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Several compactness results in gauge theory and low dimensional topology

Abstract

This thesis studies several compactness problems in gauge theory and explores their

applications is low dimensional topology.

The first chapter studies a connection between taut foliations and Seiberg-Witten

theory. Let Y be a closed oriented 3-manifold and F a smooth oriented foliation on

Y . Assume that F does not admit any transverse invariant measure. This chapter

constructs an invariant cpFq for F which takes value in }HM ‚pY q. The invariant is

well defined up to a sign. If two foliations F1 and F2 are homotopic through foliations

without transverse invariant measure, then cpF1q “ cpF2q. The grading of cpFq is

represented by the homotopy class of the tangent plane field of F , and its image in

HM ‚pY q is nonzero.

The second chapter proves a deformation invariance for the parity of the number

of Klein-bottle leaves in a smooth taut foliation. Given two smooth cooriented taut

foliations, assume that every Klein-bottle leaf has non-trivial linear holonomy, and

assume that the two foliations can be smoothly deformed to each other through taut

foliations, then the parities of the number of Klein-bottle leaves are the same.

The third chapter is more analytic in nature. It proves that the zero locus of a Z{2

harmonic spinor on a 4 dimensional manifold is 2-rectifiable and has locally finite

Minkowski content.
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0. Introduction

Gauge theory is an important tool in low dimensional topology. By studying solu-

tions to partial di↵erential equations, such as the Yang-Mills equation or the Seiberg-

Witten equations, it gives insight into the topology of three and four-dimensional

manifolds beyond classical results.

To apply gauge theory to low dimensional topology, one studies the moduli space of

solutions to certain gauge-theoretic PDEs, and use the properties of the moduli space

to understand the background manifold. The moduli space itself usually depends on

some geometric data such as a Riemannian metric or a perturbation, but in the case

when the moduli space is compact or the boundary of the compactification is well-

understood, one can extract information from the moduli space that is independent of

the geometric data. One of the reasons that the Yang-Mills equation and the Seiberg-

Witten equations are useful in topology is that in many cases, the boundaries of the

compactifications of the relevant moduli spaces are either empty or can be understood.

This thesis studies several compactness problems in gauge theory and explores their

applications is low dimensional topology.

The first chapter studies a connection between taut foliations and Seiberg-Witten

theory. Let Y be a three-manifold endowed with a smooth taut foliation, then there

is a canonical symplectization for R ˆ Y . The symplectic structure gives rise to a

version of perturbed Seiberg-Witten equations. Assume furthermore that the foli-

ation has no transverse invariant measure, then the symplectic form can be made

exact. The strategy of this chapter is similar to [21]. It proves that although the

equation is defined on a non-compact manifold, the moduli space of solutions to the

perturbed Seiberg-Witten equations is compact, therefore one can define an invariant

for the foliation in the monopole Floer homology group of Y . The invariant does not

change under smooth deformations of the foliation among foliations without trans-

verse invariant measure. As an application, one can construct two such foliations that
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are homotopic as plane fields but have di↵erent invariants, and it implies that the

h-principle does not hold for smooth foliations without transverse invariant measure.

The second chapter studies the moduli space of closed J-holomorphic curves in

the symplectization of a taut foliation. It turns out that this moduli space is closely

related to the space of closed leaves. In general, the moduli space is not compact,

but when the foliation has Z{2 symmetry, one can extract a Z{2-invariant from the

moduli space that is invariant under deformations. This idea is used to study the

Klein-bottle leaves in taut foliations, and one can prove that the parity of the number

of Klein-bottle leaves is invariant under deformations, under certain non-degeneracy

assumptions.

The third chapter is more analytic in nature. Recently, many e↵orts have been

made to generalize the Yang-Mills theory and the Seiberg-Witten theory to other

gauge-theoretic equations. One of the analytical di�culties is that the relevant mod-

uli spaces are usually not compact, and the compactification is so far di�cult to

understand. It has been shown by Taubes [38, 40, 39, 42, 41], and Haydys-Walpuski

[18] that in many cases, the boundary of the moduli space is described by Z{2 har-

monic spinors. The zero locus of a Z{2 harmonic spinor plays an important role in

the structure of the boundary of the compactified moduli space, but unfortunately,

it can a priori be complicated. It was proved by Taubes [40] that the zero locus

must have Hausdor↵ codimension 2. The third chapter of the thesis proves that it is

rectifiable and has finite Minkowski content.
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1. A monopole Floer invariant for foliations without transverse

invariant measure

Let Y be a closed oriented 3-manifold and F a smooth oriented foliation on Y .

Assume that F does not admit any transverse invariant measure. This chapter con-

structs an invariant cpFq for F which takes value in }HM ‚pY q. The invariant is well

defined up to a sign. If two foliations F1 and F2 are homotopic through foliations

without transverse invariant measure, then cpF1q “ cpF2q. The grading of cpFq is

represented by the homotopy class of the tangent plane field of F , and its image in

HM ‚pY q is nonzero.

1.1. Introduction. Let Y be a smooth oriented three manifold and F an oriented

foliation on Y . The foliation F is called taut if for every point p P Y there exists an

embedded circle in Y passing through p and transverse to F . When F is smooth, it

can be written as ker� for some smooth 1-form �, and the following theorem gives

some geometric and analytic characterizations of the tautness of F .

Theorem 1.1 (Rummler [31] , Sullivan [33] ). If F “ ker� is a smooth oriented

foliation on Y , then the following conditions are equivalent:

(1) For @p P Y , there exists an embedded circle in Y passing through p and trans-

verse to F .

(2) There exists a closed 2-form ! on Y such that ! ^ � ° 0 everywhere.

(3) There exists a Riemannian metric on Y such that the leaves of F are minimal

surfaces.

(4) There is no transverse invariant measure on F that defines an exact foliation

cycle.

Tautness can also be defined for higher dimensional manifolds, but this chapter

will only consider foliations on smooth oriented three manifolds.
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The existence problem of taut foliations on a given three manifold has been studied

for decades. By Roussarie-Thurston theorem, if Y admits a taut foliation then every

embedded sphere of Y is either nullhomotopic or isotopic to a leaf. Reeb’s stability

theorem then implies that if a reducible manifold supports a taut foliation then it

has to be S2
ˆS1 with the product foliation. Gabai [14] proved that every irreducible

three manifold with b1 • 1 supports a taut foliation. The existence problem for taut

foliations on manifolds with b1 “ 0, namely on rational homology spheres, is not yet

solved. It was proved in [23] that if Y is a rational homology sphere supporting a

smooth taut foliation, then the reduced monopole Floer homology HM ‚pY q must be

nonzero. This implies, for example, that lens spaces do not support any smooth taut

foliations. The theorem was proved for general three manifolds in [22] and it was

further generalized to C0 taut foliations in [5].

The flexibility of taut foliations has also been studied for years. Eynard-Bontemps

[13] proved that if two taut foliations can be homotoped to each other via plane

fields then they can be homotoped to each other via foliations. On the other hand,

Vogel [44] and Bowden [6] recently constructed examples of taut foliations that are

homotopic as plane fields but cannot be homotoped to each other via taut foliations.

The proofs of the obstruction of existence of taut foliatons and of Vogel and Bow-

den’s examples rely on the following theorem. The C2 case of the theorem was due

to Eliashberg and Thurston, and the C0 case was proved by Bowden:

Theorem 1.2 (Eliashberg-Thurston [12], Bowden [5]). Let F be an orientable C0

foliation on Y which is not homeomorphic to the product foliation of S2
ˆS1, then F

can be C0 approximated by a pair of positive and negative contact structures. If the

foliaiton is taut, then the contact structures are weakly semi-fillable.

The non-vanishing of HM ‚pY q for taut foliations then follows from the theorem

that for a negative weakly semi-fillable contact structure on Y , the image of the

contact element in HM ‚pY q is always nonzero [22]. For the examples in [44] and [6],
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it was first proved that the perturbed contact structures are uniquely determined up

to isotopy by the taut foliations, and then the claims were proved by studying the

isotopy classes of the those contact structures.

This chapter proposes a method to study the interaction between F and the mono-

pole Floer homology without invoking Eliashberg-Thurston theorem, when F is a

smooth taut foliation. For technical reasons, one needs to assume that F does not

have any transverse invariant measure. By entry 4 of theorem 1.1 this assumption

is stronger than the tautness of F . Let F “ ker�, Sullivan [33] proved that F has

no transverse invariant measure if and only if there exists an exact 2-form ! on Y

such that ! ^ � is everywhere positive. Therefore, on rational homology spheres a

foliation F has no transverse invariant measure if and only if it is taut.

The idea of this chapter is inspired by [21]. For a taut foliation F “ ker� on Y ,

a canonical symplectic structure on Y ˆ R will be constructed. There is a metric g

on Y ˆ R which is compatible with this symplectic structure and having bounded

geometry. Now consider a metric on Y ˆ R which equals g on Y ˆ p´8,´1s and is

cylindrical on Y ˆ r0,8q. It will be proved in theorem 1.46 that a suitable counting

of solutions of the Seiberg-Witten equations gives an invariant cpFq P }HM ‚pY q for

the foliation F . The invariant is defined up to a sign, and it is independent of the

choice of the 1-form � and other parameters appeared in the construction. It is also

invariant under deformations of the foliation through foliations without transverse

measure.

The construction of cpFq follows a similar structure as the definition of the mono-

pole Floer contact element. For a positive contact structure ⇠ on Y the contact

element takes value in }HM ‚p´Y q. However, unlike contact structures, the foliation

F does not dictate a canonical orientation for the three manifold Y , hence the invari-

ant cpFq can take value in either }HM ‚pY q or }HM ‚p´Y q, depending on the choice of
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orientations and conventions. To simplify notations, the invariant cpFq is defined to

be an element of }HM ‚pY q instead of }HM ‚p´Y q.

In section 1.6 it will be proved that the grading of cpFq is given by the homotopy

class of F as a plane field, and that cpFq has a nonzero image in HM ‚pY q. Therefore

the construction of cpFq implies the nonvanishing theorem of HM rFspY q (theorem

41.4.1 of [22]) for foliations without transverse invariant measure. Since taut foliations

on rational homology spheres do not have transverse invariant measure, this gives the

same obstruction for the existence of smooth taut foliations on rational homology

spheres as obtained in [23]. With some more e↵ort, one can use the nonvanishing

theorem for foliations without transverse invariant measure to prove the nonvanishing

theorem of taut foliations when Y is an atoroidal manifold but not a surface bundle

over S1. The proof was explained to the author by Jonathan Bowden and it will be

given in section 1.7.

The invariant cpFq can also be used to study the flexibility of foliations without

transverse invariant measure. Section 1.7 will give a construction of smooth folia-

tions without transverse invariant measure that are homotopic as plane fields but

have di↵erent foliation invariants in }HM ‚pY q. Therefore, these foliations can not be

deformed to each other via smooth foliations without transverse invariant measure.

Besides taut foliations on rational homology spheres, smooth foliations with no

transverse invariant measure can also be constructed from Anosov flows. Let v be

a vector field on Y that gnenerates an Anosov flow, then the normal bundle of v

splits to the direct sum of a contracting subspace and a expanding subspace. The

plane field generated by v and the expanding direction of the normal bundle is then

a foliation without transverse invariant measure. As an example, let ⌃ is a compact

hyperbolic surface, let Y be its unit tangent bundle, then Y “ �zPSL2pRq for some

cocompact subgroup � Ä PSL2pRq. Let e1, e2, and e3 be left invariant vector fields
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of �zPSL2pRq which take value

¨

˝1 0

0 ´1

˛

‚,

¨

˝0 1

0 0

˛

‚and

¨

˝0 0

1 0

˛

‚ respectively at the

unit element. Then e1 defines an Anosov flow on Y , and e2 represents the expanding

direction of its normal bundle, therefore kerpe3q “ spante1, e2u is a foliaiton without

transverse invariant measure. Let te1, e2, e3u be the dual basis of te1, e2, e3u, then

de1 “ ´e2 ^ e3, de2 “ ´2e1 ^ e2, and de3 “ 2e1 ^ e3, thus de3 is an exact form that

is positive on this foliation.

It should be pointed out that for foliations without transverse invariant measure

there is a canonical way to deform the foliation to contact structures by a linear

deformation (theorem 2.1.2 of [12]), therefore the contact element of the deformed

contact class also defines an invariant for the foliation. For now it is not clear to the

author whether these two invariants are the same.

The chapter is organized as follows. Sections 1.2 and 1.3 write down the perturbed

Seiberg-Witten equations that will be used to define the invariant cpFq. Section 1.4

provides the Fredholm theory necessary for the definition of moduli space. Section 1.5

proves a uniform exponential decay estimate for the solutions of the Seiberg-Witten

equations. This is the only step that one needs to assume that F is a foliation without

transverse invariant measure rather than just a taut foliation. A similar uniform

exponential decay estimate was also used in the definition of contact elements in

[23], which referred to the analytical reults in [21], but the analytical details were

not completely given there. In [27], in the remark after lemma 2.2.7, the analysis

in [21] was explained, but the argument was for compact 4-manifolds with contact

boundary, not for manifolds with cylindrical ends which was needed in the definition

of contact elements. The method developed in section 1.5 of this chapter can also be

used to fill in the analytical details for the definition of contact elements. Section 1.6

uses the analytical results proved in the previous sections to establish the invariant

cpFq. Finally, section 1.7 discusses its topological applications.
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I would like to express my most sincere gratitude to Cli↵ord Taubes for his patient

guidance and encouragement. I want to thank Peter Kronheimer and Tomasz Mrowka
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1.2. Setting the stage. From now on, let Y be a closed oriented 3-manifold and F

a smooth oriented foliation on Y . The orientations of Y and F give a co-orientation

of F . Take a smooth non-zero 1-form � such that F “ ker� and � is positive on the

positive side of F . By Frobenius theorem, � ^ d� “ 0. Since F has no transverse

invariant measure, by Sullivan [33] there exists an exact 2-form ! such that !^� ° 0

everywhere on Y . Take a smooth 1-form ✓ such that d✓ “ !.

Consider the cylinder Y ˆR, let t be the coordinate of the R-component. Use the

same notations !, �, and ✓ to denote the pull back forms on Y ˆR when there is no

danger of confusion. Let ⌦ “ !` dpt�q be a 2-form on Y ˆR, then ⌦ is a symplectic

form. Let ⇥ “ ✓ ` t�, then ⌦ “ d⇥.

Fix a metric g0 on Y such that |�|g0 “ 1 and � “ ˚!. Locally ! can be written

as ! “ e1 ^ e2 where e1 and e2 are orthonormal cotangent vector fields on Y . Since

� ^ d� “ 0, there is a unique µ1 such that d� “ µ1 ^ � and x�, µ1yg0 “ 0. Now

dµ1 ^ � “ dpµ1 ^ �q “ d2 � “ 0, hence there is a unique µ2 such that dµ1 “ µ2 ^ �

and xµ2,�yg0 “ 0.

Now define a Riemannian metric on Y ˆ R compatible with ⌦ as follows. Notice

that ⌦ “ e1 ^ e2 ` dt^ �` tµ1 ^ �. Take

(1.1) g “ e1 b e1 ` e2 b e2 ` p1` t2q�b �`
1

1` t2
pdt` tµ1q b pdt` tµ1q.
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It is easy to verify that g does not depend on the choice of e1 and e2, and that it is

compatible with ⌦. (i.e. ⌦ is a self-dual 2-form of length
?

2 under the metric g.)

Denote the Riemannian manifold pY ˆ R, gq by X.

Lemma 1.3. The symplectic manifold pX,⌦ “ d⇥q has the following properties:

(1) X is complete.

(2) The injectivity radius of X is bounded from below by a positive number.

(3) Let R be the curvature tensor of X, then r
kR is bounded for each k.

(4) The tensor r
k⇥ is bounded for each k.

Proof. Let v “ x ¨
B
Bt ` u be a tangent vector of X, where x is a real number and u

is a vector tangent to the Y component of X. By the definition of g and Cauchy’s

inequality:

|v| ¨
a
t2|µ1|

2 ` t2 ` 1

•

c
|u|2 `

1

1` t2
`
x` t ¨ µ1puq

˘2
¨

a
t2|µ1|

2 ` p1` t2q

•|t||µ1||u| ` |x` t ¨ µ1puq|

•|x|.

Therefore |v| • |x|{
?

1` z ¨ t2, where z “ sup |µ1|
2
` 1. The length of each curve

from the slice t “ ´T to t “ T is thus at least

ª
T

´T

1{
?

1` z ¨ t2 dt.

Since
≥8
´8 1{

?

1` z ¨ t2 dt “ `8, this proves the completeness of X.

For the boundedness of rkR and r
k⌦, use the moving frame method. Take an

arbitrary point q on Y , choose a contractible neighborhood Uq of q, and fix a choice
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of e1 and e2 on Uq. Let

e3 “
?

1` t2 ¨ �,

e4 “
1

?

1` t2
pdt` t ¨ µ1q.

Then te1, e2, e3, e4u form an orthonormal basis of the cotangent bundle on Uq ˆ R.

There exist smooth functions ⌫i on Uq (i “ 1, 2, ..., 10), such that

d e1 “ ⌫1 e
1
^ e2 ` ⌫2 e

1
^ �` ⌫3 e

2
^ �,

d e2 “ ⌫4 e
1
^ e2 ` ⌫5 e

1
^ �` ⌫6 e

2
^ �,

µ1 “ ⌫7 e
1
` ⌫8 e

2,

µ2 “ ⌫9 e
1
` ⌫10 e

2.

By schrinking the neighborhood Uq if necessary, assume that r
k⌫i is bounded for

each k. A straight forward calculation shows:

$
’’’’’’’’’&

’’’’’’’’’%

d e1 “ ⌫1 e1 ^ e2 ` ⌫2?
1`t2

e1 ^ e3 ` ⌫3?
1`t2

e2 ^ e3,

d e2 “ ⌫4 e1 ^ e2 ` ⌫5?
1`t2

e1 ^ e3 ` ⌫6?
1`t2

e2 ^ e3,

d e3 “
t?
1`t2

e4 ^ e3 ` ⌫7
1`t2

e1 ^ e3 ` ⌫8
1`t2

e2 ^ e3,

d e4 “
1

1`t2
e4 ^ p⌫7 e1 ` ⌫8 e2q ´

t

1`t2
e3 ^ p⌫9 e1 ` ⌫10 e2q.

(1.2)

Write

dei “
ÿ

j‰k

ai
jk
ej ^ ek,

such that ai
jk

“ ´ai
jk
, then the equations above imply that r

mai
jk

is bounded for

each m.

Suppose rei “ !i

j
b ej, then the connection matrix t!j

i
u can be calculated from

tai
jk
u by the formula

!i

j
“ p´ak

ji
` ai

kj
` aj

ik
qek,
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and the curvature matrix under the basis teiu is given by d!j

i
´!k

i
^!j

k
. Since ai

jk
and

their exterior derivatives are bounded, it follows that under the basis teiu the matrix

of rkR are bounded on Uq ˆ R for each k. This proves the boundedness of rkR on

Uq ˆ R. Since Y is compact, it is covered by finitely many such Uq’s, therefore r
kR

are bounded on X “ Y ˆ R.

For the estimates on ⇥, write ✓ as

✓ “ ⌫11e
1
` ⌫12e

2
` ⌫13�,

then

⇥ “ ⌫11e
1
` ⌫12e

2
`

t` ⌫13
?

1` t2
e3,

and the same calculation proves the boundedness of rk⇥.

For the lower bound on injectivity radius one needs the following theorem:

Theorem (Cheeger-Gromov-Taylor [9]). Let pM, gq be a complete Riemannian man-

ifold, let K ° 0 be a constant such that the sectional curvature of M is bounded by

K from above. Let 0 † r †
⇡

4
?
K
. Then the injectivity radius at each point p P M

satisfies the following inequality:

(1.3) injppq • r
VolpBMpp, rqq

VolpBMpp, rqq ` VolTpMpBTpMp0, 2rqq
.

Here VolTpMpBTpMp0, 2rqq denotes the volume of the ball of radius 2r in TpM , where

both the volume and the distance function are defined using the pull-back of the metric

g to TpM via the exponential map.

Back to the proof of lemma 1.3. Let K ° 0 be an upper bound of the sectional

curvature. For each point q P Y , let Lq be the leaf of F through q, the metric on Lq

is taken to be the restriction from g0. Let ✏ “ infqPY injpLqq. Since Y is compact,

✏ is positive. Take a positive constant r such that 0 † r † mint ⇡

4
?
K
, ✏, 1u. Let
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p “ pq, tq P X. The following argument will show that injppq is bounded from below

by a positive constant independent of p. Without loss of generality, assume |t| ° 1.

By the volume comparison theorem, there is a positive constant z1 depending only

on K and r such that

(1.4) VolTpXpBTpXp0, 2rqq § z1.

Let Dpq, r{3q be the open disk of radius r{3 on Lq centering at q, Let

U “ tx P Y |distg0px,Dpq, r{3qq †
r

3
?

1` t2
u.

Then the distance from each point in U to Dpq, r{3q under the metric g|Yˆttu is less

than r{3, thus the distance from each point of U to q is less than 2r{3. Therefore,

BX,gpp, rq Ö U ˆ pe´r{3 t, er{3 tq.

The volume of U under the metric g0 is bounded from below by a constant multiple

of r{p3
?

1` t2q where the constant depends only on g0 and F , thus the volume of

U ˆ pe´r{3 t, er{3 tq under the product metric of Y ˆ R is bounded from below by a

positive constant. Notice that the volume form of the product metric on Y ˆ R is

the same as the volume form of g. Therefore

(1.5) VolpBXpp, rqq °
1

z2

for some positive constant z2 depending on F , g0 and r. The lower bound of injectivity

radius of X follows immediately from (1.3), (1.4), and (1.5). ⇤

Remark 1.4. The fact that the injectivity radius of X is bounded from below could

be counter intuitive because of the factor 1
1`t2

in the definition of g. In fact, by the

proof of lemma 1.3 one can visualize the geometry of X as follows. First consider

the three manifold Y with the metric g0. For any x P Y , r, ✏ ° 0, let Lx be the leaf
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of F containing x with the induced metric from g0, let Dr be the r-neighborhood of

x in Lx, and let Drp✏q be the ✏ neighborhood of Dr in Y . When r is fixed and ✏ is

small, Drp✏q looks like a thin slice near Dr. Now let r0 ° 0 be a lower bound of the

injectivity radius, then a normal neighborhood of X centering at pq, tq with radius

r0 contains the set Dr0{3
`

r0

3
?
1`t2

˘
ˆ pe´r0{3t, er0{3tq. When t is large, this looks like a

thin slice near a portion of the leaf containing x times a long interval.

The rest of this section gives some technical definitions for later reference.

Definition 1.5. Let M be a noncompact Riemannian 4-manifold possibly with

boundary. Then M is called a cylindrical end if M is isometric to Yg0 ˆ r0,`8q

with the product metric.

Definition 1.6. Let M be a noncompact Riemannian 4-manifold possibly with

boundary. Then M is called a symplectic end if the following conditions hold:

(1) BM is compact, each geodesic ray on M either intersects BM or can be ex-

tended infinitely.

(2) There is an open neighborhood Z of BM such that Z has compact closure

and injpMq is bounded away from zero on M ´ Z.

(3) Let R be the curvature tensor of M , then r
kR is bounded for each k.

(4) There exists an exact symplectic form ⌦ “ d⇥ which is compatible with the

metric on M , such that for each k, the tensor rk⇥ is bounded.

Definition 1.7. Let M be a complete manifold, and Z Ä M an open submanifold

such that Z is a manifold with boundary. A component of M ´ Z is said to be a

symplectic end of M if it is a symplectic end as defined in definition 1.6, and the

symplectic structure extends to a neighborhood of the component. The component

is said to be a cylindrical end of M if it is a cylindrical end as defined in definition

1.5, and the product metric extends to a neighborhood of the component.
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Whenever a manifoldM is said to have symplectic or cylindrical ends, it will always

be assumed that the subset Z has been specified in advance.

Remark 1.8. The definition of symplectic ends is a generalization of the AFAK struc-

ture discussed in [21].

By lemma 1.3, X is a manifold with symplectic ends.

1.3. The Seiberg-Witten equations.

1.3.1. Spinc Structures. For any oriented Riemannian 4-manifold M , the positively

oriented orthonormal frame bundle is a principal SOp4q bundle, denote it by P . A

Spinc structure s on M is a lifting of P to a principal Spinc
p4q bundle. Denote the

set of isomorphism classes of Spinc structures on M by Spinc
pMq.

Although the definition of Spinc structures depends on a choice of metric, the

following well-known lemma shows that di↵erent choices of metrics give essentially

the same set of Spinc structures:

Lemma 1.9. Let M1, M2 be two oriented Riemannian 4-manifolds, let ' : M1 Ñ M2

be an orientation-preserving di↵eomorphism. Then the pull back map '˚ defines a

bijection from Spinc
pM2q to Spinc

pM1q. ⇤

Once a Spinc structure s on the 4-manifold M is chosen there are some standard

constructions. This subsection briefly summarizes them in order to fix notations. For

details, see for example [26]. The notations here are mostly following [22]. There are

two maps from Spinc
p4q to Up2q, thus s gives rise to two associated C2 bundles S` and

S´. The bundle S “ S`
‘ S´ is called the spinor bundle. There is a Cli↵ord action

⇢ : TM Ñ HompS, Sq induced by the Spinc structure, which satisfies ⇢pXq
2
“ ´|X|

2.

The action ⇢ extends to T ˚M and ^
2T ˚M by the Riemannian metric. The bundles

S` and S´ are labelled so that ^2
`T

˚M acts nontrivially on S`.
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A unitary connection A on S is called a Spinc connection if rA⇢ “ 0, where the

connection on TM is taken to be the Levi-Civita connection. Every Spinc connection

decomposes as a sum of unitary connections on S` and S´, and it induces a con-

nection on detpS`
q. Conversely every unitary connection on detpS`

q is defined by a

unique Spinc connection on S. Use At to denote the connection on detpS`
q defined

by A. If A is a Spinc connection on S, use DA to denote the Dirac operator defined

by A.

There is a similar definition for Spinc structures on 3-manifolds. Notice that

SOp3q – SUp2q{t˘1u and Up2q – SUp2q ˆ Up1q{t˘1u, hence there is a map from

Up2q to SOp3q given by projection to the first component. A Spinc structure on a

oriented Riemannian 3 manifold Y is defined to be a lifting of the oriented orthonor-

mal frame bundle to a Up2q bundle. If t is a Spinc structure on a 3-manifold Y , its

spinor bundle is t ˆUp2q C2 and there is a Cli↵ord action ⇢ : TM Ñ HompS, Sq. A

unitary connection B on the spinor bundle is called a Spinc connection i↵ rB⇢ “ 0.

If M is a Riemannian 4-manifold with a compatible symplectic structure, then

there is a canonically defined Spinc structure on M such that

S`
“ T 0,0 M ‘ T 0,2 M,

S´
“ T 0,1 M.

On this canonical Spinc structure, there is a canonical section of S` given by 1 P

�pM,T 0,0 Mq, and there is a canonical Spinc connection A0 on S such that DA0�0 “ 0

(cf. [19]).

1.3.2. Configuration spaces. If M is a manifold with each end being either symplectic

or cylindrical, this subsection defines a suitable configuration space onM for the study

of moduli spaces. First, following notations of [21], define a configuration space on

compact manifolds:
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Definition 1.10. If t is a Spinc structure on a compact 3-manifold N , let S be

the spinor bundle. Define CkpN, tq to be the set of pairs pB, q such that B is a

locally L2
k
Spinc-connection for t, and  is a locally L2

k
section of S. Define CpN, tq “

Xk•1CkpN, tq.

Definition 1.11. If s is a Spinc structure on a compact 4-manifold M , let S be

the spinor bundle. Define CkpM, sq to be the set of pairs pA,�q such that A is

a locally L2
k
Spinc-connection for s, and � is a locally L2

k
section of S`. Define

CpM, sq “ Xk•1CkpM, sq.

Now suppose M is a Riemannian 4-manifold with each end being either symplectic

or cylindrical. Let Hi be its cylindrical ends and Gj be the symplectic ends. Let s be

a Spinc structure on M such that s|Gj is isomorphic to the canonical Spinc structure

on Gj. Let ⌧j be an isomorphism from s|Gj to the canonical Spinc structure on Gj,

and assume that ⌧j can be smoothly extended to a neighborhood of Gj. For later

references, the following definition gives a name to such structures.

Definition 1.12. The structure ps, t⌧juq satisfying the assumptions above is called

an admissible Spinc structure on M .

Notice thatM has the product metric on eachHi, therefore the restriction of s toHi

is the product Spinc structure given by a Spinc structure ti on Y , as described in [22,

p. 89]. The spinor bundle of ti is isomorphic to S`
|Hi . If pA,�q P CkpHi, s|Hiq, then

by restriction to each slice it defines a path pBptq, ptqq, where the pBptq, Spinc
ptqq P

Ck´1pY, tiq.

The following space is the suitable configuration space for the purpose of this

chapter:

Definition 1.13. Let M be a manifold with each end being either symplectic or

cylindrical, let ps, t⌧juq be an admissible Spinc structure, let Aj be the pull back of
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the canonical connection by ⌧j, let �j be the pull back of the canonical section by ⌧j.

Let r ° 0 be a real number. Define CkpM, s, r, t⌧juq to be the set of pairs pA,�q such

that:

(1) A is a locally L2
k
Spinc-connection for S, � is a locally L2

k
section of S`.

(2) On each symplectic end Gj,

A´ Aj P L2
k
pGj, iT

˚Mq,

�´
?
r �j P L2

k,Aj
pGj, S

`
q.

(3) For each cylindrical end Hi, the restriction of pA,�q on Hi gives a path in

Ck´1pY, tiq which converges to some point in the configuration space of pY, tiq.

Define CpM, s, r, t⌧juq “ Xk•1CkpM, s, r, t⌧juq.

1.3.3. Strongly tame perturbations. In [22, p. 85], the Chern-Simons-Dirac functional

L is defined on CpY, tq once a base connection B0 is chosen. A class of tame per-

turbations of L is then studied and they played a crucial rule for the regularity of

the moduli spaces. For the purpose of this chapter, however, a stronger version of

tameness needs to be introduced. Later a version of Seiberg-Witten equations will

be defined on manifolds with each end being either symplectic or cylindrical using

strongly tamed perturbations.

Notice that if q is a perturbation of the gradient of the Chern-Simons-Dirac func-

tional, then it defines a perturbation pq̂0, q̂1q on the cylinder Y ˆ r0, 1s. (See secion

10.1 of [22]).

Definition 1.14. A perturbation q of L is called strongly tame if

(1) It is a tame perturbation as defined in definition 10.5.1 of [22].

(2) There is a constant m0 such that

}q̂0pA,�q}C0 § m0p}�}C0 ` 1q
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for all pA,�q P CpY ˆ r0, 1s, t1q, where t1 is the product Spinc structure on

Y ˆ r0, 1s defined by t.

(3) There is a constant m1 such that

}q̂1pA,�q}C0 § m1

for all pA,�q P CpY ˆ r0, 1s, t1q.

Using the calculations in [22, p. 176] it is straight forward to verify that the cylin-

drical functions constructed in section 11.1 of [22] are strongly tame, therefore all the

results about the class of tame perturbations proved in [22] works for strongly tame

perturbations. In particular, a Banach space P of strongly tame perturbations can

be defined so that the conclusions of theorem 11.6.1 of [22] is satisfied, and moreover

for every q P P the norm of q satisfies

}q̂0pA,�q}C0 § }q} p}�}C0 ` 1q,(1.6)

}q̂1pA,�q}C0 § }q},(1.7)

for all pA,�q P CpY ˆ r0, 1s, t1q.

1.3.4. Perturbed Seiberg-Witten equations. Let M be a Riemannian 4-manifold with

each end being either symplectic or cylindrical, let Hi be the cylindrical ends and

Gj be the symplectic ends. Let ps, t⌧juq be an admissible Spinc structure on M . Let

r ° 0 be a constant. This section defines a perturbed version of Seiberg-Witten

equations on CkpM, s, r, t⌧juq when k • 5. The reason to take k • 5 is to ensure that

the elements in CkpM, s, r, t⌧juq are in C2.

For pA,�q P CkpM, s, r, t⌧juq, define the Seiberg-Witten map

FpA,�q “ p⇢pF`
Atq ´ p��˚

q0, DA�q.

By definition, FpA,�q is a section of isupS`
q ‘ S´.
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Recall that in the end of subsection 1.3.3, a Banach space P of strongly tame

perturbations was defined, and the norm of P satisfies (1.6) and(1.7). Definition

22.1.1 of [22] defined a class of admissible perturbations as one of the ingredients

in the definition of monopole Floer homology. A straight forward modification of

theorem 15.1.1 and proposition 15.1.3 of [22] shows that admissible perturbations

form a residual subset of P . Now define a perturbation on the cylindrical ends as

follows. Take an admissible perturbation qt P P for each Spinc structure t on Y .

The choice of qt will be fixed for the rest of the chapter. Use q̂t to denote the

corresponding 4 dimensional perturbations on Y ˆ R. For each cylindrical end Hi,

take another element pi P P such that }pi} † 1. The perturbations pi do not have

to be admissible, later they will be chosen to obtain transversality. Let p̂i be the 4

dimensional perturbations corresponding to pi.

Next, define a perturbation on the symplectic ends. For each Gj, let ⌦j be the

corresponding symplectic form, let �j, Aj be the pull back of the canonical section and

the canonical Spinc structure via ⌧j. Define a perturbation ûj P C8
pGj, isupS`

q‘S´
q

such that

ûj “ p´rp�j�
˚
j
q0 ` ⇢pF`

A
t
j
q, 0q

“
`
´

ir

4
⇢p⌦jq ` ⇢pF`

A
t
j
q, 0

˘
(1.8)

Finally, glue these perturbations together. For each end Hi, the perturbation q̂i

extends smoothly to a neighborhood H 1
i
of Hi. Similarly each ûj extends smoothly

to a neighborhood G1
j
of Gj. Let ⌘ • 0 be a smooth cuto↵ function on M such

that supp ⌘ Ä pYG1
j
q Y pYH 1

i
q and ⌘ “ 1 on a neighborhood of pYGjq Y pYHiq.

Let ⇢ • 0 be a nonzero smooth function on p0,`8q with compact support, and let

ti : Hi Ñ r0,`8q be the projection, take ⌘i “ ⇢ ˝ ti. Define

(1.9) µ̂ “ ⌘
ÿ

i

q̂i ` ⌘
ÿ

j

ûj `

ÿ

i

⌘i p̂i.
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The Seiberg-Witten equation that will be considered in this chapter is then an equa-

tion on pA,�q P CkpM, s, r, t⌧juq which reads as:

(1.10) FpA,�q “ µ̂pA,�q.

Notice that any section � P �pGj, S`
q can be decomposed as

(1.11) � “
?
r
`
�j ¨ ⌧

˚
j
p↵q ` ⌧˚

j
p�q

˘

where ↵ P �pGj,Cq and � P �pGj, T 0,2 Gjq. For any Spinc connection A on Gj, define

a unitary connection r
1
A
on T 0,2 Gj as:

r
1
A
s “ pr⌧˚pAq sq

p0,2q, @s P C8
pGj, T

0,2 Gjq.

On the other hand, a “ A´Aj is an iR valued 1-form it gives a unitary connection on

the trivial C-bundle on Gj. Given pA,�q P CkpM, s, r, t⌧juq, define the energy density

function E on the symplectic ends as:

E “ |1´ |↵|2 ´ |�|2|2 ` |�|2 ` |ra↵|
2
` |r

1
A
�|2 ` |Fa|

2.

If k • 3, then for each for each pA,�q P CkpM, s, r, t⌧juq the sections p1 ´ ↵q, �, and

a are in L2
1,Aj

X C0 , therefore ª

Gj

E † `8.

1.4. Fredholm theory. Let M be a manifold with only symplectic ends, and sup-

pose ps, t⌧juq is an admissible Spinc structure. This section studies the Fredholm

theory for the operator F on CkpM, s, r, t⌧juq. As before, assume that k • 5. The

argument in this section is a slight modification of the arguments of Kronheimer and

Mrowka in [21].

The space CkpM, s, r, t⌧juq is acted upon by the following gauge group

Gk`1 “
 
u : M Ñ C˚ˇ̌

|u| “ 1 and 1´ u P L2
k`1

(
.
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Using standard techniques of gauge theory (see lemma 1.2 of [43], for example), it

is straight forward to prove that if a, b P CkpM, s, r, t⌧juq and if there is a locally L2

gauge transformation u such that upaq “ b, then u P Gk`1.

Fix a pair pA,�q P CkpM, s, r, t⌧juq, and let l § k. Let tGju be the ends of M , and

let A0 be an extension of the pull back of the canonical connections on YGj. Define

�1 : Ll`1piRq Ñ L2
l
piT ˚Mq ‘ L2

l,A0
pS`

q,

�2 : L
2
l`1piT

˚Mq ‘ L2
l`1,A0

pS`
q Ñ L2

l
pisupS`

qq ‘ L2
l,A0

pS´
q,

as

�1pfq “ p´df, f�q,

�2pa,'q “
`
2⇢pd`aq ´ p�'˚

` '�˚
q0, DA'` ⇢paq�

˘
.

Then �1 and �2 are the tangent maps of the gauge transformation and the Seiberg-

Witten map.

The Seiberg-Witten equations used in this chapter follow the conventions of [37].

It is di↵erent from the Seiberg-Witten equations used in [21] by a coe�cient of 2. To

apply the calculations in [21], define the isomorphisms

�1 : iT
˚M ‘ S`

Ñ T ˚M ‘ S`

pa,'q fiÑ pa,'{
?

2q,

�2 : isupS
`
q ‘ S´

Ñ isupS`
q ‘ S´

ps,'q fiÑ ps{2,'{
?

2q.

Let �11 “ �1 ˝ �
´1
1 , �12 “ �2 ˝ �2 ˝ �

´1
1 . Then

�11pfq “
`
´ df, fp

�
?

2
q
˘
,
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�12pa,'q “
´
⇢pd`aq ´ p

�
?

2
¨ '˚

` ' ¨
�˚
?

2
q0, DA'` ⇢paq

�
?

2

¯
.

Now �11 and �12 become the linearized Seiberg-Witten operators at pA, �?
2
q as in the

conventions of [21]. Let p�11q
˚ and p�12q

˚ be their formal dual. Let D “ p�11q
˚
` �12 and

D˚
“ �11 ` p�12q

˚.

The goal of this section is to prove the following proposition.

Proposition 1.15. Let M be a manifold with symplectic ends. There exists a con-

stant r0 depending on M , such that when r ° r0, the map

D : L2
l`1piT

˚Mq ‘ L2
l`1,A0

pS`
q Ñ L2

l
piRq ‘ L2

l
pisupS`

qq ‘ L2
l,A0

pS´
q

is always a Fredholm operator for any pA,�q P CkpM, s, r, t⌧juq and 0 § l § k. Let

epM, s, t⌧juq be the relative Euler number where the trivilizations on the ends are the

pull back of canonical sections via t⌧ju, then the index of D equals epM, s, t⌧juq.

Definition 1.16. Let E, F be two vector boundles over M with smooth unitary

connections AE and AF . Let k be a positive integer, let r ° 0. An operator D :

C8
pEq Ñ L2

loc
pF q is called pk, rq-admissible if the following conditions hold:

(1) D “ ◆ ˝rAE ` T , where ◆ : T ˚M b E Ñ F and T : E Ñ F are bundle maps

with bounded norm.

(2) For @ 0 § l § k, D extends continuously to a map

D : L2
l`1,AE

pEq Ñ L2
l,AF

pF q.

(3) (Regularity) For @ 0 § l § k, if Ds “ u in the sense of distributions, and if

s P L2
pEq, u P L2

l,AF
pF q, then s P L2

l`1,AE
pEq. Moreover, there is a constant

C independent of s such that

(1.12) }s}L2
l`1,AE

§ C
`
}Ds}L2

l,AF
` }s}L2

˘
.
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(4) There exists a bundle map R P HompE,F q, such that

(1.13)

ª

M

|Ds|2 “

ª

M

|rAEs|
2
` r|s|2 ` xRs, sy

for every compactly supported s P L2
1,AE

pEq,and there exists a compact set

Z Ä M such that |R| † r{2 on M ´ Z.

Lemma 1.17. There exists a constant r0 ° 0 such that if r ° r0, then the operators

D and D˚ are both pk, r{2q-admissible.

Proof. Condition 1 of admissibility comes from definitions of D and D˚, condition 2 is

proved by Sobolev embeddings, condition 3 follows from standard elliptic regularity.

Conditions 4 follow from Propositions 3.8 and 3.10 of [21]. ⇤

Proposition 1.18. If an operator D and its formal dual D˚ are both pk, rq admissible,

then for 0 § l § k, the map D : L2
l`1,AE

pEq Ñ L2
l,AF

pF q is Fredholm, and indD “

dimkerD ´ dimkerD˚.

To prove the proposition one needs the following two lemmas.

Lemma 1.19. Let D be a pk, rq admissible operator. If a sequence tsiu Ä L2
1,AE

pEq

satisfies

}si}L2 § 1,

Dsi Ñ y in L2
pF q.

Then there exists s P L2
pEq such that si Ñ s in L2

1,AE
pEq and Ds “ y.

Proof. By standard elliptic regularity, there exists a subsequence converging to some

section s P L2
1,loc in L2

loc
. Denote the subsequence by the same notation si. The limit

s satisfies

}s}L2 § lim sup
iÑ8

}si}L2 § 1,



24

Ds “ y as distributions.

Therefore by the regularity of D, the section s P L2
1,AE

.

Let ui “ si ´ s, then

}ui}L2 § 2,(1.14)

lim
iÑ8

}Dui}L2 “ 0,(1.15)

and since si Ñ s locally in L2,

(1.16) lim
iÑ8

ª

J

}ui}
2
L2 “ 0

for any compact subset J Ä M . For any set S Ä M , denote the interior of S by S˝.

Let �n be a sequence of compactly supported Lipschitz functions such that

1 • �n`1 • �n • 0,

supp �n Ä �´1
n`1p1q

˝
,

§

n

�´1
n

p1q
˝
“ M,

|r�n| §
1

n
.

Such a sequence �n can be constructed for example as follows. Let x be any point on

M , let dx be the distance function to x, let ⌘ : R•0
Ñ R•0 be a Lipschitz function

such that |r⌘| § 1, supp ⌘ Ä r0, 3s, and ⌘ “ 1 on r0, 1s. Then �n can be defined by

�n “ ⌘pdx{nq.

Let Z be the compact set in definition 1.16. Take a number m such that Z Ä

�´1
m

p1q˝. For any n • m, equation (1.13) gives

r}p�n ´ �mqui}
2
L2 ` }rAE

`
p�n ´ �mqui

˘
}
2
L2
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“}D
`
p�n ´ �mqui

˘
}
2
L2 ´

ª

M

p�n ´ �mq
2
xRpuiq, uiy

§}Dui}
2
L2 ` }◆

`
dp�n ´ �mq b ui

˘
}
2
L2 `

r

2

ª

M

|�n ´ �m|
2
|ui|

2.

Thus
r

2
}p�n ´ �mqui}

2
L2 § }Dui}

2
L2 `

1

m2
¨ sup |◆|2 ¨ }ui}

2
L2 .

Let n Ñ 8, this gives

}p1´ �mqui}
2
L2 §

2

r
}Dui}

2
L2 `

2

m2r
¨ sup |◆|2 ¨ }ui}

2
L2 .

Therefore

}ui}
2
L2 § 2}�mui}

2
L2 ` 2}p1´ �mqui}

2
L2

§ 2}�mui}
2
L2 `

4

r
}Dui}

2
L2 `

4

m2r
¨ sup |◆|2 ¨ }ui}

2
L2 .

Take m °

b
8
r
¨ sup |◆|, then

}ui}
2
L2 § 4}�mui}

2
L2 `

8

r
}Dui}

2
L2 .

By (1.15) and (1.16), this proves lim
iÑ8

}ui}L2 “ 0. Hence the regularity of D implies

that ui Ñ 0 in L2
1,AE

pEq, therefore si Ñ s in L2
1,AE

pEq and the lemma is proved. ⇤

Lemma 1.20. If D is a pk, rq admissible operator, then the map

D : L2
1,AE

pEq Ñ L2
pF q

has finite dimensional kernel and closed range.

Proof. The lemma 1.19 implies that the unit ball of kerD is compact, therefore kerD

has finite dimension.

Now let yi be a convergent sequence in ImD, let y “ lim
iÑ8

yi. Take a sequence tsiu

such that Dsi “ yi and si K kerD in the space L2
1,AE

pEq.
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If }si}L2 are bounded then lemma 1.19 asserts that tsiui•0 has a convergent subse-

quence in L2
1,AE

pEq, hence y P ImD.

If }si}L2 are not bounded, without loss of generality assume that

lim
iÑ8

}si}L2 “ 8.

Take ui “ si{}si}L2 , then Dui Ñ 0, }ui}L2 “ 1. Lemma 1.19 then asserts that a

subsequence of ui converges to an element of kerD in L2
1,AE

pEq, contradicting the

assumption that si K kerD. ⇤

Proof of proposition 1.18. First prove the result for l “ 0. In this case, every ele-

ment u in the L2 orthogonal complement of ImD satisfies D˚u “ 0 in the sense of

distributions. The regularity of the operator D thus imples u P L2
1,AF

pF q. On the

other hand, every element of kerD˚ is perpendicular to ImD in the L2 norm. Hence

ImDK
– kerD˚. Apply lemma 1.20 to D and D˚, this proves that D is Fredholm

and dim cokerD “ dimkerD˚.

The result for 0 † l § k follows from the regularity of D. In fact, let Rl be the

image of D : L2
l`1,AE

pEq Ñ L2
l,AF

pF q, then Rl “ R0 X L2
l,AF

pF q and the result for

l “ 0 implies that Rl is a closed subspace of L2
l,AF

pF q of finite codimension. Since

Rl is dense in R0 under the L2 norm, the codimension of Rl in L2
l,AF

pF q equals the

codimension of R0 in L2
pF q. ⇤

Corollary 1.21. Let r0 be as in lemma 1.17 and assume r ° r0, then D and D˚ are

Fredholm operators. ⇤

The rest of this section calculates the index of D . The following lemma proves the

index formula when the relative Euler number epM, s, t⌧juq is zero.

Lemma 1.22. Let r0 be as in lemma 1.17 and let r ° r0. If

epM, s, t⌧juq “ 0,
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then indD “ 0.

Proof. Since epM, s, t⌧juq “ 0, there exists an element

pA,�q P CkpM, s, 1, t⌧juq

such that |�| ° 1{2 everywhere. Define

pA,�q “ pA,
?
r �q P CkpM, s, r, t⌧juq.

For su�ciently large r, pA,�q satisfies

(1.17) |�pxq|2 •
1

2
max
xPM

´
|Ricpxq| ` |Rpxq| `

1

4
|spxq| `

1

2
|FApxq|

` |rA�pxq| ` |DA�pxq|
¯

where R is the tensor defined from the Weyl curvature as in proposition 3.10 of [21].

By lemma 3.11 of [21], inequality (1.17) implies that both D and D˚ have trivial

kernel, hence by proposition 1.18, the operator D defined at pA,�q has indD “ 0.

Since the index is invariant under homotopy, this implies indD “ 0 at every point of

CkpM, s, r, t⌧juq. ⇤

To calculate the index for the general case, one needs the following lemma:

Lemma 1.23. Let pM1, s1q and pM2, s2q be two 4-manifolds with Spinc structures.

Then there exists a Spinc structure s1#s2 on M1#M2, such that

s1#s2|Mi´pt – si|Mi´pt, i “ 1, 2.

Proof. Define a new metric on M1 ´ pt and M2 ´ pt such that the ends of the two

manifolds are cylinders S3
ˆr0,8q with the standard product metric. By lemma 1.9,

s1 and s2 pulls back to Spinc structures on M1´pt and M2´pt with the new metric.

On the end of Mi ´ pt the Spinc structure is a product Spinc structure given by a
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Spinc structure on S3. Since H1
pS3

q “ H2
pS3

q “ 0, there is only one Spinc structure

t on S3 up to isomorphism, and any self-isomorphism of t is homotopic to identity.

Therefore up to homotopy there is a unique way to glue the Spinc structures on the

ends of M1 ´ pt and M2 ´ pt together and that gives the desired Spinc structure

s1#s2. ⇤

Lemma 1.24. If M is a manifold with symplectic ends, and suppose that ps, t⌧juq

are given, then there exists a closed 4-manifold with a Spinc structure pN, sNq such

that epM#N, s#sN , t⌧juq “ 0

Proof. By lemma 28.2.3 of [22], for any compact 4-manifold with a Spinc structure,

´
c2pS

`
q ´

1

4
c1pS

`
q
2
¯
rN s “ ´

1

4

`
2�pNq ` 3�pNq

˘
.

Therefore for two given compact 4-manifolds with Spinc structures pN1, s1q and

pN2, s2q one has the following identity:

c2pN1#N2, S
`
qrN1#N2s “ c2pN1, S

`
1 qrN1s ` c2pN2, S

`
2 qrN2s ` 1,

where S, S1 and S2 are the spinor bundles for s1#s2, s1, and s2. Since connected

sum is a local construction this also proves

epM#N, s#sN , t⌧juq “ epM, s, t⌧juq ` c2pN,S`
qrN s ` 1,

therefore one needs to find compact manifolds pN, sNq such that

(1.18) c2pN,S`
qrN s “ ´epM, s, t⌧juq ´ 1.

Notice that c1pS`
q can take any characteristic element in the intersection form.

Therefore there is a Spinc structure on CP 2 such that c1pS`
q equals a generator

of H2
pCP 2,Zq, and for this Spinc structure c2 “ ´2. On the other hand the canoni-

cal Spinc structure on CP 2 has a nowhere vanishing section and therefore c2 “ 0. By
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taking connected sum of these two Spinc structures, one can easily construct a closed

manifold pN, sNq satisfing (1.18). Hence the lemma is proved. ⇤

Proof of proposition 1.15. The Fredholm property of D is already contained in Corol-

lary 1.21, the rest of the proof gives the index formula.

If epM, s, t⌧juq “ 0, the index formula follows from lemma 1.22. If pM, sq is a

closed manifold with a Spinc structure, it is well-known that indD “ epM, sq (see for

example lemma 27.1.1 and lemma 28.2.3 of [22]).

For the general case, letM be a manifold with symplectic ends, let psM , t⌧juq be the

compatible Spinc structure. By lemma 1.24, there exists a closed manifold N with a

Spinc structure sN such that epM#N, s#sN , t⌧juq “ 0. Let pM 1, sM 1q be an arbitrary

closed manifold with a Spinc structure. For a manifold X with symplectic ends and

a compatible Spinc structure, use indX to denote the index of the corresponding

operator D. Then the excision property of index implies

indM “ indM 1 ´ indM 1#N ` indM#N .

Therefore the index formula for the general case follows from lemma 1.22 and the

index formula for closed manifolds. ⇤

1.5. Exponential decay of solutions. Let M be a manifold with each end being

either symplectic or cylindrical with an admissible Spinc structure ps, t⌧juq. The

purpose of this section is to establish an exponential decay estimate for solutions of

equation (1.10) in CkpM, s, r, t⌧juq. As before, assume that k • 5, therefore on each

symplectic end Gj,

(1.19)

ª

Gj

E † `8.

By definition, the compatible symplectic structure on each symplectic end Gj can

be extended to a neighborhood of Gj. Let A0 be a smooth extention of the canonical
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connections from the symplectic ends to pM, sq such that on the cylindrical ends A0

is in temporal gauge and is invariant under translations. For the rest of the section,

the connection A0 will be fixed. Let �0 be the pull back of the canonical section on

YGj.

Let � “
?
r p�0 ¨ ⌧˚j ↵ ` ⌧˚

j
�q be the decomposition of � on Gj as in (1.11). Let

a “ A´ A0.

LetK ° 0 be an upper bound of the sectional curvature ofM , let ✏j ° 0 be positive

numbers such that the compatible symplectic structure on each symplectic end Gj can

be extended to the ✏j-neighborhood of Gj. Let ✏0 “ mintinjpW q, ⇡{p2
?

Kq,min
j

✏j, 1u.

For each x P M , consider the Gaussian normal coordinates centered at x with radius

✏0. Let tg
pxq
ij

u1§i,j§4 be the metric matrix under this coordinate frame. Since M has

bounded geometry, for each k • 0 the functions Bkgpxq
ij

are uniformly bounded for any

x.

To avoid excessively wordy explanations for the dependence of constants, the fol-

lowing conventions will be assumed for the rest of the chapter: when a constant

is said to be depending on a manifold M with each end being either symplectic or

cylindrical, it means the constant depends on the manifold M and the admissible

Spinc structure ps, t⌧juq, the choice of the perturbation qt, the cuto↵ functions in the

definition of equation (1.10), and the choice of the connection A0. The notations zi

will denote constants that only depend on M . It is always assumed that r ° r0,

where r0 is a positive constant su�ciently large so that the estimates will work. The

value of r0 may increase as the argument moves on, and r0 depends only on M .

1.5.1. Convergence of configurations. This subsection defines a version of convergence

up to gauge transformations, and provides a su�cient condition for the existence of

convergent subsequences. The result might be obvious to experts, but a proof is given

here for lack of a direct reference.
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Definition 1.25. Suppose tpMn, gnqun•1 is a sequence of complete oriented Riemann-

ian 4-manifolds. For each n, let pn be a point on Mn, let sn be a Spinc structure on

Mn and Sn be the corresponding spinor bundle, and ⇢n : TMn Ñ HompSn, Snq the

Cli↵ord actions. Let An be a locally L2
k
Spinc-connection for sn, let �n be a locally

L2
k
section of S`

n
.

The sequence tpMn, gn, pn, sn, An,�nqun•1 is said to be convergent to another con-

figuration

pM, g, p, s, A,�q

up to gauge transformations, if there exists a sequence

tpdn, Un, Vn,'n, '̃n, unqun•1

such that the following conditions hold:

(1) For any n, the element dn is a positive number, and lim
nÑ8

dn “ `8. The

element Vn is an open neighborhood of pn, and Un is an open neighborhood

of p. The open sets Vn and Un satisfy BMnppn, dnq Ä Vn and BMpp, dnq Ä Un.

The element 'n is a di↵eomorphism from Un to Vn mapping p to pn. Moreover,

for each compact subset K of M ,

lim
nÑ8

}'˚
n
pgnq ´ g}CmpUnXKq “ 0, @m P N.

(2) The element '̃n is a map from Sn|Vn to S|Un , which is a smooth isomorphism

of vector bundles lifting 'n. Moreover, for each compact subset K of M ,

lim
nÑ8

}'̃˚
n
p⇢nq ´ ⇢}CmpUnXKq “ 0, @m P N

(3) The element un is a gauge transformation of sn on Vn. Moreover, for each

compact subset K of M ,

lim
nÑ8

}'̃˚
n
punpAn,�nqq ´ pA,�q}CmpUnXKq “ 0, @m P N
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Definition 1.26. A sequence of pointed complete Riemannian manifolds

tpMn, gn, pnqun•0

is said to have uniformly bounded geometry if the following conditions hold:

(1) There exists ✏0 ° 0 such that for all n, the injectivity radius of Mn is greater

than ✏0.

(2) For each integer k, there is a constant Nk ° 0 such that the norm of the kth

covariant derivative of the curvature tensor of Mn is bounded by Nk for every

n.

The following result is essentially a properness property for the Seiberg-Witten

map.

Proposition 1.27. Let tpMn, gn, pnqun•1 be a sequence of pointed complete oriented

Riemannian 4-manifolds with uniformly bounded geometry, let ✏0 be a positive lower

bound of their injecticity radii. Let sn be a Spinc structure on Mn, let An be locally

L2
1 Spinc-connections for sn and �n be locally L2

1 sections of S`
n
. Assume that there

exists a constant C ° 0 such that for every point x P Mn,

ª

BMn px,✏0q
|FAn |

2
† C,(1.20)

|�npxq| † C.(1.21)

Moreover, assume that

(1.22) DAnp�nq “ 0

for each n, and assume that FpAn,�nq is smooth for each n and there is a sequence

of positive numbers Ck such that

(1.23) }FpAn,�nq}Ck † Ck, @k, n • 1.
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Then there exists a subsequence of tpMn, gn, pn, sn, An,�nqun•1 which converges to

some pM, g, p, s, A,�q up to gauge transformations in the sense of definition 1.25.

Remark 1.28. The assumption (1.22) is not essential. However, if DAnp�nq is not 0,

one needs to be more careful about the formulation of (1.23). Since this chapter will

only use the result when (1.22) is satisfied, the more general statement will not be

discussed here.

Proof. Since tpMn, gn, pnqu have uniformly bounded geometry, there is a pointed com-

plete Riemannian manifold pM, g, pq such that a subsequence of tpMn, gn, pnqu con-

verges to pM, g, pq in C8, in the sence as defined in [30]. Without loss of generality

assume the subsequence is tpMn, gn, pnqu itself. Then by the definition there exists a

sequence tpdn, Un, Vn,�nqu such that condition 1 of definition 1.25 is satisfied.

By (1.20), the L2 norm of '˚
n
pFAnq is bounded on any compact subset of M . Take

any fixed compact surface ⌃ in M , let Np⌃q be a tubular neighborhood of ⌃. Then

the L2 bound of '˚
n
pFAnq implies that the sequence

≥
Np⌃q |'

˚
n
pFAnq| is bounded. Let

P p⌃q be a closed 2-form that is supported in Np⌃q and represents the Poincaré dual

of ⌃, then ª

⌃

c1p'
˚
n
psnqq “

1

2⇡i

ª

Np⌃q
'˚
n
pFAnq ^ P p⌃q

is uniformly bounded for any compact surface ⌃ in M . Therefore there exists a

subsequence tniu of tnu such that for each compact subset K of M , the Chern class

c1p'˚
n
psniqq|K is constant for large i. By taking a further subsequence one may assume

that '˚
n
psinq|K is a constant sequence up to isomorphisms when n is large. Without

loss of generality, assume this subsequence is the original sequence. Then there is a

Spinc structure s on M such that s|Un – '˚
n
psn|Vnq. Now ' can be lifted to '̃ so that

condition 2 of definition 1.25 holds.

The only thing remaining to prove is the existence of the gauge transformations

un satisfying condition 3 in definition 1.25. By theorem 5.2.1 of [22] one only needs
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to prove the boundedness of the analytic energy of tpAn,�nqu on '´1
n
pKq for any

given compact subset K Ä M . (The theorem in [22] requires the manifold and the

Spinc structure to be fixed but the same argument works for a sequence of manifolds

satisfying conditions 1 and 2 of definition 1.25.)

Without loss of generality, assume that Vn is compact for each n. Fix a positive

integer m and let n Ñ `8, one only needs to prove:

E
an
|VmpAn,�nq † Nm, @n ° m

for some constant Nm depending on m.

Since the manifolds Mn have uniformly bounded geometry, without loss of gen-

erality (by taking a further subsequences if necessary) assume that Un´1 ÄÄ Un,

and that there are cut-o↵ functions �n • 0 defined on M such that supp�n Ä Un,

�n|Un´1 “ 1, and the pull-back of �n to Mn satisfies |r'˚
n
p�nq| § 1 for all n.

For n ° m, let pA1
n
,�1

n
q “ pAn,'˚

p�m`1q ¨ �nq. By assumptions (1.21) and (1.23),

(1.24) }FpA1
n
,�1

n
q}L2 † C 1, @n • m • 1

for some constant C 1 depending on m.

Since A1
n
is compactly supported on Vm, the topological energy of pA1

n
,�1

n
q on Vm

(see definition 4.5.4 of [22]) is

(1.25) E
top
pA1

n
,�1

n
q|Vm “

1

4

ª

Vn

FpA1
nqt ^ FpA1

nqt ,

and it is bounded because of (1.20). Since

E
an
pA1

n
,�1

n
q “ E

top
pA1

n
,�1

n
q ` }FpA1

n
,�1

n
q}

2
L2 ,

(1.24) and (1.25) imply the boundedness of Ean
pA1

n
,�1

n
q on Vm`1. Notice that one

has pAn,�nq “ pA1
n
,�1

n
q on Vm, so this implies the boundedness of Ean

pAn,�nq on

Vm. ⇤



35

1.5.2. C0 bound. Let M be a manifold with each end being either symplectic or

cylindrical, and ps, t⌧juq be an admissible Spinc structure. Let

pA,�q P CkpM, s, r, t⌧juq

be a solution of equation (1.10). Let a “ A ´ A0. This subsection proves a C0

estimate for � and F`. The main result is the following estimate:

Proposition 1.29. There exists a constant z such that |�| § z ¨
?
r and |F`

a
| § z ¨ r

at every point of M .

The proof starts with a C0 estimate on symplectic ends. As before, use Gj to

denote the symplectic ends of M . Let Nj be the ✏0 neighborhood of BGj. The

following lemma is inspired by lemma 3.23 of [21].

Lemma 1.30. There exists a constant z ° 0, such that for every locally L2
k
configu-

ration pA,�q defined on the end Gj solving (1.10), the inequality

|�| § z ¨
?
r

holds on Gj ´Nj.

Proof. By inequality (2.2) of [37], the following inequality holds on Gj:

1

2
d˚d|�|2 ` |rA�|

2
`

1

4
|�|2p|�|2 ´ rq ´ z1 ¨ |�|

2
§ 0.

Require r0 ° 4z1, and throw away the term |rA�|2, one obtains

1

2
d˚d|�|2 `

1

4
|�|2p|�|2 ´ 2rq § 0.

For any x P Gj ´ Nj, use Bx to denote the ball on M centered at x with radius ✏0.

Let ⇢ be the distance function to x, let f “ 1{p✏20 ´ ⇢2q2 be a radial function on Bx.

Take a normal coordinate of Bx centered at x and let g be the determinant of the
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metric matrix, then on Bx ´ txu,

d˚df “ ´
1

⇢n´1?g

B

B⇢

`
⇢n´1?g ¨

df

d⇢
p⇢q

˘
.

Notice that M has bounded geometry, hence }g}C0 and }rg}C0 are both bounded

by constants independent of x, and g is bounded away from 0. A straight forward

calculation shows that for some large constant z2 ° 0,

1

2
d˚d

`
pz2q

2rf
˘
`

1

4

`
pz2q

2rf
˘`
pz2q

2rf ´ 2r
˘

• 0.

By the maximum principle, this shows |�|2 § pz2q2rf`2r on Bx, hence |�pxq| § z ¨
?
r

for some constant z. ⇤

The following lemma deals with the cylindrical ends:

Lemma 1.31. Let Hi – Yi ˆ r0,`8q be a cylindrical end, use t to denote the

projection from Hi to r0,`8q. Then there exists a constant z only depending on

the perturbations qt such that

lim sup
tÑ`8

|�| § z

Proof. Since q is an admissible perturbation, there are only finitely many criti-

cal points of the corresponding perturbed Chern-Simons-Dirac functional Ĺ modulo

gauge transformations. Let ⌃ be the set of critical points of Ĺ, let

z “ max
pB, qP⌃

} }C0

Then the definition of CkpM, s, r, t⌧juq implies lim sup
tÑ`8

|�| § z. ⇤

Now starts the prove of proposition 1.29.

Proof of proposition 1.29. There are two possibilities:
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. Case 1. The supremum sup
M
|�| is either not achieved on M or achieved in Gj´Nj

for some symplectic end Gj. In this case sup
M
|�| § z ¨

?
r by lemma 1.30 and lemma

1.31.

. Case 2. For some x0 P M ´YpGj ´Njq, |�px0q| “ sup
M
|�|. Let Bx0 be the closed

ball on M centered at x0 with radius ✏, where ✏ † ✏0 is a positive constant to be

determined later. Then p�, Aq satisfies the following equations on Bx0 :

⇢pF`
Atq “ p��˚

q0 ` µ̂0
pA,�q,(1.26)

DA� “ µ̂1
pA,�q.(1.27)

Since the perturbations pi and qt are strongly tame and }pi} † 1, there exists a

constant z1 such that the following holds on Bx0 :

}µ̂0
pA,�q}C0 § z1 ¨ p1` |�px0q|q,(1.28)

}µ̂1
pA,�q}C0 § z1.(1.29)

Apply DA to both sides of (1.27),

D2
A
� “ DApµ̂

1
q.

By the Weitzenböck formula, this implies

(1.30) r
˚
A
rA�`

1

2
⇢pF`

Atq�`
1

4
s� “ DApµ̂

1
q,

where s denotes the scalar curvature ofM . Plugging in (1.26), and take inner product

with �, equation (1.30) becomes

(1.31)
1

2
d˚d|�|2 ` |rA�|

2
`

1

4
|�|4 `

1

4
xs�,�y `

1

2
xµ̂0�,�y “ xDApµ̂

1
q,�y.
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Notice that the inequality of arithmetic and geometric means gives

1

16
|�|4 ´

1

2
z1|�px0q| ¨ |�|

2
• ´pz1q2|�px0q|

2

Therefore inequality (1.31) implies:

1

2
d˚d|�|2 ` |rA�|

2
`

1

8
|�|4 ´ z0p1` |�px0q|

2
q § xDApµ̂

1
q,�y.

Let h • 0 be a smooth radial function on Bx0 such that h “ 1 on BW px0, ✏{4q and

supph Ä BW px0, ✏{2q. Let � “ h4. Let Gx0 • 0 be the Green’s kernel on Bx0 with a

pole at x0 and equals zero on BBx0 . Then:

ª

Bx0

´1
2
d˚d|�|2 ` |rA�|

2
`

1

8
|�|4 ´ z0p1` |�px0q|

2
q

¯
¨Gx0 ¨ �

§

ª

Bx0

xDApµ̂
1
q,� ¨Gx0�y,

which is the same as

(1.32)

ª

Bx0

´`
´

1

2
�p|�|2�q `

1

2
|�|2��`r|�|2 ¨r�

˘
¨Gx0 ` |rA�|

2 Gx0 �

`
1

8
|�|4 Gx0 �´ z0p1` |�px0q|

2
qGx0 �

¯
§

ª

Bx0

xµ̂1, DAp�Gx0 �qy.

Therefore

(1.33)
1

2
|�px0q|

2
§

ª

Bx0

´
p´

1

2
|�|2��´r|�|2 ¨r�q ¨Gx0 ´ |rA�|

2 Gx0 �

´
1

8
|�|4 Gx0 �` z0p1` |�px0q|

2
qGx0 �` xµ̂1, DAp�Gx0 �qy

¯
.

By the inequality of arithmetic and geometric means,

´
1

2
|�|2��´

1

16
|�|4 �

§|�|2p2h3
|�h| ` 6h2

|rh|2q ´
1

16
|�|4h4
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§z1p|�h|2h2
` |rh|4q,

and

|r|�|2| ¨ |r�| ´
1

2
|rA�|

2�´
1

16
|�|4 �

§2|�| ¨ |rA�| ¨ p4h
3
|rh|q ´

1

2
|rA�|

2h4
´

1

16
|�|4 h4

§z2|�|
2h2

|rh|2 ´
1

16
|�|4 h4

§z3|rh|4.

By (1.29) and the inequality of arithmetic and geometric means,

ª

Bx0

xµ̂1, DA�yGx0 � §

ª

Bx0

1

2
|rA�|

2Gx0�` z4

ª

Bx0

Gx0 �.

Thus by (1.33),

(1.34)
1

2
|�px0q|

2
§ z0p1` |�px0q|

2
q

ª

Bx0

Gx0 �

`

ª

Bx0

´
z1p|�h|2h2

` |rh|4q ` z3|rh|4
¯
Gx0 ` z4

ª

Bx0

Gx0 �

`

ª

Bx0

|µ̂1
||�||rpGx0 �q|.

By the assumption, |�| attains maximum at x0, therefore

ª

Bx0

|µ̂1
||�||rpGx0 �q| § |�px0q|

ª

Bx0

|µ̂1
||rpGx0 �q|

§
1

4
|�px0q|

2
`

´ ª

Bx0

|µ̂1
||rpGx0 �q|

¯2

.(1.35)

Notice that the constants zi do not depend on the choice of ✏. Take ✏ small enough

such that

(1.36)

ª

Bx0

Gx0 §
1

8z0
.
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Since M has bounded geometry, the choice of ✏ can be made to be independent of

x0. Plug in (1.35) and (1.36) to (1.34) and rearrange, this gives

1

8
|�px0q|

2
§ z0

ª

Bx0

Gx0 �

`

ª

Bx0

´
z1p|�h|2h2

` |rh|4q ` z3|rh|4
¯
Gx0

` z4

ª

Bx0

Gx0 �`

´ ª

Bx0

|µ̂1
||rpGx0 �q|

¯2

.

Therefore |�px0q|
2

§ z5 for some constant z5.

Combining case 1 and case 2, this proves the C0 bound for |�|. The bound for |F`
a
|

then follows from equation (1.10) and the C0 bound of the perturbation. ⇤

1.5.3. Exponential decay on symplectic ends. This subsection proves the exponential

decay of E on symplectic ends. Recall that given a configuration pA,�q on any

symplectic end Gj, the function E is defined as

E “ |1´ |↵|2 ´ |�|2|2 ` |�|2 ` |ra↵|
2
` |r

1
A
�|2 ` |Fa|

2.

If pA,�q P CkpM, s, r, t⌧juq then

ª

Gj

E † `8.

The main result of this subsection is:

Proposition 1.32. There exists a constant z such that the following holds. Let

pA,�q be a locally L2
k
solution of (1.10) on a symplectic end Gj. Let d be the distance

function to BGj. Assume
≥
Gj

E † `8. Then there is a constant d0 which may depend

on pA,�q such that

Epxq † e´
?
r¨pdpxq´d0q{z

for every x P Gj with dpxq ° d0.
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To prove proposition 1.32, one needs the following lemma:

Lemma 1.33. Suppose pA,�q satisfies the assumptions of proposition 1.32, then on

the end Gj, one has lim
dpxqÑ`8

Epxq “ 0.

Proof. Assume the contrary, then there is a sequence txnu Ä Gj and a constant

� ° 0 such that dpxnq Ñ 8 and Epxnq • � for all n. Let Bn “ BMpxn, ✏0q. With-

out loss of generality, assume that Bn are pairwise disjoint. Let g be the metric of

M , consider the sequence pM, g, xn, s, A,�q. By proposition 1.27 and the C0 esti-

mate of � in lemma 1.30, a subsequence of it converges to some limit configuration

pÄM, g̃, x̃, s̃, Ã, �̃q. Since r
k⌦ is bounded for all k, the form ⌦ passes to a limit r⌦

in the limit space ÄM . The form r⌦ is a symplectic form compatible with g̃, and

s̃ is the canonical Spinc structure given by pg̃, ⌦̃q. Thus �̃ decomposes into an ↵

component and a � component as in (1.11) and the corresponding energy density

function rE will satisfy rEpx̃q • �. Therefore there will be a possitive constant �1 ° 0

such that
≥
Bn

E ° �1 for su�ciently large n. This contradicts the assumption of
≥
Gj

E † `8. ⇤

The next lemma is the work horse for all the estimates in the proof of proposition

1.32. The lemma and the way it is used in the proof of proposition 1.32 are inspired

by the arguments in [21].

Lemma 1.34. Let K, v0 ° 0 be constants. Let r • 1. Let N be an n-dimensional

complete Riemannian manifold with Ric • ´K, let s be a C2 function on the ball

BNpx0, Rq with radius R. If s satisfies:

1

2
d˚d s` rV s § h,

s|BBM ps,Rq “ t.
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where V • v0 ° 0 is a positive function, then there is a positive constant ✏ depending

only on n, K, and v0, such that the following inequality holds:

spx0q §

´
sup

BN px0,Rq

ˇ̌
ˇ
h

rV

ˇ̌
ˇ
¯
`

´
sup

BBN px0,Rq
|t|
¯
e´✏R

?
r.

If BBMpx0, Rq “ ?, then the value of sup
BBM px0,Rq

|t| is understood as 0.

Proof. Let ⇢ be the distance function to x0. By the Laplacian comparison theorem

(cf. [32, p. 7-8]),

�⇢ §
n´ 1

⇢
p1` k ⇢q.

in the sense of distributions, where k “

a
K{pn´ 1q. Let fpuq • u be a smooth

function on R such that fpuq “ 1 when u § 1{2 and fpuq “ u when u • 1. Let

h “ e✏
?
rfp⇢q be a function onM , where ✏ is a small positive constant to be determined.

Notice that in the sense of distributions,

´�h “ ´p✏
?
rf 2

p⇢q ` ✏2rpf 1
p⇢qq2 ` ✏

?
rf 1

p⇢q�⇢qh

• ´

´
✏
?
rf 2

p⇢q ` ✏2rpf 1
p⇢qq2 ` ✏

?
rf 1

p⇢q
`n´ 1

⇢
` kpn´ 1q

˘¯
h.

Therefore, there exists a constant z ° 0 independent of r such that when ✏ † 1{z, the

inequality 1
2d

˚dh ` rV h • 0 holds in the sense of distributrions. By the maximum

principal for weak solutions ([15], Theorem 8.1), this implies

s § sup
BN px0,Rq

ˇ̌
ˇ
h

rV

ˇ̌
ˇ`

´
sup

BBN px0,Rq
|t|
¯
¨

g

e✏
?
rfpRq ,

on the ball BNpx0, Rq, hence the lemma is proved. ⇤

Proof of proposition 1.32. The proof is divided into 7 steps:

. Step 1. By lemma 1.33, there is a d1 ° 0 such that if dpxq ° d1 then

(1.37) |↵pxq| °
1

2
, Epxq † 1.
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In the following steps it will always be assumed that dpxq ° d1.

. Step 2: pointwise estimates on ↵ and �. By [37] Lemma 2.2, there exist constants

z1, z2, z3 • 1, such that when ⇣ P p0, r

2z1z2
q, r ° z1, and � ° z3, set

u “ p1´ |↵|2q ´ ⇣|�|2 `
�

⇣r
,

then the following inequality holds:

1

2
d˚du`

r

4
|↵|2u • 0.

Therefore lemma 1.34 and (1.37) implies that

u • ´z5e
´?

r¨pd´d1q{z6 , if d ° d1.

Thus

|↵|2 § 1`
z7
r2
,(1.38)

|�|2 §
z7
r

`
1´ |↵|2 `

z7
r2
˘
,(1.39)

whenever d ° d0 ` 1.

. Step 3: pointwise estimates on Fa. On Gj, the first equation of (1.10) reads as

(1.40) F`
a

“ ´
i

8
r ¨

`
1´ |↵|2 ` |�|2q⌦`

r

4
p↵˚� ´ ↵�˚

q.

Thus by inequalities (1.38) and (1.39),

|F`
a
| §

r

4
?

2
p1`

z11
r
qp1´ |↵|2q ` z11.

Now estimate |F´
a
|. By lemma 2.5 of [37], there exists constants z12, z13, z14, z15

such that if r ° z15, let

q0 “
r

4
?

2
p1`

z12
r
qp1´ |↵|2q ´ z13 ¨ r|�|

2
` z14,
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s “ |F´
a
|,

then
1

2
d˚dps´ q0q `

r

4
|↵|2ps´ q0q § |R|s,

where R is a tensor defined by curvature.

Therefore when r ° 8 sup |R|,

1

2
d˚dps´ q0q `

r

8
|↵|2ps´ q0q § |R|q0.

Notice that if dpxq ° d1 then Epxq § 1 hence q0 is bounded by a constant. Apply

lemma 1.34, this implies:

|F´
a
| §

r

4
?

2
p1`

z16
r
qp1´ |↵|2q ` z16.

In conclusion, there is a constant z17 such that

|F˘
a
| §

r

4
?

2
p1`

z17
r
qp1´ |↵|2q ` z17.

. Step 4: pointwise estimates on |ra↵| and |r
1
A
�|. Let

y “ |ra↵|
2
` r|r1

A
�|2.

Inequality (2.43) of [37] shows that for a constant z18,

1

2
d˚dpy ´ z18 ¨ r ¨ uq `

r

4
|↵|2py ´ z18 ¨ r ¨ uq § 0.

By lemma 1.34 again and the pointwise estimates on ↵ and �, this implies

|ra↵|
2
` r ¨ |r1

A
�|2 § z19 ¨ r ¨ p1´ |↵|2q ` z19.
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. Step 5: Exponential decay of |ra↵|, |r1
A
�|, and |�|. Let

y1 “ |ra↵|
2
`

r

32
|r

1
A
�|2 `

r2

16 z20
|�|2.

Inequality (4.15) of [37] shows that1 if z20 is large enough then there exists a constant

z21 such that,

(1.41)
1

2
d˚dy1 `

r

4
|↵|2y1 §

`
z21 ¨ r ¨ p1´ |↵|2q `

r

8
qy1

Take d2 ° 0 so that when d ° d2,

|1´ |↵|2| † min
! 1

16 z21
,
1

8

)
.

Then (1.41) implies
1

2
d˚dy1 `

r

32
y1 § 0.

By lemma 1.34 this implies

(1.42) y1 † z22 ¨ e
?
r¨pd´d2q{z23 ,

when d ° d2.

. Step 6: decay of |1´ |↵|2|. By equation (2.3) of [37],

1

2
d˚d|↵|2 ` |ra↵|

2
`

r

4
|↵|2p|↵|2 ´ 1` |�|2q ` ↵ br

1
A
� ` ↵ b � “ 0,

where b are pointwise bilinear pairings defined by the metric and the symplectic

form. A straight forward calculation thus shows

1

4
d˚d|1´ |↵|2|2 “

`1
2
d˚dp1´ |↵|2q

˘
¨ p1´ |↵|2q ´

1

2
|ra|↵|

2
|
2

“´
r

4
|↵|2|1´ |↵|2|2 ` |ra↵|

2
¨ p1´ |↵|2q

1In [37], the derivation of inequality (4.15) only used the pointwise estimates of ↵, �, Fa, ra↵
and r

1
A� developed in section 2, and it doesn’t depend on the refined pointwise estimate of F´

a

developed in section 3d. Therefore, the inequalities derived from step 2 to step 4 are su�cient for
deriving inequality (1.41) here.
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`
r

4
|↵|2|�|2p1´ |↵|2q ` p1´ |↵|2q ¨ p↵ br

1
A
� ` ↵ b �q.

The inequality above and (1.42) shows that when d ° d2,

1

4
d˚d|1´ |↵|2|2 `

r

4
|↵|2|1´ |↵|2|2 § z24 ¨ e

pd´d3q
?
r{z25 .

By lemma 1.34, this implies

(1.43) |1´ |↵|2|2 † z26 ¨ e
pd´d3q

?
r{z27 ,

when d ° d2.

. Step 7: decay of |Fa|. The exponential decay for |F`
a
| follows from (1.40), (1.42)

and (1.43). For s “ |F´
a
|, inequality (2.19) of [37] gives

1

2
d˚ds`

r

4
p|↵|2 ` |�|2qs § |R|s`

r

4
?

2
p|ra↵|

2
` |r

1
A
�|2q

` z28 ¨ rp|↵||�| ` |↵||r1
A
�| ` |�||ra↵| ` |�|2q.

Therefore (1.42) and (1.43) shows that if |↵| ° 7{8 and r ° 16 sup |R|, then

1

2
d˚ds`

r

8
|↵|2s § z29 ¨ e

pd´d3q
?
r{z30 .

By lemma 1.34, this implies

(1.44) s † z31 ¨ e
pd´d3q

?
r{z32 ,

when t ° d2.

The proposition then follows from (1.42), (1.43), and (1.44). ⇤

The exponential decay in proposition 1.32 will be uniform if there is an apriori

bound on the integral of E. More precisely:
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Proposition 1.35. For any constant C ° 0, there is a constant d0 depending on C

and r such that the following holds. Let pA,�q be a locally L2
k
solution of (1.10) on

a symplectic end Gj. Let d be the distance function to BGj. If

(1.45)

ª

Gj

E † C,

then

Epxq † e´
?
r¨pdpxq´d0q{z

for every x P Gj with dpxq ° d0.

To simplify notations, denote the function 1
2⇤Fa “

1
2x⌦, Fay by F !

a
. The following

lemma is needed for the proof of proposition 1.35. The same identity also appeared

in [21].

Lemma 1.36. Let pA,�q be a L2
k
configuration on a symplectic end Gj with the

canonical Spinc structure, assume that supp� Ä Gj, and

ª

Gj

E † 8.

Then

(1.46)

ª

Gj

´
|B̄a↵ ` B̄

˚
a
�|2 ` 2|iF !

a
´

r

8
p1´ |↵|2 ` |�|2q|2 ` 2|F 0,2

a
´

r

4
↵̄�|2

`
r

2
iF !

a
´ 2|iF !

a
|
2
´ 2|F 0,2

a
|
2
¯

“

ª

Gj

´1
2
|ra↵|

2
`

1

2
|rA1`a�|

2
`

1

2
xiF !

A1`a
�, �y

`
r2

32
p1´ |↵|2 ´ |�|2q2 `

r2

8
|�|2 ´ 2xN ˝ Ba↵, �y

¯
.

Where A1 is the unique unitary connection on ⇤0,2
pT ˚Gjq such that r1,0

A1 “ B. N is

the Nijenhuis tensor.
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Proof. The identity follows from the Weitzenböck formulas (12) and (13) in [20].

Translated to the notations of this chapter, these identities are:

B̄
˚
a
B̄a↵ “

1

2
pr

˚
a
ra↵ ´ 2iF !

a
↵q,

B̄aB̄
˚
a
� “

1

2
pr

˚
A1`a

rA1`a� ` 2iF !

A1`a
�q.

The finiteness of energy justifies the following integration by parts:

ª

Gj

xB̄a↵, B̄
˚
a
�y “

ª

Gj

xB̄aB̄a↵, �y,

ª

Gj

xB̄a↵, B̄a↵y “

ª

Gj

xB̄
˚
a
B̄a↵,↵y,

ª

Gj

xB̄
˚
a
�, B̄˚

a
�y “

ª

Gj

xB̄aB̄
˚
a
�, �y,

ª

Gj

xra↵,ra↵y “

ª

Gj

xr
˚
a
ra↵,↵y,

ª

Gj

xrA1`a�,rA1`a�y “

ª

Gj

xr
˚
A1`a

rA1`a�, �y.

The lemma is then proved by a direct computation. ⇤

Proof of proposition 1.35. The first step is to prove lim
dpxqÑ8

Epxq “ 0 uniformly on

the symplectic end Gj. Assume the contrary, then for some �0 there is a sequence

of locally L2
k
solutions pAn,�nq defined on Gj satisfying

≥
Gj

En † C, and a sequence

of points xn P Gj with dpxnq Ñ 8 such that Enpxnq • �0 for all n. Let g be the

metric on M . By proposition 1.27 and the C0 bound of |�n| proved in lemma 1.30,

the sequence tpM, g, s, xn, An,�nqun•1 converges to a configuration pÄM, g̃, s̃, x̃, Ã, �̃q.

Notice that the symplectic form ⌦ “ d⇥ is exact and r
k⇥ is bounded for all k, thus

by taking a subsequence, the symplectic structures converge to a limit r⌦ on ÄM such

that r⌦ “ dr⇥ for some 1-form r⇥ with bounded norm, and s̃ is the canonical Spinc

structure given by r⌦. Therefore �̃ decomposes as in (1.11) and the corresponding

energy density function rE satisfies rEpx̃q • �0.
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Notice that ÄM is a complete symplectic manifold with bounded geometry, and

r
k⇥ is bounded on ÄM . Moreover, by (1.45),

ª

ÄM

rE § C.

Let d̃ be the distance function to x̃. Then proposition 1.32 shows that there are

constants z̃, d̃0 ° 0 such that

(1.47) Ẽ † e´
?
rpd̃´d̃0q{z̃

when d̃ ° d̃0.

Lemma 1.36 gives

(1.48)

ª

ÄM

´
|B̄ã↵̃ ` B̄

˚
ã
�̃|2 ` 2|iF !

ã
´

r

8
p1´ |↵̃|2 ` |�̃|2q|2 ` 2|F 0,2

ã
´

r

4
¯̃↵�̃|2

`
r

2
iF !

ã
´ 2|iF !

ã
|
2
´ 2|F 0,2

ã
|
2
¯

“

ª

ÄM

´1
2
|rã↵̃|

2
`

1

2
|r

Ã1`ã
�̃|2 `

1

2
xiF !

Ã1`ã
�̃, �̃y

`
r2

32
p1´ |↵̃|2 ´ |�̃|2q2 `

r2

8
|�̃|2 ´ 2xÑ ˝ Bã↵̃, �̃y

¯
.

By (1.47) and the volume comparison theorem, every term in the integrals above

is integrable when r is su�ciently large. By the Seiberg-Witten equations, the first

three terms on the left hand side of (1.48) are zero. Therefore

(1.49)

ª

ÄM

`r
2
iF !

ã
´ 2|iF !

ã
|
2
´ 2|F 0,2

ã
|
2
˘

“

ª

ÄM

´1
2
|rã↵̃|

2
`

1

2
|r

Ã1`ã
�̃|2 `

1

2
xiF !

Ã1`ã
�̃, �̃y

`
r2

32
p1´ |↵̃|2 ´ |�̃|2q2 `

r2

8
|�̃|2 ´ 2xÑ ˝ Bã↵̃, �̃y

¯
.
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The exponential decay estimate (1.47) and volume comparison theorem justifies the

following integration by parts for su�ciently large r:

ª

ÄM
F !

ã
“

ª

ÄM

1

2
Fã ^ dr⇥ “ 0.

Thus equation (1.49) becomes

(1.50) 0 “

ª

ÄM

´
2|iF !

ã
|
2
` 2|F 0,2

ã
|
2
`

1

2
|rã↵̃|

2
`

1

2
|r

Ã1`ã
�̃|2 `

1

2
xiF !

Ã1`ã
�̃, �̃y

`
r2

32
p1´ |↵̃|2 ´ |�̃|2q2 `

r2

8
|�̃|2 ´ 2xÑ ˝ Bã↵̃, �̃y

¯

However, when r is su�ciently large the right hand side of (1.50) is bounded from

below by

(1.51)

ª

ÄM

1

4
|rã↵̃|

2
`

1

4
|r

Ã1`ã
�̃|2 `

r2

64
p1´ |↵̃|2 ´ |�̃|2q2 `

r2

16
|�̃|2 ` 2|F`

ã
|
2

This implies the integral in (1.51) is identically 0 on ÄM , contradicting the assumption

that rEpx̃q • �0.

Now go back to the proof of theorem 1.35. Since the convergence

lim
dpxqÑ`8

Epxq “ 0

is uniform, the constants d1 and d2 in the proof of proposition 1.32 can be taken to be

independent of the solutions, and therefore the exponential decay estimates proved

in proposition 1.32 are uniform. ⇤

Remark 1.37. Although this is not used in the proof, it is worth noticing that if

M “ X as in lemma 1.3, then the geometry of ÄM in the proof above will have some

interesting properties. In fact, the orthonormal local frame pe1, e2, e3, e4q in (1.2) will

converge to an orthonormal local frame pẽ1, ẽ2, ẽ3, ẽ4q on ÄM . Write xn “ pqn, tnq on

X, and by taking a subsequence assume that qn is convergent in Y . Since |tn| Ñ 8,
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equation (1.2) gives:

$
’’’’’’’’’&

’’’’’’’’’%

d ẽ1 “ ⌫1 ẽ1 ^ ẽ2

d ẽ2 “ ⌫4 ẽ1 ^ ẽ2

d ẽ3 “ ẽ4 ^ ẽ3

d ẽ4 “ 0.

Therefore, if one takes K1 “ ker ẽ1 X ker ẽ2 and K2 “ ker ẽ3 X ker ẽ4, then K1 and

K2 do not depend on the choice of pe1, e2q on Y , and they define two orthogonal

distributions on the limit manifold ÄM . Frobeninus theorem shows that K1 and K2

define two foliations. The two foliations are both totally geodesic. The leaves of K2

are limits of the leaves of the taut foliation F , and the leaves of K1 have curvature

0. The proof of lemma 1.3 can be used to show that the injectivity radius of every

leaf of K1 is infinite, therefore the leaves of K1 are flat planes.

One can also write down the limit metric in local coordinate systems. Let xn “

pqn, tnq be a sequence of points in X satisfying tn Ñ 8. By taking a subsequence,

assume that qn converge to a point q in Y . Since F “ ker� is a foliation, on a small

open neighborhood U of q there is a local coordinate system px1, x2, x3
q, such that

the x3 coordinate of q is 0, and � “ f dx3 for some positive function f . Write the

forms e1, e2, µ1 on U as

e1 “ �1 dx
1
` �2 dx

2
` �3 dx

3,

e2 “ �1 dx
1
` �2 dx

2
` �3 dx

3,

µ1 “ ⇣1 dx
1
` ⇣2 dx

2
` ⇣3 dx

3.
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Let � ° 0 be any positive constant, consider the following functions on the space

U ˆ pe´�tn, e�tnq:

x1
n
“ x1,

x2
n
“ x2,

x3
n
“

a
t2
n
` 1 x3,

x4
n
“ ln |t| ´ ln |tn|.

The functions x1
n
, x2

n
, x3

n
, x4

n
define a local coordinate system for U ˆ pe´�tn, e�tnq.

The forms e1, e2, e3, e4 can then be written as:

e1 “ �1 dx
1
n
` �2 dx

2
n
`

�3a
t2
n
` 1

dx3
n

e2 “ �1 dx
1
n
` �2 dx

2
n
`

�3a
t2
n
` 1

dx3
n

e3 “

a
pexppx4

n
q|tn|q2 ` 1a

t2
n
` 1

f dx3
n

e4 “
t

?

1` t2
p⇣1 dx

1
n
` ⇣2 dx

2
n
`

⇣3
1` t2

n

dx3
q `

|t|
?

1` t2
dx4

n
.

Let n Ñ `8, the coordinate functions px1
n
, x2

n
, x3

n
, x4

n
q converge to a coordinated sys-

tem px̃1
n
, x̃2

n
, x̃3

n
, x̃4

n
q on the limit manifold ÄM . Now it is obvious from the calculations

above that the metrics on the open sets U ˆ pe´�tn, e�tnq converge to a limit metric

on ÄM . The limit orthonormal frame pẽ1, ẽ2, ẽ3, ẽ4q on ÄM are expressed in the local

coordinate system as

ẽ1 “ �1 dx
1
n
` �2 dx

2
n

ẽ2 “ �1 dx
1
n
` �2 dx

2
n

ẽ3 “ e2x
4
nf dx3

n

ẽ4 “ ⇣1 dx
1
n
` ⇣2 dx

2
n
` dx4

n
.
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1.5.4. Uniform energy bound. In this section, the notation Ci will denote the con-

stants that are independent of the solution pA,�q but may depend on r.

This subsection proves the following uniform energy bound:

Proposition 1.38. Let M be a manifold with each end being either symplectic or

cylindrical, let ps, t⌧juq be an admissible Spinc structure on M . Then there exists a

constant r0 and a constant C which depends on M and r, such that if r ° r0 and

pA,�q P CkpM, s, r, t⌧juq is a solution to (1.10), then

(1.52)
ÿ

j

ª

Gj

E † C

An immediate corollary of proposition 1.38 and proposition 1.35 is the following

result:

Theorem 1.39. There exists a constant r0 ° 0 and a constant z depending on M ,

and a constant C depending on both M and r, such that if r ° r0 and pA,�q P

CkpM, s, r, t⌧juq solves (1.10), then the inequality

(1.53) E † e´
?
r¨pd´Cq{z

holds on each symplectic end Gj whenever d ° C. ⇤

The rest of the subsection is devoted to the proof of proposition 1.38.

First define some notation: Let ⌦ be the symplectic form on YGj. Let d be a

function defined on M such that d “ 0 on M ´YGj and d equals the distance to BGj

on Gj. If a P CpY, tq is a critical point of Ĺ, let �a P CpY ˆr0, 1s, t1q be the configuration

on Y ˆr0, 1s which is in temporal gauge and represents the constant path at a. Since

there are only finitely many critical points up to gauge transformations, there is a

constant z such that

(1.54) }F�a}
2
L2 † z
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for every critical point a.

Let pA,�q P CkpM, s, r, t⌧juq be a solution to (1.10). Choose a gauge representative

of pA,�q such it is in temporal gauge on each cylindrical end. Let t be the function

on M which is the projection of Hi to r0,R`
q on each cylindrical end Hi and is zero

on M ´ pYHiq. Recalled that A0 is a fixed Spinc connection on pM, sq such that A0

equals the pull back of canonical connections on the symplectic ends, and A0 is in

temporal gauge and invariant under translations on each cynlindrical end. Take

z1 “ z `

ª

tPp0,1s
|FA0 |

2
` 1.

Let nc be the number of cylindrical ends. By (1.54), there exists an R ° 1 su�ciently

large such that

(1.55)

ª

tpxqPrR,R`1s
|Fapxq|

2
† z1 ¨ nc.

Lemma 1.40. There is a constant r0 ° 0 and a function T p, r, zq ° 0 depending

on the manifold M with the following property. Let R ° 1, r ° r0, let pA,�q be a

locally L2
k
configuration defined on t § R ` 1 solving the perturbed Seiberg-Witten

equation (1.10) on the symplectic ends with
≥
Gj

E † `8 for each j. Suppose there

are constants  ° 0, z ° 0 such that

(1.56)

ª

tpxqPrR,R`1s
|Fa|

2
§ .

and suppose that whenever tpxq § R ` 1, the norms |�pxq| and |F`
a
pxq| satisfy the

following C0 bounds:

(1.57) |�pxq| § z ¨
?
r, |F`

a
pxq| § z ¨ r.
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Then the following inequalities hold:

ÿ

j

ª

Gj

E † T p, r, zq ` 5z2 r2 ncVolpY q ¨R,(1.58)

ª

tpxqPp0,Rs
|Fa|

2
† T p, r, zq ` 4z2 r2 ncVolpY q ¨R.(1.59)

Proof. Use Ti to denote constants that may depend on M , , r, and z but are

independent of the choice of pA,�q.

On each Gj, the equation (1.10) reads as

B̄a↵ ` B̄
˚
a
� “ 0,

F !

a
“ ´

ir

8
p1´ |↵|2 ` |�|2q,

F 0,2
a

“
r

4
↵̄�.

Denote the ✏0-neighborhood of BGj by Nj. Let � • 0 be a cut-o↵ function on M

such that supp� Ä YpGj ´Njq and � “ 1 when d ° 2✏0. Let �1
“ ��. Apply lemma

1.36 for pA,�1
q, notice that proposition 1.32 and the volume comparison theorem

implies that each term on either side of (1.46) is integrable for su�ciently large r.

Apply the C0 bound in (1.57), there is the following inequality:

T1 `

ÿ

j

ª

Gj

`r
2
iF !

a
´ 2|iF !

a
|
2
´ 2|F 0,2

a
|
2
˘

•

ÿ

j

ª

Gj

´1
2
|ra↵|

2

`
1

2
|rA1`a�|

2
`

1

2
xiF !

A1`a
�, �y `

r2

32
p1´ |↵|2 ´ |�|2q2

`
r2

8
|�|2 ´ 2xN ˝ Ba↵, �y

¯
.

For su�ciently large r, a rearrangment argument proves:

(1.60)
ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q § T2 ` i r

ÿ

j

ª

Gj

Fa ^ ⌦,

where the constant T2 depends on r.



56

Now by (1.56) and lemma 5.1.2 of [22], there exists a new connection a1 of the

trivial C-bundle defined on the set tx P M |tpxq P rR,R ` 1su, such that:

(1) }a´ a1}L2
1

† T3, for some constant T3 depending on .

(2) a1 “ a when t P rR,R `
1
3s.

(3) Fa1 “ 0, when t P rR `
2
3 , R ` 1s.

Notice that by definition 1.7 the symplectic form ⌦j “ d⇥j and it can be extended

to a neighborhood of Gj, therefore there exists an exact form ⌦ “ d⇥ on M such

that

(1) ⌦ “ ⌦j on each Gj.

(2) ⇥ “ ⇥j on Gj ´Nj.

(3) ⌦ “ 0 outside a tubular neighborhood of YGj.

On a symplectic end Gj, |�pxq| Ñ
?
r as dpxq Ñ 8. Therefore one can take a gauge

representative of pA,�q such that �{�0 P R when dpxq is large. By proposition 1.32,

for some constants z0, d0 ° 0.

(1.61) |a| § e´
?
r¨pd´d0q{z0

when d ° d0. Now extend a1 to t § R ` 1 by taking a1 “ a when t † R. For r suf-

ficiently large, the inequality (1.61) justifies the following identities from integration

by parts:

ª

t§R`1

Fa1 ^ ⌦ “ 0,(1.62)

ª

t§R`1

Fa1 ^ Fa1 “ 0.(1.63)

Let ZR “ tx P M |x R Gj for any j, and tpxq § R` 1u. Then VolpZRq § z1 ` nc ¨R ¨

VolpY q. By (1.60),

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q § T2 ` r

ˇ̌
ˇ
ÿ

j

ª

Gj

Fa ^ ⌦
ˇ̌
ˇ
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§ T3 ` r
ˇ̌
ˇ
ÿ

j

ª

Gj

Fa1 ^ ⌦
ˇ̌
ˇ

Notice that (1.62) implies

ÿ

j

ª

Gj

Fa1 ^ ⌦`

ª

ZR

Fa1 ^ ⌦ “ 0.

Therefore,

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q §T3 ` r

ˇ̌
ˇ
ÿ

j

ª

Gj

Fa1 ^ ⌦
ˇ̌
ˇ

“T3 ` r
ˇ̌
ˇ
ª

ZR

Fa1 ^ ⌦
ˇ̌
ˇ

§T3 `
1

4

ª

ZR

|Fa1 |
2
` r2

ª

ZR

|⌦|2

§T4 `
1

4

ª

ZR

|Fa1 |
2

§T4 `
1

4

ª

t†R`1

|Fa1 |
2

“T4 `
1

2

ª

t†R`1

|F`
a1 |

2

§T5 `
1

2

ª

ZR

|F`
a
|
2
`

1

2

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q

§T6 `
1

2
z2 r2 ncVolpY q ¨R `

1

2

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q,

where the last inequality comes from assumption (1.57). Hence

(1.64)
ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q § 2T6 ` z2 r2 ncVolpY q ¨R.

Therefore,

ª

t§R`1

|Fa|
2

§ T7 `

ª

t§R`1

|Fa1 |
2

“ T7 ` 2

ª

t§R`1

|F`
a1 |

2
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§ T7 ` 2

ª

ZR

|F`
a
|
2
` 2

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q

§ T8 ` 4z2 r2 ncVolpY q ¨R.(1.65)

The lemma follows immediately from (1.64) and(1.65). ⇤

On the other hand, there is the following estimate:

Lemma 1.41. For every Riemannian 3-manifold N , there are constants z1, z2 and

a function of R0pT,Cq depending on N , such that the following holds: let a be a L2
4

unitary connection for the trivial C bundle on Nˆr0, Rs, where Nˆr0, Rs is endowed

with the product metric. If T, C ° 0, R ° R0pT,Cq and

(1.66)

ª
R

0

|Fa|
2

§ T ` C ¨R,

(1.67) |F`
a
|
2

§ C pointwise on N ˆ r0, Rs,

then

(1.68)

ª R
2 ` 1

2

R
2 ´ 1

2

|Fa|
2

† z1 ¨ C ` z2.

Proof. Put a in temporal gauge, and represent a as a function aptq of t which takes

value in L2
3pN, iT ˚Nq. Then

|F`
a
| “

?

2

2

ˇ̌
9aptq ` ˚daptq

ˇ̌
,

|F´
a
| “

?

2

2

ˇ̌
9aptq ´ ˚daptq

ˇ̌
.

Let

¨ ¨ ¨ † �´3 † �´2 † �´1 † �0 “ 0 † �1 † �2 † �3 † ¨ ¨ ¨
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be the eigenvalues of the self-adjoint operator ˚d on N . Let

k “ max
! 1

|�´1|
,

1

|�1|

)
.

Decompose a as

aptq “
`8ÿ

n“´8
anptq,

where ˚danptq “ �nanptq. Let

bnptq “ 9anptq ` �nptqanptq.

By (1.67),
8ÿ

n“´8
}bnptq}

2
L2 § 2C ¨ VolpNq.

By (1.66),

ª
R

0

} ˚ daptq}2
L2 dt §

1

2

ª
R

0

`
} 9aptq ` ˚daptq}2

L2 ` } 9aptq ´ ˚daptq}2
L2

˘
dt

“

ª
R

0

|Fa|
2

§ T ` CR.

Thus there exits a t1 P r0, 1s such that

(1.69)
ÿ

n

�2
n
}anpt1q}

2
L2 § T ` CR.

Now if n ° 0,

�nanptq “ anpt1q ¨ e
pt1´tq�n ¨ �n `

ª
t

t1

e�nps´tq
¨ �n ¨ bnpsq ds

When t ° k ` 1,

}�nanptq}
2
L2 § 3

`
X2

n
ptq ` Y 2

n
ptq ` Z2

n
ptq

˘
,
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where

Xnptq “ }anpt1q e
pt1´tq�n�n}L2

Ynptq “ }

ª
t´k

t1

bnpsq e
ps´tq�n�n ds}L2

Znptq “ }

ª
t

t´k

bnpsq e
ps´tq�n�n ds}L2

Notice that since |�n| •
1
k
,

Xnptq § }�nanpt1q}L2 ¨ ept1´tq{k,

Now assume R ° 2k ` 3. By (1.69),

ª R
2 ` 1

2

R
2 ´ 1

2

ÿ

n•1

Xnptq
2 dt § pT ` CRq ¨ e´pR´3q{k.

Notice that if s ´ t † ´k then the function � fiÑ eps´tq�� is decreasing when � ° �1.

By Minkowski’s inequality, for t ° k ` 1,

´ ÿ

n•1

Ynptq
2
¯1{2

§

´ ÿ

n•1

` ª t´k

t1

}bnpsq}L2 eps´tq�n�n ds
˘2¯1{2

§

´ ÿ

n•1

` ª t´k

t1

}bnpsq}L2 eps´tq�1�1 ds
˘2¯1{2

§

ª
t´k

t1

´ ÿ

n•1

}bnpsq}
2
L2

¯1{2
eps´tq�1�1 ds

§

a
2C ¨ VolpNq.

Thus ª R
2 ` 1

2

R
2 ´ 1

2

ÿ

n•1

Ynptq
2 dt § 2C ¨ VolpNq.
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As for Zn, the Minkowski inequality gives

´ ª R
2 ` 1

2

R
2 ´ 1

2

Znptq
2 dt

¯1{2
§

´ ª R
2 ` 1

2

R
2 ´ 1

2

` ª k

0

}bnpt´ sq}L2 ¨ e´s�n�n ds
˘2

dt
¯1{2

§

ª
k

0

´ ª R
2 ` 1

2

R
2 ´ 1

2

}bnpt´ sq}2
L2 dt

¯1{2
e´s�n�n ds

§

ª
k

0

´ ª R
2 ` 1

2

R
2 ´ 1

2´k

}bnptq}
2
L2 dt

¯1{2
e´s�n�n ds

§

´ ª R
2 ` 1

2

R
2 ´ 1

2´k

}bnptq}
2
L2 dt

¯1{2
.

Therefore

ª R
2 ` 1

2

R
2 ´ 1

2

ÿ

n•1

Znptq
2 dt §

ª R
2 ` 1

2

R
2 ´ 1

2´k

ÿ

n•1

}bnptq}
2
L2 dt

§ pk ` 1q2C ¨ VolpNq.

Combining the estimates above,

ª R
2 ` 1

2

R
2 ´ 1

2

ÿ

n•1

}�nanptq}
2
L2 dt §

ª R
2 ` 1

2

R
2 ´ 1

2

ÿ

n•1

3
`
X2

n
ptq ` Y 2

n
ptq ` Z2

n
ptq

˘

§ 6pk ` 2qVolpNq ¨ C ` 3pT ` CRq ¨ e´pR´3q{k.

On the other hand, there exists a t2 P rR ´ 1, Rs such that

ÿ

n

�2
n
}anpt2q}

2
L2 § T ` CR.

If n † 0, then

�nanptq “ anpt2q ¨ e
pt´t2qp´�nq ¨ �n ´

ª
t2

t

ep´�nqpt´sq
¨ �n ¨ bnpsq ds.

When R ° 2k ` 3, the same argument proves

ª R
2 ` 1

2

R
2 ´ 1

2

ÿ

n§´1

}�nanptq}
2
L2 dt § 6pk ` 2qVolpNq ¨ C ` 3pT ` CRq ¨ e´pR´3q{k.
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Therefore, when R ° 2k ` 3

ª R
2 ` 1

2

R
2 ´ 1

2

} ˚ da}2
L2 dt “

ª R
2 ` 1

2

R
2 ´ 1

2

`8ÿ

n“´8
}�nanptq}

2
L2 dt

§ 12pk ` 2qVolpNq ¨ C ` 6pT ` CRq ¨ e´pR´3q{k.

Notice that

ª R
2 ` 1

2

R
2 ´ 1

2

ˇ̌
|F`

a
| ´ |F´

a
|

ˇ̌2
§

ª R
2 ` 1

2

R
2 ´ 1

2

2} ˚ daptq}2
L2 dt.

Hence

ª R
2 ` 1

2

R
2 ´ 1

2

|Fa|
2

§ 2

ª R
2 ` 1

2

R
2 ´ 1

2

ˇ̌
|F`

a
| ´ |F´

a
|

ˇ̌2
` |2F`

a
|
2

§ 8CVolpNq ` 48pk ` 2qVolpNq ¨ C

` 24pT ` CRq ¨ e´pR´2q{k,

and the lemma follows from the inequality above. ⇤

The proof of proposition 1.38 follows easily from the previous two lemmas:

Proof of proposition 1.38. Pick r0 large enough so that lemma 1.40 is valid when

r ° r0. Let z1 be the constant in (1.55). Let the function T p, r, zq be as in lemma

1.40, and constant z be as in proposition 1.29, and let the function R0pT,Cq and

constants z1, z2 be as in lemma 1.41 when N equals nc copies of Y .

Let C1 “ 4z2 r2nc ¨maxpVolpY q, 1{4q, take  “ maxpz1 ¨ nc, z1 ¨ C1 ` z2q.

Let

Rmin “ inftR ° 2|

ª

tPrR,R`1s
|Fa|

2
† u.

By (1.55), Rmin is finite. By (1.59),

ª

tPp0,Rs
|Fa|

2
† T p, r, zq ` 4z2 r2ncVolpY q ¨R
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§ T p, r, zq ` C1 ¨R.

and since the constant z is the same constant in proposition 1.29,

|F`
a
|
2

§ z2 r2 § C1.

If Rmin ° maxpR0pT p, r, zq, C1q, 5q, take R1
“ pRmin ´ 1q{2, then lemma 1.41 gives

ª

tPrR1,R1`1s
|Fa|

2
† z1 ¨ C1 ` z2 § .

This contradicts the definition of Rmin. Therefore,

Rmin § maxpR0pT p, r, zq, C1q, 5q,

hence by (1.58),

ÿ

j

ª

Gj

E † T p, r, zq ` 5z2 r2 ncVolpY q ¨Rmin

§ T p, r, zq ` 5z2 r2 ncVolpY q ¨maxpR0pT p, r, zq, C1q, 5q.

And proposition 1.38 is proved. ⇤

1.5.5. Manifold with a stretching neck. For later references, this subsection considers

the following scenario:

Let M be a manifold with only symplectic ends. Let Gj be the ends of M , let d be

the function on M such that d “ 0 on M ´YGj and d is the distance function to BGj

on Gj. Let ps, t⌧juq be an admissible Spinc structure. Suppose the three manifold Y

is embedded in M such that Y XGj “ ? for each Gj, and M´Y has two components.

Assume that the metric of M on a tubular neighborhood of Y is the product metric

Y ˆ p´✏, ✏q. For R ° ✏, let MR be the Riemannian manifold which is di↵eomorphic

to M but the metric on the tubular neighborhood of Y is changed to the product

metric of Y ˆ p´R,Rq. In other words, MR is obtained from M by “stretching” the
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tubular neighborhood of Y . Let fR : MR Ñ M be the map that shrinks the neck.

The map fR can be chosen in such a way that at each point of MR the norm of the

tangent map of fR is less than or equal to 1. The admissible Spinc structure ps, t⌧juq

and the function d then pull back to MR via fR.

Let ⌘ptq be a cuto↵ function on R supported in p´✏, ✏q. Take two strongly tame

perturbations p1 and p2 such that }p1}, }p2} † 1. Take the perturbation on the

symplectic ends as in (1.8). If t is the induced Spinc structure on Y by s, take the

perturbation on Y ˆp´R,Rq to be q̂t`⌘pt`R´✏qp̂1`⌘pt´R`✏qp̂2, and extend them

to a perturbation µ̂R on MR by using a partition of unity. Consider the equation

(1.70) FpA,�q “ µ̂RpA,�q.

Recall that a Spinc connection A0 was chosen and fixed on pM, sq. Let AR be the

pull back of A0 to MR; any Spinc connection on MR can be written as AR ` a.

Theorem 1.42. There exists a constant r0 ° 0 and a constant z depending only on

M and the embedding of Y , such that for every r ° r0 there is a constant C ° 0

depending on r but independent of R, such that if pA,�q P CkpMR, s, r, t⌧juq solves

the equation (1.70), then the inequality

E † e´
?
r¨pd´Cq{z

holds on each end Gj whenever d ° C.

The proof of theorem 1.42 is similar to the proof of theorem 1.39. Before giving

the proof of theorem 1.42, several lemmas are needed.

Lemma 1.43 (C0 estimate). Under the assumptions of theorem 1.42, there is a

constant z depending only on M and the embedding of Y , such that |�| † z ¨
?
r,

|F`
a
| † z ¨ r.

Proof. The proof is the same as the proof of proposition 1.29. ⇤
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Let ZR be the neck Y ˆp´R,Rq. The following lemma is analogous to lemma 1.40.

Lemma 1.44. Under the assumptions of theorem 1.42, let z be the constant in lemma

1.43, then there is a constant C0 depending on M , the embedding of Y in M , and r,

such that

ÿ

j

ª

Gj

E † C0 ` 10z2 r2VolpY q ¨R,(1.71)

ª

ZR

|Fa|
2

† C0 ` 8z2 r2VolpY q ¨R.(1.72)

Remark 1.45. The coe�cients in the inequalities (1.71) and (1.72) are twice the

corresponding coe�cients in lemma 1.40, because in this case the neck length is 2R

instead of R. Of course, the exact values of the coe�cients won’t matter.

Proof of lemma 1.44. Let ⌦ be the symplectic form on YGj. Use Ci to denote con-

stants depending on M , the embedding of Y in M , and r, but independent of R.

Integration by parts as in inequality (1.60), one obtains

(1.73)
ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q § C1 ` i r

ÿ

j

ª

Gj

Fa ^ ⌦.

Notice that c0 “
≥
MR

Fa ^ Fa is a topological invariant of ps, t⌧juq. Let ⌦ “ d⇥ be

the symplectic form on the ends and extend ⌦ to an exact form ⌦1
“ d⇥1 on M such

that ⇥ “ ⇥1 when d ° ✏0 and supp⇥1 is contained in a tubular neighborhood of the

symplectic ends. Pull ⇥1 and ⌦1 back to MR and denote the pulled back forms by

⇥R and ⌦R. Since |dfR| § 1, the norm of ⌦R and ⇥R are uniformly bounded. Since

⌦R “ d⇥R, this implies
≥
MR

Fa ^ ⌦R “ 0. Therefore,

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q § C1 ` r

ˇ̌
ˇ
ª

MR´YGj

Fa ^ ⌦R

ˇ̌
ˇ

§ C1 `
1

4

ª

MR´YGj

|Fa|
2
` r2

ª

MR´YGj

|⌦R|
2
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§ C2 `
1

4

ª

MR

|Fa|
2

“ C2 `
c0
4
`

1

2

ª

MR

|F`
a
|
2

§ C3 ` z2 r2VolpY q ¨R `
1

2

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q,

Therefore
ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q § 2C3 ` 2z2 r2VolpY q ¨R.

On the other hand,

ª

MR

|Fa|
2

§ |c0| ` 2

ª

MR

|F`
a
|
2

§ |c0| ` 2

ª

MR´YGj

|F`
a
|
2
` 2

ÿ

j

ª

Gj

pE ´ |F´
a
|
2
q

§ C4 ` 8z2r2VolpY q ¨R.

The lemma is then proved by combining the two inequalities above. ⇤

Proof of theorem 1.42. By proposition 1.35, one needs to find a uniform upper bound

for
ÿ

j

ª

Gj

E. Lemma 1.44 provides an upper bound that grows linearly with respect

to R. An argument similar to the proof of proposition 1.38 can improve it to a

uniform bound.

In fact, take the function T p, r, zq in lemma 1.40, and take the constants z1, z2

and the function R0pT,Cq in lemma 1.41 applied to N “ Y . Let C0 be the constant

in lemma 1.44, let z be the constant in lemma 1.43. Take C1 “ 8z2r2VolpNq, take

 “ z1C1 ` z2 and T “ max
`
C0, T p, r, z0q

˘
. If R † R0pT,C1q ` 3 then the energy

is bounded uniformly by lemma 1.44. Otherwise, by lemma 1.41,

ª

Nˆp´1{2,1{2q
|Fa|

2
§ .
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Take

Rmax “ suptR1
|R1

§ R ´ 2,

ª

NˆpR1,R1`1q
|Fa|

2
§ u,

then lemma 1.41 proves

R ´Rmax § R0pT,C1q ` 5.

Now apply lemma 1.40 to the component of M ´ Y ˆ p0, Rmax ´ 1{2q which contains

Y ˆ tRu, a uniform energy bound on the symplectic ends of this component is then

obtained. The energy bound on the other component follows from the same argument

by considering

Rmin “ inftR1
|R1

• ´R ` 2,

ª

NˆpR1´1{2,R1`1{2q
|Fa|

2
§ u,

and obtaining an upper bound of Rmin `R. ⇤

1.6. Monopole Floer homology. This section defines cpFq for a smooth oriented

and co-oriented foliation F wihtout transverse invariant measure, and proves the

properties claimed in the introduction.

Recall that in section 1.2, a Riemannian manifold X “ pY ˆ R, gq is defined, and

there is a compatible symplectic form ⌦ on X such that pX,⌦q is a manifold with

symplectic ends.

By section 27.3 of [22], if W is a compact 4-manifold with boundary Y´ Y Y`, and

b`2 pW q • 2, then there is a map

››Ñ
HMpW q : yHM ‚pY´q Ñ }HM ‚pY`q

defined by attaching two cylinders Y´ˆp´8, 0s and Y`ˆr0,`8q to W and counting

solutions of a perturbed Seiberg-Witten equation on this extended manifold. In

particular, if Y´ “ S3, then this map defines an element
››Ñ
HMpW qp1q P }HM ‚pY`q.

Another way to interpret the element
››Ñ
HMpW qp1q P }HM ‚pY`q is to attach a D4 to

the boundary Y´ – S3 and count solutions on D4
YW Y Y` ˆ r0,`8q. By lemma
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27.4.2 of [22], it is straight forward to prove that the two constructions give the same

element in }HM ‚pY`q

To construct the invariant cpFq of the foliation F , one considers the manifold

X0 “ Y ˆ p´8,´1s with the restriction metric from X. After attaching a cylinder

Y ˆ r0,`8q and smoothing the metric, the manifold X0 Y Y ˆ r0,`8q becomes

a manifold with one cylindrical end and one symplectic end. By lemma 1.9, the

canonical Spinc structure on X0 is extended to a Spinc structure on X0YY ˆr0,`8q.

Denote this Spinc structure by s. Let M “ X0YY ˆr0,`8q, and let ⌧ be the identity

map from s|X0 to the canonical Spinc structure on X0.

Theorem 1.46. For a generic choice of the perturbation p and su�ciently large r,

the moduli space

 
pA,�q P CkpM, s, r, t⌧uq | pA,�q solves (1.10)

(
{Gk`1

is a countable union of finite dimensional manifolds. Counting the number of solu-

tions in the zero-dimensional components of the moduli space as in definition 27.3.1

of [22] gives an element cpFq in }HM ‚pY q. The solutions are counted with relative

signs as depicted section 20 of [22], therefore the class cpFq is only defined up to

an overall sign. The element cpFq does not depend on the choice of �, !, g, qt, p,

or r. Moreover, cpFq is invariant under homotopies of F among foliations without

transverse invariant measure.

Proof. If X0 were a compact manifold with boundary then the regularity of moduli

space would follow from proposition 24.4.7 of [22] and the definition of cpFq would

follow from proposition 27.3.2 of [22].

Because of the uniform exponential decay estimate in theorem 1.39, the machinary

developed in [22] for compact manifolds can be applied to X0 with few modifications.

Whenever the compactness is used in [22] it can always be replaced by the exponential
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decay estimate or the Fredholm theorey developed in section 1.4. Here is a list of the

modifications:

(1) Notice that for any pA,�q P CkpM, s, r, t⌧uq, the spinor � cannot be identically

zero, therefore no reducible solution is possible and there is no need to make

the assumption b2 • 2.

(2) In [22] the proof of proposition 24.3.1 took integration on the compact man-

ifold X to obtain equation (24.11). However, since there are no reducible

solutions, one doesn’t need to blow up the configuration space. Therefore

the corresponding result for X0, that the solution space on X0 is a Hilbert

manifold, can be proved directly by the unique continuation theorem without

resorting to equation (24.11).

(3) The Fredholm theory for elliptic operators on compact manifolds was used in

[22] to establish the Fredholmness on maps between Hilbert manifolds. This

can be substituted by proposition 1.15.

(4) The topological energy for a solution would be infinite if the definition is

copied verbatim from definition 4.5.4 of [22]. A new definition of the topo-

logical energy for solutions in CkpM, s, r, t⌧juq can be defined as follows: let

C be the constant in theorem 1.39, let d be the function on M which equals

zero on M ´X0 and equals the distance function to BX0 on X0. Fix a subset

M 1
Ä M such that M 1

X X0 is compact, M 1
Å tx|dpxq † Cu, and BM 1 is a

smooth submanifold. Define

(1.74) E
top
pA,�q “

1

4

ª

M 1
FAt ^ FAt ´

ª

BM 1
x�, DB�y `

ª

BM 1
pH{2q|�|2.

Here H is the mean curvature of BM 1 and B is the boundary Dirac operator

(cf. section 4.5 of [22]).
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The topological energy defined in (1.74) is not invariant under homotopy of

solutions. However inequality (1.53) implies that the di↵erence of the topo-

logical energies of two solutions in the same connected component is bounded

by a constant. Therefore one can still bound the topological energy by the

index as in [22].

(5) The compactness of the space of brocken trajectories follows from theorem

1.39 and elliptic regularity.

Therefore the arguments of [22] can be carried over to the case considered here. The

same proof as in corollary 25.3.9 of [22] proves that the homology class cpFq defined in

this theorem is invariant under homotopy of the parameters, thus cpFq is independent

of the choices of parameters and is invariant under homotopy of F . ⇤

Let j˚ : }HM ‚pY q Ñ yHM ‚pY q be the map in the long exact sequence of monopole

Floer homologies. The next theorem proves the nonvanishing of j˚cpFq.

Theorem 1.47. Let F be a smooth foliation on Y with no transverse invariant

measure, then j˚cpFq ‰ 0.

The proof uses a standard gluing argument. Consider the moduli space of solutions

on X. Recall that X0 “ Y ˆ p´8,´1s Ä X. Let X1 “ Y ˆ r1,`8q Ä X, then X

can be considered as a manifold with two symplectic ends X0 and X1. Let s be the

canonical Spinc structure on X, let s0 “ s|X0 , s1 “ s|X1 . Let A0 be the canonical

connection for s, and �0 be the canonical section of the spinor bundle. Let ⌧0 : s0 Ñ s0

be the identity map, let ⌧1 : s1 Ñ s1 be an isomorphism. The next lemma considers

solutions of the following version of Seiberg-Witten equation on X:

(1.75)

$
’’&

’’%

⇢pF`
Atq ´ p��˚

q0 “ ⇢pF`
A

t
0
q ´ p�0�˚

0q0

DAp�q “ 0

On the symplectic ends X0 and X1, this equation is the same as (1.10).
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Lemma 1.48. Suppose r is su�ciently large. If

pA,�q P CkpX, s, r, t⌧0, ⌧1uq

is a solution to (1.75), then ⌧1 is homotopic to identity and pA,�q is gauge equivalent

to pA0,
?
r�0q. Moreover, the moduli space of solutions, which is a point in this case,

is regular.

Proof. Theorem 1.32 proves the exponential decay of pA,�q on ends. Integration by

parts as in lemma 1.36 gives

(1.76)

ª

X

´
|B̄a↵ ` B̄

˚
a
�|2 ` 2|iF !

a
´

r

8
p1´ |↵|2 ` |�|2q|2 ` 2|F 0,2

a
´

r

4
↵̄�|2

`
r

2
iF !

a
´ 2|iF !

a
|
2
´ 2|F 0,2

a
|
2
¯

“

ª

X

´1
2
|ra↵|

2
`

1

2
|rA1`a�|

2
`

1

2
xiF !

A1`a
�, �y

`
r2

32
p1´ |↵|2 ´ |�|2q2 `

r2

8
|�|2 ´ 2xN ˝ Ba↵, �y

¯
.

Equation (1.75) implies that the first three terms of the left hand side of (1.76) are

zero. Therefore when r is su�ciently large,

ª

X

r

2
iF !

a
•

1

4

ª

X

pE ´ |F´
a
|
2
q.

However by exponential decay,

ª

X

Fa ^ ⌦ “

ª

X

Fa ^ d⇥ “ 0.

Therefore E ´ |F´
a
|
2
” 0 for any solution pA,�q. The regularity of moduli space

follows from inequality (1.17) of section 1.4 and lemma 3.11 of [21]. ⇤

Proof of theorem 1.47. Notice that X1 is a noncompact manifold with ´Y as its

boundary. Here ´Y denotes the manifold Y with a reversed orientation. The
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same construction as in theorem 1.46 applied to X1 attached with a cylindrical end

Y ˆ p´8, 0s gives a cohomology class c˚pFq P yHM
‚
pY q. Now stretch the normal

neighborhood of Y ˆ t0u of X. Theorem 1.42 justfies the standard gluing argument

and gives

(1.77) xj˚cpFq, c˚pFqy “

ÿ

⌧1

SW pX, s, ⌧0, ⌧1q.

Here the summation is taken over the homotopy classes of ⌧1 such that the formal

dimension of the moduli space of solutions to (1.75) in CkpX, s, r, t⌧0, ⌧1uq is zero. The

number SW pX, s, ⌧0, ⌧1q is an oriented counting of points in the moduli space after a

generic perturbation of the equation.

By the previous lemma, the point pA0,
?
r�0q is a regular point in the moduli space

of solutions to (1.75), and it is the only point in that moduli space. Equation (1.77)

then implies

xj˚cpFq, c˚pFqy “ ˘1.

Hence j˚cpFq ‰ 0. ⇤

The next result concerns the grading of cpFq.

Theorem 1.49. The grading of cpFq is represented by the homotopy class of the

tangent plane field of F .

Proof. By the index formula in proposition 1.15, the grading of cpFq is represented by

a nowhere vanishing section  P �pY ˆ t0u, S`
q such that the relative Euler number

epX0 Y Y ˆ r0,8q,�0|X0 , q “ 0. Since s is the canonical Spinc structure,  can be

taken to be �0|Yˆt0u. A straight forward calculation then shows that the plane field

corresponding to pS`, q is homotopic to ker↵ “ F . ⇤

1.7. Topological applications. The following result is a corollary of theorem 1.47

and theorem 1.49.
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Corollary 1.50 (Kronheimer and Mrowka [22]). Let Y be an oriented three man-

ifold. If F is a smooth foliation on Y without transverse invariant measure, then

HM rFspY q ‰ 0. ⇤

Since every foliation without transverse invariant measure is a taut foliation, the

corollary above is a special case of theorem 41.4.1 of [22]. On the other hand, on

rational homology spheres every foliation without transverse invariant measure is a

taut foliation. Therefore, corollary 1.50 gives an alternative proof of theorem 41.4.1

of [22] for rational homology spheres without making reference to the Eliashberg-

Thurston theorem.

With some more e↵ort one can use corollary 1.50 to prove the nonvanishing theo-

rem for taut foliations on some other three manifolds. In fact, the following lemma

shows that in many cases smooth folaitions without transverse invariant measure are

“generic” among smooth taut foliations. The lemma was explained to the author by

Jonathan Bowden.

Lemma 1.51 (Bowden [4]). Let Y be an atoroidal manifold and F a smooth taut fo-

liation on Y . Then F can be C0 approximated by a smooth taut folaition F
1 such that

either F
1 has no transverse invariant measure or the pair pY,F 1

q is homeomorphic

to a surface bundle over S1 foliated by the fibers.

Proof. By [3], the foliation F can be can be C0 approximated by a smooth taut

folaition F1 such that every closed leaf of F1 has genus 0 or 1. Since Y fl S2
ˆS1, by

Reeb’s stability theorem the foliation F1 has no closed leaf with genus 0. Since every

closed leaf of a taut foliation is incompressible and Y is assumed to be atoroidal, the

foliation F1 has no torus leaf. This proves that F1 has no closed leaf.

If F1 has a transverse invariant measure µ, let A be a minimal set contained in

the support of µ. Since F1 has no closed leaf, the minimal set A is either equal to Y

or is exceptional. If A is exceptional, by Sacksteder’s theorem, there exists a leaf L
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in A containing a curve of contracting linear holonomy. Since L is in the support of

µ, on a neighborhood of L the measure µ has to be a constant multiple of the delta

measure of L. This implies that L is a closed leaf, which is a contradiction. Therefore

A “ Y , and in this case F1 can be further perturbed in the C0 norm to a foliation

which is homeomorphic to a surface bundle over S1 foliated by the fibers (corollary

9.5.9 of [7]). ⇤

The following nonvanishing theorem follows immediately.

Corollary 1.52 (Kronheimer and Mrowka [22]). Let Y be an atoroidal manifold, and

assume that Y is not a surface bundle over S1. If F is a smooth taut foliation on Y ,

then HM rFspY q ‰ 0. ⇤

The next two corollaries follow from the fact that HM pY q is of finite rank.

Corollary 1.53 (Kronheimer and Mrowka [21]). On a three manifold Y , there are

only finitely many homotopy classes of plane fields that can be realized by smooth

foliations without transverse invariant measure.

Corollary 1.54 (Kronheimer and Mrowka [21]). If Y is a rational homology sphere,

or if Y is an atoroidal manifold and not homeomorphic to a surface bundle over S1,

then there are only finitely many homotopy classes of plane fields that can be realized

by smooth taut foliations. ⇤

Since cpFq is non-zero and is graded by the homotopy class of F , foliations in

di↵erent homotopy classes as oriented plane fields have di↵erent values of cpFq. It

turns out that the invariant cpFq is stronger than the homotopy class itself. The

following theorem is a preparation for the construction of such examples.

Theorem 1.55. Suppose Y bounds a 4-manifold M , and assume that there is an

exact symplectic form ! on M such that !|Y is positive on F . Assume further that
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2 c1p!q ‰ 0. Let ´F be the same foliation as F but with orientation reversed. Then

the foliation invariants cpFq and cp´Fq are linearly independent.

Proof. Write F “ ker� and let ⇡Y be the projection of Y ˆ R onto Y , the the

symplectic form ⌦ on Y ˆ R used in the definition of cpFq can be taken to be

⌦ “ ⇡˚
Y
p!Y q ` dpt ¨ ⇡˚

Y
�q.

Now identify a neighborhood of Y “ BM Ä M as p´1, 0s ˆ Y , and attach a

cylindrical end r0,`8q ˆ Y to the boundary. Let ÄM “ M Y r0,`8q ˆ Y be the

resulting manifold. Fix a non-decreasing smooth function p : r´1,`8q Ñ r´1, 0s

such that pptq “ 0 for p • 0 and pptq “ t on r´1,´1{2s. The map p ˆ idY :

r´1,`8q ˆ Y Ñ r´1, 0s ˆ Y then extends to a map p1 : ÄM Ñ M by identity. Let

g : r´1,`8q Ñ r0,`8q be a non-decreasing smooth function such that gptq “ 0 near

t “ ´1, and gptq ° 0 when t • ´1{2, and gptq “ t when t • 1. The form dpgptq⇡˚
Y
�q

is defined on r´1,`8qˆY and extends to ÄM by zero. Denote the extended form by

⌫, let ⌦0 “ ⌫ ` p˚1p!q. Then ⌦0 is a symplectic form on ÄM which coincides with ⌦

on r1,`8q ˆ Y . Let g0 be a metric on ÄM which is compatible with ⌦0 and equals

the metric g defined by equation (1.1) on r1,`8q ˆ Y .

Remove a small ball inM , the remaining part ofM forms a cobordism from Y to S3.

For any Spinc structure s onM , it induces a map }HM
˚
pM, sq : }HM

˚
pS3

q Ñ }HM
˚
pY q.

Write 1̌ P }HM
˚
pS3

q “ ZrU s be the generator of the cohomology.

Let s0 be the canonical Spin
c structure associated to the symplectic form ⌦0 on ÄM ,

let A0 be its canonical Spin
c connection, let �0 be the canonical section of the spinor

bundle of s0. For any Spinc structure s on ÄM , consider the perturbed Seiberg-Witten

equation

(1.78) FpA,�q “
`
´

ir

4
⇢p⌦0q ` ⇢pF`

A
t
0
q, 0

˘
.

Use integration by parts as in lemma 1.48, one can prove that when r is su�ciently

large the only solution to equation (1.78) up to gauge transformation is s “ s0 and
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pA,�q “ pA0,
?
r�0q. Inequality (1.17) of section 1.4 and lemma 3.11 of [21] then

implies that this solution represents a regular point of the moduli space of solutions.

By the gluing formula:

x}HM
˚
pM, sqp1̌q, cpFqy “

$
’’&

’’%

˘1 if s “ s0,

0 otherwise.

Now change the symplectic form on M from ! to ´!, the canonical Spinc structure

is then changed to the conjugation of s0, and the gluing formula becomes:

x}HM
˚
pM, sqp1̌q, cp´Fqy “

$
’’&

’’%

˘1 if s “ s0,

0 otherwise.

Since 2 c1p!q ‰ 0, the Spinc structures s0 and s0 are di↵erent, therefore cpFq and

cp´Fq are linearly independent. ⇤

The next lemma will help to provide examples that satisfy the conditions of theorem

1.55. The result was explained to the author by Cheuk Yu Mak. Recall that a contact

form ↵ on Y is said to have a strong symplectic filling if Y bounds a 4-manifold pM,!q,

such that there is a Liouville vector field X near Y with p◆X!q|Y “ ↵.

Lemma 1.56. Let Y be an S1 bundle over a compact surface of genus g with Euler

number e † 0 and e ‰ 2 ´ 2g. There exists a contact form ↵ on Y , such that ↵ has

an exact strong symplectic filling with a non-torsion first Chern class, and such that

the Reeb vector field of ↵ is the positive unit tangent vector field of the S1-fibers.

Proof. Let E be a holomorphic line bundle with Euler number e over a Riemann

surface of genus g, denote the complex structure on E by J . Let h be an Hermittian

metric on E such that its Chern connection has negative curvature. Let E1 be the

unit disk bundle of E with respect to the metric h, then E1 is a complex manifold

with a J-convex boundary. The circle bundle BE1 is a principal Up1q-bundle and the
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Chern connection on E induces a connection on BE1. Let ↵1 be the connection form

on BE1. Then ker↵1 “ TBE1X JpTBE1q is a contact structure on BE1, and the Reeb

vector field of ↵1 is exactly the positive unit tangent vector field of the S1-fibers.

By a theorem of Bogomolov and de Oliveira [2], there exists a smooth family of

integrable almost complex structures Jt, t P p0, 1q on E1, such that J0 “ J and

pE1, Jtq is Stein when t ° 0.

Let f be a J0-convex function defined near BE1, such that BE1 “ f´1
p1q, the value

1 is a regular value of f , and that f † 1 in the interiori of E1. There exists an ✏0 ° 0

su�ciently small such that for any 0 † � † ✏0, the function f is J�-convex and the

level set f´1
p1´ �q is regular and di↵eomorphic to f´1

p1q. Now ↵1´� :“ df ˝ J� is a

contact form on the level set f´1
p1´ �q.

Let ↵1
1´�

be the pull back of ↵1´� to BE1. For su�ciently small �, the contact

structure ker↵1
1´�

is C8 close to ker↵1, thus by Gray’s stability theorem there exists a

di↵eomorphism ◆ : BE1 Ñ BE1 which is isotopic to the identity and a positive function

u on BE1 such that ◆˚pu ¨↵1
1´�

q “ ↵1. The Reeb vector field of ◆˚pu ¨↵1
1´�

q is therefore

the positive unit tangent vector field of the S1-fibers. Notice that for a su�ciently

large constant C, there exists a strong symplectic cobordism from pBE1, u ¨ ↵1
1´�

q to

pBE1,↵1
1´�

{Cq. Since pBE1,↵1
1´�

q is Stein fillable, this implies that the contact form

u ¨ ↵1
1´�

is strong exact symplecticly fillable, hence so is ◆˚pu ¨ ↵1
1´�

q. The first Chern

class of the filling is equal to the first Chern class of the complex manifold pE, Jq,

which is not torsion when e ‰ 2´ 2g. Since Y – BE1, this proves the lemma. ⇤

Let Y be an S1 bundle over a compact surface of genus g ° 1 with Euler number

e, such that 2 ´ 2g † e † 0. By a theorem of Wood [46], there exists an oriented

smooth foliation F on Y which is transverse to the S1 fibers. Let ´F be the same

foliation as F but with the opposite orientation.

Proposition 1.57. Let Y , e, F , and ´F be defined as above. Then F , ´F are

foliations without transverse invariant measure, and cpFq and cp´Fq are linearly
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independent. Furthermore, if e|2g´2, then cpFq and cp´Fq are homotopic as oriented

plane fields.

Proof. By lemma 1.56, there exists a contact form ↵ on Y with a strong exact sym-

plectic filling pM,!q, such that c1p!q is not torsion on M and the Reeb vector field

of ↵ is positively transverse to F . Notice that the Reeb vector field being positively

transverse to F is equivalent to the form ! being positive on F . Since ! is exact, this

implies that F and ´F have no transverse invariant measure. Moreover, by theorem

1.55, cpFq and cp´Fq are linearly independent.

It remains to prove that F and ´F are homotopic as plane fields when e|2g ´ 2.

Let S1
Ñ Y

⇡
Ñ ⌃ be the bundle structure of Y , let epY q P H2

p⌃q be the Euler class

of the bundle. By the Gysin exact equence,

H0
p⌃q

YepY q
›Ñ H2

p⌃q
⇡
˚

›Ñ H2
pY q

is exact. Notice that F is isomorphic to ⇡˚
pT⌃q as a plane bundle, therefore the

assumption e|2g´ 2 implies that the Euler class of F is zero, hence F has a globally

defined basis te1, e2u. Let e3 be the positively oriented normal vector field of F , then

for t P r0, 1s the family of plane fields Ft “ span
 
e1, cosp⇡tq e2 ` sinp⇡tq e3

(
defines a

homotopy from F to ´F . ⇤
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2. Modulo 2 counting of Klein-bottle leaves in smooth taut

foliations

2.1. Introduction. Given a smooth cooriented foliation on a three manifold, it was

proved in [3] that after a generic smooth perturbation, there is no closed leaf with

genus greater than 1. This article explores the other side of the story, and proves

the deformation invariance of the parity for the number of Klein-bottle leaves in taut

foliations. As a corollary, one can construct a taut foliation such that every smooth

deformation of it through taut foliations has at least one Klein-bottle leaf.

Let L be a smooth cooriented 2-dimensional foliation on a smooth three manifold Y .

The foliation L and the manifold Y are allowed to be non-orientable. By definition,

the foliation L is called a taut foliation if for every point p P Y there exists an

embedded circle in Y , which passes through p and is transverse to L.

Let K be a leaf of L, let � : S1
Ñ K be a closed oriented curve on K. The

holonomy of L along � is defined as follows. Take a map i : S1
ˆ p´1, 1q Ñ Y , such

that for every x P S1, ipx, 0q “ �pxq, and the image of txu ˆ p´1, 1q is transverse to

L. The intersection of the image of i with L then defines a horizontal direction field

on S1
ˆp´1, 1q, and the integration of the direction field defines a map h� : p´✏, ✏q Ñ

p´1, 1q for ✏ su�ciently small. Up to conjugations, the germ of h� at 0 is well-defined

and is independent of the choice of i. The holonomy of L along � is defined to be the

germ of h� at 0. The value h1
�
p0q is called the linear holonomy of L along �.

Definition 2.1. Let K Ä Y be a closed leaf of L. The leaf K is said to have non-

trivial linear holonomy if there exists a closed curve � on K, such that the linear

holonomy of L along � is not equal to 1.

Let K be a closed 2-dimensional submanifold of Y . If K is cooriented, one can

define an element PDrKs P HompH1pY ;Zq;Zq as follows. Let r�s be a homology class

represented by a closed curve �, then PDrKs maps r�s to the oriented intersection
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number of � and K. Since HompH1pY ;Zq;Zq – H1
pY ;Zq, the element PDrKs can

be viewed as an element in H1
pY ;Zq. If both Y and K are oriented and if the

orientations of Y and K are compatible with the coorientation of K, then PDrKs is

equal to the Poincaré dual of the fundamental class of K.

Definition 2.2. Let A P H1
pY ;Zq. A closed leaf K of L is said to be in the class A

if PDrKs “ A. The foliation L is called A-admissible if every Klein-bottle leaf of L

in the class A has non-trivial linear holonomy.

The following result is the main theorem of this article.

Theorem 2.3. Let A P H1
pY ;Zq. Let Ls, s P r0, 1s be a smooth family of coorientable

taut foliations on Y . Suppose L0 and L1 are both A-admissible. For i “ 0, 1, let ni

be the number of Klein-bottle leaves in the class A. Then n0 and n1 have the same

parity.

Notice that if there is no Klein-bottle leaf of L in the homology class A, then L is

automatically A-admissible. Therefore, the following result follows immediately.

Corollary 2.4. Let A P H1
pY ;Zq, and let L be an A-admissible smooth coorientable

taut foliation on Y . Assume that L has an odd number of Klein-bottle leaves in the

class A. Then every smooth deformation of L through taut foliations has at least one

Klein-bottle leaf in the class A. ⇤

Remark 2.5. It would be interesting to understand whether a similar result holds for

torus leaves. Suppose L0 and L1 are two cooriented taut foliations on Y that can be

deformed to each other through taut foliations. Suppose every closed torus leaf in a

homology class A has non-trivial linear holonomy, is it always true that the numbers

of torus leaves in the homology class A in L0 and L1 have the same parity? At the

time of writing, the answer is not clear to the author .
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This article is organized as follows. Sections 2.2 and 2.3 build up necessary tools

for the proof of theorem 2.3. Sections 2.4 and 2.5 prove the theorem. Section 2.6

gives an explicit example for corollary 2.4, therefore constructs a taut foliation such

that every deformation of it has at least one Klein-bottle leaf.

This work was finished when I was a graduate student at Harvard University. I

would like to express my most sincere gratitude to my advisor Cli↵ord Taubes, for

his inspiration, encouragement, and patient guidance. I also thank the anonymous

referee for carefully reading the manuscript and providing many insightful comments

and suggestions.

2.2. Moduli spaces of J-holomorphic tori. This section recalls some properties

for the spaces of J-holomorphic tori in a symplectic manifold. Many results in this

section are essentially special cases of Taubes’s theory on Gromov invariants [36].

Let X be a smooth 4-manifold. To avoid complications caused by exceptional

spheres, assume throughout this section that ⇡2pXq “ 0. This will be enough for the

proof of theorem 2.3. Let J be a smooth almost complex structure on X.

Consider an immersed closed J-holomorphic curve C in X. Let N be the normal

bundle of C, the fiber of N then inherits an almost complex structure from J . Let

⇡ : N Ñ C be the projection from N to C. Choose a local di↵eomorphism ' from a

neighborhood of the zero section of N to a neighborhood of C in X, which maps the

zero section of N to C. The map ' can be chosen in such a way that the tangent map

is C-linear on the zero section of N . Every closed immersed J-holomorphic curve that

is C1-close to C is the image of a section of N . Fix an arbitrary connection r0 on

N and let B̄0 be the p0, 1q-part of r0. If s is a section of N near the zero section, the

equation for 'psq to be a J-holomorphic curve in X can be schematically written as

(2.1) B̄0s` ⌧psqpr0psqq `Qpsqpr0psq,r0psqq ` T psq “ 0.
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Here ⌧ is a smooth section of ⇡˚
pHomRpT ˚C bR N, T 0,1C bC Nqq, and Q is a smooth

section of ⇡˚
pHomRpT ˚C bR N bR N, T 0,1C bC Nqq, and T is a smooth section of

⇡˚
pT 0,1C bC Nq. The values of ⌧ , Q, and T are defined pointwise by the values of

J in an algebraic way, and ⌧ , Q, T are zero when s “ 0. The linearized equation of

(2.1) at s “ 0 is B̄0psq `
BT
Bs psq “ 0. Define

(2.2) Lpsq :“ B̄0psq `
BT

Bs
psq.

Notice that L is only an R-linear operator. The curve C is called nondegenerate if L is

surjective as a map from L2
1pNq to L2

pNq. By elliptic regularity, if C is nondegenerate

then the operator L is also surjective as a map from L2
k
pNq to L2

k´1pNq for every k • 1.

The index of the operator L equals

(2.3) indL “ xc1pNq, rCsy ´ xc1pT
0,1Xq, rCsy.

It follows from the definition that nondegeneracy only depends on the 1-jet of J on

C. Namely, if there is another almost complex structure J 1 such that pJ ´ J 1
q|C “ 0

and prpJ ´ J 1
qq|C “ 0, then C is nondegenerate as a J-holomorpic curve if and only

if it is nondegenerate as a J 1-holomorphic curve.

For a homology class e P H2pX;Zq, define

dpeq “ e ¨ e´ xc1pT
0,1Xq, ey.

By equation (2.3), dpeq is the formal dimension of the moduli space of embedded

pseudo-holomorphic curves in X in the homology class e. By the adjunction formula,

the genus g of such a curve satisfies

e ¨ e` 2´ 2g “ ´xc1pT
0,1Xq, ey.
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Therefore dpeq “ 2pg ´ xc1pT 0,1Xq, ey ´ 1q. In general, the formal dimension of the

moduli space of J-holomorphic maps from a genus g curve to X in the homology

class e, modulo self-isomorphisms of the domain, is also 2pg ´ xc1pT 0,1Xq, ey ´ 1q.

Now assume X has a symplectic structure !. Recall that an almost complex

structure J is compatible with ! if !p¨, J ¨q defines a Riemannian metric. Let J pX,!q

be the set of smooth almost complex structures compatible with !. For a closed

surface ⌃ and a map ⇢ : ⌃ Ñ X, define the topological energy of ⇢ to be
≥
⌃ ⇢˚p!q.

Definition 2.6. Let pX,!q be a symplectic manifold. Let E ° 0 be a constant.

An almost complex structure J P J pX,!q is called E-admissible if the following

conditions hold:

(1) Every embedded J-holomorphic torus C with topological energy less than or

equal to E and with dprCsq “ 0 is nondegenerate.

(2) For every homology class e P H2pX;Zq, if xr!s, ey § E, and if xc1pT 0,1Xq, ey °

0 (namely, the formal dimension of the moduli space of J-holomorphic maps

from a torus to X in the homology class e, modulo self-isomorphisms of the

domain, is negative), then there is no somewhere injective J-holomorphic map

from a torus to X in the homology class e.

The next lemma is a special case of proposition 7.1 in [37]. Recall that the C8

topology on J pX,!q is defined as the Fréchet topology, namely it is induced by the

distance function

dpj1, j2q “
8ÿ

n“1

2´n
¨

}j1 ´ j2}Cn

1` }j1 ´ j2}Cn
.

Lemma 2.7. Let E ° 0 be a constant. If pX,!q is a compact symplectic manifold,

the set of E-admissible almost complex structures form a dense subset of J pX,!q in

the C8-topology. ⇤
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A homology class e is called primitive if e ‰ n ¨ e1 for every integer n ° 1 and every

e1 P H2pX;Zq. If e P H2pX;Zq is a primitive class, define MpX, J, eq to be the set of

embedded J-holomorphic tori in X with fundamental class e.

Now consider smooth families of almost complex structures. Assume !s ps P r0, 1sq

is a smooth family of symplectic forms on X. For i “ 0, 1, let Ji P J pX,!iq. Define

J pX, t!su, J0, J1q

to be the set of smooth families tJsu connecting J0 and J1, such that Js P J pX,!sq

for each s P r0, 1s.

Lemma 2.8. Let X be a compact 4-manifold and let !s ps P r0, 1sq be a smooth

family of symplectic forms on X. Let e P H2pX;Zq be a primitive class, such that

xc1pT 0,1Xq, ey “ 0 and e¨e “ 0, and let E ° 0 be a constant such that E ° xr!ss, ey for

every s. For i P t0, 1u, let Ji P J pX,!iq be an E-admissible almost complex structure

on X. Then there is an open and dense subset U Ä J pX, t!su, J0, J1q in the C8-

topology, such that for every element tJsu P U , the moduli space MpX, tJsu, eq “

≤
sPr0,1sMpX, Js, eq has the structure of a compact smooth 1-manifold with boundary

MpX, J0, eq YMpX, J1, eq.

Proof. For general X and e the moduli space MpX, tJsu, eq may not be compact.

However, the compactness of the space MpX, tJsu, eq follows from the assumptions

that ⇡2pXq “ 0 and e being primitive. Since MpX, tJsu, eq only consists of tori,

Gromov’s compactness theorem (see for example [47]) implies that for every sequence

tCnu Ä MpX, tJsu, eq, there is a subsequence tCniu with Cni P MpX, Jsi , eq and

limiÑ8 si “ s0, such that the sequence Cni is convergent to the image of one of

the following: (1) a possibly branched multiple cover of a somewhere injective Js0-

holomorphic map, (2) a Js0-holomorphic map with at least one spherical component,

(3) a somewhere injective Js0-holomorphic map from a torus. Case (1) is impossible



85

since e is assumed to be a primitive class. Case (2) is impossible becase there is no

non-constant Js0-holomorphic maps from a sphere to X. When case (3) happens, for

the limit curve the adjunction formula states that e ¨e`2´2g “ ´xc1pT 0,1Xq, ey`,

where  depends on the behaviour of singularities and self-intersections of the curve,

and  is always positive if the curve is not embedded (see [24]). Since g “ 1, e ¨e “ 0,

xc1pT 0,1Xq, ey “ 0, it follows that  “ 0, hence the limit curve is an embedded

curve, namely it is an element of MpX, Js0 , eq. Therefore the space MpX, tJsu, eq is

compact.

Since MpX, tJsu, eq consists of only embedded curves, the standard transversal-

ity argument (see for example section 3.2 of [25]) shows that on a dense subset

V Ä J pX, t!su, J0, J1q, the moduli space MpX, tJsu, eq is a smooth 1-manifold with

boundary MpX, J0, eq YMpX, J1, eq.

Since MpX, tJsu, eq is always compact, the transversality condition is an open

condition, therefore there exists an open set U Ä J pX, t!su, J0, J1q, such that V Ä U ,

and for every tJsu P U , the moduli space MpX, tJsu, eq is a compact smooth 1-

manifold with boundary MpX, J0, eq YMpX, J1, eq. ⇤

With a little more e↵ort one can generalize lemma 2.8 to non-compact symplectic

manifolds. To start, one needs the following definition.

Definition 2.9. Let pX,!q be a symplectic manifold, not necessarily compact. Let

J P J pX,!q. The pair p!, Jq defines a Riemannian metric g on X. The triple

pX,!, Jq is said to have bounded geometry with bounding constant N if the following

conditions hold:

(1) The metric g is complete.

(2) The norm of the curvature tensor of g is less than N .

(3) The injectivity radius of pX, gq is greater than 1{N .
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One says that a path tpX,!s, Jsqu has uniformly bounded geometry if for each s, the

space pX,!s, Jsq has bounded geometry, and the bounding constant N is independent

of s.

The following lemma is a well-known result.

Lemma 2.10. Let pX,!, Jq be a triple with bounded geometry, with bounding con-

stant N . Let e P H2pX;Zq, and let E ° 0 be a constant such that E • xr!s, ey.

Then there is a constant MpN,Eq, depending only on N and E, such that every

connected J-holomorphic curve C with fundamental class e must have diameter less

than MpN,Eq with respect to the metric defined by !p¨, J ¨q.

Proof. By the monotonicity of area for J-holomorphic curves (see, for example, [16,

section 2.3 E 1
2]), the area of Bpp1{Nq X C is greater than or equal to ⇡

N2 . Since C

is connected, this implies that its diameter is bounded by 2AreapCqN{⇡. Notice

that the area of C equals xr!s, ey, which is bounded by E, hence the the diameter is

bounded by 2EN{⇡. ⇤

In the noncompact case, one needs to be more careful about the topology on

the space of almost complex structures. A topology on J pX,!q can be defined as

follows. Cover X by countably many compact sets tAiuiPZ. For each Ai define the

C8-topology on J pAi,!q. Endow the product space

π

iPZ
J pAi,!q

with the box topology, and consider the map

J pX,!q ã›Ñ
π

iPZ
J pAi,!q

defined by restrictions. The topology on J pX,!q is then defined as the pull back of

the box topology on the product space.
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The topology on J pX,!q does not depend on the choice of the covering tAiu.

When X is noncompact, the topology on J pX,!q is not first countable.

For N ° 0, define J pX,!, Nq to be the set of almost complex structures J P

J pX,!q such that pX,!, Jq has bounded geometry with bounding constant N . With

the topology given above, the space J pX,!, Nq is an open subset of J pX,!q.

A topology on J pX, t!su, J0, J1q can be defined in a similar way. Cover X by

countably many compact sets tAiuiPZ. For each Ai, one takes the C8-topology on

J pAi, t!su, J0, J1q. The topology on the space J pX, t!su, J0, J1q is then defined as

the pull back of the box topology on the product space. This topology does not

depend on the choice of the covering tAiu.

For N ° 0, define the set J pX, t!su, J0, J1, Nq to be the set of families tJsu P

J pX, t!su, J0, J1q such that the family tpX, Js,!squ has uniformly bounded geometry

with bounding constant N . Then the set J pX, t!su, J0, J1, Nq is an open subset of

the set J pX, t!su, J0, J1q.

The following lemma is essentially a diagonal argument. It explains why the topolo-

gies defined above are the correct topologies for the perturbation arguments in this

article.

Lemma 2.11. Let tAnun•1 be a countable, locally finite cover of X by compact sub-

sets. Let ! be a symplectic form on X, let !s be a smooth family of symplectic forms

on X. Let N ° 0 be a constant. Let Ji P J pX,!i, Nq, where i “ 0 or 1.

(1) Let ' : J pX,!q ã›Ñ
±

n
J pAn,!q be the embedding map. For every n, let Un

be an open and dense subset of J pAn,!q, then '´1
p
±

n
Unq is an open and

dense subset of J pX,!q.

(2) Let ' : J pX, t!su, J0, J1q ã›Ñ
±

n
J pAi, t!su, J0, J1q be the embedding map.

For every n, let

Un Ä J pAn, t!su, J0, J1q
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be an open and dense subset, then '´1
p
±

n
Unq is an open and dense subset

of J pX, t!su, J0, J1q.

Proof. For part 1, the set '´1
p
±

n
Unq is open by the definition of box topology. To

prove that '´1
p
±

n
Unq is dense, let J be an element of J pX,!q. Let Jn “ J |An P

J pAn,!q. For every n, let Vn Ä J pAn,!q be a given open neighborhood of Jn. One

needs to find an element J 1
P J pX,!q such that J 1

|An P Vn X Un. For each n, let

Dn be an open neighborhood of An such that the family tDnu is still a locally finite

cover of X. One obtains the desired J 1 by perturbing J on the open sets tDnu one by

one. To start, perturb the section J on D1 to obtain a section J1. Since U1 is dense

it is possible to find a perturbation such that J1|A1 P U1XV1. Now assume that after

perturbation on D1, D2, ¨ ¨ ¨ , Dk, one obtains a section Jk such that Jk|Ai P Uj X Vj

for j “ 1, 2, ¨ ¨ ¨ , k. Then a perturbation of Jk on Dk`1 gives a section Jk`1 such

that Jk`1|Ak`1
P Uk`1 XVk`1. When the perturbation is small enough, it still has the

property that Jk`1|Aj P Uj XVj for j “ 1, 2, ¨ ¨ ¨ , k. Since tDnu is a locally finite cover

of X, on each compact subset of X the sequence tJku stabilizes for su�ciently large

k. The limit limkÑ8 Jk then gives the desired J 1.

The proofs for part 2 is exactly the same, one only needs to change the notation

J p¨,!q to J p¨, t!su, J0, J1q. ⇤

Remark 2.12. Lemma 2.11 is essentially a result on the box topology, and it does

not use any specific properties of symplectic topology or almost complex structures.

Since the lemma above is already su�cient for the purpose of this article, the most

general statement is not given here.

Lemma 2.13. Let X be a 4-manifold, let e P H2pX;Zq be a primitive class with

xc1pT 0,1Xq, ey “ 0 and e¨e “ 0. Assume !s ps P r0, 1sq is a smooth family of symplectic

forms on X. Let E be a positive constant such that E ° xr!ss, ey for every s. For

i “ 0, 1, assume Ji P J pX,!i, Nq is E-admissible. If the set J pX, t!su, J0, J1, Nq is
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not empty, then there is an open and dense subset U Ä J pX, t!su, J0, J1, Nq, such

that for each tJsu P U , the moduli space

MpX, tJsu, eq “
∫

sPr0,1s
MpX, Js, eq

has the structure of a smooth 1-manifold with boundary MpX, J0, eq YMpX, J1, eq.

Moreover, if f : X Ñ R is a smooth proper function on X, then the function defined

as

f : MpX, tJsu, eq Ñ R

C fiÑ ´

ª

C

f dA

is a smooth proper function on MpX, tJsu, eq. Here for C P MpX, Js, eq, the form

dA is the area form on C defined by Js and !s.

Proof. First prove that f is a proper function. For any constant z ° 0, take a sequence

of curves Cn P MpX, tJsu, eq such that |fpCnq| † z. By the definition of f, there exists

a sequence of points pn P Cn such that |fppnq| † z. Since f is a proper function on X,

the sequence pn is bounded on X. By lemma 2.10 this implies that the curves Cn stay

in a bounded subset of X. By the argument for the compact case (lemma 2.8), the

sequence tCnu has a subsequence that converges to another point in MpX, tJsu, eq,

hence the function f is proper.

It remains to prove that there is an open and dense subset

U Ä J pX, t!su, J0, J1, Nq,

such that for every tJsu P U , the space MpX, tJsu, eq is a smooth 1-dimensional

manifold. Let gs be the metric on X compatible with Js and !s. Let g be a complete

metric on X such that gs • g for every s. From now on, the distance function on

X is defined by the metric g. By lemma 2.10, there exists a constant M ° 0 such
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that the diameter of every Js-holomorphic curve with topological energy no greater

than E is bounded by M . Let tBnu be a countable locally finite cover of X by

open balls of radius 1. For every n, let An be the closed ball with the same center

as Bn and with radius pM ` 1q. The family tAnu is also a locally finite cover of

X. For each n, let MnpX, tJsu, eq be the set of curves C P MpX, tJsu, eq such that

C Ä An, and let M
1
n
pX, tJsu, eq be the set of curves C X MpX, tJsu, eq such that

C Ä Bn ‰ H. By the diameter bound, M1
n
pX, tJsu, eq Ä MnpX, tJsu, eq. Take f to

be the distance function to the center of Bn, it was proved in the previous paragraph

that the corresponding function f on the moduli space is proper, henceMnpX, tJsu, eq

is a compact set, therefore the transversality condition is open on MnpX, tJsu, eq. As

a result, there is an open and dense subset Un Ä J pAn, t!su, J0, J1, Nq, such that if

tJsu|An P Un, then the setM1
n
pX, tJsu, eq Ä MnpX, tJsu, eq is a smooth 1 dimensional

manifold. Notice that tM
1
n
pX, tJsu, equn•1 is an open cover of MpX, tJsu, eq. It

then follows from part 2 of lemma 2.11 that there is an open and dense subset

U Ä J pX, t!su, J0, J1, Nq such that for every element tJsu P U the set MpX, tJsu, eq

is a smooth 1-manifold. ⇤

2.3. Symplectization of taut foliations. This section discusses a symplectization

of oriented and cooriented taut foliations. It is the main ingredient for the proof of

theorem 2.3.

Let M be a smooth 3-manifold, let F be a smooth oriented and cooriented taut

foliation on M . Since F is cooriented, it can be written as F “ ker�, where � is

positive in the positive normal direction of F . Since F is taut, there exists a closed

2-form ! such that !^ � ° 0 everywhere on M . Choose a metric g0 on M such that

˚g0� “ !. By Frobenius theorem, d� “ µ^ � for a unique 1-form µ satisfying µ K �.

Locally, write ! “ e1^e2 where e1 and e2 are orthonormal with respect to the metric
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g0. Consider the 2-form ⌦ “ ! ` dpt�q on RˆM and the metric g defined by

g “
1

1` t2
pdt` tµq2 ` p1` t2q�2

` pe1q2 ` pe2q2

The 2-form ⌦ is a symplectic form on RˆM , and the metric g is independent of the

choice of te1, e2u and is compatible with ⌦. Let J be the almost complex structure

given by p⌦, gq. To simplify notations, let X be the manifold RˆM .

Recall that by lemma 1.3,

Lemma 2.14. The triple pX,⌦, Jq has bounded geometry. ⇤

Locally, let te0, e1, e2u be the basis of TM dual to t�, e1, e2u, and extend them to R-

translation invariant vector fields on RˆM . Let ê1 “ e1´tµpe1q
B
Bt , ê2 “ e2´tµpe2q

B
Bt .

The almost complex structure J is then given by

J
B

Bt
“

1

1` t2
e0,

Jê1 “ ê2.

Define rF “ spantê1, ê2u, it is a J-invariant plane field on X.

Lemma 2.15. The plane field rF is a foliation on X. Under the projection RˆM Ñ

M , the leaves of rF projects to the leaves of F .

Proof. Since dµ ^ � “ dpd�q “ 0, there is a µ1 such that dµ “ µ1 ^ �. Therefore,

one has dpdt ` tµq “ pdt ` tµq ^ µ ` tµ1 ^ �, and d� “ µ ^ �. By the Frobenius

theorem, the plane field rF “ kerpdt ` tµq X ker� is a foliation. The tangent planes

of rF projects isomorphically to the tangent planes of F pointwise, thus the leaves of

rF projects to the leaves of F . ⇤

It turns out that every closed J-holomorphic curve in X is a closed leaf of rF .
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Lemma 2.16. Let ⇢ : ⌃ Ñ X be a J-holomorphic map from a closed Riemann

surface to X. Then either ⇢ is a constant map, or it is a branched cover of a closed

leaf of rF .

Proof. Since ⇢ is J-holomorphic, ⇢˚
`
pdt` tµq ^ �

˘
• 0 pointwise on ⌃. On the other

hand, ª

⌃

⇢˚
`
pdt` tµq ^ �

˘
“

ª

⌃

⇢˚pdpt�qq “ 0.

Therefore ⇢p⌃q is tangent to kerpdt ` tµq X ker�, hence either ⇢ is a constant map,

or it is a branched cover of a closed leaf of rF . ⇤

Lemma 2.17. Let L be a leaf of F and � a closed curve on L. Let ⇡ : RˆM Ñ M

be the projection map. The foliation rF is then transverse to ⇡´1
p�q and gives a

horizontal foliation on ⇡´1
p�q – R ˆ �. The holonomy of this foliation along � is

given by the multiplication of lp�q´1, where lp�q is the linear holonomy of F along �.

Proof. Recall that locally p�, e1, e2q is an orthonormal basis of T ˚M and pe0, e1, e2q

is its dual basis. Let p´✏, ✏q ˆ L Ä M be a tubular neighborhood of L in M , let z

be the first coordinate function on p´✏, ✏q ˆ L. The parametrization of the tubular

neighborhood can be chosen such that B
Bz “ e0. Now � has the form � “ dz ` ⌫pzq

where ⌫pzq is a 1-form on L depending on z and ⌫p0q “ 0. The condition that ker�

is a foliation is equivalent to

d⌫ `
B⌫

Bz
^ ⌫ “ 0.

The 1-form µ satsifies d� “ µ^ �, therefore µ|L “ ´
B⌫
Bz |z“0.

Suppose � is a closed curve on L parametrized by u P r0, 1s. Let ptpuq, �puqq be a

curve in RˆM that is a lift of � and tangent to rF . Then the function tpuq satisfies

9t` tµp 9�q “ 0. Therefore

tp1q “ exp
´
´

ª 1

0

µp 9�qdu
¯
¨ tp0q “ exp

´ª 1

0

B⌫

Bz
p0qp 9�puqqdu

¯
¨ tp0q.
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Now compute the linear holonomy of F along �. If pzpuq, �puqq is a curve in

p´✏, ✏q ˆ L tangent to F , then

(2.4) 9z ` ⌫pzqp 9�q “ 0.

If zspuq, s P r0, ✏q is a smooth family of solutions to (2.4) with z0puq “ 0, then the

linearized part lpuq “ Bzs
Bs |s“0puq satisfies

9l ` l ¨
B⌫

Bz

ˇ̌
ˇ
z“0

p 9�q “ 0.

Therefore the linear holonomy of F along � is

exp
´
´

ª 1

0

B⌫

Bz
p0qp 9�puqqdu

¯
,

hence the linear holonomy of F along � is inverse to the holonomy on ⇡´1
p�q given

by rF . ⇤

The following result follows immediately from lemmas 2.16 and 2.17.

Corollary 2.18. Let C be a closed embedded J-holomorphic curve on X. Then either

C Ä Mˆt0u and C is a closed leaf of F , or C does not intersect the slice Mˆt0u and

it projects di↵eomorphically to a closed leaf of F with trivial linear holonomy. ⇤

The next lemma studies J-holomorphic tori on X.

Lemma 2.19. Suppose T is a torus leaf of F with non-trivial linear holonomy. Then

T ˆ t0u is a nondegenerate J-holomorphic curve in X.

Proof. Notice that dprT sq “ 0, thus the index of the deformation operator is zero,

and one only needs to prove that the operator L on T defined by equation (2.2) has

a trivial kernel.

Let T0 “ T ˆ t0u be the torus in X. As in lemma 2.17, let pe0, e1, e2q be the dual

basis of p�, e1, e2q. Let p´✏, ✏q ˆ T Ä M be a tubular neighborhood of T , let z be
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the first coordinate function, and choose a parametrization such that B
Bz “ e0. Then

on this neighborhood, � has the form � “ dz ` ⌫pzq, where ⌫pzq is a 1-form on T

depending on z and ⌫p0q “ 0. The condition that ker� is a foliation is equivalent to

d⌫ `
B⌫

Bz
^ ⌫ “ 0.

Let � “
B⌫
Bz |z“0. Apply B

Bz on the equation above at z “ 0, one obtains d� “ 0.

Extend � to p´✏, ✏q ˆ T by pulling back from the second factor. Let �1
“ dz ` z ¨ �,

then ker�1 defines another foliation near T . Let µ1
“ ´�.

Let e11, e12 be vector fields on p´✏, ✏q ˆ T such that they are tangent to ker�1,

and that their projections to T form a positive orthonormal basis. Let t be the

coordinate function on the R component, and extend e11, e
1
2 to a neighborhood of T0

in X by translations in the t-direction. Define an almost complex structure J 1 on

Rˆ p´✏, ✏q ˆ T by

J 1 B
Bt

“
B

Bz
,

J 1
pe11 ´ tµ1

pe11q
B

Bt
q “ e12 ´ tµ1

pe12q
B

Bt
.

Equation (2.1) for the deformation of J 1-holomorphic curves near T0 is a linear

equation. In fact, let

pf, gq : T Ñ Rˆ p´✏, ✏q

be the parametrization of a curve C near T0. For p P T – T0, let v “ e11ppq,

w “ e12ppq, then the tangent space of C at pfppq, gppq, pq is spanned by pBvf, Bvg, vq

and pBwf, Bwg, wq. Notice that

µ1
pe11qpfppq, pq “ ´�pvq, µ1

pe12qpfppq, pq “ ´�pwq.
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Therefore

J 1
pBvf, Bvg, vq “ p´Bvg ` �pwqf, Bvf ´ �pvqf, wq,

J 1
pBwf, Bwg, wq “ p´Bwg ´ �pvqf, Bwf ´ �pwqf,´vq.

Hence C is J 1-holomorphic at pfppq, gppq, pq if and only if

�pwqf “ Bvg ` Bwf,

�pvqf “ Bvf ´ Bwg.

This shows that equation (2.1) is linear for curves near T0.

On the other hand, since T has nontrivial linear holonomy, the same arguments as

in lemma 2.16 and lemma 2.17 shows that T0 is the only embedded J 1-holomorphic

torus in a neighborhood of T0. Since equation (2.1) is linear for T0, this implies that

T0 is nondegenerate as a J 1-holomorphic curve. Recall that J 1 and J agree up to first

order derivatives along the curve T0, therefore T0 is nondegenerate with respect to

J . ⇤

2.4. Proof of theorem 2.3. Now let L be a cooriented smooth taut foliation on a

smooth 3-manifold Y . Consider its orientation double cover rL. It is an oriented and

cooriented taut foliation on the orientation double cover of Y . Let p : rY Ñ Y be

the covering map. If K is a Klein-bottle leaf of L, then p´1
pKq is a torus leaf of rL.

Recall that in the beginning of section 2.1, a homology class PDrKs P H1
pY ;Zq was

defined for every Klein-bottle leaf.

Lemma 2.20. Let K be an embedded cooriented surface in Y , then p´1
pKq is coori-

ented and hence inherits an orientation from rY . Let PDrp´1
pKqs be the Poincaré

dual of the fundamental class of p´1
pKq, then p˚pPDrKsq “ PDrp´1

pKqs.
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Proof. Let � be a closed curve in rY . Use Ip¨, ¨q to denote the intersection number.

Then

xPDrp´1
pKqs, r�sy “ Ipp´1

pKq, �q

“ IpK, pp�qq “ xPDrKs, p˚r�sy “ xp˚pPDrKsq, r�sy.

Therefore p˚pPDrKsq “ PDrp´1
pKqs. ⇤

Lemma 2.21. The pull-back map p˚ : H1
pY ;Zq Ñ H1

prY ;Zq is injective.

Proof. Every element in ker p˚ is represented by an element ↵ P Homp⇡1pY q,Zq such

that ↵ is zero on the image of p˚ : ⇡1p
rY q Ñ ⇡1pY q. Since Im p˚ is a normal subgroup

of ⇡1pY q of index 2, the map ↵ is decomposed as

↵ : ⇡1pY q Ñ ⇡1pY q{⇡1p
rY q – Z{2 Ñ Z,

which has to be zero. Therefore p˚ is injective. ⇤

By lemma 2.20 and 2.21, a Klein-bottle leaf K has PDrKs “ A if and only if

PDprp´1
pKqsq “ p˚pAq. The next lemma shows that for every Klein-bottle leaf K of

L the fundamental class rp´1
pKqs is a primitive class.

Lemma 2.22. Let F be an oriented and cooriented taut foliation on a smooth three

manifold M , then the fundamental class of every closed leaf of F is a primitive class.

Proof. Let L be a closed leaf of F . Take a point p P L. By the definition of tautness,

there exists an embedded circle � passing through p and transverse to the foliation.

Let � : r0, 1s Ñ M with �p0q “ �p1q “ p be a parametrization of �. By transversality,

�´1
pLq is a finite set. Let t0 be the minimum value of t ° 0 such that �pt0q P L. Then

for ✏ su�ciently small one can slide the part of � on pt0´ ✏, t0` ✏q along the foliation,

such that the resulting curve is still transverse to F , and such that �pt0q “ p. Now
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�|r0,t0s defines a circle whose intersection number with L equals 1. The existence of

such a curve implies that the fundamental class of L is primitive. ⇤

With the preparations above, one can now prove theorem 2.3.

Proof of theorem 2.3. Let A P H1
pY ;Zq. Suppose L0 and L1 are two smooth A-

admissible taut foliations on Y , such that they can be deformed to each other by a

smooth family of taut foliations Ls, s P r0, 1s. Let rY be the orientation double cover

of Y . Then the orientation double covers rLs of Ls form a smooth family of oriented

and cooriented taut foliaitons on rY .

Let �̃ : rY Ñ rY be the deck transformation of the orientation double cover. Then

the map �̃ preserves the coorientation of rLs and reverses its orientation for each s.

There exists a smooth family of 1-forms �s and closed 2-forms !s on rY such that

rLs “ ker�s and �s ^ !s ° 0. By changing �s to p�s ` �̃˚�sq{2 and changing !s to

p!s ´ �̃˚!sq{2, one can assume that �̃˚�s “ �s, and �̃˚!s “ ´!s. Let p⌦s, Jsq be the

corresponding symplectic structures and almost complex structures on X “ R ˆ rY

as defined in section 2.3. Define

� : X Ñ X

pt, xq fiÑ p´t, �̃pxqq.

Then �˚
p⌦sq “ ´⌦s, and �˚

pJsq “ ´Js. The family tpX,⌦s, Jsqu has uniformly

bounded geometry. This means that there is a constant N ° 0 such that Js P

J pX,⌦s, Nq for each s.

If neither L0 nor L1 has any Klein-bottle leaf in the class A, the statement of

theorem 2.3 obviously holds. From now on assume that either L0 or L1 has at least

one Klein-bottle leaf in the class A. This implies either rL0 or rL1 has at least one

torus leaf. By a theorem of Novikov [29] (or see for example Theorem 9.1.7 of [8]),

⇡2pXq “ ⇡2p
rY q “ 0. Let e be the push forward of PDpp˚pAqq P H2p

rY ;Zq to H2pX;Zq
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via the inclusion map rY – t0u ˆ rY ã›Ñ X. The class e then satisfies �˚peq “ ´e. By

lemma 2.22, e is a primitive class.

Take a positive constant E such that E ° xr⌦ss, ey for all s. For every J 1
P

J pX,⌦s, Nq and every C P MpX, J 1, eq, lemma 2.10 gives a diameter bound of C by

MpN,Eq.

Let t0 ° 0 be a fixed positive number. For i “ 0, 1, the union of torus leaves L

in rLi in the homology class p˚pAq such that
≥
L
!i § E and L is not the lift of any

Klein-bottle leaf form a compact set rBi. The set rBi satisfies �̃p rBiq “
rBi. Let rUi be

a neighborhood of rBi such that �̃prUiq “
rUi and the closure of rUi does not intersect

the lift of any Klein-bottle leaf of Li. Let

V “
`
p´8,´t0q Y pt0,8q

˘
ˆ rY ,

Ui “
`
Rˆ rUi

˘§ `
p´8,´t0q Y pt0,8q

˘
ˆ rY .

V and Ui are open subsets of X. The following two lemmas will be proved in section

2.5.

Lemma 2.23. For i “ 0, 1, the almost complex structure Ji can be perturbed to

J 1
i
P J pX,⌦i, Nq, such that J 1

i
“ Ji near the lifts of Klein-bottle leaves, and J 1

i

is E-admissible. Moreover, one can choose J 1
i
such that the following are satisfied:

�˚
pJ 1

i
q “ ´J 1

i
on Ui, and every J 1

i
-holomorphic torus of X in the homology class e is

either contained in Ui or is the lift of a Klein-bottle leaf in Li in the class A. If C is

a J 1
i
-holomorphic curve in the homology class e contained in Ui, then �pCq ‰ C.

Lemma 2.24. The almost complex structures J 1
0 and J 1

1 given by lemma 2.23 can be

connected by a smooth family of almost complex structures

J 1
s
P J pX,⌦s, Nq,
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such that �˚
pJ 1

s
q “ ´J 1

s
on V , and the moduli space

MpX, tJ 1
s
u, eq “

∫

sPr0,1s
MpX, J 1

s
, eq

has the structure of a smooth 1-manifold with boundary MpX, J 1
0, eq YMpX, J 1

1, eq.

Moreover, let t : X Ñ R be the projection of X “ rY ˆ R to R, then the function

defined as

f : MpX, tJ 1
s
u, eq Ñ R

C fiÑ ´

ª

C

t dA.

is a smooth proper function on MpX, tJ 1
s
u, eq, where for C P MpX, J 1

s
, eq, the form

dA is the area form on C given by gs.

Let tJ 1
s
u be the family of almost complex structures given by the lemmas above. By

the bound on geometry and the diameter bound, there exists a su�ciently large t1 ° 0

such that for every J 1
s
-holomorphic torus C in the homology class e, if |fpCq| ° t1, then

C is contained in V . Take a constant t2 ° t1 such that both t2 and ´t2 are regular

values of f, and that t2 R f
`
MpX, J 1

0, eq Y MpX, J 1
1, eq

˘
. Let Si “ MpX, J 1

i
, eq X

f´1
pr´t2, t2sq. The set f´1

pt2q Y f´1
p´t2q Y S0 Y S1 is the boundary of the compact

1-manifold f´1
pr´t2, t2sq, hence it has an even number of elements.

The construction of t2 implies that every element in f´1
pt2qY f´1

p´t2q is contained

in V . The properties of tJ 1
s
u given by lemma 2.24 states that �˚

pJ 1
s
q “ ´J 1

s
on V , thus

� maps f´1
pt2q to f´1

p´t2q, hence the set f´1
pt2q Y f´1

p´t2q has an even number of

elements. The properties given by lemma 2.23 implies that � acts on the set Si, and

the fixed point set consists of tori in t0uˆ rY which are lifts of Klein-bottle leaves of Li

in the homology class A. On the other hand, let Ki be the set of lifts of Klein-bottle
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leaves of Li in the homology class A, then for every

C P t0u ˆ pK0 YK1q Ä MpX, J 1
0, eq YMpX, J 1

1, eq,

one has fpCq “ 0. Hence C P S0 Y S1, and C is fixed by �.

The arguments above show that the number of elements in f´1
pt2q Y f´1

p´t2q Y

S0 Y S1 has the same parity as the number of elements in K0 Y K1. Therefore, the

set K0 YK1 has an even number of elements, and the desired result is proved. ⇤

2.5. Technical lemmas. The purpose of this section is to prove lemma 2.23 and

lemma 2.24. The proofs are routine and straightforward, they are given here for lack

of a direct reference. Throughout this section X will be a smooth 4-manifold with

⇡2pXq “ 0.

Definition 2.25. Let pX,!q be a symplectic manifold. Let B Ä X be a closed

subset. Let E,N ° 0 be constants. An almost complex structure J P J pX,!, Nq is

called pB,Eq-admissible if the following conditions hold:

(1) Every embedded torus C with topological energy less than or equal to E,

dprCsq “ 0, rCs being primitive, and satisfying CXB ‰ H, is nondegenerate.

(2) For every primitive homology class e P H2pX;Zq, if xr!s, ey § E, and if

xc1pT 0,1Xq, ey ° 0 (namely, the formal dimension of the moduli space of

J-holomorphic maps from a torus to X in the homology class e, modulo self-

isomorphisms of the domain, is negative), then there is no somewhere injective

J-holomorphic map ⇢ from a torus to X in the homology class e such that

Imp⇢q XB ‰ H.

The next lemma follows from Gromov’s compactness theorem and the diameter

bound of lemma 2.10.
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Lemma 2.26. Let pX,!q be a symplectic manifold. Let B Ä X be a closed subset,

and E,N ° 0 be constants. The elements of J pX,!, Nq that are pB,Eq-admissible

form an open and dense subset of J pX,!, Nq.

Proof. First consider the case when B is compact. The denseness of pB,Eq-admissible

almost complex structures then follows from the standard transversality argument.

Now one proves the openness. Let MpN,Eq be the upper bound of diameter given by

lemma 2.10. Let A be a compact set containing B such that the distance between BA

and B is greater than MpN,Eq`2. Suppose J is a pB,Eq-admissible almost complex

structure. Let U be a su�ciently small open neighborhood of J |A P J pA,!q, such

that for every J 1
P J pX,!, Nq, if J 1

|A P U then the distance between BA and B is

greater than MpN,Eq ` 1. One claims that there is a smaller neighborhood V Ä U

containing J , such that for every J 1
P J pX,!, Nq, if J 1

|A P V then J 1 is pB,Eq-

admissible. In fact, assume the claim is not true, since J pA,!q is first countable,

there is a sequence tJnu Ä J pX,!, Nq, such that Jn|A Ñ J |A in the C8 topology,

and that every Jn is not pB,Eq-admissible. Therefore for every n, there exists a

Jn-holomorphic curve Cn with topological energy no greater than E, such that rCns

is primitive, CnXB ‰ H. Moreover, either Cn is an embedded degenerate curve with

index zero, or Cn is a curve with negative index. The diameter bound implies Cn Ä A

for each n. Gromov’s compactness theorem then implies that there is a subsequence

of Cn converging to a non-constant J-holomorphic map with possibly bubbles, nodal

singularities, and branched-cover components. Since is it assumed that ⇡2pXq “ 0

and rCns is primitive, the limit map has to be an embedded torus. The torus given

by the limit map has topological energy less than or equal to E, and it violates the

assumption that J is pB,Eq-admissible.

Now consider the case when B is not necessarily compact. Cover B by a lo-

cally finite family of compact subsets Bn. Let An be the closed pMpN,Eq ` d ` 2q-

neighborhood of Bn. By the argument of the previous paragraph, for each n there is
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an open and dense subset Vn of J pAn,!q, such that for every J 1
P J pX,!, Nq, the

condition that J 1 is pBn, Eq-admissible is equivalent to J 1
|An P Vn. Notice that J 1 is

pB,Eq-admissible if and only if it is pBn, Eq-admissible for every n. Therefore the

result follows from part 1 of lemma 2.11. ⇤

From now on assume that � : X Ñ X is a map that acts di↵eomorphically on X,

such that �2
“ idX and the quotient map X Ñ X{� is a covering map.

Definition 2.27. Let pX,!q be a symplectic manifold. Let d, E,N ° 0 be constants.

Let B be a closed subset of X such that �pBq “ B. An almost complex structure

J P J pX,!, Nq is called pd, Eq-regular with respect to B if for every J-holomorphic

map ⇢ from a torus to X with topological energy less than or equal to E, at least

one of the following conditions hold:

(1) The distance between the sets Imp⇢q and �pImp⇢qq is greater than d.

(2) The distance of Imp⇢q and B is greater than d.

Here the distance is defined by the metric gJ “ !p¨, J ¨q on X.

Remark 2.28. Notice that since the map ⇢ in the definition above can be a constant

map, for a pd, Eq-regular almost complex structure J with respect to B, one has

distpp, �ppqq ° d for every p P B.

The following result is also a consequence of Gromov’s compactness theorem, and

the proof follows a similar strategy as lemma 2.26.

Lemma 2.29. Let d, E,N ° 0 be constants, and B is a closed subset of X such

that �pBq “ B. The elements of J pX,!, Nq that are pd, Eq-regular with respect to

B form an open subset of J pX,!, Nq.

Proof. First consider the case when B is compact. Let MpN,Eq be the upper bound

of diameter given by lemma 2.10. Let A be a compact set containing B such that

the distance between BA and B is greater than MpN,Eq ` d ` 2. Suppose J is a
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pd, Eq-regular almost complex structure with respect to B. Let U be a su�ciently

small open neighborhood of J |A P J pA,!q, such that for every J 1
P J pX,!, Nq, if

J 1
|A P U then the distance between BA and B is greater than MpN,Eq ` d` 1. One

claims that there is a smaller neighborhood V Ä U containing J , such that for every

J 1
P J pX,!, Nq, if J 1

|A P V then J 1 is pd, Eq-regular with respect to B. In fact,

assume the claim is not true, since J pA,!q is first countable, there is a sequence

tJnu Ä J pX,!, Nq, such that Jn|A Ñ J |A in the C8 topology, and that every Jn

is not pd, Eq-regular with respect to B. By the definition of pd, Eq-regularity, there

is a sequence of Jn-holomorphic maps ⇢n from torus to X with topological energy

less than or equal to E, such that the distance of Imp⇢q to B with respect to the

metric given by Jn is less than or equal to d, and the distance between Imp⇢q and

�pImp⇢qq with respect to the metric given by Jn is less than or equal to d. By the

diameter bound, every curve Cn is contained in the set A. Gromov’s compactness

theorem then implies that there is a subsequence of ⇢n converging to a non-constant

J-holomorphic map with possibly bubbles, nodal singularities, and branched-cover

components. Since is it assumed that ⇡2pXq “ 0, the limit map has to be a possibly

branched cover of a torus. The torus given by the limit map has topological energy

less than or equal to E, and it violates the assumption that J is pd, Eq-regular with

respect to B.

Now consider the case when B is not necessarily compact. Let J be a pd, Eq-

regular almost complex structure with respect to B. Cover B by a locally finite

family of compact subsets Bn such that �pBnq “ Bn for each n. Let An be the closed

pMpN,Eq` d` 2q-neighborhood of Bn. By the argument of the previous paragraph,

for each n there is an open neighborhood Vn of J |An in J pAn,!q, such that for every

J 1
P J pX,!, Nq, if J 1

|An P Vn then J 1 is pd, Eq-regular with respect to Bn. Notice that

J 1 is pd, Eq-regular with respect to B if and only if it is pd, Eq-regular with respect to

every Bn. By the definition of the topology on J pX,!, Nq, this implies that J has
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an open neighborhood consisting of pd, Eq-regular almost complex structures with

respect to B. ⇤

The following lemma is a 1-parametrized version of lemma 2.29.

Lemma 2.30. Let d, E,N ° 0 be constants, and B is a closed subset of X such that

�pBq “ B. Let !s (s P r0, 1s) be a smooth family of symplectic forms on X, and let

Ji P J pX,!i, Nq. Then the set of elements tJsu P J pX, t!su, J0, J1, Nq such that ev-

ery Js is pd, Eq-regular with respect to B form an open subset of J pX, t!su, J0, J1, Nq.

Proof. The proof is exactly the same as lemma 2.29. One only needs to change the

notation J to tJsu, and change the notation J pX,!, Nq to J pX, t!su, J0, J1, Nq. ⇤

Lemma 2.31. Let pX,!q be a symplectic manifold such that �˚
p!q “ ´!. Let

d, E,N ° 0 be constants. Let B be a closed subset of X such that �pBq “ B. Assume

J P J pX,!, Nq is pd, Eq-regular with respect to B, and assume that �˚
pJq “ ´J on

B. Then for every open neighborhood U of J in J pX,!, Nq, there is an element J 1

such that J 1 is pd, Eq-regular with respect to B and is E-admissible, and �˚
pJ 1

q “ ´J 1

on B. Moreover, if there is a closed subset H Ä X such that �pHq “ H and J is

pH,Eq-admissible, then J 1 can be taken to be equal to J on the set H.

Proof. By shrinking the open neighborhood U , one can assume that every element of

U is pd, Eq-regular with respect to B, and that there is a complete metric g0 on X

such that �˚
pg0q “ g0 and g0 § gJ 1 for every J 1

P U . For the rest of this proof, the

distance function on X is defined by g0.

Cover X by a locally finite family of closed balls with radius d{10. Say

X “

`8§

i“1

Bi,

where tBiu are closed balls with radius d{10. Let Di be the open d{10-neighborhood

of Bi, then the diameter of Di is less than d{2.
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Let Aj “ Yi§jBj, then A0 “ H. The construction of J 1 follows from induction.

Assume that Jj is already pAj, Eq-admissible with �˚
pJjq “ ´Jj on B, the follow-

ing paragraph will perturb Jj to Jj`1 such that Jj`1 is pAj`1, Eq-admissible with

�˚
pJj`1q “ ´Jj`1 on B.

In fact, if Dj`1 X B “ H, then a generic perturbation on Dj`1 will do the job.

If Dj`1 X B ‰ H, choose a small perturbation on Dj`1 such that the resulting al-

most complex structure J 1
j`1 is still in U and is pBj`1, Eq-admissible. Recall that

every element in U is pd, Eq-regular with respect to B, hence by remark 2.28 and the

diameter bound on Dj`1, one has �pDj`1q X Dj`1 “ H. Now make an additional

perturbation on �pDj`1q such that the resulting almost complex structure Jj`1 sat-

isfies �pJj`1q “ ´Jj`1 on B. One can choose the perturbation on Dj`1 to be small

enough such that Jj`1 is also in U .

Now Jj`1 is pd, Eq-regular with respect to B, the diameter of Dj is less than d{2,

and Dj X B ‰ H. One claims that there is no Jj`1-holomorphic map from a torus

with topological energy less than or equal to E and passing through both Dj`1 and

�pDj`1q. In fact, assume C passes through bothDj`1 and �pDj`1q, then then distance

between C and �pCq is less than d{2. Since Dj X B ‰ H, the distance between C

and B is less than d{2. This is contradictory to the fact that J 1
j`1 is pd, Eq-regular

with respect to B.

Since no Jj`1-holomorphic map from a torus with topological energy less than or

equal to E can pass through both Dj`1 and �pDj`1q, the almost complex struc-

ture J 1
j`1 being pDj`1, Eq-admissible implies that Jj`1 is pDj`1, Eq-admissible. By

lemma 2.26, being pAj, Eq-admissible is an open condition, thus when the perturba-

tion is su�ciently small Jj`1 is also pAj, Eq-admissible. Therefore the almost complex

structure Jj`1 is pAj`1, Eq-admissible. Since the family tDnu is locally finite, on each

compact set the sequence tJju stabilizes for su�ciently large j. The desired J 1 can

then be obtained by taking limjÑ8 Jj. Moreover, if there is a closed subset H Ä X
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such that �pHq “ H and J is pH,Eq-admissible, then each step of the perturbation

can be taken to be outside of H. ⇤

The following lemma is a 1-parametrized version of lemma 2.31, and the proof is

essentially the same.

Lemma 2.32. Let e P H2pX;Zq be a primitive class. Let B be a closed subset of

X such that �pBq “ B. Assume !s ps P r0, 1sq is a smooth family of symplectic

forms on X such that �˚
p!sq “ ´!s for each s. Let d,N ° 0 be constants. Let

E be a positive constant such that E ° xr!ss, ey for every s. For i “ 0, 1, assume

Ji P J pX,!i, Nq is E-admissible and pd, Eq-regular with respect to B. Assume tJsu P

J pX, t!su, J0, J1, Nq, such that for each s, the almost complex structure Js is pd, Eq-

regular with respect to B, and �˚
pJsq “ ´Js on B. Then for every open neighborhood

U of tJsu in J pX, t!su, J0, J1, Nq, there is an element tJ 1
s
u such that tJ 1

s
u is pd, Eq-

regular with respect to B and is E-admissible, and �˚
pJ 1

s
q “ ´J 1

s
on B for every

s. Moreover, if there is a closed subset H Ä X such that �pHq “ H and tJsu is

pH,Eq-admissible, then J 1
s
can be taken to be equal to Js on the set H.

Proof. The proof follows verbatim as the proof of lemma 2.31. One only needs to

change the notation J to tJsu, and change J pX,!, Nq to J pX, t!su, J0, J1, Nq. ⇤

Combining the results above, one obtains the following lemma.

Lemma 2.33. Let e P H2pX;Zq be a primitive class. Let B be a closed subset of

X such that �pBq “ B. Assume !s ps P r0, 1sq is a smooth family of symplectic

forms on X such that �˚
p!sq “ ´!s for each s. Let d,N ° 0 be constants. Let

E be a positive constant such that E ° xr!ss, ey for every s. For i “ 0, 1, assume

Ji P J pX,!i, Nq is E-admissible and pd, Eq-regular with respect to B. Let J be

the subset of elements tJsu of J pX, t!su, J0, J1, Nq such that for each s, the almost

complex structure Js is pd, Eq-regular with respect to B, and �˚
pJsq “ ´Js on B. If J
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is not empty, let U Ä J be the subset of J , such that for every tJsu P U , the moduli

space MpX, tJsu, eq “
≤

sPr0,1sMpX, Js, eq has the structure of a smooth 1-manifold

with boundary MpX, J0, eq YMpX, J1, eq. Then U is open and dense. Moreover, if

f : X Ñ R is a smooth proper function on X, then the function defined as

f : MpX, tJsu, eq Ñ R

C fiÑ ´

ª

C

f dA.

is a smooth proper function on MpX, tJsu, eq, where for C P MpX, Js, eq, dA is the

area form of C given by gs. ⇤

Proof. The openness of U follows from lemma 2.30. The fact that U is dense follows

from lemma 2.32. The properness of the function f was proved in lemma 2.13. ⇤

The following lemma controls the location of pseudo-holomorphic curves after per-

turbation of the almost complex structure.

Lemma 2.34. Let pX,!q be a symplectic manifold, let J P J pX,!, Nq. Let E ° 0

be a positive constant, and let B be a closed subset of X. Assume that there is

no non-constant J-holomorphic map ⇢ from a torus to X, such that Imp⇢q X B is

nonempty and the topological energy of ⇢ is no greater than E. Then there is an open

neighborhood U of J in J pX,!, Nq, such that for every J 1
P U , there is no embedded

J 1-holomorphic torus in X intersecting B with topological energy less than or equal

to E.

Proof. Cover the set B by a locally finite family of compact subsets Bn. Let MpN,Eq

be the upper bound given by lemma 2.10 for geometry bound N and energy bound

E. Let An be the closed MpN,Eq ` 1-neighborhood of Bn. One claims that there is

an open neighborhood Un of J |An P J pAn,!q such that for every J 1
P J pAn,!, Nq,

if J 1
|An P Un, then there is no embedded J 1-holomorphic torus in X intersecting Bn
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with topological energy less than or equal to E. Assume the result does not hold,

then there is a sequence of Jn Ä J pA,!, Nq such that for each n there exists a

Jn-holomorphic map ⇢n from a torus to X which intersects B and has topological

energy less than or equal to E, and Jn|An Ñ J |An . For su�ciently large n, the distance

between BAn and Bn is greater than MpN,Eq with respect to the distance given by

Jn, therefore the relevent Jn-holomorphic curve is contained in An. By Gromov’s

compactness theorem, a subsequence of ⇢n will give a non-constant J-holomorphic

map from a torus to An, such that the intersection Imp⇢q X B is nonempty, and the

topological energy of ⇢ is less than or equal to E, which is a contradiction. Therefore,

the claim holds. The result of the lemma then follows from part 1 of lemma 2.11. ⇤

With the preparations above, one can now give the proofs of lemma 2.23 and lemma

2.24.

Proof of lemma 2.23. Let gi be the metric on X given by p⌦i, Jiq. By corollary 2.18,

every C P MpX, Ji, eq either satisfies �pCqXC “ H, or C is the lift of a Klein-bottle

leaf. Since the space of torus leaves in Y is compact, there exists a positive constant

dp1q
i

° 0, such when �pCq X C “ H, the distance between C and �pCq with respect

to gi is greater than dp1q
i
. Let

dp2q
i

“
1

3
inf
pPUi

dgipp, �ppqq.

Let dp3q
i

be the distance from rUi to the union of the lifts of Klein-bottle leaves. Recall

that

Ui “
`
Rˆ rUi

˘§ `
p´8,´t0q Y pt0,8q

˘
ˆ rY .

Let

d “ min
i“0,1
j“1,2,3

dpjq
i
.

For every E ° 0, the almost complex structure Ji is pd, Eq-regular with respect to

Ui. In fact, every Ji-holomorphic map from a torus to X is one of the following: (1)
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a constant map, (2) a covering to the lift of a torus leaf, (3) a covering to the lift of

a Klein-bottle leaf. Let C be its image. In case (1), either the distance from C to

Ui is at least d
p2q
i
, or the distance from C tp �pCq is at least dp2q

i
{3. In case (2), the

distance from C to �pCq is at least dp1q
i
. In case (3), the distance from C to Ui is at

least dp3q
i
. Choose E to be any positive constant such that E ° max

i

x⌦i, ey.

Apply lemma 2.31 to B “ Ui, there is a perturbation

J 1
i
P J pX,⌦i, Nq

of Ji, such that J 1
i
is E-admissible and �˚

pJ 1
i
q “ ´J 1

i
on Ui. LetWi be a small compact

neighborhood of the union of lifts of Klein-bottle leaves such that �pWiq “ Wi.

The almost complex structure J 1
i
can be taken to be equal to Ji on Wi since Ji is

already pWi, Eq-admissible. By the definition of the set Ui, every Ji-holomorphic map

from a torus to X is either a lift of Klein-bottle leaf or is mapped into the set Ui.

Therefore lemma 2.34 shows that when the perturbation is su�ciently small, every

J 1
i
-holomorphic torus with homology class e is either contained in Ui or is contained

in Wi. In the latter case the curve is contained in rY ˆ t0u and it is a lift of a Klein-

bottle leaf of Li in class A. Since J 1
i
is pd, Eq-regular with respect to Ui, for every J 1

i

holomorphic torus C in Ui one has �pCq ‰ C. ⇤

Proof of lemma 2.24. The almost complex structures J 1
0 and J 1

1 can be connected

by a smooth family of almost complex structures J 1
s
P J pX,⌦s, J 1

0, J
1
1, Nq such that

�˚
pJ 1

s
q “ ´J 1

s
on V . Using lemma 2.33, the family J 1

s
can be further perturbed to

satisfy the desired conditions. ⇤

2.6. An example. This section gives an example of a taut foliation with an odd

number of Klein-bottle leaves such that every closed leaf has non-trivial linear holo-

nomy. By corollary 2.4, every deformation of such a foliation via taut foliations has

at least one Klein-bottle leaf.
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Figure 1. The foliation Î on S1
ˆ S1

Think of the torus T0 “ S1
ˆ S1 as a trivial S1-bundle over S1. Let z1, z2 P R{2⇡

be the coordinates of the two S1 factors, where z1 is the coordinate for the fiber, and

z2 is the coordinate for the base. Let � be a closed curve on the base that wraps

the S1 once in the positive direction. Take a horizontal foliation Î on T0 such that

the holonomy along � has two fixed points: z1 “ 0 and z1 “ ⇡, and that holonomy

map has nontrivial linearization at these two points. Moreover, choose Î so that it is

invariant under the map pz1, z2q fiÑ pz1`⇡, ⇡´z2q and the map pz1, z2q fiÑ pz1, z2`⇡q.

Figure 1 gives a picture for such a foliation Î, where z2 is the horizontal coordinate,

and z1 is the vertical coordinate.

Consider the pull back of the foliation Î to T0ˆS1. Let z3 P R{2⇡ be the coordinate

for the S1 factor, then spantÎ, B
Bz3 u defines a foliation I on T0ˆS1. There are exactly

two torus leaves in I, and they are given by z1 “ 0 and z1 “ ⇡.

The foliation I is invariant under the maps

�1 : pz1, z2, z3q fiÑ pz1 ` ⇡, ⇡ ´ z2, z3q

�2 : pz1, z2, z3q fiÑ pz1, z2 ` ⇡, ⇡ ´ z3q
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�3 : pz1, z2, z3q fiÑ pz1 ` ⇡,´z2, ⇡ ´ z3q

The set V “ tid, �1, �2, �3u is a group acting freely and discountinuously on T0 ˆ S1

and it preserves the coorientation of I. The two torus leaves in T0ˆS1 are identified

under the quotient by V , and their images give the unique Klein-bottle leaf in I{V .

Moreover, the Klein-bottle leaf has non-trivial linear holonomy. Therefore, corollary

2.4 implies the following result.

Proposition 2.35. Every deformation of I{V through taut foliations must have at

least one Klein-bottle leaf. ⇤
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3. Rectifiability and Minkowski bounds for the zero loci of Z{2

harmonic spinors in dimension 4

3.1. Introduction.

3.1.1. Background. The notion of Z{2 harmonic spinors was first introduced by the

works of Taubes [38, 40] to describe the behaviour of certain non-convergent sequences

of PSL2pCq connections on a three manifold. It also appears in the compactifica-

tions of the moduli spaces of solutions to the Kapustin-Witten equations [39], the

Vafa-Witten equations [42], and the Seiberg-Witten equations with multiple spinors

[18, 41]. These equations may have important topological applications. For example,

Witten [45] has conjectured that the space of solutions to the Kapustin-Witten equa-

tions can be used to compute the Jones polynomials and the Khovanov homology for

knots. Haydys [17] conjectured a relation between the multiple spinor Seiberg-Witten

monopoles, Fueter sections, and G2 instantons.

All of these applications require some understanding of the boundaries of the com-

pactifications for the relevant moduli spaces. The “points of discontinuity” for Z{2

harmonic spinors play a crucial role in the structure of the boundary spaces. For a

Z{2 harmonic spinor, the set of “points of discontinuity” I and the zero set Z were

defined in [40]. Takahashi [34, 35] studied the moduli spaces of Z{2 harmonic spinors

with additional regularity assumptions on I, where I was assumed to be a union of

embedded circles in the case of dimension 3, and an embedded surface in the case of

dimension 4. In general, I may not have this regularity. The regularities of I and Z

were studied extensively in [40]. For example, it was proved that I is the closure of a

countable union of open submanifolds with codimension 2, and that Z Å I has Haus-

dor↵ codimension at least 2. This article improves the regularity results by proving

that Z is rectifiable and has locally finite Minkowski content. The proof is inspired

by [10], where a similar problem was studied for Dir-minimizing Q-valued functions.
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3.1.2. Statement of results. Let X be a 4-dimensional Riemannian manifold. Let

V be a Cli↵ord bundle over X. That is, V is a unitary vector bundle equipped

with an extra structure ⇢ P HompTX,HompV ,Vqq, such that ⇢peq2 “ ´}e}2 ¨ id and

}⇢peqpuq} “ }e} ¨ }u} for every e P TpX and u P V |p. Let r be a connection on V that

is compatible with pX,V , ⇢q. Namely, for every pair of smooth vector fields e, e1, and

every smooth section u of V , one has

rep⇢pe
1
q ¨ uq “ ⇢pree

1
q ¨ u` ⇢pe1q ¨repuq.

The Dirac operator on V is defined by

Dpuq “
4ÿ

i“1

⇢peiqreiu,

where teiu is a local orthonormal frame for TX.

Let Q be a positive integer. For a vector space E, define AQpEq to be the set

of unordered Q-tuples of points in E. If P1, P2, ¨ ¨ ¨ , PQ are Q points in E, use
∞

Q

i“1rrPiss P AQpEq to denote the Q-tuple given by the collection of Pi’s. If E is

endowed with a Euclidean metric, one can define a metric on AQpEq by

dist
`ÿ

i

rrPiss,
ÿ

i

rrSiss
˘
“ min

�PPQ

cÿ

i

|Pi ´ S�piq|2,

where PQ is the permutation group of t1, 2, ¨ ¨ ¨ , Qu. If T P AQpEq, define |T | “

distpT,Qrr0ssq.

A map from X is called a Q-valued section of V if it maps every x P X to an

element of AQpV |xq. A Q-valued section is called continuous if it is continuous under

local trivializations of V .

Definition 3.1. Let U be a continuous 2-valued section of V . Then U is called a

Z{2 harmonic spinor if the following conditions hold.

(1) U is not identically 2rr0ss.
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(2) Let Z be the set of U where U “ 2rr0ss. For every x P X ´ Z, there exists

a neighborhood of x, such that on this neighborhood U can be written as

U “ rruss ` rr´uss, where u is a smooth section of V satisfying Dpuq “ 0.

(3) Near a point x P X ´ Z, write U as rruss ` rr´uss, then the function |ru| is a

well defined smooth function on X ´ Z. The section U satisfies

ª

X´Z

|ru|2 † 8.

This definition is equivalent to the definition of Z{2 harmonic spinors given in [40].

For a point x P X and r ° 0, use Bxprq to denote the geodesic ball in X with center

x and radius r. As in (1.5) of [40], we make the following additional assumption on

U .

Assumption 3.2. There exits a constant ✏ ° 0 such that the following holds. For

every x P X with Upxq “ 2rr0ss, there exist constants C, r0 ° 0, depending on x, such

that ª

Bxprq
|Upyq|2 dy † C ¨ r4`✏, for every r P p0, r0q.

Assume U is a Z{2 harmonic spinor, and let Z be the set of U where U “ 2rr0ss.

Taubes [40] proved the following theorem.

Theorem 3.3 (Taubes [40]). If U satisfies assumption 3.2, then the Hausdor↵ di-

mension of Z is at most 2.

This article improves theorem 3.3 to the following result.

Theorem 3.4. If U satisfies assumption 3.2, then Z is a 2-rectifiable set. Moreover,

for every compact subset A Ä X, there exist constants C and r0 depending on A and

Z, such that for every r † r0,

Vol ptx : distpx,AX Zq † ruq † C ¨ r2.
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In other words, Z is a 2-rectifiable set with locally finite 2 dimensional Minkowski

content. Since the Minkowski content controls the Hausdor↵ measure, theorem 3.4

implies that Z has locally finite 2 dimensional Hausdor↵ measure.

Theorem 3.4 immediately implies that the zero locus of a Z{2 harmonic spinor on

a 3-manifold is 1-rectifiable and has locally finite Minkowski content.

3.2. Z{2 harmonic spinors as Sobolev sections. There is a Sobolev theory for

Q-valued functions on Rm, see for example [11]. For an open set ⌦ Ä Rm, the space

W 1,2
p⌦,AQq is defined to be the space of Q valued functions T on ⌦, such that

|T | P L2
p⌦q, and that T has a distributional derivative which is also in L2

p⌦q. The

Sobolev theory extends to Q-valued sections of vector bundles without any di�culty.

This section proves the following lemma.

Lemma 3.5. If U is a Z{2 harmonic spinor, then U is in W 1,2
pX,A2q. Moreover,

DpUq “ 0 in the distributional sense.

This lemma allows us to study the compactness properties of Z{2 harmonic spinors

by the Sobolev theory for Q-valued functions.

We start with the following definition.

Definition 3.6. Let T be a Q-valued section of V . It is called a smooth Q-valued

section, if for every x P X, there exists a neighborhood of x on which T can be written

as

T “

Qÿ

i“1

rrfiss,

where fi’s are smooth sections of V .

If T is a smooth Q-valued section and is locally written as
∞

i
rrfiss, then the function

∞
i
|fi|2 `

∞
i
|rfi|2 is well defined on X. In this case, the W 1,2 norm of T is given by

p
≥
X

∞
i
|fi|2 `

∞
i
|rfi|2q1{2.

Proof of lemma 3.5. The proof is essentially the same as lemma 2.4 of [40].
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Let � be a smooth non-increasing function on R, such that �ptq “ 1 when t § 1,

and �ptq “ 0 when t • 2. For s ° 0, let ⌧s “ �pln |U |{ ln sq. Then ⌧spxq “ 0 when

|Upxq| § s2, and ⌧spxq “ 1 when |Upxq| • s.

The section ⌧sU is a 2-valued smooth section of V . Recall that on X ´Z, the Z{2

harmonic spinor U can be locally written as U “ rruss ` rr´uss. Although u is only

defined up to a sign, the functions |u| and |⌧sru`r⌧s ¨u| are well defined on X ´Z.

Thus the W 1,2 norm of ⌧sU is given by

}⌧sU}W 1,2 “

?

2

ª

X

p|⌧s|
2
|u|2 ` |⌧sru`r⌧s ¨ u|

2
q.

Notice that

|r⌧s| ¨ |u| §
1

| ln s|
psup |�1

|q ¨ |ru|,

hence its L2 norm converges to zero as s Ñ 0. Therefore,

(3.1) lim
sÑ0

}⌧sU}W 1,2 “

?

2

ª

X´Z

p|u|2 ` |ru|2q.

In particular, ⌧sU is bounded in W 1,2 as s Ñ 0, thus a subsequence of it weakly

converges in W 1,2 to an element U 1
P W 1,2. Since ⌧sU also uniformly converges to U ,

one must have U 1
“ U . Therefore U P W 1,2.

Since D is a smooth first-order di↵erential operator, DpUq P L2
loc
pXq. By the

definition of Z{2 harmonic spinors, DpUq “ 0 on X ´ Z. By section 2.2.1 of [11],

the derivatives of U are zero at the Lebesgue points of Z, hence DpUq “ 0 on those

points. That proves DpUq “ 0 in the distributional sense. ⇤

The argument of lemma 2.1 also shows that U can beW 1,2 approximated by smooth

sections. We write it as a separate lemma for later reference.
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Lemma 3.7. Let U be a Z{2 harmonic spinor. Then there exits a sequence of smooth

sections Ui, such that Ui “ ´Ui, and

lim
iÑ8

Ui “ U in W 1,2.

Proof. Since |U | and |rU | are zero on the Lebesgue points of Z, one has

}U}W 1,2 “

ª

X´Z

p|U |
2
` |rU |

2
q “

?

2

ª

X´Z

p|u|2 ` |ru|2q.

Define ⌧s as in the proof of lemma 3.5. It was proved previously that there is a

sequence si Ñ 0, such that ⌧siU converges weakly to U in W 1,2. As a consequence,

lim inf
iÑ8

}⌧siU}W 1,2 • }U}W 1,2

On the other hand, by (3.1),

lim
iÑ8

}⌧siU}W 1,2 “

?

2

ª

X´Z

p|u|2 ` |ru|2q “ }U}W 1,2 .

Therefore ⌧siU converges strongly to U in W 1,2. ⇤

3.3. Frequency functions. This section recalls some results on frequency functions

from [40].

Let U be a Z{2 harmonic spinor. On X ´ Z the section U can be locally written

as U “ rruss ` rr´uss. As before, we will use notations like |u| and |ru| to denote the

corresponding functions on X ´ Z if they can be globally defined. The functions |u|

and |ru| extend to X by defining them to be zero on Z.

The following C0 estimate was established in [40].

Lemma 3.8 ([40], Lemma 2.3). Let A Ä B be two open subsets of X, and assume

the closure of A is compact and contained in B. Then there exists a constant K,
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depending on A, B and the norms of the curvatures of X and V, such that

sup
xPA

|upxq|2 § K

ª

B

|upxq|2 dx.

Now introduce some notations. Fix a point x0 P X. Take R ° 0 such that

Bx0p500Rq Ä X is complete, and that the injectivity radius of X is greater than

1000R for every point in the ball Bx0p500Rq.

Later on we will need to work on both the Euclidean space and the manifold X,

so we need to di↵erentiate the notations. We will use Bxprq to denote the geodesic

ball on X with center x P X and radius r ° 0. Use B̄xprq to denote the Euclidean

ball with center x in the Euclidean space and radius r ° 0. When the center is the

origin, B̄prq is also used to denote B̄0prq. Use dpx, yq to denote the distance function

on X, and use |x´ y| to denote the distance function on R4.

For every x P Bx0p500Rq, use the normal coordinate centered at x to identify

Bxp500Rq with the ball B̄p500Rq Ä R4. Let gx be the function of metric matrices on

B̄p500Rq corresponding to Bxp500Rq. For each z P B̄p500Rq, let Kxpzq,xpzq be the

largest and smallest eigenvalue of gxpzq. Assume that R is su�ciently small so that

for every x P Bx0p500Rq, z P B̄p500Rq,

(3.2)
`11
12

˘2
§ xpzq § Kxpzq §

`12
11

˘2

In order to prove theorem 3.4, one only needs to study the rectifiability and the

Minkowski content of Z XBx0pR{2q.

For x P Bx0p500Rq, r P p0, 500Rs, define the height function

Hpx, rq “

ª

BBxprq
|u|2,

then Hpx, rq is always positive [40, Lemma 3.1]. Define

Dpx, rq “

ª

Bxprq
|ru|2,
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and define the frequency function

Npx, rq “
rDpx, rq

Hpx, rq
.

Section 3(a) of [40] proved the following monotonicity properties for N and H:

Lemma 3.9 ([40], (3.6) and Lemma 3.2). The functions N and H are absolutely

continuous with respect to r, and there exist constants  ° 0 and r0 ° 0, depending

only on the norms of curvatures of X and V on Bx0p1000Rq, such that when r § r0,

B

Br
H •

3

r
H ´ rH,(3.3)

B

Br
N • ´rp1`Nq.(3.4)

p
N

r
` rq

H

r3
•

B

Br
p
H

r3
q • p

N

r
´ rq

H

r3
(3.5)

By shrinking the size of R, we assume without loss of generality that r0 “ 500R,

hence inequalities (3.3), (3.4), and (3.5) hold for all x P Bx0p500Rq and r § 500R.

Inequality (3.3) gives the following lemma

Lemma 3.10 ([40], Lemma 3.1). There exists a constant  ° 0, such that when

s † r † 500R,

Hpx, rq •
`r
s

˘3
¨ e´pr2´s

2q
¨Hpx, sq.

Inequality (3.4) gives

Lemma 3.11. There exists a constant  ° 0, such that when s † r † 500R,

Npx, rq • e´pr2´s
2qNpx, sq ´ pr2 ´ s2q.

Since Npx, 500Rq is continuous with respect to x, lemma 3.11 implies that Npx, rq

is bounded for all x P Bx0p500Rq, r § 500R. Let ⇤ be an upper bound for N . From

now on ⇤ will be treated as a constant. For the rest of this article, unless otherwise
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stated, C, C1, C2, ¨ ¨ ¨ will denote positive constants that depend on ⇤, R, and the

norms of the curvatures of X and V , but independent of U . The values of C, C1, C2,

¨ ¨ ¨ may be di↵erent in di↵erent appearances.

If |g| § C ¨ f for some constant C, we write g “ Opfq.

Inequality (3.5) then implies that there exists a constant C such that

(3.6)
ˇ̌
ˇ
B

Br

`
lnp

H

r3
q
˘ˇ̌
ˇ “ Op

1

r
q.

Inequality (3.4) implies that there exists C ° 0, such that whenever r • s,

Npx, rq • Npx, sq ´ Cpr2 ´ s2q.

3.4. Smoothed frequency functions. We need to use a modified version of fre-

quency functions. Let � be a non-increasing smooth function on R such that �ptq “ 1

when t § 3{4, and �ptq “ 0 when t • 1. From now on � will be fixed, hence the

values of � and its derivatives are considered as universal constants. Following [10],

we define the smoothed frequency functions as follows.

Definition 3.12. For x P X, let ⌫x be the gradient vector field of the distance

function dpx, ¨q. For x P Bx0p500Rq, r § 500R, introduce the following functions

D�px, rq “

ª
|rupyq|2�

´dpx, yq
r

¯
dy,

H�px, rq “ ´

ª
|upyq|2dpx, yq´1�1

´dpx, yq
r

¯
dy,

N�px, rq “
rD�px, rq

H�px, rq
,

E�px, rq “ ´

ª
|r⌫xupyq|

2dpx, yq�1
´dpx, yq

r

¯
dy.

Inequality (3.6) has the following useful corollary.
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Lemma 3.13. There exists a constant C with the following property. Let r P p0, 32Rs.

Assume s1 § 10r, s2 • r{10. Then for any two points x, y with dpx, yq § r, one has

H�px, s1q § CpH�py, s2qq.

Proof. Since the constantK in lemma 3.1 only depends on the norms of the curvatures

and the sets A, B, a rescaling argument gives

|upzq|2 §
C1

r4

ª

Bzprq
|u|2, @Bzprq Ä Bx0p500Rq.

Therefore for every z P BBxps1q,

|upzq|2 §
C2

r4

ª

Byp12rq
|u|2.

On the other hand, inequality (3.6) and lemma 3.10 gives

1

r4

ª

Byp12rq
|u|2 §

C3

r3
Hpy, s2q.

Therefore

Hpx, s1q “ OpHpy, s2qq.

Apply (3.6) again, one obtains

Hpy, s2q “ OpH�py, s2qq,

H�px, s1q “ OpHpx, s1qq,

hence the lemma is proved. ⇤

Lemma 3.14. For x P Bx0p32Rq, r § 32R, one has

ª

Bxprq
|upyq|2dy “ OprH�px, rqq,

ª

Bxprq
|upyq||rupyq|dy “ OpH�px, rqq,
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ª

Bxprq
|rupyq|2dy “ Op

1

r
H�px, rqq.

Proof. The first equation follows from inequality (3.6) and lemma 3.10. For the third,

ª

Bxprq
|rupyq|2dy § D�px, 2rq

“
1

2r
N�px, 2rqH�px, 2rq

“ Op
1

r
H�px, rqq.

The second equation then follows from Cauchy’s inequality. ⇤

The main result of this section is the following proposition.

Proposition 3.15. The functions D�, H�, N�, and E� are smooth in both variables.

Assume x P Bx0p32Rq, r § 32R, and v P TxpXq. Consider the normal coordinate

centered at x with radius r, extend the vector v to a vector field on Bxprq by requiring

that the coordinate functions of v are constants. Then the following equations hold

D�px, rq “ ´
1

r

ª
�1
´dpx, yq

r

¯
r⌫xupyq ¨ upyq dy `OprH�px, rqq,(3.7)

BrD�px, rq “
2

r
D�px, rq `

2

r2
E�px, rq `OpH�px, rqq,(3.8)

BvD�px, rq “ ´
2

r

ª
�1
´dpx, yq

r

¯
r⌫xupyq ¨rvupyq dy `OpH�px, rqq,(3.9)

BrH�px, rq “
3

r
H�px, rq ` 2D�px, rq `OprH�px, rqq,(3.10)

BvH�px, rq “ ´2

ª
upyq ¨rvupyq dpx, yq

´1�1
´dpx, yq

r

¯
dy `OprH�px, rqq.(3.11)

The smoothness of the functions follows from the fact that � is smooth and |u|,

|ru| are both in L2.

Proof of (3.7). It was proved in [40, Section 2(c)] that

(3.12)

ª

BBxpsq
r⌫xupyq ¨ upyq dy “

ª

Bxpsq
|rupyq|2 dy `

ª

Bxpsq
xupyq,Rupyqy dy,
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where R is a bounded curvature term from the Weitzenböck formula.

Therefore, by lemma 3.14,

D�px, rq “ ´
1

r

ª
r

0

�1
´s
r

¯ ª

Bxpsq
|rupyq|2 dy ds

“ ´
1

r

ª
�1
´dpx, yq

r

¯
r⌫xupyq ¨ upyq dy `

1

r

ª
r

0

�1
´s
r

¯ ª

Bxpsq
xu,Ruy dy ds

“ ´
1

r

ª
�1
´dpx, yq

r

¯
r⌫xupyq ¨ upyq dy `OprH�px, rqq.

⇤

Proof of (3.8).

BrD�px, rq “ ´
1

r2

ª
|rupyq|2�1

´dpx, yq
r

¯
¨ dpx, yq dy

“ ´
1

r2

ª
r

0

�1
´s
r

¯
¨ s

ª

BBxpsq
|rupyq|2 dy ds(3.13)

It was proved in [40, Section 2(d)] that

ª

BBxpsq
|rupyq|2 dy “ 2

ª

BBxpsq
|r⌫xupyq|

2 dy `
2

s

ª

Bxpsq
|rupyq|2 dy

`
2

s

ª

Bxpsq
xupyq,Rupyqy dy ´

ª

BBxpsq
xR1upyq,rupyqy dy `

ª

BBxpsq
xupyq,R2upyqy dy,

where R, R1, R2 are smooth tensors, R and R2 are bounded, the norm of R1 is

bounded by C1 ¨ r.

Notice that

´

ª
r

0

�1
´s
r

¯
¨ s

ª

BBxpsq
|r⌫xupyq|

2 dy ds “ E�px, rq,

´
1

r

ª
r

0

�1
´s
r

¯ ª

Bxpsq
|rupyq|2 dy ds “ D�px, rq.

Plug into equation (3.13), we have
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BrD�px, rq “
2

r
D�px, rq `

2

r2
E�px, rq ´

1

r2

ª
r

0

�1
´s
r

¯
¨ s ¨

”2
s

ª

Bxpsq
xupyq,Rupyqy dy

´

ª

BBxpsq
xR1upyq,rupyqy dy `

ª

BBxpsq
xupyq,R2upyqy dy

ı
ds.

Lemma 3.14 implies

´
1

r2

ª
r

0

�1
´s
r

¯
¨ s ¨

”2
s

ª

Bxpsq
xupyq,Rupyqy dy `

ª

BBxpsq
xupyq,R2upyqy dy

ı
ds

“ OpH�px, rqq.

On the other hand,

ˇ̌
ˇ´

1

r2

ª
r

0

�1
´s
r

¯
¨ s ¨

”
´

ª

BBxpsq
xR1upyq,rupyqy dy

ı
ds
ˇ̌
ˇ

§C2 ¨

ª
r

0

ˇ̌
ˇ�1

´s
r

¯ˇ̌
ˇ
ª

BBxpsq
|upyq||rupyq| dy ds

§C3

ª

Bxprq
|upyq||rupyq|dy “ OpH�px, rqq.

Hence the result is proved. ⇤

Proof of (3.9). For a function Gpx, yq defined on X ˆ X and a vector field w, use

Bx
BwG to denote the directional derivative of G with respect to x, use By

BwG to denote

the directional derivative with respect to y.

The first variation formula of geodesic lengths gives

Bx

Bv
dpx, yq `

By

Bv
dpx, yq “ Opdpx, yq2q.

We have

Bx

Bv
D�px, rq “

1

r

ª
|rupyq|2�1

´dpx, yq
r

¯
¨
Bx

Bv
dpx, yq dy

“ ´
1

r

ª
|rupyq|2�1

´dpx, yq
r

¯
¨
By

Bv
dpx, yq dy `Oprq

ª

Bxprq
|rupyq|2
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“ ´

ª
|rupyq|2 ¨

By

Bv
�
´dpx, yq

r

¯
dy `OpH�px, rqq.(3.14)

One needs to establish the following lemma.

Lemma 3.16. Let F be the curvature of V, and teiu be an orthonormal basis of TX.

Let ' be a smooth function with supp ' Ä Bxprq. Then

ª
|ru|2Bv'

“ 2

ª
xd'brvu,ruy ´ 2

ª ÿ

i

'xF pv, eiqu,reiuy ´ 2

ª ÿ

i

'xrrv,eisu,reiuy

´

ª
|ru|2' divpvq ` 2

ª ÿ

i

'xrvu,rreiei
uy

` 2

ª ÿ

i

'xrvu,reiuy divpeiq ` 2

ª
'xrvu,R0uy,

where R0 is the curvature term in the Weitzenböck formula.

Proof of lemma 3.16. By lemma 3.7, there exists a sequence of smooth 2-valued sec-

tion Ui, such that Ui “ ´Ui and Ui Ñ U in W 1,2. By partitions of unity, integration

by parts works for Ui. For any Ui, locally write it as rrwss`rr´wss where w is a smooth

section of V , then

ª
|rw|2Bv'

“ ´

ª ÿ

i

'rvxreiw,reiwy ´

ª
|rw|2' divpvq

“ ´2

ª ÿ

i

'xreirvw,reiwy ´ 2

ª ÿ

i

'xF pv, eiqw,reiwy

´ 2

ª ÿ

i

'xrrv,eisw,reiwy ´

ª
|rw|2' divpvq

Here F denotes the curvature of V . For the first term in the formula above,

ª ÿ

i

'xreirvw,reiwy
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“ ´

ª ÿ

i

prei'qxrvw,reiwy ´

ª ÿ

i

'xrvw,reireiwy

´

ª ÿ

i

'xrvw,reiwy divpeiq

“ ´

ª ÿ

i

prei'qxrvw,reiwy `

ª ÿ

i

'xrvw,r
:
rwy

´

ª ÿ

i

'xrvw,rreiei
wy ´

ª ÿ

i

'xrvw,reiwy divpeiq

For the second term in the formula above, let R0 be the curvature term in the

Weitzenböck formula, then

ª ÿ

i

'xrvw,r
:
rwy “

ª
x'rvw,D

2w ´R0wy

“ ´

ª
'xrvw,R0wy `

ª
x⇢pr'qrvw,Dwy ´

ª
x'xrrv, Dsw,Dwy `

ª
'xrvpDwq, Dwy

“ ´

ª
'xrvw,R0wy `

ª
x⇢pr'qrvw,Dwy ´

ª
x'xrrv, Dsw,Dwy

´
1

2

ª
Bv'|Dw|2 ´

1

2

ª
'|Dw|2 divpvq

Therefore

ª
|rw|2Bv'

“ ´2

ª ÿ

i

'xF pv, eiqw,reiwy ´ 2

ª ÿ

i

'xrrv,eisw,reiwy ´

ª
|rw|2' divpvq

` 2

ª ÿ

i

prei'qxrvw,reiwy ` 2

ª ÿ

i

'xrvw,rreiei
wy ` 2

ª ÿ

i

'xrvw,reiwy divpeiq

` 2

ª
'xrvw,R0wy ´ 2

ª
x⇢pr'qrvw,Dwy ` 2

ª
x'xrrv, Dsw,Dwy

`

ª
Bv'|Dw|2 ´

ª
'|Dw|2 divpvq

Take limit Ui Ñ U , one has

ª
|ru|2Bv'
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“ ´2

ª ÿ

i

'xF pv, eiqu,reiuy ´ 2

ª ÿ

i

'xrrv,eisu,reiuy ´

ª
|ru|2' divpvq

` 2

ª ÿ

i

prei'qxrvu,reiuy ` 2

ª ÿ

i

'xrvu,rreiei
uy ` 2

ª ÿ

i

'xrvu,reiuy divpeiq

` 2

ª
'xrvu,R0uy ´ 2

ª
x⇢pr'qrvu,Duy ` 2

ª
x'xrrv, Dsu,Duy

`

ª
Bv'|Du|2 ´

ª
'|Du|2 divpvq

“ ´2

ª ÿ

i

'xF pv, eiqu,reiuy ´ 2

ª ÿ

i

'xrrv,eisu,reiuy ´

ª
|ru|2' divpvq

` 2

ª ÿ

i

prei'qxrvu,reiuy ` 2

ª ÿ

i

'xrvu,rreiei
uy

` 2

ª ÿ

i

'xrvu,reiuy divpeiq ` 2

ª
'xrvu,R0uy

Notice that
ÿ

i

prei'qxrvu,reiuy “ xd'brvu,ruy,

therefore the lemma is proved. ⇤

Back to the proof of equation (3.9). Take 'pyq “ �pdpx, yq{rq. By Lemma 3.14,

´2

ª ÿ

i

'xF pv, eiqu,reiuy ` 2

ª
'xrvu,R0uy “ OpH�px, rqq.

On the other hand, |divpvq| “ Oprq, and one can choose teiu such that |rv, eis| “ Oprq,

|divpeiq| “ Oprq, and |reiei| “ Oprq. Thus by lemma 3.14,

´ 2

ª ÿ

i

'xrrv,eisu,reiuy ´

ª
|ru|2' divpvq ` 2

ª ÿ

i

'xrvu,rreiei
uy

` 2

ª ÿ

i

'xrvu,reiuy divpeiq “ OpH�px, rqq.

Equation (3.9) then follows immediately from equation (3.14) and lemma 3.16. ⇤
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Proof of (3.10). By [40, Equation (2.11)],

(3.15) BsHpx, sq “
3

s
Hpx, sq ` 2Dpx, sq `

ª

Bxpsq
xu,Ruy `

ª

BBxpsq
t|u|2,

where R is a curvature term from the Weitzenböck formula, and t comes from the

mean curvature of BBxpsq. The function t satisfies |tpyq| “ Opdpx, yqq. Notice that

H�px, rq “

ª
r

0

´�1
ps{rq ¨

1

s
¨Hpsq ds “

ª 1

0

´�1
p�q

1

�
¨Hp�rq d�.

Therefore

BrH�px, rq

“

ª 1

0

´�1
p�q ¨ pBrHqp�rq d�

“

ª 1

0

´�1
p�q

” 3

�r
Hpx,�rq ` 2Dpx,�rq `

ª

Bxp�rq
xu,Ruy `

ª

BBxp�rq
t|u|2

ı
d�

“´
1

r

ª
r

0

�1
ps{rq

”3
s
Hpx, sq ` 2Dpx, sq `

ª

Bxpsq
xu,Ruy `

ª

BBxpsq
t|u|2

ı
ds

“
3

r
H�px, rq ` 2D�px, rq ´

1

r

ª
r

0

�1
ps{rq

” ª

Bxpsq
xu,Ruy `

ª

BBxpsq
t|u|2

ı
ds

“
3

r
H�px, rq ` 2D�px, rq `OprH�px, rqq.

⇤

Proof of (3.11). As in the proof of (3.9), for a function Gpx, yq, use Bx
BvG to denote the

directional derivative of G with respect to x, and use By
BvG to denote the directional

derivative with respect to y. Recall that we have

Bx

Bv
dpx, yq `

By

Bv
dpx, yq “ Opdpx, yq2q,

therefore

p
Bx

Bv
`

By

Bv
q

”
dpx, yq´1�1

´dpx, yq
r

¯ı
“ Op1q.
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We have

BvHpx, rq

“ ´

ª
|upyq|2

Bx

Bv

”
dpx, yq´1�1

´dpx, yq
r

¯ı
dy

“

ª
|upyq|2

By

Bv

”
dpx, yq´1�1

´dpx, yq
r

¯ı
dy `Op

ª

Bxprq
|u|2q

“ ´

ª
B

Bv
|upyq|2dpx, yq´1�1

´dpx, yq
r

¯
dy

´

ª
|upyq|2dpx, yq´1�1

´dpx, yq
r

¯
divpvqdy `OprH�px, rqq

“ ´ 2

ª
upyq ¨rvupyq dpx, yq

´1�1
´dpx, yq

r

¯
dy `OprH�px, rqq

The last equality follows from |divpvq| “ Oprq and
≥
Bxprq |u|

2
“ OprH�px, rqq. ⇤

Remark 3.17. When both X and V are flat, all the curvature terms in the computa-

tions above are zero. Therefore, proposition 3.15 becomes

D�px, rq “ ´
1

r

ª
�1
´dpx, yq

r

¯
r⌫xupyq ¨ upyq dy,

BrD�px, rq “
2

r
D�px, rq `

2

r2
E�px, rq

BvD�px, rq “ ´
2

r

ª
�1
´dpx, yq

r

¯
r⌫xupyq ¨rvupyq dy

BrH�px, rq “
3

r
H�px, rq ` 2D�px, rq

BvH�px, rq “ ´2

ª
upyq ¨rvupyq dpx, yq

´1�1
´dpx, yq

r

¯
dy

Corollary 3.18. Let ⌘xpyq “ dpx, yq ¨ ⌫xpyq. Under the assumptions of proposition

3.15, one has

(3.16) BvN�px, rq “
2

H�px, rq

ª
´

1

dpx, yq
�1
´dpx, yq

r

¯
¨

pr⌘xupyq ´N�px, rqupyqq ¨rvupyq dy `Oprq.
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(3.17) BrN�px, rq “
2

rH�px, rq

ª
´�1

´dpx, yq
r

¯
¨

dpx, yq´1
|r⌘xupyq ´N�px, rqupyq|

2 dy `Oprq,

As a consequence, there exists a constant C, such that
´
N�px, rq`Cr2

¯
is increasing

in r.

Proof. The first equation follows immediately from proposition 3.15 by combining

equations (3.9) and (3.11). For the first one, lemma 3.15 gives

BrN�px, rq “
2

rH�px, rq

´
E�px, rq ´

r2D�px, rq2

H�px, rq

¯
`Oprq,

and we have

E�px, rq ´
r2D�px, rq2

H�px, rq

“E�px, rq ´ 2rD�px, rqN�px, rq `N�px, rq
2H�px, rq

“

ª
´�1

´dpx, yq
r

¯
dpx, yq´1

|r⌘xupyq ´N�px, rqupyq|
2 dy `Opr2H�px, rqq

Hence the second equation is verified.

⇤

3.5. Compactness. This section proves a compactness result for Z{2 harmonic

spinors.

Consider the ball ⌦ “ B̄p5q Ä R4 centered at the origin. Let V be a fixed trivial

vector bundle on ⌦. Assume gn is a sequence of Riemannian metrics on ⌦, An is a

sequence of connenction forms on V , and ⇢n is a sequence of Cli↵ord bundle structures

of V . Assume that pgn, An, ⇢nq are compatible, and assume that pgn, An, ⇢nq converge

to pg, A, ⇢q in C8. Assume g is the Euclidean metric on B̄p5q. Then for su�ciently

large n, the injectivity radius at each point in Bp2q is at least 2.5. Without loss of

generality, assume that this property holds for every n.
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Fix ✏,⇤ ° 0. For every n, assume Un is a 2-valued section of V defined on B̄p5q,

with the following properties:

(1) The section Un is a Z{2 harmonic spinor on B̄p5q with respect to pgn, An, ⇢nq.

(2) Un satisfies assumption 3.2 with respect to ✏.

(3) Let N pnq
�

be the smoothed frequency function for the extended Un. Then

whenever N�px, rq is defined,

N pnq
�

px, rq § ⇤.

(4) Let Hpnq
�

be the smoothed height function of Un, then Hpnq
�

p0, 1q “ 1.

The main result of this section is the following proposition.

Proposition 3.19. Let Un be given as above. Then there exits a subsequence of tUnu,

such that the sequence converges strongly in W 1,2
pB̄p2qq to a section U . The section U

is a Z{2 harmonic spinor on B̄p2q with respect to pg, A, ⇢q, and U satisfies assumption

3.2 for a possibly smaller value of ✏. Moreover, Un converges to U uniformly on B̄p2q.

Proof. Fix a trivialization of V , and fix s P p0, 0.5q. The bound on N pnq
�

and the

assumption that Hpnq
�

p0, 1q “ 1 implies that }U}L2pB̄p2`sqq § C1 for some constant

C1. The upper bound on N� then implies }rAnU}L2pB̄p2`s{2qq § C2. Since An Ñ A

in C8, this implies that Un is bounded in W 1,2
pB̄p2 ` s{2qq. Therefore, there is

a subsequence of tUnu which converges weakly in W 1,2
pB̄p2 ` s{2qq and converges

strongly in L2
pB̄p2 ` s{2qq. To avoid complicated notations, the subsequence is still

denoted by tUnu. Denote the limit of tUnu on B̄p2` s{2q by U . Let Hpnq
�

, Dpnq
�

, N pnq
�

be the smoothed frequency functions for Un, let H�, D�, N� be the corresponding

functions for U . Since Un Ñ U strongly in L2, one has H�p0, 1q “ 1, thus U is not

identically 2rr0ss.
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By [40, Section 3(e)], there exists constants K ° 0 and ↵ P p0, 1q, depending on ✏,

⇤, R and the C1 norms of the curvatures of tgnu and An, such that

}Un}C↵pB̄p2`s{2qq § K.

By the Arzela-Ascoli theorem, there exists a further subsequence of tUnu which con-

verges uniformly to U on B̄p2 ` s{2q. Still denote this subsequence by tUnu. Since

solutions to the Dirac equation are closed under C0 limits, U is a Z{2 harmonic

spinor. U is also Hölder continuous, so it satisfies assumption 3.2.

Locally write Un as rrunss ` rr´unss, and write U as rruss ` rr´uss. The weak conver-

gence of Un to U implies

lim inf
nÑ8

ª

B̄p2q
|rAnun|

2
•

ª

B̄p2q
|rAu|

2.

We want to prove that

lim
nÑ8

ª

B̄p2q
|rAnun|

2
“

ª

B̄p2q
|rAu|

2.

Assume the contrary, then there exists a subsequence of n such that

ª

B̄p2q
|rAnun|

2
•

ª

B̄p2q
|rAu|

2
` �

for some � ° 0. Since
≥
B̄prq |rAu|2 is continuous in r, and

≥
B̄prq |rAnun|

2 is non-

decreasing in r for every n, there exists r P p2, 2` s{2q and � P p1, p2` s{2q{rq, such

that for every t P r2, rs,

(3.18)

ª

B̄ptq
|rAnun|

2
•

ª

B̄p�tq
|rAu|

2
` �{2
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Use Bnptq to denote the geodesic ball of center 0 and radius t with metric gn. Since

gn Ñ g, we have B̄ptq Ä Bnp�tq for su�ciently large n. Equation (3.18) then gives

(3.19)

ª

Bnp�tq
|rAnun|

2
•

ª

B̄p�tq
|rAu|

2
` �{2, for t P r2, rs

when n is su�ciently large.

By equation (3.15), for every t,

BtH
pnq

p0, tq “
3

t
Hpnq

p0, tq ` 2Dpnq
p0, tq `

ª

Bnptq
xu,Rpnquy `

ª

BBnptq
tpnq|u|2,

BtHp0, tq “
3

t
Hp0, tq ` 2Dp0, tq `

ª

B̄ptq
xu,Ruy `

ª

BB̄ptq
t|u|2,

where R
pnq and tpnq are bounded terms that are uniformly convergent to R and t as

n goes to infinity. The uniform convergence of |un| and gn then imply

lim
sÑ8

ª
�r

2�

Dpnq
p0, tq dt “

ª
�r

2�

Dp0, tq dt,

which contradicts (3.19). In conclusion,

lim
nÑ8

ª

B̄p2q
|rAnun|

2
“

ª

B̄p2q
|rAu|

2.

Since pAn, gnq Ñ pA, gq in C8, this implies

lim
nÑ8

}Ui}W 1,2pB̄p2qq “ }U}W 1,2pB̄p2qq,

therefore Ui convergence strongly to U in W 1,2
pB̄p2qq. ⇤

Corollary 3.20. Let � ° 1. Let g˚ be a metric on R4 given by a constant metric

matrix, such that all eigenvalues of the matrix are in the interval r�´2, �2
s.

Assume tpgn, An, ⇢nqun•1 is a sequence of geometric data on B̄p5�2
q, and assume

pgn, An, ⇢nq converge to pg˚, A, ⇢q in C8. Let Un be a Z{2 harmonic spinor on B̄p5�2
q

with respect to pgn, An, ⇢nq, such that the sequence Un satisfies conditions (2) to (4)
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listed before proposition 3.19. Then a subsequence of Un converges to a Z{2 harmonic

spinor in W 1,2
pB̄p2qq with respect to pg, A, ⇢q. The limit U satisfies assumption 3.2,

and the sequence Un converges to U uniformly.

Proof. Take a linear map T : R4
Ñ R4 such that T ˚

pg˚q is the Euclidean metric.

Then pT ˚gn, T ˚An, T ˚⇢n, T ˚Unq gives a sequence of Z{2 harmonic spinor on B̄p5�q.

Since T ˚gn converges to the Euclidean metric, one can apply lemma 3.19 and find a

convergent subsequence on B̄p2�q. Now pull back by T´1, one obtains a convergent

subseqence of Un on B̄p2q. ⇤

3.6. Frequency pinching estimates. For x P Bx0p32Rq and 0 † s † r § 32R,

define

W r

s
pxq “ N�px, rq ´N�px, sq.

This section proves the following estimate

Proposition 3.21. There exists a constant C with the following property. Let r P

p0, 8Rs. Assume x1, x2 P Bx0p32Rq, such that dpx1, x2q § r{4. Let x be a point on

the short geodesic � bounded by x1 and x2. Let v be a unit tangent vector of � at x.

Then

dpx1, x2q ¨ |BvN�px, rq| § C
”b

|W 4r
r{4px1q| `

b
|W 4r

r{4px2q| ` r
ı
.

The proof is adapted from the arguments in [10, Section 4]. First, one needs to

prove the following lemma.

Lemma 3.22. There exists a constant C, such that for every x P Bx0p32Rq and

r § 8R, one has

ª

Bxp3rq´Bxpr{3q
|r⌘xupyq ´N�px, dpx, yqqupyq|

2dy § CrH�px, rqpW
4r
r{4pxq ` Cr2q.
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Proof. By equation (3.17),

ª 4r

r{4
BsN�px, sqds`Opr2q

“

ª 4r

r{4

2

sH�px, sq

ª
´�1

´dpx, yq
s

¯
dpx, yq´1

|r⌘xupyq ´N�px, squpyq|
2 dyds

•
1

C1rH�px, rq

ª 4r

r{4

ª
´�1

´dpx, yq
s

¯
dpx, yq´1

|r⌘xupyq ´N�px, squpyq|
2 dyds

•
1

C1rH�px, rq

ª 4r

r{3

ª
´�1

´dpx, yq
s

¯
dpx, yq´1

|r⌘xupyq ´N�px, squpyq|
2 dyds

“ : pAq

For every pair py, sq in the support of the integration in pAq, one has dpx, yq P rr{4, 4rs,

hence

|N�px, sq ´N�px, dpx, yqq| § W 4r
r{4pxq ` C2r

2.

Therefore,

pAq •
1

C1rH�px, rq

ª 4r

r{3

ª
´�1

´dpx, yq
s

¯
dpx, yq´1

|r⌘xupyq ´N�px, dpx, yqqupyq|
2 dyds

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon
“:I

´

C3pW 4r
r{4pxq ` C2r2q

rH�px, rq

ª 4r

r{3

ª
´�1

´dpx, yq
s

¯
dpx, yq´1

”
|rupyq||upyq|dpx, yq ` |upyq|2

ı
dyds

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon
“:II

.

By lemma 3.14, II “ OprH�px, 4rqq “ OpprH�px, rqq. By Fubini’s theorem,

I “

ª

Bxp4rq
|r⌘xupyq ´N�px, dpx, yqqupyq|

2

ª 4r

r{3
´�1

´dpx, yq
s

¯
dpx, yq´1 dsdy

Notice that

inf
ty|dpx,yqPrr{3,3rsu

ª 4r

r{3
´�1

´dpx, yq
s

¯
dpx, yq´1 ds ° 0,

Therefore

I •
1

C4

ª

Bxp3rq´Bxpr{3q
|r⌘xupyq ´N�px, dpx, yqqupyq|

2 dy,
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In conclusion,

pAq •
1

C5rH�px, rq

ª

Bxp3rq´Bxpr{3q
|r⌘xupyq ´N�px, dpx, yqqupyq|

2 dy

´ C6pW
4r
r{4pxq ` C2r

2
q,

hence

C7rH�px, rqpW
4r
r{4pxq ` C8r

2
q •

ª

Bxp3rq´Bxpr{3q
|r⌘xupyq ´N�px, dpx, yqqupyq|

2dy.

⇤

One also needs the following technical lemma.

Lemma 3.23. Assume M is a compact manifold, possibly with boundary. Let '⇣ :

⌦ Ä Bx0p64Rq Ñ R4 be a smooth family of smooth embeddings, parametrized by

⇣ P M . For every ⇣ P M and x P Bx0p64Rq, one can define a vector field ⌘⇣
x
on

Bx0p64Rq as follows. For every y P Bx0p64Rq, let

⌘⇣
x
pyq “ rp'⇣

q˚pyqs
´1
p'⇣

pyq ´ '⇣
pxqq.

Then there exists a constant ⇥ ° 0, depending on ', such that

|⌘⇣
x
pyq ´ ⌘xpyq| § ⇥ ¨ dpx, yq2.

Proof. Fix x, compute the covariant derivates of ⌘⇣
x
and ⌘x at x. Since both vector

fields are zero at x, their covariant derivatives at x are independent of the connec-

tions. Let e P TxX. Taking derivate in the Euclidean coordinates '⇣ , one obtains

rep⌘⇣xqpxq “ e. Taking derivative in the normal coordinates centered at x, one ob-

tains rep⌘xqpxq “ e. Therefore, ⌘⇣
x
and ⌘x have the same derivatives at x. Since we

are working on compact manifolds, |⌘⇣
x
pyq ´ ⌘xpyq| § ⇥ ¨ dpx, yq2 for some constant ⇥

independent of x. ⇤
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Proof of proposition 3.21. Assume that v points from x1 towards x2. Extend v to a

vector field on Bxprq, such that the coordinates of v are constant under the normal

coordinate centered at x. Now apply lemma 3.23. Let M “ Bx0p32Rq. For every

⇣ P Bx0p32Rq, let '⇣ be the exponential map centered at ⇣. Then for every z P Bxprq,

(3.20) vpzq “
⌘x
x1
pzq ´ ⌘x

x2
pzq

|'xpx1q ´ 'xpx2q|
.

By lemma 3.23,

(3.21) |⌘x
x1
pzq ´ ⌘x1pzq| “ Opr2q, |⌘x

x2
pzq ´ ⌘x2pzq| “ Opr2q

Notice that since 'x is the exponential map centered at x,

(3.22) |'x
px1q ´ 'x

px2q| “ dpx1, x2q.

Combine (3.20), (3.21) and (3.22) together, one obtains

ˇ̌
ˇvpzq ´

⌘x1pzq ´ ⌘x2pzq

dpx1, x2q

ˇ̌
ˇ “ Opr2{dpx1, x2qq.

Define

Elpzq “ r⌘xl
upzq ´N�pxl, dpz, xlqqupzq for l “ 1, 2.

Then

dpx1, x2qrvupzq “r⌘x1
upzq ´r⌘x2

upzq `Opr2|ru|q

“
`
N�px1, dpz, x1qq ´N�px2, dpz, x2qq

˘
loooooooooooooooooooooomoooooooooooooooooooooon

“:E3pzq

upzq

` E1pzq ´ E2pzq `Opr2|ru|q.

To simplify notations, define the measure

dµx “ ´dpx, yq´1�1
´dpx, yq

r

¯
dy.
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Using (3.16), one can write

dpx1, x2q ¨ BvN�px, rq

“Opr2q `
2

H�px, rq

ª
r⌘xupyq ¨ pE1 ´ E2 ` E3u`Opr2|ru|qqdµx

´
2

H�px, rq

ª
uN�px, rq ¨ pE1 ´ E2 ` E3u`Opr2|ru|qqdµx

“
2

H�px, rq

ª
r⌘xupyq ¨ pE1 ´ E2qdµx

looooooooooooooooooooomooooooooooooooooooooon
“:pAq

´
2N�px, rq

H�px, rq

ª
u ¨ pE1 ´ E2qdµx

looooooooooooooooomooooooooooooooooon
“:pBq

`
2

H�px, rq

ª
E3upr⌘xu´N�px, rquq dµx

loooooooooooooooooooooooomoooooooooooooooooooooooon
“:pCq

`Opr2q

To bound pCq, notice that

E3pzq “ N�px1, rq ´N�px2, rqloooooooooooomoooooooooooon
“:E

` rN�px1, dpz, x1qq ´N�px1, rqsloooooooooooooooooomoooooooooooooooooon
“:E4pzq

´ rN�px2, dpz, x2qq ´N�px2, rqsloooooooooooooooooomoooooooooooooooooon
“:E5pzq

.

By (3.7),

ª
u ¨r⌘xu dµx “ rD�px, rq `Opr2H�px, rqq

“ N�px, rqH�px, rq `Opr2H�px, rqq

“ N�px, rq

ª
|u|2 dµx `Opr2H�px, rqq.

Hence ª
u ¨ pr⌘xu´N�px, rquqdµx “ Opr2H�px, rqq,

therefore ª
Eu ¨ pr⌘xu´N�px, rquqdµx “ Opr2H�px, rqq.
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By lemma 3.14,

2

ª
|u|p|r⌘xu| ` |N�px, rq||u|q dµx “ OpH�px, rqq.

In addition, notice that

sup
zP supp µx

|E4pzq| ` |E5pzq| § W 4r
r{4px1q `W 4r

r{4px2q ` C1r
2.

Therefore,

ª
p|E4| ` |E5|q ¨

ˇ̌
upr⌘xu´N�px, rquq

ˇ̌
dµx

§ C2H�px, rqpW
4r
r{4px1q `W 4r

r{4px2q ` C1r
2
q.

As a result,

pCq § C3pW
4r
r{4px1q `W 4r

r{4px2q ` C4r
2
q.

To bound pAq, use Cauchy’s inequality to obtain

pAq §
C5

H�px, rq

´ ª

Bxprq
|ru|2dy

¯1{2´ ª

Bxprq´Bxp3r{4q

`
E
2
1 ` E

2
2

˘
dy

¯1{2

§
C6

r1{2

´ ª

Bxprq´Bxp3r{4q

`
E
2
1 ` E

2
2

˘
dy

¯1{2
.

Now apply lemma 3.22,

ª

Bxprq´Bxp3r{4q
E
2
1 dy §

ª

Bx1 p5r{4q´Bx1 pr{2q
E
2
1 dy

§ C7rH�px1, rqpW
4r
r{4px1q ` C7r

2
q

A similar estimate works for the integral of E2. Therefore

pAq § C8

”b
|W 4r

r{4px1q| `

b
|W 4r

r{4px2q| ` r
ı
.
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Similarly, applying Cauchy’s inequality on pBq leads to

pBq §
C9

rH�px, rq

´ ª

Bxprq
|u|2dy

¯1{2´ ª

Bxprq´Bxp3r{4q

`
E
2
1 ` E

2
2

˘
dy

¯1{2

§
C10

r1{2

´ ª

Bxprq´Bxp3r{4q

`
E
2
1 ` E

2
2

˘
dy

¯1{2

Lemma 3.22 then gives

pBq § C11

”b
|W 4r

r{4px1q| `

b
|W 4r

r{4px2q| ` r
ı
,

and the proposition is proved. ⇤

Corollary 3.24. Assume x1, x2 P Bx0p32Rq, assume r P p0, 8Rs. If dpx1, x2q § r{4,

then

|N�px1, rq ´N�px2, rq| § C
”b

|W 4r
r{4px1q| `

b
|W 4r

r{4px2q| ` r
ı
.

⇤

3.7. L2 approximation by planes. This section develops a distortion bound analo-

gous to that of [10, Proposition 5.3]. Assume U satisfies assumption 3.2 with respect

to ✏ ° 0. In this section, the constants C, C1, C2, ¨ ¨ ¨ will denote constants that

depend on ⇤, R, the C1 norms of the curvatures, as well as ✏. The presentation of

this section is adapted from section 5 of [10].

Definition 3.25. Suppose µ is a Radon measure on R4. For x P R4, r ° 0, define

D2
µ
px, rq “ inf

L

r´4

ª

Bxprq
distpy, Lq2 dµpyq,

where L is taken among the set of 2-dimensional a�ne subspaces.

For a measure µ supported in Z, we wish to bound the value of D2
µ
px, rq in terms

of the frequency functions. However, we have to be careful, since X is a Riemannian

manifold, but D2
µ
px, rq is only defined for Euclidean spaces. We identify Bx0p32Rq
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with B̄p32Rq using the exponential map centered at x0. From now on, we will work

on the Euclidean space using this identification.

The main result of this section is the following

Proposition 3.26. There exists a positive constant R0 § R and a constant C with

the following property. Let µ be a Radon measure supported in Z. For x P B̄pRq and

r § R0, one has

D2
µ
px, r{8q §

C

r2

ª

B̄xpr{8q
pW 4r

r{4pzq ` Cr2qdµpzq.

First, observe that the function D2
µ
px, rq has the following geometric interpretation.

Assume µpB̄xprqq ° 0, let

z̄ “
1

µpB̄xprqq

ª

B̄rpxq
z dµpzq,

Define a non-negative bilinear form b on R4 as

bpv, wq “

ª

B̄xprq

`
pz ´ z̄q ¨ v

˘`
pz ´ z̄q ¨ w

˘
dµpzq.

Let 0 § �1 § ¨ ¨ ¨ § �4 be the eigenvalues of b, then

D2
µ
px, rq “ r´4

p�1 ` �2q.

Let vi be an eigenvector with eigenvalue �i, a straightforward argument of linear

algebra shows that

(3.23)

ª

Bxprq

`
pz ´ z̄q ¨ vi

˘
z dµpzq “ �i vi.

The following lemma can be understood as a version of Poincaré inequality for Z{2

harmonic spinors.

Lemma 3.27. There exist constants C,R0 ° 0 with the following property. Let

v1, v2, v3 be orthonormal vectors in R4. Let x P B̄pRq, r § R0. Assume ZXB̄xpr{8q ‰
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H, then ª

B̄xp5r{4q´B̄xp3r{4q

3ÿ

j“1

|rvjupzq|
2 dz •

H�px, rq

Cr
.

Proof. Assume such constants do not exist. Then there exists a sequence

tpxn, rn, Un, v
pnq
1 , vpnq2 , vpnq3 qun•1,

such that rn §
1
n
, the vectors vpnq1 , vpnq2 , vpnq3 are orthonormal in R4,

(3.24)

ª

B̄xn p5rn{4q´B̄xn p3rn{4q

3ÿ

j“1

|r
v
pnq
j
upzq|2 dz §

H�pxn, rnq

nrn
,

and Z X B̄xnprn{8q ‰ H.

Let � “ p12{11q2. Rescale the ball B̄xnp5�
2rnq to B̄p5�2

q, and normalize the

restriction of U . By assumption (3.2), the pull back metrics gn are given by matrix-

valued functions on B̄p5�2
q with eigenvalues bounded by 1{�2 and �2. There is a

subsequence of the pull backs of pgn, An, ⇢n, v
pnq
1 , vpnq2 , vpnq3 q that converges to some

data set pg, A, ⇢, v1, v2, v3q in C8, and since rn Ñ 0, the limit data set pg, A, ⇢q

is invariant under translations. By corollary 3.20, after taking a subsequence, the

rescaled Un converges to a Z{2 harmonic spinor U˚ on B̄p2q with respect to pg, A, ⇢q,

which satisfies assumption 3.2.

The assumption that Z X B̄xnprn{8q ‰ H implies that U˚ has at least one zero

point in B̄p1{8q. Inequality (3.24) gives

ª

B̄p5{4q´B̄p3{4q

3ÿ

j“1

|rvju
˚
pzq|2 dz “ 0

Theorem 3.3 implies that U˚ is not identically zero on B̄p5{4q ´ B̄p3{4q. Since U˚

solves the Dirac equation on non-zero points, the unique continuation property im-

plies that |U | is constant in 3 linearly independent directions in B̄p5{4q ´ B̄p3{4q,

hence theorem 3.3 implies that U is everywhere non-zero in B̄p5{4q, and that is a

contradiction. ⇤
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Now one can give the proof of proposition 3.26. The proof is adapted from the

proof of proposition 5.3 in [10].

Proof of proposition 3.26. Let R0 be given by lemma 3.27, and assume r § R0. With-

out loss of generality, assume that D2
µ
px, r{8q ° 0. In particular, µpB̄xpr{8qq ° 0,

thus Z X B̄xpr{8q ‰ H. Let

z̄ “
1

µpB̄xpr{8qq

ª

B̄xpr{8q
zdµpzq.

Let 0 § �1 § ¨ ¨ ¨ § �4 be the corresponding eigenvalues, then D2
µ
px, r{8q ° 0 implies

�2 ° 0. Let vi be the unit eigenvector with eigenvalue �i. Let gradupzq be the vector

in TzR4
b V , such that for every v P TzR4,

xv, grad upzqyR4 “ rvupzq.

By (3.2), }grad upzq}R4 § p
12
11q}ru}X . Equation (3.23) gives

´�ivi ¨ grad upyq “

ª

B̄xpr{8q

`
pz ´ z̄q ¨ vi

˘`
py ´ zq ¨ grad upyq ´ ↵upyq

˘
dµpzq

for any constant ↵. By Cauchy’s inequality

�2
i
|vi ¨ grad upyq|

2

§

ª

B̄xpr{8q

ˇ̌
pz ´ z̄q ¨ vi

ˇ̌2
dµpzq

ª

B̄xpr{8q

ˇ̌
py ´ zq ¨ grad upyq ´ ↵upyq

ˇ̌2
dµpzq

“�i

ª

B̄xpr{8q

ˇ̌
py ´ zq ¨ grad upyq ´ ↵upyq

ˇ̌2
dµpyq

Therefore, when �i ‰ 0,

�i|vi ¨ grad upyq|
2

§

ª

B̄xpr{8q

ˇ̌
py ´ zq ¨ grad upyq ´ ↵upyq

ˇ̌2
dµpzq.
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Integrate with respect to y on B̄xp5r{4q ´ B̄xp3r{4q, and sum up i “ 2, 3, 4,

ª

B̄xp5r{4q´B̄xp3r{4q

4ÿ

i“2

�i|vi ¨ grad upyq|
2 dy

§3

ª

yPB̄xp5r{4q´B̄xp3r{4q

ª

zPB̄xpr{8q

ˇ̌
py ´ zq ¨ grad upyq ´ ↵upyq

ˇ̌2
dµpzqdy

§3

ª

zPB̄xpr{8q

ª

yPB̄zp11r{8q´B̄zp5r{8q

ˇ̌
py ´ zq ¨ grad upyq ´ ↵upyq

ˇ̌2
dydµpzq.(3.25)

On the other hand,

r2D2
µ
px, rq

4ÿ

i“2

|vj ¨ grad upyq|
2
“r´2

p�1 ` �2q

4ÿ

i“2

|vj ¨ grad upyq|
2

§
2

r2

4ÿ

i“2

�i|vj ¨ grad upyq|
2

Therefore

r2D2
µ
px, rq

ª

B̄xp5r{4q´B̄xp3r{4q

4ÿ

i“2

|vj ¨ grad upyq|
2 dy

§
2

r2

ª

B̄xp5r{4q´B̄xp3r{4q

4ÿ

i“2

�i|vj ¨ grad upyq|
2 dy

By lemma 3.27, this implies

r2H�px, rqD
2
µ
px, rq §

C1

r

ª

B̄xp5r{4q´B̄xp3r{4q

4ÿ

i“2

�i|vj ¨ grad upyq|
2 dy

Therefore inequality (3.25) gives

(3.26) r2H�px, rqD
2
µ
px, rq

§
3C1

r

ª

B̄xpr{8q

ª

B̄zp11r{8q´B̄zp5r{8q

ˇ̌
py ´ zq ¨ grad upyq ´ ↵upyq

ˇ̌2
dy

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
“:Apz,rq

dµpzq.

where the constant C1 is independent of ↵.
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Notice that

Apz, rq § 3
´ ª

B̄zp11r{8q´B̄zp5r{8q

ˇ̌
⌘zpyq ¨ grad upyq ´N�pz, dpz, yqqupyq

ˇ̌2
dy

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon
“:A1pz,rq

`

ª

B̄zp11r{8q´B̄zp5r{8q
|py ´ zq ´ ⌘zpyq|

2
|grad upyq|2dy

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
“:A2pz,rq

`

ª

B̄zp11r{8q´B̄zp5r{8q

`
N�pz, dpz, yqq ´ ↵

˘2
|upyq|2dy

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
“:A3pz,rq

¯

Notice that by (3.2), we have B̄zp11r{8q´ B̄zp5r{8q Ä Bzp3r{2q´Bzpr{2q. Therefore,

by lemma 3.22,

A1pz, rq § C2rH�pz, rqpW
r

r{4pzq ` C2r
2
q.

By lemma 3.23 and lemma 3.14,

A2pz, rq “ Opr4
ª

Bzp3r{2q
|ru|2q “ Opr3H�px, rqq.

To bound A3pz, rq, first break it into two parts

A3pz, rq § C3

ª

Bzp3r{2q´Bzpr{2q

`
N�pz, dpz, yqq ´N�pz, rq

˘2
|upyq|2dy

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon
“:A4pz,rq

` C4

ª

Bzp3r{8q´Bzpr{2q

`
N�pz, rq ´ ↵

˘2
|upyq|2dy

looooooooooooooooooooooooomooooooooooooooooooooooooon
“:A5pz,rq

Here the balls Bzp3r{2q and Bzpr{2q are the geodesic balls on X, and the measure

dy is the volume form of X. The monotonicity of N� implies that

A4pz, rq §pW 4r
r{4pzq ` C5r

2
q

ª

Bzp3r{2q
|upyq|2dy

§C6rH�px, rqpW
4r
r{4pzq ` C5r

2
q.
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Now take p P Bxpr{8q, such that

|W 4r
r{4ppq| “ inf

qPBxpr{8q
|W 4r

r{4pqq|,

and take ↵ “ N�pp, rq. Then by lemma 3.24, for z P Bxpr{8q,

A5pz, rq §

ª

Bzp3r{2q´Bzpr{2q

`
C7p

b
|W 4r

r{4pzq| `
b
|W 4r

r{4ppq| ` rq
˘2
|upyq|2dy

§C8

`
W 4r

r{4pzq ` C8r
2
˘ ª

Bzp3r{2q´Bzpr{2q
|upyq|2dy

§C9rH�px, rq
`
W 4r

r{4pzq ` C8r
2
˘

In conclusion,

Apz, rq § C10rH�px, rq
`
W 4r

r{4pzq ` C11r
2
˘
.

Therefore proposition 3.26 follows from inequality (3.26). ⇤

3.8. Approximate spines.

Definition 3.28. Given a set of points tpiuki“0 Ä R4 and a number � ° 0, one

says that tpiuki“0 is �-linearly independent, if for every j P t0, 1, ¨ ¨ ¨ , ku, the distance

between pj and the a�ne subspace spanned by tpiuki“0ztpju is at least �.

Given a set F Ä R4, one says that F �-spans a k-dimsensional a�ne subspace, if

there exit pk ` 1q points in F that are �-linearly independent.

Lemma 3.29. If F is a bounded set that does not �-span a k-dimensional a�ne space,

then there exists a pk ´ 1q-dimensional a�ne space V , such that F is contained in

the 2�-neighborhood of V .

Proof. For k points tq1, ¨ ¨ ¨ , qku in R4, let V pq1, ¨ ¨ ¨ , qkq be the volume of the pk ´ 1q

dimensional simplex spanned by these points. Let tp1, ¨ ¨ ¨ , pku Ä F be k points in F
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such that

(3.27) V pp1, ¨ ¨ ¨ , pkq •
1

2
sup

q1,¨¨¨ ,qkPF
V pq1, ¨ ¨ ¨ , qkq.

If the volume V pp1, ¨ ¨ ¨ , pkq is zero, then F is contained in a pk ´ 1q-dimensional

a�ne subspace, and the statement is trivial. If the volume is positive, then the set

tp1, ¨ ¨ ¨ , pku spans a k ´ 1 dimensional a�ne space V . If F is contained in the 2�

neighborhood of V , then the statement is verified. Otherwise, there exists a point

pk`1 P F , such that the distance of pk`1 and V is greater than 2�. Let dj be the

distance between pj and the a�ne subspace spanned by tpiu
k`1
i“0 ztpju, then dk`1 • 2�.

By (3.27), 2dj • dk`1 for every j. Therefore tp1, ¨ ¨ ¨ , pk`1u is �-linearly independent,

and that contradicts the assumption on F . ⇤

As in section 3.7, use the normal coordinate centered at x0 to identify Bx0p32Rq

with the ball B̄p32Rq in R4. Recall that by assumption (3.2),

`11
12

˘2
§ x0pzq § Kx0pzq §

`12
11

˘2
,

where x0pzq and Kx0pzq are the upper and lower bound of the eigenvalues of the

metric matrix at z P B̄xp32Rq.

The compactness property of Z{2 harmonic spinors leads to the following lemma.

Lemma 3.30. Let �, �̄, �̃ P p0, 1q be given. Then there exits � ° 0, depending on

�, �̄, the upper bound ⇤ of the frequency function, the value of R, the curvatures of

X and V, and the constant ✏ in assumption 3.2, such that the following holds. If

x P B̄pRq, r § �, and tp1, p2, p3u is a set of �̄r-linearly independent points in B̄xprq,

such that

N�ppi, 2rq ´N�ppi, �̃rq † � i “ 1, 2, 3.

Let V be the a�ne space spanned by p1, p2, p3. Then the set Z X B̄xprq is contained

in the �r neighborhood of V X B̄xprq.
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Proof. Assume such � does not exist. Then there exist sequences tppnq
i

u
3
i“1, xn, and rn,

such that rn Ñ 0, the points tppnq
i

u
3
i“1 are contained in B̄xnprnq and are �̄rn-linearly

independent, and

N�pp
pnq
i

, 2rnq ´N�pp
pnq
i

, �̃rnq †
1

n
i “ 1, 2, 3,

and there exists yn P Z such that the distance from yn to the a�ne space spanned

by tppnq
i

u
3
i“1 is greater than �rn.

Let � “ 12{11. Rescale the balls B̄xnp10�
2rnq to radius 10�2, and normalize the

section U . Corollary 3.20 then gives a limit section U˚ which satisfies the following

properties:

(1) U˚ is a Z{2 harmonic spinor on B̄p4q, with respect to a translation-invariant

metric, the trivial connection on V , and a translation invariant Cli↵ord mul-

tiplication. U˚ satisfies assumption 3.2.

(2) There exist points p˚1 , p
˚
2 , p

˚
3 P B̄p1q, such that they are �̄-linearly independent,

and

(3.28) N�pp
˚
i
, 2q ´N�pp

˚
i
, �̃q “ 0 i “ 1, 2, 3,

(3) Let V ˚ be the a�ne space spanned by tp˚
i
u
3
i“1. There exits a point q P B̄p1q

in the zero set of U˚, such that the distance from q to V ˚
X B̄p1q is at least �.

Since U˚ is defined on a flat manifold with flat bundle, remark 3.17 indicates that

for U˚,

BrN�px, rq “
2

rH�px, rq

ª
´�1

´dpx, yq
r

¯
dpx, yq´1

|r⌘xupyq ´N�px, rqupyq|
2 dy.

Therefore equation (3.28) implies that for i P t1, 2, 3u, the section U˚ is homogeneous

on B̄p
˚
i
p2q ´ B̄p

˚
i
p�̃q with respect to the center p˚

i
. The unique continuation property

for solutions to the Dirac equation implies that U˚ is homogeneous on B̄p2q with
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respect to p˚
i
. An elementary argument (see for example [10, Lemma 6.8]) then

shows that the section U˚ is zero on the a�ne space V ˚, and that U˚ is invariant in

the directions parallel to V ˚. Therefore, property (3) of U˚ implies that U˚ is zero

on a 3-dimensional a�ne subspace, which contradicts theorem 3.3. ⇤

Similarly, one has

Lemma 3.31. Let �, �̄, �̃ P p0, 1q and ⌧ ° 0 be given. Then there exits � ° 0,

depending on �, �̄, �̃, ⌧ , the upper bound ⇤ of the frequency function, the value of

R, the curvatures of X and V, and the constant ✏ in assumption 3.2, such that the

following holds. Assume x P B̄pRq, and r § �, and tp1, p2, p3u is a set of points in

B̄xprq that is �̄r-linearly independent, such that

N�ppi, 2rq ´N�ppi, �̃rq † � i “ 1, 2, 3.

Let V be the a�ne space spanned by tpiu. Then for all y, y1 P B̄xprq X Z, one has

|N�py, �rq ´N�py
1, �rq| † ⌧.

Proof. Assume such � does not exist, then arguing as before, one obtains a 2-valued

section U˚ on B̄p4q with the following properties:

(1) U˚ is a Z{2 harmonic spinor on B̄p4q, with respect to a translation-invariant

metric, the trivial connection on V , and a translation invariant Cli↵ord mul-

tiplication. U˚ satisfies assumption 3.2.

(2) There exist points p˚1 , p
˚
2 , p

˚
3 P B̄p1q, such that they are �̄-linearly independent,

and

(3.29) N�pp
˚
i
, 2q ´N�pp

˚
i
, �̃q “ 0 i “ 1, 2, 3,
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(3) Let Z˚ be the zero set of U˚. There exist y, y1 P B̄p1q X Z˚, such that

|N�py, �q ´N�py
1, �q| • ⌧.

However, as in the proof of the previous lemma, the first two properties imply that

U˚ is invariant in the directions parallel to the plane V ˚ spanned by p˚1 , p
˚
2 , p

˚
3 , and

Z˚
Ä V ˚, which contradicts property (3). ⇤

3.9. Rectifiability and the Minkowski bound. This section only concerns esti-

mates on the Euclidean space. To simplify notations, for the rest of this section, use

Bxprq and Bprq to denote the Euclidean balls.

Definition 3.32. Let Z be a Borel subset of B̄pRq Ä R4. A function Ipx, rq defined

for x P Z and r § 128R is called a taming function for Z, if the following conditions

hold.

(1) Ipx, rq is non-negative, bounded, continuous, and is non-decreasing in r.

(2) Let �, �̄ P p0, 1q and ⌧ ° 0 be given. Then there exists ✏p�, �̄, ⌧q ° 0,

depending on �, �̄, ⌧ , such that the following holds. Assume x P B̄pRq, r § R,

and tp1, p2, p3u is a set of points in B̄xprq that is �̄r-linearly independent, such

that

Ippi, 2rq ´ Ippi, �r{2q † � i “ 1, 2, ¨ ¨ ¨ ,m´ 1.

Then for all y, y1 P B̄xprq X Z, one has

|Ipy, �r{2q ´ Ipy1, �r{2q| † ⌧.

(3) There exists a constant C, such that for every Radon measure µ supported in

Z, the following inequality holds for every x P B̄p2Rq and r § 2R:

D2
µ
px, rq §

C

r2

ª

B̄xprq
rIpz, 32rq ´ Ipz, 2rqs dµpzq.
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Theorem 3.33 ([10]). Assume Z is a Borel subset of BpRq and there exists a taming

function Ipx, rq for Z. Then the set Z X BpR{2q is 2-rectifiable and has finite 2-

dimensional Minkowski content.

The proof of theorem 3.33 follows almost verbatim from the arguments in sections

7 and 8 of [10]. Nevertheless, a proof is given here for the reader’s convenience.

The proof of theorem 3.33 makes use of two Reifenberg-type theorems. We state

the special cases of the theorems for dimension 4 and codimension 2.

Theorem 3.34 ([28], Theorem 3.4). There exist universal constants K0 ° 0 and

�0 ° 0 such that the following holds. Assume tBxipriqu is a collection of balls in

Bp2Rq, such that tBxipri{4qu are disjoint. Define a measure µ “
∞

i
r2
i
�xi. Suppose

ª

Bxprq

ª
r

0

D2
µ
pz, sq

s
dsdµpzq † �0r

2

for every Bxprq Ä Bp2Rq, then µpBpRqq § K0R2.

Theorem 3.35 ([1], Corollary 1.3). Assume S Ä BpRq is a H2-measurable set and

has finite Hausdor↵ measure, let � be the restriction of H2 to S. Assume that for

�-a.e. z, ª
R

0

D2
�
pz, sq

s
ds † `8,

then S is 2-rectifiable.

Proof of theorem 3.33. Assume Bxprq Ä BpRq. If one rescales Bxprq to BpRq, then

the function I
1
py, sq “ Ipx`pryq{R, sr{Rq is a taming function for rpA´xq ¨pR{rqsX

BpRq with the same function ✏p�, �̄, ⌧q and constant C. Therefore definition 3.32 is

invariant under rescaling, thus one only needs to consider the case for R “ 2.

Let � “ 1{10. Let �̄ § 1{100 be a positive universal constant, let ⌧ ° 0 be a

constant that is defined by �̄ and C, and let � ° 0 be a constant that is defined
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by �̄, ⌧ , the function ✏ and the constant C. The exact values for �̄, ⌧ and � will be

determined later in the proof.

Let ⇤ be an upper bound of I, namly ⇤ • sup
xPA,x§128R

Ipx, rq “ sup
xPA

Ipx, 256q.

Define

D�prq “ BpR{2q X tx P Z|Ipx, �r{2q • ⇤´ �u.

Define

W r2
r1
pxq “ Ipx, r1q ´ Ipx, r2q.

If tBxipriqu is a family of balls, we call the sum
∞

i
r2
i
its 2-dimensional volume.

Step 1. First, require that � † ✏p�, �̄, ⌧q. For Bxprq Ä Bp2q, and a set A Ä

Z XBxprq, define an operator FA, which turns Bxprq into a finite set of balls. It has

the property that either FApBxprqq “ tBxprqu, or FApBxprqq is a family of balls with

radius �r. In either case, the balls in the family FpBxprqq will cover the set A. The

operator FA is defined as follows. If A X D�prq does not �̄r-span a 2-dimensional

a�ne space, then it is called “bad”. Otherwise, it is called “good”. In the bad case,

define FApBxprqq “ tBxprqu. In the good case, cover A by a family of balls tBxip�rqu

with the following properties

(1) The distance between xi and xj is at least �r{2 for @i ‰ j,

(2) Each xi is an element of A.

Define FApBxprqq to be the family tBxip�rqu.

Obviouly the descriptions above do not uniquely specify the operator FA. When

there are more than one possibilities, choose one arbitrarily.

If Bxprq is a good ball, let p1, p2, p3 P D�prq X Bxprq be three points that �̄r span

a plane, let FpBxprqq “ tBxip�rqu. By condition (2) of definition 3.32,

|Ipxi, �r{2q ´ Ippi, �r{2q| § ⌧.
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Therefore

(3.30) Ipxi, �r{2q • ⇤´ � ´ ⌧

The operator FA can be extended to act on a collection of balls. Assume tBxiprqu
n

i“1

is a collection of balls with the same radius. Let A Ä
î

Bxiprq X Z. Assume

tBxiprqu
k

i“1 are the good balls, and tBxiprqu
n

i“k`1 are the bad balls. Then there exists

a collection of balls tByjp�rqu, such that

(1) tByjp�rqu covers
î

k

i“1pAXBxiprqq.

(2) |yj ´ yl| • �r{2, for @j ‰ l.

(3) yj P
î

k

i“1 AXBxiprq, for @j.

Inequality (3.30) still holds when xi is replaced by yj. Define FAtBxiprqu to be the

union of tByjp�rqu and tBxiprqu
n

i“k`1.

Step 2. Let N ° 0 be a positive integer. Let A0px, rq “ Z X Bxprq. Apply the

operator FA0 to Bxprq to obain a set of balls, which we denote by S1px, rq. Assume

S1px, rq splits to two sets S1px, rq “ S1,gpx, rq
î

S1,bpx, rq, where S1,gpx, rq is the

collection of good balls and S1,bpx, rq is the collection of bad balls. Let

A1px, rq “ A0px, rq ´
§

Bxi priqPS1,bpx,rq
Bxipriq.

Apply FA1px,rq to S1,gpx, rq and obtain a new set of balls

S2px, rq “ FA1px,rqpS1,gpx, rqq
§

S1,bpx, rq.

Similarly, write S2px, rq “ S2,gpx, rq
î

S2,bpx, rq, and define

A2px, rq “ A1px, rq ´
§

Bxi priqPS2,bpx,rq
Bxipriq,
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and define S3 “ FA2pS2,gq
î

S2,b. Repeat the procedure N times to obtain a set of

balls SNpx, rq.

The family SNpx, rq has the following property. If Bx1pr1q and Bx2pr2q are two

distinct elements of SNpx, rq, then

(3.31) |x1 ´ x2| • pr1 ` r2q{4.

Inequality (3.31) can be proved by induction. ForN “ 1, it follows from the definition

of FA. Assume (3.31) holds for N ´ 1, and write SN “ FAN´1pSN´1,gq
î

SN´1,b.

Let Bx1pr1q, Bx2pr2q P SN . If both Bx1pr1q, Bx2pr2q P FAN´1pSN´1,gq, then (3.31)

follows from the definition of F . If both Bx1pr1q, Bx2pr2q P SN´1,b, then (3.31) follows

from the induction hypothesis. If Bx1pr1q P FAN´1pSN´1,gq, Bx2pr2q P SN´1,b, then

x1 R Bx2pr2q. By the construction of F , one has r1 § �r2. Since � “ 1{10, one has

|x1 ´ x2| • r2 • pr1 ` r2q{2.

By (3.30), either SN “ tBxprqu, or

(3.32) Ipxi, ri{2q • ⇤´ � ´ ⌧, @Bxipriq P SN .

Step 3. We claim that there exists a universal constant K1 ° 1, such that for ⌧

and � su�ciently small, we have

(3.33)
ÿ

Bxi priqPSN px,rq
r2
i

† K1 r
2.

Without loss of generality, assume SNpx, rq ‰ tBxprqu. Let rj “ �N´j r. Define

Radon measures

µ “

ÿ

BypsqPSN px,rq
s2�y,

µj “

ÿ

BypsqPSN px,rq,s§rj

s2�y.
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Notice that by (3.31), there exists a universal constant K2 such that

(3.34) µ0ppBxpr0qq § K2 r
2
0, @x.

Let K0 be the constant given by theorem 3.34, let K3 “ maxtK0, K2u. We prove

that if ⌧, � is chosen su�ciently small, then for every j “ 0, 1, ¨ ¨ ¨ , N ´ 3, and every

Byprjq Ä Bxp2rq, one has

(3.35) µjpByprjqq § K3 r
2
j
.

The claim is proved by induction on j. The case for j “ 0 follows from (3.34). Assume

that the claim is proved for 0, 1, ¨ ¨ ¨ , j, and j † N ´ 3. Then there exists a universal

constant M ° 1, such that for every y P Bxp2rq, k § j ` 1, and s P rrk{2, 2rks,

(3.36) µk`3ppBypsqq § M pK3 ` 1q s2

We want to use theorem 3.34 and (3.36) to prove

µj`1ppByprj`1qq § K3 r
2
j`1, for @Byprj`1q Ä Bxp2rq.

If µj`1pByprj`1qq “ 0, the inequality is trivial. From now on assume µpByprj`1qq ° 0.

Since rj`1 § rN´3 “ r{8, and suppµ Ä Bxprq, we have Byp4rj`1q Ä Bxp2rq.

Notice that for Bxipsiq P SN , if t † min
k

|xi ´ xk|, then

D2
µ
pxi, tq “ 0.

Define

W
32t
2t pxiq “

$
’’&

’’%

0 if t † si{4,

W 32t
2t pxiq if t • si{4.
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Inequality (3.31) and condition (3) of definition 3.32 gives

(3.37) D2
µ
pq, tq § C

ª

Bqptq

W
32t
2t ppq

t3
dµppq

for every pq, tq.

For Bzpsq Ä Byp2rj`1q, assume s P rrk{2, 2rks for k § j` 1. Inequality (3.37) gives

ª

Bzpsq

ª
s

0

D2
µj`1

pq, tq

t
dt dµj`1pqq

§C

ª

Bzpsq

ª
s

0

ª

Bqptq

W
32t
2t ppq

t3
dµj`1ppq dt dµj`1pqq

§C

ª

Bzpsq

ª
s

0

ª

Bqptq

W
32t
2t ppq

t3
dµk`3ppq dt dµk`3pqq(3.38)

§C

ª

Bzp2sq

ª
s

0

ª

Bpptq

W
32t
2t ppq

t3
dµk`3pqq ds dµk`3ppq

§CMpK3 ` 1q

ª

Bzp2sq

ª
s

0

W
32t
2t ppq

t
dt dµk`3ppq,(3.39)

where inequality (3.38) follows from (3.31). For p P suppµj`1, let sp be the radius of

ball in SN with center p. If s • sp{4, then

ª
s

0

W
32t
2t ppq

t
dt “

ª
s

sp{4

W 32t
2t ppq

t
dt “

ª 32s

2s

Ipp, tq dt´

ª 16sp

sp{a
Ipp, tq dt

§ W 32s
sp{2ppq

ª 32

2

1

t
dt § lnp16q p� ` ⌧q.(3.40)

The last inequality above follows from (3.32). Therefore, the right hand side of (3.39)

is bounded by

CMpK3 ` 1q

ª

Bzp2sq

ª
s

0

W
32t
2t ppq

t
dt dµk`3ppq

§CMpK3 ` 1qµk`3pBzp2sqq lnp16q p⌧ ` �q § 4CM2
pK3 ` 1q2 lnp16qp⌧ ` �q s2
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Let �0 be the constant given by theorem 3.34. Take

⌧ †
�0

8CM2pK3 ` 1q2 lnp16q
,

and

� †
�0

8CM2pK3 ` 1q2 lnp16q
,

then the conditions of theorem 3.34 are satisfied, therefore µj`1ppByprj`1qq § K0 r2j`1.

By induction, (3.35) is proved. Inequality (3.33) then follows from (3.35) by the the

case of j “ N ´ 3.

Step 4. By lemma 3.29, the result obtained from the previous steps can be

summarized as follows. For any integer N ° 0, and any ball Bxprq, there is a

covering of Z X Bxprq by a family of balls SNpx, rq “ tBxipriqui, such that the

following properties hold:

(1) The radius of each ball is at least �N r.

(2) For a all Bxipriq P SN , either ri “ �N r, or ri “ �j r for some integer j † N ,

and Bxipriq XD�priq is contained in the 2�̄ri neighborhood of a line.

(3)
∞

i
r2
i

§ K1 r2.

As a consequence,

Lemma 3.36. There exists a universal constant K1 ° 1, and a constant �, such that

the following property holds. For any Bxprq Ä Bp2q, and s P p0, rq, there exists a

covering of Z XBxprq by balls S “ tBxipriqui, such that

(1) The radius of each ball is at least �s.

(2) For a ball Bxipriq P S, either ri § s, or Bxipriq X D�priq is contained in the

2�̄ri neighborhood of a line.

(3)
∞

i
r2
i

§ K1 r2.

Step 5. We prove the following lemma



158

Lemma 3.37. There exists a universal constant K4, and a constant �, such that the

following property holds. For any Bxprq Ä Bp2q, and s P p0, rq, there exists a splitting

of Z into Z “
î

i
Ei, and a family of balls S “ tBxipriqui, such that

(1) Ei Ä Bxipriq.

(2) The radius of each ball is at least 4�̄s.

(3) For a ball Bxipriq P S, either ri P r4�̄s, ss, or Bxipriq XD�priq “ H

(4)
∞

i
r2
i

§ K4 r2.

Proof of lemma 3.37. Notice that by the assumptions on � and �̄, we have 4�̄ † �.

If tBxipriqui is a covering of Z X Bxprq that satisfies the three properties given by

lemma 3.36 with respect to s, we say that tBxipriqui is an s-admissible covering of

Bxprq X Z. Fix s ° 0, by lemma 3.36, s-admissible coverings of Bxprq X Z exist.

Let tBxipriqu be an s-admissible covering of BxprqXZ. Let Ei “ ZXBxipriq. Then

the family t
`
Ei, Bxipriq

˘
u satisfies conditions (1), (2) of lemma 3.37, and

∞
i
r2
i

§

K1 r2. However, it may not satisfy condition (3). In the following, we will give

a procedure to adjust the family, such that at each step the covering still satisfies

property (2) of s-admissibility, and after finitely many steps of adjustments, the

family will satisfy property (3) of lemma 3.37. At the same time,
∞

i
r2
i
is being

contorlled throughout the adjustments.

Assume tBxipriqu is an s-admissible covering of Bxprq X Z, and Ei Ä Bxipriq,

BxprqXZ “
î

Ei. Assume
`
E0, Bx0pr0q

˘
does not satisfy property (3) of lemma 3.37.

Then r0 ° s.

By property (2) of s-admissibility, Bx0pr0qXD�pr0q is contained in the 2�̄r0 neigh-

borhood of a line. Thus one can cover Bx0pr0q X D�pr0q by a family of no more

than r10{�̄s balls with radius 4�̄r0. Let tByjptjqu be this family. If 4�̄r0 ° s, apply

lemma 3.36 again to each ball Byjptjq and replace it with an s-admissible covering

of Byjptjq X D�pr0q. Otherwise keep the family tByjptjqu as it is. Let tBzjpljqu be
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the result of this procedure. Then tBzjpljqu covers Bx0pr0q XD�pr0q, and it has the

following properties

(1) 4�̄s § lj § 4�̄r0 for each j,

(2)
∞

j
l2
j

§ r10{�̄s ¨K1 p4�̄r0q2.

Take �̄ § 1{p320K1q, then
∞

j
l2
j

§
1
2r

2
0.

The adjustment of the family t
`
Ei, Bxipriq

˘
u is defined as follows. First, remove

pE0, Bx0pr0qq from the family, and add pE0zD�pr0q, Bx0pr0qq into the family. Next, add

the family t
`
E0XBzjpljq, Bzjpljq

˘
u constructed from the previous paragraph into this

family.

This adjustment replaces an element pE0, Bx0pr0qq which does not satisfy property

(3) of lemma 3.37 by a family of balls, such that the biggest ball in this family has

the same radius r0 and satisfies property (3). The rest of the balls have radius in the

interval r4�̄s, 4�̄r0s and their 2-dimensional volume is bounded by 1
2r

2
0. Moreover, the

new family still satisfies property (2) of lemma 3.36. Therefore, after finitely many

times of adjustments, we will obtain a family that satisfies conditions (1), (2), (3),

with 2-dimensional volume
ÿ

i

r2
i

§ 2K1 r
2,

hence the lemma is proved. ⇤

Step 6. Given s P p0, 1q, we use lemma 3.37 to construct a covering of Z X Bp1q

by a family of balls tBxipriqu with radius ri P r4�̄s, ss, such that the 2-dimensional

volume of the covering is bounded.

We call a family tpEi, Bxipriqqu a split-covering of a set A, if Ei Ä Bxipriq, and

A “
î

Ei.

If a split-covering of ZXBxprq satisfies the properties given by lemma 3.37, we say

that it is strongly s-admissible.



160

Let S be a strongly s-admissible split-covering of Z XBp1q. For every Bxipriq P S,

if ri § s, we say it is of type I. Otherwise, we say it is of type II. Assume Bxipriq is a

ball of type II, then the function Ipx, rq is at most ⇤´ � for x P Ei, ri § �ri{2. There

exists a universal constant L such that Ei can be covered by L balls Byjp�ri{512q with

radius p�ri{512q. Therefore, for each ball, the set Ei X Byjp�ri{512q has a strongly

s-admissible split-covering, with ⇤ replaced by ⇤´ �.

Change pBxipriq, Eiq to the union of the L strongly s-admissible split-coverings of

EiXByjp�ri{512q, we obtain a split-covering of Ei with 2-dimensional volume at most

LK4p�ri{512q2. Define an operation G on S, such that GpSq is constructed from S by

replacing every type II element in S with the union of the L split-coverings described

above.

Notice that for the balls Byjp�ri{512q, the upper bound ⇤ is replaced by ⇤ ´ �.

Therefore, this procedure can only be carried for at most N “ r⇤
�
s times. After that,

every ball in G
pNq

pSq is of type I. Namely, every ball in G
pNq

pSq has radius in the

interval r4�̄s, ss.

Let Vn be the 2 dimensional volume of Gpnq
pSq, then we have

Vn`1 § p1` LK4p�{512q
2
qVn.

Therefore the total 2-dimensional volume of Gpnq
pSq is bounded by

Vn § p1` LK4p�{512q
2
q
NK4.

Since s can be taken to be arbitrarily small, the Minkowski content of Z XBp1q is

bounded by a contant K depending on ⇤, ✏ and C.

By rescaling, we conclude that the Minkowski content of Z X Bxprq is bounded

by K r2. Since the Minkowski content bounds the Hausdor↵ measure, there exists a
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constant K 1 depending on ⇤, ✏ and C, such that

(3.41) H2pZ XBxprqq § K 1 r2.

Step 7. Now invoke theorem 3.35. Let � be the restriction of H2 to Z. By (3.41),

ª

Bp1q

ª 1

0

D2
�
pz, sq

s
ds d�pzq §C

ª

Bp1q

ª 1

0

ª

Bzpsq

W 32s
2s ppq

s3
d�ppq ds d�pzq

§C

ª

Bp2q

ª 1

0

ª

Bppsq

W 32s
2s ppq

s3
d�pzq ds d�ppq

§CK 1
ª

Bp2q

ª 1

0

W 32s
2s ppq

s
ds d�ppq

The same estimate as (3.40) gives

ª 1

0

W 32s
2s ppq

s
ds § lnp16q⇤.

Thus

CK 1
ª

Bp2q

ª 1

0

W 32s
2s ppq

s
ds d�ppq § 4CpK 1

q
2 lnp16q⇤ † 8

Therefore, the conditions of theorem 3.35 are satisfied for Z XBp1q, hence Z XBp1q

is a rectifiable set, and the result is proved. ⇤

Proof of theorem 3.4. LetR0 be the constant given by proposition 3.26. CoverBx0pRq

by finitely many Euclidean balls of radius R0{32. Let BxipR0{32q be such a ball, we

claim that there exists a constant C such that

Ipx, rq “ N�px, rq ` Cr2

is a taming function for Z XBxipR0{16q on the ball BxipR0{16q.

In fact, it follows from the definition that N�px, rq is non-negative and continuous.

By equation (3.17), there exists C1 ° 0 such that I1px, rq “ N�px, rq ` C1r2 is

increasing in r. By proposition 3.26, there exists C2, such that for I2px, rq “ I1px, rq`



C2r2, one has

D2
µ
px, rq §

C1

r2

ª

Bxprq
rI2p32rq ´ I2p2rqsdµpxq

for every Radon measure supported in Z X BxipR0q and r § 8R0, thus I2 satisfies

condition (3) of definition 3.32.

Notice that since I1px, rq is increasing in r, for �̃ ° 0, the inequality

I2px, 2rq ´ I2px, �̃rq † �

implies that r †

a
�{p4C2q. Therefore, lemma 3.31 implies I2 satisfies condition (2)

of definition 3.32.

In conclusion, I2px, rq is a taming function for Z on BxipR0{16q, therefore theorem

3.4 follows from theorem 3.33. ⇤
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