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There has been a burst of recent attention in the problem
preference elicitation in combinatorial auctions (CAs), which
are auctions in which agents can express values on bu
dles of items[Blum et al,, 2004; Lahaie and Parkes, 2004;
Conen and Sandholm, 2001; Saettal, 2004; Parkes, 2002
Indeed, elicitation is today recognized to be just as importan
a computational problem (and perhaps more so) as that
winner-determinatiofiNisan and Segal, 2004CAs can po-
tentially require agents (e.g. people, firms, automated biddin
agents) to value an exponentially large number of different’.
bundles of indivisible goods, when determining the value o
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Abstract

Query learning models from computational learn-
ing theory (CLT) can be adopted to perform elic-
itation in combinatorial auctions. Indeed, a re-
cent elicitation framework demonstrated that the
equivalencequeries of CLT can be usefully sim-
ulated with price-based demand queries. In this pa-
per, we validate the flexibility of this framework
by defining a learning algorithm for atomic bid-
ding languages, a class that includes XOR and OR.
We also handle incentives, characterizing the com-
munication requirements of the Vickrey-Clarke-
Groves outcome rule. This motivates an extension
to the earlier learning framework that brings truth-
ful responses to queries into an equilibrium.

Introduction

even a single bundle can be hagandholm, 1998

In query-based elicitatiofParkes, 2002; Conen and San
holm, 2001, agents must be able to respond to simpl
queries, such as identifying a preferred bundle at give
prices, or providing the value of a specified bundle. Many
of these methods are closely related to the “exact lear
ing with queries” model from computational learning theory
(CLT) [Blumetal, 2004. In fact, these are typically learning
methods in their own right because they elicit valuations en

tirely and exactly. One exception is Lahaie and PafR684,
who give a preference elicitation scheme that avoids complete 1 1is is not to say that elicitation algorithms for VCG based on

learning when possible. The main contribution in that paper igjemand queries are necessarily efficient. Indeed, in some cases

to explain how to simulate any learning algorithm wittem-

erBeIated Work. Nisan and Segal2004 characterize the

n-

We extend this earlier work by providing a preference elic-
itation scheme for a broad class of languages, caltechic
languages which includes XOR and OR as special cases
(see Nisar{200d for a formal study of bidding languages).
In addition to validating the flexibility of the Lahaie and
Parkes[2004 framework, our new algorithm demonstrates
the power of demand queries. For instance, we know of no
learning algorithm for OR using just value and equivalence
queries.

Our main contribution is to characterize the communica-
tion requirements of the Vickrey-Clarke-Groves (VCG) out-
come ruld Jackson, 2000 Already known to be sufficient for
determining the VCG outcomiMishra and Parkes, 2004
we prove here that any elicitation protocol for the VCG mech-
anismnecessarilyalso determines a set of “universal com-
petitive equilibrium” (UCE) prices. This result broadens our
understanding of demand queries, demonstrating that if the
goal is to verify a VCG outcome it is necessary to verify an

fficient allocation and set of UCE prices, which can be done
through a simple extension of demand queriesitoversal

femand queriel. We demonstrate how to extend the exist-

iﬁg learning framework to terminate with UCE prices and an
efficient allocation.

t With n agents, a rige way to handle incentives is to

aimply run the preference elicitation algorithm, and then run

it againn more times with each agent removed. This yields
nough information to derive VCG payments. However, the
CE-based characterization motivates a design for an exten-

rElon of the learning-based framework that we dadbarner

xtend and AdjusiLeEA), that obtains VCG payments in a

d- single run of the algorithm.

minimal communication requirements of implementing an
The
large literature on ascending-price Vickrey auctions (see
Parked 2004 for a survey) is largely motivated by issues of
costly elicitation, and recent auctions are designed to termi-
nate with UCE pricegMishra and Parkes, 20D4Similarly,

efficient allocation, but do not consider incentives.

demand-query based algorithms are known to be exponentially-

bershipand equivalencequeries as an elicitation algorithm inefficient[Nisan and Segal, 2004However, it is at least suggestive
with valueanddemandjueries.

that demand queries are powerful in general.



Conen and Sandholf2002 had previously considered elic- satisfies conditions L1-L3 above. As special cases we have
itation methods that terminate with the VCG outcome. WhatZ; = XOR andL,,, = OR.

is new in our work is the proof that UCE prices arecessary A bidding language igxpressivdor CAs if it can encode

(as well as sufficient) for the VCG outcome, together with theall valuation functionsy : 2¢ — R that satisfy free dis-
careful integration of this methodology into elicitation meth- posal. It is not hard to see thay (XOR) is expressive, but

ods with polynomial query complexity. that L, for £ > 1 are not (consider for example the valua-
L tion that places a value of 1 on all bundles). Representation
2 Preliminaries (B, w) in alanguagé. of valuationv is minimal if | 5] is min-

The purpose of a CA is to allocate a €&bf m distinct and imized over all validL re_presentatipr}s of. In what follpws,
indivisible goods among a saf of n agents, each with aval- sézer(v) denotes the size of a minimal representation of
uationv; : 2¢ — R. LetT be the set of possible allocations, functionv, when such a representation exists.

in which no good is given to more than one agent. We aimp > Queries

for an efficient allocatior5* = (S7,...,S;), namely an al- . .,

location that maximizes total valJg™_, v;(S¥). By defini- ~Agents are modeled as “black-boxes” that can respond to
tion, agent valuations satisfy the propertynaf externalities ~ GUeries. A response to a query provides partial information
meaning that an agent only cares about its own bundle, arfout an agents valuation function. We adopt queries that
not those allocated to other agents. Valuations also satisf§r€ more or less natural in economic settings:

free-disposal meaning thaw;(S) < v;(T) if S C T, are alue query. A value queryvALUE () to agenti on bundle
normalized v;(f)) = 0, andbounded so that there is a con- S asks the agent to report gxactvaluew; (S5).

stantK > 0 (known to the center) such that(S) < K for ~ Demand query. A demand quenpEMAND(S,p) presents

all S C G and alli € N. Agents havequasi-linearutility ~ @n agent with a bundleS and priceg over all bundles (in
functions, so that agets utility for a bundlesS at pricespis ~ SOMe bidding language). The agent replies if bundle 5

wi(S,p) = vi(S) — p(S). is a best-response at pricesmeaning that; (S) — p(5) =
o maxrca [v;(T) — p(T')]. Otherwise the agent replies with a
2.1 Bidding Languages bundleS’ that makes it strictly better off thafi at pricesp,

A bidding language is used to encode and communicate reah®- vi(S") —p(5’) > vi(5) — p(S).
valued functions over bundles; this may for instance be af/niversal demand query. A universal demand queryNi-
agent’s entire valuation function, or an underestimate of it?d EMAND(S1,..., Sy, p) presents an agentwith pricesp
true valuation function (as in bids in ascending-price CAs0ver all bundles together with a setofoundless;, ..., Sy
hence the name “bidding language”). In this work, the centefnot necessarily distinct). The agent rephess if everybun-
also uses bidding languages to quote prices to the agents. dle presented is a best-response to prpte@th/erwse, the
Formally, a bidding language consists of syntax and se@9ent responds with an indgxand a bundieS” such that
mantics that allow one to encode value information and ini(S") —pi(5") > vi(S;) — pi(S5;).

terpret these enpodings. We c.ons.ider the clasgarhic lan- Note that() may be a valid response to a demand query.
gga_lgesAn atomic representation is a p&ls, w) whereB € Also note that prices are general functigns 26 — R,
2% is a set of bundles (the atomic bundles), and5 — R>o  and may be nonlinear (bundles are priced, not just items

is a real-valued function over these bundles (the values of thglone) and non-anonymous (different agents may face a dif-
atomic bundles). An alternate useful syntax is a listtoimic  ferent price for the same bundle).

bids where an atomic bid is a bundle-value pét x), andx )
is to be interpreted as the value of bunfl& G. The seman- 2.3 CE and UCE Prices

tics of an atomic languagg are defined through the evalua- CAs, and the preference elicitation scheme we consider here,
tion functioné,, (- ; B, w) that extendsw to the set of all bun-  generally operate by converging taampetitive equilibrium

dles, so that the value of a bundieis v(S5) = ¢.(5; B,w).  This ensures that the final allocation is indeed efficient.
A well-formed atomic language evaluation function satisfies

the following conditions: Definition 1 A competitive equilibriumamong agentsV is

an allocationS* = (S7,...,.S;) together with pricep that

L1. ¢r(B;B,w)=w(B)forall B € B. satisfy: (1) S; € argmax[v;(S) —p;(S)] fori = 1,...,n
L2. ¢(S;B,w) = ¢1(S;B|s,w) for all S C G, where ) 58,
Bls = {T €B|TcC S} and(2) S* argrenrax Yo pi(Si).
L3. ¢L(S;BU B, w) > ¢L(S;B), forall B,B" C 2¢ and If (S*,p) constitutes a CE, we cailthe CE pricesand say
alls cG. that pricesp supportallocationS*. For our results later on

As an important example, consider the family of lan-incentives, we also need the following concept:

guages{Ls};L,. The evaluation function for language Definition 2 A universal competitive equilibriumis an
Ly is ¢(S; B,w) = maxsep,(s;8) 2.pes W(B), where  allocation-price pair (S*, p) that constitutes a competitive
Dy(S; B) defines the set of alf C 28 that satisfy (i) S| < k,  equilibrium among agentsV, and such that.S*;, p) con-
(i) UpesB C S, (iii) By N By = 0 for B;,B; € S s.t.  stitutes a competitive equilibrium among agents{i}, for
B, # Bs. We call elements oD (S; B) decompositions some efficient allocation5*, of items G among agents
of S into atomic bundles fron$s. It is easy to see that,  N\{i}, foralli € N.



In fact, itis not hard to show that priceghat support some
efficient allocationS* ; among agentév\{:} for all i € N
also supporall such efficient allocations.

3 A Learning-Based Architecture for
Elicitation

The learning framework of Lahaie and Parke804 (that we
call ‘Learner’) converts individual exact learning algorithms

into preference elicitation algorithms. We will demonstrate
how to instantiate it here for the class of atomic languages

The goal of a learning algorithm for our purposes is to ex
actly determine an unknowargetvaluationv represented in
a given bidding languagg in a number of queries that scales
polynomially with sizer,(v) andm. LetV be the space of

are ever added t8, and we make value queries on these new
additions to appropriately séi(B). From these conditions
and L3 we get that(S) < v(S) forall S C G at all times,
and see that underestimates.

The outer-loop of the Ilearning algorithm issues
DEMAND((, ), i.e. with prices quoted equal to the cur-
rent manifest and in the same bidding language. If the
response iSES we are done since < v(S) — 9(S) < 0 for
all S C G. Otherwise we obtain a more-preferred bundle
S that is a counterexample (this follows from a simple
adaptation of Lemma 1 in Lahaie and Parke804). We
then haved) < v(S) — 9(S) = ¢r(S;B,w) — ¢r(S; B, w).

By property L2 this means there is at least one undiscovered
atomic bundleB € B|s \ Bls. To derive the atomic bundle

possible valuations, in our case all bounded and normalize® from S, we use the subroutine presented as Algorithm 1.
valuations that satisfy free-disposal and have no externalitie§t®call thatk is an upper-bound on agent values.

Exact learning in the computational learning theory liter-

ature typically usesnembershimndequivalencejueries. A

Algorithm 1 findNewAtomic(S)

membership query in our domain is just a value query. Learn- Construct priceps where

ing algorithms maintain enanifestvaluations, which is their

current estimate of the target function. On an equivalence

query we preseni to the agent; it replieyes if o = v,
and otherwise replies with sonseunterexampl& such that
0(S) #£ v(S).

Lahaie and Parkel2004 note that for a multi-agent sce-

nario, learning algorithms can be run in parallel for each agent

K
()

ifT ¢S
otherwise

ps(T) := {

ISSUEDEMAND (0, ps)

if the agent replies YEBien
return S

else ifthe agent replies with bundle then
return findNewAtomic(R)

while they perform value queries. Demand queries play a key end if

role in coordinating learning across agents. When all agents

require the response to an equivalence query, one can insteadrhe pricesys in this subroutine can be constructed in the

compute an efficient allocatiofi* and supporting CE prices
P with respect to the current manifests, and present these
the agents as demand queries. Call thesarthrifest allo-
cation and themanifest prices If all agents replyves, we

have reached a CE arftt is already efficient; we need not

atomic language a$¢B,,w,), as follows. First, initialize

B, = B with @, = @. Then, add atomic bidgS, &) and

({j},K) for all j ¢ S to complete the representation. The
size of this construction is clearly polynomial kizey, (v)
and m. Finally, we then update our manifest by adding

learn any more information. Otherwise, the responses to th@B,u)(B)), whereB is the atomic bundle discovered in Al-
demand queries are in fac'g counterexamples that can be rgorithm 1 andi(B) is obtained via a value query, and con-
turned to the learning algorithms as responses to their equiinue. This is correct by property L1. The correctness of the

alence queries.

algorithm follows directly from this lemma:

In the case of a specific bidding language, such as an

atomic language, we need to provide means to: (1) learn

kemma 1 On performing queryDEMAND (,p) in Algo-

target valuation in the given bidding language; (2) computgithm 1, if the reply to the demand queryvss thensS is an
an efficient allocation with respect to manifests (i.e. solveatomic bid, and otherwise the bundle returnds a subset

winner-determination); (3) compute supporting CE prices.
3.1 Learning Atomic Languages

of S and also a counterexample o

Proof. If the agent repliesvEs, then it must be that

We now describe a learning algorithm with value and demand(R) = v(R) for all R C S, because) always underes-

queries for atomic languagésThe manifest valuatiom is
stored as paif3, ). Let (B, w) be the minimall represen-
tation of target valuatiom. The manifest representation will
always satisfy (18 C B, and (2)i(B) = w(B) for B € B.
This is true initially because we sgt = (). Throughout the
learning process we will ensure that only elemehBts 5

Note that it is perfectly alright for individual learning algorithms

timatesv. In particular, we havei(B) v(B) for each
B € B|g, and every atomic bundl® C S has been dis-
covered by the minimality of 3, w) and condition L2. Then,
it must be thatS € B is a new atomic bid sincg(.S) # v(S).
If instead bundleR is returned therR C S by the structure
of the prices (all other bundles are pricedsdt Moreover, as
v(R) > p(R) = 9(R), we have a new counterexample. O
Note that this subroutine is called at mestey, (v) times

to use demand queries in the Learner framework. In simulating thes&iNC€ @ new atomic bundle is returned each time. Also, ob-
algorithms, we just need to be clear which demand queries can beerve that Algorithm 1 makes at most demand queries,
performed asynchronously and in parallel, and which queries neeBecause we always recurse on strict subsets of the original

to be performed on all agents simultaneously.

argumentsS and|S| < m.



Theorem 1 An unknown target valuatiom in any atomic
languagel can be learned with at mostzey, (v)-(m+1)+1
demand queries and at mastey, (v) value queries.

0= (0, ...,0) (with n entries)® The usual program to solve
winner-determination iVD(N, G, B,w,0).* Let v* be the
value of the efficient allocation obtained through WD. The

This algorithm is efficient for atomic languages and pro—Imear program (LP) to obtain CE prices is as follows.

vides the first polynomial query learning algorithm for the

S

min s
OR language. OR can be more concise than XOR although it ™™ ?i(Bis) n
is not always expressiMéisan, 2000. We do not know of a s.t. x> Z Z pi(Bij) vy er (6)
learning algorithm for OR with membership and equivalence i=1 {j:By, evi}
gueries alone, so this result suggests the power of demand Vie N
queries. In this context, demand queries are used to provide a VS C G
kind of “focused” equivalence query in which an agent'snew > > @i(Biy) — Y pi(Bij) Vi Bl € (7
counterexample is restricted to being a subset of the current {5:Bi;€B:} {45:Bi; €8]} Ds (78;161-,)

counterexample.

w° + i m=v" (8)
i=1

7 >0, m >0, pi(Bij) >0

3.2 Computing CE Prices for Ly,

In this section we explain how to compute the manifest allo-
cation and prices for languadeg,. It is useful to work with Variablesr; can be interpreted as the utility to each agent
the explicit structure ofL, although we intend this to be from their allocations at the prices computed, and variable
suggestive of an approach that is workable for any atomier® as the revenue to the seller. This formulation has an ex-
language. We first describe a generalized mixed-integer prgaonential number of utility-maximization constraints (7) and
gram (MIP) for winner-determination (WD), which will also revenue-maximization constraints (6). To address this we can
be revelant for computing CE prices. All mathematical pro-usedelayed constraint generatidiBertsimas and Tsitsiklis,
grams defined in this section can be readily solved with MIP1997. We only keep a subset of these constraints (initially
solvers such as CPLEX. empty), and obtain specific values for each of the variables in

Assume agents manifest is represented in langualg . the LP. To check whether any i@plicit constraints of type (6)
The program description takes five arguments: (1) a set dére violated, we soV&D(N, G, B, p, 6), wherep'is the vec-
agentsN’ C N; (2) a vector of bundles, with one bun-  tor of prices obtained from the LP. If the solution to this is
dle S; for each agent € N’; (3) a vector of sets of atomic greater thanr®, we add the constraint of type (6) that cor-
bundless, with one set3; for each agent € N’; (4) val-  responds to the allocation obtained by this auxiliary integer
uesw;(B) for each agent over all atomic bundi& € 5;; program.
(5) pricesp;(B) for each agent over all atomic bundiBse Similarly, we can ruiWD({i}, G, B, @, p) for each agent
B;. Letr, = |B;]. LetI; C 25 be the possible allo- i to see if we need to generate any constraints of type (7),
cations to agent (sets of pairwise disjoint atomic bundles and check whether the result is greater than Note that
with cardinality at most;). An allocation here is a vector each such integer program has an exponential number of con
v = (m,--.,7.) Wherey, € I'; for each agent € N. The straints of type (3) and (4). To use delayed constraint gen-
generalized formulatioWD(N', S, B,w,p) is as follows:  eration for these, we can raWD({i}, (..., S;,...), B, 7,0)

as an auxiliary program, whet® is the solution to the main

Z [ ] integer program. If the solution to this program has value
fpped greater thary;, we must generate corresponding constraints
of type (3) and (4}.

ZZ: wq;(Bij)aij — Zj

j=1

max
aij,€B,:2i

- !
st ;“”’ < ki vienNt @) 4 Communication Requirements of
Y Y ay <t Vge G @ Implementing the VCG Outcome
i€N' {j:Bi;39} In the above discussion, we set aside the issue of incentives
. V3 €Ty in preference elicitation. A reliable elicitation scheme must
ep, 21— {j: By € B}l + D aij i ' O also induce the agents to truthfully reveal their preferences.
{iBijebi} Suppose that instead of implementing the final CE prices
Ve, €T -
%2 . > pilBies vien' ® 3The functiono is identically 0 over all bundles.
{5:Bij €B:} “In this case, constraints (3) are irrelevant because they only
Z ai =0 Vg ¢ Si/ (5) serve to activatep, if appropriate atomic bundles are selected, to
_ * Vi e N indirectly ensure that; is set to the correct price through con-
{3:Bij39} straint (4), and the price here is always 0. Similarly constraints (5)
aij € {0,1}, e, € {0,1}, 2z > 0 are irrelevant because any agent can be allocated any bundle.
. - - - SNote that this last program is the usual one the proxy would use
Let B = (B1,...,B,), G = (G,...,G) (with n en-  to determine the value or price of a bundle, given fherepresenta-

tries),w = (wy, ..., w,) (the values in agent manifests), and tion of its agent's manifest valuation.



obtained by Learner, we provide a paymen{of " v; (SF) rium correspondenceThe proof of the following is straight-
to agentj for all j € N, where(S7, ..., S) is the efficient ~ forward and omitted in the interest of space.
allocation (agent values are available via value queries). Asemma 2 Let (W, u, (h,q)) be a nondeterministic commu-
Nisan and SegdP004 point out, this aligns each agent’s util- nication protocol that realizes the Vickrey outcome rifle
ity with the overall objective, and truthful revelation becomesLet w € W and lety = h(w). If v,v* € p~'(w), then
anex postNash equilibrium of the elicitation protocol. How- F;(v) = Fy(v*), where the VCG payments are with respect
ever, this scheme is clearly very costly for the center. Theo efficient allocationy.
center pays the agents! The cheapest payment scheme thaiye note in particular thafy;(w) is entirely independent
aligns the agents’ individual incentives with economic effi- o¢ componenu; in the original profilev. Thus ifv_, v* ; €
ciency is the VCG paymenKrishna and Perry, 2000 1 h / -~ . e

In this section, we may drop the assumptiomofexter- (w), thenky; (v) = Fo; (v").
nalities so that our results hold with greater generality. Valu-Theorem 2 Communication protocdll = (W, u, (h, q)) re-
ations and prices are therefore defined over entire allocationslizes the Vickrey outcome rul€ if and only if there exists
Let V; be the set of possible valuations for agenA stateis ~ an assignmenp : W — R"" of prices to messages such
avaluation profiles € V = V; x...xV,. Anoutcomeén our  that protocolll’ = (W, u, (h,p)) realizes the universal price
scenario is an element 6f = I' x R, namely a specification equilibrium correspondence.

of the allocation and the agents’ payments. Proof. As mentioned, Mishra and Parki2004 provide the
The objective is to implement theickrey outcome rule proof of sufficiency. Suppose protoc@V, ., (h, ¢)) realizes
which is a correspondende = (F1, F3) : ¥V — O mapping  vickrey outcome ruleF’. For eachw € W, lety = h(w),
statesv € V to pairs(¥, q) such thgt& is an efﬂ_ment allo-  gnd letp;(v) = sup, -1, [vi(7) — vi(7)] forall i € N
cation for profilev and (¢ o ,qn) is the associated vector andy € T. Note :h;l{")/ i(:)directly obtained from the in-
of VCG payments. Letting(v) € argmaxyer 2 ien vilY)  gormation generated byl, but statev and efficient alloca-
andy_;(v) € argmaxyer >;.;vi(7), the VCG payments  yjons'in the marginal-economies ;(v) for j € N are not.

(from the agents to the center) are defined as: However, we do not need to explicitly compute this infor-

. A _ mation to implement a universal price equilibrium accord-

Faj(v) =Y 0i(3-(v)) = > _vi(§(v)) forjeN ing to Definition 2. Letq(w) be the VCG payments asso-
i#j i#j ciated with efficient allocatiory = h(w). The first part

i of the proof of necessity, which shows that prigeare CE
Mishra and Parke$2004 have shown that to compute prices, is proved by Nisan and Se§ab04. We will show
VCG payments it is sufficient to obtain UCE prices. In fact, that the priceg just constructed are in fact UCE prices cor-
we show here that it is not only sufficient but necessary that @sponding tdj, that are valid for alb € 1~ (w). Fix agents
communication protocol for VCG discover UCE prices. i #j. By Lemma 2, any twa_;,v* ; € u_%(w) lead to the

' ! =g —J

We considemondeterministiccommunication protocols. A B
This is the setting in which a center claims the VCG outcomesarI1e \LCG payment. Hence werbt@# [vi (7_-’ (U)r?. h

is (7, ¢), and must send messages to each agent to convinda(V)] = SUP,_c,=1(u) 2izlvi(3=(v)) — vi(9)], whic
them of this outcome. Each agent checks that the messagetislds for allv_; € uijl-(w) (call this equation (I)). By
valid given the semantics of the protocol and its private typeprivacy preservation we can write the right-hand side as
and if all respond/s the protocol has verified the outcome. sup, | ¢, 1 () Yz, [0n (7 (0)) —on (D) +pi (35 (v)-

Definition 3 [Nisan and Segal, 2004A nondeterministic By definition p;(¥) = 0, so Equation (1) gives{v;(y) —
communication protocds a triple IT = (W, p, g), whereW  pi(9)] = [vi(§-;(v)) = pi(5—; ()] = 25 [on(F—5 (v)) —
is the message set, : V — W is the message correspon- v, ()] =sup, | c,~1 () 2opnzij[vn(5-5(v)) —vn(¥)]. The
dence, andy : W — QO is the outcome function, and the e ot '

; ) right-hand side is at most 0, ga_;(v) is utility-maximizing
message correspondengéas the following properties: for all agentsi € N at pricesp;. The final step is

e Existence u(v) # 0 forall v € V. to establish thaty_;(v) is a revenue-maximizing alloca-
) i tion among agentsV\{j}. By privacy preservation, the
e Privacy preservatianu(v) = (), ui(vi) forall v € V. gypremum on the right-hand side of equation (I) can be

wherey; : V; — W forall i € N. brought within the summation. Using our price construc-
Protocol IT realizes choice correspondenée: V — O if  tion and rearranging, this yields:_, . pi(Y-;(v)) =
g(u(v)) C F(v) forallv e V. Dizjlvi(— () —vi(N)] = X 4;vi(7) — vi(9)], for

; -1
Letr — [T'| be the size of the (finite) set of allocations. De-all v € T.  This holds for allv_; & u-j(@’ SO
note the set of universal price equilibria in statey E(v),  2_ix; Pi(7—j(v)) = SUPy_en} (w) >izjlvi(y) —vi(9)] =
whereE : V — I' x R™" denotes the universal price equilib- > ik Sup?),1€/1,;1(1u)[vi(7) —vi()] = X,z pi(y), for all

5The proof of this result, together with the associated definitions, “This correspondence only maps states to personalized prices
closely follows the developments Biisan and Segal, 2004vho and efficient allocations, and not to efficient allocations in the
show that CE prices are necessarily revealed when a (nondetermimarginal-economies with each agent removed. It is implied that the
istic) communication protocol computes an efficient allocation. prices also support efficient allocations in the marginal-economies.



learning algorithm that uses demand queries with specialized
prices for the class of atomic languages, a generalization of
the OR andXOR languages. We also showed how demand
queries can be used in a CA setting to make truthful bidding
an ex postNash equilibrium: we modify an elicitation pro-
tocol to converge to UCE prices by using universal demand
queries, which are a simple generalization of demand queries.
Indeed, we proved that UCE prices awecessarilymplicitly
discovered in any VCG protocol.
~ In future work, it would be useful to find a learning al-
X gorithm for theOR* bidding languagéNisan, 2000. OR*
representations are similar @R representations except that
they also allondummy (phantomjems, that impose restric-
_ tions on which atomic bundles can be combined together.
Figure 1:Constructing UCE prices. This bidding language can represent many natural valuations
] ) ) concisely but lies outside our class of atomic languages. As
7 € T, where the first equality follows by privacy preser- opposed to thé,, languages, knowing the atomics in@R *
vation. This completes the proof. - . U representation (without the dummy items) does not fully char-
‘Figure 1 gives the intuition behind this result for the caseacterize all the valid atomic decompositions of a bundle. It is
with two agents. Given a message the figure shows all  the structure generated by dummy items that must also be
valuations that are consistent withfor agent 1 (here only:)  |earned. In addition, we would like to completely charac-
and for agent 2., andvy). The valuations are normalized terize the relative power of demand and equivalence queries.

so that the efficient allocation has value 0. The conditions \we conjecture that demand queries are strictly more powerful
for a CE require that all of agent 1's valuations consistenthan equivalence queries.

with w be above all of agent 2’s valuations consistent with
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