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Abstract

Query learning models from computational learn-
ing theory (CLT) can be adopted to perform elic-
itation in combinatorial auctions. Indeed, a re-
cent elicitation framework demonstrated that the
equivalencequeries of CLT can be usefully sim-
ulated with price-based demand queries. In this pa-
per, we validate the flexibility of this framework
by defining a learning algorithm for atomic bid-
ding languages, a class that includes XOR and OR.
We also handle incentives, characterizing the com-
munication requirements of the Vickrey-Clarke-
Groves outcome rule. This motivates an extension
to the earlier learning framework that brings truth-
ful responses to queries into an equilibrium.

1 Introduction
There has been a burst of recent attention in the problem of
preference elicitation in combinatorial auctions (CAs), which
are auctions in which agents can express values on bun-
dles of items[Blum et al., 2004; Lahaie and Parkes, 2004;
Conen and Sandholm, 2001; Santiet al., 2004; Parkes, 2002].
Indeed, elicitation is today recognized to be just as important
a computational problem (and perhaps more so) as that of
winner-determination[Nisan and Segal, 2004]. CAs can po-
tentially require agents (e.g. people, firms, automated bidding
agents) to value an exponentially large number of different
bundles of indivisible goods, when determining the value on
even a single bundle can be hard[Sandholm, 1993].

In query-based elicitation[Parkes, 2002; Conen and Sand-
holm, 2001], agents must be able to respond to simple
queries, such as identifying a preferred bundle at given
prices, or providing the value of a specified bundle. Many
of these methods are closely related to the “exact learn-
ing with queries” model from computational learning theory
(CLT) [Blum et al., 2004]. In fact, these are typically learning
methods in their own right because they elicit valuations en-
tirely and exactly. One exception is Lahaie and Parkes[2004],
who give a preference elicitation scheme that avoids complete
learning when possible. The main contribution in that paper is
to explain how to simulate any learning algorithm withmem-
bershipand equivalencequeries as an elicitation algorithm
with valueanddemandqueries.

We extend this earlier work by providing a preference elic-
itation scheme for a broad class of languages, calledatomic
languages, which includes XOR and OR as special cases
(see Nisan[2000] for a formal study of bidding languages).
In addition to validating the flexibility of the Lahaie and
Parkes[2004] framework, our new algorithm demonstrates
the power of demand queries. For instance, we know of no
learning algorithm for OR using just value and equivalence
queries.

Our main contribution is to characterize the communica-
tion requirements of the Vickrey-Clarke-Groves (VCG) out-
come rule[Jackson, 2000]. Already known to be sufficient for
determining the VCG outcome[Mishra and Parkes, 2004],
we prove here that any elicitation protocol for the VCG mech-
anismnecessarilyalso determines a set of “universal com-
petitive equilibrium” (UCE) prices. This result broadens our
understanding of demand queries, demonstrating that if the
goal is to verify a VCG outcome it is necessary to verify an
efficient allocation and set of UCE prices, which can be done
through a simple extension of demand queries touniversal
demand queries.1 We demonstrate how to extend the exist-
ing learning framework to terminate with UCE prices and an
efficient allocation.

With n agents, a näıve way to handle incentives is to
simply run the preference elicitation algorithm, and then run
it againn more times with each agent removed. This yields
enough information to derive VCG payments. However, the
UCE-based characterization motivates a design for an exten-
sion of the learning-based framework that we callLearner
Extend and Adjust(LeEA), that obtains VCG payments in a
single run of the algorithm.

Related Work. Nisan and Segal[2004] characterize the
minimal communication requirements of implementing an
efficient allocation, but do not consider incentives. The
large literature on ascending-price Vickrey auctions (see
Parkes[2004] for a survey) is largely motivated by issues of
costly elicitation, and recent auctions are designed to termi-
nate with UCE prices[Mishra and Parkes, 2004]. Similarly,

1This is not to say that elicitation algorithms for VCG based on
demand queries are necessarily efficient. Indeed, in some cases
demand-query based algorithms are known to be exponentially-
inefficient[Nisan and Segal, 2004]. However, it is at least suggestive
that demand queries are powerful in general.



Conen and Sandholm[2002] had previously considered elic-
itation methods that terminate with the VCG outcome. What
is new in our work is the proof that UCE prices arenecessary
(as well as sufficient) for the VCG outcome, together with the
careful integration of this methodology into elicitation meth-
ods with polynomial query complexity.

2 Preliminaries
The purpose of a CA is to allocate a setG of m distinct and
indivisible goods among a setN of n agents, each with a val-
uationvi : 2G → R. Let Γ be the set of possible allocations,
in which no good is given to more than one agent. We aim
for an efficient allocationS∗ = (S∗1 , . . . , S∗n), namely an al-
location that maximizes total value

∑n
i=1 vi(S∗i ). By defini-

tion, agent valuations satisfy the property ofno externalities,
meaning that an agent only cares about its own bundle, and
not those allocated to other agents. Valuations also satisfy
free-disposal, meaning thatvi(S) ≤ vi(T ) if S ⊆ T , are
normalized: vi(∅) = 0, andbounded, so that there is a con-
stantK > 0 (known to the center) such thatvi(S) < K for
all S ⊆ G and all i ∈ N . Agents havequasi-linearutility
functions, so that agenti’s utility for a bundleS at pricesp is
ui(S, p) = vi(S)− p(S).

2.1 Bidding Languages

A bidding language is used to encode and communicate real-
valued functions over bundles; this may for instance be an
agent’s entire valuation function, or an underestimate of its
true valuation function (as in bids in ascending-price CAs,
hence the name “bidding language”). In this work, the center
also uses bidding languages to quote prices to the agents.

Formally, a bidding language consists of syntax and se-
mantics that allow one to encode value information and in-
terpret these encodings. We consider the class ofatomic lan-
guages. An atomic representation is a pair(B, w) whereB ⊆
2G is a set of bundles (the atomic bundles), andw : B → R≥0

is a real-valued function over these bundles (the values of the
atomic bundles). An alternate useful syntax is a list ofatomic
bids, where an atomic bid is a bundle-value pair(S, x), andx
is to be interpreted as the value of bundleS ⊆ G. The seman-
tics of an atomic languageL are defined through the evalua-
tion functionφL(· ;B, w) that extendsw to the set of all bun-
dles, so that the value of a bundleS is v(S) = φL(S;B, w).
A well-formed atomic language evaluation function satisfies
the following conditions:

L1. φL(B;B, w) = w(B) for all B ∈ B.

L2. φL(S;B, w) = φL(S;B|S , w) for all S ⊆ G, where
B|S = {T ∈ B | T ⊆ S}.

L3. φL(S;B ∪ B′, w) ≥ φL(S;B), for all B,B′ ⊆ 2G and
all S ⊆ G.

As an important example, consider the family of lan-
guages{Lk}m

k=1. The evaluation function for language
Lk is φk(S;B, w) = maxS∈Dk(S;B)

∑
B∈S w(B), where

Dk(S;B) defines the set of allS ⊆ 2B that satisfy (i)|S| ≤ k,
(ii) ∪B∈SB ⊆ S, (iii) B1 ∩ B2 = ∅ for B1, B2 ∈ S s.t.
B1 6= B2. We call elements ofDk(S;B) decompositions
of S into atomic bundles fromB. It is easy to see thatφk

satisfies conditions L1-L3 above. As special cases we have
L1 = XOR andLm = OR.

A bidding language isexpressivefor CAs if it can encode
all valuation functionsv : 2G → R≥0 that satisfy free dis-
posal. It is not hard to see thatL1 (XOR) is expressive, but
that Lk for k > 1 are not (consider for example the valua-
tion that places a value of 1 on all bundles). Representation
(B, w) in a languageL of valuationv is minimal if |B| is min-
imized over all validL representations ofv. In what follows,
sizeL(v) denotes the size of a minimalL representation of
functionv, when such a representation exists.

2.2 Queries
Agents are modeled as “black-boxes” that can respond to
queries. A response to a query provides partial information
about an agent’s valuation function. We adopt queries that
are more or less natural in economic settings:
Value query. A value queryVALUE(S) to agenti on bundle
S asks the agent to report itsexactvaluevi(S).
Demand query. A demand queryDEMAND(S, p) presents
an agenti with a bundleS and pricesp over all bundles (in
some bidding language). The agent repliesYES if bundleS
is a best-response at pricesp, meaning thatvi(S) − p(S) =
maxT⊆G [vi(T )− p(T )]. Otherwise the agent replies with a
bundleS′ that makes it strictly better off thanS at pricesp,
i.e.vi(S′)− p(S′) > vi(S)− p(S).
Universal demand query. A universal demand queryUNI-
DEMAND(S1, . . . , Sn, p) presents an agenti with prices p
over all bundles together with a set ofn bundlesS1, . . . , Sn

(not necessarily distinct). The agent repliesYES if everybun-
dle presented is a best-response to pricesp. Otherwise, the
agent responds with an indexj and a bundleS′ such that
vi(S′)− pi(S′) > vi(Sj)− pi(Sj).

Note that∅ may be a valid response to a demand query.
Also note that prices are general functionsp : 2G → R≥0,
and may be nonlinear (bundles are priced, not just items
alone) and non-anonymous (different agents may face a dif-
ferent price for the same bundle).

2.3 CE and UCE Prices
CAs, and the preference elicitation scheme we consider here,
generally operate by converging to acompetitive equilibrium.
This ensures that the final allocation is indeed efficient.

Definition 1 A competitive equilibriumamong agentsN is
an allocationS∗ = (S∗1 , . . . , S∗n) together with pricesp that
satisfy: (1) S∗i ∈ argmax

S⊆G
[vi(S)− pi(S)] for i = 1, . . . , n

and (2) S∗ ∈ argmax
S∈Γ

∑n
i=1 pi(Si).

If (S∗, p) constitutes a CE, we callp theCE pricesand say
that pricesp supportallocationS∗. For our results later on
incentives, we also need the following concept:

Definition 2 A universal competitive equilibriumis an
allocation-price pair (S∗, p) that constitutes a competitive
equilibrium among agentsN , and such that(S∗−i, p) con-
stitutes a competitive equilibrium among agentsN\{i}, for
some efficient allocationS∗−i of items G among agents
N\{i}, for all i ∈ N .



In fact, it is not hard to show that pricesp that support some
efficient allocationS∗−i among agentsN\{i} for all i ∈ N
also supportall such efficient allocations.

3 A Learning-Based Architecture for
Elicitation

The learning framework of Lahaie and Parkes[2004] (that we
call ‘Learner’) converts individual exact learning algorithms
into preference elicitation algorithms. We will demonstrate
how to instantiate it here for the class of atomic languages.
The goal of a learning algorithm for our purposes is to ex-
actly determine an unknowntargetvaluationv represented in
a given bidding languageL in a number of queries that scales
polynomially with sizeL(v) andm. Let V be the space of
possible valuations, in our case all bounded and normalized
valuations that satisfy free-disposal and have no externalities.

Exact learning in the computational learning theory liter-
ature typically usesmembershipandequivalencequeries. A
membership query in our domain is just a value query. Learn-
ing algorithms maintain amanifestvaluationṽ, which is their
current estimate of the target function. On an equivalence
query we present̃v to the agent; it repliesYES if ṽ = v,
and otherwise replies with somecounterexampleS such that
ṽ(S) 6= v(S).

Lahaie and Parkes[2004] note that for a multi-agent sce-
nario, learning algorithms can be run in parallel for each agent
while they perform value queries. Demand queries play a key
role in coordinating learning across agents. When all agents
require the response to an equivalence query, one can instead
compute an efficient allocatioñS∗ and supporting CE prices
p̃ with respect to the current manifests, and present these to
the agents as demand queries. Call these themanifest allo-
cation and themanifest prices. If all agents replyYES, we
have reached a CE and̃S∗ is already efficient; we need not
learn any more information. Otherwise, the responses to the
demand queries are in fact counterexamples that can be re-
turned to the learning algorithms as responses to their equiv-
alence queries.

In the case of a specific bidding language, such as an
atomic language, we need to provide means to: (1) learn a
target valuation in the given bidding language; (2) compute
an efficient allocation with respect to manifests (i.e. solve
winner-determination); (3) compute supporting CE prices.

3.1 Learning Atomic Languages

We now describe a learning algorithm with value and demand
queries for atomic languages.2 The manifest valuatioñv is
stored as pair(B̃, w̃). Let (B, w) be the minimalL represen-
tation of target valuationv. The manifest representation will
always satisfy (1)̃B ⊆ B, and (2)w̃(B) = w(B) for B ∈ B̃.
This is true initially because we set̃B = ∅. Throughout the
learning process we will ensure that only elementsB ∈ B

2Note that it is perfectly alright for individual learning algorithms
to use demand queries in the Learner framework. In simulating these
algorithms, we just need to be clear which demand queries can be
performed asynchronously and in parallel, and which queries need
to be performed on all agents simultaneously.

are ever added tõB, and we make value queries on these new
additions to appropriately set̃w(B). From these conditions
and L3 we get that̃v(S) ≤ v(S) for all S ⊆ G at all times,
and see that̃v underestimatesv.

The outer-loop of the learning algorithm issues
DEMAND(∅, ṽ), i.e. with prices quoted equal to the cur-
rent manifest and in the same bidding language. If the
response isYES we are done since0 ≤ v(S)− ṽ(S) ≤ 0 for
all S ⊆ G. Otherwise we obtain a more-preferred bundle
S that is a counterexample (this follows from a simple
adaptation of Lemma 1 in Lahaie and Parkes[2004]). We
then have0 < v(S) − ṽ(S) = φL(S;B, w) − φL(S; B̃, w̃).
By property L2 this means there is at least one undiscovered
atomic bundleB ∈ B|S \ B̃|S . To derive the atomic bundle
B from S, we use the subroutine presented as Algorithm 1.
Recall thatK is an upper-bound on agent values.

Algorithm 1 findNewAtomic(S)
Construct pricespS where

pS(T ) :=
{

K if T 6⊂ S
ṽ(T ) otherwise

IssueDEMAND(∅, pS)
if the agent replies YESthen

return S
else ifthe agent replies with bundleR then

return findNewAtomic(R)
end if

The pricespS in this subroutine can be constructed in the
atomic language as(Bp, w̃p), as follows. First, initialize
Bp = B̃ with w̃p = w̃. Then, add atomic bids(S, K) and
({j},K) for all j /∈ S to complete the representation. The
size of this construction is clearly polynomial insizeL(v)
and m. Finally, we then update our manifest by adding
(B, w̃(B)), whereB is the atomic bundle discovered in Al-
gorithm 1 andw̃(B) is obtained via a value query, and con-
tinue. This is correct by property L1. The correctness of the
algorithm follows directly from this lemma:

Lemma 1 On performing queryDEMAND(∅, p) in Algo-
rithm 1, if the reply to the demand query isYES thenS is an
atomic bid, and otherwise the bundle returnedR is a subset
of S and also a counterexample tõv.

Proof. If the agent repliesYES, then it must be that
ṽ(R) = v(R) for all R ⊂ S, becausẽv always underes-
timatesv. In particular, we havẽv(B) = v(B) for each
B ∈ B|S , and every atomic bundleB ⊂ S has been dis-
covered by the minimality of(B, w) and condition L2. Then,
it must be thatS ∈ B is a new atomic bid sincẽv(S) 6= v(S).
If instead bundleR is returned thenR ⊂ S by the structure
of the prices (all other bundles are priced atK). Moreover, as
v(R) > p(R) = ṽ(R), we have a new counterexample.2

Note that this subroutine is called at mostsizeL(v) times
since a new atomic bundle is returned each time. Also, ob-
serve that Algorithm 1 makes at mostm demand queries,
because we always recurse on strict subsets of the original
argumentS and|S| ≤ m.



Theorem 1 An unknown target valuationv in any atomic
languageL can be learned with at mostsizeL(v)·(m+1)+1
demand queries and at mostsizeL(v) value queries.

This algorithm is efficient for atomic languages and pro-
vides the first polynomial query learning algorithm for the
OR language. OR can be more concise than XOR although it
is not always expressive[Nisan, 2000]. We do not know of a
learning algorithm for OR with membership and equivalence
queries alone, so this result suggests the power of demand
queries. In this context, demand queries are used to provide a
kind of “focused” equivalence query in which an agent’s new
counterexample is restricted to being a subset of the current
counterexample.

3.2 Computing CE Prices forLk

In this section we explain how to compute the manifest allo-
cation and prices for languageLk. It is useful to work with
the explicit structure ofLk, although we intend this to be
suggestive of an approach that is workable for any atomic
language. We first describe a generalized mixed-integer pro-
gram (MIP) for winner-determination (WD), which will also
be revelant for computing CE prices. All mathematical pro-
grams defined in this section can be readily solved with MIP
solvers such as CPLEX.

Assume agenti’s manifest is represented in languageLki .
The program description takes five arguments: (1) a set of
agentsN ′ ⊆ N ; (2) a vector of bundlesS, with one bun-
dle Si for each agenti ∈ N ′; (3) a vector of sets of atomic
bundlesB, with one setBi for each agenti ∈ N ′; (4) val-
ueswi(B) for each agent over all atomic bundlesB ∈ Bi;
(5) pricespi(B) for each agent over all atomic bundlesB ∈
Bi. Let ri = |Bi|. Let Γi ⊆ 2B̃i be the possible allo-
cations to agenti (sets of pairwise disjoint atomic bundles
with cardinality at mostki). An allocation here is a vector
γ = (γ1, . . . , γn) whereγi ∈ Γi for each agenti ∈ N . The
generalized formulationWD(N ′, S,B, w, p) is as follows:

max
aij ,eβi

,zi

X
i∈N′

"
riX

j=1

wi(Bij)aij − zi

#
s.t.

riX
j=1

aij ≤ ki ∀i ∈ N ′ (1)X
i∈N′

X
{j:Bij3g}

aij ≤ 1 ∀g ∈ G (2)

eβi ≥ 1− |{j : Bij ∈ βi}|+
X

{j:Bij∈βi}
aij

∀βi ∈ Γi

∀i ∈ N ′ (3)

zi ≥
X

{j:Bij∈βi}
pi(Bij)eβi

∀βi ∈ Γi

∀i ∈ N ′ (4)

X
{j:Bij3g}

aij = 0
∀g 6∈ Si

∀i ∈ N ′ (5)

aij ∈ {0, 1}, eβi ∈ {0, 1}, zi ≥ 0

Let ~B = (B̃1, . . . , B̃n), ~G = (G, . . . , G) (with n en-
tries),w̃ = (w̃1, . . . , w̃n) (the values in agent manifests), and

~0 = (0, . . . ,0) (with n entries).3 The usual program to solve
winner-determination isWD(N, ~G, ~B, w̃, ~0).4 Let v∗ be the
value of the efficient allocation obtained through WD. The
linear program (LP) to obtain CE prices is as follows.

min
πs,πi,pi(Bij)

πs

s.t. πs ≥
nX

i=1

X
{j:Bij∈γi}

pi(Bij) ∀γ ∈ Γ (6)

πi ≥
X

{j:Bij∈βi}
w̃i(Bij)−

X
{j:Bij∈β′i}

pi(Bij)

∀i ∈ N
∀S ⊆ G
∀βi, β

′
i ∈

Dk(S;Bi)

(7)

πs +

nX
i=1

πi = v∗ (8)

πs ≥ 0, πi ≥ 0, pi(Bij) ≥ 0

Variablesπi can be interpreted as the utility to each agent
from their allocations at the prices computed, and variable
πs as the revenue to the seller. This formulation has an ex-
ponential number of utility-maximization constraints (7) and
revenue-maximization constraints (6). To address this we can
usedelayed constraint generation[Bertsimas and Tsitsiklis,
1997]. We only keep a subset of these constraints (initially
empty), and obtain specific values for each of the variables in
the LP. To check whether any implicit constraints of type (6)
are violated, we solveWD(N, ~G, ~B, ~p,~0), where~p is the vec-
tor of prices obtained from the LP. If the solution to this is
greater thanπs, we add the constraint of type (6) that cor-
responds to the allocation obtained by this auxiliary integer
program.

Similarly, we can runWD({i}, ~G, ~B, w̃, ~p) for each agent
i to see if we need to generate any constraints of type (7),
and check whether the result is greater thanπi. Note that
each such integer program has an exponential number of con-
straints of type (3) and (4). To use delayed constraint gen-
eration for these, we can runWD({i}, (. . . , Si, . . .), ~B, ~p,~0)
as an auxiliary program, whereSi is the solution to the main
integer program. If the solution to this program has value
greater thanzi, we must generate corresponding constraints
of type (3) and (4).5

4 Communication Requirements of
Implementing the VCG Outcome

In the above discussion, we set aside the issue of incentives
in preference elicitation. A reliable elicitation scheme must
also induce the agents to truthfully reveal their preferences.

Suppose that instead of implementing the final CE prices

3The function0 is identically 0 over all bundles.
4In this case, constraints (3) are irrelevant because they only

serve to activateeβi if appropriate atomic bundles are selected, to
indirectly ensure thatzi is set to the correct price through con-
straint (4), and the price here is always 0. Similarly constraints (5)
are irrelevant because any agent can be allocated any bundle.

5Note that this last program is the usual one the proxy would use
to determine the value or price of a bundle, given theLk representa-
tion of its agent’s manifest valuation.



obtained by Learner, we provide a payment of
∑

i 6=j vi(S∗i )
to agentj for all j ∈ N , where(S∗1 , . . . , S∗n) is the efficient
allocation (agent values are available via value queries). As
Nisan and Segal[2004] point out, this aligns each agent’s util-
ity with the overall objective, and truthful revelation becomes
anex postNash equilibrium of the elicitation protocol. How-
ever, this scheme is clearly very costly for the center. The
center pays the agents! The cheapest payment scheme that
aligns the agents’ individual incentives with economic effi-
ciency is the VCG payment[Krishna and Perry, 2000].

In this section, we may drop the assumption ofno exter-
nalitiesso that our results hold with greater generality. Valu-
ations and prices are therefore defined over entire allocations.
Let Vi be the set of possible valuations for agenti. A stateis
a valuation profilev ∈ V = V1× . . .×Vn. An outcomein our
scenario is an element ofO = Γ×Rn, namely a specification
of the allocation and the agents’ payments.

The objective is to implement theVickrey outcome rule,
which is a correspondenceF = (F1, F2) : V ³ O mapping
statesv ∈ V to pairs(γ̂, q) such that̂γ is an efficient allo-
cation for profilev and(q1, . . . , qn) is the associated vector
of VCG payments. Lettinĝγ(v) ∈ arg maxγ∈Γ

∑
i∈N vi(γ)

and γ̂−j(v) ∈ arg maxγ∈Γ

∑
i 6=j vi(γ), the VCG payments

(from the agents to the center) are defined as:

F2j(v) =
∑

i 6=j

vi(γ̂−j(v))−
∑

i6=j

vi(γ̂(v)) for j ∈ N

Mishra and Parkes[2004] have shown that to compute
VCG payments it is sufficient to obtain UCE prices. In fact,
we show here that it is not only sufficient but necessary that a
communication protocol for VCG discover UCE prices.6

We considernondeterministiccommunication protocols.
This is the setting in which a center claims the VCG outcome
is (γ, q), and must send messages to each agent to convince
them of this outcome. Each agent checks that the message is
valid given the semantics of the protocol and its private type,
and if all respondYES the protocol has verified the outcome.

Definition 3 [Nisan and Segal, 2004] A nondeterministic
communication protocolis a triple Π = 〈W,µ, g〉, whereW
is the message set,µ : V ³ W is the message correspon-
dence, andg : W → O is the outcome function, and the
message correspondenceµ has the following properties:

• Existence: µ(v) 6= ∅ for all v ∈ V.

• Privacy preservation: µ(v) =
⋂

i µi(vi) for all v ∈ V,
whereµi : Vi ³ W for all i ∈ N .

Protocol Π realizes choice correspondenceF : V ³ O if
g(µ(v)) ⊆ F (v) for all v ∈ V.

Let r = |Γ| be the size of the (finite) set of allocations. De-
note the set of universal price equilibria in statev by E(v),
whereE : V ³ Γ× Rnr denotes the universal price equilib-

6The proof of this result, together with the associated definitions,
closely follows the developments by[Nisan and Segal, 2004] who
show that CE prices are necessarily revealed when a (nondetermin-
istic) communication protocol computes an efficient allocation.

rium correspondence.7 The proof of the following is straight-
forward and omitted in the interest of space.
Lemma 2 Let 〈W,µ, 〈h, q〉〉 be a nondeterministic commu-
nication protocol that realizes the Vickrey outcome ruleF .
Let w ∈ W and let γ̂ = h(w). If v, v∗ ∈ µ−1(w), then
F2(v) = F2(v∗), where the VCG payments are with respect
to efficient allocation̂γ.

We note in particular thatF2j(w) is entirely independent
of componentvj in the original profilev. Thus ifv−j , v

∗
−j ∈

µ−1
−j (w), thenF2j(v) = F2j(v∗).

Theorem 2 Communication protocolΠ = 〈W,µ, 〈h, q〉〉 re-
alizes the Vickrey outcome ruleF if and only if there exists
an assignmentp : W ³ Rnr of prices to messages such
that protocolΠ′ = 〈W,µ, 〈h, p〉〉 realizes the universal price
equilibrium correspondenceE.

Proof. As mentioned, Mishra and Parkes[2004] provide the
proof of sufficiency. Suppose protocol〈W,µ, 〈h, q〉〉 realizes
Vickrey outcome ruleF . For eachw ∈ W , let γ̂ = h(w),
and letpi(γ) = supvi∈µ−1

i (w)[vi(γ) − vi(γ̂)] for all i ∈ N

and γ ∈ Γ. Note thatγ̂ is directly obtained from the in-
formation generated byΠ, but statev and efficient alloca-
tions in the marginal-economieŝγ−j(v) for j ∈ N are not.
However, we do not need to explicitly compute this infor-
mation to implement a universal price equilibrium accord-
ing to Definition 2. Letq(w) be the VCG payments asso-
ciated with efficient allocation̂γ = h(w). The first part
of the proof of necessity, which shows that pricesp are CE
prices, is proved by Nisan and Segal[2004]. We will show
that the pricesp just constructed are in fact UCE prices cor-
responding tôγ, that are valid for allv ∈ µ−1(w). Fix agents
i 6= j. By Lemma 2, any twov−j , v

∗
−j ∈ µ−1

−j (w) lead to the
same VCG payment. Hence we obtain

∑
i 6=j [vi(γ̂−j(v)) −

vi(γ̂)] = supv−j∈µ−1
−j (w)

∑
i6=j [vi(γ̂−j(v)) − vi(γ̂)], which

holds for all v−j ∈ µ−1
−j (w) (call this equation (I)). By

privacy preservation we can write the right-hand side as
supv−i,j∈µ−1

−i,j(w)

∑
h6=i,j [vh(γ̂−j(v))−vh(γ̂)]+pi(γ̂−j(v)).

By definition pi(γ̂) = 0, so Equation (I) gives:[vi(γ̂) −
pi(γ̂)]− [vi(γ̂−j(v))− pi(γ̂−j(v))] =

∑
h6=i,j [vh(γ̂−j(v))−

vh(γ̂)]−supv−i,j∈µ−1
−i,j(w)

∑
h 6=i,j [vh(γ̂−j(v))−vh(γ̂)]. The

right-hand side is at most 0, sôγ−j(v) is utility-maximizing
for all agents i ∈ N at prices pi. The final step is
to establish that̂γ−j(v) is a revenue-maximizing alloca-
tion among agentsN\{j}. By privacy preservation, the
supremum on the right-hand side of equation (I) can be
brought within the summation. Using our price construc-
tion and rearranging, this yields:

∑
i 6=j pi(γ̂−j(v)) =∑

i6=j [vi(γ̂−j(v)) − vi(γ̂)] ≥ ∑
i6=j [vi(γ) − vi(γ̂)], for

all γ ∈ Γ. This holds for all v−j ∈ µ−1
−j (w), so∑

i6=j pi(γ̂−j(v)) ≥ supv−j∈µ−1
−j (w)

∑
i6=j [vi(γ) − vi(γ̂)] =∑

i6=j supvi∈µ−1
i (w)[vi(γ) − vi(γ̂)] =

∑
i 6=j pi(γ), for all

7This correspondence only maps states to personalized prices
and efficient allocations, and not to efficient allocations in the
marginal-economies with each agent removed. It is implied that the
prices also support efficient allocations in the marginal-economies.
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γ ∈ Γ, where the first equality follows by privacy preser-
vation. This completes the proof. 2

Figure 1 gives the intuition behind this result for the case
with two agents. Given a messagew, the figure shows all
valuations that are consistent withw for agent 1 (here onlyv1)
and for agent 2 (v′2 andv′′2 ). The valuations are normalized
so that the efficient allocationγ has value 0. The conditions
for a CE require that all of agent 1’s valuations consistent
with w be above all of agent 2’s valuations consistent withw.
To construct valid CE prices, we take the envelopes of agent
1 and 2’s valuations (lower and upper, respectively). Since
agent 2’s valuations are all consistent with the same VCG
payments, they all peak at the same level. This ensures that
the construction also satisfies the constraints of a UCE.

4.1 Using Universal Demand Queries: LeEA

A näıve way to compute VCG payments is simply to run the
protocol once with all agents, then once with each agent re-
moved for a total ofn + 1 runs. We would then determine
the value of the efficient allocation in each run. This gives us
sufficient information to compute VCG payments. But given
this new characterization result, we can instead modify the
general elicitation framework to converge to UCE prices. We
call this new frameworkLearner Extend and Adjust(LeEA).
In the first stage we run the standard Learner, until CE prices
and an efficient allocation are determined. The second stage
uses universal demand queries. Whenever all the individual
learning algorithms are stalled waiting to perform an equiv-
alence query, we determine manifest allocations in the main
economy (with agentsN ) and also in each of the marginal
economies (with agentsN\{j}, for all j). In addition, we de-
termine (manifest) universal CE prices,p. We can then issue
queryUNI-DEMAND(Bi, p) to each agenti, whereBi is the
vector of bundles currently allocated to the agent in the main
economy and in each of the marginal economies, forj 6= i.
If all agents replyYES, we have a UCE and can derive and
implement VCG payments. Otherwise, we obtain counterex-
amples to push forward the individual learning algorithms.

5 Conclusions and Future Work
We presented novel applications of demand queries and
demonstrated how they can be used in elicitation other than as
parallels to equivalence queries. Specifically, we provided a

learning algorithm that uses demand queries with specialized
prices for the class of atomic languages, a generalization of
theOR andXOR languages. We also showed how demand
queries can be used in a CA setting to make truthful bidding
an ex postNash equilibrium: we modify an elicitation pro-
tocol to converge to UCE prices by using universal demand
queries, which are a simple generalization of demand queries.
Indeed, we proved that UCE prices arenecessarilyimplicitly
discovered in any VCG protocol.

In future work, it would be useful to find a learning al-
gorithm for theOR∗ bidding language[Nisan, 2000]. OR∗

representations are similar toOR representations except that
they also allowdummy (phantom)items, that impose restric-
tions on which atomic bundles can be combined together.
This bidding language can represent many natural valuations
concisely but lies outside our class of atomic languages. As
opposed to theLk languages, knowing the atomics in anOR∗

representation (without the dummy items) does not fully char-
acterize all the valid atomic decompositions of a bundle. It is
the structure generated by dummy items that must also be
learned. In addition, we would like to completely charac-
terize the relative power of demand and equivalence queries.
We conjecture that demand queries are strictly more powerful
than equivalence queries.
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