be difficult to verify that research assistants were well-trained, or to

distinguish a genuine need to restart an experiment from disappointment with a negative

result. Answering whether a particular registration policy is beneficial requires an analysis

of how the properties of experiments will change in response.

Stepping back, however, followers of the applied mechanism design literature could be

skeptical that transparency requirements necessarily lead to improved research output. To

see why, note that limited contractibility is the rule, not the exception, for many types of

scientific research. A researcher studying whether a particular gene can lead to a particular

kind of cancer may not know which pharmaceutical company would be able to use that

insight in order to develop a treatment. And fundamental research is often left to universities

when this research requires a time horizon much longer than private entities would be

capable of providing.

In settings with limits on contractibility, several authors have cast doubt on the optimality

of transparency requirements, even without resorting to costs of monitoring.3 As discussed

in the literature review, Prat (2005) notes that transparency requirements are eschewed

2Some researchers have even considered the effects of similar policies in economics and social science
(Miguel et al. (2014), Coffman and Niederle (2015), Olken (2015)).

3Of course, if one truly thought transparency requirements contributed to false positives, one could always
assert that false positives are a priori problematic and should be minimized. But as Glaeser (2006) notes, this
is unlikely a natural objective. This paper adopts his view that, if false positives were widely known to be
prevalent (evidenced by the number of citations of Ioannadis (2005)), observers should read results skeptically
and debias accordingly.
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in a variety of settings, such as corporate governance, where one may expect them to be

beneficial. His model shows that agents can be more willing to act according to their private

information under non-transparency in a career concerns model. Similarly, Cremer (1994)

ties transparency requirements to the ability to provide high powered incentives within

organizations. His model explains some documented features regarding firm boundaries.

This paper comments on the efficacy of transparency requirements in a simple framework

that can shed light on the aforementioned debate in scientific research communities. In

our model, a scientist (she) chooses an experiment that is characterized by a vector of

research activities, and produces an observable outcome (success or failure) that is seen by a

developer4 (he). One dimension could reflect the number of samples collected; another, the

number of times the experiment is repeated; or whether they are disingenuous and decide

to directly alter their data to increase the probability of a positive result. The experiment

imposes a cost on the scientist, but provides information as to whether or not the developer

will be able to successfully develop a drug (which would yield a benefit to both players) by

exerting costly effort.

This paper focuses on the question of whether the inability of the developer to observe

experimental methods (due to lack of transparency) makes him better off or worse off. The

main result highlights that whether transparency requirements are advantageous depends

on the complementarity in costs between different kinds of research actions.

To illustrate the intuition, consider the discovery of the Higgs Boson in 2012 using the

Large Hadron Collider (LHC) at CERN. Discovery actually meant that five-sigma confidence

(a chance of roughly 1 in 3.5 million) had been reached.5 In other words, the existence of the

Higgs Boson was a statistical finding, inevitably short of mathematical certainty (though,

depending on opinion, perhaps not by much). The discovery was a remarkably high profile

4We use “developer” here in order to make our story more concrete. For interpretation purposes, we can
think of this person as someone intrinsically interested in the results of the scientist’s experiment, for whatever
reason.

5Actually, three sigma confidence had already been obtained. That level of confidence is uncommon in
other disciplines.
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event that garnered widespread celebration, and culminated in a Nobel Prize for Englert

and Higgs the following year (Wired (2015)). However, the LHC was shut down for two

years after the discovery, preventing replication. Furthermore, the data from the experiment

were not released for another four years, and leaving the algorithms used in the particle’s

discovery unexamined by the full research community.

Why was the physics community apparently unconcerned by the lack of public data

and the inability to replicate the experiment? Presumably the lack of transparency was

not a concern due to the difficulty in being able to bias an experiment with a five-sigma

significance threshold. The five-sigma threshold is common in physics due to the feasibility

of collecting large amounts of data (particularly at CERN). This does not apply to other

empirical disciplines like biology. Still, it is often the case that a dataset’s size is left to

the discretion of researchers. But due to limited contractibility over experiments, scientists

typically cannot be compelled to incur the costs of additional data collection directly.

This paper highlights that transparency requirements have the benefit of discouraging

bias, but might also discourage scientists from undertaking costlier experiments to counteract

the perception of bias. Imagine a researcher deciding to collect a large dataset (e.g., the

equivalent of an experiment at CERN) or a small dataset. Large dataset experiments may

be much more difficult to undertake than small dataset experiments. If the scientist is

required to make all data and regression specifications public, then they could very well

prefer the small dataset experiment, believing it is informative enough and finding the large

dataset too costly. Without transparency requirements, however, an outsider observing a

positive result would assume that some kind of biasing activity (e.g., regression fishing)

took place and therefore not adapt his beliefs to the outcome of the experiment. Since the

large dataset experiment is less susceptible to this kind of bias (as appeared to be the case

for the Higgs Boson discovery), this loss in credibility would then induce the scientist to

compensate by using the larger dataset. This compensation, in turn, can overwhelm the loss

of informativeness due to biasing.

Framed in this way, a lack of transparency requirements encourage the use of large
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dataset experiments (such as those performed at CERN) by instead discouraging the use

of less informative experiments that were susceptible to bias. In general, the strength of

these complementarities determine whether non-transparency simply adds bias or can be

compensated for more effectively along other dimensions. This result is similar to those

on the optimality of “money burning” that can arise in delegation settings (for instance,

as in Ambrus and Egorov (2014)). However, this conclusion is only true if the scientist’s

preference for developer success is sufficiently important, since otherwise non-transparency

will not have this beneficial effect.

This paper contributes to the aforementioned policy debate by clarifying the connection

between preferences of scientists and the merits of transparency requirements. There are

two key features of the model which drive our conclusions: First, scientists care about

follow-on research, and second, difficulty or costs associated with experiments influence

experiment choice. Debates over transparency requirements should take these incentives

into account. For instance, new researchers may be preoccupied with making tenure or

developing a reputation in the discipline, while established researchers may be influencing

drug companies directly and want to ensure that their research is useful. Depending on

the form these career concerns take, our analysis in Section 2.4.2 suggests that it may be

undesireable to apply the same transparency requirements for early-career grants versus

late-career grants.

Finally, despite our focus, there is no reason the model should only be applicable to

scientific research. But the justification of preferences and limits to contractibility seem

appropriate for this application. And as mentioned above, transparency over differing

research activities is an active policy question. While the model could certainly describe other

kinds of information acquisition, we leave a more thorough analysis of these applications to

future work.

We proceed as follows. We first discuss the literature and introduce the model in

Section 2.2. Readers interested in the mechanism highlighted but not the general model

are encouraged to skip to Section 2.3.1, which show the key forces at work. In Section
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2.3.2, we consider the scientist’s equilibrium behavior, and in Section 2.3.3, provide a cost

function for any arbitrary experiment set such that drug developers are better off without

transparency requirements. We use the model to comment on policy in Section 2.4. We

proceed to consider a number of alternate specifications for the analysis in Section 2.5, and

conclude in Section 2.6. Most proofs are in the Appendix.

2.1 Related Literature

The non-transparency result provided in this paper is similar to a number of others that

have been derived in the literature. Results of this form can be found in Cremer (1994), Prat

(2005) and Bergemann and Hege (2005). In these papers, the intuition behind the optimality

of non-transparency is that it gives the principal additional commitment power which

would not be credible under full transparency.6 The results of this paper are in a similar

spirit, but allow for a variety of research actions, and also provide a central role for the

incentives to induce follow-on work. A more direct contrast is that the present paper obtains

non-transparency as a way of burning surplus in a way that aligns the incentives of the

principal and the agent. The presence of another action that is incentivized by this “money

burning” is crucial for our result, and does not have a direct counterpart in these papers.

Importantly, this feature relies upon the high degree of alignment between preferences of

scientist and developer.

When framed as a result of money burning, our results are therefore actually closer to

Angelucci (2014) or Szalay (2005), whereby the incentives are aligned when the principal

takes actions which seem to harm both players. But in these papers, the distortions take

other forms. Ambrus and Egorov (2014) consider cases where money burning is part of

an optimal contract in a delegation setting, though our counterfactual of non-transparency

does not nest in their framework.

The model itself is reminiscent of multitasking, Bayesian Persuasion (a la Kamenica and

6Other papers give conditions under which the principal is better off when the agent is not able to perfectly
observe a state variable, for example, Jehiel (2014) and Ederer, Holden and Meyer (2014).
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Gentzkow (2011)) and career concerns. Multitasking arises due to the variety of research

actions the scientist undertakes, resembling the literature following Holmström and Milgrom

(1991). This literature has showed that transparency over different dimensions can distort an

agent’s effort choice. Still, as these papers typically involve full observability of the agent’s

actions as achieving the first best, the contribution in this paper seems distinct.

The literature on communication games (and Bayesian Persuasion in particular) has

flourished recently and been used for many applications. In fact, the idea of using these

models to study scientific research is not in itself novel, as it is also done by Kolotilin (2015).

The main difference with these settings is (1) we do not allow all information structures

to be feasible, (2) we impose costs that are parameterized with the information structures,

and (3) we consider a case where the sender can only commit to part of the information

structure. This third point is perhaps the most significant departure. Hoffmann, Inderst and

Ottaviani (2014) are also interested in the lack of commitment, but view it as arising from a

disclosure problem. Several papers have consider cases where distortions of information

can take particular forms, such as fraud as in Lacetera and Zirulia (2008), or selective

disclosure as in Henry (2009) and Felgenhauer and Schulte (2014). Other papers have

studied information aquisition and communication in cheap talk models; see Argenziano,

Severinov, and Squintani (2014), as well as Pei (2014).

This introduction of signal distortion is reminiscent of the career concerns literature

(Holmström (1999) and Dewatripont, Jewitt and Tirole (1999)). While we accomodate

these preferences for the scientist, our model provides a novel channel for preferences over

informational content (as opposed to just the outsider’s posterior). We distinguish these

incentives from one another. Incentives for information acquisition is represented by the

convexity of the scientist’s expected payoffs as a function of the developer’s beliefs. On the

other hand, the marginal benefit from distorting can be most clearly seen by studying the

slope of the expected payoff conditional on the state (i.e. the truth of the hypothesis).

Lastly, this paper relates to the literature on academic publication (as in Aghion, Dewa-

tripont and Stein (2005), for example). Azoulay, Bonatti and Krieger (2015) empirically study

42



the effect of a retraction on a scientist’s reputation, documenting that retractions lead to a

drop in citations consistent with reputation loss. Andrews and Kasy (2017) provide methods

for determining when publication bias may be important, and suggest a way to debias

taking this into account. Yoder (2016) develops a principal-agent model with transfers,

similarly motivated by Bayesian Persuasion, to describe the optimal incentives for research

institutions. His conclusion that negative results should be rewarded is consistent with this

paper, since doing so can align incentives.

Several papers have cautioned against associating false positives with problems in

scientific conduct. Glaeser (2006) studies the incentives behind false positives, and argues

that eliminating them may be socially harmful. His reasons for this do not directly relate to

our overcompensation effect, instead focusing hypothesis choice. Kiri, Lacetera and Zirulia

(2015) consider the incentives for fact-checking, arguing that failure to observe mistakes

would suggest the lack of verification activities. Furukawa (2017) develops a vote-counting

model to show that publication bias may arise naturally when results are only coarsely

interpreted by practitioners, and suggests a way to correct for it. Hopefully these ideas will

be useful in the design of research guidelines, and will further improve our understanding

of how to effectively structure scientific endeavors.

2.2 Model

A scientist is endowed with a hypothesis whose validity is given by q 2 {T, F}, drawn by

nature. The scientist is able to conduct an experiment, the results of which are of interest

to a drug developer.7 All players share a common prior on q, with P[q = T] = p0. We will

always take p0 to be interior, and we will think of T as being the “good” state, and F as the

“bad” state. The hypothesis could be whether a particular gene is associated to a specific

disease, or whether a certain particle can safely target a specific biological pathway.

The scientist chooses an experiment from some set of possible experiments. We assume

7The scientist can be thought of as a sender, or an agent, and the developer as being a receiver, or a principal.
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that the set of experiments are parameterized by an n-tuple (a1, . . . , an), with each ai 2
[ai, ai] ⇢ R. yielding an experiment I(a1, . . . , an) : Q ! D{0, 1} at cost cS(a1, . . . , an). For

now, we only assume that the cost is increasing in each coordinate, and we highlight that

we will not assume that higher actions yield more informative experiments. As mentioned

in the introduction, each dimension is meant to capture a different kind of research activity;

collecting data, p-hacking activity, selecting samples, and so on.

A restriction of the above setting is that the experiment outcome can only take one of

two values, so that the developer only observes experiment produces an outcome y 2 {0, 1}
according to a distribution that depends on q and a 2 A = ’n

i=1[ai, ai]. This outcome

y 2 {0, 1} is observable to the developer, and we will refer to the event y = 1 as a “positive

result,” and y = 0 as a “negative result.” A false positive occurs when y = 1 and q = F.

Define:

hq(a) := P[y = 1 | q, a],

and assume this function is continuous8 with bounded derivatives. In order to interpret

positive results as evidence for hypothesis validity, we assume that hT(a) > hF(a), for all a.

The developer does not necessarily observe the entire profile of research activities a.

Instead, we assume that there is some third party (e.g., a journal or a funding agency) that

can dictate what the developer observes. Formally, the third party chooses a set of indices,

M ⇢ {1, . . . , n} with the interpretation that the developer will observe all ai such that i 2 M,

in addition to the outcome y itself. The interpretation is that the third party has the ability

to make various dimensions, such as the number of specifications run, observable to the

developer. In principle, one could imagine that there are costs associated with different

choices of M, but since the implication of those costs is straightforward we do not model

them explicitly. However, one could imagine that in practice these costs are prohibitive for

the scientist. We are interested in how the developer’s payoff changes with different choices

of M.

8Continuity ensures the existence of a pure strategy equin order to ensure the existence of a pure strategy
equilibrium with unobserved coordinates.
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After observing the action choice and y, the developer updates his prior from p0 to

p̂(y). Since the developer’s beliefs will depend on equilibrium behavior, we will typically

suppress the dependence of the posterior p̂(y) on the experiment choice of the scientist,

but occasionally we will make this dependence explicit when the choice is known to be

a = (a1, . . . , an) by denoting the posterior p̂a(y).

The developer chooses a level of effort e 2 [0, 1] at cost cR(e), where cR(e) is an increasing

and convex function. The choice of e determines the realization of a random variable

x 2 {0, 1}, the distribution of which is given by:

P[x = 1 | q = T, e] = e, P[x = 1 | q = F] = 0.

We think of x = 1 as the event that a drug is developed, and x = 0 as the event that it

is not. For example, the drug could attempt to cure the disease by deactivating the gene

studied in the scientist’s experiment. Increasing effort in drug development makes it more

likely to succeed, but only in the event where the gene is in fact associated with disease

incidence—that is, if the scientist’s hypothesis is true.

If the drug is developed, the developer obtains a payoff of b > 0, and the scientist

obtains a payoff of l. As mentioned, for the baseline model we imagine there is limited

contractibility between scientist and developer, so we take these payoffs as being exogenous.

In that case, l might reflect profit, whereas b may reflect prestige or pride associated with

having cured a disease. We also suppose the scientist also receives a benefit of g( p̂) when

the public belief is p̂ at the end of the game, for some increasing function g. We refer

to this as payoffs coming from career concerns; insofar as scientists may (be thought to)

have hypothesis validity correlated across time, then they may place some premium on

having future drug developers believe that their past hypotheses were true. We use this

interpretation to distinguish our specification from other papers and to discuss policy

recommendations. In an appendix, we discuss a version of the model where the scientist

also has preferences over y itself.
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Hence final payoffs for the scientist are

l · x+ g( p̂)� cS(a),

whereas for the developer, they are

b · x� cD(e).

We assume that the parameters are such that the developer’s optimal effort choice always

involves e < 1. 9

2.2.1 Measuring Uncertainty

In this section we place some restrictions on how we parameterize information structures.

We also introduce the following terminology:

Definition 2. A dimension ai is biasing if hT(ai, a�i) and hF(ai, a�i) are both increasing in ai, for

all a�i. A dimension ai is informative if hT(ai, a�i) is increasing in ai and hF(ai, a�i) is decreasing

in ai, for all a�i.

For the main results of the paper, we will assume that experiments are Blackwell ordered

along each dimension (increasing along informative dimensions and decreasing along

biasing dimensions). This assumption is stronger than what is necessary, although without

it, we would need stronger assumptions on preferences in order to ensure that actions could

be classified as biasing or informative. For example, our results would continue to hold if

we assumed quadratic developer effort costs and considered experiments ordered by the

reduction in posterior variance (which is implied by Blackwell ordering of experiments but

not conversely). We adopt this specification for analysis of Examples 4 and 6 below.

Note that the developer’s expected payoff, given effort e and belief p, is given by:

pR( p̂) := max
e

bp̂e� cR(e).

9A sufficient condition that ensures this, for example, would be that cR(e) = k
2 e

2 and b < k.
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We adopt the terminology of Ely, Frankel and Kamenica (2015) to call a measure of uncer-

tainty to be a strictly concave function that is 0 at degenerate beliefs. Define the developer’s

measure of uncertainty from an experiment I to be p0pR(1)�Ey⇠I [pR( p̂(y))].

Proposition 4. The payoff gain of the developer from observing the scientist’s experiment is a

measure of uncertainty.

It is immediate from the definition that the developer’s payoff is higher for experiments

that are more informative according to his measure of uncertainty. The proposition, together

with our ordering on experiments, implies that the optimal scientist experiment for the

developer would involve the maximal action on informative dimensions and the minimal

action on biasing dimensions.

2.2.2 Examples of Information Acquisition Technologies

To illustrate the analysis, we provide two stories behind information acquisition technologies

which satisfy the assumptions of the model. These are meant to demonstrate a tighter link

between what the model captures and the kinds of scientist behavior practitioners tend to

be concerned about.

Example 4 (p-hacking). First consider the case of cR = k
2 e

2, so that we can assume experiments

are ordered by posterior variance (as opposed to Blackwell ordered). Suppose the scientist chooses a

number of times, a2 2 [3, 15] to run an (iid) experiment and a precision a1, where:

P[Success on an experiment | q = T] = P[Failure on an experiment | q = F] = a1.

The resulting informativeness (as measured by the posterior variance) is plotted for a1 = 2/3 and

p0 = 1/2 in Figure 2.1. While it increases at first, eventually it decreases, with the posterior variance

approaching 0. We can therefore think of one dimension as being the amount of p-hacking and the

other to be the informativeness of the underlying experiment (which are biasing and informative,

respectively, on some appropriate range).
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Figure 2.1: Posterior Variance for the p-hacking specification, where N is the number of trials.

Example 5 (Lying or Fudging Data). Again suppose that a1 parameterizes the underlying

experiment as in the p-hacking example. However, now suppose that a2 is the probability that the

scientist changes a result of y = 0 to a result of y = 1—for example, as a result of either direct

falsification or altering the data. This is a Blackwell garbling of the underlying signal technology,

and hence decreases the informativeness for any informativeness measure, not just the relevant one

for the developer (i.e. the posterior variance).

Example 6 (Quality Decisions). Now suppose that a1 is investment in research equipment, and

that a2 measures the quality of lab technicians or research assistants (supposing it is as easy to hire

good research assistants as bad ones). Suppose the resulting information structure is

PI(a1,a2)[y = 1 | T] = (4/5)a1 + (1/5)a2, PI(a1,a2)[y = 1 | F] = (1/5)a1 + a2,

where a2 2 [a, a] reflects employee quality and a1 2 [q, q] reflects equipment quality, with parameters

chosen so that probabilities are within [0, 1] and PI(a1,a2)[y = 1 | T] > PI(a1,a2)[y = 1 | F].

Of course, our model would also accomodate hybrids of these technologies, and most of

the results turns out to not depend on the particular functional forms of the set of experiment
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space. The underlying point is that the model can accommodote natural qualitative features

of experimentation, treating different kinds of research activities as observationally distinct.

2.3 Main Results

2.3.1 A Simple Example

In this section, we illustrate our construction and walk through the intuition in a numerical

example. We take p0 = 1/4, and specialize to the quality example of Example 6. Take we

take cR(e) = 1
2 e

2 and b = l = 1. Suppose the experiments the scientist has access to are as

follows, for a1, a2 2 {0, 1}:

PI(0,a2)[y = 1 | T] = 2/5+ (1/10)a2, PI(0,a2)[y = 1 | F] = a2/6,

PI(1,a2)[y = 1 | T] = 4/5, PI(1,a2)[y = 1 | F] = 0,

where Pe denotes the probability measure when experiment e is chosen. One can check that

as a2 increases, the experiment I(0, a2) becomes less informative in the sense of Blackwell.

Further note that a2 does not affect the informativeness of the experiment I(a1, a2).
An interpretation of this parameterization comes from Example 6, where a1 may reflect

equipment quality and a2 may reflect training or quality of research assistants. The idea is

that experiments with “low quality equipment” are both less informative, and susceptible

to bias depending on the research assistants. In contrast, “high quality equipment” gives

an experiment which does not require the help of research assistant, and is also more

informative no matter what. The important feature of this example is that while these

actions might make an experiment susceptible to false positives, a positive result is already

very likely if the equipment is of high quality, provided the hypothesis is true. We suppose

experiments with low quality equipment are costless, but high quality equipment is costly.

Research assistant quality, in contrast, is costless.

Suppose the developer sees the complete experiment chosen by the scientist—both

equipment quality a1 and research assistant quality a2. For instance, suppose the funding
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agency requires documentation of equipment and can require research assistants to satisfy

certain prerequisites. Discreteness is helpful in that we can compute payoffs experiment-by-

experiment: For i 2 {S,R},

pi(0, 0) =1/8 pi(0, 1) = 1/12

pi(1, 0) ⇡1/5 pi(1, 1) ⇡ 1/5,

where pS(a1, a2) and pR(a1, a2) are the benefits to the scientist and developer, respectively,

from an experiment of type (a1, a2).

Now suppose that the developer can observe equipment quality a1, but not research

assistant quality a2, leaving research assistant quality unverified. In this case, if the scientist

picks a1 = 0, then a2 = 0 will not be chosen when the choice of a2 is costless. To see this,

simply note that the scientist’s expected payoff is always higher following a signal of y = 1

than a signal of y = 0. On the other hand, the developer cannot distinguish a2 = 0 and

a2 = 1, and so in equilibrium his belief will not change with the choice of a2. Since higher

a2 generates a higher probability of y = 1 when q = T, the scientist opts for lower quality

research assistants.

Does this mean that the experiment the scientist chooses is less informative when d

is unobserved? Not necessarily, due to costs. If the cost of high quality equipment is

either sufficiently small or sufficiently large, the developer does best if both a1 and a2 are

observed. If the costs of high quality equipment are small, then the scientst would choose

this experiment in either regime and hence bias due to research assistants would not be

a concern. On the other hand, if the cost of high quality are sufficiently large, then the

scientist will never choose these experiments and hence all non-transparency does is induce

added bias. For an intermediate range of costs10, however, the scientist switches choice of a1

across the regimes. Under observability, low quality equipment is

The example highlights three main messages which are useful for understanding our

10Specifically, costs between 3/40 and 7/60 (approximately).
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main results. First, the scientist exhibits a strict preference for more informative experiments.11

Specifically, the above calculations verified that the scientist would always prefer a more

informative experiment if the extra information were free. Our analysis in Section 2.3.2

shows that this is a general feature for a wide variety of settings. Notice, however, that the

scientist does not gain anything if the developer’s beliefs are unduly optimistic when q = F,

and in fact strictly prefers that the developer know the state when q = T. Furthermore, the

more informative the experiment, the higher beliefs are (in expectation) when q = T. We

will show how the state dependent nature of the scientist’s payoff as a function of beliefs

translates into an incentive for information acquisition, which will allow us to distinguish

these incentives from the incentives for distortion.

Second, despite liking informativeness, when a2 is unobserved the scientist loses credibility

for scrupulousness. Since beliefs do not respond to the choice of distortion, and since the

posterior rises if and only if y = 1, increasing a2 increases the probability that p̂ is higher

when q = T. Hence even though the scientist would like to set a2 = 0, she cannot commit to

doing so when unobserved, since the developer will realize that it is profitable for her to

deviate to a2 = 1. This is also studied in Section 2.3.2.

Third, despite the loss of credibility for scrupulousness, the scientist compensates by

exerting costly effort which ultimately increases the informativeness of the chosen experiment.

Since the scientist has a preference for more information, the only reason a scientist would

choose a less informative experiment over a more informative one would be on account of

costs. So by making it impossible to commit to a2 = 0, the scientist is induced to take a

costly action which proves her scrupulousness. Here, this takes the form of choosing an

even more informative experiment. In other words, the scientist needs to exert more costly

effort (in this case, acquire higher quality equipment) in order to prove that the experiment

is actually informative.

We are able to use the intuition gained from this example to demonstrate the optimality of

11This does not follow immediately from Blackwell’s Theorem, since the scientist is not the decision maker
who uses the information. See Kim (1995) for a discussion of the use of Blackwell informativeness in a
principal-agent model with moral hazard.
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partial transparency without having to resort to particular specifications of the informational

environment. Despite this, the example is still somewhat restrictive. It rules out, for instance,

higher a2 having any influence on the experiment with higher a1. It is also ad hoc in that

it rules out multiplicity and the possibility of mixed strategies. Under the generality of

the main model, these may not be ensured, and in these cases, the intuition from above

cannot be applied directly. Our main results show that these can be ignored under certain

specifications for cost functions. The generality of the full model is also useful in explaining

why our result could not occur in other common benchmarks studied in the literature (that

is, without both costly communication and limited commitment). While this may not be

obvious from this specialized setting, the comparison is more direct in our general model.

2.3.2 Influence of Transparency on Experiment Choice

This section describes the how observability of ai influences the experiment choice of

behavior. We demonstrate how to adopt the belief-based approach to this setting. Gentzkow

and Kamenica (2014) remarked that this is less straightforward when there are costs,

since the payoff may depend on the signal structure outside of the beliefs they induce.

Nevertheless, we are able to use this for our specification.

The scientist takes the effort choice of the developer as given, and the expected payoff

from an experiment is a function of the posterior belief of the developer following y, denoted

by p̂(y). Payoffs are therefore:

p0E[le( p̂(y)) | q = T] +E[g( p̂(y))]� cS(a) (2.1)

The following Lemma rewrites the payoffs of the scientist without conditioning on the

state. It shows that we can changes the prior belief p0 in (2.1) into a posterior belief by

removing the conditioning event q = T:

Lemma 4. In any pure strategy equilibrium where the experiment is correctly inferred as I(a), the
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scientist’s payoffs can be written as:

Ey⇠I(a)[l p̂(y)e( p̂(y)) + g( p̂(y))]� cS(a) (2.2)

This lemma is similar in spirit to many arguments that have utilized the belief-based

approach in the persuasion literature (and is not particularly complicated), though we

are not aware of (2.2)12 having been explicitly stated or utilized directly. While Kamenica

and Gentzkow (2011) do allow for state dependence on the Sender’s utility function,

their characterization of the Sender’s value function does not require them to explicitly

state Receiver’s preferences, meaning this lemma would have limited use for their exercise.

However, see Section 4 of their paper for a discussion of how preference alignment influences

the solution.

The Lemma can intuitively be thought of as “flipping the order of integration”; rather

than first taking an expectation over the signal realization y and then the state realization

q, it takes the expectation of the state first, and signals second. That said, the result relies

upon the developer and scientist updating their beliefs in the same way in response to

the experimental outcome. Equation (2.2) also clarifies that l generates preference for

information acquisition. It is well understood from the persuasion litearture that convexity

of payoffs in beliefs can generate incentives for information acquisition, but it is hard to

see how to apply this intuition directly from looking at equation (2.1). In contrast, the

Lemma implies shows that the term driving the scientist’s added incentive for information

acquisition from the developer’s actions is given by the term p̂e( p̂), meaning there are

additional incentives for information acquisition whenever this term is concave.

The lemma allows us to adopt the belief-based approach in cases where the experiment

choice is observed by the developer, but does not do so under different transparency

regimes. In order to accomplish that task, we need to ensure that the experiment choice is

deterministic and unique. If the scientist were randomizing actions, then this would imply that

the scientist’s beliefs following any given outcome would not coincide with the developer’s,

12The appendix uses a more general identity, which is also novel to our knowledge.
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Figure 2.2: Graphical illustration of Lemma 4. All graphs express the scientist’s payoff as a function of the
developer’s belief. The top row considers the model where l = 0, and the bottom row considers the model when
l > 0, where were normalize the ex ante payoff when p̂ = 1 to 1 for both cases. The left column displays
payoff of the scientist from the ex-ante perspective, taking an expectation over the state. The right column
writes the scientist’s payoff conditional on each state.

54



and hence we could not use a single p̂(y).13 In principle uniqueness could be dispensed

of we were willing to make a selection argument (as in Kamenica-Gentzkow (2011) or

Lipnowski-Ravid (2017)), although given our focus on developer (receiver)-optimality it is

not clear that these selection arguments would be desireable. However, using the following

lemma, it follows that we can indeed adopt the belief-based approach in this setting:

Lemma 5. Suppose that c(aM, a�M) is weakly convex in a�M for all aM, and furthermore, that

hT(aM, a�M), hF(aM, a�M) are weakly concave in a�M for all aM.

(1) A Perfect Bayesian equilibrium in pure strategies exists when a�M is unobserved. In this

equilibrium, if ai is interior and unobserved, we have:

∂cS(a)
∂ai

= l · (e( p̂(1))� e( p̂(0)))p0
∂hT
∂ai

+ (g( p̂(1))� g( p̂(0)))
✓
p0

∂hT
∂ai

+ (1� p0)
∂hF
∂ai

◆
. (2.3)

If ai is observed, the first order condition corresponds to the derivative of (2.2) with respect to

ai.

(2) If either convexity of c or concavity of hT is strict, there is no equilibrium in mixed strategies.

While the proof of this lemma is mostly straightforward, one assumption that turns out to

be important is that hT(a) > hF(a) for all a. This ensures that P[y = 1] and P[y = 0] are

both interior, meaning that the receiver always places positive weight on observing any

given signal. This is in contrast to other papers in the persuasion ltierature, which often do

not restrict the set of signals that a receiver may observe a priori.

The lemma indicates that the scientist’s equilibrium behavior can be thought of as

equating marginal benefits and marginal costs along each dimension. While the former

simply depends on cS(a), the marginal benefit is the sum of the gain due to the career

concerns term as well as due to the change in the developer’s effort. While such a condition

is intuitive, the complication is that the marginal benefit depends on beliefs, which are

endogenous. Additionally, as mentioned above, the intuition requires the validity of the

13In Section 2.5.1, we show that mixed strategies will generally arise with the presence of certain kinds of
private information for the scientist.
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belief-based approach.14

Another implication of the lemma is a subtle (and potentially empirically relevant)

difference between the scientist’s career concerns and investment in developer outcome.

Lemma 4 implies that under observable behavior, the case of l = 0 and g(p) = bpe(p)

results in an identical preference over experiments and hence identical experiment choice

compared to l = b and g(p) = 0. However, this does not hold when dimension ai is

unobservable; in that case, the false positive rate hF(aM, a�M) does matter for the career

concerns payoff, but does not matter for the developer outcome payoff. We state this as

follows:

Corollary 1. When g(p) = 0, the false positive rate does not influence the experiment choice when

action ai is observed.

Finally, we note that the lemma illustrates the difference between the first order condition

as transparency changes. When an action changes from being unobserved to being observed

(by the developer), a term equal to:

E

�
l p̂(y)e0( p̂(y)) + g0( p̂(y))

� ∂ p̂(y)
∂ai

�
(2.4)

is added to the right hand side of (2.3). This term can be positive or negative, even when

information structures are monotonic in ai in the Blackwell order; in that case ∂ p̂(1)
∂ai

and ∂ p̂(0)
∂ai

will have opposite signs, and hence (2.4) would be convex sum of a negative term and a

positive term. Since we can find Blackwell ordered information structures that also hold

p̂(1) and p̂(0) constant, it follows this additional term can either be positive or negative.

Corollary 2. A sufficient condition to ensure that the scientist’s payoffs is c000R (e) � 0, or if

cR(e) = en/k for any n > 1 and g(p) is not too concave. If action i is distortive, then ai = ai in

equilibrium whenever it is observed, provided g(p) is not too concave.

14Admittedly this specification rules out the discrete example from Section 2.3.1, although we find it easier to
parameterize the experiments more generally by resorting to the specification of the main model. Furthermore,
the example is useful for the purposes of intuition in our general specification.
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To summarize: the incentives for information acquisition arise due to the state depen-

dence of the scientist’s payoff as a function of the developer’s posterior, since the convexity

of this line is what generates incentives for information acquisition. But the loss of credibility

occurs due to the positive slope of the scientist’s payoff conditional on q—that is, because

the payoff is still higher when the developer’s belief is higher. By devloping this model and

comparing the influence of lp and lx, we have also shown why the forces highlighted are

distinct from others that have been proposed, most notably in the career concerns literature.

2.3.3 Optimal Transparency

Having characterized scientist behavior as a function of the transparency requirements, we

are now in a position to present results on the optimality of different transparency regimes.

First, we point out that greater transparency is always better for the scientist; if an action a

arises in the equilibrium where only some subset of the coordinates are observable, then the

scientist could always guarantee this outcome when a is totally observable, and could in

fact achieve a higher payoff potentially via some other action. This argument proves that:

Proposition 5. Full transparency always achieves the scientist-optimal payoff.

Our main result is that, under the payoff specifications of this setting, there generally exist

payoff specifications such that full transparency is not optimal.

Theorem 7. Suppose c000R (e)  0 or cR = en/k , l > 0 and g(p) is not too concave. Let J denote

the indices that are informative and N\J denote the indices that are distortive, and let K ⇢ N\J.
Then there exists a cost function (increasing in all coordinates) such that the developer does better

when ai is not observed for all i 2 K.

The theorem is proved by constructing cost functions inspired by the example in Section 2.3.1.

We construct cost functions with the property that distortion is “cheap” for uninformative

experiments but “expensive” for informative ones. The conditions of the theorem ensure

that the scientist does obtain a higher payoff from conducting experiments that are more

informative. Because of this, it is costly for them to be perceived as adding bias. The
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cost functions constructed have the property that higher actions along the informative

dimensions make biasing more costly. For example, it is hard to run an experiment many

times if collecting a new data set each time is difficult. While other incentives may be present,

we view this result as adding an important, subtle caution to the debate on transparency

requirements.

2.4 Policy Analysis

2.4.1 Costless Communication

From the theoretical perspective, the main novelty of the model is in its use of communication

costs as well as limited commitment by the sender (scientist). If any experiment is feasible

and costs are not present, then the model reduces to Bayesian Persuasion (as in Kamenica

and Gentzkow (2011)) when a is observable,15 and reduces to cheap talk (as in Crawford

and Sobel (1982) or Lipnowski and Ravid (2017)) in the case where a is not observable at

all.16 In this sense, the model provides an “intermediate commitment” benchmark.

In fact, we can show that without costs, the developer’s payoff is increasing in the level

of scientist commitment:

Proposition 6. If the scientist’s cost for all experiments are known to be zero, then making any

biasing dimension unboservable strictly lowers the developer’s payoffs.

2.4.2 Career Concerns versus Follow-on Interest

Recall the earlier point (highlighted in Corollary 1) that even when career concerns replicate

the preferences over experiments as interest in follow-on outcomes, there may still be

differences in how the scientist responds to transparency changes. We use this insight

to generate testable predictions of the model, in terms of the comparative statics of how

15Ichihashi (2017) studies the case of Bayesian Persuasion when the sender’s choice set can be limited.

16Technically speaking, Kamenica and Gentzkow (2011) and Lipnowski and Ravid (2017) do not restrict to
y 2 {0, 1}, although it follows from their results in this setting that the sender would not benefit from a richer
signal space since the state is binary.
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researchers with the same access to experiments but different weight placed on immediate

outcomes (as opposed to their career outcomes) would respond to transparency changes

differently.

Our first observation is that, unless the payoffs derived from career concerns are strictly

convex, there is no benefit to making biasing actions unobservable. This is the case since the

developer has no incentive for information acquisition but does have incentives for adding

bias the case; we immediately obtain.

Proposition 7. Let l = 0 and g00(p)  0. Then for any cost function, full transparency is

developer-optimal.

Whether career concerns incentives should be convex or concave in general seems

difficult to answer a priori. Risk aversion over long-term career outcomes would suggest

concavity is appropriate, though high-power incentives for “superstar” researchers would

generate convexity.

To highlight the differences between career concerns (given either convexity or concavity)

and follow-on interest, we focus on the case where biasing actions do not increase the

true positive rate, but only increase the false positive rate. In this case, it similarly follows

immediately from Corollary 1 that:

Proposition 8. Suppose ∂hT
∂ai

= 0 for any biasing action ai and g00(p)  0. Then full-transparency

is developer optimal.

These comparisons are significant since it is reasonable to assert that the significance of

follow-on research versus the beliefs in the validity of hypotheses would vary according to

the stage of the career of the scientist. For younger researchers, follow-on research may be

less significant than the belief in the validity of the hypothesis. For older researchers, legacy

may be more significant, in which case the importance of generating follow-on research

would matter more. In this sense, the model suggests that transparency requirements would

have different impacts across these different researchers. Policymakers may consider, for

example, imposing transparency requirements on early stage researchers, but not late stage
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researcher, if they believed that most scientists were risk-averse over long term outcomes.

2.5 Extensions

2.5.1 Private Information on Distortability

So far, the set of experiments available to the researcher has been taken to be common

knowledge. This is a sensible assumption if, for example, the set of possible experiments is

well-understood and could be characterized in advance. On the other hand, if the scientist

has specialized knowledge about the experiment in the first place, then one may also be

interested in what would happen in case this assumption were relaxed.

In this section, we illustrate that the presence of this kind of private information may

result in the scientist’s equilibrium behavior involving mixed strategies. In order to minimize

notation, we demonstrate this in the context of the example from Section 2.3.1, rather than

the general model, and assert that similar intuition applies for that setting as well. Recall

that in this setting, the scientist can choose a perfectly informative experiment at a cost, or

can choose an imperfectly informative experiment for free (but is suceptible to bias).

Suppose instead that the scientist is only able to add positive bias to experiment with

a1 = 0 (low quality equipment) with probability t. This situation is illustrated in Figure

2.3, focusing again on the case with costless choice of a2 (research assistant quality, the

biasing dimension). There are two features which distinguish this version from the previous

analysis. First, under non-transparency, the developer’s beliefs need not form a martingale

from the perspective of the scientist, when the experiment a1 = 0 is chosen—that is, for the

scientist, E[ p̂(y)] 6= p0. To see this, note that with probability t, the scientist chooses a2 = 1

when choosing a1 = 0, and with probability 1� t the scientist is forced to set a1 = 0. Hence

the probability that y = 1 is larger for the scientist who is allowed to bias than it is for the

scientist who cannot. But the developer cannot observe whether the scientist is able to bias,

and his beliefs are a martingale from his perspective. The result is that if the scientist can
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Figure 2.3: Graphical explanation for mixed strategies in Section 2.5.1. The points C and E represent expected
payoffs if distortions are feasible (hence to the right of the prior), and points B and D represent expected payoffs
if distortions are infeasible (hence to the left of the prior). If the cost of the fully informative experiment moves
the payoff from A to a point lower than C but higher than E, then the equilibrium behavior will involve mixed
stratgies.

pick a2 > 0, then E[ p̂(y)] > p0, but if the scientist cannot, then E[ p̂(y)] < p0. 17

To see the second difference, notice that when considering the informativeness of an

experiment, we were able to treat the experiment choice as given and then ask which level

of distortions would be picked. In this case, however, the informativeness of the signal

a1 = 0 will depend on whether a player who is able to distort would prefer to choose a1 = 1

or a1 = 0. If the scientist chooses the proposal a1 = 0 when distortions are available, then

the experiment is less informative than it would be if she were to choose a1 = 1 when

distortions are available. When t = 1, these two cases are the same, but they are not in

general.

This observation explains why we may have difficulty with ensuring the existence of

a pure strategy equilibrium. Indeed, for certain values of t, the scientist who can choose

a1 = 0 and bias might mix between a2 = 1 and a1 = 0 = 1� a2. Indeed, it may be the case

that, without mixing, if the developer thought the scientist would always choose a1 = 1

17We again emphasize again that p̂(y) is the probability the developer, and not the scientist, assigns to the
event that q = T.
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if available, the scientist would prefer to choose a1 = 0 and set a2 = 1, whereas if the

developer thought the scientist would only choose a1 = 1 if distortions were impossible,

then the scientist would always prefer to choose a1 = 0. We remark that several other papers

consider principal agent problems where the agent follows a mixed strategy due to a lack of

commitment at the time of contracting; see, for example, Fudenberg and Tirole (1990). Still,

to the best of our knowledge, we believe the mechanism isolated here for mixed strategies

in this setting is new.

We briefly comment that other forms of scientist private information could be prevelant,

and multiplicity may be an issue. For example, if the scientist has private information on

q, the setting becomes a signalling game and the choice of experiment has an additional

impact of conveying this private type. The complications arising with these settings, while

interesting, are left to future work.

2.5.2 Contractibility

There are many possible interpretations of the benefits to the scientist, and in this paper

we prefer an interpretation where these benefits are non-monetary. For example, if drug

development is successful, other researchers may view this work as a valuable contribution,

and follow-on by working on similar problems. These kinds of payoffs are not easily

contractible, and we believe this is a good approximation to many kinds of research activity,

particularly research taht is too costly or long term to be undertaken by private entities.

On the other hand, for research where the follow-on work is very quick, it may be more

feasible to introduce transfer as a function of the chosen experiment. We point out that some

kinds of contractibility would make the model degenerate. For instance, if the scientist’s

experiments could be restricted a priori, then there would be no benefits from changing the

transparency regime.18 Alternatively, if the developer could commit to an effort profile, they

could set e = 0 unless a given experiment were chosen. Without career concerns, under

18This would be difficult if no third party could determine the set of feasible experiments before they were
chosen, as in the previous extension.
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this policy, the scientist could only possibly obtain non-negative payoff from choosing that

experiment. In that case, any experiment that is individually rational for the scientist could

be implemented.

However, these comments do not imply that our insights are sensitive to an extreme lack

of contractibility. Suppose, for instance, it were possible to pay the scientist an additional

amount if they undertake some given experiment, say I(a), which is preferred by the

developer to the experiment the scientist would undertake with non-transparency. In this

case, the scientist would be compelled to undertake I(a) if payment for doing so was

greater than the difference in the scientist’s payoff. Ultimately, the conclusion of Theorem

7 remains valid, even with transfers (though there are cases under which transfers with

transparency outperforms non-transparency), since the cost of compelling the scientist to

make this change may be larger than the gain that the developer obtains from the more

informative experiment.

2.6 Conclusion

2.6.1 Discussion of Model Assumptions

The abstraction of the model is meant to focus on intuition, rather than explicitly mapping

to a given setting. Still, one may wonder whether the assumptions of the model make

sense. Perhaps most important is the assumption that the transparency regime is set by

an outsider over whom the scientist has no control.19 It could be that the only way of

documenting experimental methods is through a pre-registration database, and that the

scientist is unable to credibly do this on their own. Why this does appear to be the case in a

variety of disciplines is beyond the scope of this paper. It is not difficult to imagine, though,

that without a formal mechanism for doing so, credibly demonstrating that the protocols

followed were scrupulous might impose prohibitive costs on the scientist.

Our specification that the scientist’s benefit comes from the follow-on work of a developer

19We mentioned this possibility in Section 2.3.1.
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is simply to provide a concrete story within which our results can be presented. We could

have alternatively just been concerned about informativeness, and taken as a reduced form

the societal objective. In other settings, it may make more sense to think about follow-on

researchers extending or elaborating on the scientist’s results (with further citations). In

that case, one may be interested in modeling the citation process explicitly or describing the

“feedback process” through which the scientist, in turn, learns from follow-on researchers.

Our analysis is relevant to these settings, but accomodating them explicitly is left to future

work.

We imposed some technical assumptions on the space of information structures (e.g.,

continuity) to ensure equilibrium existence. We also imposed parameterizations on the set of

information structures (and restrictions on costs) in order to allow for limited commitment

while still being able to interpret the results. While these assumptions are restrictive,

we believe that the model formalizes the basic intuition represented in the introduction.

Hence the model seems to be an appropriate formalization of the debate over transparency

referenced in the introduction. From that perspective, this paper echoes Wilson (2014), on

the importance of careful economic reasoning in the design of research environments.

2.6.2 Final Comments

This paper has shown why a sender’s inability to fully commit to an information structure

may make a receiver better off. While we illustrated the main forces at work through a simple

example, our general model clarified that complementarity (which is natural, at least in some

settings) between the different kinds of research actions drove the result. As an application,

we have considered whether transparency requirements should be more widespread in

academic disciplines. The key insight is that non-transparency on one dimension can induce

scientists to exert more effort or incur more costs on another dimension, in a way that

ultimately makes those interested in the results better off. In assessing this conclusion, we

have primarily been concerned with the interest of those who use the results downstream.

This is, of course, a simplified view of welfare, but it is motivated by the idea that society
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invests in scientific research so that it produces results which will be useful for others

downstream.

In the main model we assumed that the only policy lever under the designer’s control is

whether the developer observes the scientist’s choice of protocols. For example, a funding

agency may be able to implement pre-registration requirements, but might not have the

authority to dictate specific steps that scientists follow. In the extensions we considered

what might happen if transfers were also available at their disposal, and demonstrated that

the main conclusion would not be changed. Still, the main model highlighted the relevant

tradeoffs of transparency. On the other hand, transparency also might have an advantage

of allowing for richer punishments, something we do not consider here, though they are

natural places for future work.

Though our model is theoretical, it still allows us to comment on the active debate on

the costs and benefits of transparency mentioned in the introduction. Our main model

has highlighted that this debate should consider the extent to which follow-on research

influences which experiments scientist choose to perform. In cases where it is significant,

our model shows that scientists have a natural incentive to both add informational content

to their experiments and bias their experiments. In this case, non-transparency encourages

scientists to choose experiments which are inherently harder to bias. If these experiments

are particularly difficult as well, then scientists may not be sufficient motivated to undertake

them under transparency, but if they are more informative then presumably society is better

off if they do.

Finally, we remark that the intuition for many of our results would apply to the research

process more generally, and not just academic publication. While we called the person who

acts after the scientist the developer, in general this could be any individual who will use

the scientist’s research, and whose actions the scientist would be interested in influencing.

We have shown that in general, a sender might be incentivized to acquire information but

not distort a signal, or conversely. We provided a framework which describes when each

will happen, so long as there is some sense in which these two types of actions can be
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distinguished. The observation that non-transparency can be used as a mechanism for

money burning will likely have applications beyond the focus of this paper, as these concerns

are similar to those that have been raised in a wide variety of contexts in organizational

economics.
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Chapter 3

Prototyping Under Competition

In the mid-1990s, the Department of Defense (in conjunction with foreign governments)

requested that Boeing and Lockheed Martin each begin the development a fighter jet

that would combine the functionality of several aircraft being used by different branches

of the U.S. military, as well as the U.K. Royal Navy and other American allies. The

program, referred to as the Joint Strike Fighter (henceforth JSF) due to its intended use by

different branches working in tandem with one another, was one of the most (if not the

most) ambitious technological procurement programs in recent military history. Lockheed

Martin was awarded the right to develop the aircraft in part due to the ability to perform

Short Takeoff and Vertical Landing (STOVL). However, several years after the contract was

awarded, it became clear that the aircraft was 2 % above the target weight, throwing the

entire program into jeopardy.1 The estimated cost of the project ended up exceeding a

trillion dollars, and while opinions of the program vary substantially, the dominant view (at

least among policymakers) is that the end result was a blunder for both the government

(due to the enormous cost, for a project that was in part justified by potential for savings),

as well as Lockheed Martin (due to the pressure they faced to make the program work).

This paper studies the problem of allocating contracts for the purposes of developing

1See Blokcom (2003) for a review of the program and issues involved. For a more recent assessment of the
difficulties facing the JSF program and policy recommendations prescriptions meant to remedy them, see GAO
(2016).
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and subsequently procuring new technologies, as was done for the JSF. At an abstract level,

there are many possible ways to allocate such a contract; for instance, the principal could

ask each participant for detailed descriptions of every feasible project. In practice, the

government tends to award contracts based on a contractor’s demonstrations or descriptions

of it.

I refer to this method of allocating contracts as prototyping. Prototyping is by no means

limited to the military, and even within the military there is enormous variation in how

prototyping is done, in part due to the variation in the size of contract awards. Indeed, the

JSF was extraordinary in its size and profile, and therefore arguably not representative of the

vast majority of procurement activity (despite its clear significance). But while there are a

relatively small number of major weapons systems, there are a very large number of smaller

contracts which are awarded regularly for the purpose of technological development.2 In

this paper, I take a broad view of what prototyping entails, but am primarily interested in

the following kinds of settings:

• The contract award has value for the procurer as well as the developer (due to the

ability to develop more in the future, the acquisition of knowledge, etc.).

• Residual uncertainty remains even after the contract has been awarded, and where

eventual infeasibility of the prototype is costly for all parties.

These apply to a large number of acquisition programs and are highlighted by the above

discussion of the JSF. Within these settings, I am interested in allocation mechanisms

consisting of an agreement to develop a particular project (i.e. the prototype), based on

a description of it. Allocating in this way is restrictive, and rules out several allocation

mechanisms which many theoretical models may implicitly assume are feasible, but which

seem less common in practice. For instance:

• Awarding the contract to a participant, and subsequently dictating which particular

2For instance, see Bhattacharya (2016) for an empirical analysis of a particular method the Department of
Defense uses to allocate contracts to small businesses.
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project they undertake (unrestricted by the initial prototype)

• Asking for participants to submit a set of prototypes, and auctioning off the contract

based on the willingness to do each one

This paper asks why a principal may not opt for these more sophisticated mechanism.

I develop a deliberately simple model in order to study prototyping formally. In my

model, agents are endowed with prototypes, observing privately some characteristics and

subsequently making a report to the principal. The principal then allocates the contract to

one of the agents, and payoffs depend on the prototype chosen and a subsequent event that

depends on the agent’s private information. I allow for rich communication protocols, but

am interested in conditions under which optimal communication mechanism will simply

entail each agent suggesting which prototype they would like to develop, and doing so

whenever they are chosen. I refer to these as prototyping mechanisms.

I am interested in the interaction between competition and the use of prototyping

mechanisms. In practice, determining how much to solicit competition is often the main

relevant policy lever. For example, Stage I projects in the SBIR program are often restricted

in terms of contract duration and monetary award, but there is substantial variation in

how many participants are selected to participate (see Bhattacharya (2016)). Indeed, the

Competition in Procurement Act of 1984 significantly restricted the ability of government

organizations to allocate contracts without “full and open competition" (see Manuel (2010)

for more details on competition in procurement for federal agencies). Certainly there are

compelling reasons to be interested in maintaining competitive procurement, many of which

are not modelled here. Instead, this paper focuses on one particular reason that competition

is viewed as per se beneficial: That if enough prototypes are present, the probability of

finding a particularly good one is high. This paper shows that this logic is incomplete, and

in fact it can backfire if not done effectively.

Specifically, my results show that when incentives are aligned, the principal can imple-

ment the optimum by simply asking each agent to suggest a prototype and subsequently

asking some agent to develop it. In other words, prototyping mechanisms achieve the
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optimum. A contribution of this paper is to distinguish between deterministic project

proposal and deterministic agent selection. While prototyping mechanisms are defined

by their use of deterministic project propsal, they are not necessarily deterministic since

the selected agent can be chosen stocahstically. The alignment assumption introduced may

seem strong, since it forces a deterministic optimum in the problem with only a single agent.

However, I show by example that a deterministic optimum in the single agent benchmark

does not by itself imply that prototyping mechanisms are optimal in competitive settings.

In other words, without any restrictions on preferences, prototyping could be optimal in

non-competitive settings but suboptimal in (otherwise similar) competitive settings.

I proceed to provide several results describing the nature of competition under prototyp-

ing mechanisms. First, if the aforementioned randomizations can be committed to, then I

demonstrate that competition is beneficial if it is costless to obtain additional participants.

In contrast, if randomizations are not possible, then it is possible for competition to be

counterproductive. I also demonstrate that the results are maintained when effort must be

undertaken, though this requires relaxing symmetry assumptions. Finally, I consider the

setting with fines, showing that randomization may still be necessary if the fines are not so

large as to break the alignment between principal and agent.

I continue with the model in Section 3.1, and provide a simple parameterization to

highlight the key insights in Section 3.2. I then walk through the first best benchmark in

Section 3.3, with the main results on the optimality of prototyping mechanisms being in

Section 3.4. I highlight the role of commitment in Section 3.5, with some other extensions

being discussed in Section 3.6. Literature is left to Section 3.7, concluding in Section 3.8.

Proofs and additional results are in the Appendix.

3.1 Model

A principal wishes to hire one of N agents to develop a new technology. Agent i 2
{1, . . . ,N} is endowed with a set of possible prototypes. A prototype is denoted xj, with

xj 2 {x0, . . . , xMi}, for Mi � 1. I refer to x0 as the safe prototype, which I assume can be
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made by all participants and is identical. All other prototypes are referred to as risky.

For each risky prototype xj that an agent is capable of producing, the agent observes

some qij ⇠ Gi
xj . The vector (qij)1jMi is privately observed by each agent. However, the set

of possible prototypes {x0, . . . , xMi} for each agent i is commonly observed by all parties, as

are the distributions Gi
xj . Additionally, I assume that Gi

xj is finite.

The principal allocates the contract according to a mechanism described in the following

subsection. After the allocation is made, an outcome occurs, which I denote by y 2 {0, 1}.
The event y = 1 is referred to as success and the event y = 0 is referred to as failure. The safe

prototype results in success with probability 1, but risky prototype xj results in success with

probability qij.

3.1.1 Mechanisms

I introduce two classes of mechanisms that the principal may be able to use. First, a general

mechanism allows each agent i to make a report mi 2 Mi. The mechanism then chooses an

agent, as well as a project for them to develop, according to some rule X : M1 ⇥ · · ·⇥MN !
D([i{x0, . . . , xMi}) (i.e. it chooses an agent and a prototype for the agent).

I do not allow for transfers to be made between any parties in the main model.3 By the

revelation principle, it is without loss of generality to assume that each Mi is each agent’s

type space, and an equilibrium is played where all agents report their types truthfully.

However, this results in a difficult set of mechanisms to work with.

I refer to a simpler set of mechanisms as prototyping mechanisms. These are mechanisms

where first, the principal determines a set Di ⇢ {x0, . . . , xMi}, and each agent chooses

some x 2 Di. The principal then chooses an agent according to some rule Y : ’N
i=1 Di !

D({1, . . . ,N}). As mentioned in the introduction, allocation of contracts for new technologies

in practice involve simple descriptions of the technology to develop, and do not necessarily

involve detailed reports of all alternative technologies (and in fact, details of the given

3This is common in early stage prototyping. In practice, research budgets are small, and most of the
incentives are derived from the ability to win a contract in the future.
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technology are often difficult to verify). Hence while general mechanisms are the more

theoretically appealing concept, prototyping mechanisms appear to be more common in

practice. However, I am not directly able to appeal to the revelation principal for prototyping

mechanisms.

3.1.2 Payoffs

Any agent that is not selected obtains a payoff of 0. If the outcome is y, then an agent

obtains payoff vyA(x) and the principal obtains payoff of vyP(x). I assume throughout that all

parties have higher payoffs following a success than following a failure: v1i (x) � v0i (x), for

all x and i = A, P.

As the name suggests, I interpret y = 1 to denote the case where the prototype is

successfully developed and the event y = 0 to denote the case where it is not. In practice,

parties may in fact have positive payoffs in the event of failure. For instance, knowing

the difficulties of some projects makes later projects more efficient, or may still result in

improvements on a known technology.

At times, I will be interested in cases where the following assumption holds:

Assumption 1 (Alignment). Whenever xj 2 argmaxj{qijv
1
A(xj) + (1� qij)v

0
A(xj)}, it also holds

that xj 2 argmaxj{qijv
1
P(xj) + (1� qij)v

0
P(xj)}.

Alignment forces both principal and agent to have the same maximizing prototype

choice conditional on private information. When this assumption holds, I will refer to the

prototype that is optimal for both principal and agent as the efficient prototype.

While alignment may seem to be a strong assumption, it will hold whenever surplus

between the principal and the agent is determined by an ex-post Nash bargaining protocol

over surplus. A similar kind of surplus division is assumed in Bhattacharya (2016), and also

appears reasonable based on conversations with practitioners. In the Appendix, I consider

a version of the model where the agent observes a cost draw after observing whether the

prototype is feasible, and where prototypes are distinguished by their value to the principal.

In this setting, whenever the cost has a linear virtual value, the alignment assumption will
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hold (using the Myerson optimal transfers given the principal’s value) as well. Without

linearity, it can also hold for discrete type spaces, and I also show how the concavity of the

virtual value influences the incentives to overstate or understate a project’s quality.

3.1.3 Summary and Discussion

To summarize, the model consists of:

• Agents observing feasible prototypes and private information about their quality.

• The principal designing some announcement mechanism.

• Agents choosing their announcements, and the contract being allocated according to

the principal’s rule.

• The selected agent develops their prototype, the ultimate feasibility being realized

after the agent is selected.

I am assuming that once the agent is selected, it is impossible to “go back” and select

another agent. For instance, it was practically impossible for the JSF to be reallocated, and

there is often significant red tape when there are attempts to bring back “failed” projects. On

the other hand, both parties may prefer a failed project to no project at all. The important

driver of incentives in the model is that agents have an additional incentive to be chosen,

whereas the principal may be indifferent between various agents conditional on their private

information.

Another key assumption relates to the independence of private information across

protoypes (and agents). This assumption is appropriate in order to best scrutinize the

common reasoning for the use of competition, as a means to getting more “good draws.”

If quality were correlated across agents, then this impact would be diminished. When

dynamics are significant, however, this would be a more problematic assumption, as looking

at past performances may dictate what kinds of inference about feasibility that the principal

would make in the future.
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3.2 An Example

The following example illustrates many of the key ideas in the more general analysis

(although takes advantage of some results that are still to come). It demonstrates that the

optimal prototyping mechanism involves randomization and highlights the reasons this

randomization arises. Specifically, we consider the case where there are two prototypes

(one safe and one risky) and where the risky prototype succeds for agent i with probability

qi ⇠ F. The risky prototype, if successful, gives a payoff of 2 to both the winning agent

and the principal if selected, but gives a payoff of 0 to both if it is not successful. The safe

project, by contrast, gives a payoff of 1 to both for sure.

Note that the alignment assumption holds in this setting. With only one agent, since

the principal and the agent both have the same utility function, it is clear that the agent

implements the principal’s favorite prototype even in the second best. Specifically, the

principal’s optimal policy consists of a threshold rule whereby the safe project is implemented

if qi  1/2, and the risky project is implemented otherwise.

In contrast, a deterministic threshold rule may not be optimal in the case with two

agents. Note first that if each qi were observed by the principal, then having more agents

participate is clearly beneficial—the principal faces two draws instead of one, and hence the

best qi is more likely to be higher. To make our point simplest, suppose that F is supported

on two values, 0 < qL < 1
2 < qH < 1, with P[qH ] = q. The first best in this case would (1)

have the agent develop their preferred prototype if they are selected, and (2) choose the

agent with the higher qi if the qi differ. Consider a direct revelation mechanism where the

principal uses this mechanism, and let us conjecture that agents follow truth-telling. In this

case, an agent of a low type knows that with probability q he will not get the award, since

this is the probability the other agent has a higher type. Let yi,t be the probability that agent

i is allocated the contract if both are of type t. In this case, incentive compatibility requires:

(1� q)yi,L � (1� q+ qyi,H)2qL
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Adding this up across both agents and noting that the first best always allocates the object:

(1� q) � (2� q)2qL ) 1� q
2(2� q)

� qL.

When q = 0, the principal can implement the first best by simply allocating the safe

prototype to one of the agents. But for q ' 0, the first best requires allocating the risky

project with positive probability, which may not be possible if the risky prototype is always

developed over the safe prototype; the condition for this to occur becomes 1
4 ' qL. So

whenever qL > 1/4, even if it is very unlikely that the other agent is a higher type, agents

would still choose the (less preferred) risky prototype. Hence overpromising can still be a

concern, even if it is extremely unlikely that the competitor is actually able to implement a

better prototype.

Now, the left hand side of the inequality is decreasing in q, so in fact when q is higher

truth telling is more demanding. So, overpromising is indeed less of a concern when the

probability of a successful risky prototype is smaller. However, when q is smalller, the gains

to deviating from truth telling are higher as well. That is, if it is very likely that the other

agent is a low type, then it is also very likely that lying results a win. While it results in a

suboptimal choice, it is still preferred to losing, which is a real risk from telling the truth.

Hence the incentive to overpromise does not vanish in the limit.

This outcome highlights a potential for a perverse effect of competition. That is, suppose

qL > 1�q
2(2�q) , and that the equilibrium played is “proposing the risky prototype.” 4 In that

case, the payoff to the principal is 2(qqL + (1� q)qH). If qqL + (1� q)qH < 1/2, then the

result is actually worse than if there were only one agent.

Note that competition can still be beneficial, even if agents develop their preferred

prototype, by utilizing a stochastic mechanism that randomizes across agents. Indeed,

suppose the mechanism is symmetric, and let yi,L = yi,H = 1/2. Let z denote the probability

that the winning prototype is safe if both prototypes are proposed. One need only choose z

4This is in fact the unique equilibrium.
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so that incentive compatibility is satisfied:

1� q
2

+ qz � 2qL
⇣
(1� q)(1� z) +

q
2

⌘

which occurs if:

z � 2qL(1� q) + qqL � 1�q
2

q+ 2qL(1� q)

As q > qqL � 1�q
2 , this condition can hold with equality while maintaining z < 1.5 Setting

z to be equal to the right hand side delivers the optimal mechanism, which indeed does

better with two agents than one agent. Notice, however, that any agent that proposes the

safe project delivers the principal a lower utility. Hence setting z > 0 requires commitment

on the part of the principal to allocate a contract to a project that delivers a lower utility

in expectation. If this commitment power were absent, then indeed competition could be

harmful.

3.3 Hard information benchmark

In this section, I consider the case where each agent’s private information is verifiable, so

that the allocation rule can depend on the agent’s realized type vector. This corresponds to

the case where all information regarding the prototype is observable and contractable. In

that case, the principal can simply ask all agents to report their entire vector of private infor-

mation, and hence the principal is able to pick the prototype that maximizes their payoff.

While this competition results in a better prototype being picked with higher probability,

it also damages the payoffs that each agent obtains. This discussion yields the following

proposition, whose proof is omitted.

Proposition 0: With observable private information, the principal’s payoff from an optimal mecha-

nism is increasing in the number of agents, while the average payoff for each agent is decreasing.

5Note that as q ! 0, z ! 1� 1
4qL

.
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Even with observable information, the principal may still (for whatever reason) prefer

mechanisms that are simple. For example, it may be difficult to get agents to willingly an-

nounce information even if it is hard. In this setting, without the alignment assumption, the

principal may do better by conditioning the allocation on information the agent would not

voluntarily disclose; for instance, if a certain prototype was always less preferred to the safe

prototype by the agent, but preferred by the principal for some agent types. However, when

the alignment assumption holds, these incentives disappear, with or without competition.

So in terms of implementation, when the alignment assumption holds, the principal can

restrict to (fully deterministic) prototyping mechanisms. I record this observation as follows:

Proposition 0’: Under the alignment assumption with verifiable agent types, the optimum is imple-

mented by asking each agent only for their favorite prototype and the corresponding quality parameter.

Under the alignment assumption, asking each agent for their favorite prototype imple-

ments the optimal mechanism, no matter how many agents there are, and hence the project

selection mechanism does not depend on the number of agents. Without the alignment

assumption, the principal’s outside option when not selecting a given agent is increasing,

meaning that agents are more likely to propose projects that are favorable to the principal.

And since information is non-falsifiable, this shift in incentives cannot hurt the principal.

However, even without the alignment assumption, there is no incentive for the principal to

randomize over projects, provided the mechanism can elicit enough information: given any

report, the principal can pick the prototype that is optimal for them.

3.4 Prototyping

This section provides conditions for the optimality of prototyping mechanisms. I emphasize

the role of the alignment assumption, and show that some version of it is necessary to

explain the widespread use of prototyping. First, I show that in general, one can look at a

restricted set of general mechanisms without hurting payoffs:
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Lemma 6. The optimal general mechanism can be achieved via a policy under which the project an

agent develops depends only on the agent’s own reports.

The proof of this result is straightforward and relegated to the appendix. The idea is to

replace any rule where the randomization of each other player’s reports are “simulated out.”

The proof demonstrates that, due to the structure of payoffs, such a replacement is payoff

equivalent for all parties, even if it may lead to a different outcome.

Given this lemma, it is worth comparing the case of a single agent to the case of multiple

agents, where the principal need not worry about which agent to select. Difficulties in

the single agent problem are well known due to the difficulty in applying the revelation

principle with deterministic mechanisms, and it is also known that certain generalizations

to multi-agent contexts are not feasible, as highlighted by Strausz (2003). The lemma points

out that under certain separability assumptions, randomizations can be done across agents.

One may therefore wonder whether a deterministic single-agent problem at least guarantees

a deterministic prototype choice in the multi-agent problem.

Consider the following example:

Example 1. I modify the example from Section 3.2 slightly. As before, suppose the safe

prototype delivers payoff of 1 for all parties and the risky prototype delivers payoff of 2 for

all parties, with the same set of possible types for the agents. However, now also assume

that there is a third prototype that can be developed, which yields a payoff of 1� # to the

principal, and �D(#) to the agent.

Clearly the single agent problem has a deterministic solution, and coincides with the case

in Section 3.2. There, I also showed that the optimal mechanisms without the third prototype

present involves randomization across agents, but not across projects. With the third

prototype, it is never optimal for the third prototype to be chosen if the principal restricts

to prototyping mechanisms (i.e., deterministic project choice): both principal and agents

do better by choosing the safe prototype over the third prototype. The optimal mechanism

from the example is therefore again optimal when there is deterministic prototype choice

(even when randomizations are done across agents).
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Consider instead the following mechanism: If both agents announce q then choose the

safe prototype, randomly allocated between the two agents, and if both agents announce

q then choose the risky prototype, randomly choosing between the two. However, if one

agent announces the safe prototype and one announces the risky prototype, allocate the

contract to the agent that announces the risky prototype with probability 1, but have them

develop the third prototype with probability r.

In this case, an agent of type qL prefers to announce the safe prototype if:

1� q
2

� 2qL((1� q)(1� r) +
q
2
)� (1� q)rD(#),

and is indifferent if:

r =
3qL � 1/2

2(D(#) + 2qL)
.

Whenever this indifference holds, a type qH will strictly prefer to announce the risky

prototype. Taking D(#) ! • shows that it is possible to also have r ! 0. However, taking

# ! 0 simultaneously demonstrates that the principal obtains first best payoffs in the limit,

and hence does strictly better for some D(#), #. ⌅

The example shows that prototyping mechanisms may be optimal in single-agent

problem, but not in the corresponding multi-agent problem where agent types are IID. The

reason is simple; it is less costly for the principal to randomize over projects than randomize

over agents. Therefore, a stronger assumption is needed in order to guarantee the optimality

of deterministic project choice (and hence prototyping mechanisms). This is the role of

Assumption 1. The point that randomization can be part of the optimal contract in order

to act as a form of money burning is made by Kovac and Mylovanov (2009). The example

shows that the presence of competition gives one channel for this to arise.

However, under the alignment assumption, I am able to show that with a single risky

prototype, it is without loss to consider mechanisms which restrict to prototype announce-

ments:

Lemma 7. Under Assumption 1, the optimal general mechanism involves a deterministic project
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choice, and hence can be implemented as a prototyping mechanism, whenever each Gi
xj has support of

cardinality 2.

The idea is that replacing any arbitrary mechanism with one that implements the

mutually preferred allocation strictly increases the surplus of all parties. Without the

alignment assumption the result will generally fail, as the above example shows. Intuitively,

alignment ensures that the only way of harming the agent is by allocating the contract to

the other agent. Note that this is not present in Example 5.1, since there is disagreement

between the principal and the agents over the third prototype.

Next, I demonstrate the natural intuition that it is the “bad types” that wish to mimic

the “good types.”

Lemma 8. Whenever the incentive compatibility constraints are binding, the safe type IC constraints

are binding in any optimal mechanism.

This lemma can be used to calculate the optimal mechanism in examples, since it is

pinned down by the safe type not wanting to mimic the risky type.

Given that the optimal mechanism does not always allocate the contract to the ex-post

efficient prototype, one may wonder whether competition actually has any benefits. It turns

out the answer is in the affirmative:

Proposition 9. Suppose all agents are symmetric, with one risky prototype per agent. Then there

exists an optimal symmetric mechanism, and the principal’s principal’s payoff is increasing in the

number of agents, but is bounded as the number of agents grows large.

The fact that the principal’s payoff is bounded follows immediately from the observation

that even if a risky prototype could be guaranteed, the principal’s payoff would be bounded

(hence the proof is omitted from the appendix). It follows that while the profit is increasing

in the number of agents, there are diminishing marginal returns to additional agents.

It is worth comparing this result to Mylovanov and Zapechelnyuk (2017). They consider

a setting where a princpial can impose (exogenous type dependent) fines on agents if they

misreports, though imposing these fines is costly for both the principal and the agent. Their
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result is that competition has limited benefit, in that there is a finite number of agents above

which the principal’s payoff does not increase.

The intuition behind the basic structure of the optimal contracts in their paper is similar

to ours: The principal is limited in how much they can deter misreports, and hence does not

always allocate the contract to the agents that have the best type. However, in their model,

the cost of punishment is exogenous. Here, it is endogenous due to the fact that another

agent can be awarded the contract, and one that potentially has a better prototype that they

can develop.

3.5 Commitment Assumptions

The previous analysis showed that under restrictions on the environment, an optimal

mechanism generally must allow for randomizations. As pointed about by Laffont and

Martimort (2002), this necessitates a certain degree of commitment to an outcome that

is ex-post suboptimal, and hence requires credibility for the principal to carry out this

randomizations. Circumventing for this kind of commitment problem may explain why, for

example, an organization may give the power to allocate rights to a separate division with

clear guidelines (as is done with SBIR as pointed out by Bhattacharya (2016)). However, it

may also be unavoidable for cases like the JSF, which had high stakes and flexible criteria,

so that any explicit randomization would have likely been infeasible.

In this section, I consider a benchmark where the principal is restricted to utilizing

prototyping mechanisms, and cannot commit to a particular randomization. That is, I

impose the following timing:

• Agents all submit prototype recommendations.

• The principal then chooses a prototype to develop, among the list of submitted

prototypes.

• The prototype is developed, with the outcome y being realized and payoffs being

achieved.
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Proposition 10. Let N = 2 and supporse the principal cannot commit to randomizing after

prototypes. Let the alignment assumption hold with a single risky prototype for each agent. Suppose

further that in the optimal contract with commitment, the contract is allocated to the safe prototype

over a risky prototype with positive probability. Then the optimal mechanism involves the principal

preventing one of the agent’s from participating.

Note that with 2 agents, there may exist an equilibrium which delivers the same payoff

as the single agent mechanism: Simply choose one of the agents and treat the other agent’s

report as babbling. In order for this to be an equilibrium, however, it must be that without

any information, the safe prototype is preferred to the risky prototype. Considering the

example from Section 3.2, if q is very high, then it cannot be an equilibrium to treat one

agent’s reports as truthful and the other as babbling, since otherwise the principal would

profitably deviate by choosing the babbling agent. Hence in this case, competition may

indeed strictly hurt. Furthermore, there is always an equilibrium under which the strategy

is pure babbling. Hence under the alignment assumption, the payoffs to the principal would

alsways strictly decrease with the addition of a second agent if such an equilibrium were

played.

3.6 Extensions

3.6.1 Fines

The main model assumes that there are no transfers available. For early stage progress,

this is often the case; for instance, the SBIR program provides firms with small lump sum

loans if they are awarded a first stage contract, with the primary incentives often being the

possibility of contract awards. However, these awards often originate from a completely

separate entity (e.g. the Navy) and hence are not explicitly part of the original contract (see

Bhattacharya (2016) for more institutional details).

Still, one may consider cases where the outcome y is at least partially contractable, and

where liability constraints are not binding so that some payoffs can be contracted on ex-ante.
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With large scale projects, for instance, the firms often have multiple projects, and hence

the ability to transfer payoffs between principal and agent should arise in some form. 6

Can fines enable competition to be beneficial when the principal is not able to commit to

randomization?

It is not hard to see that the answer is sometimes yes, but it turns out the ability to fine

the agent has limited ability to restore the benefits of competition when commitment is not

present. I demonstrate this observation by revisiting the simple example from Section 3.2.

Suppose the principal were able to enforce a fine against the agent in the case of failure

instead of distorting the allocation. To induce truth telling, in a symmetric mechanism, a

fine would need to satisfy:

(1� q)(1/2) � (1� q+ q(1/2))(2qL � f (1� qL) ) f � qL(4� 2q)� (1� q)
(2� q)(1� qL)

.

One should read this expression cautiously however. For example, suppose that q =

1/2, qL = 2/5 and qH = 3/5. Based on the above analysis, the overpromising effect arises,

and a fine that rectifies it is 7/9. Suppose such a fine could in fact be imposed on the

agent, and that the principal collects the payment. In this case, one can check that the

principal would actually be better off7 limiting discretion and forcing both agents to pick the

risky prototype! Without the agents making any choices and the allocation being random,

clearly the principal’s payoff with one agent coincides with the solution for two agents. So

while indeed fines can be imposed to mitigate overpromising, even in a world with fines,

competition might only have limited benefits.

6In conversations with practitioners, the dominant case is that since the major defense contractors have
mulitple projects over a long horizon, a perceived misrepresentation on one project would be corrected for on
another project. Hence payoffs would adjust, even though such adjustments would not be made explicitly as
part of the contract. Such a story is reminiscent of the relational contracts literature; making this connection
explicitly is intriguing, but beyond the scope of the present paper. However, see Board (2011) for a model along
these lines.

7Albeit only very slightly.
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3.6.2 Moral Hazard

In practice, prototyping involves effort on behalf of participants, and the incentives to create

a future project with high surplus is a significant driver of incentives. Indeed, much of the

existing literature (Che and Gale (2003), Taylor (1995), Fullerton et. al. (2001)) focus on this

aspect of R & D. I comment on how this possibility influences the optimal mechanism.

Assume that there are N agents and each has access to only a single risky prototype.

Prior to entering the mechanism, I assume that each player chooses an effort level e 2 E at

cost c(e), normalizing the cost of the lowest effort level to be 0. The parameter q ⇠ G(e) is

drawn, as a function of the effort chosen. For simplicity, I use the setting of the example,

where q 2 {qL, qH} with P[qH ] = e.

The presence of moral hazard adds an additional cost of randomization. In the single

agent case, the agent chooses e to maximize:

�c(e) + 2qHe+ (1� e)

In contrast, in the multiple agent case, with the optimally chosen symmetric allocation

probability, ei maximizes:

�c(ei) + ei · (qH(e�i + (1� z)(1� e�i)))) + (1� ei)
✓
1� e�i

2
+ e�iz

◆

As is typical, agent efforts are strategic substitutes. Hence the presence of the second agent

lowers the incentive for the first agent to exert effort.

If E is discrete, then Proposition 9 can be used to show that adding additional identical

participants can the principal whenever all agents have strict incentives to exert their given

effort level. If the agents are in fact indifferent between a given effort level and a lower one,

then adding another agent changes the distribution, which may hurt the principal. On the

other hand, assuming the principal can choose arbitrary mechanisms, adding additional

agents cannot hurt, and adding sufficiently many agents will help in the case that exerting

minimal effort can still result in qH being drawn.

However, unlike in the case without moral hazard, the environment cannot necessarily be
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symmetrized to ensure that the moral hazard constraints are still satisfied. Indeed, symmetry

assumptions may be unnatural simply because there may not be an equilibrium where

both agents exert the same effort level (due to strategic substitutability). If the principal is

restricted to choosing symmetric mechanisms, therefore, competition may indeed lower the

principal’s payoffs.

3.7 Literature Review

Our main analysis studies delegated project choice. A single agent version of this problem

is studied by Armstrong and Vickers (2010). Bar and Gordon (2014) consider a general

analysis of project selection with multiple agents, but allow for transfers under limited

liability. An application of delegated project choice to merger review (with multiple agents)

is the focus of Nocke and Whinston (2014), who look at restricted mechanisms motivated

by similar issues with eliciting information by anti-trust authorities. Rantakari (2014) also

studies multi agent project selection, but also assumes agents obtain benefits from the other

parties, and does not focus on the role of randomization.

Outside of the project choice literature, multiple agent delegation models have been

studied by Ambrus, Baranovskyi and Kolb (2017), as well as Martimort and Semenov (2008)

for an application to political lobbying. Ambrus, Baranovsky and Kolb (2017) assume that

the state is common across all parties (whereas agents get a noisy signal of it) in contrast to

the model here, and also only consider the case of commitment under a restricted set of

mechanisms. Martimort and Semenov (2008) also consider somewhat different functional

forms, although they allow for independent types across agents. However, they restrict to

studying deterministic mechanisms, leaving the question of the benefits to randomization

open (but also commenting as I do above that this may be difficult to enforce). A related

literature that has focused on cases of multiple agents relates to information production

by experts in organization. For instance, Dewatripont and Tirole (1999) study advocacy in

organizations, and also consider the importance of falsifiability, but model it in a different

way. Since agents in their model do not have intrinsic preferences over prototypes, the case
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of completely soft information is degenerate.

Mechanism design with verifiable information originates with the seminal work of Green

and Laffont (1986), who illustrate difficulties with the revelation principle in settings with

partially verifiable information. As stated above, Mylovanov and Zapechelnyuk (2017)

provide a similar model where the principal can punish the agents ex post for lying, and

show that this provides a rationale for random allocation. However, they do not study the

delegation problem per se, and restrict preferences more substantially than I do here (and

hence do not comment on how these assumptions influence the incentives to randomize).

Additionally, as stated, I arrive at a different conclusion regarding competition (since there

is always some positive gain from additional participants). Ben-Porath, Dekel and Lipman

(2014) allow for the principal to potentially check the type of the agent, which entails an

ex-ante (instead of ex-post) verification. Halac and Yared (2017) study a delegation setting

where the principal can verify an agent’s private information, and Silva (2017) studies this

question in a criminal justice setting.

3.8 Conclusion

This paper considers optimal project selection mechanisms, and provides conditions under

which they can take the form of prototyping mechanisms that are often seen in prac-

tice. I demonstrate how competition in delegation settings can lead to the necessity of

randomization, and that under some assumptions on the underlying environment these

randomizations can be taken to be over the agent selected (i.e. allowing for deterministic

project choice). I also highlight in a simple model how the benefits of competition are

connected to commitment, thereby demonstrating that more need not help if this is absent.

Many aspects of reality are missing from the main model. For instance, I take a stark

perspective on the verifiable/non-verifiable aspects of projects, but in practice there may be

other ways of partially verifying an agent’s private information. For instance, the principal

may be able to conduct audits (as in Halac and Yared (2017)), or there may be costs associated

with falsifying the private information. Therefore, it remains open how much unverifiability
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is necessary for the results. Additionally, one may endogenize the outcome after failure by

allowing for explicit dynamics, for example. Dynamics are particularly interesting since

agents may be learning about the feasibility of their projects, or may have the option to sit

out of a given round and delay. De Clippel, Eliaz and Rozen (2017) provide a model that

studies some of these issues, where a principal chooses among agents with noisy ex-post

information of their type, and where a decision is to be made in every period. Indeed,

as stated above, the future contracts are a major driver of incentives in these applications.

So while this may be complicated, future work should take these incentives into account

explicitly, instead of treated in the reduced-form way that is done so here.
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Appendix A

Appendix to Chapter 1

A.1 Proofs for the Main Model

We first define the transformed distribution G in cases where F need not be continuous.

DEFINITION 1’. Given a percentile a 2 (0, 1], define g(a) to be the expected value of the lowest

a-percentile of the distribution F. In case F is a continuous distribution, g(a) = 1
a

R F�1(a)
0 vdF(v).

In general, g is continuous and weakly increasing.

Let v be the minimum value in the support of F. For b 2 (v,E[v]], define G(b) = sup{a :

g(a)  b}. We extend the domain of this inverse function to R+ by setting G(b) = 0 for b  v

and G(b) = 1 for b > E[v].1

We now provide proofs of the results for the main model, in the order in which they

appeared.

A.1.1 Proof of Proposition 1

Given a realized price p, minimum profit occurs when there is maximum probability of

signals that lead the buyer to have posterior expectation  p. First consider the information

1If F does not have a mass point at v, g(a) is strictly increasing and G(b) is its inverse function which
increases continuously. If instead F(v) = m > 0, then g(a) = v for a  m and it is strictly increasing for a > m.
In that case G(b) = 0 for b  v, after which it jumps to m and increases continuously to 1.
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structure I that tells the buyer whether her value is in the lowest G(p)-percentile or above.

By definition of G, the buyer’s expectation is exactly p upon learning the former. This shows

that, under I , the buyer’s expected value is  p with probability G(p).

Now we show that G(p) cannot be improved upon. To see this, note that it is without

loss of generality to consider information structures which recommend that the buyer

either “buy” or “not buy”. Nature chooses an information structure that minimizes the

probability of “buy." By Lemma 1 in Kolotilin (2015), this minimum is achieved by a

partitional information structure, namely by recommending “buy” for v > a and “not buy”

for v  a. From this, it is easy to see that the particular information structure I above is the

worst case.

Thus, for any realized price p, the seller’s minimum profit is p(1� G(p)). The proposi-

tion follows from the seller optimizing over p.

A.1.2 Proof of Proposition 2

In the main text we showed that for any deterministic price path, nature can choose an

information structure that holds profit down to P⇤ or lower. Here we extend the argument

to any randomized pricing strategy s 2 D(PT). For clarity, the proof will be broken down

into three steps.

Step 1: Cutoff values and information structure. To begin, we define a set of cutoff values.

In each period t, given previous and current prices p1, . . . , pt, a buyer who knows her value

to be v prefers to buy in the current period if and only if

v� pt � max
t�t+1

E[dt�t · (v� pt)] (A.1)

where the RHS maximizes over all stopping times that stop in the future. It is easily seen

that there exists a unique value vt such that the above inequality holds if and only if v � vt.2

2This follows by observing that both sides of the inequality are strictly increasing in v, but the LHS increases
faster.
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Thus, vt is defined by the equation

vt � pt = max
t�t+1

E[dt�t · (vt � pt)] (A.2)

and it is a random variable that depends on realized prices pt and the expected future prices

s(· | pt).
Next, let us define for each t � 1

wt = min{v1, v2, . . . , vt} = min{wt�1, vt}. (A.3)

For notational convenience, let w0 = • and w• = 0. wt is also a random variable, and it is

decreasing over time.

Consider the following information structure I . In each period t, the buyer is told

whether or not her value is in the lowest G(wt)-percentile. Providing this information

requires nature to know wt, which depends only on the realized prices and the seller’s

(future) pricing strategy.

Step 2: Buyer behavior. The following lemma describes the buyer’s optimal stopping

decision in response to s and I :
Lemma 1’: For any pricing strategy s, let the information structure I be constructed as above.

Then the buyer finds it optimal to follow nature’s recommendation: she buys when told her value is

above the G(wt)-percentile, and she waits otherwise.

Proof of Lemma 1’. Suppose period t is the first time that the buyer learns her value is above

the G(wt)-percentile. Then in particular, wt < wt�1 which implies wt = vt by (A.3). Given

this signal, she knows that she will receive no more information in the future (because wt

decreases over time). She also knows that her value is above the G(wt)-percentile, which is

greater than wt = vt, the average value below that percentile. Thus from the definition of vt,

the buyer optimally buys in period t.

On the other hand, suppose that in some period t the buyer learns her value is below

the G(wt)-percentile. Since wt decreases over time, this signal is Blackwell sufficient for

all previous signals. By definition of G, the buyer’s expected value is wt  vt. Thus even
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without additional information in the future, this buyer prefers to delay her purchase. The

promise of future information does not change the result. ⌅

Step 3: Profit decomposition. By this lemma, the buyer with true value in the percentile

range (G(wt�1),G(wt)] buys in period t. Thus, the seller’s expected discounted profit can

be computed as

P = E

"
T

Â
t=1

dt�1 · (G(wt�1)� G(wt)) · pt
#
.

We rely on a technical result to simplify the above expression:

Lemma 9. Suppose wt = vt  wt�1 in some period t. Then

pt = E

"
T�1

Â
s=t

(1� d)ds�tws + dT�twT | pt
#

(A.4)

which is a discounted sum of current and expected future cutoffs.

Using Lemma 9, we can rewrite the profit as

P = E

"
T

Â
t=1

dt�1 · (G(wt�1)� G(wt)) ·E
"
T�1

Â
s=t

(1� d)ds�tws + dT�twT | pt
##

= E

"
T

Â
t=1

dt�1 · (G(wt�1)� G(wt)) ·
 

T�1

Â
s=t

(1� d)ds�tws + dT�twT

!#

= E

"
T�1

Â
s=1

(1� d)ds�1ws(1� G(ws)) + dT�1wT(1� G(wT))

#

 P⇤.

(A.5)

The second line is by the law of iterated expectations, because wt�1 and wt only depend on

the realized prices pt. The next line follows from interchanging the order of summation,

and the last inequality is because ws(1� G(ws))  P⇤ holds for every ws. Hence it only

remains to prove Lemma 9.

Proof of Lemma 9. We assume that T is finite. The infinite-horizon result follows from an

approximation by finite horizons and the Monotone Convergence Theorem, whose details we

omit. We prove by induction on T� t, where the base case t = T follows from wT = vT = pT.
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For t < T, from (A.2) we can find an optimal stopping time t � t+ 1 such that

vt � pt = E[dt�t · (vt � pt)]

which can be rewritten as

pt = E[(1� dt�t)vt + dt�t pt]. (A.6)

We claim that in any period s with t < s < t, vs � vt so that ws = wt = vt by (A.3); while in

period t, vt  vt and wt = vt  wt�1. In fact, if s < t, then the optimal stopping time t

suggests that the buyer with value vt weakly prefers to wait than to buy in period s. Thus

by definition of vs, it must be true that vs � vt. On the other hand, in period t the buyer

with value vt weakly prefers to buy immediately, and so vt  vt.

By these observations, if t = • (meaning the buyer never buys), we have

(1� dt�t)vt + dt�t pt = vt =
T�1

Â
s=t

(1� d)ds�tws + dT�twT.

If t  T, we apply inductive hypothesis to pt and obtain

(1� dt�t)vt + dt�t pt =
t�1

Â
s=t

(1� d)ds�tws +E

"
T�1

Â
s=t

(1� d)ds�tws + dT�twT | pt

#
.

Plugging the above two expressions into (A.6) proves the lemma. ⌅

A.1.3 Proof of Lemma 2

Fix a dynamic information structure I and an optimal stopping time t of the buyer. Because

prices are deterministic, the distribution of signal st in period t only depends on realized

signals (but not prices). Analogously, we can think about the stopping time t as depending

only on past and current signal realizations.

As discussed in the main text, we will construct another information structure I 0 which

only reveals information in the first period, and which weakly reduces the seller’s profit.

Consider a signal set S = {s, s}, corresponding to the recommendation of “buy" and “not

buy", respectively. To specify the distribution of these signals conditional on v, let nature

draw signals s1, s2, · · · according to the original information structure I (and conditional on
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v). If, along this sequence of realized signals, the stopping time t results in buying the object,

let the buyer receive the signal s with probability dt�1. With complementary probability

and when t = •, let her receive the other signal s. In the alternative information structure

I 0, nature reveals s or s in the first period and provides no more information afterwards.

We claim that under I 0, the buyer receiving the signal s has expected value at most p1.

We actually show something stronger, namely that the buyer has expected value at most

p1 conditional on the signal s and any realized signal s1.3 To prove this, note that since

stopping at time t is weakly better than stopping at time 1, we have

E[v | s1]� p1  Es2,··· ,sT
h
dt�1(E[v | s1, s2, · · · , st]� pt)

i
. (A.7)

Here and later, the superscripts over the expectation sign highlight the random variables

which the expectation is with respect to. In this case they are s2, . . . , sT, whose distribution

is governed by the original information structure I and the realized signal s1.

Since pt � p1, simple algebra reduces (A.7) to the following.

E[v | s1]  Es2,··· ,sT
h
dt�1E[v | s1, s2, · · · , st] + (1� dt�1)p1

i
. (A.8)

Doob’s Optional Sampling Theorem says that E[v | s1] = Es2,··· ,sT [E[v | s1, s2, · · · , st]]. Thus

we derive the inequality:

p1 � Es2,··· ,sT [(1� dt�1) ·E[v | s1, s2, · · · , st]]
Es2,··· ,sT [1� dt�1]

. (A.9)

The denominator Es2,··· ,sT [1 � dt�1] can be rewritten as Es2,··· ,sT [P(s | s1, s2, . . . , sT)],
which is the probability of s given s1. Because t is a stopping time, the numerator in

(A.9) can be rewritten as

Es2,··· ,sT
h
(1� dt�1) ·E[v | s1, s2, · · · , sT]

i

3Technically we only consider those s1 such that s occurs with positive probability given s1.
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which can be further rewritten as

Es2,··· ,sT
h
(1� dt�1) ·E[v | s1, s2, · · · , sT, s]

i

because s does not provide more information about v beyond s1, . . . , sT.

With these, (A.9) states that

p1 � Es2,··· ,sT [P(s | s1, s2, . . . , sT) ·E[v | s1, s2, · · · , sT, s]]
Es2,··· ,sT [P(s | s1, s2, . . . , sT)] = E[v|s1, s] (A.10)

just as we claimed.

Thus, under the information structure I 0 constructed above, a buyer who receives the

signal s has expected value at most p1, which is also less than any future price. Since

information only arrives in the first period, all sale happens in the first period to the buyer

with the signal s. The probability of sale is at most E[dt�1], and the seller’s profit is at

most E[dt�1] · p1. This is no more than E[dt�1 · pt], the discounted profit under the original

dynamic information structure. We have thus proved that with a deterministic and non-

decreasing price path, the seller’s profit is at least what he would obtain by selling only

once at the price p1. Taking p1 = p⇤ proves the lemma.

A.1.4 Proof of Theorem 1

By the previous lemma, a constant price path p⇤ delivers expected un-discounted profit

P⇤ from each arriving buyer. This matches the upper bound given by Proposition 2 and

shows that always charging p⇤ is optimal. Moreover, suppose p⇤ is unique, then from (A.5)

we see that the seller’s profit from the first buyer equals P⇤ only if ws = p⇤ almost surely.

This together with Lemma 9 implies p1 = p⇤ almost surely. Analogous argument for later

buyer shows that the seller must always charge p⇤ to achieve the maxmin profit. Hence the

proposition.
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A.2 Proofs for the Alternative Timing Model

A.2.1 Proof of Theorem 2

Throughout, we represent the robust selling mechanism in Du (2018) by a random price,

with c.d.f. D(x); the details of this distribution can be found later in (A.24), but they

are not relevant for this proof. Because nature can provide each arriving buyer with the

Roesler-Szentes information structure (1.3), the seller at most obtains PRSD from each buyer.

To complete the proof, we will construct a dynamic pricing strategy that yields PRSD from

each buyer.

The following lemma proves the outcome-equivalence between static and dynamic

pricing strategies, and it may be of independent interest:

Lemma 10. Fix any continuous distribution function D, any horizon T and any discount factor

d 2 (0, 1). There exists a distribution of prices s 2 D(pT) such that if a buyer arrives in period t

and knows her value to be v, then her discounted probability of purchasing the object (discounted to

period t) is equal to D(v).

In words, for any static pricing strategy there is a dynamic pricing strategy which does not

condition on buyers’ arrival times, but which results in the same outcome as the static prices

for every type of each arriving buyer.

We state the lemma for continuous distributions so that the buyer’s optimal stopping

time is almost surely unique. From Du (2018), Du’s distribution D is continuous except

when it is a point-mass on W. In the latter case PRSD = P⇤, and Theorem 2 follows from

Theorem 1.

Lemma 10 is useful for our problem because it implies, via the Revenue Equivalence

Theorem, that a seller using strategy s obtains the same profit from any buyer as if he sells

only once to this buyer at a random price distributed according to D. This is true whenever

the buyer’s value distribution is determined upon arrival and fixed over time, which is what

we assume for the current proposition. Since Du’s static mechanism guarantees profit PRSD

from every buyer, the proposition will follow once we prove the lemma.
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Proof of Lemma 10. We will first prove the result for T = 2, then generalize to all finite T and

lastly discuss T = •.

Step 1: The case of two periods. In the second period, regardless of realized p1 the

seller should charge a random price drawn from D. This achieves the desired allocation

probabilities for the second buyer.

Consider the first buyer. For any price p1 in the first period, define v1 as the cutoff

indifferent between buying at price p1 or waiting till the next period and facing the random

price drawn from D. That is,

v1 � p1 = d ·Ep2⇠D [max{v1 � p2, 0}] . (A.11)

As p1 varies according to the seller’s pricing strategy s, v1 is a random variable. As in the

proof of Proposition 2, we define w1 = v1 and w2 = min{v1, p2}, where p2 is independently

drawn according to D.

If the buyer has value x � w1, she buys in the first period. Otherwise if she has value

w1 > x � w2, she buys in the second period. The discounted purchasing probability of such

a buyer is thus

Pw1 [x � w1] + d ·Pw1,w2 [w1 > x � w2] = (1� d) ·Pw1 [x � w1] + d ·Pw2 [x � w2].

Let w be the random variable that satisfies w = w1 (or w2) with probability 1� d (or d), then

the seller seeks to ensure that w is distributed according to D.

Suppose H is the c.d.f. of v1. Since w1 = v1 and w2 = min{v1, p2}, the probability that

w is greater than x is given by (1� d)(1� H(x)) + d(1� H(x))(1� D(x)).4 This has to be

equal to 1� D(x), which implies

1� H(x) =
1� D(x)
1� dD(x)

. (A.12)

We are left with the task of finding a first-period price distribution under which v1 ⇠ H.

This can be done because the random variables v1 and p1 are in a one-to-one relation (see

41� H(x) is the probability that w1 > x, and (1� H(x))(1� D(x)) is the probability that w2 > x.
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(A.11)). We have proved the lemma for T = 2.

Before proceeding, we remark that (A.12) implies the distribution H has the same

support as D. However, (A.11) suggests that when v1 achieves the maximum of this support,

p1 is in general strictly smaller than v1 (unless the support is a singleton point, a case we

have discussed). Intuitively, charging this maximum price in the first period leads to delayed

purchase by buyers with high values, which is costly for the seller. On the other hand, the

minimum price p1 is indeed equal to the minimum of the support of D, which we denote

by W; when D is Du’s distribution, this is the same W as in the Roesler-Szentes information

structure (1.3).

Step 2: Extension to finite T. We conjecture a pricing strategy s that is independent

across periods: ds(p1, . . . , pT) = ds1(p1)⇥ · · ·⇥ dsT(pT), where we interpret each st as a

distribution. Define the cutoff values v1, . . . , vT as in (A.2). Note that due to independence,

vt only depends on current price pt but not on previous prices.

Consider a buyer who arrives in period t. We can generalize the previous arguments

and show that if she knows her value to be x, then her discounted purchasing probability

is P[w(t)  x]. The random variable w(t) is described as follows: for t  s  T � 1,

w(t) = min{vt, vt+1, . . . , vs} with probability (1� d)ds�t; and with remaining probability

dT�t, w(t) = min{vt, vt+1, . . . , vT}.
The result of the lemma requires each w(t) to be distributed according to D. Simple

calculation shows this is the case if vT ⇠ D and v1, . . . , vT�1 ⇠ H (since vt depends only on

pt, they are independent random variables).5 We can then solve for the price distributions

s1, . . . , sT by backward induction: sT must be D, and once the prices in period t+ 1, . . . , T are

determined, there is a one-to-one relation between pt and vt by (A.2). Thus, the distribution

of pt is uniquely pinned down by the desired distribution of vt.

Step 3: The infinite horizon case. If T = •, we look for price distributions s1, s2, . . . such

5The reason H(x) should be the c.d.f. of v1 is best understood in the infinite horizon problem (see below).
Under stationarity, the buyer with value x buys in period t with probability H(x), conditional on not buying
previously. Thus the discounted allocation probability is Ât dt�1(1� H(x))t�1H(x). Setting this equal to D(x)
yields (A.12).
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that v1, v2, · · · ⇠ H. We conjecture a stationary st. Recall that the cutoff v1 is defined by

v1 � p1 = max
t�2

E
h
dt�1(v1 � pt)

i
. (A.13)

The stopping problem on the RHS is stationary. Thus when p2 < p1 the buyer stops in

period 2 and receives v1 � p2; otherwise she continues and receives v1 � p1. (A.13) thus

reduces to

v1 � p1 = d ·Ep2 [max{v1 � p1, v1 � p2}]

which can be further simplified to

v1 = p1 +
d

1� d
·Ep2 [max{p1 � p2, 0}] . (A.14)

Let P(x) denote the c.d.f. of p1 (and of p2). When p1 = x, (A.14) implies

v1 = x+
d

1� d
·
Z x

0
(x� z) dP(z) = x+

d

1� d

Z x

0
P(z) dz.

Thus v1 has c.d.f. H(x) if and only if

P(x) = H
✓
x+

d

1� d

Z x

0
P(z) dz

◆
. (A.15)

To solve for P(x), we let

Q(x) = x+
d

1� d

Z x

0
P(z) dz; U(y) = 1+

d

1� d
H(y) =

1
1� dD(y)

. (A.16)

(A.15) is the differential equation

U(Q(x)) = Q0(x). (A.17)

Put V(y) =
R y
0 (1� dD(z)) dz, so that V 0(y) = 1

U(y) . Then

∂V(Q(x))
∂x

= V 0(Q(x)) ·Q0(x) =
Q0(x)

U(Q(x))
= 1. (A.18)

Inspired by the analysis for finite T, we conjecture that the minimum value of p1 is W.

That is, we conjecture Q(W) = W. Since V(W) = W, we deduce from (A.18) that Q(x) is
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characterized by

V(Q(x)) = x with V(y) =
Z y

0
(1� dD(z)) dz. (A.19)

Since V is strictly increasing, there is a unique solution Q(x) to the above equation, and the

corresponding distribution of prices is

P(x) =
1� d

d
· (Q0(x)� 1). (A.20)

Lemma 10 is proved, and so is Theorem 2. ⌅

A.2.2 Proof of Theorem 3

Consider a constant price p randomly drawn according to the Du distribution. Recall that p

is supported on [S,W], and its density is 1
log S

W
· 1
p . We show the seller’s discounted expected

profit is at least W.

By assumption, each buyer’s expected value follows a martingale process v1, v2, . . . that

is autonomous (independent of the realized p). As mentioned in the main text, we define a

sequence of cutoff prices adapted to the v-process:

vt � rt = max
t>t

E[dt�t(vt � rt)]

and then

qt = max {r1, . . . , rt}.

This is exactly dual to the definition of cutoff values, and whenever qt = rt � qt�1, we have

(See Lemma 9):

vt = E

"

Â
s�t

(1� d)ds�tqs | v1, . . . , vt
#
.

If the random price p satisfies qt�1  p < qt, then purchase occurs in period t. Total profit

106



is thus:

P = E

"

Â
t�1

dt�1
Z qt

qt�1

p dD(p)

#

=
1

log S
W

·E
"

Â
t�1

dt�1(p(qt)� p(qt�1))

#

=
1

log S
W

·E
"

Â
t�1

(1� d)dt�1p(qt)

#

where we define p(y) = min{(y�W)+, S�W} to be the integral of log S
W · p dD(p), and

use the convention that p(q0) = 0. In other words, p(y) = 0 for y  W, p(y) = y�W for

y 2 [W, S] and p(y) = S�W for y � S. Define:

p̂(y) = min{y�W, S�W} = y� w� (y� S)+

to be a modified version of the function p.6

Indeed, p̂ is smaller than p and strictly so when y  W. Then we have

log
S
W

· P = E

"

Â
t�1

(1� d)dt�1p(qt)

#

� E
h
(1� d)dt�1p̂(qt)

i

= E
h
(1� d)dt�1(qt �W � (qt � S)+)

i

= v0 �W �E
h
(1� d)dt�1(qt � S)+)

i

where we use the fact that the ex-ante expected value v0 is a discounted sum of cutoff prices.

Let g be a stopping time adapted to the v-process such that qg first exceeds S. Then we

6Intuitively, p coincides with p̂ if the threshold prices never fall below W. We cannot assume this a priori,
although it is natural to expect that doing so would not be worst case, just as inducing a belief lower than the
price to a non-purchasing buyer is not worst case in the main model.
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can continue the above computation as follows

log
S
W

· P � v0 �W �E
h
(1� d)dt�1(qt � S)+

i

= v0 �W �E

"
dg�1 Â

t�g

(1� d)dt�g(qt � S)

#

= v0 �W �E
h
dg�1(vg � S)

i

� v0 �W �E[(v• � S)+]

= E[v• �W � (v• � S)+]

= E[p̂(v•)].

The inequality holds since if g is finite, then vg � S  E[(v• � S)+ | v1, . . . , vg] by convexity.

And if g is infinite, then dg�1(vg � S) = 0  (v• � S)+.

To summarize, we first showed log S
W · P � E

⇥
(1� d)dt�1p̂(qt)

⇤
, and since p̂ is concave,

this is smaller than p̂(E[(1� d)dt�1qt]) = p̂(v0). However, the lower bound E[p̂(v•)] holds

by concavity, essentially because the distribution of v• is more spread out than the cutoff

prices qt.

Letting F̃ denoting the distribution of v•, we have:7

log
S
W

· P � E[p̂(v•)]

=
Z S

0
(v�W)dF̃(v) + (S�W)(1� F̃(S))

= F̃(S)(S�W)�
Z S

0
F̃(v)dv+ (S�W)(1� F̃(S))

= S�W �
Z S

0
F̃(v)dv

� S�W �
Z S

0
F(v)dv

= log
S
W

·W

The first inequality follows from F being a mean preserving spread of F̃, and the second

7The stronger result log S
W · P � E[p(v•)] would mean that profit is minimized by revealing all information

at once, which would easily complete the proof. But in order to use concavity, we have had to work with p̂
rather than p.
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follows from (1.3). Hence P � W as desired. ⌅

A.2.3 Proof of Claim 4

The proof is somewhat long, and we will present it in several steps. First, we review some

properties of Du’s static mechanism. Next, we focus on the pricing strategy sD that we

constructed in the preceding proof. We construct a dynamic information structure (for the

first buyer) that yields profit below PRSD. This proves the proposition assuming that the

seller uses the strategy sD. Lastly, we apply continuity arguments and extend the result to

any pricing strategy s.

Step 1: Properties of the Optimal Single-Period Mechanism. While the solution to the

model with a single-period was provided by Roesler and Szentes (2017) and Du (2018), our

proof of Claim 4 requires us to demonstrate some properties of the solution. We defer this

to Appendix A.4.1, since they are orthogonal to information arrival dynamics.

Lemma 11. For generic distributions F, there is a unique random-price mechanism that achieves

PRSD.

For reference, the random-price mechanism which achieves the optimum PRSD is given

by:

D(x) =

8
>>>>>><

>>>>>>:

0 x 2 [0,W)

log x
W

log S
W

x 2 [W, S)

1 x 2 [S, 1]

, (A.21)

where S 2 (W, B] is characterized by

Z S

0
FB
W(v) dv =

Z S

0
F(v) dv, (A.22)

where FB
W is the Roesler-Szentes worst-case information structure (1.3).

Step 2: The Information Structure. Consider now the model with two periods and one
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buyer arriving in each period. The problem for the second buyer is static, so nature can

choose an information structure that yields profit at most PRSD.

We construct the following dynamic information structure I for the first buyer:

• In the first period, nature provides the Roesler-Szentes information structure. We

denote the buyer’s unbiased signal by ṽ (which is also her posterior expected value),

so as to distinguish from her true value v. Note that ṽ ⇠ FB
W .

• In the second period, given the realized price p1 as well as the buyer’s expected value

ṽ in the first period, nature reveals the buyer’s true value v if and only if ṽ � v1(p1).

Otherwise nature provides no additional information. Here the cutoff v1(p1) is defined

as usual, assuming no information arrives in the second period:

v1 � p1 = d ·Ep2⇠s(·|p1) [max{v1 � p2, 0}] .

Note that in general, the distribution of p2 may depend on p1.

Intuitively, nature targets the buyer who prefers to buy in the first period when she does

not expect to receive information in the second period. By promising full information to

such a buyer in the future, nature potentially delays her purchase and reduces the seller’s

profit. In what follows we formalize this intuition.

Step 3: Buyer behavior and seller profit. To facilitate the discussion, we consider another

information structure I 0 in which nature reveals ṽ in the first period but does nothing in

the second period. Under I 0, the buyer’s value distribution FB
W does not change over time.

Thus by Stokey (1979), the seller’s profit would at most be PRSD. We will show that the

seller’s profit under the dynamic information structure I could only be lower than under I 0

(for any pricing strategy), and we also characterize when the comparison is strict.

There are three possibilities: first, if the price p1 is relatively high so that ṽ < v1(p1),

then the buyer does not buy in the first period under I 0. This is also her optimal decision

under I , because she will not receive extra information in the second period. Secondly, if

the price is very low, then under both I and I 0 the buyer buys in the first period. Lastly, for
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some intermediate prices the buyer buys in the first period under I 0 but not under I ; the
opposite situation cannot occur because I provides more information than I 0 in the second

period, and the buyer’s incentive to wait could only be stronger.

Thus, when nature provides I rather than I 0, the seller’s profit changes only in the last

possibility above. Let us show that whenever the buyer delays her purchase from the first

period to the second, the seller’s profit decreases by at least (1� d)W. This is because when

the buyer chooses to not buy in the first period, the discounted social surplus decreases

by at least (1� d)ṽ. Since the buyer’s payoff cannot decrease (because she chooses to delay

purchase), the loss must come from the seller’s discounted profit.

To summarize, we have shown:

Lemma 12. Consider the information structures I and I 0 constructed above. The seller’s profit

under I 0 is no greater than PRSD, and his profit under I is at least smaller by (1� d)W times the

probability that the buyer delays purchase.

Step 4: Proof of the claim for sD. Let sD be the pricing strategy given by Lemma 10, which

we recall is robust to information that arrives only once (for each buyer). Here we show that

under the dynamic information structure I , the seller’s profit from the first buyer is strictly

less than PRSD.

Recall from the proof of Lemma 10 that under sD, the price in the second period p2 is

drawn from Du’s distribution D, independent of p1. On the other hand, p1 is (continuously

supported) on a smaller interval [W, S1], with W < S1 < S; more precisely, the distribution

of p1 is determined by the condition that v1(p1) ⇠ H (see (A.12)).

Suppose the buyer receives unbiased signal ṽ 2 (W, S) in the first period. She delays

her purchase at some price p1 2 (W, S1) under information structure I (compared to I 0)

if and only if knowing her true value strictly improves her expected utility in the second

period; because p2 ⇠ D regardless of p1, delay occurs if p1 is smaller than but close to

v�1
1 (ṽ). We will demonstrate a positive measure of such ṽ, so that the buyer delays purchase

with strictly positive probability.
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Now recall from Step 1 that a signal ṽ < S is only received when the true value also

satisfies v < S. Because we assume PRSD > P⇤, Proposition 11 gives W > v. Thus a positive

measure of signals ṽ 2 (W, S) is received when the true value v belongs to the interval

[v,W).8 We claim that for any such ṽ, knowing the true value in the second period strictly

benefits the buyer. This is because according to her expected value ṽ > W, the buyer in the

second period buys at some price p2; but if she were informed that v < W, she would not

buy at any price p2 (which is at least W). This proves that by providing I rather than I 0,

nature induces a positive probability of delay. By Lemma 12, we deduce that profit from the

first buyer is less than PRSD.

Step 5: Proof for an arbitrary pricing strategy s. Finally, we turn to prove the proposition

in its full generality. The argument is as follows (omitting technical details): suppose for

contradiction that some pricing strategy s guarantees profit almost PRSD from each buyer.

Then because D is uniquely optimal in the one-period problem, the distribution of p2

conditional on p1 is “close" to D (in the Prokhorov metric) with high probability; otherwise

nature could sufficiently damage the seller’s profit from the second buyer. Next, we can

similarly show that the distribution of v1(p1) under s is close to H, which is its distribution

if s = sD.9 The rest of the proof proceeds as in Step 4: a positive measure of signals

ṽ 2 (W, S) is received when the true value satisfies v < W. For such ṽ, full information in

the second period is strictly valuable, and the buyer delays purchase if v1(p1) is smaller

than but close to ṽ. By what we have shown, this occurs with strictly positive probability.

But then Lemma 12 implies profit from the first buyer is bounded away from PRSD under

I , leading to a contradiction. The proof of Claim 4 is complete. ⌅

Let us conclude by commenting on the assumption that Du’s mechanism is uniquely

8If PRSD = P⇤, then Proposition 11 implies W = v = p⇤ and Du’s distribution is a mass-point at W.
Information in the second period is irrelevant, because a buyer waiting till the second period always buys at
price p2 = W = v.

9Consider nature choosing F̃ in the first period and doing nothing afterwards. The seller’s profit from the
first buyer can be written as Ew[w(1� F̃(w)], where the random variable w equals v1(p1) with probability 1� d
and it equals min{v1(p1), p2} with probability d (see (A.5)). The distribution of w must be close to D, otherwise
nature could choose F̃ and damage profit from the first buyer. Since p2 is approximately distributed according
to D, we can derive as in the proof of Lemma 10 that v1(p1) must be approximately distributed according to H.
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optimal. Suppose this assumption fails, so that another point Ŝ > S satisfies (A.25). This

means there are two different Du distributions D and D̂, supported on [W, S] and [W, Ŝ]

respectively. On their supports, both of these distributions have density proportional to 1
p

(see (A.24)). This observation allows us to write

D̂ = aD+ (1� a)E (A.23)

with a 2 (0, 1) is a scalar and E is a distribution supported on [S, Ŝ] (again with density

proportional to 1
p ).

When such non-uniqueness occurs, the previous proof of Claim 4 fails. Specifically, in

Step 5, we are not able to deduce that s is “close" to either sD or sD̂. In fact, the following

pricing strategy s guarantees profit PRSD from the second buyer as well as from the first

buyer, if nature chooses the information structure I in Step 2.

• The seller chooses a distribution of p1 so that v1(p1) ⇠ E, which is supported on

[S, S0]. Here v1(p1) is defined by the usual indifference condition v1 � p1 = d ·
Ep2⇠D [max{v1 � p2, 0}].

• Independent of the realized p1, the seller draws p2 ⇠ D, supported on [W, S].

Because the price in the second period follows a Du distribution, the seller’s profit from

the second buyer is at least PRSD. For the first buyer, consider first the information structure

I 0 as in Step 3, where nature reveals ṽ ⇠ FB
W in the first period and no additional information

afterwards. As shown in Footnote 9, the seller’s profit from this buyer is Ew[w(1� FB
W(w)].

This is as in the one-period model, where the seller charges price w and nature provides the

Roesler-Szentes information structure.

Recall that w is a random variable that equals v1(p1) with probability 1 � d and

min{v1(p1), p2} with complementary probability. Because v1(p1) ⇠ E, whose support

is strictly above the support of p2, we deduce that w ⇠ dD+ (1� d)E. Thus, by (A.23), the

distribution of w is a convex combination of D and D̂ whenever d � a. Since the seller

ensures profit PRSD by using a random price distributed according to either D or D̂, he
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does just as well by charging w. We have thus shown that profit from the first buyer is at

least PRSD under information structure I 0.

Moreover, we claim that when nature provides I rather than I 0, no buyer delays her

purchase. To see this, consider a buyer who purchases in the first period under I 0. By

definition of v1 and the fact that v1 ⇠ E, this means the buyer’s signal ṽ in the first period

satisfies ṽ � v1(p1) � S. But then her true value v must also be at least S, as we showed in

Step 1. Such a buyer purchases at any price p2 2 [W, S] regardless of any information in the

second period. Thus, although nature promises future information under I , this information

does not improve the buyer’s expected utility in the second period. Consequently the buyer’s

behavior under I is the same as under I 0, and profit under I is also equal to PRSD.

To summarize, we have constructed a pricing strategy s such that if nature chooses the

particular information structure I (for the first buyer), the seller’s total profit is at least

(1+ d)PRSD. This explains why our proof of Claim 4 requires the assumption that Du’s

mechanism is unique. We do not know whether the result generally holds without this

assumption.10

A.3 Proofs for the Informational Externalities Model

The Appendix presents a proof of Lemma 13 below, exhibiting the worst-case information

structure in the case of short-lived buyers (i.e., buyers who can only buy upon arrival or

never). The reader may find this proof help since with informational externalities, the

no-delay worst case information structure does not follow from the T = 1 solution, in

contrast to the baseline model:

Lemma 13. Consider the model with common values and public signals suppose buyers are short

lived. Fix a weakly increasing price path (p1, . . . , pT) with p1  p2  · · ·  pT. Then the worst

case profit is achievable by an information structure that invovles a single signal that is observed by

10In other words, suppose S is not unique and suppose the seller uses the strategy s constructed just now.
We do not know whether nature can damage the seller’s profit to be strictly lower than PRSD by choosing an
information structure different from the I in our proof.
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all buyers.

Proof of Lemma 3. We prove the theorem for the case of finite T by induction; the infinite

horizon case follows from an approximation argument whose details are omitted. In

addition to the conclusion of the Lemma, we will show that any worst case information

structure induces a buyer belief lower than p1 with probability 0. The conclusion of the

Lemma holds for the case of T = 1 immediately, and the additional statement holds by

Proposition 1.

Fix some arbitrary finite T. Consider an arbitrary dynamic information structure for the

first buyer I1, which we assume contains at least as much information as is generated by

the information structure after t � 2 (i.e., this buyer would see all information provided to

later buyers after delaying). By the inductive step, we take the signal space for all buyers

with arrival a � 2 to be a time s (possibly equal to T + 1), with the interpretation that a

buyer arriving at a purchases whenever a  s, and does not purchase whenever a > s; this

signal is commonly observed by all buyers with arrival time a � 2 (though the first buyer

may not observe this).

Following Lemma 2, consider the following replacement information structure for the

first buyer: let the signal space be {s, 2, . . . , T + 1}, and give the recommendation s if the

information structure dictates that this buyer not buy, as well as with probability 1� dt�1 if

the information structure results in purchase at time t. If the first buyer does not buy, then

reveal no information to later buyers. If the first buyer does buy, then also reveal to the first

buyer the time s at which purchasing will stop (recalling that all buyers with arrival time

a � 2 commonly observed this signal). Note that the replacement is a public information

structure.

By repeating the proof of Lemma 2, we can show that this replacement is obedient, and

that the payoff from the first buyer does not increase. Furthermore, if the first buyer does

not buy, then neither do any subsequent buyers, meaning that the seller’s surplus is also

minimized in this continuation history. On the other hand, if the first buyer does buy, then

the original information structure revealed some time s � 2 at which point buyers stopped
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purchasing. Note that in any worst case information structure, beliefs are never lower

than ps � p1, since otherwise a recommendation to not buy could be induced with higher

probability. Hence the first buyer would still be willing to follow the recommendation in

the replacement. Therefore, the replacement can only hurt the seller. ⌅

Proof of Theorem 5. Note first that limd!1 (1� d)PC  PRSD, since nature can choose FRS

and reveal it publicly at time 1. In general, when nature chooses distribution D, we write

the seller’s average profit as:

PC((pt)•
t=1) =

•

Â
t=1

pt(1� D(pt))dt�1(1� d).

Let F̃ denote the random price distribution (with density f̃ ) corresponding to Du’s mecha-

nism (See (A.24)). Let (pd
t )

•
t=1 denote a sequence of price paths such that:

F̃(pd
t )� F̃(pd

t�1) ! dt�1(1� d)

with p1 = PRSD = W. For any such price path, we have:

PC((pd
t )

•
t=1) !

Z B

W
p(1� D(p)) f̃ (p)dp = PRSD,

as claimed. ⌅

A.4 Additional Appendices

A.4.1 Additional Proofs for the Timing Section

Properties of Du’s mechanism used in the proof of Claim 4.

For the one-period model, Du (2018) constructs a mechanism that guarantees profit PRSD

regardless of the buyer’s information structure. By considering the profile of interim

allocation probabilities as a c.d.f., we can equivalently implement Du’s mechanism as a

random price with the following distribution:
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D(x) =

8
>>>>>><

>>>>>>:

0 x 2 [0,W)

log x
W

log S
W

x 2 [W, S)

1 x 2 [S, 1]

(A.24)

Here S 2 (W, B] is characterized by11

Z S

0
FB
W(v) dv =

Z S

0
F(v) dv (A.25)

where FB
W is the Roesler-Szentes worst-case information structure (1.3). To explain further,

Roesler and Szentes (2017) observe that the LHS in (A.25) must not exceed the RHS (for all

S) because F is a mean-preserving spread of FB
W . However, when W is smallest possible, this

constraint must bind at some S.

The following observations will be crucial. Since the constraint
R x
0 FB

W(v) dv  R x
0 F(v) dv

binds at x = S, the first order condition gives FB
W(S) = F(S). This implies that not only F

is a mean-preserving spread of FB
W , but in fact the truncated distribution of F conditional

on v  S is also a mean-preserving spread of the corresponding truncation of FB
W . In other

words, the Roesler-Szentes information structure has the property that a buyer with true

value v  S only receives signal  S (i.e., her posterior expected value is at most S), while a

buyer with true value v > S expects her value to be greater than S.

For completeness, we include a quick proof that the random price p ⇠ D guarantees

profit W = PRSD. Consider the one-period model in which nature chooses a distribution F̃

of the buyer’s posterior expected values. Then the seller’s profit is

P =
Z S

W
p(1� F̃(p)) dD(p) =

1
log S

W

Z S

W
(1� F̃(p)) dp � 1

log S
W

✓
S�W �

Z S

0
F̃(p) dp

◆

� 1
log S

W

✓
S�W �

Z S

0
F(p) dp

◆
=

1
log S

W

✓
S�W �

Z S

0
FB
W(p) dp

◆
= W.

The penultimate equality uses (A.25) and the last one uses (1.3).

11S is strictly greater than W because otherwise D is a mass-point at W and PRSD = P⇤, contradicting the
assumption of the proposition.
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We note that in general, there could be more than one point S for which (A.25) holds.

Thus, the maxmin optimal mechanism in one period need not be unique even if we restrict

attention to the class of exponential mechanisms considered by Du (2018). But we do have

the following result:

Lemma 14. There is a unique maxmin optimal mechanism in the one-period simultaneous-move

model if and only if (A.25) holds at a unique point S.

We mention that for generic distributions F, there is a unique S that satisfies (A.25).

However, the proof is tangential to the paper and we will leave it out. A sufficient condition

is that F(x) is convex, for example when F is uniform.12

Proof of Lemma 14. “Only if" is obvious, so we focus on the “if" direction. Suppose S is

unique, we need to show any random price that guarantees W must follow Du’s distribution

D. Suppose r(p) is the p.d.f. of the random price, then profit is

P =
Z 1

0
p · r(p) · (1� F̃(p)) dp. (A.26)

Given r(p), Nature’s problem is to choose a c.d.f. F̃ to minimize P, subject to
R x
0 F̃(v) dv 

R x
0 F(v) dv for all x 2 (0, 1], with equality at x = 1 (so that F̃ has the same mean as F).

By Roesler and Szentes (2017), F̃ = FB
W is a solution to nature’s problem. For this solution,

the integral inequality constraint only binds at x = S. Standard perturbation techniques in

the calculus of variations thus imply that F̃ = FB
W cannot be improved upon only if p · r(p)

is a constant for p 2 (W, S).13 Similarly, p · r(p) must also be a constant on the interval

p 2 (S, B); in fact, we can show this constant is zero.14

12Recall that F(S) = FBW(S). However, F(x)� FBW(x) = F(x) + W
x � 1 is convex, and so it has at most two

roots x0 < x1. Because F(x) > FBW(x) for x < x0, S being x0 would contradict (A.25). Thus S = x1 is unique.

13Suppose to the contrary that p · r(p) > p0 · r(p0) for some p, p0 2 (W, S). Then starting with F̃ = FBW , nature
could increase F̃ around p and correspondingly decrease it around p0. The perturbed distribution F̃ still satisfies
the feasibility constraints, and the profit P is reduced.

14If this constant were c > 0, then on the interval [S, B] nature seeks to minimize c · R B
S (1 � F̃(v)) dv

subject to the integral inequality constraint and equal means:
R 1
S (1� F̃(v)) dv =

R 1
S (1� F(v)) dv. Thus nature

equivalently maximizes
R 1
B (1� F̃(v)) dv. Choosing F̃ = FBW results in 0 and is sub-optimal.
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Hence, r(p) must be supported on [W, S] and p · r(p) is a constant. This condition

together with
R S
W r(p) dp = 1 uniquely pins down r(p), which must be the density function

associated with D. ⌅

Comparison Between P⇤ and PRSD

In what follows we focus on the alternative model described in Section 1.7, where nature

cannot condition on the current period price. We show that the relevant profit benchmark

PRSD is in general higher than P⇤, and the difference may be significant:

Proposition 11. PRSD � P⇤ with equality if and only if W = v (= p⇤), where W is as defined in

the Roesler-Szentes information structure (1.3). Furthermore, as the distribution F varies, the ratio

PRSD/P⇤ is unbounded.

Proof. The inequality PRSD � P⇤ is obvious. Next, recall that P⇤ � v (seller can charge v)

and W = PRSD. Thus W = v implies PRSD  P⇤, and equality must hold.

Conversely suppose PRSD = P⇤, then W = p⇤(1 � G(p⇤)). This implies p⇤ � W.

Consider a seller who charges price p⇤ against the Roesler-Szentes information structure

FB
W . By the unit elasticity of demand property, this seller’s profit is either W (when p⇤ < B)

or 0. We have shown in our one-period model that the seller can guarantee P⇤ with a

price of p⇤. Thus the seller’s profit must be W when he charges p⇤ and nature chooses the

Roesler-Szentes information structure. Since W = P⇤ by assumption, the Roesler-Szentes

information structure is a worst-case information structure for the price p⇤. This yields

W � p⇤, because a worst-case information structure cannot include any signal that leads to

a posterior expected value strictly less than p⇤. We conclude p⇤ = W = p⇤(1� G(p⇤)), from

which it follows that G(p⇤) = 0 and p⇤ = v. Thus W = v must hold.

To study the ratio PRSD/P⇤, we restrict attention to a very simple class of distributions

F: with probability l, the buyer’s true value is 1; otherwise her value is 0. The optimal

price in the known-value case is p̂ = 1, and the corresponding profit is P̂ = l. In our main
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model, the maxmin optimal price p⇤ solves

p⇤ 2 argmax
p

p(1� G(p)) = argmax
0pl

p · l � p
1� p

Simple algebra gives p⇤ = 1�p
1� l, and P⇤ = (1�p

1� l)2 which is roughly l2

4 for

small l.

Because the distribution F has two-point support, it is clear that nature can induce any

F̃ supported on [0, 1] with mean l as the distribution of posterior expected values. Thus the

Roesler-Szentes information structure involves the smallest W such that FB
W has mean l for

some B  1. From (1.3), we compute that the mean of FB
W is W log B�W logW +W. We

look for the smallest W such that log B = l
W + logW � 1 is non-positive. It follows that W

is the smallest positive root of the equation

l

W
+ logW = 1.

For l small, we have the approximation PRSD = W ⇡ l
|logl| . Thus both ratios P̂/PRSD and

PRSD/P⇤ are unbounded.15 ⌅

Example from Section 1.9.2. Suppose v ⇠ G̃, where G̃ is some distribution that has expectation

µ and support with upper bound v. First, via similar reasoning, it is without loss to

associate each signal with an action recommendation. Second, if a buyer buys, their value

should be as high as possible–in this case, equal to v (which contrasts with to the setting

with information). When the price is p, a buyer that does not buy should have expected

value exactly equal to p. Assuming p < µ (otherwise, the seller would obtain 0 profits

via null information), we have the worst case purchasing probability q therefore satisfies

qv+ (1� q)p = µ. Hence q = µ�p
v�p , and profit is p µ�p

v�p . The first order condition for p gives:

(v� p)(µ� 2p) + p(µ� p) = 0 ) p = v�
q

v(v� µ),

which yields profit 2v � µ � 2
p

v(v� µ). Setting v = 1 and µ = 1/2 yields the results

claimed in the main text. ⌅

15We conjecture that these profit ratios become bounded under certain regularity conditions on F.
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Additional Details for all Other Sections

Proof of Claim 6. Suppose that P[p2 < •] > 0. Let the first period distribution be the same

as the one that arises in the construction of Proposition 2 (recalling that this allows for

random strategies by the seller), which involves v1 2 {w1, w̃}, which arises from a partitional

information structure where w1 is indifferent between purchasing and waiting with no

further information. Consider the following choice of nature for a distribution Dx,v1 over

values for v2:

• If p2 > w̃, then v2 = v1.

• If p2  w̃, then v2 = x2 with probability v1+x
x+x2 and v2 = �x otherwise.

Note that the buyer that arrives in the first period has a value that follows a martingale.

For the second buyer, reveal no information if p2 � w̃, and otherwise utilize the worst case

partitional information structure given p2.

The claim will follow by showing that whenever P[p2 < w̃] > 0, the seller’s profit from

the first buyer can be made arbitrarily small, since the profit from the second buyer is at

most dP⇤ (noting that when p2 � w̃ with probability 1, the best the seller can do is P⇤ under

the constructed value process). Indeed, a buyer with value w̃ has expected value w̃� p1

from immediate purchase, but value d · w̃+x
x+x2 (x

2 �E[p2 | p1])P[p2 < w̃], which approaches

• as x approaches •. In contrast, since the seller charges positive prices, the probability of

sale is v1+x
x+x2 , which approaches 0 as x approaches •. The same holds for the buyer who has

expected value w1. Hence nature can make the probability of sale to any first period buyer

arbitrarily small, thereby proving the claim. ⌅

A.4.2 Miscellaneous Results

Uncertainty Leads to Lower Price

We prove here that uncertainty over the information structure leads the seller to choose a

lower price than if the buyer knew her value.
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Proposition 12. For any continuous distribution F, let p̂ be an optimal monopoly price under

known values:

p̂ 2 argmax
p

p(1� F(p)). (A.27)

Then any maxmin optimal price p⇤ satisfies p⇤  p̂. Equality holds only if p⇤ = p̂ = v.

Proof of Proposition 12. It suffices to show that the function p(1� G(p)) strictly decreases

when p > p̂, until it reaches zero. By taking derivatives, we need to show G(p) + pG0(p) > 1

for p > p̂ and G(p) < 1.

From definition, the lowest G(p)-percentile of the distribution F has expected value p.

That is,

pG(p) =
Z F�1(G(p))

0
vdF(v), 8p 2 [v,E[v]]. (A.28)

Differentiating both sides with respect to p, we obtain

G(p) + pG0(p) =
∂

∂p
(F�1(G(p))) · F�1(G(p)) · F0(F�1(G(p))) = G0(p) · F�1(G(p)). (A.29)

This enables us to write G0(p) in terms of G(p) as follows:

G0(p) =
G(p)

F�1(G(p))� p
. (A.30)

Thus,

G(p) + pG0(p) =
G(p) · F�1(G(p))
F�1(G(p))� p

. (A.31)

We need to show that the RHS above is greater than 1, or that F�1(G(p)) < p
1�G(p)

whenever p > p̂ and G(p) < 1. This is equivalent to G(p) < F( p
1�G(p) ), which in turn is

equivalent to
p

1� G(p)
·
✓
1� F

✓
p

1� G(p)

◆◆
< p. (A.32)

From the definition of p̂, we see that the LHS above is at most p̂(1� F( p̂))  p̂ < p, as we

claim to show. Moreover, when p̂ > v, the last inequality p̂(1� F( p̂)) < p̂ is strict. Tracing

back the previous arguments, we see that G(p) + pG0(p) > 1 holds even at p = p̂. In that

case we would have the strict inequality p⇤ < p̂ as desired. ⌅
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Alternative Interpretation

In this section, we consider an information acquisition game for which our solution is of

interest. The motivation borrows heavily from Roesler and Szentes (2017). They consider a

game with the following timing:

• The buyer first chooses an information structure I : V ! D(S).

• The seller then chooses a price p 2 R.

• The buyer finally decides whether or not to purchase the object.

It turns out that the resulting information structure results in a payoff for the seller that

is optimal given that the information structure is the worst possible, and assuming that the

information structure does not depend on the price.

For our setting, first consider the T = 1 case, and modify the Roesler-Szentes (2017) game

so that the buyer’s inforamtion structure can depend on the price. That is, we take the same

timing as above, but allow for information structures of the form I(p) : V ! D(S). While

in practice it may be difficult to assume that the seller literally chooses this information

structure, the information may indeed be provided by a third party (such as Amazon) who

would have this power and potentially this objective as well.

Recall P⇤ is the seller’s maxmin payoff.

Proposition 13. Consider a one-period setting where the buyer (or third party who acts to maximize

the buyer’s payoff) chooses the information structure. The seller’s profit in the equilibrium of this

game is equal to P⇤.

Note that this does not say the equilibrium is payoff equivalent for the buyer. In general

it will not be. Still, if one were interested in buyer payoffs, the proposition shows that our

analysis is relevant for this case as well. Furthermore, the proof is relatively straightforward.

Proof of Proposition 13. We demonstrate that the optimal choice of information for the buyer

results in payoff of P⇤ for the seller.
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Denote by I∆ the completely uninformative information structure, and let I⇤(p) be the

worst case information structure for the seller when the price chosen is p. The buyer chooses

the following information structure:

I(p) =

8
>><

>>:

I∆, p = P⇤

I⇤(p) p 6= P⇤
.

The seller chooses price P⇤.

First we compute the profits of the buyer and the seller. Since P⇤ < Ev⇠F[v] whenever F

is non-degenerate, trade happens with probability 1. Since trade is always efficient, total

surplus is Ev⇠F[v]. We thus have the buyer’s surplus is Ev⇠F[v]�P⇤ and the seller’s surplus

is P⇤.

Suppose there were a choice of information structure for the buyer which obtained

some payoff u > Ev⇠F[v]� P⇤. Note that the seller’s payoff must be at least P⇤ in any

equilibrium, since this is defined to be the maxmin profit. Hence we have that total surplus

in this mechanism is larger than Ev⇠F[v], which is a contradiction. Therefore, the conjectured

information structure is optimal.

But if the buyer obtains Ev⇠F[v]� P⇤, the seller must obtain exactly P⇤; again, if the

seller obtained more, total surplus would be larger than Ev⇠F[v], a contradiction. Hence the

seller’s payoff in this game is P⇤. ⌅

Note that, while the buyer obtains different payoffs than in the maxmin benchmark we

previously analyzed, they can still be computed simply once we have found P⇤; since trade

always occurs, the buyer obtains Ev⇠F[v]� P⇤. Note that the same argument also goes

through when there are production costs, provided that trade is ex-ante efficient.16

The same construction works for an arbitrary horizon, replacing the choice of a single

price with the choice of a constant price path of P⇤. The proof is identical, considering the

discounted buyer surplus instead of an individual buyer’s surplus.

16The same equivalence fails for Roesler and Szentes (2017) in general when there are costs.
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Buyer Uncertainty

One may wonder why the sellers in our model are so much better informed than the

buyers, particularly over information in the far future. While this concern may also apply to

much of the literature on robustness in mechanism design, we admit that the reader may

find it particularly salient here since buyer knowledge of all future information buyers is

particularly demanding.

Part of the difficulty in allowing for buyer learning in contrast to seller learning is that

non-Bayesian updating is significantly more complicated (which is also why the commitment

benchmark is a more natural starting point than non-commitment). Nevertheless, we seek

to accommodate this as follows. Recall that a dynamic information structure I is a sequence

of signal sets St and probability distributions Ia,t : R+ ⇥ St�1
a ⇥ Pt ! D(St), for 1  t  T.

We now assume that nature has the ability to choose a set W, which we take to be a finite

set, and dynamic information structures {Iw}w2W, with associated probability distributions

Iw
t : R+ ⇥ St�1 ⇥ Pt ! D(St). Crucially, note that the signal set does not depend on w, as the

interpretation is that the buyer observes signal st in period t. Let us denote by W(st) the set

of information structures the buyer believes is feasible after signal history st. This allows us

to describe which information structures the buyer can “rule out” over time.

For simplicity, we assume that the buyer utilizes a maxmin objective, though similar

arguments would apply for general uncertainty averse preferences. It is easy to show that

without any restrictions, allowing for arbitrary uncertainty aversion can eliminate any seller

profits.

Proposition 14. Suppose nature can choose any set of dynamic information structures. Then the

seller’s worst-case single period profit (as well as dynamic profit) is equal to 0.

Proof. Consider any price path (pt)Tt=1, and let p = mint pt. Suppose p > 0. Let nature

choose S1 = {0, 1},W = {0, 1}.

• At time 1, if w = 1, the buyer observes s1 = 1 if v > p and s1 = 0 otherwise.

• At time 1, if w = 0, the buyer observes s1 = 0 if v > p and s1 = 1 otherwise.
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In this case, since the buyer is maxmin, the expected payoff from purchasing is negative,

hence they will never purchase. If p = 0, define p̃ = minp>0 pt. Repeating the same

argument above, replacing p with p̃, completes the proof. ⌅

This result is straightforward, particularly since the martingale condition of expectations

is what allowed us to avoid degenerate solutions in the first place. Hence some restriction

must be made an updating, and the following appears to be the most-reasonable.

Definition 3. The buyer is a within-period Bayesian if all information structures Iw
t (v, st�1, pt)

with w 2 W(st�1) are identical.

In words, a within-period Bayesian does not face any uncertainty over the information

they have obtained up until that time. However, they may be non-Bayesian over information

they receive in the future. This rules out creating arbitrarily pessimistic Hence information

still has the same bite in terms of avoiding degeneracy, but no longer imposing that the

buyer has significantly more knowledge of future information than the seller.

Under the within-period Bayesian assumption, Proposition 2 carries through identically,

since this proposition only requires us to construct an information structure that holds the

seller down to the one-period benchmark. We can also show the following:

Proposition 15. Under the assumption that all buyers are within period Bayesians, the optimal

seller strategy is a constant price path of p⇤, delivering discounted profits of P⇤ 1�dT

1�d .

Proof of Proposition 15. We consider the same replacement as in Proposition 2, except we

assume in addition that nature reveals the true information structure to a buyer at time 1

(in addition to pushing signals forward). Obedience and algebra still demonstrate that:

E[v | s1]  Es2,··· ,sT
h
dt�1E[v | s1, s2, · · · , st] + (1� dt�1)p1

i
.

Since E[v | s1] = Es2,··· ,sT [E[v | s1, s2, · · · , st]] in the case where there is no uncertainty over

future information, we have E[v | s1] � Es2,··· ,sT [E[v | s1, s2, · · · , st]] . Hence we still obtain
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the crucial inequality:

p1 � Es2,··· ,sT [(1� dt�1) ·E[v | s1, s2, · · · , st]]
Es2,··· ,sT [1� dt�1]

.

Since the buyer is a Bayesian in the transformed setting, the same analysis applies and we

have p1 � E[v | s1, s]. Hence the replacement is obedient, so the probability sale is E[dt�1],

according to the realized information structure (noting that this is the parameter that matters

for the seller’s profit). Hence the seller is made no better off with the replacement. ⌅

We make two observations on general features of this model, where we do not restrict

buyer uncertainty to being of the maxmin variety: First, our result that the worst-case for

the seller is a Bayesian buyer under within-period Bayesianism should hold under more

general models of ambiguity aversion than the one we present here. Indeed, Riedel (2009)

derives a version of the Optional Sampling Theorem for multiple-prior supermartingales, in

dynamic models of ambiguity where the agent is time-consistent.

Second, we should not expect our results to hold in cases where the buyer is ambiguity

loving but a within-period Bayesian. In that case, even in the case where the buyer is a

within-period Bayesian, nature can induce delay by utilizing ambiguity over the buyer’s

future information. In that case, preventing the buyer from purchasing in the future by

raising the price may help profits, even potentially at the expense of excluding future buyers,

in contrast to our main results.
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Appendix B

Appendix to Chapter 2

B.1 Appendix

B.1.1 Omitted Proofs

Proof of Proposition 4. Since the developer’s cost function is convex, the developer’s payoff

function is a Fenchel transformation of a convex function and is hence convex itself. It

follows that p̂(y)pR(1)� pR( p̂) is a measure of uncertainty according to Ely, Frankel and

Kamenica (2015), since it is 0 at degenrate beliefs and concave for all interior beliefs (since it

is a linear function minus a convex function), as desired.

Proof of Lemma 4. We find it useful to demonstrate the following, more general equation,

for arbitrary function t(p) and f (p), noting that Lemma 4 follows immediately by setting

t(p) = le(p) + g(p) and f (p) = g(p): For functions t, f : [0, 1] ! R,

p0Ey[t( p̂(y)) | T] + (1� p0)Ey[ f ( p̂(y)) | F] = Ey[ p̂(y)t( p̂(y)) + (1� p̂(y)) f ( p̂(y))] (B.1)
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By writing out the definition of the conditional expectation, we have:

p0Ey[t( p̂(y)) | T] = p0 Â
y2Y

t( p̂(y))P[y | T]

= Â
y2Y

t( p̂(y))
✓
p0

P[y | T]
P[y]

◆
P[y]

= Â
y2Y

t( p̂(y)) p̂(y)P[y] = Ey[ p̂(y)t( p̂(y))].

An almost identical argument can be used for the other term in (B.1). In fact, this generalizes

for any number of states, not just q 2 {T, F}.

Proof of Lemma 5. Proof of (1) Suppose M is the index set of observable indices, and

partition the scientist’s action into a = (aM, a�M). We show that there is some a⇤�M such

that when the developer conjectures that a⇤�M are the unobserved actions of the scientist, the

scientist’s best response is to follow action a⇤�M. Since p0 is interior and hT(a) > hF(a) for all

a, the developer always puts non-negative probability on observing y = 0 or y = 1, for any

conjecture regarding the scientist’s behavior. Therefore, there are unique beliefs ( p̂(0), p̂(1))

formed after observing a signal y = 0 or y = 1, respectively, for any equilibrium strategy

of the scientist. In fact, given a conjecture, since A is compact, we have that P[y = 0] and

P[y = 1] are both bounded away from 0. This implies that beliefs are a continuous function

of actions, and well-defined given any conjecture.

Let t(p) = le(p) + g(p) and f (p) = g(p), and define the function f as follows:

f(a�M) = arg max
ã�M2A�M

p0[t( p̂(aM ,a�M)(0))+ hT(aM, ã�M)(t( p̂(aM ,a�M)(1))� t( p̂(aM ,a�M)(0)))]

+ (1� p0)[ f ( p̂(aM ,a�M)(0))+ hF(aM, ã�M)( f ( p̂(aM ,a�M)(1))� f ( p̂(aM ,a�M)(0)))]� c(aM, a�M)

Note that f(a�M) gives the payoff maximizing response, assuming (observable) actions aM

are chosen and a conjecture of a�M. Taking an�M ! a�M, and bn 2 f(a�M) with bn ! b,

since beliefs are continuous in a and f (p), t(p) are continuous as well (by continuity of e(p)),

we have

t( p̂(aM ,an�M)(1))� t( p̂(aM ,an�M)(0)) ! t( p̂(aM ,a�M)(1))� t( p̂(aM ,a�M)(0)),
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and similarly for f . If b /2 f(a�M), then there exists some value d such that:

p0(hT(aM, d)� hT(aM, b))(t( p̂(aM ,a�M)(1))� t( p̂(aM ,a�M)(0)))

+ (1� p0)(hF(aM, d)� hF(aM, b))( f ( p̂(aM ,a�M)(1))� f ( p̂(aM ,a�M)(0))) > c(aM, d)� c(aM, b).

But since an�M ! a�M and bn ! b, by continuity we can find some n sufficiently large such

that

p0(hT(aM, d)� hT(aM, bn))(t( p̂(aM ,an�M)(1))� t( p̂(aM ,an�M)(0)))

+ (1� p0)(hF(aM, d)� hF(aM, bn))( f ( p̂(aM ,an�M)(1))� f ( p̂(aM ,an�M)(0))) > c(aM, d)� c(aM, bN),

contradicting that bn is a maximizer of f(an�M). Hence the map f is upper-hemicontinuous.

Furthermore, f(a�M) is nonempty and closed because A�M is compact (being the

product of intervals) and the objective function in the expression for f(a�M) is continuous.

Finally, to see that it is convex, notice that if a0�M, a00�M are both in f(a�M) the convexity of

cS(a) and the concavity of hT(a), hF(a) means that we must have that

p0hT(ã�M)(t( p̂(aM ,a�M)(1))� t( p̂(a,a�M)(0)))

+ (1� p0)hF(aM, ã�M)( f ( p̂(aM ,a�M)(1))� f ( p̂(aM ,a�M)(0)))� ca(ã�M).

is constant for all ã�M with ã�M = aa0�M + (1� a)a00�M with a 2 [0, 1], so that f(a�M)

is convex. Hence by Kakutani’s fixed point theorem, an equilibrium exists when aM is

observed, for any choice of aM.

That the first order condition is given by Equation (2.3) follows from observing that

p̂(aM ,a�M) does not respond to the choice of ai for i /2 M. In that case, we see that the marginal

benefit is given by:

p0
∂hT(aM, a�M)

∂ai
(t( p̂(aM ,an�M)(1))� t( p̂(aM ,an�M)(0)))+ (1� p0)

∂hF(aM, a�M)
∂ai

f ( p̂(aM ,an�M)(1))� f ( p̂(aM ,an�M)(0)),

which reduces to the stated condition when equal to marginal cost, as desired.

Proof of (2) Suppose to the contrary that there is a mixed strategy equilibrium. Then
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the first order condition in equation (2.3) must hold for two values of a�M, say a1�M < a2�M.

On the other hand, the developer’s beliefs do not depend on the choice of a�M. Keeping the

notation from the previous we have:

ra�Mc(aM, ai�M) = p0(t( p̂(1))� t( p̂(0)))ra�MhT(aM, ai�M)

+ (1� p0)( f ( p̂(1))� f ( p̂(0)))ra�MhF(aM, ai�M),

and hence subtracting the equation for i = 1 from the equation for i = 2, and taking the dot

product for some arbitrary a with ||a|| = 1, we have:

a ·ra�M(c(aM, a2�M)� c(aM, a1�M)) = p0(t( p̂(1))� t( p̂(0)))a ·ra�M(hT(aM, a2�M)� hT(aM, a1�M))

+ (1� p0)( f ( p̂(1))� f ( p̂(0)))a ·ra�M(hF(aM, a2�M)� hF(aM, a1�M)).

By the multivariate mean value theorem, applied to hT, hF and c, we have, for some at,

a f and ac which are convex combinations of a1�M and a2�M such that:

a ·r2
a�M

c(aM, ac)(a2�M � a1�M) = p0(t( p̂(1))� t( p̂(0)))a ·r2
a�M

hT(aM, at)(a2�M � a1�M)

+ (1� p0)( f ( p̂(1))� f ( p̂(0)))a ·r2
a�M

hF(aM, a f )(a2�M � a1�M).

But since either hT or hF is strictly concave or c is strictly convex, either the left hand side is

strictly positive or the right hand side is strictly negative, with both being at least weakly so,

a contradiction. Hence in equilibrium, there can only be pure strategies.

Proof of Corollary 2. This follows from demosntrating that the scientist’s payoffs, as a function

of the developer’s beliefs, are convex. This is immediate in the case of polynomial effort

costs. Indeed, we take the second derivative of pe(p) (the benefit from follow-on effort) and

observe that it is equal to:

l(2e0(p) + e00(p)).

Since cR(e) is strictly convex, e0(p) > 0, since the first order condition is:

bp = c0R(e(p)),
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and differentiating with respect to p gives:

b = c00R(e(p))e
0(p),

and differentiating again gives:

0 = c000R (e)(e
0(p))2 + c00R(e)e

00(p).

Since e(p) is strictly increasing, the assumptions on c000R (e) ensure that e00(p) � 0, and hence

the objective is convex.

In general, convexity of developer effort by itself is not a strong enough assumption in

order to ensure that pe(p) is convex. To see this, suppose that:

cR(e) = 1�p
1� e ) c0R(e) =

1
2
p
1� e

> 0 ) c00R(e) =
1

4(1� e)3/2
> 0.

In that case, we have:

e(p) = max{0,� 1
4p2

+ 1},

and we observe that pe(p) is concave whenever e(p) > 0.

Proof of Theorem 7. Consider the following family of cost functions:

ch,g,ã(a) = h Â
j2J

(aj � aj)
2 + g Â

k2K
(ak � ak)

2(aj � ãj)1[aj � ãj],

for h,g > 0 and ãj > aj. Note that these are strictly convex in aK for all parameters, since

it is a quadratic function when we treat aj as a constant. By Corollary 2, when distortive

action ak is observed, it is set equal to ak in equilibrium. Let h⇤ denote the smallest value of

h such that aj = aj for all informative actions. Since all distortive actions are set equal to ak

under complete observability, h⇤ in does not depend on the choice of g or ã.

Now suppose that the K coordinates are unobserved. Note that for all k 2 K, we have:

∂ch⇤,g

∂ak
= 2g(ak � ak) + Â

j2J
(aj � aj)1[aj � ãj].

Note that at ai = ai for all actions i (as is the scientist’s choice under observability, by
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construction), the first order condition in (2.3) cannot be satisfied for any g > 0. It follows

that some distortive dimension ak must be in the interior (or possibly at ak) whenever g is

positive.

Now let g ! • and set ãj = aj + #. We claim that for all j, aj ! a⇤ � ãj > aj (passing to

a subsequence if necessary, we can ensured that the limit always exists since the action space

is compact) when # is sufficiently small. Suppose otherwise; in that case, ak ! ak by Lemma

5, since the marginal cost is 0. It follows that the loss to the scientist due to distortion does

not vanish as g ! •, for every ak 2 [ak, ak + #] and for any #. On the other hand, by taking

# sufficiently small, we can ensure that the cost of raising the action for aj to ãj is negligible,

in which case the scientist would find it to be an equilibrium to choose ak = ak. It follows

that there exists a pair (g, #) such that making the K coordinates unobserved results in a

more informative experiment chosen than under full transparency.

Proof of Proposition 6. Without costs, then under the restrictions of preferences studied in

this paper, the scientist’s payoff is increasing in the informativeness of the experiment.

Hence the scientist chooses the maximally informative experiment under observability. On

the other hand, making any biasing dimension unobservable results in ai = ai being chosen

by the scientist in equilibrium, by Lemma 5. The result follows from observing that by

definition, the most informative experiment under a�M = a�M is less informative thatn the

most informative experiment under a�M = a�M.

B.1.2 Scientist Preferences over y

In this appendix, we comment on a modification to the model where we allow for the

scientist to have preferences over y itself. While this could take several different forms in

general, for simplicity we will comment on the case where the payoffs are separable, and

the scientist obtains an added benefit of ly · y. from a positive result.

In general this does not interfere with our application of the belief-based approach,

noting that any positive result leads to a higher belief and any negative result leads to a

lower belief. Hence this setting is as if there were a jump in the scientist’s payoff function at
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the prior. That said, it is simplest to comment on this case simply by inspection. In this case,

it is immediate that the scientist is incentivized to maximize the biasing action in this case

(whether higher informative actions will be taken depends on the prior):

Proposition 16. There exists ly such that when ly > ly, biasing actions are all maximized in

equilibrium.

More to the point of the paper, however, by itself transparency does not interact with the

experiment choice when these kinds of considerations are dominant:

Proposition 17. Suppose l = g(p) = 0 and ly > 0. Then the scientist’s experiment choice does

not differ depending on transparency or not.

This is immediate since the prior does not depend on experiment choices in this setting.

While immediate, the result may be counterintuitive given that it is natural to feel

inclined to prefer positive results rather than negative results. One may be that negative

results may be harder to publish than positive results, in which case there should actually

be an interaction between positive results and the other payoff terms. One could accomodate

this and obtain similar results, as this is similar to imposing even greater convexity in the

payoffs. Alternatively, it may be that positive results that are obtained “cheaply” (via bias)

are less meaningful, but those that are achieved “scrupulously” (via informativeness) are

more meaningful. This would suggest greater interdependence between the cost function

and the benefit than what we have here. Since this would take us too far afield, we do not

pursue such specifications further.
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Appendix C

Appendix to Chapter 3

C.1 Appendix

Proof of Lemma 6. As stated in the main text, we replace a mechanism that possibly correlates

the project choice with the selected agent with one that “simulates out” the impact of other

agents on prototype choice. We illustrate the argument for the case where there is a single

risky prototype; the case with an arbitrary number of prototypes is analogous, but the

notation is more involved. With this simplification, we can write an allocation rule by

{YS
i (qi, q�i),YR

i (qi, q�i)}, where Yj
i (qi, q�i) is the probability agent i is asked to develop a

particular project j, where j = S denotes safe and j = R denotes risky, given the vector of

reports (qi, q�i).

Note that the agent’s payoff from announcing q̂i when they are of type qi can be written

as

Eq�i [Y
S
i (q̂i, q�i)vAS (0) + YR

i (q̂i, q�i)(qivAS (xi) + (1� qi)vAF (xi))].

Define:

Yi(q̂i, q�i) = YS
i (q̂i, q�i) + YR

i (q̂i, q�i), and Xj(q̂i) =
Eq�i [Y

j
i (q̂i, q�i)]

Eq�i [Yi(q̂i, q�i)]
.

Now consider the mechanism that awards the contract to agent i with probability Yi(q̂i, q�i),

and develops project jwith probability Xj
i (q̂i). Since Eq�i [Y

j
i (q̂i, q�i)] = Eq�i [Yi(q̂i, q�i)]Xj(q̂i),
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this mechanism gives the agent exactly the same interim utility as the original mechanism.

Noting that (now assuming incentive compatibility) we can write the principal’s payoff as:

N

Â
i=1

Eqi

h
Eq�i

h
YS
i (qi, q�i)vPS (0) + YR

i (qi, q�i)(qivPS (xi) + (1� qi)vPF(xi))
ii

,

we see that each term inside the expectation Eqi is the same in the new mechanism, and

hence we have not changed the principal’s payoffs, either. It follows that letting the allocation

depend only on the selected agent’s private information is without loss.

We can also show the following Lemma of independent interest. The argument is similar

to the proof of the taxation principle in the case where transfers are present:

Lemma 15. Let qi, q̃i differ in a single coordinate j, with qij > q̃ij. Then in any incentive compatible

mechanism, Eq�i [Yi(qi, q�i)]X(qi)[xj] � Eq�i [Yi(q̃i, q�i)]X(q̃i)[xj].

In words, it follows from incentive compatibility that both the probability of winning and

the probability of being allocated a given allocation is weakly increasing in each prototype

quality type.

Proof. Note that, since type q does not mimic type q̃ in the mechanism X,Y, incentive

compatibility implies:

Eq�i [Yi(q
i, q�i)]Â

xj
X(qi)[xj](qijv

1
A(xj) + (1� qij)v

0
A(xj)) �

Eq�i [Yi(q̃
i, q�i)]Â

xj
X(q̃i)[xj](qijv

1
A(xj) + (1� qij)v

0
A(xj)).

Similarly,

Eq�i [Yi(q̃
i, q�i)]Â

xj
X(q̃i)[xj](q̃ijv

1
A(xj) + (1� q̃ij)v

0
A(xj)) �

Eq�i [Yi(q
i, q�i)]Â

xj
X(qi)[xj](q̃ijv

1
A(xj) + (1� q̃ij)v

0
A(xj)).

Now suppose that q̃ and q are equal in all coordinates other than the jth coordinate. In this
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case, adding the inequalities together yields:

Eq�i [Yi(q
i, q�i)]X(qi)[xj]((qij� q̃ij)(v

1
A(xj)� v0A(xj)) � Eq�i [Yi(q̃

i, q�i)]X(q̃i)[xj]((qij� q̃ij)(v
1
A(xj)� v0A(xj)).

Hence if qij > q̃ij, it follows that:

Eq�i [Yi(q
i, q�i)]X(qi)[xj] � Eq�i [Yi(q̃

i, q�i)]X(q̃i)[xj],

as desired.

For the following proof, recall the definition of the efficient prototype as the one that is

optimal for both parties when the alignment assumption holds.

Proof of Lemma 7. Fix any incentive compatible allocation rule. We can write incentive

compatibility as:

E[Yi(q
i, q�i)]Â

xj
X(qi)[xj](qijv

1
A(xj) + (1� qij)v

0
A(xj)) �

E[Yi(q̃i, q�i)]Â
xj

X(q̃i)[xj](qijv
1
A(xj) + (1� qij)v

0
A(xj)). (C.1)

Consider any type such that the safe prototype is efficient. Upon inspection of (C.1), re-

placing a rule where all such types implement the safe prototype is still incentive compatible–

for all other types for which the risky prototype is efficient, this makes mimicking even less

attractive, and for all types for which the safe prototype is efficient, this again makes the

incentives even stronger.

On the other hand, consider any type q for which a risky prototype is efficient. In this

case, any optimal mechanism can restrict to randomizations between the most efficient risky

prototype and the safe prototype;

We comment on this proof in relation to Example 5.1, where the property of deterministic

project choice fails even if it holds in the single agent model. In that case, shifting probability

away from the third project incentivized the low type to mimic the high type. So in the
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example, mimicking becomes more attractive for the low type. In contrast, when the

alignment assumption holds, the low type is not incentivized to mimic the high type: This

type prefers the safe prototype, and increasing the probability that the good type implements

the risky prototype would only make this less attactive.

Proof of Lemma 8. We provide the argument for the case of two types for each agent, noting

that the general case is analogous simply by considering the adjacent types. By Lemma

7, the high type will undertake the risky project and the low type will undertake the safe

project. As such the incentive compatibility constraints are:

Eq�i ,x�i [Yi(q, xi, q�i, x�i)](qxi v
S
A(xi) + (1� q)vFA(xi)) � Eq�i ,x�i [Yi(q, xi, q�i, x�i)]vA(0)

Eq�i ,x�i [Yi(q, xi, q�i, x�i)]vA(0) � Eq�i ,x�i [Yi(q, xi,q�i, x�i)](qxi v
S
A(xi) + (1� qx)v

F
A(xi)).

Now, the left hand side of the second inequality and the right hand side of the first inequality

are identical. On the other hand, the right hand side of the second inequality is always less

than the left hand side of the first inequality. Therefore, if the first equation holds with

equality, the second holds with slack, and visa versa.

Suppose the first equation held with equality. This then implies, for a positive measure

(xi, q):

Eq�i ,x�i [Yi(q, xi, q�i, x�i)] < Eq�i ,x�i [Yi(q, xi, q�i, x�i)]

, Eq�i ,x�i [Yi(q, xi, q�i, x�i)�Yi(q, xi, q�i, x�i)] < 0.

Let Zi be the set of agent xi types where this is strict. For each zi 2 Zi, there exists a

positive measure set Z(zi) ⇢ Q�i ⇥ X�i where Yi(q, xi, q�i, x�i) < Yi(q, xi, q�i, x�i), and

Z(zi) = [j 6=iZj(zi) where j wins with positive probability in Zj(zi). We can partition Zj(zi)

further into ZS
j (zi) and ZR

j (zi), where j implements “risky” on ZR
j (zi) and “safe” on ZS

j (zi).

Suppose ZR
j (zi) has positive probability for a positive measure subset of Zi. Consider a new

mechanism Ỹ which is identical for all agents not equal to i or j, and for any zi 2 Zi and
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zj 2 ZR
j (zi) sets:

Ỹi(q, zi, q�i, x�i) = Yi(q, zi, q�i, x�i) +
#

P[qzi ]
, Ỹi(q, zi, q�i, x�i) = Yi(q, zi, q�i, x�i)� #

P[qzi ]

Ỹj(q, zi, q�i, x�i) = Yj(q, zi, q�i, x�i)� #

P[qzi ]
, Ỹj(q, zi, q�i, x�i) = Yj(q, zi, q�i, x�i) +

#

P[qzi ]

First, the probability that all agents k 6= i, j win are unchanged, so their incentive constraints

still hold. Second, the expected utility player j obtains is proportional to their probability

of winning, which is also unchanged. Third, the expected principal surplus for all agents

other than i (including agent j) is unchanged as well. Fourth, this mechanism is feasible for

# sufficiently small: Yi(q, xi, q�i, x�i) > 0 implies Yj(q, zi, q�i, x�i) < 1, but by consturction

Yj(q, zi, q�i, x�i) > 0, while we also had Yi(q, zi, q�i, x�i) < Yi(q, zi, q�i, x�i), so that 0  Ỹi 
1 and likewise for Ỹj. Additionally, for # sufficiently small, agent i’s incentive constraints

still hold: type q is more likely to win, so he does better, and type q was slack. As for the

principal, her utility from agent i under the new mechanism is

P[qzi ]

 
(qvPS (xi) + (1� q)vPF(xi))(Yi(q, zi, q�i, x�i) +

#

P[qzi ]
)

!
+P[qzi ]v

P
S (0)

✓
Yi(q, zi, q�i, x�i) +

#

P[qzi ]

◆
,

and subtracting her payoff under the original mechanism, the change is:

#
⇣
(qvPS (xi) + (1� q)vPF(xi))� vPS (0)

⌘
> 0

and hence the principal is better off as well. This contradicts optimality, meaning that the

good realization never wants to mimic the bad one, as desired.

Proof of Proposition 9. First, note the under the assumption of symmetry, any optimal mecha-

nism can be symmetrized so that the allocation probabilities are the same across agents. That

is, we consider all possible permutation of the agents, and note that the correspondingly

permuted mechanism must also be an optimal mechanism. Taking the average over all such

mechanisms maintains the incentive compatibility constraints and is hence optimal as well.

Hence suppose we have some symmetric mechanism {Y(qi, q�i),X(qi)}. Then for all a,

multiplying Y(qi, q�i) by a maintains incentive compatibility.
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Suppose the incentive compatibility constraints do not bind in this solution. It follows

that whenever all types prefer the safe prototype, they strictly prefer to do so. Hence in

this event, we can allow the N + 1st agent to develop the risky prototype with some small

probability if they would like. Since they only make this announcement when they prefer it,

by the alignment assumption, this increases the all agent’s payoffs.

Now suppose the incentive compatibility constraints do bind. In this case, we must have

that, for any tpye q that prefers the risky prototype, Eq�i [Y(q, q�i)] < 1. Hence it follows

that there is some positive probability that the safe prototype is developed, even when the

risky prototype is preferred by the principal. Consider the following mechanism: Award

the contract according to the N agent mechanism, but whenever it would choose the safe

prototype over a risky prototype, let the N + 1st agent obtain the contract with probabilities

aY(qi, q�i) (sticking to the original allocation if these probabilities dictate the new agent

does not develop it). If the agent would obtain the contract with the risky prototype, allocate

it to the other agent with probability akY(qi, q�i), where k is chosen so that the incentive

constraints still bind (noting that k < 1 by alignment).

We show that this increases the principal’s profits. Letting UP denote the principal’s

surplus from a single agent according to the mechanism Y(qi, q�i), we have the principal

gains aP[Safe wins](E[UP]� vP(0)), but loses akP[Risky wins](qv1P(xj) + (1� q)v0P(xj)�
E[UP]). We wish to show that:

P[Safe wins](E[UP]� vP(0)) > kP[Risky wins](qv1P(xj) + (1� q)v0P(xj)�E[UP]).

Note, however, that using the definition of UP, it is immediate that:

P[Safe wins](E[UP]� vP(0)) = P[Risky wins](qv1P(xj) + (1� q)v0P(xj)�E[UP])

so that the desired inequality follows due to the observation that k < 1, as desired.

Proof of Proposition 10. Suppose all agents follow a strategy that announce the risky pro-

totype whenever doing so is efficient. Consider the agent with the most efficient risky

prototype (given the expected type conditional on that prototype being better). It follows
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that this agent wins with probability 1 whenever proposing the risky prototype, since this

delivers the highest ex-post payoffs to the principal. However, by assumption, the optimal

mechanism with commitment does not allocate the contract to this agent with probability 1.

It follows that this cannot be incentive compatible, since otherwise always allocating this

contract in the commitment case would be efficient, as desired.

C.2 Microfounding Alignment

In this section, we consider how the alignment assumption may arise when the agent has

private information about cost after observing whether the prototype is feasible. Suppose the

cost of prototype x, which delivers value v(x) is c ⇠ Fv(x)1 Denote by fv(c) the correspond-

ing virtual value, c+ F(c)
f (c) . Standard analysis shows that the interim optimal mechanism

involves a price paid to procure the prototype of f�1
v (v). Henceforth, we take as given that

the principal will utilize such a transfer (noting that if alignment holds, this will indeed be

optimal, but if it does not then it may be optimal to overpay or underpay to align incentives).

We assume that the firm sets a price of f�1(v) when the prototype is of value v.2 In this

case, the value to prototype v to principal and agent, respectively, is:

pP(v) = F(f�1
v (v))(v� f�1

v (v)),

pA(v) =
Z f�1

v (v)

0
(f�1

v (v)� c) f (c)dc = f�1
v (v)F(f�1

v (v))�
Z f�1

v (v)

0
c fv(c)dc.

We first differentiate the agent’s payoff with respect to v:

dpA(v)
dv

=
d(f�1(v))

dv
F(f�1(v)) + f�1(v) f (f�1(v))

d(f�1(v))
dv

� f�1
v (v) f (f�1(v))

d(f�1(v))
dv

=
d(f�1(v))

dv
F(f�1(v)).

1It is helpful to refer to cost distributions as being indexed by values and not by projects, as we will see
below.

2This is not necessarily obvious, as one has to think about what price can be charged in the interim/ex-
ante/etc., and so in the general model it could easily be something different.
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On the other hand,

dpP(v)
dv

= F(f�1(v))(1� d(f�1(v))
dv

) + (v� f�1(v)) f (f�1(v))
d(f�1(v))

dv
.

We factor out dpA(v)
dv from this expression:

dpP(v)
dv

=
dpA(v)

dv

  
1

d(f�1(v))
dv

� 1

!
+ (v� f�1(v))

f (f�1(v))
F(f�1(v))

!

Now, notice that f(x) = x+ F(x)
f (x) . Hence f (x)

F(x) =
1

f(x)�x . We therefore make this substitution

into the above formula and obtain:

dpP(v)
dv

=
dpA(v)

dv

 
1

d(f�1(v))
dv

!

and therefore:
d(f�1(v))

dv
=

dpA(v)
dv

dpP(v)
dv

as desired.

Hence, when f is linear, df�1(v)
dv is constant, and hence the principal’s payoff is linear

in the agent’s payoff, and hence alignment holds. If df�1(v)
dv is increasing, then the agent’s

payoff using the (Myerson optimal) transers mentioned above increases more quickly than

the principal’s payoff, and hence they prefer riskier projects than the principal. The opposite

conclusion holds when df�1(v)
dv is decreasing.
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