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Multiattribute auctions extend traditional auction settings to allow negotiation over nonprice attributes such
as weight, color, and terms of delivery, in addition to price and promise to improve market efficiency in

markets with configurable goods.
This paper provides an iterative auction design for an important special case of the multiattribute alloca-

tion problem with special (preferential independent) additive structure on the buyer value and seller costs.
Auction Additive&Discrete provides a refined design for a price-based auction in which the price feedback
decomposes to an additive part with a price for each attribute and an aggregate part that appears as a price
discount for each supplier. In addition, this design also has excellent information revelation properties that are
validated through computational experiments. The auction terminates with an outcome of a modified Vickrey-
Clarke-Groves mechanism. This paper also develops Auction NonLinear&Discrete for the more general non-
linear case—a particularly simple design that solves the general multiattribute allocation problem, but requires
that the auctioneer maintains prices on bundles of attribute levels.
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1. Introduction
Multiattribute auctions extend the traditional auc-
tion setting to allow negotiation over price and
attributes. For example, in a procurement problem,
a multiattribute auction can allow different suppli-
ers to compete over both attributes values and price.
An iterative multiattribute auction determines the
outcome dynamically, with agents revising bids in
response to feedback, and can usefully reduce the
amount of information revealed by agents in the auc-
tion. The design of iterative multiattribute auctions
forms the focus of this paper.
The use of iterative multiattribute auctions is

becoming prevalent in procurement for both services
and goods. An interesting example is IT outsourc-
ing. Such contracts need to handle multiple attributes
such as: (i) the fraction of the service that is off-
shored; (ii) the one-time transition cost for the transfer
of the operations, and (iii) labor rates for offshore and
onshore services. In such auctions, the transition costs
are very dependent on the fraction that is off-shored,
which together with the labor costs contributes to the
total cost of a contract. Another interesting example

is the procurement of coal for electric utilities, where
multiple attributes such as the heat content (Btu/lb)
and the sulphur content (lb/MBtu) directly impact the
value of the coal. Suppliers often have the option of
blending different types of coals or treating coal to
vary these attributes. This allows suppliers to trade
off these attributes, depending on their cost structure
for these treatments and the value structure of buyers.
Iterative auctions, which allow agents to revise their

bids and provide incremental information about pref-
erences, have several advantages over one-shot auc-
tions for procurement problems. First, it is important
for bidders to reveal as little information as possi-
ble about costs and preferences in a strategic situ-
ation such as procurement, because participants are
in a long-term competitive relationship. Iterative auc-
tions can elicit cost information from the suppliers on
a pure “need to know” basis, and the buyer cannot
precisely infer the cost function of sellers. Iterative
auctions are also known to outperform sealed-bid
auctions in settings in which costs are correlated
across sellers, because dynamic feedback provides
information to help participants to revise their beliefs
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about their own preferences for different outcomes
(Milgrom and Weber 1982, Cramton 1998).
The primary contribution of this paper pertains to

an auction design for an important special case of
the multiattribute allocation problem (MAP) with spe-
cial preferential independent (PI) additive structure
on the buyer value and seller costs. Auction Addi-
tive&Discrete (AD) quotes prices in terms of an addi-
tive component, with a price for each attribute level,
and an aggregate discount, that applies to an entire bid.
The aggregate discount is required whenever the best
seller does not dominate (in terms of cost) the other
sellers on every attribute. The compact price space
in Auction AD provides good information-revelation
properties, as validated through computational exper-
iments. As a prelude to developing Auction AD, we
also develop Auction NonLinear&Discrete (NLD).
Auction NLD is very general and does not require
PI, but requires the auctioneer to maintain prices on
bundles of attribute levels.
The PI assumption is quite standard in multi-

attribute utility theory (Keeney and Raiffa 1993). We
find PI to be a compelling model for a class of multi-
attribute problems in procurement. One common set-
ting is in the context of the procurement of com-
modity items such as sugar, for which an expressive
market already exists (Hohner et al. 2003). In such
contexts suppliers usually place bids with the mar-
ket price as a base price, and with an add-on price
for each additional attribute, such as the degree of
refinement provided, the location to be delivered to,
delivery dates, etc. The price is specified indepen-
dently for each attribute. Another common setting for
PI is for configurable goods such as PCs. A typical
desktop has many attributes such as the memory, the
processor speed, and the hard drive, each with multi-
ple choices. A very common price structure for these
goods is a markup-based price, where configurations
are priced with a base price and an add-on price for
each attribute (Bichler and Kalagnanam 2003). Auc-
tion AD applies when PI holds, and provides partic-
ularly useful preference-elicitation properties.
We use linear programming duality theory to

design and analyze Auction AD. The auction termi-
nates with the outcome of a modified Vickrey-Clarke-
Groves (VCG) (Vickrey 1961, Clarke 1971, Groves
1973) auction. From this, it follows that straight-
forward strategies form an ex post Nash equilibrium
for sellers, against a class of nonadaptive (but not nec-
essarily truthful) buyer strategies. This ex post Nash
solution concept is quite robust, because sellers do
not need to be informed about the costs of other
sellers to follow their equilibrium strategy. We also
provide a simple, but useful, bound on the maximal
increase in payoff that a buyer can achieve by adopt-
ing an adaptive and nontruthful strategy over a truth-
ful strategy. We present computational experiments

that verify the information revelation properties of
the auction models. For simulated valuation and cost
functions, we compare the amount of information
revealed by participants in Auctions NLD and AD.
The results demonstrate that the compact additive
price space in Auction AD can provide a significant
reduction in information revelation over NLD, which
in turn can provide a significant saving in information
revelation over a one-shot auction.

1.1. Related Work
Che (1993) first studied multiattribute auctions as
a model for procurement within the supply chain.
Multiattribute auctions have also been studied in
the context of bargaining over shared resources
between distributed computational agents (Kraus
1997, Jennings et al. 2001).
Early designs emphasized the design of an (buyer)

optimal auction, to maximize the expected total payoff
to the buyer by leveraging beliefs about the costs of
sellers. Che (1993) proposed optimal one-shot (sealed-
bid) auctions, for a model in which the cost functions
of sellers are defined in terms of a single unknown
parameter. A buyer provides a scoring function, and
sellers respond in equilibrium by choosing to sup-
ply at a quality level that is efficient given the scor-
ing rule (which itself is not truthful in equilibrium).
Che derives an equilibrium in which the buyer states
an optimal scoring function. Recently, Branco (1997)
extends Che’s auction to the case where the seller cost
functions are correlated.
The rules in Che’s “second-score” auction are those

of the one-sided VCG auction (see §2) that forms
the basis of our iterative price-based auctions. Rather
than focus on the problem of optimal auction design,
we consider the problem of efficient auction design.
We consider the goal of market efficiency to be well
suited for the design of stable long-term markets that
will form the basis for repeated trade. We expect that
efficient markets will come to dominate the electronic
market landscape based on our experience with pro-
curement auctions (Hohner et al. 2003). In long-term
contract negotiations, the number of suppliers that
a company interacts with is very small (typically of
the order of 5 to 10), and inefficient allocations across
this pool leads suppliers to question the credibility
of the buyer to be fair. Even in business-to-business
settings this emerges as one of the most important
requirements, as reported in the deployments with
a large chocolate manufacturer (Hohner et al. 2003).
Buyer-optimal auctions are perhaps more appropriate
for a one-shot procurement problem, and in a setting
in which the buyer has considerable market power.
Turning to efficient design also allows a more gen-
eral model, in which sellers can have an arbitrary
cost function. Indeed, optimal auctions are not known
even for the special case of PI.
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Iterative multiattribute auctions have been consid-
ered in prior work. Beil and Wein (2003) propose
an iterative variant on Che’s auction for a richer
class of parameterized utility functions (this time with
K parameters) with known functional forms. The
buyer uses K rounds to estimate the sellers’ cost func-
tions, restarting the auction with a different scoring
function each time. Sellers are modeled as naive and
truthful agents, which allows the buyer to determine
the exact seller cost function. For the final �K + 1�st
round, Beil and Wein design a scoring function so
as to maximize buyer payoff by essentially reporting
the same score (within �) for the top two suppli-
ers. Vulkan and Jennings (2000) propose a multi-
round efficient auction. Their design differs from our
design in that it is not price based, and also because
there is no special optimization for the preferential-
independence special case.
Recent literature adopts a linear programming

approach for the design of iterative combinatorial auc-
tions, in which bidders demand different combina-
tions of items (Parkes and Ungar 2000, Bikhchandani
et al. 2001, Bikhchandani and Ostroy 2002, de Vries
et al. 2003, Mishra and Parkes 2004). However, the
Combinatorial Allocation Problem (CAP) and the
MAP differ in important ways. First, the preferential-
independence special case is well motivated for the
MAP, but makes less sense for the CAP. Second, there
is private information on both sides of the auction in
the MAP. This complicates the auction design prob-
lem, because the winner-determination problem now
depends on the preferences of the buyer in addition
to the revealed bids from sellers. An aggregate price
term, in combination with linear prices, has been used
previously in Kwon et al. (2004) in the context of the
CAP, with the aggregate price used to provide more
nuanced price feedback to losing bidders.

1.2. Outline
Section 2 formulates the MAP, and defines a modified
VCG auction that is one-shot, but provides a norma-
tive basis to guide the design of our iterative auctions.
Section 3 introduces Auction NLD and presents theo-
retical analysis to characterize the performance of the
auction. Section 4 defines Auction AD which has a
smaller price space—composed of prices on individ-
ual attribute levels together with an aggregate dis-
count term—and is applicable to the special case of
PI. We also examine a special case in which the aggre-
gate discount term is not required. Section 5 con-
cludes with a computational study of the information
revelation properties of the iterative auctions on styl-
ized problems. All proofs are available in the online
appendix.

2. The MAP
In the MAP there are n sellers, a single buyer, and
the outcome is defined in terms of levels for each of
m attributes and a winning seller. Each attribute j ∈
�1	 
 
 
 	m� has a finite domain of discrete attribute val-
ues, �j . For example, �j = �red	yellow	green�, where
attribute j represents the color of an item. Let � =
�1×· · ·×�m denote the joint space of attributes. Dis-
crete attribute values are reasonable for the procure-
ment of goods with discrete characteristics, such as
processor speed, delivery date, and color. Naturally con-
tinuous characteristics such as weight and heat content
must be discretized.
Each seller i ∈ I = �1	 
 
 
 	n� has a cost function,

ci��� ≥ 0, for an attribute bundle � ∈ �, and the
buyer has a valuation function, v��� ≥ 0. We write
c = �c1	 
 
 
 	 cn�, and c−i = �c1	 
 
 
 	 ci−1	 ci+1	 
 
 
 	 cn� to
denote the costs without seller i. We assume a
private-values model, with independently distributed
seller costs and buyer value. A private-values model
provides a reasonable first approximation for the
procurement of goods, because seller costs can be
expected to depend on her own local manufacturing
base and sellers can be expected to be well informed
about the cost of (upstream) raw materials. Later, in
§4 we introduce the special case of PI, in which the
costs are stated independently for each attribute.
As is standard in the auction literature, all partic-

ipants are assumed to have quasi-linear utility func-
tions, with utility ui��	 p� = p − ci��� to seller i for
bundle � at price p and utility uB��	p� = v��� − p to
the buyer. We assume that the buyer will source from
a single seller. We focus on the efficient multiattribute
allocation, in which the objective is to clear the auc-
tion to maximize the total value to the buyer, net the
seller’s cost:

max
xi���

∑
i∈I

∑
�∈�

xi����v���− ci���� �MAP�I��

s.t.
∑
i∈I

∑
�∈�

xi���≤ 1

xi��� ∈ �0	1�	 ∀i	 ∀�


Setting xi��� = 1 denotes that attribute bundle � and
seller i is selected in the outcome. Let ��v�c� =
v��∗� − ci∗��

∗� denote the surplus generated in the
efficient outcome, ��∗	 i∗�, that solves MAP�I�. Define
the marginal product MPi = ��v�c�−��v�c−i�, as the
marginal value contributed by seller i to the econ-
omy. We will also refer to the efficient outcome ��∗	 i∗�
as the first-best outcome, and denote the solution to
MAP�I\i∗� as ��̃	 ĩ�, and refer to this as the second-best
outcome.
The price-based multiattribute auctions defined in

this paper implement the outcome of a modified VCG
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mechanism. In the VCG mechanism, all agents sub-
mit bids to the auctioneer that: (a) determine the effi-
cient trade; (b) compute payments so that each bid-
der’s utility (with respect to her reported valuation)
is equal to her marginal product MPi, i.e., the total
value that she contributes to the economy. The VCG
mechanism is strategy-proof—with truthful bidding a
dominant-strategy equilibrium—but it is well under-
stood that it is not budget balanced in settings with two-
sided private information such as the MAP. Instead,
the VCG mechanism will require a payment to the
winning seller that is greater than the payment made
by the buyer. Indeed, no efficient mechanism can be
budget balanced for the MAP (Myerson and Satterth-
waite 1983, Krishna and Perry 2000).
We define a modified auction, the one-sided VCG

auction, that retains incentives to support truthful
bidding on the sell side while achieving budget bal-
ance. Truthful bidding is no longer an equilibrium
strategy for the buyer in the one-sided auction.

One-Sided VCG Auction
(1) Each seller i bids a cost function �ci and the

buyer bids a valuation function �v.
(2) Outcome �î	 ��� is selected in winner determina-

tion, to solve MAP�I�, based on bids �ci and �v.
(3) The buyer pays �v� ���−���v� �c−î�.
The payment made by the buyer is the VCG pay-

ment that the winning seller would receive in the VCG
mechanism for this problem, i.e., �cî� ��� + ����v� �c� −
���v� �c−î�� = �v� ��� − ���v� �c−î�. The buyer’s payment
in the (full) VCG mechanism would be �v� ���−���v� �c�.
Here, the buyer makes an additional payment of
���v� �c� − ���v� �c−î�. This provides budget balance,
while continuing to support truthful bidding on the
sell side. Voluntary participation is also provided: The
winning seller’s payment is at least her reported cost,
and the payment made by the buyer is no greater
than her bid price. The price of budget balance is that
the auction is not strategy-proof for the buyer. How-
ever, we can bound the maximal gain that can be
achieved by the buyer in comparison with her utility
from reporting her true valuation.

Proposition 1. The ex post regret to the buyer from
truthful bidding in the one-sided VCG auction, given
straightforward seller strategies, is at most the marginal
product MPi∗ , of the efficient seller (defined with respect to
reported seller costs).

To see that this upper bound is tight, consider an
instance in which the cost of the second-best bun-
dle, �̃, is less to the second-best seller, ĩ, than to the
first-best seller, i∗. In this case, the buyer can bid
�v��∗� = v��∗� + ���v	 c� − ��v	 c−i∗� − max�0	 cĩ��̃� −
ci∗��̃��� for the efficient bundle �∗, and bid truthfully
for all other bundles. Given this, ���v� c�=���v� c−i∗�,

and the efficient allocation is implemented, with the
buyer taking all the surplus.
In practice, the opportunity to the buyer is more

limited because she must bid without perfect knowl-
edge of sellers’ bids. Instead, if the buyer has infor-
mation about the distribution from which seller’s costs
are drawn, then the buyer can play a Bayesian-
Nash equilibrium and aim to maximize her expected
utility. Trivially, the expected gain in utility over a
truthful strategy in this Bayesian-Nash equilibrium is
bounded above by Ec∼F �c��MPi∗�, where the expecta-
tion is taken with respect to the distribution F �c� on
seller costs. To see this, notice that for any particu-
lar valuation v and costs c the best-case gain for the
buyer is MPi∗ because the sellers will continue to bid
truthfully in equilibrium. This term will be consid-
erably less than the expected utility Ec∼F �c����v� c−i∗��
from truthful bidding in the usual case of strong
competition.

3. Auction NLD: General Preferences
Our first auction NLD generalizes a single-item open-
outcry auction, providing a kind of reverse English
auction for the MAP. Prices are nonlinear, with com-
binations of attribute values priced explicitly, and rich
enough to provide prices on features that are contin-
gent on the selection of other features. Auction NLD
provides a multiattribute auction for general prefer-
ences, and determines the efficient allocation with-
out bidders revealing their full cost functions. How-
ever, Auction AD (§4), is able to take advantage of
the special structure offered by PI and provides a
compact price space that leads to more immediate
feedback and better information-revelation properties
than Auction NLD.
A high-level description of Auction NLD is pro-

vided in Figure 1. Auction NLD proceeds in rounds,
and maintains an ask price, pt���, on each bundle
� ∈� of attribute levels. At the start of the auction
the buyer makes a claim about her valuation function,
�v ∈� . The auctioneer uses this information to solve
the winner-determination problem in each round,
selecting as a provisional winner the bid that max-
imizes the buyer’s utility given this reported valu-
ation. The auction starts with high initial prices on

Figure 1 Auction NonLinear&Discrete (NLD)

collect a reported valuation, �v, from the buyer;
set high initial prices, p1���, on each attribute

bundle �;
while (active bidding) {

collect bids on attribute bundles from sellers;
determine the provisional allocation;
decrease prices based on losing bids;

}
implement the final provisional allocation;
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each attribute bundle. We assume that the buyer, or
the auctioneer, has conservative prior bounds on the
minimal cost for each possible configuration. Initial
prices can also just be set so as to be greater than the
reported values of the buyer.1 Prices decrease across
rounds, with price changes driven by bids from losing
sellers.
In each round, a seller can bid at or below the

ask price on one or more bundles or leave the auc-
tion. The winning bid from the previous round is
automatically retained across rounds. For instance,
if the first attribute defines color and includes �1 =
�red	 blue	 green�, and the second attribute defines
speed and includes �2 = �slow	 medium	 fast�, then
��red	 fast	$100�	 �blue	 fast	 $120�� is a valid bid as
long as these bid prices are less than or equal to the
ask prices. The new ask price, pt+1���, for a bundle �
that receives a bid from a losing seller, is set to �
below the lowest losing bid, with � > 0 defined as the
minimal bid increment in the auction. This auction
parameter determines the rate of price changes in the
auction.
The auction terminates when ask prices have not

changed in two consecutive rounds. In most cases,
the final price will be less than the buyer’s reported
valuation, and the auction implements the final pro-
visional allocation with the buyer making the final
payment to the winning seller. However, when there
is no efficient trade without the best seller—i.e., when
���v	 cĩ� ≤ 0—then the final price will remain above
the buyer’s reported value. We handle this case by
offering the provisionally winning seller a final price
of p��∗� = �v��∗� (which would be the outcome of the
one-sided VCG auction), where �∗ is the bundle in the
final provisional allocation. If the seller accepts this
offer, then the auction closes with this outcome. Oth-
erwise, the auction terminates with no trade.

3.1. Theoretical Analysis
Auction NLD terminates with the outcome of the mod-
ified VCG auction for sellers, which brings straight-
forward bidding into an ex post Nash equilibrium.
Straightforward bidding, or myopic best response, is
defined as follows:
Definition 1. A seller’s myopic best-response

(MBR) bidding strategy, mbr��ci�, is to bid at the ask
price for all bundles that have nonnegative utility and
are within � of maximizing her utility, given current
ask prices, and for some cost function �ci.

1 Technically, correct convergence is guaranteed whenever initial
prices are at least the lowest cost across all sellers on the bundle
plus the marginal product of the winning seller MPi∗ (to support
the VCG outcome).

In straightforward bidding a seller is myopic, bid-
ding as though the current auction prices are final,
and ignoring the effect of her bid on future prices. We
establish the following equivalence between Auction
NLD and the one-sided VCG auction:

Proposition 2. Auction NLD with straightforward
bidding terminates with the efficient outcome and the pay-
ment in the one-sided VCG auction for a truthful buyer,
and as the minimal bid increment � goes to zero.

This equivalence brings straightforward bidding
into an ex post Nash equilibrium for sellers, in the
sense that best response to prices in every round is
the optimal strategy for a seller whatever the costs
of other sellers and whatever the reported valuation
of the buyer, as long as the other sellers also follow
a straightforward strategy. Ex post Nash is a robust
solution concept because sellers need not be informed
about the costs of other sellers to compute their best
response.2

Formally, let g�s∗�c�� denote the outcome of an auc-
tion when bidders with costs c = �c1	 
 
 
 	 cn� follow
straightforward bidding strategy s∗�c� and the out-
come of the auction (an allocation and payments) is
defined with outcome rule g�s�c��, given joint strat-
egy s and costs c. Then, strategy s∗ is an ex post Nash
equilibrium if

ui�g�s∗�c���≥ ui�g�s′	 s∗�c−i��� (1)

for all bidders i and all costs c−i and all costs ci,
where s′ is an arbitrary bidding strategy and
ui�g�s�c��� ∈� is the utility to bidder i for an outcome.

Theorem 1. Truthful MBR is an ex post Nash equi-
librium for sellers in Auction NLD as the minimal bid
increment goes to zero, whatever the reported valuation �v
of the buyer.

We also have the following immediate corollary:

Corollary 1. Auction NLD is efficient when the
buyer bids truthfully, and the maximal benefit to a buyer
from some nontruthful strategy is no greater than the
marginal product of the efficient seller.

3.2. Competitive Equilibrium Prices
To complete the analysis of Auction NLD, we define
competitive equilibrium (CE) prices and show the

2 Ex post Nash makes a weaker knowledge assumption than that
required for a Bayesian-Nash equilibrium, in which the distribu-
tion on seller costs must be common knowledge. However, ex post
Nash makes a stronger knowledge assumption than that required
for the dominant-strategy equilibrium in the one-sided VCG auc-
tion, in which sellers need not even believe that other sellers will
be rational.
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auction terminates with maximal CE prices that sup-
port the outcome of the one-sided VCG auction.
As is standard, we say that prices p��� and feasi-

ble MAP solution ��′	 i′� are in CE if bundle �′ maxi-
mizes the utility for the buyer and the winning seller
i′ at the prices, and the prices are less than cost on all
bundles for all other sellers. It is easy to see that CE
prices always exist; for instance, consider the instance
of prices p���=mini�ci����, together with the efficient
allocation. Moreover, by linear-programming duality
we see that the CE prices support an efficient out-
come.
Let !i denote the maximal payoff to seller i at

prices p, defined as !i = max�∈��p��� − ci���	0�. Let
!B denote the maximal payoff to the buyer at prices p,
defined as !B =max�∈��v��� − p���	0�. Formally, we
require !B = v��′�− p��′� and !i′ = p��′�− ci′��

′�, with
!i = 0 for all i �= i′ in CE.
Definition 2. The maximal CE prices, �pce, maxi-

mize the price on the efficient bundle, �∗, across all
CE prices.
Maximal CE prices provide the winning seller with

the best possible revenue across all prices that support
the efficient trade in equilibrium. Intuitively, the seller
cannot receive a greater payment without some other
seller being able to step in and make the buyer an
offer that she will prefer. Maximal CE prices can be
constructed by adjusting CE prices to maximize p��∗�
while maintaining the conditions required for CE.

Lemma 1. Prices �pce��∗� = ci∗��
∗� + MPi∗ , with

�pce��′� = mini �=i∗�ci��
′�� on all �′ �= �∗ are maximal CE

prices.

Given this characterization, the following equiva-
lence is immediate.

Proposition 3. The payments in the one-sided VCG
auction are implemented in the maximal CE.

Notice that price �pce��∗�= ci∗��
∗�+MPi∗ is exactly the

payment to the winning seller in the one-sided VCG
auction.
In what follows, prices p are said to �-dominate

prices p′ if p��� + � ≥ p′��� for all �. Also, we define
CE prices with respect to the reported �v of the buyer.
Lemma 2. Auction NLD maintains ask prices that

�-dominate the maximal CE prices when all sellers follow
a truthful MBR bidding strategy.

Auction NLD must terminate when agents are
rational, because while the auction remains open the
price pt��� falls in each round on at least one attribute
bundle, �, for which a seller has submitted a bid.
To keep bidding, this seller must have �ci��� ≤ pt���,
which places a lower bound on the minimal price
that can support bids. Termination follows because
we assume that the number of agents, the number of

attributes, and the number of attribute levels are all
finite. Finally, Auction NLD terminates in the maxi-
mal CE prices.

Lemma 3. Auction NLD terminates with maximal CE
prices when sellers follow a truthful MBR strategy, and as
the minimal bid increment goes to zero.

3.3. Number of Rounds to Terminate in
Auction NLD

It is interesting to characterize the number of rounds
that Auction NLD can take to reach termination.
Let m denote the number of attributes, and let l =
maxj ��j � denote the maximal number of discrete lev-
els of any single attribute. The size of the attribute
bundle space is O�lm�. Let Vmax =maxi≤n�max� p1���−
ci����, where p1��� is the initial ask price on bundle �.
The number of rounds in NLD is polynomial in Vmax,
1/�, but exponential in l and m.

Proposition 4. Auction NLD converges in
O�lmVmax/�� rounds, with minimal bid increment � and
MBR strategies.

As a result of the exponential price space, the num-
ber of rounds is worst-case exponential in m, the num-
ber of attributes. In contrast, Auction AD, which is
applicable for the special case of PI, has a linear price
space and will terminate after a number of rounds
that scales as O�lm�.

3.4. Adaptive Buyer Strategies
The basic version of Auction NLD, as described,
requires the buyer to commit to a valuation function
�v ∈ � at the start of the auction. In a simple varia-
tion, we can allow the buyer to bid incrementally, pro-
viding the minimal amount of additional information
that is needed in each round to determine the winner
and to adjust prices. For instance, the buyer could be
presented with the set of bids received from sellers,
and asked which bid it prefers. Sunderam and Parkes
(2003) considered this approach, providing a proxy
agent to intermediate between the bidders and the
auctioneer. A response to a new query places addi-
tional constraints on the buyer’s valuation. The proxy
can use this partial information to respond when it
has enough information, and fall back to the buyer
and ask for additional information when necessary.
In practice, making the auction dynamic on the buy

side would require striking a balance between the
need to reduce information revelation from the buyer
with a need to protect the interests of sellers. Incre-
mental bidding provides new opportunities for strate-
gic behavior by buyers. In particular, a buyer can
use sellers’ bids to adapt her strategy and improve
her final payoff. We already saw in §2 that a well-
informed buyer can do better than truth revelation.
A new concern for sellers is that bids during the auc-
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tion can reveal information that can help the buyer to
adapt her strategy. An auction that permits dynamic
buyer strategies as well as seller strategies should
at least ensure that the buyer’s revealed preference
information is consistent across rounds.

4. Auction AD: Preferential
Independence

We now consider the special case of PI, in which the
cost of each seller can be stated separately for each
attribute, with the total cost defined as the additive
sum across attributes. Preferential independence is
quite standard in multiattribute utility theory (Keeney
and Raiffa 1993), and is relevant in our setting of
procurement auctions whenever the value and cost is
separable across attributes. We provide some motivat-
ing scenarios below.
We introduce Auction AD, which has a linear price

space and maintains prices on the individual level of
each attribute as well as an aggregate discount price
that applies to an entire bid. The total ask price for a
bundle of attribute levels is calculated as the sum of
the level prices minus this discount term. The aggre-
gate discount term is necessary when the efficient
supplier does not dominate the other suppliers on
every attribute. We interpret Auction AD as imple-
menting a primal-dual algorithm for the MAP, with
straightforward bidding leading to an efficient solu-
tion. In §5, we show that the auction solves prob-
lems with less information elicitation from partici-
pants than Auction NLD.
The outline of this section is as follows. We first

define PI. We then describe the auction, state its main
theoretical properties, and provide an extended exam-
ple for a simple problem. Finally, we define CE prices
and complete the formal theoretical analysis, again
demonstrating an equivalence between maximal CE
prices and the one-sided VCG auction.

4.1. Preferential Independence
PI imposes the additional assumption that a seller’s
cost for a level of an attribute does not depend on the
levels set on the other attributes, and similarly for the
value of the buyer. We find PI compelling for a class
of multiattribute problems in procurement, including:
for commodity items, where the attributes (refinement
level, location, delivery dates, etc.) can be readily
assigned independent costs and values; and for config-
urable goods such as PCs, where the attributes (mem-
ory, processor speed, etc.) can be readily assigned
independent costs and values.
Formally, we now define an attribute bundle � in

terms of x = �x1	 
 
 
 	 xm�. For each attribute j , we have
xj ∈ �0	1���j �, and

∑
k xjk ≤ 1 so that at most one level

is selected. Setting xjk = 1 indicates that level k of

attribute j is selected. The cost function for seller i can
now be expressed as:

ci���=
∑
j≤m

∑
k≤��j �

cijkxjk	 (2)

where cijk is the marginal cost to seller i if level k of
attribute j is selected. The valuation function for the
buyer can now be expressed as:

v���= ∑
j≤m

∑
k≤��j �

vjkxjk	 (3)

where vjk is the marginal value to seller i if level k
of attribute j is selected. With this, the MAP problem
can be formulated as:

max
xijk	 yi

∑
i≤n

∑
j≤m

∑
k≤��j �

�vjk − cijk�xijk �MAP-PI�

s.t.
∑

k≤��j �
xijk ≤ yi	 ∀i	 ∀j (4)

∑
i≤n

yi ≤ 1 (5)

xijk	 yi ∈ �0	1�	

where yi = 1 if seller i is the winner, and xijk = 1 if
level k of attribute j is supplied by this seller.
We allow the buyer to opt out of one or more

attributes whenever the winning seller cannot supply
any level of that attribute at a cost below value. This is
common practice in pricing schemes used for services
or configurable goods. For example, desktops have
multiple attributes (memory, processor, hard drive,
etc.), and the most common pricing scheme is based
on using a base price and markup. In such situa-
tions, the opt-out option for one or more attributes
(say memory) is equivalent to the buyer choosing the
default level in the base model (e.g., 128 MB).

4.2. Auction AD
A high-level description of Auction AD is provided
in Figure 2. Prices are basically linear additive on
attribute levels, but with an additional (anonymous)
discount that applies to an entire bid. Auction AD
maintains prices pt

jk ≥ 0 on individual levels k of each
attribute j in round t ≥ 1, along with price discount
(t ≥ 0 that applies to the total price on any bundle
of attribute levels. The overall ask price on bundle
x = �x1	 
 
 
 	 xm� is defined as

pt�x�=
(∑

j≤m

∑
k≤��j �

pt
jkxjk

)
−(t


The role of the discount is to support the efficient
allocation in a price equilibrium when the best seller
does not dominate (in terms of buyer value and seller
cost) the other sellers on every attribute. For instance,
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Figure 2 Auction Additive&Discrete (AD)

collect a reported valuation, �v, from the buyer;
set high initial prices, p1jk;
initialize price discount (1 = 0;
while (active bids) {

collect bids from sellers;
determine the provisional allocation;
determine the most-preferred levels on each

attribute;
decrease level prices, pt

jk;
increase the discount (t if stalled;
}
implement the final provisional allocation;

one supplier of IT outsourcing might be preferred by
the buyer on offshore labor rates and professional services,
while another supplier might be preferred in terms of
minimal response times.
The auctioneer sets initial level prices to be some

value greater than the buyer’s reported level values,
and initializes the price discount to zero. The auc-
tion is parameterized with a minimal bid increment,
� > 0, which determines the rate at which prices are
decreased across rounds. At the start of the auction
the buyer provides a reported valuation function, �v,
to the auctioneer.3 In each round, bids are collected
from sellers, with the winning bid from the previous
round resubmitted automatically (at the previous bid
price). This mimics the dynamics in the English auc-
tion, where the current winner does not need to match
the new ask price, but is allowed to let her bid stand
until competing bidders match the new ask price.
Each seller can bid on one or more levels on each

attribute, with a bid price that matches or improves
on the current ask price on that level. A seller can
also skip an attribute altogether, and might choose
to when the price is above cost across all levels.
A seller must always match, or improve on, the cur-
rent price discount asked in the auction. The full dis-
count applies, even when the supplier is only bidding
on a subset of the attributes. A seller can also exer-
cise a last-and-final bid on an attribute in any round.
This allows the seller to bid � above the ask price
on any level of that attribute. However, once exer-
cised, a seller cannot improve her bid on any level on
that attribute in future rounds, although she can still
improve her bids on other attributes, and she can still
offer a larger discount.
When selecting a provisional winner, the auction-

eer (on behalf of the buyer), must choose a level from
within each attribute included in the bid. For instance,
in a setting with a color attribute and a speed attribute,

3 As in Auction NLD, the auction can also be operated with incre-
mental bidding from the buy side. The buyer must provide enough
information in each round to guide winner determination and price
adjustment.

a typical bid might state ��red	$50�	 �yellow	$80��	
�� fast	$100�	 �slow	$20��, with discount $40. In res-
ponse, the buyer might consider combining �red	 slow�
for a total price of $50+ $20− $40= $30. A provisional
allocation is determined in each round to maximize the
buyer’s utility given her stated valuation and given
current bids. Ties are broken in favor of the current
provisional winner.
Price-Update Rules. In order to describe the price-

update rules, we first need a language to talk about
characteristics of attributes, levels, and sellers. First,
we need to distinguish between attributes that are
in play and not in play. To be in play, an least one
bid must be received on the attribute at a level price
below the buyer’s reported value for that level (the
discount in a bid is ignored in this characterization).
We also characterize a level within an attribute as a
most-preferred level, which is a level that is within �
(the price increment in the auction) of maximizing
the buyer’s utility at the current ask prices. Finally, a
seller is said to be active on an attribute if she bids at
or below the ask price on one or more levels. A seller
is said to be active overall if she is either the current
winner in the auction, or she is active on one or more
attributes.
Each attribute is then considered in turn, with the

price-update rule selected to depend on whether or
not the attribute is in play:
Not In Play. Consider two subcases.
(not-a) If a losing seller does not bid on any most-

preferred level for this attribute, then set the ask price
on that level to � below the bid price from this seller
or the current ask price, whichever is smaller.

(not-b) If all bids from sellers include a most-
preferred level and at least one losing seller is active
on the attribute, then set the new ask price on each
level to � below the lowest bid price from any seller
on this attribute.
In Play. (in) Set the new ask price on any level that

receives a bid to � below the lowest bid price received,
while all active sellers are also active on this attribute.
The price discount is also adjusted according to the

following rule:
Discount. If ask prices on attribute levels have

remained unchanged for two successive rounds, and
there are still two active sellers, then increase the
discount to � above the largest discount that was bid
in the last round by a losing seller.
Rule not-a is used to decrease prices on levels on

attributes that are not in play and that receive bids
from sellers that are not competitive on the attribute.
Rules not-b and in are used to drive competition
between sellers that might be competing on differ-
ent levels on an attribute. Note that both of these
rules consider bids from the provisional winner when
adjusting prices. Rule not-b requires that all bids are
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on most-preferred levels, but does not require that all
active sellers are active on the attribute. Rule in, on
the other hand, does require that all active sellers are
active on this attribute. Rule discount provides com-
petitive price pressure between sellers that are com-
peting on different attributes (which precludes the use
of the standard in-play rule because they would not
both be active on the same attribute).
In the usual case, the price offered by the winning

seller at the end of the auction is less than the buyer’s
reported value on all attributes and the auction imple-
ments the final allocation at this price. On the other
hand, if an attribute is not in play, then the auction
considers the level on which the winner is most com-
petitive and offers the winner a final price equal to the
buyer’s reported value on that level. The winner can
either accept, or choose to opt out of this attribute.
We define a straightforward MBR strategy for a

seller in the auction as:
Definition 3. A seller’s MBR strategy, mbr��ci�, is

to bid on all levels of each attribute that are within
� of maximizing her utility while the total price is
greater than cost, for some fixed cost �ci.
Auction AD shares the same appealing properties

that we have demonstrated for Auction NLD.

Theorem 2. Truthful MBR is an ex post Nash equi-
librium for sellers in Auction AD as the minimal bid incre-
ment goes to zero, whatever the reported valuation �v of the
buyer, for the case of PI.

We can establish that straighforward bidding is an
equilibrium by demonstrating the same equivalence
between the outcome of Auction AD and the out-
come of the one-sided VCG auction when sellers fol-
low MBR strategies and when PI holds. A detailed
proof of this equivalence is presented in the online
appendix (available at http://mansci.pubs.informs.
org/ecompanion.html).
Moreover, Auction AD is efficient when the buyer

is truthful, and we again inherit the simple bound on
the maximal gain to the buyer from some adaptive
(nontruthful) strategy.

Corollary 2. Auction AD is efficient when the buyer
bids truthfully, and the maximal benefit to a buyer for a
nontruthful strategy in Auction AD is no greater than the
marginal product of the efficient seller, for the case of PI.

4.3. Auction AD: Simple Example
It is helpful to illustrate the auction dynamics on the
simple two-attribute example in Table 1. The buyer
wants a fast, red car, but is also willing to settle for
a slow, red car. There are three sellers, and Seller 2 is
most competitive for this buyer: There is a potential
gain from trade of $100+$100−$80−$40= $80 when
the buyer buys the fast, red car from Seller 2.

Table 1 A Simple Two-Attribute MAP

SpeedColor
Red Fast Slow

Value ($) 100 100 60

Cost 1 ($) 120 80 55
Cost 2 ($) 80 40 40
Cost 3 ($) 60 70 45

Table 2 illustrates the state of the auction in each
round, as well as the MBR bidding strategies. We
assume a bid increment of $20, and simulate the auc-
tion for truthful MBR strategies. Level red is most
preferred for Attribute 1 in each round, because it
is the only level for this attribute. Level fast is most
preferred for Attribute 2 in Round 1, and both fast
and slow are most preferred in future rounds. The
price on Attribute 1 is held up at $100 until Seller 1
drops out of the auction, while Sellers 2 and 3 com-
pete down the price on Attribute 2. Seller 1 drops
out in Round 7, which starts new price competition
on Attribute 1. The price discount is used to prevent
deadlock, which would otherwise occur in this exam-
ple because there are no linear prices that support the
efficient allocation.
The auction terminates with the the efficient out-

come �red	 fast�, to Seller 2, and with a payment by
the buyer of $120. The payment in the one-sided VCG
auction would be $120+$10= $130, where $120 is the
cost of Seller 2 for �red	 fast� and $10 is her marginal
product (i.e., the buyer would take $70 of the $80 gain
from trade). Auction AD implements this outcome for
a small enough minimal-bid increment, �. What fol-
lows is a detailed round-by-round description of the
behavior of the auction on this example.
Round 1. Prices are initialized to $120 for each level

that is greater than the buyer’s reported value. At this
price, every seller bids on red, Seller 2 bids for fast
and slow (because she has the same cost for each), and
Sellers 1 and 3 bid for slow, which costs less than fast
but has the same ask price. Seller 2 becomes the pro-
visional winner, because the buyer’s value is higher
for fast than slow.
Round 2. Before price adjustment, neither attribute

is yet in play, so consider rules not-a and not-b. Rule
not-b is used for Attribute 1 because all bids are most
preferred, and the ask price on red drops to $100. Rule
not-a is used for Attribute 2 because both losing bid-
ders submitted a bid on slow, which is not most pre-
ferred, and the price drops to $100. Seller 2’s winning
bid from the previous round is repeated (at � above
the new ask price on red and on slow). Seller 1 sub-
mits a last-and-final bid on Attribute 1, which is now
priced below her cost. Both Sellers 1 and 3 bid on
both levels of Attribute 2, because the price difference
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Table 2 Auction AD on the MAP in Table 1

Attribute 1 Attribute 2

Round Rules Red Fast Slow Discount

1 price 120 120 120 0
bid 1 2∗ 3 2∗ 1 2 3

2 not-b not-a price 100 120 100 0
bid 1+ � 2+ � 3∗ 1 2 3∗ 1 2+ � 3

3 — not-b price 100 100 80 0
bid 1+ � 2∗ 3 1 2∗ 3+ � 1 2 3+ �

4 — — price 100 100 80 0
bid 1+ � 2∗ 3 1 2∗ 3 1 2 3

5 — in price 100 80 60 0
bid 1+ � 2 3∗ 1 2+ � 3∗ 1 2+ � 3

6 — — price 100 80 60 0
bid 1+ � 2 3∗ 1 2 3∗ 1 2 3

7 — in price 100 60 40 0
bid 2∗ 3 2∗ 3+ � 2 3+ �

8 in — price 80 60 40 0
bid 2+ �∗ 3 2∗ 3+ � 2 3+ �

9 — — price 80 60 40 0
bid 2+ �∗ 3 2∗ 3+ � 2 3+ �

10 discount price 80 60 40 20
bid 2+ � 3∗ 2 3+ �∗ 2 3+ �

11 — — price 80 60 40 20
bid 2∗ 3 2∗ 3+ � 2 3+ �

12 in — price 60 60 40 20
bid 2+ �∗ 3 2∗ 3+ � 2 3+ �

13 — — price 60 60 40 20
bid 2+ �∗ 3 2∗ 3+ � 2 3+ �

14 discount price 60 60 40 40
bid 2+ �∗ 2∗ 2

Notes. Bid increment $20. MBR seller strategies, truthful buyer. Prices in each round are those at the start of the round before
bids are received. Key not-a, not-b, in, and discount indicates which rule was used to adjust prices from the previous round, for
Attribute 1 and 2, respectively. “+�” indicates a bid that is � above the current ask price. “∗” indicates the provisional allocation.

between fast and slow is now within � of their cost dif-
ference. Seller 3 becomes the new provisional winner,
outbidding Seller 2.
Round 3. Attribute 1 is now in play, but the price is

not adjusted because Sellers 1 and 2, although active
in Round 2, were not active on Attribute 1 (bidding
at � above the ask price). This violates the condition
for rule in. Attribute 2 is still priced above value,
and not in play. Rule not-b is used because all lev-
els are most preferred, and the prices are decreased
to $100 and $80 on levels fast and slow, respectively.
Seller 3 repeats her bid from the previous round,
while Seller 2 matches the new ask price and becomes
the new provisional winner.
Round 4. Attribute 2 is now in play, but there are

no price changes by rule in because Seller 1 was not
active on Attribute 1, and Seller 3 was not active on
Attribute 2. No longer the provisional winner, Seller 3
improves her bids, but Seller 2 remains the provi-
sional winner (ties are broken in favor of the current
winner).

Round 5. All sellers were active on Attribute 2 dur-
ing Round 4 and rule in is used to adjust prices to $80
and $60 on levels fast and slow, respectively. Seller 2
repeats her bids from the previous round, while
Seller 3 matches the new ask prices and becomes the
new provisional winner.
Round 6. No price changes. Seller 2 improves her

bid, to match the ask prices. Seller 3 remains the pro-
visional winner.
Round 7. All sellers were active on Attribute 2 dur-

ing Round 6, and rule in is used to adjust prices to $60
and $40 on levels fast and slow, respectively. Seller 3
repeats her bids from the previous round, while
Seller 2 matches the new ask prices and becomes the
new provisional winner. Seller 1, unable to compete
on either attribute, drops out of the auction.
Round 8. The price on red is reduced to $80, with

rule in, now that Seller 1 has dropped out of the auc-
tion. Seller 2 repeats her bids. Seller 3 matches the
price change on Attribute 1, but is unable to compete
on Attribute 2 and submits a last-and-final bid.
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Round 9. Ask prices are unchanged. Seller 3 is pre-
ferred on Attribute 1, but Seller 2 is preferred on
Attribute 2 (and remains the provisional winner).
Round 10. Deadlock is broken by increasing the

price discount. Seller 2 repeats her bids from the pre-
vious round, while Seller 3 improves her bid and
matches the requested $20 discount, becoming the
new provisional winner.
Round 11. Ask prices are unchanged. Seller 2 im-

proves her bid, matching the ask prices and becoming
the new provisional winner.
Round 12. Both sellers were active on Attribute 1 in

Round 11, and so the ask price drops to $60. Seller 3
improves her bid, matching this price change, but
Seller 2 remains the winner.
Round 13. Ask prices are unchanged, bids are

unchanged. Seller 2 remains the provisional winner.
Round 14. Deadlock is broken by increasing the

price discount. Seller 3 drops out, unable to compete
at this new discount. Seller 2 repeats her previous
bid, and the auction terminates with a winning bid
of $80 for red, $60 for fast, with a price discount of
$20 for an overall price of $120.

4.4. Theoretical Analysis
In this section, we establish that Auction AD termi-
nates with maximal CE prices and that these prices
correspond to the outcome of the one-sided VCG auc-
tion. The structure of the proof is the same as for
Auction NLD.
The price space in Auction AD consists of prices on

levels, together with an additive price discount. We
will provide an integral formulation of MAP-PI, from
which we define dual prices that correspond to prices
in Auction AD.

max
xijk	 x

B
jk	 xi	 yi

∑
j≤m

∑
k≤��j �

vjkx
B
jk −

∑
i≤n

∑
j≤m

∑
k≤��j �

cijkxijk [MAP]

s.t.
∑

k≤��j �
xijk ≤ xi	 ∀i	 ∀j (6)

xi ≤ yi	 ∀i (7)∑
i≤n

yi ≤ 1 (8)

∑
i≤n

xijk ≥ xB
jk	 ∀j	 ∀k (9)

xi ≤ 1	 ∀i (10)∑
k≤��j �

xB
jk ≤

∑
i≤n

yi	 ∀j (11)

xijk	 x
B
jk	 xi	 yi ≥ 0


In addition to variables xijk and yi from formulation
MAP-PI in §4.1, we introduce xB

jk to define the level
selected by the buyer and xi as an additional variable

to indicate which seller wins. The objective function
is stated in terms of xB

jk for the levels selected by the
buyer, and xijk to denote the levels selected by the
sellers. Then, Constraints (4) and (5) are restated as
Constraints (6) and (7), with Constraints (8) and (9) to
model that the buyer can purchase only levels offered
by a seller. We explicitly allow

∑
k xijk = 0 for the effi-

cient seller, for which yi = 1, because a seller need
not select a level for every attribute. Valid inequali-
ties (10) and (11) are introduced to isolate additional
dual variables with a useful economic interpretation.

Lemma 4. Linear program MAP is integral.

To construct the dual, introduce variables !ij , (i,
!B, pjk, !i, and !B

j to correspond with Constraints (6),
(7), (8), (9), (10), and (11).

min
!ij 	(i	!

B	pjk	!i	!
B
j

!B +∑
i≤n

!i [DMAP]

s.t. !B ≥ ∑
j≤m

!B
j +(i	 ∀i (12)

!B
j ≥ vjk − pjk	 ∀j	 ∀k (13)

!i ≥
∑
j≤m

!ij −(i	 ∀i (14)

!ij ≥ pjk − cijk (15)

!ij	(i	!
B	pjk	!i	!

B
j ≥ 0


Variables pjk can be interpreted as the price on
level k of attribute j , and variable (i can be inter-
preted as the price discount to seller i. We show that
an optimal dual solution exists in which (i is the same
for all agents, and write (i = ( for all i. (Variable (
corresponds with the price discount in Auction AD.)
Definition 4. Prices �pjk	(� and feasible MAP

solution ��′	 i′� are in CE if bundle �′ simultaneously
maximizes the payoff to the buyer and seller i′ at the
prices, and every bundle is priced less than cost for
all other sellers.
To establish that formulations MAP and DMAP

characterize a CE, we show that the complementary
slackness (CS) conditions between feasible dual and
feasible primal solutions correspond to conditions for
CE.
Given prices pjk and discount (, the solution to

DMAP provides the following dual values:

!i = max
[(∑

j≤m

!ij

)
−(	0

]
	 (16)

!ij = max
k≤��j �

�pjk − cijk	0�	 (17)

!B = ∑
j≤m

!B
j +(	 (18)

!B
j = max

k≤��j �
�vjk − pjk	0�
 (19)
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Each dual variable now has a very natural eco-
nomic interpretation: !i is the maximal payoff to
seller i across all bundles at the prices; !ij is the max-
imal payoff to the seller across all levels of attribute j
(with the possibility of an opt out); !B is the maxi-
mal payoff to the buyer; and !B

j is the maximal payoff
to the buyer for attribute j with the possibility of an
opt out. The interesting CS conditions that relate to
seller i are

!ij > 0⇒
∑

k≤��j �
xijk = xi	 ∀i	 ∀j (20)

!i > 0⇒ xi = 1	 ∀i (21)

xi > 0⇒ !i =
∑
j≤m

!ij −(	 ∀i (22)

xijk > 0⇒ !ij = pjk − cijk	 ∀i	 ∀j	 ∀k
 (23)

Note that !i > 0 implies that the total discount-
adjusted profit of a seller at the current prices is non-
negative, while !ij > 0 implies that the total profit on
attribute j is nonnegative considering only the level
prices on that attribute.
Given the interpretation of dual variables in (19),

these state that every seller with positive payoff for
some bundle at the current prices must be a winner by
CS Condition (21), and that the bundle selected in the
primal solution must be exactly the bundle that max-
imizes the payoff of the winning seller by CS Condi-
tions (20), (22), and (23). The interesting CS conditions
that relate to the buyer, are

!B
j > 0⇒ ∑

k≤��j �
xB

jk =
∑
i≤n

yi	 ∀j (24)

!B > 0⇒ ∑
i≤n

yi = 1 (25)

yi > 0⇒ !B = ∑
j≤m

!B
j +(	 ∀i (26)

xB
jk > 0⇒ !B

j = vjk − pjk	 ∀j	 ∀k
 (27)

Given the interpretation of dual variables in (19),
these conditions state that the bundle selected in the
primal solution must be exactly the bundle that max-
imizes the payoff of the buyer at the current prices.
We call these “linear+discount” CE prices.

Proposition 5. Linear + discount CE prices always
exist in the MAP with PI, and these prices support the
efficient allocation.

To characterize maximal CE prices, we consider
a restricted-dual formulation. Let W denote the
attributes for which a nonnull level is selected in the
efficient outcome, with i∗ to index the winning seller,
and k∗

j to index the efficient level on attribute j ∈ W .
Then, the restricted dual is formulated to compute

prices pjk	( that maximize
∑

j∈W pjk∗j −(, while main-
taining CS conditions. The most important CS condi-
tions are provided with

ci∗jk∗j ≤ pjk∗j ≤ vjk∗j 	 ∀j ∈W (28)

max
i �=i∗

∑
j

!ij ≤(≤∑
j

!i∗j 
 (29)

Constraints (28) provide CS conditions on each effi-
cient attribute, while Constraints (29) ensure that only
the winning seller has positive utility. Attributes j �W
and levels k �= k∗

j are priced to provide CE condi-
tions and maximize the payment to the winning seller.
Set (∗ =maxi �=i∗

∑
j !ij , and set the other prices pjk =

max�0	vjk − vjk∗j + pjk∗j �, for j ∈ W , k �= k∗
j , and any

vjk ≤ pjk ≤ mini �=i∗ cijk for j � W . Given this assign-
ment, the problem reduces to solving for pjk∗j to max-
imize

∑
j∈W pjk∗j − �maxi �=i∗

∑
j !ij �, with the prices, pjk,

on other attribute levels defined appropriately.

Proposition 6. The payments in the one-sided VCG
auction are implemented in the maximal linear+ discount
CE prices in the case of PI.

Let �ij =maxk�vjk − cijk	0�, i.e., the maximal alloca-
tive surplus on attribute j from seller i. Let ĩ denote
the second-best seller. Consider CE prices, pjk∗j =
vjk∗j − zj , for some zj > 0 on attribute j ∈ W . To char-
acterize maximal CE prices, we consider whether an
increase in zj can also cause a corresponding decrease
in maxi �=i∗

∑
j !ij , so that the total payment remains

constant.

Lemma 5. The space of maximal (linear+discount) CE
prices are characterized by prices pjk∗j = vjk∗j − zj for j ∈W

and (=∑
j !ĩj , with zj ≤�ĩj and

∑
j !ĩj ≥maxi �=i∗

∑
j !ij .

Note, for attributes j �W , we can set any price vjk ≤
pjk ≤mini �=i∗ cijk.

4.4.1. Primal-Dual Analysis. We demonstrate con-
vergence of Auction AD to maximal CE prices for
truthful MBR strategies. First, we show that the auc-
tion implements a primal-dual algorithm for MAP, ter-
minating with a feasible primal and dual satisfying CS
Conditions (20) to (27). We then demonstrate that the
conditions in Lemma 5 are satisfied, and thus maximal
CE prices.
Call an attribute “seller-efficient” for seller i in the

MAP when there is some level for that attribute for
which the buyer’s value is greater than the seller’s
cost. Specifically, we refer to the level that is surplus
maximizing for the seller and the buyer as the seller-
efficient level for this attribute. To simplify the presen-
tation, we assume that there are at least two sellers
that are seller-efficient on each attribute. All proper-
ties carry over to the more general case.
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To construct a feasible primal solution in each round,
let xi and yi correspond to the provisional winner,
with xijk and xB

jk defined to correspond with the levels
that are selected in the provisional outcome. Given
ask prices �pt

jk	(
t�, construct dual prices pjk = pt

jk,
(i =(t for all i, with variables !B, !ij , !i, and !B

j

implicitly defined to satisfy Equation (19).

Lemma 6. Auction AD maintains CS Conditions (20),
(22), (23), (24), (25), and (26) between the provisional allo-
cation and ask prices in each round, when sellers follow
MBR strategies, with PI, and as the minimal bid increment
goes to zero.

Lemma 7. Auction AD terminates with a final alloca-
tion and prices that satisfy CS Condition (21) for MBR
seller strategies, with PI, and as the minimal bid increment
goes to zero.

CS Condition (27) requires that the provisional allo-
cation maximizes the buyer’s payoff with respect to
the prices in the auction. In other words, the provi-
sional allocation must be the best allocation across
all possible allocations at the final prices (not just
across the allocations that are consistent with the
bid from the winning seller). To establish this, we
need that the winner will bid on a most-preferred
level for all attributes that are priced below value on
termination.

Lemma 8. A seller bids on a monotonically increasing
set of most-preferred levels on every attribute in each round
while active in Auction AD, and when PI holds.

Lemma 9. All sellers for which an attribute is seller-
efficient bid on a most-preferred level in Auction AD once
the attribute is in play and when PI holds.

Lemma 10. Auction AD maintains CS Condition (27)
between the provisional allocation and ask prices on all
attributes that are in play when sellers follow MBR bid-
ding strategies, with PI, and as the minimal bid increment
goes to zero.

Lemma 11. Sellers in Auction AD drop out of the auc-
tion in order of increasing allocative surplus in the MAP
restricted to that seller alone when PI holds.

Lemma 12. Auction AD terminates with maximal CE
prices when sellers follow MBR bidding strategies, and
when PI holds.

4.5. Seller Dominance
In this section, we consider a separable special case
of MAP with PI. We show that the MAP separates
across attributes when the efficient seller dominates the
second-best seller on all attributes, and the second-
best seller in turn dominates all other sellers. In this
case, the MAP can be solved with a simple iterative

auction, and linear CE prices exist without the aggre-
gate discount term. Thus, this characterization makes
explicit the role of the aggregate discount in Auc-
tion AD. The discount exists to support the efficient
allocation and VCG payment when the efficient seller
is not the best seller across all attributes, and provides
a compact alternative to nonanonymous prices.
Definition 5. Seller i is said to dominate seller i′,

written i� i′, if

max
[
0	max

k∈�j

vjk − cijk

]

≥max
[
0	max

k∈�j

vjk − ci′jk

]
	 ∀j
 (30)

That is, seller i dominates seller i′ if the maximal
allocative surplus from seller i is better than from
seller i′ on all attributes. We define full dominance to
refer to an auction in which the first-best seller dom-
inates the second-best seller, who in turn dominates
all other sellers.

Proposition 7. Linear and maximal CE prices (with
a zero discount term) exist in the MAP problem if, and
only if, there is both PI and full dominance.

In this case, the allocation problem is separable
across attributes, and a simple auction with a sepa-
rate price trajectory for each attribute is efficient and
terminates with the one-sided VCG outcome. Sellers
submit independent bids for each attribute, and the
winner is determined separately for each attribute,
with prices pt

jk adjusted on that attribute to � below
the bid price of losing bidders. No explicit coordina-
tion across the attributes is required, because at the
end of the auction the efficient seller wins for every
attribute and the second-best seller sets the winning
price for every attribute.

4.6. Number of Rounds to Terminate in
Auction AD

The price space in Auction AD is much smaller than
in Auction NLD, and the auction converges in a
smaller (worst-case) number of rounds.
Let m denote the number of attributes, l =

maxj ��j � the number of attribute levels, and Wmax =
maxi�maxjmaxk p

1
jk − cijk�, where p1jk is the initial price

on level k of attribute j . Auction AD converges in
rounds polynomial in l, m, Wmax, and 1/�.
Proposition 8. Auction AD converges in O�lmWmax/��

rounds, with minimal bid increment �, MBR strategies,
and PI.

Counter to this worst-case analysis, it is interest-
ing (and somewhat surprising) that the computational
analysis in the next section suggests that the average
number of rounds is actually larger in Auction AD
than in Auction NLD, even though the auction has
better information-revelation properties.
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5. A Computational Analysis of
Information Revelation

In this section, we provide computational results to
demonstrate the useful preference-elicitation proper-
ties of Auction AD with linear + discount prices in
the special case of MAP with PI. We compare the
information revelation that is required to compute the
efficient outcome in Auction AD with the informa-
tion revelation that is required to compute the effi-
cient outcome in Auction NLD. These computational
experiments are provided to illustrate how the use of
an iterative scheme mitigates the informational com-
plexity associated with eliciting the complete cost and
value functions from the sellers and buyers as com-
pared to standard one-sided VCG auction.
The results are presented for a simple simulation

model in which we generate distributions over values
and costs that satisfy PI. We introduce a simple metric
to measure the information revelation in each auction
in terms of the residual uncertainty about the buyer
values and seller costs at the end of the auction. The
metric measures the space of possible values and costs
that are ex post consistent with the MBR strategies
followed by participants when the auction terminates.

5.1. Measuring Information Revelation
To measure residual uncertainty about agent pref-
erences when an auction terminates, we assume an
additive form for the cost curves (value curves) for
each attribute type. Introducing seller weights wij ≥ 0
�wB

j ≥ 0� on attribute j , we can write the cost (value)
function of a seller (buyer) as

ci���=
∑
j≤m

wijcij ��j � (31)

v���= ∑
j≤m

wB
j vj��j �
 (32)

Let wi = �wi1	 
 
 
 	wim� denote the weight vector for
seller i, and wB = �wB

1 	 
 
 
 	w
B
m� denote the weight vec-

tor for the buyer. We normalize the weights so that∑
j wij = 1 and 0 ≤ wij ≤ 1 for all attributes (similarly

for the buyer). With this, we can encapsulate what is
not known about a seller’s preferences or a buyer’s
preferences in a space of feasible weights for each
attribute type. Notice that the uncertainty is repre-
sented by the unit simplex irrespective of the form of
the functions vj��j�.
Every time a participant responds to prices we

can add new constraints to the weight space. Let
pt��� denote the ask prices on attribute bundles � in
round t of the auction. In Auction AD these prices
are defined in terms of the linear + discount price
structure. Suppose that seller i bids on bundles �∗

at these prices. Given a truthful MBR strategy, this
implies the following constraints on her weights:

pt��∗�−∑
j≤m

wijcij ��
∗
j �+ �

≥ pt��′�−∑
j≤m

wijcij ��
′
j �	 ∀�′
 (33)

Note that MBR implies that the payoff to the seller
for her bid is maximal across all bundles given the
current prices, and that Constraints (33) are linear in
the space of weights. Additional revealed-preference
information in each iteration reduces the volume of
the polytope that is used to represent the uncertainty
in the weights. The residual volume is a measure of the
information that has not been revealed by a partici-
pant; i.e., large residual volumes indicate that there
is still considerable uncertainty about preferences. We
define the normalized residual volume, Vol�C�, given a
set of constraints C on weights w ∈ �0	1�m as

Vol�C�=
(∫

w∈�0	1�m
f �w�dw

)1/m
	 (34)

where f �w�= 1 when weights w satisfy constraints C,
and f �w�= 0 otherwise. We take the mth root to nor-
malize for the number of attributes �m� and provide
a measure of the average residual per-attribute uncer-
tainty. A normalized volume of one represents com-
plete uncertainty, while a normalized volume of zero
represents complete certainty and exact information.
We adopt a similar method to measure the infor-

mation revelation from the buyer, via the revealed-
preference information in the solution to the winner-
determination problem and in the price updates in
each round. This information revelation on the buy
side provides a measure of the preference-elicitation
cost that a buyer would face if we introduced
dynamic bidding for buyers as well as sellers (as dis-
cussed in §3.4).
Algorithmically, we maintain a list of constraints on

weight space for each seller and the buyer, introduc-
ing new constraints in each round. The normalized
residual volume given current constraints is estimated
using a simple Monte Carlo algorithm, in which we
generate nS uniform random weight vectors and test
whether the sample is within the feasible weight
space region as defined by the constraints. Let x�nS�
denote the number of samples that are within the
region. We approximate the normalized residual vol-
ume as �x�nS�/nS�1/m.

5.2. Experimental Details
We consider a distribution on PI preferences that
is parameterized by the number of bidders n, the
number of levels l on each attribute, the number of
attributes m, and two constants, /S > 0 and /B > 0. For
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each seller, i, we randomly select weight wij ∼U�0	1�
and then normalize so that

∑
j wij = 1. Then, to gen-

erate a marginal cost function cij for each attribute,
we randomly select l values from U�0	/S · l� and sort
these values to get the value of cij ��j � evaluated at
each level �j of attribute j . We define a weight vector
for the buyer in the same way, and then generate a
marginal valuation function vB

j for each attribute by
selecting l values U�0	/B · l�. We choose /B ≥ /S to
model the idea that the value of the buyer is greater
than the cost of the typical seller.
In our computational experiments, we assume that

both the buyer and the sellers follow straightforward
(truthful) bidding strategies. The buyer reports her
true valuation function to the auction, and the sell-
ers follow truthful MBR strategies. By default, we set
the number of sellers, the number of attributes, and
the number of attribute levels to 4; we set /S = 30
and /B = 40; and we adjust the minimal bid incre-
ment to achieve an allocative efficiency of at least 98%.
We also remove from the simulation any instances for
which there is no competition and any instances in
which there is some attribute not supplied in the effi-
cient outcome. All experimental results are averaged
over 10 trials, and we performed 800 Monte Carlo
samples in each round to track the information rev-
elation in each trial. We checked that our results are
robust to performing larger numbers of Monte Carlo
samples.

5.3. Results
Figure 3 compares the information-revelation prop-
erties of Auction AD and Auction NLD on a prob-
lem with four sellers, four attributes, and four levels
per attribute. We plot the efficiency at termination,

Figure 3 Multiattribute Auction Problem: Four Sellers, Four Attributes, Four Levels per Attribute
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(b) Auction AD.(a) Auction NLD.

Notes. Buyer surplus is normalized to that of the surplus in the one-sided VCG auction. Normalized residual volume is plotted for the buyer, and for three of
the four sellers (the efficient seller, the second-best seller, and a random seller). Results averaged over 10 trials.

and the ratio of the buyer’s payoff at the end of the
auction to the buyer’s payoff in the one-sided VCG
auction. The slight overshoot from the payoff in the
VCG auction is due to the error introduced because
of the minimal bid increment. We also plot the nor-
malized residual volume for three different sellers—
the efficient seller, the second-best seller, and a random
seller—along with the normalized residual volume
for the buyer. Recall that the normalized residual vol-
ume provides a measure of the information that a
participant has not revealed about her preferences.
The most interesting effect of moving from Auc-

tion NLD to Auction AD is on information revelation
by the sellers. Notice that the sellers reveal complete
information about costs in Auction NLD, but are able
to retain between 30%–50% of their information in
Auction AD. This saving does come at some cost to
the buyer, who retains around 20% of her information
in Auction NLD, but must reveal all of her informa-
tion in Auction AD.
Figure 4 compares the information-revelation prop-

erties between Auction NLD and Auction AD as the
number of sellers are increased. We plot the nor-
malized residual volume, averaged across the buyer
and the same three sellers as in the initial set of
experiments, and investigate the effect of the num-
ber of sellers on the information-revelation require-
ments. We see that Auction AD dominates Auction
NLD for all numbers of sellers. It is also interesting
to observe that increasing the number of sellers seems
to reduce the final information revelation in both auc-
tions, although the transients in Auction AD show the
opposite trend.
Figure 5 compares the information-revelation prop-

erties in Auction NLD and Auction AD as we increase
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Figure 4 Multiattribute Auction Problem: Three Attributes, Three Levels per Attribute
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(a) Auction NLD. (b) Auction AD.

Notes. Normalized residual volume is averaged across the buyer, the efficient seller, the second-best seller, and another seller selected at random. Results are
averaged over 10 trials.

Figure 5 Multiattribute Auction Problem: Two Attributes, Five Sellers
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Notes. Normalized residual volume is averaged across the buyer, the efficient seller, the second-best seller, and another seller selected at random. Results are
averaged over 10 trials.

the number of levels on each attribute. As before, we
take the average of the normalized residual volume
across, averaged across the buyer, and the same three
sellers.4 Auction AD continues to dominate the per-
formance of Auction NLD for all numbers of attribute
levels. Also, we see the same dichotomy in that, while
increasing the number of levels seems to increase the
final information revelation in both auctions, the tran-
sients in Auction AD show the opposite trend.

4 These experiments were performed with buyer valuation func-
tions parameterized with /B = 60.

6. Conclusions
Multiattribute auctions can support the efficient pro-
curement of configurable goods and services through
the combined use of expressive bidding languages
and competition across suppliers. Efficient markets
are central to procurement activity where buyers
and suppliers are engaged in long-term relationships.
Allocative efficiency, rather than pure profit maxi-
mization for the buyer, is important to sustain the
relationship in these strategic situations. In addition,
due to power asymmetry (typically big buyers and
small suppliers) and due to the cost of preference elic-
itation and concern about revealing value and cost
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information, it is important that these protocols solve
problems with minimal information revelation.
We proposed two models for iterative multiat-

tribute procurement auctions. The auctions are price
based and support incremental bidding from sup-
pliers. Auction NLD solves general problems and
employs a large price space, while Auction AD is
optimized for the important special case of PI and
employs a compact linear price space with an aggre-
gate price discount. The auctions support straightfor-
ward bidding by sellers and bound the possible gain
from manipulation to buyers. Computational results
demonstrate that Auction AD allows for a signifi-
cant reduction in information revelation over one-shot
auctions, with the average seller retaining around 50%
of her cost information at termination.
Looking to future work, in considering the prefer-

ence-elicitation properties of multiattribute auctions,
we are interested to continue the study of accelerated
auctions that was initiated in Sunderam and Parkes
(2003). The idea is to allow multiple virtual rounds
between proxy agents and the auction, and only fall
back and ask for additional bids from suppliers when
no progress is possible within the auction. Another
recent idea is to use computational learning theory to
generate elicitation queries (Lahaie and Parkes 2004).
We also find it interesting to explore the role of hybrid
auctions (Porter et al. 2003, Ausubel and Milgrom
2004), with linear prices used in the early stage as a
method to perform elicitation, coupled with a final
one-shot stage. Finally, we identified an interesting
tension between allowing adaptive buy-side strategies
and providing incentives for straightforward bidding
on the sell side. We are interested to understand how
effective a proxy agent, able to constrain a buyer to
follow a bidding strategy with consistent revealed-
preference information, would be in mitigating this
effect.
An electronic companion to this paper is available

at http://mansci.pubs.informs.org/ecompanion.html.
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