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STOCHASTIC MODELS OF EVOLUTIONARY DYNAMICS

ABSTRACT

Stochasticity is a fundamental component of evolution. Many essential evolutionary phenomena cannot be modeled
without it. In developing and analyzing stochastic processes that model the dynamics of evolution, this dissertation
applies tools from probability theory to study fundamental mathematical principles of evolution. These principles
determine how the timeline of macroscopic evolution is constructed by the accumulation of many microscopic changes.

At the microscopic scale, we focus on populations of reproducing individuals. Even under neutral evolution, the
complex interaction between mutation and genealogy produces intricate dynamics. In this setting, we prove a very
general result about equilibrium frequencies of genotypes, bound the mixing time to equilibrium, and find exact
expressions for localization in genotype space for a general class of neutral evolutionary processes.

Population structure is known to affect the dynamics and outcome of evolutionary processes, but analytical
results for generic random structures have been lacking. We consider a finite population under constant selection
whose structure is given by a variety of weighted, directed, random graphs; vertices represent individuals and edges
interactions between individuals. By establishing a robustness result and using large deviation estimates to understand
the typical structure of random graphs, we prove that the fixation probability of an invading mutant in a randomly
structured population is approximately the same as that of a mutant of equal fitness in a well-mixed population with
high probability.

At the macroscopic scale, much is known about the timeline of life and evolution on Earth. However, current
mathematical models say very little about evolution on these macroscopic timescales and are limited to describing
microscopic evolutionary events, like fixation, that occur over relatively few generations. We describe several math-
ematical properties of genotype space, which provides the stage for long term evolution. These properties are then
incorporated into a model of macroscopic evolution that accumulates many microscopic events. In the weak mutation
and weak selection regime, we study the time evolution takes to discover novel functionality. Finally, we describe a

mechanism called the regeneration process that suggests how evolution might behave like a tinkerer when innovating.
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INTRODUCTION

Evolution by natural selection can be interpreted very broadly. Any process where information is reproduced imper-
fectly and with differing rates dependent on that information evolves. Stochasticity is intrinsic to this description,
and enters into evolution in two main ways. First, via mutation or incorrect copying of information. Second, in how
fitness is evaluated by the environment. The increasing appreciation for the generality of this paradigm of evolution
is due partly to the success of describing it mathematically [1]. The specific mechanisms that copy the information
in an evolutionary process distinguish evolution dynamics from general stochastic processes. In this dissertation,
we examine the component parts of evolution by natural selection mathematically, and eventually integrate them
together into models of neutral evolution, evolution over long timescales, and evolution in structured populations.
This dissertation is based primarily on the content of four of our papers [2-5] and other currently unpublished results.
Two more of our papers [6,7] are within the field of stochastic evolutionary dynamics, but are outside of the focus of
this dissertation.

The dissertation has three main themes neutral evolution, longterm or macroscopic evolution, and randomly

structured populations. Neutral evolution and the effects of population structure are standard topics in mathematical



biology, but macroscopic evolution requires some preamble.

Modern physics has helped us understand our place in the universe and dramatically changed our perception of
time [8]. Cosmological inflation lasted for less than 10732 seconds, yet explains the origin of the large-scale structure
of the cosmos. Galaxies and solar systems formed over billions of years. Both processes occurred over vastly different

timescales. Mathematical models have been essential for developing our understanding of these timescales.
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Figure 1.1: Timelines of the physical universe and life [9].

We have learned much about the timeline of evolution from geological and archeological evidence [10]. Life is
estimated to have originated as early as 260 million years after the Earth. It took a further 780 million years for
photosynthesis to evolve. Was evolution poised to take advantage of an environmental change or can the discovery

of novel functionalities take this magnitude of time? Geological evidence suggests that the evolution of eukaryotes



and multicellular life is on a similar timescale to photosynthesis. However, the Cambrian explosion, during which the
majority of animal phyla evolved, was only 541 million years ago. Is it possible for mathematical models of evolution
to explain why the timeline of evolution has this structure?

Immediately following the publication of the Origin of Species, objections were raised that evolution by natural
selection could not have had sufficient time to produce the diversity and complexity of life, given contemporary
estimates for the age of the earth as approximately 100 million years [11]. Modern physics has since clarified the age
of our planet and it is accepted that these 4.54 billion years are adequate for natural selection. However, what are
the principle differences in these timescales for evolution [12]?

Our current mathematical models say very little about evolution on these macroscopic timescales and are limited
to describing microscopic evolutionary events, like fixation, that occur over relatively few generations [1,13]. In
Chapter 2, we discuss some observations about genotype spaces, which provides the stage for long term evolution.
Then, in Chapter 5, we describe a model for macroscopic evolution that accumulates many microscopic events, in the
weak mutation and weak selection regime. We find that in this model, evolutionary discoveries can be compared to
sampling independently from a specified distribution. Next, we describe a mechanism called the regeneration process
that leads to efficient evolution and suggests how evolution might behave as a tinkerer [14].

However, there is a philosophical objection to studying the question of how long evolution takes to discover specific
functionalities [15]. Evolution by natural selection does not try to find novel functionalities, it merely describes the
competition between types with different rates of replication. Mutations that happen to increase this rate are
selected for, but evolution does not try to find such mutations. Asking about the evolution of specific functionalities,
is analogous to observing the winning numbers in a lottery, then observing how unlikely those specific numbers were
and asking how many resamples it would take to get the same numbers again.

We are sympathetic to this objection, and certainly arguments that use the infeasibility of finding specific sequences
in sequence space to conclude evolution by natural selection cannot account for the origin of species in general are
preposterous [16]. However, there are at least three reasons questions about discovery times are worth asking.
First, the question of how long on average it takes for an evolving population to discover a specific functionality
is a well-defined question. Sometimes these question, such as yeast evolving the ability to aerobically metabolize
citrate [17,18], seem post hoc. Whereas, other functionalities like obtaining energy from the sun’s rays (not necessarily

using photosynthesis) seem like natural questions to ask a priori. Second, if we wish to account for some of the



statistical properties of the timeline of evolution, it is unclear how else to approach the question. Third, studying
discovery times enables us to understand what affects them, like different mechanisms of mutation and reproduction.
Moreover, one can then argue that such mechanisms might be selected for and their effect on discovery times would

perhaps explain why.

1.1. OUTLINE

Now we briefly outline the structure of this dissertation. Chapters 2 and 3 are largely expository and lay the ground
work for the remaining sections. In Chapter 2, we define and give several significant examples of genotype spaces. A
genotype space describes the stage of an evolutionary process, and has three components: a set of labeled genotypes,
a rule that describes how they relate to each other through mutation, and a function that assigns a fitness to each
genotype. We pay particular attention to high-dimensional genotype spaces, and look in detail at the examples of
the hypercube and the symmetric group. We argue that there are biological reasons to expect genotype spaces to
be high-dimensional, and demonstrate that many important mathematical properties (in particular, rapid mixing)
follow as a consequence of this high-dimensionality. The chapter also contains a long discussion on fitness—what we
can learn about it from biological motivations and how it enters into models of genotype space.

Chapter 3 gives many examples of fundamental stochastic models of evolutionary dynamics. We use these models
to illustrate the typical question that are asked in the field and motivate several statistics of these processes. We show
how these statistics, including fixation probabilities, absorption times, stationary distributions, and other limiting
behaviors, can be distorted by population structure. After these examples, we define a very general stochastic model
of evolutionary dynamics, which includes the previous examples as special cases and integrates the mutation processes
from Chapter 2 into out models.

In Chapter 4, we use the general definition from Chapter 3 to give a simple criterion for an evolutionary process
to describe neutral evolution. In this special case of neutral evolution many interesting analytic questions about a
process become tractable. Here we address the stationary distribution, mixing times, and localization in genotype
space.

Chapter 5 considers evolutionary dynamics in the low mutation and weak selection limit. In this limit, evolution

can be tracked over long timescales and described as populations searching genotype space. We ask how long it takes



this process to discover various subsets of genotype space. We compare this time to the time random sampling would
take to find the subset, and show that in some cases they are equivalent in distribution. In particular, we argue
there is a sharp contrast between discovery times that are on average exponential and those that are polynomial.
We also identify a simple, biological plausible mechanism, called the regeneration process, that enables discovery in
polynomial time.

Finally, in Chapter 6, we return to evolutionary graph theory, which uses weighted, directed graphs to model
the effects of populations structure. We generalize the isothermal theorem with a robustness result and then give a
sufficient condition for this robustness that can be verified in polynomial time in the size of the graph. We prove that

random population structures show behavior that is very close to well-mixed populations with high probability.



(GENOTYPE SPACE

The introduction in Chapter 1 described a very general way of thinking about evolution. Any process where informa-
tion is reproduced imperfectly and with differing rates evolves. While this paradigm is very general, we have to start
being more specific to make things interesting. So let us unpack this paradigm by asking four questions. First, we
might ask for properties and examples of the evolving information. That is the goal of this chapter. The properties
we describe come from thinking through the other components of the paradigm and carefully studying important
examples motivated by biology.

Second, what does it mean for information to reproduce? Obviously, the information is not replicating itself—there
must be some mechanism that does the copying. The information is not propagated into the future in some arbitrary
way, because it is limited by the mechanism that copies it. Often it is reproduced in pieces with a specific structure.
Think of how all the DNA in a population is contained within individuals, and it is individuals that actually do the
reproducing. This structure informs the way we model the evolution of information. From now on we refer to these
pieces or components of information as genotypes and the spaces of possible genotypes as a genotype space. All the

information in an evolutionary process is then a population of genotypes.



Third, why and how is the information reproduced imperfectly? The information that is reproduced must resemble
the information in the past. This is called heritability in a biological context [19]. Without this, the flow of informa-
tion is overwhelmed by mutations and we are left with random information and not evolution [20]. Conversely, it is
easy to understand why imperfection is necessary as this is the only possible source of novelty. When information is
reproduced but with some error, we refer to this as a mutation. The particular structure these mutations take is an
import aspect of this chapter. For example, think of the many possible errors that can occur when bacterial DNA
is duplicated during the interphase of the cell cycle: point mutations, insertions, deletions, duplications frameshifts,
reversals etc. All of these are a consequence of the mechanism of copying and provide the first entryway for stochas-
ticity into the story [21]. Despite this plethora of possible errata, we can still describe some general properties of
these imperfections.

Fourth, what determines these differing rates of reproduction? As we have mentioned, there is some mechanism
that copies the information. The action of this mechanism is in turn affected by the information it is reproducing—
perhaps in some very complex way. Bring to mind the relationship between an organism’s DNA, which provides
the blueprint for the mechanism that ultimately reproduces the DNA [21,22]. This complexity is often bundled into
the (philosophically challenging but mathematically simple) notion of fitness, which is a parameter of evolutionary
models [1,23]. The rates at which different information is reproduced is what selection is discriminating, but its lack
of omniscient knowledge of fitness values provides a second entryway for stochasticity [12,24]. Sometimes the rate
of reproduction is independent of the information being reproduced. Such processes are called neutral evolution [25].
While this assumption leads to a decoupling of the information follow (particularly, how it mutates) and the mechanism
of reproduction (which is thus absent of selection), it still has a rich and developed theory [26-28].

As a brief aside, the information we track in an evolutionary process need not be all the information or completely
determine the mechanism. This simply adds noise to the process and supports the idea that selection is not an oracle
for fitness [12]. For example, an evolutionary model can focus on the dynamics of a particular gene without recording
the rest of the genome.

All the information in our evolutionary process is a population of genotypes, where a genotype is something like
the smallest piece of reproducing information. After organizing the information in this way, it is natural to ask what
states are possible in our evolutionary process and how do we transition from one state to another. All the processes

we consider here are Markov chains, so in that terminology: what is the state space and the transition kernel? We



answer these questions completely in Chapter 3, but as a precursor we must answer two preliminary questions. What
genotypes are possible and how does mutation produce one genotype from another? This moves our focus from
genotypes to genotype spaces.

Potentially, we could think of the possible genotypes as a set I and assign labels to each genotype a1, as, ..., an.
Then we might think of the probability that a particular genotype is produced when it is copied from another [29-31].
Often simply labeling them is suggestive of how they should relate to each other through mutation. Additionally, we

could assign to each genotype « a fitness F(«). Formally, we have the following definition.

DEFINITION 2.1 (GENOTYPE SPACE). A genotype space (I', M, F) is a triple such that: (1) T is a set containing all

possible genotypes; (2) M is a stochastic kernel,

> M(a, B) =1, (2.0.1)

Bell

where M(a, B) denotes the probability that genotype B is produced when genotype a reproduces (when I' is uncountable
the definition changes slightly, see Equation (2.8.1)); (8) F is a function F : I' — R where F(c) is the fitness of

genotype a. When F is omitted, it is assumed that the genotypes are neutral, that is, F(a) =1 for all a € T.

DEFINITION 2.2 (MUTATION PROCESS). Note that for a genotype space (I'y M,F), the stochasticity of M implies

(T, M) forms a Markov chain. We refer to this Markov chain as a mutation process.

REMARK 2.3. It is also possible to use a genotype space (I, M, F) to derive an system of ODEs called the quasi-species
equations [29]. These equations have many important consequences, but we do not pursue them here. Because the
quasi-species equations are deterministic, they cannot capture many important evolutionary phenomena [1]. However,

they can be used to describe the evolution of the probability distribution of certain stochastic models.

So far all we have assumed in Definition 2.1 about how genotypes relate to each other is that it is time-homogenous.
However, given M several different perspectives are useful. As we pointed out in Definition 2.2, M defines a Markov
chain or, equivalently, a random walk on a weighted, directed graph. Natural questions then arise: Is the chain
irreducible? Is it reversible? What is its stationary distribution? How quickly does it mix? We might also ask about
the geometry of the graph: what is its dimension? How does this related to our previous questions about the Markov

chain? All of these question have biological interpretations and often they have typical answers.



We start by develop an intuition for many of these questions, by considering some specific and instructive examples
of genotype spaces. First, we consider the hypercube in Section 2.1, which is a model for genotypes that store
information as fixed, finite length strings of letters from some finite alphabet. Second, we consider the symmetric
group in Section 2.2, where a genotype stores the order of a fixed, finite number of distinct things.

In both examples, we observe a number of key properties. The mutation processes are irreducible, reversible, and
have uniform stationary distributions to which they rapidly converge. Geometrically, the spaces are high-dimensional,
which contributes to the rapid mixing times and leads to a number of biologically interesting properties we outline
in Section 2.4. The properties prove crucial to our analysis of evolution over long timescales in Chapter 5. In Section
2.5, we show that these properties are robust to a number of different types of disorder and random perturbation.

Next, in Section 2.6 we consider fitness [32]. We discuss different ways to specify the function F and how phenotypes
acts as an intermediary. In Section 2.7, we discuss projections of the high-dimensional genotype spaces that are useful
mathematically and produce other interesting genotype spaces in their own right. Finally, in Section 2.8 we describe

a low dimensional, continuous genotype space to contrast with the other examples.

2.1. THE HYPERCUBE

A familiar example of a genotype space, and one that informs our later definitions and many typical properties, is
sequence space. Sequence space is the the set of all proteins of a given length n, where two sequences are neighbors
if they differ by a single amino acid. The concept of considering this space in its totality was introduced by John
Maynard Smith [33,34], but it has since been widely utilized theoretically [35-38] and experimentally [39-42].

Some immediate observations are in order. For each amino acid in the sequence there are 20 choices, meaning that
as the sequence increases in length, the size of the space grows exponentially. Specifically, the number of sequences
of length n in the genotype spaces is 20". Meaning that for even modest protein lengths, a vanishingly small number
of these proteins will ever physically exist.

However, this seems to be one of the strengths of recording heritable information in this way—a vast potentiality
can be described extremely succinctly. If evolution is to produce to complexity, then it needs a vast stage to do this
on, but the heritable information has to remain manageable. This is one biological reason we should expect genotype

spaces to be high-dimensional [43].



The notion of neighbors we introduced is immediately suggestive of the sorts of mutation we might consider: single
amino acid substitutions. Since we are considering proteins of fixed length, we are ruling out deletions and insertions.
We also rule out more complicated mutations like duplications of whole subsequences, reversals, and recombinations.
but much of the discussion still applies to more complicated models that include more varied mutations. Single
amino acid substitutions mutations introduce a natural geometry to the space. Namely, the distance between two
protein sequences is just the minimum number of mutations to transform one into another. Since point mutations
are symmetric, we end up with a proper distance metric. While this distance ignores the subtly of the rate at which
these mutations occur, it is still a useful concept.

Some observations about the geometry of this space are worth pointing out. After introducing a precise metric for
the space, we could go on to apply a mathematical definition of dimension. However, in this case, intuition suggests
that the dimension of this space is n, as it is a product of n “components,” so as we suggested before the dimension of
this space can get arbitrarily large as the sequence length increases. High-dimensional spaces have strange, unintuitive
behavior [44] that directly influences how evolution takes place in them [20,45-48]. Each genotype in the space has
many neighbors, suggesting that if we imagine a particle moving around by traveling along edges, at each point
there are many directions in which the particle can move. This is quite unlike the familiar random walk in 1, 2, or
3 dimensions. Moreover, if the space is the domain of some function, then the condition for a point to be a local
maximum of the function becomes increasingly stringent as the dimension increases (as there are more direction the
function must be nonincreasing in) [49-51]. Also, continuity assumptions on the function imply that the function is
almost constant and its values are highly concentrated about the mean value [44]. The intuition for this observation
comes from understanding typical distances in this space: for almost all pairs of points, the distance between them is
13n = O (n), which is very small relative to the size of the space. In fact, the diameter of the space is also n = O (n),
so that any point is accessible in relatively few mutations. A function obeying continuity assumptions cannot change
much over small distances in our metric. Putting these two observations together, that most points are relatively

close and that there are lots of points at the same distance, suggests that simultaneously satisfying the continuity

assumption for all points implies the function should be roughly constant.

2.1.1. Formal definitions. Instead of proteins, we could have considered sequences of DNA or RNA, and there
would have been little change in our qualitative observations. So more abstractly, we can formalize genotype spaces

of this general type. Genomes in these spaces are sequences from some finite alphabet. Without loss of generality,
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we use {1,...,k} as the letter of our alphabet and define the genotype space as

Ipi={a=(a1,...,an) s @1,...,an € {1,...,K}}. (2.1.1)

The metric on our space is Hamming distance, that is,

D(a,B) := >, 1(a(i) # B(i)). (2.1.2)

i=1

We refer to this space as the hypercube. Now we can define precisely the rates of different mutations in the following
way: We stick with single point mutations. We control the rate at which some mutation happens with a parameter
€ € (0,1). If a mutation happens, we sample a coordinate uniformly from [r] and then resample that coordinate uni-
formly from [«]. Note that even if there is a mutation, it is possible to remain at the same genotype. Mathematically,

we have the following definition.

DEFINITION 2.4 (THE SINGLE POINT MUTATION PROCESS ON THE HYPERCUBE). This process is a Markov chain with

state space I'y, defined in (2.1.1) and transition kernel M defined by

i if D(e,8) =1
M(@,B)=11-c+= if D(,B)=0" (2.1.3)
0 otherwise

where D is the distance metric defined in (2.1.2). This process is also know as a lazy random walk on the hypercube.

REMARK 2.5. Instead of using D to define M, we could have done the reverse, that is, for all (e, 3) such that
M (e, B) > 0, define D (¢, 3) = 1. For all remaining pairs (o, 3), D (e, 3) is the minimum path length from « to
B, that is,

D(e,B) = inf {k:awo=0a, ap =8, D(as,iy1) = 1}. (2.1.4)

(g 01,...,p)

This is simply the graph distance, where each genotype « is a vertex and there is an edge between o and 3 if

D(e,B) = 1.

2.1.2. Mathematical notions of dimension for finite discrete spaces. With this notion of distance, we can

11



try to understand mathematically how to specify the dimension of the space. We focus on the case k = 2. Firstly, the
hypercube is naturally defined as a product space: {0,1} x - -+ x {0,1}. We are used to dimensions adding in product
spaces, and each component in the product clearly has dimension 1, as we need at least 1 dimension to distinguish
between the two points. This would suggest that the space has dimension n.

Another property that suggests the space has dimension n is how the volume of a ball grows as its radius increases.

Formally, define a closed ball centered at « of radius r by
Ba(r) = {B€ T : D(a, B) <r}. (2.1.5)

Then, let r = On for some 6 € (0, 1), so we have

o= 35 (2) - o ((rrters)) 210)

for all & € T',,. Note that this behavior only occurs at mesoscopic scales, as at microscopic scales (e.g much less than
the diameter of the space n) the volume grows like O(n") and at macroscopic scales (e.g. larger than the diameter
of the space n) the ball’s volume is limited by the size of I, for fixed n.

This raises an interesting geometric question: suppose we have a set S of cardinality at least |Bq/(7)|, can the

boundary of S be smaller than the boundary of |Bu/(r)|, where the boundary of a set is defined as
0(S):={aeS:38¢ S, D(a,B) = 1}7 (2.1.7)

The answer is no for the hypercube. This is a theorem due to Harper [52] and relates to the theory of expanders [53,54],
which we turn on again in Subsection 2.4.5. Expanders are another hallmark of high-dimensional spaces.

The metric dimension is defined as the minimum cardinality of a resolving set S € I'y,, where aset S = {1, ..., ax}
is resolving if

(D(e, 1)y ..., D(e, ) # (D(B, 1), ..., D(B, o)) (2.1.8)

for all o, 3 € I';,. Intuitively, the resolving set is like a coordinate system, where each coordinate measures the
distance to a point in the resolving set, and since the set is resolving each point in I'j, is uniquely specified in the

coordinate system. It is known that the metric dimension of the hypercube is 2n/logn asymptotically [55-57].
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REMARK 2.6. A counter-point that shows how divergent different notions of dimension can be is found by considering
the Euclidean dimension of the graph. The Euclidean dimension of the graph is given by the smallest integer d
such that the graph can be embedded into R?, that is, all vertices are mapped to a unique point in R? such the
FEuclidean distance between points who are neighbors in the graph is 1. Since the hypercube is bipartite it can
certainly be embedded into R*: all points that have an even number of 1s can be arranged arbitrarily on the circle
Cop := {(x, Y, Z, W) : 2?4yt = 1/2 and z = w = 0}, and all points with an odd number of 1s can be arranged arbitrarily
on the circle C; := {(x,y, zaw): 22 +w?=1/2andz =y = 0}. Since neighboring points on the hypercube have a

different parity of their number of 1s, we see that their distance apart in the embedding is
Py + 2w =1/241/2=1. (2.1.9)

Thus, this notion of dimension is inadequate for the high-dimensional spaces we are discussing here.

A consequence of the high-dimensionally of the hypercube is that the distance between two random points drawn
from the space is very likely to be close to the average distance between pairs of points. Calculating the average
distance between points of the hypercube is simple using the symmetry of the space. There are k2" pairs of points

in the hypercube, so

&% 3 Dia,f)=— > D(0,a)

o,Bely, ael'y

_ ;?1n 3TN 1ali) # 1)

acely, i=1

L an K" k= 1)
i=1

=n . (2.1.10)

However, this is not just the distance on average—the distance between almost all points is within O (4/n) of this

value. This can be expressed by considering a uniform measure on I',, and is stated precisely in the following theorem.

THEOREM 2.7. Suppose that a and 3 are drawn uniformly and independently from I'y,, then

P{‘D(a,ﬁ) 0= 1| > 5\/5} <2072 (2.1.11)
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and

]P’{D(a,,B) < (1—5)n“_1} <e 5, (2.1.12)
K

PRrOOF. Note that above we found ED(e, 3) = nk/(k — 1). Moreover, since

D(e, B) = Y, 1(a(i) # B(3)), (2.1.13)

1=1

we find that D(e, 8) is a sum of i.i.d. random variables. Then, applying Lemma B.2, we prove (2.1.11). Equation

(2.1.12) follows from Lemma B.3. [ ]

The behavior described in Theorem 2.7 is typical of high-dimensional space (see [44] for many more examples).
The dynamical properties of this space are also very nice and amenable to analytic analysis—much of this is due

to the reversibility of the mutation process given by Definition 2.4. For a discussion on reversibility see Section 2.3.

LEMMA 2.8. The single point mutation process on the hypercube is reversible with respect to the uniform distribution

and thus its stationary distribution is uniform.

PROOF. Suppose o and (3 differ in exactly one coordinate, that is, D(a,3) = 1. Then

1
M(er,B) = e = M(B, ). (2.1.14)
For o and 3 that differ in more than one coordinate, the transition probability is 0 in both directions. |

REMARK 2.9. Note that we need not have the same mutation rate € at each coordinate. Instead we specify a
mutation rate g; for each coordinate, then a mutation occurs with probability ¢ and if a mutation occurs it happens

at coordinate i with probability ;. This still leads to a reversible process with respect to the uniform distribution.

DEFINITION 2.10 (RAPID MIXING). We say a Markov chain (' M) is rapidly mizing or mizes rapidly if its mizing
time tmiz 1S such that

tmie < p (log|T']) (2.1.15)

for some polynomial p.
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The next results bounds the time it takes the single point mutation process on the hypercube to reach its stationary
distribution. Note how fast the mixing is relative to the size of the space—the mutation process is rapidly mixing

(see Definition 2.10).

LEMMA 2.11. The mizing time of the single point mutation process on the hypercube is bounded above by
2 logn. (2.1.16)
€

PROOF. We bound the mixing time using a coupling argument on two processes a; and 3; that marginally are both
samples of the mutation process. Let o have any initial distribution and suppose that By is sampled uniformly at
random from I', that is, in the stationary distribution. Obviously, B: is in the stationary distribution for all ¢ by
definition, so once o = (3, o must also be in the stationary distribution. To couple the processes: Sample 341
normally from 3;. With probability €, a+1 is equal to o, otherwise sample a coordinate i uniformly at random from
[n] and set a+1(7) = Bi+1(¢) while leaving the other coordinates unchanged. Note that since 3 is in the stationary
distribution (B¢(%) is uniform on [x] and thus marginally e is a sample of the mutation process.

Let T be the coupling time of the two processes, define T' := min {t: a; = 3¢}. We want to bound P{T > t¢}.
Define the coupling time of coordinate ¢ by 7; = min {¢ : a:(¢) = B¢(4)}, and, since once a coordinate has coupled it

stays identical in both process, we have
PAT >t} =P{Ty > t,...,Tn > t} < D P{T; > t} :n(lf 7) , (2.1.17)
i=1 n
since each coordinate couples with probability €/n at each step if it has not already. Thus,
]P{T> g(logn—&-c)} <e °, (2.1.18)

which completes the proof.
As an aside, we note that this bound on T is optimal: Further define the random time that exactly n—k coordinates

are the same by

Sk :=min {t : D(ow, Bt) = k} (2.1.19)
Note that T' = Sp and that, since once a coordinate has coupled it stays identical in both process, the sequence
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So,...,S, is strictly decreasing. Moreover, given D(au,3:) = k, the probability that Sy_1 = t + 1 is constant,
that is, Sx—1 — Sk is a geometric random variable with success probability ek/n. Thus, P{T > t} is largest when

D(at, Bt) = n. Therefore, in this case,

n

= 1n nlogn
]ES = ]Cgl]E(Sk71 - Sk g gE T. (2.1.20)

REMARK 2.12. Again a result is possible in the varying mutation regime. One can simply replace € in (2.1.16) by
the minimum €;. In some cases this upper bound is optimal, but it can be improved depending on exactly how the
g; are distributed.

As mentioned in the remarks above, it is possible to define many different natural mutation processes on the same

genotype space. Another important example on the hypercube is defined below.

DEFINITION 2.13 (THE INDEPENDENT POINT MUTATION PROCESS ON THE HYPERCUBE). This process is a Markov

chain with state space I'y, defined in (2.1.1) and transition kernel M defined by

M (e, B) := (H)D(aﬁ) (1 —e+ E)n_p(a’ﬁ) , (2.1.21)

where D is the distance metric defined in (2.1.2). This process is a type of product chain.

REMARK 2.14. Note that in Equation (2.1.21) we used Hamming distance to define the transition kernel for the
mutation process. Suppose instead we started with the transition kernel and used it to define a notion of distance D

between genotypes-exactly as in Remark 2.5. In this model, we would end up with the distance
D(e,B) =1(a # B). (2.1.22)

This distance metric does a poor job of conveying distance between mutations in these dynamics, because while it
is possible to mutate from any genotype to another (that is, M(e,3) > 0 for all & and 8), some mutation are
much more likely than others. This suggests that the strategy in Remark 2.5 is reasonable when the probabilities of
different mutations are of the same order, and otherwise, distance should be weighted in some way inversely to their

liklihood.
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A particular choice of € is € = £/n, as in this case the the number of point mutations, D(cw, cis+1), is approximately
Poissonian with parameter €. As before, the process is reversible with respect to the uniform distribution, since D is

symmetric, and we have the following result on its mixing time.

LEMMA 2.15. The mizing time of the independent point mutation process on the hypercube is bounded above by
2 logn. (2.1.23)
€

PROOF. As in the proof of Lemma 2.11, we can couple the process to a process started in the uniform distribution.
The process 3 starts in the uniform distribution and is updated normally. For each time step and independently for
each coordinate 4 in [n], with probability € set cs4+1(i) = B¢+1(i)—otherwise leave the coordinate unchanged.

Again consider the coupling time 7" and the coupling times of each coordinate, then

P{T >t} =P{T1 >t,....,Tn >t} < iP{Tpt}:n(ks)t, (2.1.24)

1=1

since each coordinate couples with probability ¢ at each step if it has not already. Thus,
1 —c
PST > =(logn+c)y <e °. (2.1.25)
€
In particular, the choice of ¢ = £/n yields a mixing time of the same order as that of the single point mutation

process. |

REMARK 2.16 (HIisTORICAL). The hypercube has been studied extensively in mathematics. Random walks on the
hypercube are a classical topic [58,59] and their mixing times were one of the first examples of the cut-off phenomena
[60-62]. It has even been suggested before that carefully working out the hypercubes properties should be a priority

due to its potential impact on biology [63].

2.2. THE SYMMETRIC GROUP

In Section 2.1, we saw an example of a high-dimensional genotype space. To emphasize the importance of high-

dimensional genotype spaces, we present another important example in this section. We see that many of the key
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properties of the space are similar: the space is high-dimensional in a formal sense, each point has many neighbors,
the diameter of the space is small relative to its size, most pairs of points are a typical distance from one another,
and the mixing time of the mutation process is fast. Although we have already developed some biological intuition
as to why we might expect these properties in genotype spaces, it is still useful to see supporting examples.

A useful technique in studying closely related species, called comparative chromosome mapping examines the order
of the genes on a particular chromosome [64,65]. This ordering can change over time due to mutations that reverse
the order of particular segments of the chromosome, but species whose gene orderings are “closer” to one another
are thought to be more closely related. Once we choose some arbitrary labeling (from [n]) of the genes, we can
specify orderings of these genes using permutations—in this section, each permutation « is a genotype. The space of

permutation of the letters [n] is the familiar symmetric group:

In o= {(i1,...,in) 1 91,...,in € [n] and i; # i) for all j # k}. (2.2.1)

So the size of the space I',, is n! ~ v/27n(n/e)™, where the asymptotic form is given by Stirling’s formula.

We mentioned before that in this model mutations can reverse the order of segments of the chromosome and thus
change the order of the genes, but to define a particular geometry or dynamics on the space, we need to be more
specific. There are several different specific models for mutations on this space and we introduce two of them in this
section.

First, we consider mutations that are less biologically plausible in our initial discuss of gene reordering on chro-
mosomes, but easier to study mathematically. A transposition is a permutation that swaps the order of two letters
and we denote a transposition of the letters ¢ and j by o;;. In this model, a mutation happens with probability e. If
there is a mutation, then a transposition is sampled randomly by choosing 4, j € [n] independently and uniformly at
random. This transposition is then applied to the current genotype to obtain the new genotype. Note that the order
that ¢ and j are sampled does not matter, and that it is possible to have ¢ = j, in which case the mutation leaves the

genotype unchanged. Mathematically, we have the following definition.

DEFINITION 2.17 (THE RANDOM TRANSPOSITION MUTATION PROCESS). This process is a Markov chain with state
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space 'y, defined in (2.2.1) and transition kernel M defined by

% if B=o0i(a) andi # j
M) =Y1-c+ < ifa=p , (2.2.2)
0 otherwise

where o;j is some transposition [66].

Note that, just as in Remark 2.5, we could define a distance metric using the dynamics above, that is, the distance
D(a, B) between two permutations o and S is simply the number of transpositions to turn one into the other. With
this distance metric, we immediately see that each point in the space has O (n(n — 1)/2) neighbors. The maximum
distance between two points in the space can be found by noting that D («, 8) = D (,B_la, L), where 57! is the inverse
permutation of 8 and ¢ is the identity permutation (1,...,n). Then one permutation furtherest from ¢ is (2,...,n,1)
at distance n. Thus, the diameter of the space is O(n), which is small relative to its size.

The random transposition mutation process on the symmetric group is irreducible and aperiodic, since any permu-
tation can be generated by transpositions. Moreover, the process is reversible with respect to the uniform distribution,
so its stationary distribution is simply the uniform distribution on I';,,. The mixing time of this process can be bounded
by

gnlogn + O(n) (2.2.3)

using a coupling argument just as we did in the proof of Lemma 2.11 (see chapter 9 of [67] for details). Just like the
single point mutation process on the hypercube, the mixing time is rapid relative to the size of the space.

Now we turn to a more realistic model of mutation for gene orders. Define an n-reversal as a permutation that
transposes k and ¢ + j — k for k € [i, j] and leaves all other letters fixed. In this new model, a mutation happens with
probability e. If there is a mutation, then an n-reversal is sampled randomly by choosing 4, j € [0, n] independently
and uniformly at random. This n-reversal is then applied to the current genotype to obtain the new genotype. Note
that the order that ¢ and j are sampled does not matter, and that it is possible to have ¢ = j, in which case the

mutation leaves the genotype unchanged.

DEFINITION 2.18 (THE n-REVERSAL CHAIN). This process is a Markov chain with state space I'y, defined in (2.2.1)
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and transition kernel M defined by

(nﬁﬂ if B==E&(a) andi # j

M(a,B)i=31_c+ = ifa=48 (2.2.4)

n+1

0 otherwise

where &;; is an n-reversal.

Note that as before, the n-reversal chain is reversible with respect to the uniform distribution. In [68,69], the

mixing is found to be bounded by (2 + 107'%)nlogn/e. Again, the process is rapidly mixing.

REMARK 2.19. We have only give two examples of mutation processes on the symmetric group, but the properties
we have seen are conjectured to hold much more generally. For example, considering the diameter of the space is
a standard question in group theory—we are simply asking about the diameter a Cayley graph of the group. The
diameter of such graphs is conjectured to be at most O (n2) [70]. Another conjecture concerns the mixing times of
such processes on the symmetric group: they have been conjectured to be at most O (n3 log n) [71]. Thus, in general,
we might expect the diameter and mixing time to be small relative to the size of the space. In Subsection 2.4.5,
we return to random transposition processes on the symmetric group and show that even when we restrict which

transpositions are possible the process still mixes rapidly.

REMARK 2.20 (HISTORICAL). Again the symmetric group is a classic object of study in algebra and combinatorics [72].
Random walks on the symmetric were first motivated by card shuffling and date back at least to Markov [73] and
Poincare [74]. Again their mixing times have been the object of a great deal of study [62, 66,75, 76]. Durrett
is associated with the mathematical analysis of the biologically motivated n-reversal chain [68,69]. Geometrical

properties of these processes on the symmetric group are considered in [77].

2.3. REVERSIBILITY

The models for mutation we have considered so far have all been reversible. This section contains a brief mathematical
discussion about reversibility and why we might expect it biologically. Reversibility requires that if we sample a

Markov chain (z:)ten up to any finite time ¢ and consider the joint distribution of the sample (o, ..., x¢), then it
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should be the same as the reverse of this sequence (z, ..., xo). Specifically, for ¢ = 1, for reversibility we require

m()M(a, B) =P{wo = a} P{z1 = Bloo = a} = P{zo = o, 21 = B} = P{a1 = o, w0 = B} = 7(B)M(B,a)  (2.3.1)

for all o, 8 € I', which is exactly the condition we have been using to verify reversibility in the mutation processes

above. We use condition (2.3.1), as it implies reversibility for sequences of any length:

P{zo = ao,...,xt = oz} =P{zo = ao} P{r1 = a1|zo = a0} - - P{xt = a¢|zo = a0, .., Te—1 = au—1}
= m(ao)M (a0, 1) - - M(ae—1, o)
= M (a1, a0) m(ar)M(a1, az) - M(ar-1, ar)
= M (a1, a0) M(az,a1) - M(ae, ap—1)m (o)

=P{zy = ao,...,x0 = a:}. (2.3.2)

Assume that the Markov chain is irreducible and aperiodic. Note that the stationarity of = for M is immediate from

condition (2.3.1)—simply sum over «a to see

D (@M(a, B) = D w(B)M(B, @) = w(B). (2.3.3)
el ael’
2.3.1. Random walks on graphs and symmetric Markov chains. A special case of reversible Markov chains
are those that can be defined as a random walk on a weighted graph. That is consider a graph with vertex set I and
associate a symmetric weight W(a, 8) = W(B,a) = 0 for each pair of vertices o, 8 € I'. Then define the following
transition kernel for a Markov chain with state space I':

W(a, B)

M(a, B) = 72[3/ Wie B

(2.3.4)

Note that under the definition in (2.3.4), the Markov chain is irreducible exactly when the graph is connected and
aperiodic when it is not bipartite. One easily finds that the process is reversible with respect to the distribution

Z/} W(ﬂ7 Oé)

S @) (2.3.5)

()
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since

2eWBa)  W(a,B)

m()M(a, B) = S s W, B) X0 W(a, B)

= 1(B)M(B, ). (2.3.6)

This special case includes the single point mutation process on the hypercube and the random transposition

mutation process. In fact, their mutation kernels are actually symmetric, that is

M(a, B) = M(B, a) (2.3.7)

for all a, 8 € I'. Symmetric mutation kernels are a special case of random walks on graphs, where the quantity

> IW(a, B) (2.3.8)

B

does not depend on «. Obviously, this is a stronger condition than reversibility and it implies reversibility with
respect to the uniform distribution. Symmetry is a common feature of models of genotype space but there is no

reason for this to always be so.

2.3.2. Kolmogorov condition for reversibility. While symmetric mutation kernels cannot always be expected,
one can give an argument for reversibility in general. Consider a path through genotype space that starts and ends
at the same genotype, that is, a cycle (oo, au,...,ar—1,a0). By iterating the reversibility condition (2.3.1) over the

cycles, we obtain the Kolmogorov condition for reversibility:

(o) M(ao,a1) - - M(ag—1,a0) = M(a1, ao)m(a1) M(a1, a2) - - M(ag—1, a0)

= M(Oé1, Oéo)M(Ozg, Oé1) e ./\/l(Oéo7 akfl)w(ao). (2.3.9)

Equivalently,

M(ao, al) ce M(ak_l, Oéo) = M(ao, ak_1)./\/l(ak_1, O(k_Q) N ~M(a1, a()). (2.3.10)

This implies that if we are watching a mutation process over time, the process transitions the cycle in one direction
just as frequently as the other.
Moreover, this condition implies that the expected time to travel from state a to state g is the same as the

expected time to travel from state 8 to a (See Section 5.3). We can interpret this condition biologically. A priori,
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mutation has to bias for one genotype over another. We might take this condition as a component of the assumption
that mutation is unstructured.

All of the mutation processes we consider are reversible and we take reversibility as an assumption in many of our
theorems. It is key to making our models tractable, as it allows the use of many tools from the theory of Markov
chains. We feel this approach is justified on three fronts: 1) reversible mutation processes include many significant
examples such as the hypercube and the symmetric group; 2) there is a biological argument, detailed above, for
reversibility; 3) reversibility is a common assumption in such biological models and is common in the literature due
to its implication on model tractability [78-80].

However, there are some important examples that are not reversible. One simple example is to consider mutations
that delete whole segments of the genotype. In this case the probability of deleting some gene say is positive
(M(e, ) > 0) but the probability of this gene arising from nothing (say there is not another copy of the gene that

can arise through gene duplication) is zero (M(8,a) = 0), in which case the equation (2.3.1) cannot be satisfied:

m(a)M(a, B) > 0 = n(B)M(B, a), (2.3.11)

So long as there are other mutations that ensure that the mutation process is irreducible (and thus assigns positive

probability to each genotype in the stationary distribution, 7(a) > 0).

2.4. HIGH-DIMENSIONAL SPACES

In this section, we consider again some of the properties we have seen in the case of the hypercube in Section 2.1 and
the symmetric group in Section 2.2. We argue that there are biological reasons to expect these properties in genotype
spaces, and that these properties are all suggestive of high-dimensionality. We saw that under most understandings of
dimensionality, the spaces we previously considered are high-dimensional. In the second part of this section, we review
some geometrical techniques for bounding the mixing times of a Markov chain. These techniques are particularly
effective in producing small bounds when the Markov chain is high-dimensional. Together this suggests that we

should expect the mutation processes on genotype spaces to be rapidly mixing.

2.4.1. Each genotype has many neighbors. We saw that both the single-point mutation process on the hyper-
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cube and the random transposition mutation process on the symmetric group yield many possible mutations for each
genotype. The degree of the hypercube is n and the degree of the symmetric group is n(n —1)/2 under transpositions.
What is important is that the number of neighbors grows arbitrarily large as the space gets larger. This is a feature
of high-dimensional spaces in general. While we have not yet introduced fitness, biologically it could be argued that

helps evolution avoid becoming stuck in local maxima [43,81,82].

2.4.2. Volumes grow rapidly as distances increase. For the hypercube, an easy estimate (2.1.6) showed that
the volume of a closed ball of radius r grows like C;' when r = ©(n). This order of growth for the volume of a
closed ball is exactly what we find in n-dimensional Euclidean space R™. So again this sort of property is suggestive
of high-dimensional space. A similar estimate, which shows the dimension of the space growing with n, is possible
for the symmetric group under transpositions. This property also implies that the boundary of a closed ball is large
compared to the total volume of the ball. In this way, the number of genotypes accessible by a fixed number of

mutations increases rapidly with the number of mutation.

2.4.3. Short distances between points. A related property to the growth of volume is that the distances between
points is small relative to the size of the space. The size of the hypercube is k™ and the size of the symmetric group
is n! ~ v/2wn(n/e)”. However, we saw in the hypercube that the distance between most points is (x — 1)/kn in
Theorem 2.7, and that its diameter is n. Similarly in the symmetric group under transpositions, we saw its diameter
is n — 1. In both cases, the diameter of the space grows logarithmically in the size of the space. The property that
all points are close together even though the space is large is also suggestive of a high-dimensional space.

We can make a biological argument for why we might expect this property in genotype spaces. The further two
genotypes are from each other the longer it takes for mutations to produce one from the other, even in the presence
of a strong selective advantage. An evolutionary system that can travel along this selective gradient quickly could
outcompete a different system whose speed is limited by mutation [83]. Moreover, in large genotype spaces where
the maximal distance between genotypes does not grow slowly, many genotypes could be practically inaccessible to
each other with mutation in realistic timeframes. High-dimensional spaces are the only way to increases the potential
genotypes that evolution can explore. In this sense, high-dimensional spaces can store lots of genotypes but represent

them compactly.

2.4.4. Product spaces. While not all genotype spaces need be product spaces, this is a way to obtain high-
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dimensional spaces, as the total dimension of the space is given by the sum of the dimensions of its components.

Moreover, biologically this may make sense if the genotype has different modular components [84, 85].

2.4.5. Mixing times. In Lemmas 2.11 and 2.15, we found that the mixing time of the hypercube, for both the
single (see Definition 2.4) and independent (see Definition 2.13) point mutation processes, is bounded above by
nlogn/e. Similarly, we saw that the symmetric group under random transpositions (see Definition 2.17) has a mixing
time bounded by 2nlogn + O(n) and for the n-reversal chain (see Definition 2.18), the mixing time is bounded by
O (n’logn). While the bounds vary, they still imply rapid mixing. We do not claim that these bounds (or any we
obtain later) are optimal. Often optimal bounds are unnecessary as the size of the space completely dominates the
mixing time. Finding optimal upper and lower bounds on mixing times is an active area of research and often requires
advanced and careful estimates [67]. What we are interested in are techniques to prove upper bounds on mixing times
that show mixing is rapid, and we prioritize the generality and robustness of these techniques over their ability to
produce optimal bounds. We feel that general and robust techniques are easier to interpret and apply biologically.
In general, we might expect rapid mixing in high-dimensional genotype spaces [86]. To make this intuition more
precise. We introduce two general bounds on the mixing times of Markov chains. These bounds are both in terms
of the eigenvalues of the Markov chain, specifically the spectral gap, which contain lots of information about the
geometry of the Markov chain [67]. Let M be the transition kernel for an irreducible, aperiodic, reversible Markov
chain with state space I'. Since it is irreducible and aperiodic it has a unique stationary distribution 7 with respect

to which it is reversible. Then define

Qe B) = m(@)M(a, ) = m(B)M(B, @) (24.1)

for each a, B € T'. Let A1,..., Ak denote the eigenvalues of M ordered nonincreasingly, where K := |I'|. Also denote
the eigenvector associated to Ay by ug. By the Perron-Frobenius theorem, |A;| < 1 for all 4. In fact, because M is

stochastic Ao = 1. Irreducibility implies A\; < 1 for all ¢ < 1. Aperiodicity implies Ax > —1. Now, define

Ay 1= max{|A;| : for i > 1} (2.4.2)

and define the spectral gap as 4 := 1 — Ay. Our observations above imply that the gap is positive—vyy > 0. In

particular, for reversible chains, define 74 = 1 — A2. Spectral information about M can be used to bound the
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point-wise convergence of the distribution of a Markov chain’s distribution to its stationary distribution, since

Pu far = B} = M (@, B) = 7 2(@)72(8) 3 ua(k)us(k). (24.3)
k=1
This immediately implies
[Pa far = B} — (8)] = C (1 - Ao)’ (2.4.4)

for some constant C not dependent on t. For reversible chains, it is easy to use this spectral information to bound

the mixing time. We denote the relaxation time of a Markov chain with tye1 1= 1/74.

THEOREM 2.21. Let M be the transition kernel for an irreducible, aperiodic Markov chain with state space I'. Assume

the Markov chain is reversible with respect to w. Denote the relaxation time of M by tre, then

1

t're < tmzz < t’l‘ﬁ 1 . - 2.4.
: Hoe minger m() (2.4.5)
For a proof, see [67].
Now we turn to the geometric bounds on the spectral gap. Define the quantity
d, := min (4, 4% (2.4.6)

Am(a)<iz w(A)

where m(A) := 3 ., 7(a) and

Q(A,B):= > > Qa,B). (2.4.7)

€A BeB

The quantity ®4 has many names—including Cheeger’s constant, the bottleneck ratio, and the isoperimetric ratio.
Intuitively, ®4 measures the maximum flow of probability in the Markov chain when it is in the stationary distribution
out of all subsets A normalized by their size under the measure 7. If the flow is large for all subsets, this suggests
that the probability flows rapidly around the states of the Markov chain without any bottlenecks, in which case, the
mixing time should be fast. If we think of 7(A) measuring the volume of A and Q(A, A°) measuring the surface area,
then we see @4 has a geometric interpretation as a kind of isoperimetric quantity. We can quantify this argument

with the following theorem [67].

THEOREM 2.22 (CHEEGER’S INEQUALITY). Let M be the transition kernel for an irreducible, aperiodic Markov chain
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with state space T'. Assume the Markov chain is reversible with respect to w. Denote the spectral gap of M by v« and
Dy, then

@2
E vy < 20 (2.4.8)

In high-dimensional spaces, satisfying Equations like (2.1.6) for how volumes grow for balls of increasing radius,
bottlenecks are prevented as they would disrupt the growth. For example, for the hypercube we already mentioned
that balls have the minimum boundary size for a fixed volume due to Harper’s theorem [52]. So for the single point

mutation process on the hypercube with k = 2, we have

- 9
Py = min s = e
rir<n/2 2% k=0 (k) "

Thus, applying Theorems 2.21 and 2.22, we find tmix < O (n‘g/s) This bound is much worse than our bound from
Lemma 2.11, however, it still implies rapid mixing!

Theorem 2.22 is one way to quantify this idea that a lack of bottlenecks accelerates mixing. Now we introduce
another approach that uses a quantity called the congestion ratio. To state this bound, we first introduce a more
general technique called the path method. The path method is a way to compare the mixing times of two chains on
the same state space, but as a special case of this method we obtain a bound on the mixing time of a single chain in
terms of a geometric quantity.

Again with M the transition kernel for an irreducible, aperiodic, reversible Markov chain with state space T,
define F := {(«, 8) : M(a, 8) > 0}. Then an E-path from « to S is defined as a sequence of states from I', denoted
¢ap = (@0, ...,ar) such that a = aw, B = ag, and (o, ai+1) € E for all . The length of the E-path ¢ is k.

Also let M be the transition kernel for an irreducible, aperiodic, reversible Markov chain with state space I.
Define E := {(a, B) : M(a, B) > 0}. Then for each («,f3) € E, choose and fix some E-path from « to 8 (there must

exist one by irreducibility) and denote it with ¢og. Then define the congestion ratio

3 Y 9aB)lessl | (2.4.10)

B := max —_—
\B)EE «, .
@p)e | Qf) &.Bi(a.B)edy 5

where the sum is over all pairs &, 3 such that the edge (a, B) occurs in the E-path from & to B. Roughly speaking,

by assigning an E-path to each pair in E‘, we are trying to replicate the flow of probabilities in the chain M with the
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first chain M. The congestion ratio is then used to measure how the flows defined by the E-paths depend on each

edge (a, 8). Now, we have the following theorem [67].

THEOREM 2.23 (THE COMPARISON THEOREM). Let M and M be the transition kernels for irreducible, aperiodic
Markov chains with state space I'. Assume both Markov chains are reversible with respect to ™ and & respectively.
Denote the spectral gaps of M and M by vs and 7x respectively. Suppose that B is the congestion ratio defined in

(2.4.10) for some fized choice of E-paths. Then

3

T < (Iileaﬁ( ﬁgzg) By (2.4.11)

From Theorem 2.23, we can immediately obtain the geometric bound we promised above for a single chain.

COROLLARY 2.24. Let M be the transition kernel for an irreducible, aperiodic Markov chain with state space T.
Assume the Markov chain is reversible with respect to w. Denote the spectral gap of M by ~. For each pair a, 8 € T’

fix some E-path ¢ap and define

; > m()m(B)|Pasl, (2.4.12)

B:= max ———
A-Y) ! /
(a/,B")eE Q(CY ,5) a,B:(a’,B)ETq 5

then

v« = 1/B. (2.4.13)

PROOF OF COROLLARY 2.24. The proof follows quickly by letting M(«a, 8) = 7(8) and applying Theorem 2.23. Then
obviously, M is an irreducible, aperiodic Markov chain that is reversible with respect to w. Moreover, the eigenvalues

of M are easily calculated as A1 = 1 and \; =0 for ¢ > 1. |

In Theorem 2.23 we specified a fixed choice of E-paths. The choice of these E-paths can greatly affect the quality
of the bound obtained. One useful technique for obtaining good bounds when the path choice is unclear is to average
over many choices for the paths. Specifically, let v,z be a measure on the set of E-paths from a to f—this measure
effectively describes how to sample a random path from « to 8 and leads to us averaging over all of them. Now, for

each (a, ) € E, fix some distribution Vap on the set of E-path from « to 8, then the congestion ratio is give by

Bi= max Q(; 5 X 0@h) N vas(eas)lousl |- (2.4.14)
’ (&,B)eE bapi(a.B)Ed s



With this new definition of the congestion ratio, we obtain new versions of Theorem 2.23 and Corollary 2.24 by
replacing the congestion ratio with our new congestion ratio defined in (2.4.14).

At the beginning of this section, we discussed how short paths between all pairs of points is a property associated
with high-dimensional spaces and the specific examples of genotype spaces we have given. Equation (2.4.12) for the
congestion ratio explains partly why this is a significant property for us: many short paths between genotypes leads
to rapid mixing. Additionally, in high-dimensional spaces there are often many short paths from one point to another.
By choosing these short paths intelligently or randomizing over them, one is further able to avoid bottlenecks and
prove rapid mixing.

For example, on the hypercube there is a path of distance at most n between each pair of points. In fact, for
each pair of points e and 3 such that D(«, 3) = k, consider the following path ¢ between them: starting from the
left-hand side, change any coordinate one at a time that differs in « and 3. Clearly this path has length at most n.
Then each edge (e, 3) in the hypercube is contained in at most k"1 paths, by summing over part of the path before

the edge (e, ) and the part after the edge (e, 3). Thus, we can bound the quantity (2.4.12) by

B< max g Z in < KPn’. (2.4.15)
(a/,B')EE € K21
’ a,B:(a’,B")ely g

So applying Corollary 2.24 and Theorem 2.21, we find the mixing time of the single point mutation process on the

hypercube is less than

o (”—3) . (2.4.16)

Again, worse than Lemma 2.11, but still rapid mixing.

The above example illustrates how Corollary 2.24 can be used to bound mixing time for spaces that are high-
dimensional in that they have many short paths between points. Now, we have given an example of using Theorem
2.23 to bound the mixing times of chains that are related to some already understood chain. Recall the random
transposition mutation process defined in Definition 2.17. In this process, we sampled pairs 4, j € [n] uniformly and
independently. We could instead restrict which pairs are allowed and then sample uniformly from this set [87]. It is
useful to think of this set of allowable mutations forming the edge set E of a graph G with vertex set [n]. Then the
process samples edges (i,7) of G uniformly at random and applies the permutation o;; to the process. Note that G

can have self loops and in fact we assume each vertex has a self loop to avoid periodicity. We also assume that G is
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connected to ensure irreducibility. Clearly, the model we previously considered corresponds to the complete graph.
One other interesting example is given by the star graph, where permutations o1, are selected randomly, that is, the
first gene on the chromosome is shuffled into a random location. A second intersecting example comes from the cycle
graph, where permutations o;(;11) are selected randomly, that is, genes are only swapped locally. Both examples are
interesting biologically.

Using Theorem 2.23, we can bound all processes of this type. Note that any transposition o;; can be replicated
on the restricted chain as follows: find an E-path from ¢ to j, denoted ¢;;, then for each edge e in the path apply
the transposition o.; then apply the same transpositions (except the last) in reverse order. Thus, the maximum path

length is 2D, where D is the diameter of G. Consider B from equation (2.4.10)

1 2D|\E
max 5 Z #2D = nL | max_ Z 1. (2.4.17)
DR 1 TE i G ()b (.5)€ i,3:(1.0)E 41

The bound obtained in (2.4.17) obviously depends on the structure of the graph G. However, we can certainly say

that D < n, |E| < n?, and Zi',j’:(i,j)€¢i/j/ 1 < n?, thus
B < 2n®. (2.4.18)

Thus, Theorem 2.21 implies that the mixing time for the random transposition process on G is bounded by

4
4% logn + O(n?). (2.4.19)

Again, while the bound is not optimal, it still implies rapid mixing.

REMARK 2.25. Some Markov chains are highly structured and exhibit interesting symmetries that can be exploited
to obtain optimal bounds on mixing times and exact expressions for the generating functions of hitting times. This
structure takes the form that the state space of the Markov chain can be interpreted as a group with some rule
for composing states, then the transition kernel is equivalent to sampling elements of the group with some fixed
distribution and composing that element with the current state. In this setting it is possible to use techniques from
representation theory to great effect. We mention this here because both the hypercube and symmetric group have

this type of structure [63]. We do not pursue these techniques here, because the arguments require the introduction
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of a lot of mathematic machinery and we are not concerned with optimal bounds. Moreover, the group structure is

very fragile and does not survive perturbation.

2.5. ADDING DISORDER

So far the genotype spaces we have considered have been highly structured and symmetric (see Remark 2.25). It
is unrealistic to expect to see exactly these structures in true biological genotype spaces, so we do not want our
observations to break down when these spaces are perturbed and are no longer symmetric. If our results are robust
to perturbation, it increases their applicability to real systems and encourages us that our observations should apply.

Our main focus in this section is to discuss and analyze different methods for perturbing genotype spaces. The
main restriction is that we want to maintain reversibility in the perturbed chain. We require this so that the perturbed
chain is tractable to analysis and for all the reasons outlined in Section 2.3. We provide several different types of
perturbations that maintain reversibility.

Even though the perturbations maintain reversibility other key properties of the chain might change. So the main
task of this section is to identify how the perturbations change the stationary distribution and control their effect
on the mixing time. Often the effect on the stationary distribution can be seen directly from the change in the
reversibility condition (2.3.1). To control the mixing time, we have two primary approaches: 1) we can analyze the
mixing time of the perturbed chain directly or 2) we can use Theorem 2.23.

Some of the perturbations we consider are deterministic and we simply make assumptions on their magnitude. In
other cases, we consider random perturbations to get a sense of the typical effects of noise. Random perturbations
mean that we are dealing with two different sources of randomness; one from the perturbation (or environment) and
one from the stochastic process itself (the mutation process). This setup is common in probability theory and there
is a wide and rich literature on such problems [88-90].

The notation in this section is as follows: let M be a reversible mutation process on the genotype space I' with
stationary distribution 7 and spectral gap 4, then we denote the mutation process obtained by perturbing M by M

and its stationary distribution by 7 and spectral gap by ~.

2.5.1. Simple symmetric rescalings. A very simple type of perturbation that maintains reversibility is to sym-
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metrically rescale the transition probabilities, that is, define

M(a, B) := p(a, B)M(a, B) (2.5.1)

such that p(a, 8) = p(B8,a) > 0 for all o, 8 € I'. Obviously, the mutation kernel M still satisfies condition (2.3.1).
However, after rescaling we cannot guarantee that >}; M(a, ) = 1 for all a € I' or that M(a, B)p(a, B) € [0,1].

There are two possibilities to fix this: (1) normalize each row by dividing each by a constant,

M(a, B) = p(a’mM(fy’B) : (2.5.2)

Y pla, B M(a, B)

so that M(a,-) is automatically a well-defined probability distribution on I'; (2) assume p(a, 8) < 1/M(a, ) and
Zg")p(mﬂ)/\;l(mﬁ) € (0, 1], which is possible when p(«, 3) is close enough to 1 for all o, 8 € I'. Then define the

off-diagonal terms as in (2.5.1) and define the diagonal terms as

(o)
M(a, @) :i=1- > p(a, B)M(a, B). (2.5.3)

Bel’

Note that option (1) changes the stationary distribution to

_ () 2g (e, BYM(a, B)

() b :

(2.5.4)

where Dy := > Bﬁ(a)p(a,ﬂ)/\;l(a,ﬂ). Whereas option (2) retains the same stationary distribution, 7 = 7. The

difference between 7 and 7 in (2.5.4) is easily controlled:

B
o 8) _pla,B) [
< ZB:’M( .8)] ;‘1 B
i plo, B) |?
< ;M( ,ﬂ);‘1 D
< Z‘lfp(g’ﬂ)‘ (2.5.5)
B p
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by the Cauchy-Schwarz inequality. Note that this bound can be improved when ./\;l(a, B) is close to constant.

To control the effect on the mixing times, we use Theorem 2.23. Note that this is overkill in this situation—a
simple comparison between the Markov chains using Dirichlet forms would suffice (see for example Lemma 13.22
in [67]). Since the perturbation does not alter which transitions are possible, we define paths as ¢q,p = (o, 8). Thus,

the congestion ratio (2.4.10) is

()M (e, B)
a,ﬁ:/{/ln(arfﬁ)>0 m(a)M (e, B)’ (2.5.6)
For option (1), we see
’ 5 ! .A;l 5 !
max Dy = Ly Ples F) M, F) = max Dy . (2.5.7)
a,B:M(a,3)>0 ZB p(a’ﬁ)_/\/[(a’ﬁ) p(()é,ﬁ) a,B:M(a,B3)>0 p(a,ﬁ)

In particular, if max, g|1 — p(a, B)| < €, then

1Dyl < m(a) Y. M(e, B) 1 — p(a, B)| <, (2.5.8)
e B

80 (2.5.7) is bounded by 1 + O(e). In which case, v = (1 + O(¢))7.

A very similar argument can be used to control the mixing time for option (2).

2.5.2. Simple nonsymmetric rescalings. This perturbation rescales columns of the mutation kernel and redefines
the diagonal elements to ensure M(a) is a well-defined probability distribution for all @ € I'. Precisely, suppose

p(B) > 0 and 3 M(a, B)p(8) < 1, then define

M(a, B) := M(a, B)p(B) (2.5.9)

and

M(a, @) == 1= M(a, B)p(B) (2.5.10)
B

for all o, B € T'. Then condition (2.3.1) is satisfied with

() = Ip(@) (2.5.11)

25 ®(B)p(B)’
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since

m(@M(a, ) = & n=rzn M(a, B)p(8) = w(B)M(B, ). (2.5.12)

< Dl=p@)P. (2.5.13)
\ 5

We can control the distance between 7 and 7 similarly to before:

[7(@) = (@) = [1—p@)]+ O | [DI1-pB) |. (2.5.14)
5

For the spectral gap, we again use the Comparison Theorem and note the congestion ratio is

) C)
a,B;/{An&},{@b() ZB’ =(8)p(B)’ (2.5.15)

so if we assume maxq |l — p(a)| < e, then v = (1 + O(¢))7.

2.5.3. Convex combinations of chains. Suppose that M and M are both reversible with respect to 7, then so

is any convex combination of the two:
My (v, B) = pM(a, B) + (1 = p)M(a, ) (2.5.16)

for p € [0,1]. Obviously, (I';, M,) is a well-defined mutation process with stationary distribution = by Equation
(2.5.16). For the mixing time, we again use the congestion ratio (2.4.10) and compare to both chains M and M.

Note

M, f) <! (2.5.17)

pM(e, B) + (1 —p)M(a,B) P

and similarly

Mi@p) <L (2.5.18)
pM(a,ﬁ)-ﬁ-(l—p)M(a,,@) 1_]7

thus v, > max {py, (1 — p)7}.

2.5.4. Bond percolation. In Section 2.3, we observed that random walks on weighted graphs are always reversible.
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Starting with a random walk on a weighted graph there is a natural way to perturb the mutation process—we simply
perturb the weights of the graph. Of particular interest is the case where edges are deleted from the graph (or
equivalently their weights are set to 0). Biologically, this means that mutations that were previously viable are no
longer an option. The edges can be deleted in many different ways, but in this subsection we focus on the case where
edges are deleted independently with probability 1 — p. Importantly, the edges in the original graph are undirected,
so when a mutation becomes inviable in one direction, it automatically does so in the other direction.

We choose to delete edges independently at random for several reasons. First, without a specific model in mind,
choosing the simplest type of randomness is often reasonable [91]. Having said that, the statistical properties of
the genotype spaces obtained with this type of randomness matches well with many observations from biological
experiments [11,38]. Second, this type of randomness breaks the symmetry of the genotype spaces we have considered,
which was our stated goal at the start of Section 2.5. Third, this choice of randomness is amenable to analytical
analysis and puts us into contact with the extensive work on percolation theory.

Percolation adds an additional source of randomness to the mutation process. Obviously, one can ask questions
that concern only the way that percolation changes the geometry of the graph or lattice. However, if we ask question
about a mutation process on these random genotype spaces, we are immediately in the territory of random processes
in random environments. Many dynamical question about the mutation process depend on the geometry of the
genotype space (see Section 2.4), so we often have to study geometrical question about the random space.

The first technical issue with deleting edges is that doing so can disconnect the graph. Obviously, in such cases the
mutation process is no longer irreducible. Thus, connectivity is an important concern for us. The probability that a
graph is disconnected by random, independent edge deletions with probability 1 — p was first studied on the complete
graph by Erdds and Rényi [92], who found a sharp transition: if p > (1+c¢)log(n)/n for some small constant ¢ > 0, the
graph is connected with probability 1 —o(1) as n — o0; if p < (1—c)log(n)/n for some small constant ¢ > 0, the graph
is disconnected with probability 1 — o(1) as n — . Thus, log(n)/n is a sharp threshold for connectedness, but more
detailed information about the graph’s geometry is known below this threshold. If np — ¢ for some constant ¢ > 1,
then the graph has a unique giant component that contains O(n) vertices, whereas all other components contain at
most O(logn) vertices. If np — 1, then the graph has some component that contains O(n??) vertices. Finally, if
np — c for some constant ¢ < 1, then the graph has no component that contains more than O(logn) vertices. The

existence of a giant component for some p that are below the sharp threshold for connectedness suggests that the
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dynamics of a random walk still warrant study if we simply restricted to this component.

The stationary distribution takes an especially simple form for random walks on graphs (see (2.3.5)):

_ da _ da
2|E| 25d57

() (2.5.19)

where d, is the degree of vertex « and |E| is the total number of edges in the graph. Since edges are deleted
independently at random, the quantities d, are a sum of independent random variables—this means we can get good
control over them with concentration inequalities (see Appendix B), so long as the degrees are large before percolation.
Obviously when considering the complete graph, each vertex has degree n before percolation (we include self-loops).
This implies that after percolation each vertex has degree pn in expectation. Moreover, by a concentration argument,
we can concluded that each vertex has degree pn + O(y/n) with very high probability for large p. Therefore, a simple

union bound implies that all vertices have degree pn + O(y/n) with very high probability simultaneously. Therefore,

@)=L +0 (#) — #a)+ 0 (#) . (2.5.20)

The mixing time of a random walk on the Erd8s-Rényi random graph has also been studied. For comparison,
we note that a random walk on the complete graph reaches it stationary distribution after a single step, and thus
its mixing time is O(1). Many results on the Erdés-Rényi random graph model for large p are also demonstrated
simultaneously for the random regular graph model, where a graph is sampled uniformly from all those that have
constant degree d, since the degrees in the Erdés-Rényi model concentrate around pn. The upper bound lemma [66]
and a combinatorial argument are used to show the mixing time is O(1) with high probability when the degrees
are a fixed power of n in [93]. The results in [94] improve on the above combinatorial argument, and extends the
mixing time result to graphs with degree that are O(logn)® for ¢ > 2. For p below the sharp threshold, the graph is
disconnected with high probability, so a random walk is no longer irreducible. However, if the walk is restricted to
the unique giant component of the graph, [95] and [96] find using Cheeger type bounds that asymptotically almost
surely the mixing time is ©((logn/d)?) when d = O(y/logn), and O(logn/logd) when d » +/logn. Interestingly
when p is in the first regime, there is local structure of the graph that slows mixing, whereas when p is in the second
regime the diameter of the giant component is the largest impediment to mixing. In [97], the connection probability

is lowered all the way to the critical value p = 1/n. The authors find that a random walk on the largest connected
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component (which has diameter O(n'/?)) has mixing time O(n) and so the walk no longer mixes rapidly. Finally, we
note that [98] finds the mixing time of a random walk on a random regular graph displays a cutoff at (d/(d—2)log,_; n
with window order y/logn and that when d = n°(1), the mixing time is O(1).

Turning our focus from the complete graph to the hypercube, we can ask similar questions to those we have
discussed for the complete graph. Note that most results have studied case k = 2, but results can easily be extended
to general k case. The hypercube has k™ points and each point has degree (x—1)n. We then apply a bond percolation
where each edge is kept with probability p independently. Take a single point, then the probability that this point is
isolated (that is, has no neighbors) is exactly

(1—p)om. (2.5.21)

Therefore, we can lower bound the probability that no point is isolated by

1—w"1=p)" " =1 (k(1—p)" )", (2.5.22)

Note that if

p>pei=1—r VETD (2.5.23)

then with very high probability there are no isolated vertices. In fact, p. is the critical probability for percolation
above which the graph is connected with high probability [99].

We now state results for k = 2. For p below this critical threshold there can still be a giant component. In [100],
the authors find that for p = ¢/n and ¢ > 1, graph contains a component of size O(2") and that the second largest
component is size o(2"). It is possible to find even more detailed information about the size of the connected subgraphs,
and [101] studies this especially below the threshold p = 1/n. For low p most arguments use an approximation to a
Poissonian branching process (see the proof of Theorem 3.6 for another example of such an approximation). For a
survey of percolation results on the hypercube see [102] and for high-dimensional spaces in general see [103].

Formally, we arrive at the following mutation process.

DEFINITION 2.26 (SINGLE POINT MUTATION PROCESS ON THE BOND DISORDERED HYPERCUBE). This process is a

random Markov chain (I'"), M®)) with state space T, = [£]" and each M) (a, B) a random variable defined as
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follows: for

pe (1 — M) 1], (2.5.24)

and for e € E let x be i.i.d. Bern(p), where E is the edge-set of the hypercube I'y,. Then

e ife = (a, B)
M(P)(a’ﬁ) =41_ Zflz(a,ﬁ)eE‘ M(p)(a,,é) ifa=p . (2.5.25)
0 otherwise

The interpretation of Definition 2.26 is that mutations are chosen according to Definition 2.4, but they only occur
if they are viable according to the randomness. We have seen that with probability 1 —o(1), the single point mutation
process on the bond disordered hypercube is irreducible. It is also aperiodic, since € > 0. Reversibility with respect
to the uniform distribution is immediate from the symmetry of M® . The way we define M® in Definition 2.26
makes the following analysis easier, because the stationary distribution remains uniform, but to see the similar results
for a true lazy random walk on the bond percolated hypercube see Appendix C.

The mixing times of random walks on structured spaces after percolation has been less studied than the equivalent
question for the Erdés-Rényi and random regular graph models. In [104], the largest cluster of a super critical bond
percolation on the finite lattice [—n, n]¢ (with d > 2 and fixed) is studied. Using a generalized Cheeger type bound
(called the isoperimetric profile or conductance profile and developed in [105]), they find the mixing time of a random
walk is ©(n?)—this is within a constant factor of the mixing time without percolation. However, for the hypercube,
we wish to fix n = 1 and take d — c0.

Now, we show that the mixing time of the single point mutation process on the bond disordered hypercube can
be controlled for p > p., that is, above the critical threshold for connectedness. We prove this using the Comparison
Theorem 2.23. Since we are restricting p > pc, we know that with high probability the graph will be connected. This
means that the Markov chain after percolation has the same state space and that it remains irreducible—both of

which are necessary for Theorem 2.23 to apply. Moreover, we know the stationary distribution is uniform.

THEOREM 2.27. Let (Fslp),/\/i(p)) be the single point mutation process on the bond disordered hypercube and denote
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its mizing time by tmiz. Suppose

p>pesi=4/1—(1/k)Y"Y = p. > pe, (2.5.26)

then the process mizes rapidly—specifically,

2
tmiz = O <"1%) (2.5.27)

with probability 1 — o(1).

PROOF. Our goal is to show that after deleting edges from the hypercube, there are still short (of length at most
3) paths between all points that were previously neighbors before deletions. Let E is the edge-set of the hypercube.
Suppose for some edge in E, denoted e = (e, 3), that z. = 0. Suppose also that the coordinate that e and 3 differ
at is i with B(i) = k; for notation, we write a, to signify a has been changed in coordinate i to k, and thus 8 = o,

for some k € [k]. Then a path of length 3 from « to B3 in I' would have the form
(a, ol (afc)k ,ﬂ) (2.5.28)

for some j # i and k' # a(j), since B = . Such paths pick some other coordinate j not equal to i, change it, then
change coordinate i to match 3, and finally change coordinate j back to its previous value. Note that once any edge
in the path is determined, the path of this form is completely determined.

For any pair of a, 3 such that D(a,3) = 1, there are exactly (k — 1)(n — 1) paths of this form between them.

Moreover, each of these paths shares no edges and thus the events

x(o‘""i/)x@iw(aj )7):5((.17 )75) =1 (2.5.29)

for each path are independent for fixed a, 3. For fixed a, 3, the probability that a single path exists is p*, thus the
probability that at no path exists is

(1 —p*)tr= D=, (2.5.30)

Therefore, the probability that all pairs a, 3 such that (e, 3) € E have at least one path of length 3 between them
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is lower bounded by

1—n(k—1)s"(1—p) DY, (2.5.31)

as there are n(k — 1)k™ such pairs «, 3. Note that the probability (2.5.31) is very high given that

pesi= A1 — (/)Y < p, (2.5.32)

So for p > pe,3, there is some path with probability 1 — o(1) between all pairs o, 8 such that (,3) € E. Let &
denote the event that there is a path of length at most three between all pairs «, 3 such that (o, 3) € E. Above we
have argued that P{€} = 1 — o(1).

Now, we use the Comparison Theorem 2.23. We construct paths as follows conditional on the event £: For any
pair o, 3 such that (o, 3) € E where x(,g) = 1, we set ¢a,g = (o, 3). For any pair a, 3 such that (o, 8) € E where
T(a,p) = 0, we choose ¢a,p arbitrarily from paths of the form (2.5.28), of which one is guaranteed to exist on the
event £.

Consider an arbitrary edge e in E, there are 3(k — 1)(n — 1) paths of the form (2.5.28) that pass through e. To
see this note that e can either form the beginning, middle, or end of a path, and after e is fixed there are exactly
(k —1)(n — 1) paths of this form. Alternatively, we may use the symmetry of the hypercube to note that the answer
should not depended on the choice of e. Then a path of the form (2.5.28) is determined by its end points, of which
there are (k — 1)nk™ possible choices, and then there are (k — 1)(n — 1) paths for each pair of end points. Moreover,
each path contains 3 edges, so the each edge must be included in

3(k — Dn(n — 1™
(k — 1)nkm

=3(n—-1)(k—1) (2.5.33)

paths.

Let E' := {(o, 8) : (a,p) = 1}. Now we can bound B from Equation (2.4.10) as follows:

K"kn €
-3 < —1)(n—-1). 2.5.34
(ar,%?é(E’ - Z KPKN 3 ox )(n ) (2.5.34)
&,B:(a,B)eds 5
Then applying Theorem 2.23, Lemma 2.11, and Theorem 2.21 completes the proof. |
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REMARK 2.28. While we have only studied the mixing properties of the hypercube after bond percolation in the
super-critical regime, there are conjectures about these properties down to p > 1/n for k = 2. If the random walk on
the percolated hypercube is restricted to the unique giant component (which exists so long as p > 1/n), the mixing
time is conjectured to be polynomial in n with high probability [106]. Perhaps the mixing time should even be O(n?),

as this is what one expects from the Erdés-Rényi case.

Note that the argument in the proof of Theorem 2.27 can be generalized to bond percolation in other high-
dimensional spaces. The main requirement is that there are many disjoint short paths between all neighbors in the

original space.

2.5.5. Site percolation. In Subsection 2.5.4 we added disorder to the hypercube by making some mutations
inviable by symmetrically deleting edges from the hypercube. We saw that the changes this caused in the stationary
distribution and mixing time could be controlled for moderate levels of disorder. In this subsection, we consider
a different type of disorder with a different biological interpretation. Again, we start with a random walk on a
weighted graph, but in bond percolation instead of deleting edges independently with probability 1 — p, we delete
vertices of the graph. When a vertex is deleted all edges incident to this vertex are also deleted. This setting has
an interesting biological interpretation that we discuss more in Section 2.6, but for now we imagine deleted vertices
represent genotypes that are inviable. While there is experiment and theoretical work studying how genotypes might
be segregated in this way [107-111], we lack a complete understanding of the structure of this distinction. However,
some of the statistical information, we do have about the geometry of the subset of viable genotypes in genotype
space can be replicated with this simple random model, but more complex models are required to match all the
experimental data [107]. Thus, we might hope that even this simple case can inform us about evolution in real
genotype spaces.

This idea of separating genotypes into viable and inviable subsets goes back at least to [112]. Choosing the
viable and inviable subsets uniformly and independently at random was considered in [113] for k = 2. As we did in
Subsection 2.5.4, [113] uses results from percolation theory to get geometric information about the subset of viable
genotypes. Similarly to our calculation in Equation (2.5.23), one can show that the site percolated hypercube is
connected with high probability if p > 1/2. While the site percolated hypercube is disconnected with high probability
when p < 1/2, there is still a unique giant component of size 2"p for p > 1/n. The second largest component has

size at most O(n). For p < 1/n, there are many components of size at most O(n). Interestingly, [113] also finds a
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distinction in the number of evolutionary paths between genotypes for p above and below 1/n. As we discussed in
Section 2.4, the existence of many paths between pairs of points in a space is a feature of high-dimensional spaces and
can lead to rapid mixing (see Theorem 2.23). All these results are summarized in the review article [114], although
there is a focus on how this may be a mechanism for speciation.

In fact, motivated by spin glasses, the relaxation time (which is related to the mixing time) of a random walk
on a site percolated hypercube has been studied both experimentally and theoretically [115]. It is found that the
relaxation time is exponential when p > 1/2 and that the behavior shifts to a stretched exponential with exponent
1/3 when 1/n < p < 1/2. Both regimes suggest that the mixing time of a random walk should be fast (although faster
when p > 1/2) because of the high-dimensionality of space.

While these results are suggestive, this model of disorder presents additional technical challenges as the state space
of the mutation process changes after percolation. Many of the techniques for Markov chains that control the effects
of perturbation, assume the perturbed chain has the same state space (see Theorem 2.23 for example).

Note that the stationary distribution of a random walk on the site percolated hypercube can be controlled in the

same way as we did in Equation (C.0.3).

2.5.6. Other subgraphs of the hypercube. In this subsection, we highlight some very interesting work that
studies the mixing time of a random walk on a subset of the hypercube. In the previous subsection, we did exactly
that, but for a random subset of the hypercube. Our biological motivation for this was to point out that some
genotypes are inviable and that choosing the viable genotypes uniformly and independently at random matched the
statistical geometric properties from experiments. However, we could instead have used some deterministic criteria to
choose these viable genotypes. This would then specify the subset of the hypercube our random walk would walk on.
For example, [116] use a model for how RNA sequences fold to produce secondary structure, then an RNA sequence
is considered viable if it has a specific secondary structure. Note that this criterion is deterministic.

It is not clear in general what types of criteria are biological realistic, but [117] gives an interesting example from
computer science. The knapsack problem is a classical problem in combinatorial optimization [118]. Imagine you
have a knapsack whose capacity is limited by a maximum weight W. Then, given a list of n items each with a weight

w; and value v;, find the combination of items that can fit in the knapsack that has maximum value. Mathematically,
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the maximal subset M < [n] is defined

M := argmaxgc [, {2 v Z w; < W} . (2.5.35)

€S €S

Obviously, any subset S can be represented by the point (1(1€ S),...,1(n € .S)) on the hypercube, and we can
consider the subset of the hypercube containing all points that do not violate the weight constraint.

‘While the knapsack problem is computationally difficult, an efficient randomized algorithm is found using a simple
Metropolis chain [67]. Metropolis chains take a current solution as their current state, then randomly sample possible
neighboring solutions that add or remove one item from the knapsack, and then they transition to this neighboring
state if it does not violate the weight constraint. Because any solution can be transformed into any other solution by
adding and removing one item at a time, and because the Metropolis chain is symmetric, the stationary distribution
is uniform on the set of possible solutions to the knapsack problem. Thus, we can sample approximately uniformly
for the set of possible solutions to the knapsack problem. The efficiency of the randomized algorithm is then linked
to how quickly the chain mixes. This motivates Morris and Sinclair’s study of the mixing time [117]. Significantly,

the mixing time is found to be O(n®?*%)

for any € > 0, which means the chain mixes rapidly.
This bound on the mixing time extends to any hyperplane on the hypercube. So any biological criteria that can be
described by a hyperplane on the hypercube produce a set of viable genotypes that have rapid mixing. For example,

a hyperplane is formed if we imagine the coordinates of the hypercube representing the presents of a gene, each of

which increase fitness additively, and specify that a genotype is viable if its fitness exceeds a given value.

2.6. FITNESS

The purpose of this section is to discuss how to assign a nonnegative real number, called fitness, to each genotype
in a genotype space [119]. This idea goes back at least to Wright [120,121]. We pay special attention here to the
case where fitness take values in {0,1} to distinguish between viable and inviable genotypes (or neutral regions in
genotype space) [112].

We are impelled to introduce fitnesses, as these values are the avenue by which selection enters into models of
evolutionary dynamics and so are necessary to develop the models in Chapters 3 and 5. Attempting to make sense

of fitness biologically and philosophically is challenging, and we discuss some of these challenges here [23]. However,
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thinking about the notion of fitness in biological examples serves to motivate and form it as a parameter in our
models. Indeed, mathematical models provide the clearest way to define a coherent notion of fitness.

In the introduction of this section, we vaguely mentioned that fitness describes the average rate at which a genotype
is replicated in the population of genotypes that our evolutionary process is tracking. What determines this rate?
So far we have only considered genotypes syntactically—labeling them and discussing how they relate to each other
geometrically through mutation. To discern more about fitness, we must consider genotypes semantically. We must
think carefully about the mechanisms that actually replicate the genotypes.

Consider the following simple experiment that we use to work through the idea of fitness as average rate of
replication. Imagine a Petri dish full of bacteria and some media containing enough nutrients for the bacteria to
survive. In this experiment, we tract the genotypes of all the bacteria in the dish. When a bacterium undergoes cell
division it makes a copy of its DNA. Working backwards from this event, we see the mechanism for this copying is
determined by the bacterium’s phenotype, that is, all of its physiological, behavioral, and biochemical properties and
traits. Think of how cell devision is initiated by a complex interaction of regulator networks, or consider the physical
manner in which DNA stores the genotype and provides a specific mechanism for its replication via its double helical
structure. Both are part of the phenotype. We might even define the phenotype as the mechanism that reproduces
the genotype. This mechanism might do many other things that are seemingly unrelated to replication, but from the
perspective of modeling evolution they are irrelevant. All we are concerned with is how the phenotype causes the
reproduction of its genotype.

So the phenotype does the copying, but the genotype provides the heritable instructions for the phenotype. Re-
turning to our example, the bacteria need energy to do work and they get this energy by liberating it from the media
with chemical reactions. These chemical reactions are catalyzed by proteins that are translated, via RNA, from the
bacterial DNA (as explained in the central dogma of molecular biology). Through a multitude of interactions of this
type, the genotype influences its own replication, but fitness is only a function of genotype through the phenotype
and not directly.

Despite the genotype providing instructions for the phenotype, it does not completely determine it. The phenotype
is also influenced by the environment. Thus, organisms with identical genotypes can have different phenotypes, either
due to variation in the environment or noise in how the genotype is translated into the phenotype. For example,

the proteins that our bacteria produce may fold differently as the temperature of the media changes. Taking this to
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an extreme, if the temperature is high enough, no bacteria can survive let alone replicate. So fitness also depends
on the environmental context. Does this mean we are assuming variables in the environment like temperature are
constant over the timescales in our models? Or, as we are talking about average fitness, are we able to average
over changes in the environment over time? However, the environment varies even on microscopic scales. The
bacteria at the edge of a growing colony might replicate faster because of increased availability of nutrients and
better access to space for division. Again, are we averaging over these spatial variations when we describe fitness? If
we consider the composition of the population as part of the environment, then it is easy to imagine that this might
also affect fitness. Say some bacteria have a mutation that means they can metabolize a waste product from the
metabolic cycle of the wild-type bacteria. In this case, the abundance of the wild-type bacteria could increase the
fitness of the mutated bacteria. Is this variation in frequency something that can be accounted for by averaging too?
Specifically, the question is can the phenomena we want to describe be captured in a model where fitness does not
depend on such variations or bundles them together in some complex way? The existence of models with changing
environments [122], structured populations (see Chapter 6) [123,124], and frequency dependent selection [125] suggest
that there are important phenomena that are not.

The problems we have described above relate to what fitness can and cannot incorporate, and how, as its purview
expands, it becomes more obscure and less interpretable—almost to the point of meaninglessness or tautology. By
all accounts, fitness seems undetermined by the genotype, but perhaps it can be salvaged as a relative rather than
an absolute concept. In models that consider competition between two genotypes that differ in some small way and
are otherwise equal (see Moran process in Section 3.1 and Wright-Fisher process in Section 3.2), fitness intuitively
seems on firmer ground. In these models, we do not think of this difference in genotype as radically affecting the
mechanism of replication, only its rate. We assume that this difference in rate is consistent over all the changes in
environment that we outlined above, and because the change in genotype is small, our ceteris paribus assumption
seems reasonable. However, for models that try to capture longer timescales, where evolution is exploring a vast
genotype space and our aim is to talk about major evolutionary developments in the phenotype (see origin-fixation
models in Chapter 5), the ceteris paribus assumption cannot be justified by the same argument.

These problems have lead some to suggest the notion of fitness must be revised [126,127]. However, it is difficult
to know how it can be replaced in our models of evolutionary dynamics. Even models that address how fitness

depends on its environmental context still have some parameter that controls the rate of replication in some way.
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The alternative to fitness, of modeling the whole mechanism of reproduction, seems unlikely to lead to tractable
models. Perhaps fitness should be thought of as a kind of emergenic property—analogously to how atoms do not on
their own have the properties of fluids, but how their behavior is well predicted in the aggregate in certain situations
by equations that contain terms like viscosity. Ultimately, the role of fitness in these models will be justified by what
they tell us about evolution.

Our discussion has made the assumptions that go into models of evolutionary dynamics more apparent and also
lead us to some important constraints on fitness. First, we know that fitness depends on the genotype via the
phenotype. Second, we saw that it is easier to understand fitness as a relatively term that compares differences
in the rate of replication. In this way, we discuss the effect of a mutation on fitness. These two observations are
especially important for neutral evolution. We can argue that if genotypic changes do to change the phenotype, those
variants should have the same fitness. Many models that give some semantic interpretation to a genotype rely on
this argument, which proves crucial to saying anything sensible about evolution on long timescales. We discuss some

of these models now.

2.6.1. Models of fitness via phenotypic functionality. To start with a very simple example, consider a subse-
quence of the genome that is noncoding, that is, a sequence of DNA that is never transcribed into RNA (and thus not
translated into protein). Important examples of such subsequences include pseudogenes. Since these subsequences
are not transcribed, it is reasonable to suppose that most mutations in these subsequences to not lead to changes
in fitness. In this way, we find a biological motivation for a completely neutral genotype space that contains all the
potential configurations of this noncoding subsequence of DNA.

In Section 2.2, we already considered a second simple example in this vein of neutral genotype spaces. In this
example, a genotype described the order of a list of genes on a chromosome. Again, it is reasonable to assume that
reordering these genes (but maintaining their content) should have no or very little affect on fitness.

As a third example consider a gene that has a duplicate copy, so that the second copy is essentially redundant
[14,128,129]. Again whatever the effect the first copy of the gene has on fitness can be maintain while the second copy
is subject to mutation. Considering the second copy as the genotype is a further way to motive a neutral landscape.

These three examples are fairly trivial, but there are several examples that use more careful thought about how the
genotype is translated into the phenotype. The main assumption in these examples is that fitness, which is difficult

to measure or define, is related to some concrete, measurable function, like catalyzing a specified chemical reaction or
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binding some molecule. While there may not be a direct interpretable relationship between functionality and fitness,
we can at least make a distinction between phenotypes that have that functionality to some degree and those that
do not.

In our first example of this type, consider a gene that encodes for a sequence of amino acids that folds into a protein
that performs a particular function in the cell. That protein’s function (or phenotype) is determined by its physical
and chemical properties. These properties are separated into three levels: primary, secondary, and tertiary, where
the former determines the subsequent level. Primary structure consists of the sequence of amino acids. Secondary
structure consists of the local structures of the folded protein, like alpha helices and beta sheets. Tertiary structure
is the full three-dimensional shape of the folded protein.

So any mutations that maintain these properties should be neutral. Molecular biology tells us that once DNA is
transcribed to RNA, it is translated into a string of amino acids three base pairs at a time. Each of these three base
pairs is called a codon and there are 4> = 64 possible combinations, but since there are only 20 amino acids, there
are some codons that specify the same amino acids. In this way, we can argue that mutations that change one codon
to a synonymous one should be neutral, as they maintain the primary structure of the protein and thus also the
high level properties [130-133]. We can take this approach a step further, and ask what is the set of genotypes that
translate into protein with a specified secondary structure? How abundant are the different secondary structures in
genotype space? What is the geometry of this set?

Due to the massive size of sequence space, studying these questions empirically is challenging. However, exper-
iments have shown that proteins that fold (rather than aggregating), show helicity, or are soluble are abundant in
sequence space [111,134,135]. Miraculously, even ATP-binding proteins can be found by sampling from a random-
sequence library [136]. This must indicate that the density of such proteins is high, as if the density were low, an
experimentally infeasible number of random sample would be required to find one. Indeed, some experiments do not
start with unbiased random proteins, but instead start with a functioning protein and use targeted mutagenesis to
explore how functionality changes in neighboring proteins [137,138].

Due to the obvious empirical challenges in dealing with such large spaces, finding good physical models for
predicting protein secondary structure has been a priority. Simple models of protein folding have been used to study
the geometric properties of the set of amino acids that fold into a specific structure [139]. Under these models, the

set is found to spread throughout sequence space (not cluster together) with no obvious sequence homology between
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pairs in the set. However, despite being spread throughout sequence space, the subset forms a neutral net—that is,
for ever pair of sequences there is a path of mutations between them that does not leave the subset. Moreover, none
of these observations appear to depend on the specific folding structure under consideration.

More complex models of protein folding have shown great progress by exploiting multiple sequence alignment
and modern machine learning techniques, with current models reaching over 90% accuracy in predicting secondary
structure [140-144]. Determining the full tertiary structure of proteins from sequences is a notoriously difficult
problem, but state of the art algorithms have shown promise [145-147]. The computational resources required for
these models often make the deep exploration of sequence space that is required to determine geometrical properties
difficult.

Similar work has been done on RNA, which instead of simply encoding for proteins, can have functional significance
itself. Similarly, it can be argued that this functionality should be mediated by the secondary structure of the folded
RNA. Shuster and Fontana’s work on this topic is extensive [107,148-151]. They have produced mathematical models
of RNA secondary structure, which are less computational intensive than those for proteins, and used them to study
how sequences yielding specific secondary structures are distributed throughout sequence space. From these models,
we can get information about the geometry and abundance of secondary structures in sequence space. Two significant
findings are: (1) that the abundance of secondary structures shows a power-law decay: a few common structures
are very abundant, and most structures are quite rare; (2) the geometry of the subset of sequences with a specific
secondary structure is again described by a neutral net—each sequence in this subset has neighbors with the same
secondary structure and set is connected together by single point mutations [152].

Metabolic reaction networks provide a third way to model the relationship between the genotype, phenotype, and
fitness. The genotype for a metabolic reaction network is a binary sequence, where each bit specifies the presence
or absence of a catalysis for a specific chemical reaction [11]. When a catalyst is present in the genome, we can
say that reaction is available to the phenotype. We can imagine all the molecules that can be produced from some
starting substrates, like glucose or fructose, by chaining together available reactions. Then, for each genotype, we can
decide whether it produces all necessary biomolecules and is thus a viable genotype. In this way, we can separate the
genotype space into two disjoint subsets of viable and inviable genotypes for each starting substrate. The viability of
a metabolic reaction networks on a substrate is its phenotype. Wagner has explored this model with a random walk

to neighboring, viable sequences and discovered many intriguing properties [109,110,153,154]. They find that most
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reactions can be substituted, very different genotypes can be viable on the same substrate, and that the mutational
neighborhood of most sequences contains many different phenotypes. The geometry of the subset of viable sequences
is also fascinating: it has the same neutral net structure as described above for RNA, the mean and maximum
distance of pairs of sequences from the space are close to those statistics for points from the whole space, and the
viable subset is spread throughout sequence space—not clustered together.

Taken together, all of these examples of the relationship between genotype and phenotype inform our expectations
of the function F and how we should introduce it into our models. In particular, we have highlighted some observations
about the geometry of neutral regions of genotype space—or at least regions where fitness is only varying weakly.
We now turn to some statistical models that try to replicate some of these observed properties without relying on

complex ways of determining fitness or viability by modeling the phenotype [155].

2.6.2. Statistical models of fitness. In this subsection, we briefly highlight some random models for the function
F that have been developed for I" = [k]™ [32,119]. Often the purpose of randomizing the function F, is that is allows
us to discover properties of evolution that hold in general or are “typical.” The NK model is probably the most well
known, which provides a way of parameterizing the ruggedness and correlations in F [46]. Briefly, the fitness of a

sequence « is given by the sum of the fitness of each of its coordinates

Fla) =), file(iali), .., alix)), (2.6.1)

where the values of the function f; are sampled independently from some distribution. Note that f; takes K other
coordinates of a as an arguments. By increasing K, the ruggedness of the landscape can be increased. The NK model
has proved particularly important in the case of strong selection and large fitness differences between genotypes, which
contrasts with the biological motivations we described in Subsection 2.6.1. In this regime, evolution takes on a more
deterministic character called adaptive walks, where fitness increases at each step. So the number and basin of
attraction of the local optima of F are a particularly important object of study.

In contrast, the theory of holey landscapes provides a model for neutral regions of fitness [113,114]. In this model,

F(ax) ~ Bern(p) (2.6.2)
independently at random. Note this is exactly the method we describe to disorder a genotype space in Subsection
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Figure 2.1: Mostly neutral landscapes by truncating fitness.

2.5.5. We can also interpret this landscape as a truncation of the NK model when N = K: let F be given by the NK

model, then

Flo) =1 (5? () = c) (2.6.3)

for some ¢ > 0. Despite its simplicity, this model can replicate many of the statistical and geometric properties we
outlined above for fitness landscapes that derived from some kind of functionality. Specifically, we can reproduce
connected, neutral nets. However, not all properties can be reproduce in this way [107]. In particular, fitnesses are
uncorrelated in holey landscapes, which does not agree with our knowledge of biology. We can still hope to learn
something from these landscapes, as often independence assumption are necessary for analysis and give the same
results as models with weak sources of correlation due to some universality [156-158]. In Chapter 5, we use a related
model to study evolution on long timescales. Note that dynamics on these holey landscape have been considered

before in [159-161].
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2.7. ONE-DIMENSIONAL PROJECTIONS

While the hypercube has many nice properties, its high-dimensionality can make it difficult to analyze in some cases.
Moreover, for some questions, it is not important to know the complete genotype sequence, but only a summary
statistic of it. For example, say we are interested in how long it take to reach a particular genotype in the space in
the single point mutation process (denoted by o). Mathematically, we want to get information about the random
variable T := min {t : ax = 3} such that ap = ¢ for &, 3 € I". Then we can consider the process z; := D (a, 3).
The process x: is a projection of the process a; and, significantly, the process x; is still a Markov chain. The

transition probabilities of the process are given by

e(mn—x¢)(k—1 ex
P{Iprl = x¢ + 1|$z} = %, IP’{J:Hl =Tt — 1|$t} = ?7;7 (271)

and P{zi41 = x¢|ae} = 1 —P{xi11 = ¢ + 1|ae} — P {ze41 = x¢ — 1|z }. The reason the process x is easier to analyze
is that it is a birth-death chain. Since the process is a birth-death chain, there are closed formulae for statistics
like the ET (where T := min {t : z; = 0} is simply T projected and defined for the process x;) and the stationary
distribution of the process (See Appendix A).

Using Theorem A.2, we can calculate ET conditioned on zo = 4, which we denote by t;:

(2.7.2)

It is instructive to find asymptotics for these times to show how large they are with respect to n. Using a simple

bound on (";1), we see

k=0

ti>t = 2 (k — 1)’“<"kl>k}r1'? > g (W) (2.7.3)

for any k € [0, — 1]. Choosing k = (k — 1)(n — 1)/C for some C > 1 in the above expression and we find

ti > %C”El("*“. (2.7.4)



In particular, we see that time time to reach 0 is exponential in n. This is a prelude to many similar results we find

in Chapter 5— finding particular genotypes in genotype space can take a very long time.

REMARK 2.29. The idea of projecting a random walk on the hypercube in this way goes back to Ehrenfest and is
a common technique to analyze Markov chains [67,162]. We are interested in it here because it motivates genotype

spaces with a different sort of geometry. It also proves crucial in our analysis of the regeneration process in Section

5.4.

With this in mind, we can define this as a genotype space in its own right: Let I" := [0,n] and define

sn—ze)(e_1) iff=a+1
£t if=a—-1
M (a, B) = . (2.7.5)

nn(l—e)ﬁ—n(n—l)ns if 5 =

0 otherwise

While we have obtained this genotype space as a projection of the familiar hypercube, it is possible to take a more

abstract perspective on the space.

DEFINITION 2.30. This process is a Markov chain (T'y M) with state space I := [0,n] or I' = N and transition kernel
M defined by

mb ifB=a+1

M (a, ) = (2.7.6)

1—mi —mg iff=«

0 otherwise

for mE €[0,1] for all « € T.

By choosing different values for the probabilities mii, we can obtain many different interpretations of this genotype
space. One interesting example is to consider a € I' counting the number of times a base pair is repeated. For example,
-+ ACGGGGGGCTTA: - - would have o = 6 and --- ACGGGGCTTA. - - would have o = 4. Variations like this in
the genome of cancerous cells are import in determining the genealogy of tumors, as cancerous cells often loose the

ability to copy sequences of repeated base pairs with high fidelity.
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Now we turn to another interesting space that arises by projection. A common intuition for the transition
probabilities (2.7.1), is to think of a particle performing a random walk in one dimension with a Gaussian potential
centered at x = n(k—1)/k. We saw this in Theorem 2.7, but intuitively the transition probabilities have the following
property: If ; > n(k — 1)/k, then it is more likely that x; will decrease in value. If x; < n(k — 1)/k, then it is more
likely that z; will increase in value. The point z; = n(k — 1)/k, is where the transition probabilities are balanced,
since

e(n—z)(k—1) exs

= — 2.7.
KN KN 27.7)

if and only if z; = n(k — 1)/k. This means that mutation pushes the process z; away from 0 very strongly, which
as we saw in (2.7.4), leads to ET growing exponentially as n gets larger. What are possible mechanisms that might
reduce this hitting time? In Subsection 5.3.1, we consider how fitness affects this time, but here we want to focus on
mutation alone.

Imagine there is some mutation that effectively resets the process a: to its initial condition o and that the
distance of ap from our target B is small relative to n—say d = O (1). We call this type of mutation regeneration
and assume it happens with some constant probability regardless of the genotype. If we again project the process by

z¢ = D (o, 3), then this setup leads to the following genotype space.

DEFINITION 2.31. This process is a Markov chain (I'; M) with state space I' := [0, n] and transition kernel M defined
by

(1 —er)M(a, B) +erl (8 =d), (2.7.8)
where M is given by (2.7.5). The parameter er € (0,1) is the probability of regeneration to the genome d € T'.

We can get a crude upper bound on the hitting time of 0 in this modified process. First, we calculate the probability
that we reach state 0 before state d + 1 when starting in state d—denoted by p. We assume that er « €, then note

that

Plow = o+ 1z} _ ((N - 1)JE” - fE)) (2.7.9)

P{$t+1 = Tt — 1‘3&} o

since d = O (1). Thus,

(k — 1)711 (";1)71 ) —d_—d
=0 =0(d(k—1)"n . 2.7.10
g <1+Z?_1(f€— D= (") ( ( : ) ( :
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Since it takes 1/p tries to get from d to 0 in expectation and the the time between tries (or regeneration mutations)
is 1/er, the total expected time to reach state 0 is given by

(k —1)n?

2.7.11
d!ER ( )

Note that this is much less than (2.7.4).
Taking a more abstract perspective on the above process, we can considered mutations that only move toward 0

except for a regeneration mutation. This process is easier to analyze and still has interesting properties.

DEFINITION 2.32 (MUTATION PROCESS ON THE LINE WITH REGENERATION). This process is a Markov chain (I'; M)

with state space I' := [[0,n] or I' = N and transition kernel M defined by

md ff=a+1

1—ml—et ifp=a

M(a,B) = : (2.7.12)
el if =0

0 otherwise

To motivate Definition 2.32; suppose that there is some new functionality a cell can develop, but to do this it
must make a number of neutral mutations n to reach this functionality. Suppose that « € I" records the number of
mutations a particular cell has, so that o = 0 is the wild-type and a = n is a cell with the new functionality. If we

assume the mutations must be developed in some specified order, we would set

m;::% (2.7.13)

(2.7.14)

These steps are the forward mutations in the search process toward the new function. The search is lost at rate v:

each a = k cell (with k > 0) mutates back to an o = 0 cell with rate eX = v. The mutation rate v can represent the
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rate of deletion events, nonsense mutations, or any missense mutation that leads away from the target (because then
the search is essentially lost). It is natural to assume that v > w, meaning that at each step, it is more likely that
the search is lost than that a mutation is made in the direction of the target. This mutation scheme is known as the

“regeneration process” and was introduced in [2,10].

2.8. CONTINUOUS GENOTYPE SPACES

Almost all of the examples of mutation processes we have considered so far have been finite—with I' = N in Definition
2.30 being the only exception—and all have been discrete countable spaces. For completeness, in this section we give
an example of an uncountable, continuous genotype space.

When considering continuous genotype spaces, there is a slight technical change in the way we denote the mutation
kernel M. Previously, we could use M(q,-) to represent the p.m.f. of a distribution on I', but in continuous spaces

this might be an undefined. So in continuous genotype spaces, we specify

M(a, A) (2.8.1)

for A € o(T"), where o(T") is a sigma algebra over I'. Here we always have I' = R, and so it suffices to specify
M(a, [Bo, B1]) for all intervals [Bo, 31] = R.

Let the type of each individual be a positive real number o € R (or perhaps a vector in R™ for many features).
Suppose that « records the value of some morphological feature or perhaps the expression level of a gene. A simple

model of mutation in this case is multiplication by an independent random variable.

DEFINITION 2.33 (INDEPENDENT MULTIPLICATIVE MUTATION PROCESS ON RT). This process is a Markov chain (I, M)

with state space I' :== RY and transition kernel M defined by

M (e, [Bo, Br]) := M(B1/e) — M (fo/) (2.82)

where [Bo, f1] s an interval in RT and M is the c.d.f. of some distribution on R*.

A similar definition can be made for mutations that additively change the genotype.
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DEFINITION 2.34 (INDEPENDENT ADDITIVE MUTATION PROCESS ON R). This process is a Markov chain (I', M) with

state space I' := R and transition kernel M defined by

M (e, [Bo, B1]) i= M(B1 — @) — M(Bo — ) (2.8.3)

where [Bo, f1] is an interval in R and M is the c.d.f. of some distribution on R.
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EVOLUTIONARY DYNAMICS

In this chapter, we introduce a number of classic stochastic models of evolutionary dynamics. These examples serve
to motivate the typical problems we study in evolutionary dynamics, like determining the likelihood and expected
time taken for a mutant to fix in a population. Later in the chapter, we define a very general stochastic model of
evolutionary dynamics, that has as a special case all of the previous models.

In evolution, the population evolves, and so it forms the heart of all the models in this chapter. These models
differ in exactly how the individuals in a population reproduce, die, and interact, but they all have some fundamental
statistics that we focus on calculating. More complex models try to capture the effect of other variables, such as
population structure, on these statistics. The models of this chapter describe microscopic evolutionary change. The
events that concern us here all occur in relatively few generations compared to the totality of evolutionary history.
Even statistics that are taken when the process has reached stationarity or equilibrium concern short timescales, as
in most models stationarity is reached quickly.

As we mentioned in the introduction there are two places for stochasticity to enter into evolution: mutation and

the way that reproduction and death evaluate and depend on fitness. Incorporating this randomness into evolutionary
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models is essential if we wish to capture some phenomena that are fundamental to evolution [1]. So we ommit here

deterministic models, such as the replicator or quasi-species ODEs.

3.1. MORAN PROCESS

The basic Moran process is perhaps the simplest stochastic model of evolution [13,163,164]. We consider a genotype
space I' = {a, B} and associate a fitness 1 to a (without loss of generality) and a fitness f to 8, that is, F(a) = 1 and
F(B) = f. We consider a population of N individuals, each of which is either type « or 8. This might indicate the
absence or presence of a particular mutation, for example. Due to this interpretation, and because we often introduce
a small number of type S genotypes into a mostly type a population, « is often referred to as the wild-type and 3 as

the mutant. The state of the process at time t can be represented as a vector

x(t) € {a, B}V . (3.1.1)

Often the initial population consists mainly of the wild-type with a small number of mutants. Specifically, we can
choose the initial state of the process x(0) by simply placing a mutant at a uniformly random location.

The process is a Markov chain, where the next state is obtained from the previous one: First, randomly choose
an individual proportional to its fitness. This individual now reproduces and randomly replaces another individual.
Exactly how the individual to be replaced is randomly chosen can change (see Section 3.3), but here we focus on a

well-mixed population and thus choose the individual uniformly at random.

REMARK 3.1. Note that for this process, it is not actually necessary to keep track of the type of each individual.
By symmetry, we can just project to the number of mutants x; := >}, 1 (x¢(¢) = ). The projected process is still a
Markov chain because the transition probabilities depend only on the number of mutants and not other details of the

population’s composition.

We might denote this event, some individual j getting replaced by some individual i, as r(j) = 4, so that

F(x(3)) 1 1 1+(f—1)1(xt(i)=6)‘

BlrO) =ibd = o 2@y N - N Jmt N —m

(3.1.2)
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From here we can immediately write the transition probabilities for the process x::

f N—z . .
7](“;]6\?7“ =t ifo=1
N—z¢ Tt : _
=Lt Tt ifd=-1
FoitN—z; N
P{zigs = a0 +0lm} =4 . (3.1.3)

fai Ty N—zy N-—z¢ ¢85 _
fxt+N—z¢ N + frt+N—zy N if6=0

0 otherwise

So x: is a simple birth-death process that makes jumps of size at most 1. Note that

P{zi41 = x¢ + 1|z} _
P{zir1 = x¢ — 1|ae}

f. (3.1.4)

This ratio’s independence of the current state x:, makes analysis of the Moran process very straightforward.

3.1.1. Longrun statistics. In the long run, the process has only two possible outcomes as exactly two of the states,
0 and N, are absorbing. Either the mutants fix and the wild-type dies out or the reverse. We call the probability of
the first eventuality the fization probability. We can describe this event mathematically using hitting times. Define

T = min{t : x; = 0 or z; = N}, then the fixation probability is defined by

p:=P{Xr = N} = EXy/N. (3.1.5)

In t