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ABSTRACT

Prematurity, especially very preterm birth (<32 weeks’ gestation), is common and
associated with high rates of both survival and neurodevelopmental disability, especially

apparent in cognitive spheres. The neuropathological substrate of this disability is now

recognized to be related to a variety of dysmaturational disturbances of brain. T!'_;_éj‘éez?_disturbances
follow initial brain injury, particularly cerebral white matter injury, and inV(SiQe mé;ly of the
extraordinary array of developmental events active in cerebral white and gray matter structures
during the premature period. This review delineates these developmental events and the
dysmaturational disturbances that occur in premature infants, The cellular mechanisms involved
in the genesis of the dysmaturation are emphasized, with particular focus on the pre-
oligodendrocyte (pre-OL). A central role for the diffuselyv distributed activated microglia and
reactive astrocytes in the dysmaturation is now apparent. Because these dysmaturational cellular
mechanisms appear to occur over a relatiglej} "Iopg time-window, interventions to prevent or
ameliorate the dysmaturation, i.e., ngu}féresé;fé'iive interventions, seem possible. Such
interventions include pharmacolog"iéal agents, especially erythropoietin, but also particular
attention to such nutritional‘factgxs as quality and source of milk, breastfeeding, polyunsaturated
fatty acids, iron and zigg. Repgnt s:tudies also suggest a potent rble in enhancing brain
development for intpr@pt}ipns directed at various experiential factors in the neonatal period and
infancy, i.e., provis,iiog_of optimal auditory and visual exposures, minimization of pain and stress,

and a variety of other means of environmental behavioral enrichment.
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INTRODUCTION

Preterm birth (<37 weeks’ gestation) is an enormous public health problem worldwide,
According to the WHO, approximately 15 million premature infants are born yearly and account
for approximately 1 million deaths.! The USA ranks sixth among countries with thg é;éatest
number of preterm births. According to the CDC, from 2014 to 2017 the preterm blrth rate rose
in the US to approximately 10%. Of the approximately 4 million births in 'tﬂceUSA, 1.4%, or
about 56,000, are of very low birth weight (<1500 gm).? Survival rates vary markedly as a
function of gestational age, but are at least 95% at 32 weeks’ gestatioﬁ;’ 96% at 28 weeks, and 60
~ 65% at 24 weeks.*” The substantial survival rates, unfortunétq}y, aré accompanied by
relatively high incidences of neurological disability, e.g.fiﬁerel;fal palsy in 5 — 10%, other motor
disturbances in 25 — 40%, and cognitive, attentional, behé;idfal and socialization disturbances in

25 — 509,516

The neuropathological substratev of thls disability in preterm infants, especially those very
preterm (<32 weeks’ gestation) and,"eiitremely preterm (<28 weeks® gestation), consists of a
combination of cerebral white rr_xfit;f“injury (WMI) and especially, subsequent dysmaturational
events in both white matter.and i{;uro-axonal structures (see later). This combination of WMI
and disturbances of gray méii&er structures has been termed the “encephalopathy of
prematurity”."” In the initial review describing this encephalopathy, a particular emphasis was
placed on the i&g_iti’éil injury."” Subsequent work now suggests that although WMI is an important
and likely initiating event, multiple subsequent dysmaturational events are most critical in
determining outcomes (see later). Moreover, because these dysmaturational events evolve over a

very prolonged period (many months), a relatively long-time window exists for interventions to
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prevent, counteract or ameliorate the dysmaturation, i.e., neurorestorative interventions (see

later).

In the following, I will review the multiple maturational events occurring in infant brain
during the premature period; the dysmaturational events observed in premature in{rfz_irnts,'including
the importance of the initiating cerebral WMI, the dysmaturational events thatmgj) occur

without WMI; and potential neuroprotective and neurorestorative interventions. --

BRAIN MATURATION DURING THE PREMATURE PERIQD' ;

The brain dysmaturation that occurs in premature infants ('sééTéter) involves the multiple
active developmental events occurring in human cerebrum di.ii‘ing_ the period of 20 - 40 weeks of
gestation and beyond. The rapidity and complexity of »theSé',ggﬁular events underlie, to a
considerable degree, theif vulnerability to perturbatigpws“.h;fv‘hé principal components involved
includé the oligodendroglial (OL) lineage, espeéiéﬂl}f‘-tﬁe pre-oligodendrocyte (pre-OL), cerebral
white matter axons, subplate neurons, cerebrél k‘:{ortex, thalamus and basal ganglia (Fig. 1).
Additionally, microglia and astrocytgs’, §speciailiy in white matter, are involved importantly in
both normal development and dysrﬁhtu__ration of these principal components. The major
developmental events during th.i;shiperio.d have been summarized in detail elsewhere.'® ' A brief

review of the temporal_g_si)écts of these events is appropriate here (Table 1).
Pre-OL as a Principal Cellular Target

Pre-OLs are the principal cellular target in WMI of premature infants.?*?? These cells are
generated from OL progenitors and are the principal phase of the OL lineage during the
premature period (Table 1, Fig. 2). Pre-OLs account for 90% of the lineage during the peak

period of WMI in premature infants. Even at terrﬁ, pre-OLs account for 50% of the lineage in
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cerebral white matter, while approximately 50% of the lineage are the more differentiated

“immature” OLs.” Mature, myelin-producing OLs do not develop in human cerebral white
matter to an appreciable degree until post-term. The pre-OL begins ensheathment of white matter
axons at approximately 30 weeks’ gestation (Fig. 3).% This process is critical for axonal,

differentiation®>*

and, as a consequence, axonal function. The latter is the critical driving force
for cerebral cortical development (see later), which evolves rapidly as an _ggtiyit__yfdépendent

process during the third trimester of gestation,

The pre-OL is a highly vulnerable cell, with particular susceptibiii& to such insults as
hypoxia, ischemia, inflammation, which lead to death via excitotoxic and free radical mediated
mechanisms.?’ The particular molecular characteristics that underlie this pre-OL vulnerability
have been reviewed elsewhere.? Suffice it to say here,many experimental studies of acute pre-
OL death produced by hypoxia, ischemia and inﬂamx;l;ﬁon have shown protective benefit for
such agents as anti-excitotoxic, anti—inﬂamiﬁé@‘y and anti-oxidant compounds (see later).
Notably, however, as will be discussed later, in -the premature infant with WMI, pre-OLs are
replenished in the subacute periodﬁ;lt_ fail to differentiate over the ensuing weeks/months to later

phases of the OL lineage. As 'ﬁ;fgéult, hypomyelination is a hallmark of the disease.
Axons

Axonal d¢\?élopmef1t is remarkably active in the cerebrum during the premature period
(and the early postnatal period) (Table 1).% Utilizing immunostaining with GAP-43, a protein
expressed on growing axons, Haynes et al.,*® showed marked expression in cerebral white matter
to at least 37 weeks’ gestation. Growing white matter axons reach approximately the subplate
region at 20 weeks, the deep layers of the cortical plate at 27 weeks, and the entire cortex by 37

weeks. (Fig 4). Axonal growth occurs primarily within the cortex after 37 weeks and into the

5
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first year of life. Based on work by Kostovic and coworkers,”" " the likely anatomic correlates of
this progression in cerebral white matter during the premature petiod are at 20 weeks, growth of
axons from thalamus to subplate neurons, and at 27 weeks, from subplate neurons to cerebral
cortex (Table 1). Also, at 27 weeks commissural and cortico-cortical cerebral white h"‘iiatter» axons
are actively growing, especially in the posterior periventricular regions, a so-ca_»lxléﬁ(xi_:‘tfcrossroads"
area. The increase in cerebral cortical expression of GAP-43 at 37 weeks mayrcﬂect a sum of
continued cortical penetration from the subplate of thalamic ascending fivbersﬂ .é'nd of commissural
and cortico-cortical fibers (Fig. 4). Thus, it is apparent that the p1'¢§patuf5: bériod is one of

extraordinarily rapid axonal development, especially in cerebral white matter. Axons during this

rapid growth period are exquisitely vulnerable to multiple insults (see later).
Cerebral Cortex-Dendritic Development, Synaptogénégfé

The cerebral cortex undergoes dramatic changes during the premature period. These
events include attainment of proper alignni'%t-,\borientation and layering of cortical neurons (six
layers apparent by 30 gestational weeks){‘_?ni\;al of late migrating GABAergic neurons
(principally to upper cortical layeréj, elaboration of dendritic and axonal ramifications (neurite
outgrowth), onset of synaptoéenesis, and a marked increase in cortical surface area with gyral

development (Table 1).'8 h

Neurite ouiéro;;;l:and particularly dendritic development, is most relevant in this
context, 4 Denlgi;t‘t{é”(kievelopment is especially rapid in the third trimester (Fig 5) and is
correlated with the development of cortical activity (Table 1).'® Importantly, in this context the
progress of dendritic development depends on the establishment of afferent input from cerebral
white matter and presumably then synaptic activity.**56 Thus, axonal input from subplate

neurons and then from thalamic, commissural and cortico-cortical fibers are the principal driving

6
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forces underlying cortical dendritic development.56 The importance of synaptogenesis in

mediation of these effects of axonal input on cortical development has been emphasized in
several studies.”’ (See ref 57 for review.) In a seminal study, Sarnat and coworkers studied
synaptic development in human cerebral cortex from 6 to 41 weeks’ gestational age’v:i:i:ith,_the
immunomarker synaptophysin, which identified maturation of synaptic vesicles in axonal
weeks’ gestation, and diffuse and uniformly strong staining was apparent thrédghout the cortex
from 34 weeks onward.”® The findings integrate closely with measuggs_;(_i)f axonal development in
the last trimester of gestation and with previous delineations of EEG ﬁxéturation in premature
infants. Functional synaptic activity via the axonal input,to‘cortex\i‘s mediated principally
through excitatory amino acid receptors, both the egcif%?bry.Ca++-permeable NMDA and GluR2-
deficient AMPA receptors, which exhibit exuberant_‘ié‘){pféssion in developing human cortex
during this period.**® This role of functional:a}ictivityvhas implications for the effects of a variety
of environmental stimuli on cortical develo};inerﬁ in the premature infant, and for potential

neurorestorative roles for such stimuli in the context of brain injury and dysmaturation (see

later).
Subplate Neurons

This impqrtani transient population of neurons is well-established in subcortical white
matter by 20 \ygjc‘_li‘_;»sb":-gestation.3740’ 5! During the important period of 24 — 32 weeks (the peak
period for the occu&ence of cerebral WMI) the subplate reaches maximum size (several times
thicker than the cortical plate at 27 — 30 weeks) (Fig. 1, Table 1). These neurons elaborate a
dendritic arbor with spines, receive synaptic inputs from ascending afferents from thalamus and

distant cortical sites,'® and extend axon collaterals to the overlying cerebral cortex and to other
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cortical and subcortical sites (thalamus, other cortical regions, corpus callosum). The crucial

organizational functions of these neurons include provision of a transient synaptic sife for
ascending afferents from thalamus and other cortical sites, i.e., these “waiting” afferents cannot
synapse yet in cortex because their neuronal targets have not yet differentiated. These affg;ents
would undergo degeneration if they did not have the subplate neurons as transvigt"i;;;rg‘ets.
Moreover, the subplate neurons extend axons to cortex to promote cortical diffg{énfiéaﬁon and to
guide the afferent axons to cortex when sufficient cortical differentiation has 6Ccurred. Subplate
axon collaterals also descend to pioneer or guide the initial axonal ;érojéctidﬁs from cerebral
cortex toward subcortical sites (e.g., thalamus, corpus callosu;‘n,‘ othcll":év:ortical sites). The

subplate neuronal layer gradually decreases after 36 - 40.weeks’ gestation,
Late Migrating GABAergic Neurons

. Particularly characteristic of human ceréi;;él cortical development is the relatively late
generation of GABAergic neurons from the:,‘é;rvsal telencephalic subventricular zone and from
the ventral ganglionic eminence (Fig. ’6)5\?1?5 The origin of these late generated neurons is
approximately 65% from the dgrgal subve;ltricular zone and 35% from the ventral ganglionic
eminence. A substantial pr_opértion of the ultimate population of GABAergic cortical neurons
migrate through the cerebrz{i"gvhite matter to cortex in the third trimester. This migration peaks

around term and then declines within the first 6 postnatal months.%
Microglia, Aé’trocﬁ&

Microglia and astrocytes are key players in the development of the white and gray matter
structures just described. These glial elements also play a major causal role in the

dysmaturational events that occur with cerebral WMI. Emphasis in this section is on the roles of
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microglia and astrocytes in normal development. Their role in dysmaturation is discussed later in

the section on neuropathology.
Microglia

Microglia play important roles in such aspects of brain development as a;mnal
development, OL differentiation-myelination, vascularization, synaptogenesis.,}‘S’yﬁaptic pruning,
and neural circuit formation.®””® The roles in OL development involve Imcroghal proteins that
stimulate pre-OL proliferation, enhance pre-OL survival and provide ii‘onvfor OL differentiation,
and secreted cytokines that enhance differentiation.” These cells als'6 are the principal

neuroimmune cells involved in neuroinflammatory responses. As part of the neuroinflammatory

responses microglia can be destructive to cellular elemcﬁbt\s:;ﬁch as pre-OLs, principally by
generating free radicals, secreting injurious cytokines and eﬁhancing excitotoxicity (see later).”
! Microglia have been characterized generall;;si pro-inflammatory (activated) (MI) or anti-
inflammatory (M2). However, this bimgdal ch;facterization appears now to be too simplistic.
Thus, a recent landmark study in the ‘dé_v,eloping mouse, utilizing molecular characterization
methods, identified at least nine Vdisti'n’c,t microglial subpopulations with unique molecular
signatures that changed over tﬁe course of development and exhibited marked spatial
differences.”® One distinct ff(’)‘pulation was highly concentrated in axon tracts of the pre-
myelinated brain. The mole’éular signatures of the microglial subpopulations in early

development identified pathways associated with cell metabolism, growth, motility and

proliferation, among others. Studies in developing human brain will be of great interest,

Microglia become prominent in the human forebrain at 16-22 weeks of gestation, migrate
progressively through the white matter from 20-35 weeks, and then to cerebral cortex,®: 8% 86,87

The critical point is that the cerebral white matter of the human premature infant is heavily

9
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populated with microglia during a period when various maturational events are occurring and

when a variety of pro-inflammatory insults can lead to “activation” to destructive microglial
phenotypes and WMI (see later). Moreover, because of the important role of microglial
subpopulations in such important developmental events as OL development, axonal guidance,
synaptogenesis, sculpting of neural networks, cerebral connectivity, divers_ion of thes¢ normal

cells to microglial phenotypes with primarily pro-inflammatory functions thllqnc‘dﬁt'ribute to

disturbances in these maturational events observed in the premature brain.”> ">

Astrocytes

The last half of human gestation also is a crucial time m astrocyte formation in the
cerebrum.'® Fibrous astrocytes (generated from radial ghalflbers) increasingly populate cerebral
white matter. During development astrocytes are impor(ant in axonal gnidance, angiogenesis,
formation of the blood-brain barrier, synaptoge;gs"‘is, neuronal survival and axonal and synaptic
pruning.” The molecular characteristics of ;s‘t;c}'cytes involved in facilitation of these events
underlie such functions as expression of e;;;raééllular matrix proteins and axonal guidance
molecules, secretion of angiogggi(;factors,v secretion of synaptogenesis molecules, clearance of
extracellular glutamate, and sécrétjon of various neurotrophic molecules. As will be discussed
later, in the context of variou;:_.bfain insults (e.g., inflammation, hypoxia-ischemia), astrocytes

can become “reactive” and exhibit a variety of metabolic changes that are deleterious to other

white matter components, including pre-OLs.
DYSMATURATION IN PREMATURE BRAIN

Overview

10

Downloaded for Anonymous User (n/a) at Brigham and Women's Hospital from ClinicalKey.com by Blsevier on March 17, 2019.
For personal use only. No other uses without permission. Copyright ©2019, Eisevier Inc. All rights reserved.




The principal manifestations of dysmaturation in premature brain have been elucidated

by advanced MRI techniques in living infants (Table 2). Briefly, the abnormalities have been:
by volumetric MRI, diminished regional volumes, especially of cerebral cortex, white matter,
thalamus and basal ganglia; by diffusion-based imaging, in cerebral white matter, decreased
fractional anisotropy (FA) with relatively greater involvement of radial diffusivit&izéonsistent
with impairment of pre-OL ensheathment of axons), and in cerebral cortex,"blll:vug:ijﬁgb of the
normal decline in FA (consistent with impaired dendritic development); by surface-based MRI
measures, decreased cerebral cortical surface area and cortical foldii;g[ gyrification; and by
functional MRI, impaired development of measures of connectivity? iﬁéluding especially
thalamocortical connectivity. The abnormalities have becn.éluciagéed most commonly at term
equivalent age, but generally persist, or may increase laifté'r-in ihfancy, childhoed, adolescence or
adulthood.®*** The most common accompaniment byMRI has been cerebral WMI (see later).
The dysmaturational events, in general, appear.to be secondary to WMI (see later discussion of
mechanisms). The constellation of WMI a;ld thé accompanying disturbances of neuronal/axonal
structures is generally referred to vas;‘thvé ;nc’éphalopathy of prematurity,”” However, recent work
suggests that some of the dysmaturatio;él events documented in premature infants are not clearly
related to WMI and perhaps are przmary disturbances (see later). The empha31s in the following
section is on the relatlon of cerebral WMI and dysmaturational events. Brief consideration of

potentially pnmary dysmaturational events, perhaps independent of WMI, will then be presented.
Cerebral White Matter Injury — A Spectrum
Neuropathology

Cerebral WMI encompasses a spectrum of neuropathology that ranges from overt

periventricular leukomalacia (PVL) to diffuse white matter gliosis (DWMG) (without focal

11
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necroses) (Fig.7A-C). The two fundamental characteristics of PVL are focal necroses with loss

of all cellular elements in periventricular white matter and a more diffuse lesion in cerebral white

matter, consisting initially of death of early differentiating pre-OLs, accompanied by vigorous

94192 The focal necroses are essentially

and persistent astrogliosis and microgliosis (Fig 8).
infarcts. Temporally, in the more diffuse lesion the pre-OL disturbance consists acutely of cell

death, followed subacutely and chronically initially by proliferation of pre-OLs l?}ixf‘t‘hen

critically, a failure of maturation."®'® As noted earlier, this pre-OL dysmatufétion underlies the
subsequent hypomyelination, a unifying feature of PVL. The mildest fgrni of WML, i.e., diffuse
white matter gliosis (DWMG) without focal necroses, now is:the most éommon form of WMI in

premature infants and is also accompanied by the pre-OL dysmaturation,'®-192

The relative distribution of the spectrum of cerebral'WMI in the modern era has been
delineated best by neuropathological studies. The two largest, most recent series demonstrate that
compared with earlier studies, the areas qfv_‘f('iéal;necrosis are smaller and, indeed, most cases
have few or none. % 1! In the seriesvg;tf; 'Pier‘son et al. (n=41), true PVL, i.e., with focal necroses,
occurred in 17 (42%). Importantly, Aea@y all of these lesions were less than 1lmm in size. In an
additional 17 (42%) only DWMG without focal necroses was observed. (Only 7 of the 41 brains
were free of white matggr abnormaﬁty.) Critically, Busser and coworkers observed in association
with DWMG the sequelae of pre-OL death, i.e., the excess of pre-OLs and failure of pre-OL

maturation, ! Thus, the full spectrum of cerebral WMI can be illustrated as shown in Fig. 7A-C.
Pathogenesis

The pathogenesis of the focal necroses characteristic of PVL relates primarily to
decreases in cerebral blood flow, related to a variety of perinatal/neonatal events, and the

presence in the periventricular area of vascular border zones and end zones.?® ? The diffuse

12
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abnormality, DWMG, relates in considerable part to similar, albeit less severe clinical events

(see later).

In the diffuse lesion the pathogenesis of the acute pre-OL injury/death likely relates in
part to the acute insults, noted above, as well as accompanying disturbances that magr bfedispose
the pre-OL to injury (e.g., intrauterine growth retardation, systemic infection, impaired nutrition,
etc.) (see later). The stimulus for the subsequent proliferative response of O.I‘_:fbrogévx'nitors to
produce abundant pre-OLs remains unclear. The pathogenesis of the s@acute énd chronic failure
of maturation of these newly generated pre-OLs appears to relate to-deleterious effects of the

abundant activated microglia and reactive astrocytes characteristic of the diffuse lesion. These

fasman

structures, as described next.

Deleterious Roles of Microglia and Reactlve Astrocytes. The pro-inflammatory
microglia may impair pre-OL maturation b.y‘ féiéase of reactive oxygen/nitrogen species or
cytokines (e.g., TNF-a, ILI-B) that thén act onmpre-OLs.20 Recent studies of multiple sclerosis
lesions have identified an inﬂammaféi‘y subpopulation of microglia that specifically targets
myelin.”® Whether such subp;bhlgations are involved in pre-OL dysmaturation is unknown, but it
is noteworthy that a large ﬁai)ulaﬁon of potentially activatable microglia are present in normal
developing white matéérsduiiing the premature period (see earlier). Additionally, pro-
inflammatory ;gichgli'a have been shown recently to induce formation of neurotoxic reactive
astrocytes.'® 1% Ag Qiscussed next, such astrocytes are important in the pre-OL maturational
failure. Finally, the shift in microglial phenotype from an anti-inflammatory to a pro-
inflammatory, activated phenotype diverts the critical roles of “normal” microglia in OL

development described eatlier.

13
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The abundant “reactive” astrocytes (A1) in DWMG also likely play critical roles in the

failure of pre-OL maturation. %" The best established mechanism in the context of WMI is
based on seminal work by Back and coworkers.'”" 19 112 The Jikely sequence involves the
generation by reactive astrocytes of high molecular weight forms of hyaluronic acid; }&stgqcyte-
associated extracellular matrix (ECM) is also involved in this generation. ECM:ilsms a key
source of hyaluronidases, which convert the high molecular weight forms of lgya}ilfbnic acid to
lower molecular weight forms. The latter lead to failure of pre-OL maturation, probably by
activating TLR-2 receptors on pre-OLs.'"® The particular role of hyz}}u_;;néﬁ is supported by the
observation that pharmacological inhibition of hyaluronidases p;omoteé pre-OL maturation and
myelination (see later). Other products of reactive astrocytes may éiso be involved in the pre-OL
dysmaturation. Thus, in human WMI reactive astrocytes express large amounts of interferon-y,

and pre-OLs express the interferon-y receptor,'{‘f acti;}atibn of which inhibits pre-OL

differentiation.”’ Other products of astrocytes may contribute to the inhibition of pre-OL
differentiation, e.g., bone morphogenetic érdteiﬁs, Notch ligand Jagged 1, but data on human
preterm WMI are not yet available.'% ﬁnally, as note& for activated microglia, the shift in
astrocyte phenotype from norma} fibréﬁé astrocytes to the toxic reactive phenotype also diverts

the critical roles of astrocytes in deVelopment of OLs (see earlier).

In view of the ”agggrent critical roles of activated microglia and reactive astrocytes in
disturbing pre-OI;-,.vdgyg:lopment (and likely also, aspects of axonal development), the question of
the duration of DWMG in cerebral WMI of the premature infant becomes critical. Thus,
available evidence by MRI in vivo suggests that dysmaturation continues for many months and
likely longer. Not unexpectedly, neuropathological data in human infants concerning duration of

DWMG are somewhat scanty. However, available information suggests that DWMG is present

14
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for at least many months after the premature period and likely longer,*® 100103, 115 e g

precedent for microglia to be chronically activated in human neuropathology, e.g., after
traumatic brain injury.'*® In the latter setting, these cells are considered important in subsequent
degeneration of axons and neurons years later and to play a role in the enhanced incidence of

degenerative disorders, such as Alzheimer’s and Parkinson’s disease.

Identification In Vivo

Neuroradiological identification of the cerebral WMI spectrum in vivo is made best by
MRI but is not entirely satisfactory. Thus, the most severe end of theWMI spectrum, i.e., severe
WMI, with large areas of necrosis and apparent cystic change;. are readily identified as such (Fig
7D). However, such lesions are observed on MRI (and byneuropathology) in less than 5% of
infants in modern neonatal intensive care facilities.’*” l-lslj_lMore common are small areas of
necrosis (>1mm) in periventricular and central c:c;;l;r'alvwhite matter, seen at term equivalent age
as (noncystic) punctate white matter les‘ionbév (PWMLS) in 15-25%, i.e., moderate WMI (Fig
7E).""*"'22 Notably, this incidence of noncystlc PVL (PWMLs) is appreciably higher if scans are
performed early in the neonata{igé;ibd — presumably the gliotic scars contract sufficiently to
become invisible to MRI by tevrm}}gquivalent age. The least severe end of the WMI spectrum, i.e.,
mild WMI, is likely a hetei'ggenéous group. Thus, the large majority of focal necroses observed

10010 and likely below the resolution of most

postmortem are less than-Imm in size.
conventional I\(I,—‘I_‘_{:i""sqaﬁners. Additionally, the MRI correlate of the very common DWMG,
without focal ne"'croses, also is unknown. Importantly, as with the diffuse gliotic component of
overt PVL, DWMG alone appears to lead to pre-OL death and subsequent dysmaturation,®! and

thus may be very important clinically. The frequent isolated finding of diffuse signal abnormality

in cerebral white matter (Fig. 7F) may be the MRI correlate of mild ‘WMI, although both the
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reproducibility of this imaging finding and the relation to outcome remain unclear.'® The few

excellent studies that identify WMI without detectable focal necroses by the presence of
diminished FA on diffusion-based MRI (see later) may be the best in vivo correlate of the
admixture of the WMI spectrum that includes the two large groups of (1) focal necroses too
small for identification (with DWMG), and (2) DWMG without any focal necr,o_s'e;_‘t‘he two

forms that we refer to as mild WMI..

Clinical Importance

The clinical importance of the cerebral WMI spectrum relatééj,io the motor and cognitive
deficits associated with the lesion and the subsequent dysmaturation. The clinical phenomena
associated with moderate and severe WMI have been dcséﬁbed in detail
elsewhere.!"®Identification of the neurodevelopmeﬁtal,lsgquelae of mild WMI is hindered by the
difficulty in identifying the lesion by conventioﬁai M:RI, as used in most large-scale studies.
Large-scale MRI studies of premature infants show, as expected, worsening clinical outcomes as
a function of severity of WMI. Hom,eﬁ;n: zt is ﬁoteworthy that infants with either no or “mild”
abnormality in cerebral white matter by conventional MRI still exhibit neurological disability
subsequently. Although cogniiii)e,.scales utilized among studies vary, cognitive scores for infants
(<28 - 30 weeks’ gestatim{‘j:‘%vithz no or “mild” WMI are approximately 85 — 93,121 123125 5

particularly well-characterized study of 480 extremely preterm infants (<28 weeks’ gestation),

20% of infants v 1th no apparent WMI by conventional MRI had cognitive scores <85.'% The
possibility that néuro-axonal dysmaturation with mild WMI (see Mechanisms later) is important
in determination of these outcomes is suggested by follow-up studies that included assessment of

gray matter abnormalities (as well as WMI).‘_26 As will be discussed later, studies that assess
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WMI by highly sensitive diffusion MRI measures show a clear association between mild WMI,

dysmaturation and subsequent cognitive disturbances.

Mechanisms of Dysmaturation with Cerebral White Matter Injury

The mechanisms of the dysmaturational features identified by MRI in prgmaturé iirains
(Table 2), especially in the context of WML, are likely multiple. The prevaili:g:lg: théliié isa
sequence whereby the initial insult (hypoxia, ischemia, inflammation, infectioi;?,ietc. ) leads to
primary cellular injury/death, which in turn results in subsequent replenishment of pre-OLs but
secondary dysmaturation. The cellular elements injured likely depéhd on the severity of the
WML Thus, in moderate-severe WMI (Fig 7A,B), all the rapidly.developing cellular elements, as
outlined next, appear to be injured, whereas in mild WMI(Flg 7C), the pre-OL may be the

principal or only cellular element undergoing primary injury.
Dysmaturation with Moderate-Severe White Matter Injury

Pre-OL Injury. Primary injur_y/dc;;th to the pre-OL, which is exquisitely vulnerable to
hypoxic-ischemic, inflammatory or‘r;velated :i‘nsults, is a consistent early feature of all forms of
WMI" %127 Ce)l death (or irtrg\'zersibli‘e process loss) or both have been documented acutely.”"
40 20%: 10 Subsequently, QVe.r, the ensuing weeks replenishment of the pre-OL pool occurs but
subsequent matura;iah to maﬁu‘e, myelin-producing OLs fails. The important role of reactive
astrocytes and actéated I;ﬁcroglia in this dysmaturation was described earlier. The result of this
pre-OL dysmafurafij;ﬁ is hypomyelination (Fig. 9A). Additionally, however, pre-OL
dysmaturation likely leads to failure of pre-OL ensheathment of axons, and as a consequence,

impaired development, i.e., dysmaturation, of axons. The important trophic role of pre-OLs for

axonal development, survival and function was noted earlier. Indeed, this process is likely crucial
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for the exuberant axonal growth in cerebral white matter illustrated earlier (Fig 4) and the

activity-dependent development of cerebral cortex (Fig. 5).The consequences of the axonal
disturbance would be diminished volumes of cerebral cortex and thalamus/basal ganglia,
secondary to retrograde and anterograde (trans-synaptic) effects, i.e., involving projection fibers
to and from cortex, thalamus and basal ganglia, i.e., thalamocortical, corticospi;pn’él:;v v
corticostriatal, and commissural and association fibers to and from coﬂex,}j.e.}-zzlségticé-comcal).

(Fig. 9A).

Axonal Injury. Primary injury to the rapidly developing, vulnerable, premyelinating
axons in cerebral white matter could be a primary event with WMI (Fig. 9B). Although axonal
injury is shown readily in the areas of focal necrosis, a more widespread degeneration of axons
detected by the apoptotic marker, fractin, also has been 'iégﬁﬁﬁed.lza This finding is consistent
with related experimental observations concerning the ‘F\;ulnerability of developing axons,'?1¥
The dysmaturational events subsequent to axotial injury (Fig 9B) by anterograde and retrdgrade
effects would result in the impairmen\tvsi i_)f cgfi'ical and thalamic development and related
abnormalities detected by MRI (seé:."I‘azblé‘é). An impairment of pre-OL maturation would result
from the loss of trophic axqf;al 'véignals, with the ultimate consequence, hypomyelination, A
contributory role for delgterigus effects of activated microglia and reactive astrocytes (see
earlier) also seems hkely Moreover, because of the role of both these glial types in normal

axonal development, diversion to activated/reactive phenotypes may further impair axonal

development.

Thalamic Injury. Primary injury to thalamus is suggested by a neuropathological study
of human infants with moderate to severe WMI and thalamic abnormalities (neuronal loss,

gliosis, axonal degeneration) detected in approximately 60%.!%% 134 A particular vulnerability of
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thalamus has also been shown in an experimental model.”*> '* Primary injury to thalamus could

lead to degeneration of axons originating in and terminating in thalamus and, as a consequence,

to pre-OL dysmaturation and hypomyelination (Fig. 9C).

Subplate Neuronal Injury. Primary injury to subplate neurons would be exﬁééted to
have major secondary dysmaturational effects on thalamus by retrograde degeneﬁ’t’iw effects on
ascending thalamic axons (“waiting afferents”), as well as on cerebral c01té§(.‘by .anterograde
effects via loss of subplate neuronal axons to cortex and on descending cortical axonal
projections by loss of guidance from subplate axonal collaterals (Fig: 9D). Considerable
experimental data support these contentions.”” *"1* With axonal degeneration, subsequent
disturbances in pre-OL development would be expected (Fig. _§D). Although data are not
entirely consistent, experimental studies suggest that subi)ﬁfé neurons are particularly vulnerable
to hypoxia-ischemia.'* Two reports suggest a loss-of subplate neurons in premature infants with

moderate-severe white matter injury.'*® '’

Late Migrating GABAergic Neurons. Primary injury to late migrating GABAergic
neurons seems possible becausg\fl.)e ﬁiigratory path of these late generated cells is from the
dorsal subventricular zone through cerebral white matter to the cerebral cortex (Fig. 6). Two
neuropathological studies of moderate-severe WMI show a deficit in central white matter
neurons consistent with late migrating GABAergic neurons.'*® ¥’ The result of a disturbance in
these neurons would be a deficit in cerebral cortical neurons, especially the upper cortical layers
(Fig 9E). The MRI result would be diminished cerebral cortical volume, surface area,

gyrification and connectivity, as noted in advanced MRI studies (Table 2).

Conclusions. Thus, in moderate to severe WMI, i.e., identified by neonatal MRI by

PWMLs (relatively common) or by cystic lesions (rare), several potential sequences of primary
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injury leading to dysmaturation and the developmental impairments detected by advanced MRI

techniques seem likely. Although pre-OL death and subsequent replenishment of pre-OLs which
then fail to mature appear most consistent (Fig. 9A), the other sequences depicted in Fig. 9 may
also occur to varying degrees, dependent in part on such factors as the gestational age of the
infant, the nature, severity and timing of the initiating insult(s), and the presenc_e‘”o.f other

potentiating factors, e.g., intrauterine adversity, postnatal infection, undergp‘f’ 't_ion,» etc.
Dysmaturation with Mild White Matter Injury

Mild WML, as discussed earlier is characterized by focal necrotlc lesions less than

approximately 1mm in size, and thus undetectable by conventlonal MRI, or DWMG without

focal necroses. (Fig.7C) The dysmaturational features. apparent‘qubeequently in vivo by
advanced MRI are similar in many respects to those described earlier for moderate and severe
WMI (Table 2) but are less pronounced.’ 18, 143155 "‘I‘hus, a series of careful studies of premature
infants without major WMI and utilizingdiffusibn-based MRI determinations of FA and related
measures in cerebral white maiter as'a‘ﬁeans to detect mild WMI, not readily apparent on
conventional MRI, show at tergg:éé&iizalent age disturbances in volumetric development of
cerebral cortex, cerebral whit;hiégter, thalamus, basal ganglia, cortical folding, cortical and
white matter microstructure, 'a,_nd“ thalamocortical connectivity,'*®15% 95157 [y 3 particularly large,
recent series (n = 491), Barnett et al. identified lower FA in cerebral white matter with
particularly higb'&r_gdi‘al (vs. axial) diffusion (RD).'*® The high RD is consistent with an
impairment of pfé—dL ensheathment.!'® 158 The findings suggest that impaired pre-OL
maturation is the critical finding in mild cerebral WMI The lower FA values were
independently associated with increased number of days on ventilation, perhaps consistent with

chronic hypoxia or related insults and with fetal growth restriction. The latter has been shown to
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be associated with a degree of hypoxia and in experimental studies to lead to delayed OL

maturation'*> ' - recall that the pre-OL is exquisitely vulnerable to hypoxic and related insults
(see earlier). The white matter findings also related to prolonged parenteral nutrition and suggest
that impaired nutrition may lead to impaired pre-OL development (see later). Importagtiy, the
abnormal FA values in the large study of Barnett et al. were associated with 1mpa1red

neurodevelopmental performance at 20 months of age.'>

As noted eatlier, two major neuropathological series indicate that mild WMI, as defined
here, is the dominant form of cerebral WMI currently.mo' W01 Ag noted earlier, detection of this
milder but prevalent form of WMI cannot be made consistently by conventional MRI The recent

work just described with diffusion-based MRI indicates ptomise for detection in vivo.

Although the mechanisms for dysmaturation witl_;jmild WMI may overlap with those just
described for moderate to severe WMI, major di}féféhces are likely. Thus, with mild WMI clear
evidence for primary injury to components .chér than the pre-OL is lacking, It is most likely that
with mild WMI the deleterious effects i)fthe ab;lndant activated microglia and reactive
astrocytes are the dominant mediatz;fs of dysmaturation, especially to the pre-OL, and perhaps

also to axons.

Pre-OL Injury. anary injury/death to the pre-OL with subsequent replenishment of
pre-OLs but failuf'é of Ir;;{{jration, as described for moderate-severe WMI (see earlier), may be
the major mechan‘i:;r:ﬁ”f‘or the widespread dysmaturation just described. The important role of
activated microglia and reactive astrocytes was discussed earlier concerning moderate to severe
WML The scenario to widespread dysmaturation, thus, would be similar to that described for

moderate-severe WMI (Fig. 9A).
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Axonal Injury. Although evidence for primary injury to axons in mild WMI is lacking,

the deleterious effects of the abundant activated microglia and reactive astrocytes may disturb
axonal development, separate from any effects on pre-OLs. Additionally, as noted earlier, during
normal development these glia are critical for axonal guidance and growth, and phenétypi::(;
diversion to activated/reactive cells could lead to dysmaturation. Thus, a scenari(')n}s‘;i»_?n»ilar to that

depicted in Fig. 9B seems possible,

Thalamic, Subplate, Late Migrating GABAergic Neuron Injﬁry. . Tiie scenarios
described earlier for primary injury to these neural structures leaqigg"t§ dysmaturational gray
matter disturbances in the setting of moderate-severe WMI (F1g9C-E) cannot be ruled out in
mild WMI but do not seem highly likely. For example, in the careful neuropathological study of
Pierson et al.,'®, in the 17 infants with DWMG (an_q‘ no focal necroses), neuronal loss in cortex,

thalamus, and basal ganglia was observed in none. ..

Conclusions. The dysmaturational cﬁ;s{lirbances of white matter and gray matter
structures apparent by advanced MRI methods in infants with mild WMI do not appear to be
related to widespread injury. Prgde injury and dysmaturation do seem apparent, and thus the
possibility of the multiple sec;hdary developmental disturbances of gray and white matter
structures described earlit;f (Fig. 9A) is real. The abundant reactive astrocytes and activated
microglia in cerebral white matter, i.e., DWMG, also are likely important in the pre-OL

":"c‘)’n_:-'Additionally, axonal injury and dysmaturation also are a potential

consequence of the deleterious actions of these two glial types (Fig. 9B).

Primary Dysmaturation of Gray Matter Structures
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The possibility that the gray matter structures shown to exhibit secondary impaired

development with the encephalopathy of prematurity, as outlined in the preceding, may exhibit
primary dysmaturation is suggested by recent clinical and experimental studies. If primary
dysmaturation does occur, the approaches to neuroprotection and neurorestoration (séfé Jater)
could be quite different than those directed at secondary dysmaturation in the Qphtext of cerebral

WMI.
Clinical Data

Primary dysmaturation of cerebral cortex, in the absence of evidence for WM, is
suggested by a study of 95 premature infénts studied by MRI é{f two time points in the neonatal

period (32 and 40 weeks post-conception).'®

The princi?él fiﬁéing was evidence for delayed
microstructural development of cerebral cortical gray matter at multiple sites. Diffusion-based
measurements showed delayed microstructural a;;élophlent in cerebral cortex, but not cerebral
white matter, in association with impaired:somatic growth. The expected normal developmental

“decline in FA in cortex was blunted, whgl}eas the expected increase in FA in white matter was
not. Thus, no evidence for WMI o;‘émpaired white matter development could be identified. As
described earlier,'® 16! FA decreaées in cortex principally with dendritic development. In the
study of Vinall et al. Ié:q'radiéi;,diffusion and not axial diffusion in cortex was particularly
affected, again most éonsistent with impaired dendritic development. The association with
impaired somat}_i_‘g“__g'_rowt'h raises the possibility that undernutrition is particularly involved,
although detailed data re: nutrition, caloric intake, feeding were not available. However, it is
noteworthy that several studies of premature newborns with intrauterine growth retardation also

show a particular involvement of cerebral cortical development, including reduced cortical

volume, reduced cortical surface area and impaired gyrification.'®*1% However, other studies of
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155,167

such infants have shown abnormalities in microstructural development of white matter.
Nonetheless, on balance, it does appear that disturbances in growth, perhaps secondary to
undernutrition, either in the premature infant postnatally or in utero may have a primary

dysmaturational effect on cerebral cortex. More data clearly are needed.

Experimental Data

Three recent studies in a well-characterized preterm large animal (fétal?_’s'héep) model of
cerebral ischemia raise the possibility of primary dysmaturation of cerebral cortex, subplate
neurons and caudate neurons.'®7° Thus, utilizing elegant neurobioidgical methods, Back and
coworkers have shown disturbances in cortex, in dendritic development and synapse formation;
in subplate neurons, in dendritic arborization and synaptic aéfi;/ity; and in caudate, in dendritic
arborization, synaptogenesis and synaptic activity.m%‘_”ov’fl‘hese findings were apparent four
weeks after the hypoxic-ischemic insult, but notﬂv;&éftwo weeks. '8 Because the basic
experimental paradigm was designed origin,‘a_lvly_,to 'replicate cerebral WMI of the premature
infant, these examples of neuronal dysmaturatlon were accompanied by pre-OL degeneration and
dysmaturation and diffuse glio§i§ ;i%hireaétive astrocytes and reactive microglia. A reasonable
question is whether the 4-weéif"périod required for the evolution of the cortical, subplate or
caudate neuronal dysmatt;;gfion IS necessary because the dysmaturation is secondary to the pre-
OL degeneration and aysm‘aituration as described earlier (Fig 9A). In the absence of a definitive
answer to this,_.rgu;s"‘»tdion;' the possibility that the hypoxic-ischemic insult leads primarily and
directly to the néﬁr(;nal dysmaturations is real. Coupled with the clinical study described earlier,

the latter possibility demands further research.

Conclusions
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The clinical studies of premature infants with impaired somatic growth and of those with

intrauterine growth retardation raise the possibility that cerebral cortical development may be
affected directly, i.e., primarily, perhaps by nutritional factors. In view of the rapid development
of cortex during the premature period and therefore its likely vulnerability to neonatéf"insxﬁx_lts,
such a possibility seems reasonable. Experimental data also raise the possibility_\bf a primary
dysmaturational effect for hypoxia-ischemia on cortical, subplate and cauq:ate pséroﬁs. However,
as discussed, the available data do not rule out a primary effect on pre-OLs with secondary

neuronal dysmaturation,

NEUROPROTECTIVE AND NEURORESTORAT_I_VE-INTERVENTIONS

Because the pervasive theme in this revigyy IS that pre-OL death leads to subsequent
dysmaturation of both white and gray matter §§mctu;§s, interventions are best considered (1) as
preventative of the initial death (i.e., neurbpro;ecziorz) or (2) as amelioration or prevention of the
subsequent dysmaturation (i.e., mgyfbrééordtive). Although there is overlap in this

categorization, the distinctionz.bes:t facilifates the discussion that follows.
Neuroprotective Interventions »

N curoprotccti{ie interventions have focused on prevention of pre-OL injury or death.
Many excellqu\{'ecqgt reviews have addressed this issue and will not be discussed further,?® 2>
108, 171 e principal neuroprotective interventions and the likely mechanism(s) affected in the
cascade to pre-OL death are shown in Table 3. Most of the mechanisms also are relevant to

those examples of WMI that are accompanied by direct injury to axons and neurons as well as to
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pre-OLs. Of the interventions shown in Table 3 only erythropoietin (EPO) has been studied in

detail in human premature infants and will be discussed here.
Erythropoietin

Because EPO has anti-excitotoxic, anti-oxidant, anti-inflammatory and ayti%gpoéf&ﬁc
effects,'’” the agent is a prime candidate for prevention of pre-OL injury or q;ﬁth, bt‘:‘he critical
initial event in genesis of preterm WMI. EPO has been shown to prevent/rﬁitiéate WMIina
variety of experimental models. > Although numerous studies of EPO in premature infants
have been carried out, a recent meta-analysis of four randomized, cbﬁ&olled trials (RCT)
comprising 1133 infants is especially useful.'”” Prophylactic EPO administration reduced the
incidence of Mental Developmental Index (MDI) scorgswc;f‘ <70 (odds ratio 0.51 [0.31 - 0.81],
P<.005) at 18 — 24 months. Because total numbers of infants <28 weeks’ gestational age‘ were
not large enough to assess adequately the outcorﬁe in this critical group, more data are needed. A
large multicenter RCT in the United States (PENUT Trial, NCT 01378273) is focused on this

critical group, and results should be available this year.

A closer assessment ofthc key EPO trials suggests that the timing of EPO administration
may be critical in the likeliﬁ‘q_oc{;f benefit. Thus, in one series of studies utilizing early,
relatively brief adnﬁnis'Efati;i{'s'éf EPO (at <3 hrs, at 12-18 hours and at 36-42 hours after birth),
no significant dlfferencesm outcome at 2 years could be discerned'”® (although MRI at term
equivalent agé""shtl;;;éa‘:decreased WMI and better white matter maturation in the EPO-treated
infants)."”” 178 HBWever, in a study utilizing EPO administration (as EPO or its higher
glycosylated derivative darbepoietin) 3 x /week through 35 weeks’ postconceptual age, the
treated infants had better cognitive outcomes and less neurodevelopmental impairment at 3.5 to 4

years of age, when compared to placebo-treated infants,'” Thus, the two different protocols re:

26

Downloaded for A User {n/a) at Brigham and Women's Hospital from ClinicalKey.com by Elsevier on March 17, 2019.
For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.




timing of EPO administration suggest that with the early, relatively brief approach, EPO was

functioning only as a neuroprotective agent, whereas with the more prolonged approach the
agent may have functioned both as a neuroprotective and a neurorestorative intervention.
Perhaps consistent with this notion, the largest study to date randomized 800 infants df'<3_2
weeks’ gestation to placebo or EPO administered intravenously within 72 hours Of __}Sirth and then
once every other day for 2 weeks.'®’, The rate of moderate/severe neurologicqlwc_ivisab}ility at 18
months’ corrected age was significantly lower in the EPO group (7. 1%) :‘\»'ers_lbils'" the placebo group
(18.8%) (OR = 0.22, CI 0.19 - 0.55, P<.001). Dosing in the aforemen\t}ijgj)-‘né‘dfPENUT trial will be
still more prolonged, i.e., initially, single doses intravenously, T;:\}ery other day, from day 1 to day
11, and subsequently, doses subcutaneously every other day untii 32 weeks. The potential
mechanisms for EPO’s benefit concerning brain maturation, i.e., neurorestorative effects, will be

discussed in the next section.
Neurorestorative Interventions

The emphasis of this review has been the evolution of the widespread dysmaturational
events that follow the initial msult(s) and injury/death, especially to pre-OLs. These events
develop over many weeks to n;i"ox;ths, and perhaps longer. This relatively protracted period raises
the possibility of a long timé;;;vindow for interventions potentially capable of ameliorating or
preventing the dysmaﬁlration. I'will term these interventions neurorestorative. The principal
such interventi_g:_{\l_s‘,‘shown in Tables 4 and 5, are classified baséd on their study in experimental
settings only ('i‘éi)le 4) or in clinical settings with human infants, principally preterm infants

(Table 5).

Experimental Studies
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EGF, IGF-1. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF-

1) have beneficial effects in experimental models of preterm WMI (Table 4). The agents appear
to exhibit both neuroprotective and neurorestorative properties. In a mouse model of preterm
WMI, Scafidi et al. showed that either selective overexpression of human EGF recepfarvin OL
lineage cells or the intranasal administration of EGF immediately after injury l,evd*rtq'dgcreased
OL death, enhanced generation of new OLs from progenitor cells, and promévtf_:vq‘fuhctional
recovery.181 The benign mode of administration of the EGF suggests pptential clinical
applicability. h

IGF-1 has shown protective effects versus WMI both in géé)n;clfal animal models
(hypoxia-ischemia, lipopolysaccharide-induced inﬂammatio'ﬁ) and in cultured pre-OLs, 1818
The agent also showed restorative effects, i.e., rescue of ‘Apvr»é—OLs and promotion of myelination.

Two issues limit enthusiasm for IGF-1: first, the '-peptidé must be administered intraventricularly,

and second, its effects are dose-related, wjth:jIBWer doses effective but higher doses toxic.

Hyaluronidase Inhibitors._Prve.-OL dsrsmaturation in chronic WMI appears related at
least in considerable part to the gst‘r&iytic component of the diffuse gliosis characteristic of the
lesion. Thus, Back and coworker; have shown that reactive astrocytes synthesize high molecular
weight forms of hyaluroﬁi;%ﬁ;:id,‘ which are readily detectable in the human lesion.!%! 1% Ag
described earlier, hyaluronié acid digestion products, generated from hyaluronidases in the
disrupted extraccliular matrix of WML, lead to a block in pre-OL maturation. This block could be
prevented by pharmacologic inhibition of hyaluronidase in vitro and in an animal model.'?’

Whether use of a hyaluronidase inhibitor has value in preventing pre-OL dysmaturation in the

human infant requires further study.
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Microglial or Astrocytic Phenotypic Manipulation. Abundant microglia are important

components of the diffuse gliotic component of WMI (see earlier). These cells are principally in
an activated, pro-inflammatory state (M1 phenotype). Their role in acute pre-OL injury/death
likely relates to the generation of reactive oxygen and nitrogen species and secretion ‘Sfﬁinjurious
cytokines.”® However, a variety of studies, performed in in vitro and in vivo mg‘dels,‘ including
adult human lesions with failure of OL differentiation and myelin developmep§:>:(1§3. g:,b multiple
sclerosis), suggest involvement of activated microglia in the subsequent i)re-OL dysmaturation in
human preterm WMI'®#*" The data raise the possibility that intewggtisns capable of converting
microglia from a pro-inflammatory phenotype (M1 ) to an an,_tj_:‘inﬂaminatory phenotype (M2)
would have major potential as a neurorestorative therapy. Such im;zunomodulatorjy agents that
cross the blood-brain barrier have been identified (e g.‘,"nﬁn_‘oéycline, melatonin, minozac,
etanercept) and are under study in human adult:dggyélinating discases.'® 185191 Their safety

and efficacy in the premature infant for long—tc}jm use are not established.'*?

A recent relevant area of interqgéin :egﬁlation of microglial phenotype involves
microRNAs"" '® These components a_‘rf”short non-coding RNAs (18-22 nucleotides) which are
transcriptional regulators of geﬁ;fexpression. Several microRNAs have been shown to promote
or inhibit inﬂammatorx_;equéges in microglia. One prominent microRNA of activated microglia
is mir-155, which ‘iis“elbeygt_g:d in microglia in multiple sclerosis lesions. When silenced in vivo by
intracerebral inje"bt' n of IL-17 in early stages of experimental allergic encephalomyelitis, the
pathological and:;li:r'lical effects of the demyelinating disease are blunted.'”® Thus, the possibility
of such systemic‘therapy seems real. Indeed, recent research shows that intravenous delivery of
another microRNA (miR-124) that promotes polarization of microglia from an inflammatory

(M1) to an anti-inflammatory (M2) phenotype via miR-124-enriched exosomes improves
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hippocampal neurogenesis and neurological function over four weeks after traumatic brain

injury.’®* (See also later discussion of exosomes.) Notably, because the anti-inflammatory
phenotype of microgﬁa (M2) is important in the facilitation of many brain developmental events
as described earlier, these avenues of research suggest a major neurorestorative possibility for in

vivo manipulation of microglia phenotype.

Similar considerations concerning glial manipulation from a “harnifl;gl’:?">to
developmentally “helpful” phenotype apply to the reactive astrocytes%i:r;\‘ the diffuse gliotic
component. Their involvement in pre-OL injury and dysmaturatioﬁ ari'd;th\e potential value of
hyaluronidase inhibitors were discussed earlier. Prevention of the qﬁcfoglial induction of
harmful, “neurotoxic” astrocytes (A1 phenotype) is an area of active current research.'® '° The
valuable results would be inhibition of pre-OL deat}j}_b_gﬁd preéérvation of the maturational effects
of the developmentally beneficial astrocytic phenotype '(‘A2). A variety of drugs and neutralizing
antibodies (e.g., to TNFo and Lo, from nﬁprdglg_a) td prevent induction of harmful reactive

astrocytes are under study in animal models_aﬁd in adult human neurodegenerative disorders.'®

Stem Cells. Experimental studies of stroke and related ischemic brain injuries in

neonatal animals suggest that stem cell therapies may be effective for restoration, particularly of
OLs."*52% The major typéé“;c:).‘fvvvcells used thus far include neural, embryonic, mesenchymal,
umbilical cord and induced pluripotent cells. In vitro manipulation of neural precursor cells prior
to transplantat@_gg can enhance their capacity to undergo OL differentiation and axonal
rcmyelination.zm_.A variety of routes of cell administration have been utilized, and intranasal
administration may be the most efficient. Stem cells administered by this route appear to target
the injury site after entering the brain via olfactory neural processes traversing the cribriform

plate.” Studies of rodent models of preterm brain injury have shown that the intranasal route of
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administration can be effective not only for mitigating injury to myelin but also for improving

behavioral outcome, %% 2%

Of particular relevance to cerebral WMI and pre-OL dysmaturation/myelination failure in
the premature infant is a recent study of such injury produced by hypoxia-ischemia 1nthe 3-day-
old rat.”® OL progenitor cells produced from embryonic stem cells were transpléﬁtéd-into the
injured cerebrum. The transplanted cells survived, underwent differentiation, formed myelin
sheaths and stimulated proliferation of endogenous neural stem cells. S_upportihg a
neurorestorative effect was the demonstration of functional benefit-after 6 weeks. It will be of

particular interest if the results can be replicated after intranasal administration.

A relevant human study in this context involves tl};c:::;;f‘lsplantation of human neural stem
cells into the brains of four infants with connatal Pé]izaéﬁé-i\/[erzbacher disease.?® After 1 year,
evidence of myelin ensheathment of axons was obtamed by diffusion tensor imaging, Direct
extrapolation to the human preterm infant’Witl‘l}erMI is difficult because of the mode of
administration used. Nevertheless, théf‘fibr_lding; suggest promise for stem cell therapy as a

neurorestorative therapy in such infants.

Exosomes, The pre’éis_e ﬁéuroprotective factors released by stem cells are not known
with certainty and may vary as a function of the injury. Notably, however, effects on pre-OL and

myelin developmehf and on behavioral outcome in a rodent model of preterm WMI was

205 (Exosomes are a type of extracellular vesicle and can

stem cells, in lieu of stem cells per se.
carry membrane and cytosolic proteins, various types of RNA and lipids, and perhaps DNA), 27
Similar benefit from the use of exosomes has been demonstrated in other animal models of brain

injury. 2210 The great therapeutic potential of exosomes, isolated from blood, has been
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recognized only recently and the capacity to induce OL differentiation and myelination could

serve a crucial neurorestorative function in the premature infant. Human studies will be of great

interest.

Dendrimers. Dendrimers are unique nanoparticles synthesized for a variety:(;f»‘functions,
includi_ng targeted delivery of therapeutic agents to brain.*'" 2" Their small size and tailorable
surface functional groups make therﬁ valuable for this role. Drugs, and pefha’ps-ultimately,
microRNA’s or silencing RNA’s can be attached to the dendrimer. Several recent models of
ischemia- or inflammation-induced neonatal or fetal brain injury have ‘shown marked beneficial
effects of dendrimer ~ N-acetylcysteine conjugates, > "7 N—Acquléyéteine is an anti-oxidant,
and after intravenous administration of the conjugate, uptaké"iﬁto activated microglia, reactive
astrocytes and differentiating OLs could be demons_t_ratc;d.bsbilvstained prevention of OL injury and
improved myelination were shown.?”® The principal-cellular target appeared to be inflammatory

microglia. Further studies will be of great interest.

Clinical Studies

A burgeoning cIinical»}ite\fatuv:r”é suggests the possibility that the dysmaturation of both
pre-OLs and gray matter structures after premature brain injury can be counteracted to a
considerable extent. These ;éﬁ'rérestorative interventions include pharmacologic agents, i.e.,
EPO, and modiﬁc‘:va'tzio;; of Jnutrition and other environmental factors (Table 5). Implementation
of these intervén‘ti‘(;tﬂéu Eiuring the vulnerable neonatal period, when the remarkable array of
developmental events described earlier are proceeding most rapidly, is of critical importance.
However, the beneficial effects of these interventions likely continue beyond the neonatal period
(see later). The mechanisms of the benefits and the specific maturational events affected are not

yet entirely understood. Our current understanding of these interventions is discussed next.
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Erythropoietin. EPO was discussed earlier in relation to its neuroprotective effects.

Notably as discussed earlier, current data suggest that more prolonged exposure to EPO is more
beneficial than only early and brief exposure, thus suggesting that EPO has neurorestorative as

well as neuroprotective properties.

Experimental data suggest that neurorestorative effects of EPO involve‘pérﬁ;;ularly OL
development, although promotion of angiogenesis and neurogenesis may valsozoccurv.“g‘ 172218 1y
view of the likely importance of the failure of differentiation of pre-OLé in Mt_heb genesis of axonal
and neuronal dysmaturation, the decisive role of EPO in promoting pré-OL development after
hypoxic-ischemic insults in experimental models is particularly‘_gglevz;vnt here.2'*??! In vivo, EPO
appears to be generated primarily from astrocytes, abundaﬁﬂyb present in the diffuse gliotic
component of WMI. However, the EPO receptor is upfzégﬁi'ﬁted in pre-OLs after hypoxic-
ischemic insults, and if sufficient endogenous EPO-is Aof present, the unoccupied receptor leads
to a failure of differentiation. The provision of :abundant exogenous EPO may explain the benefit
of EPO therapy vis a vis pre-OL differéhtiatioﬁ. An indirect effect of EPO on pre-OL and
neuronal/axonal maturation may also rgléé to its action of decreasing microglial recruitment, the
other key glial clement in diffuse white matter gliosis, and thereby the deleterious effects of
inflammation.? Additionan};, in aﬁ animal moclel,223 EPO also promotes cerebral cortical
development after }ly;“)oxig‘-‘fsc.henﬁa and associated subplate neuronal loss, again consistent with
its multifaceted effqgtﬂ_sv on cellular development in brain. Recall that in moderate to severe WMI
in premature mfants, subplate neuronal loss and impaired cortical development are important

features (see earlier),

A major question re: EPO as a restorative therapy relates to the prolonged duration likely

required. Reactive astrocytes and activated microglia are likely present for many months after the
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initial injury. More data are needed re: the safety of such prolonged treatment of an agent with

multifaceted developmental effects.

Nutritional Factors. The importance of appropriate nutrition during the premature
period for neurodevelopmental outcome and the deleterious effects of postnatal undé;n;itrition
are supported by a large corpus of clinical, epidemiological and experimental st&&ieé.”“'m In the -
context of this section the data raise the possibility that optimal nutrition, bothm the neonatal
period and the subsequent posthospitalization period, could be a restorativqint‘“‘ervention in
premature infants with WMI and the encephalopathy of prematuriﬁ)".‘ The high prevalence of
impaired nutrition in premature infants is illustrated by observatqus that 50% of VLBW preterm
infants had a discharge weight less than the 10th percentile for postmenstrual age, and 27% had a

discharge weight less than the 3rd percentile. .

The maturational events apparently vulh;;able ;o nutritional disturbance in infancy have
been elucidated at least preliminarily, by. sé?eréntl MRI studies.”*> 160241 242 AJthough results vary
somewhat, impairments of cerebral coj‘r'tipwg_lxyc;lbumetric growth and microstructural
differentiation, cerebral white méﬁt& micr;)structural maturation, and basal ganglia volumetric
growth have been identified.bgzimillar disturbances of brain maturation have been identified in
infants born small for gestat10na1 age, 64 166167 Impaired nutrition in the postnatal period in
premature infants has been determined either directly (e.g., energy and lipid intake) or indirectly
(e.g., deficient{_%rgéral nufrition, prolonged parenteral nutrition). Whether some of the
dysmaturationalxciavents in these settings are primary or secondary to pre-OL dysmaturation is
unclear. Nevertheless, the implication is that optimal nutrition could be restorative in this

context,
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The quality of the milk provided to the infant is another nutritional factor that appears

important for neurological outcome and suggests a means for neurorestoration. Available data
indicate particular value concerning neurodevelopmental outcome for fortified preterm versus
term formula, for human milk versus formula, and for fortified human milk versus no

fortification, 3% 238 243-249

Breast-feeding is of particular value, and several volumetric and diffusion tensor MRI
studies have shown better white maturation in such infants 235 236 244,247,248 Perilaps even more
importantly, breast —feeding beyond the neonatal period appears t'(; ;ilaVe long-lasting beneficial
effects on cerebral white matter. Thus, a study of 133 (healthy). _tgl_'m~born infants either
exclusively breast-fed for a mean of 413 days or exclusively‘fafmula fed or fed é mixture of
formula and breast milk utilized advanced MRI measures ath months to 4 ycars of age to assess
white matter development.”*’” The data show that'early exclusive breast-feeding was associated
with better development in relatively late _matﬁr@ng white matter regions, including frontal and
temporal white matter, corticospinal tracts, and superior longitudinal and occipitofrontal
fasciculi. Notably, several of these reglons are important for specific higher-order cognitive
domains, in which breast-fed infgms have been shown to have improved performance, " 2%

Thus, current data suggest that breast-feeding could have neurorestorative potenﬁal and that the

principal initial effect may involve OL development and myelination.

Polyun, \"’"rated fatty acids (PUFAs) are crucial for brain development and are

particularly concentrated in phospholipids of neural membranes, especially in cerebral cortex and
other gray matter structures.”>'>** Most brain PUFAs are acquired in the last trimester of
gestation and first two years of life, during rapid brain growth.”* Thus, the preterm infant does

not receive this critical transplacental transfer of PUFAs. Notably, however, breast milk is an
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excellent source of PUFAs. Two recent studies utilizing advanced MRI techniques and

determinations of PUFA levels in red blood cells noted positive correlations between PUFA
levels and microstructural maturation of cerebral white matter and macrostructural (volumetric)
development of cerebral cortex and basal ganglia/thalamus near-term equivalent age. 2% 2%
Concerning the potential value of supplementation with PUFASs, although not allvfi{{dings are
consistent, favorable effects on visual function and cognitive function havg b‘ge_‘n‘ré‘ported.zag' 236,
7 Supplementation to the lactating mother who is breast-feeding has been Qﬁé}ét effective. Thus,

the possibility of PUFA supplementation in this manner to the pre@tm infiiht, especially with the

dysmaturational abnormalities of white and gray matter, is worthy of study as a neurorestorative

intervention.

Iron is a critical nutrient for OL maturation, hondeflclency can be an important
contributing factor in causation of brain dysmaturation m premature infants, with particular
involvernent of OL maturation and subsequéﬁfrpyelination. Thus, iron supplementation as
needed can be considered a potential neurorééforative intervention. Although the data are not
entirely consistent, most studies shéw impéirments of motor, cognitive and behavioral
development in iron~deficient inf;élnts.zsg'262 Iron deficiency in the neonatal period is usually
related to dietary deficiency, parti;:ularly in the context of breast-feeding and prematurity,?$>263
Indeed, as many as llo%nz:(ﬂ)rf, infants in the first two years of life in the United States and 15% of
breast-fed Canadian infants exhibit iron deficiency. Because premature birth deprives the infant
of the primary penod of fetal iron deposition, i.e., the third trimester of gestation, the risks are
still higher in such infants. Supportive of an effect on myelin development in iron-deficient
infants is the finding on studies of auditory and visual evoked potentials of prolonged latencies,

266-269

without impairment of amplitudes. (The normal maturational decline in latencies relates to
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acquisition of myelin, whereas changes in amplitude relate more to neuronal development'®). A

recent study of delayed umbilical cord clamping (DCC) in full-term infants suggests a beneficial
effect of iron on MRI-quantitated myelin at four months of age.?™® Thus, infants followed after
DCC had 48% higher serum ferritin levels and myelin content at 4 months of age, when
compared to infants who had immediate cord clamping. Moreover, because infe‘t‘ht:‘syivth higher
iron stores at 4 months of age have been shown to persist with higher stores later, the findings

M More data are xiééded, but higher

suggest that the positive effect on myelination inay persist.
iron stores could represent an important neurorestorative goal in prem_a_tufé infants. The clinical
findings re: iron and myelination are consistent with experimental‘studies showing the crucial
role 6f iron in the processes of OL differentiation and myeli_nation.m‘ 265,212,273 Because iron also
plays an important role in neurotransmitter metabolism,hfthe;;neural effects of iron deficiency may
. extend beyond an impairment of OL developmegg{pgeliﬁation.m Quantitative studies of

myelination in living iron-deficient infants by advanced MRI measures would be of great

interest.

Zinc is another critical nutriént Jfor OL maturation. Zinc is critical for a variety of aspects
of brain development, including OL development.’™?” The effect is mediated particularly by an
OL-specific ziné fingerﬂpfétqiln (Zfp 488) that functions as a transcriptional co-regulator
important for OL differex}:tiation.zgo Recent work has shown that zinc concentrations in
developing OLs are relatively high during differentiation and decline after maturation is
achieved.?®! M0reovér, altered zinc balance is involved in experimental models of ischemic and
excitotoxic OL death.**?® The clinical relevance of this work remains to be clarified fully, but
it is notable that preterm infants are vulnerable to zinc deficiency because of high zinc

requirements, diminished zinc stores (most zinc stores ate acquired in the last trimester of
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gestation), and suboptimal zinc absorption.ms‘287 Moreover, zinc concentrations in human milk

are highly variable, and current dietary guideiines for zinc intake for preterm infants are based on
limited data,?®%?® More data are needed in human preterm infants on OL maturation,
myelination and neurological development, in relation to zinc status, and on ideal amdunﬂ;t§ of
dietary zinc intake. |

Experiential Factors. Experiential factors (Table 5) can play a major role m regulation
of OL differentiation/myelination and neuronal/axonal development in thuman iﬁfants.lg’ 19
Although emphasis is often placed on the deleterious effects of altéféd'experience, especially in
the neonatal period and particularly in the premature infant, the pgt_éntial benefit of experiential

factors as restorative therapies is important to consider. In this section, emphasis is placed on

factors related to care in the neonatal period and later in mfancy (Table 5).

A potential beneficial effect of modiﬁc‘at»i:;)h’ of tﬁe neonatal auditory environment on
cortical development and language outcpmé is ws_“uggested by recent clinical studies. The
particular relevance of this work relaté‘s{j‘:ﬁ part to the lay-out of neonatal intensive care units and
associated attempts to minimize amblent noise. In part, becanse sound levels in many neonatal
intensive care units, incubato;sva'f;d ventilators can exceed current recommendations of the
American Academy of:Pé&iaitpicS,zwa% many units have been designed to minimize such noise,
often by maintaining iﬁfants in single rooms. Two recent studies suggest that this approach may
have an advers,_gé?flgct on language development and cerebral cortical development in premature
infants, 2% 2% In';r study of 136 preterm infants assigned to either open ward or single room
bedspaces, infants cared for in single patient rooms had lower language scores at age 2 years,

accompanied by abnormalities of cortical folding in the superior temporal area (after controlling

for potential confounders) (Fig. 10).2> The difference in outcomes was attributed to differences
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in exposure to language in open areas vs. single rooms. In a subsequent study of the role of

maternal involvement with the infant, outcomes were assessed for infants from both single
patient rooms and open ward bedspaces while taking into account maternal involvement in the
NICU care,®® Infants with high maternal involvement from both single patient and opén ward
bedspaces had higher cognitive and language scores at age 18 months than did;iﬁ'fénts with low
maternal involvement. Notably, the effect size was greater for children fromsmgle rooms. This
second study suggests that the level of language exposure depends on :‘a’\;ari'ety of factors,
including room type, but also other maternal characteriétics that a!}&w.,matéfnal verbal contact
with the infant (e.g., availability of maternal leave, socio-econonﬁc.status, time spent with the
infant, a NICU culture that encourages verbal contact frgm_parenf;). These latter issues also are

important subsequent to the infant’s discharge (see later), - ‘

_ The underlying pathophysiology of these effect;of auditory experience on language
development relates in part to the sniking_.ag‘léi}élppment of the auditory system during the
premature period. Thus, connections béﬁwe;n-t};e cochlea and the brain stem are established by
24 to 25 weeks and connections to tem;__)_;;fﬁ lobe and auditory cortex by 30 to 31 weeks, % %7
Subsequently, cortical developrégnt occuts rapidly. Thus, it is biologically plausible that an
important factor in the subsqu@nt ianguage impairment relates to a disruption of development of
this key activity~d¢pende§§ syétem. Consistent with this notion, functional connectivity MRI data

show that disruption of brain networks detected at term equivalent age persists into childhood.?*®

The impbrtance of the nature of the auditory input is shown by a recent study of the
effects of different varieties of music exposure on cortical connectivity. A careful initial study
utilizing fMRI showed that music exposure in preterm infants had at term equivalent age lasting

learning effects on music processing — with an increased connectivity between primary auditory
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cortex and brain regions involved in several aspects of music processing (e.g., temporal and

cingulate cortex, basal ganglia).?*® Subsequent work will focus on the duration of such effects
and effects on language processing, The initial findings suggest that details of the neonatal (and
subsequent) auditory experience can have lasting beneficial effects on important areas of brain

development,

Neonatal visual experience also appears to play an important rol¢ in the infant’s brain
development. Because WMI in the premature infant tends to be most séyere in the parieto-
occipital region,127 central visual impairment is a common neurolobgic"eﬂ;sequelae.“8 Notably,
development of the axons of the geniculocalcarine tract, enshéat,{h:n}en; of these axons by pre-
OLs, early myelin formation of the tract and development of visual cortex are very active during
the premature period and into infancy.18 Whether ogtinllv; vxéual experience in premature infants
could capitalize on this actively developing system:to é’éﬁnteract the deleterious central visual
effects of WM], i.e., have restorative propvf_:rt:iés,:_ is iﬁlportant to consider. The data just reviewed
re: auditory experiences are encouraging in thls fegard. Expen'mehtal studies in normal and
preterm monkeys showed that prematu{;\)isual stimulation resulted in increases in size and
proportions of synapses in y‘isﬁ;‘i_rcortex, presumably by activity-dependent alterations in
synaptogenesis, synaptic moé?f_icaﬁon or synapse elimination.*® Visual deprivation had opposite
and unfavorable ef‘f‘ects,:‘_fl_:l},e somewhat limited data available in human infants suggest that, as in
monkeys, visual exgg?giential effects are important mediators of cortical development. Thus,
visual experielxl;féf premature infants is associated with accentuation of the development of the
visual evoked potential, a finding consistent with enhancement of axonal and dendritic

development and synaptogenesis.**" ** More data are needed to address how visual experience
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could enhance development of the cerebral visual system and perhaps counteract the effects of

dysmaturation described earlier.

Pain and stress in the neonatal period, common experiences for the preterm infant, have
been shown to have adverse effects on neurodevelopmental, behavioral and cognit__ivt; e
outcomes.*®*%® Abnormalities of brain development accompany these effects (svée next). The
findings suggest that reduction of pain and stress in these infants could servé..}as a
neurorestorative intervention. (Table 5).

Several studies that quantitated pain and stress (either numberof stressful events®” or

number of painful (skinbreaks) procedures’” 2%310.311

) shov&éﬂ*‘cofrelative disturbances in brain
development involving cerebral cortex, thalamus, cerebrz& wh1te matter and functional
connectivity. Functional connectivity disturbance }ias,___,bégn demonstrated as early as term
equivalent age (Fig. 11).>% Although most abno;ﬁﬁiifies were detected at term equivalent age,
thinning of cerebral cortex, especially in parietéil and frontal areas, was identified at a mean age
of 7.9 years.”!! Additional evidence cbnc__ie'ming arelation of stress to cerebral white matter
development emanates from a later randomized controlled clinical trial that evaluated the
effectiveness of training parei;fS' in reducing stressful experiences in premature infants in the
neonatal intensive care umt312 At term equivalent age the infants of the mothers in the
intervention group showed by advanced MRI significantly enhanced maturation and connectivity
of cerebral whit vif—i‘a\tter. These and related data caused the American Academy of Pediatrics to
emphasize the né;ed in neonatal intensive care facilities for “a pain-prevention program that
includes strategies for minimizing the number of painful procedures performed”.>' This

evidence for a deleterious effect of pain and stress in the neonatal period suggests that

interventions to reduce the responsible events could be neurorestorative. Moreover, the
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potential importance of stress as a deleterious factor beyond the neonatal period and

prevention/amelioration of such stress as a neurorestorative intervention will be discussed later.

One approach to diminish neonatal stress has been the individualized developmental care
approach pioneered by Als.3" The possible neurorestorative role of this approachygés suggested
by a randomized clinical trial of the Als care program, which showed at 9 monﬂ;s’ ‘corrected age,
improved neurobehavioral function, quantitative EEG evidence of enhance’éj?hatu’ration, and
diffusion-tensor MRI evidence of more advanced cerebral white matter fibqr tr;wt
development.*® Benefits were still present at 8 years of age.*'® Me‘iﬁy'élzements of developmental
care were identified, including patient positioning, light, souﬁ'd, handling, approaches to feeding
and inclusion of parents in care.”'”*" The initial findings'from this work regarding beneficial
effects on brain maturation suggest the possibility th:?tﬁi‘ii lcé's;t some of these approaches could
lead to mitigation and recovery of the dysmatura’tionai features of the encephalopathy of

prematurity.

The mechanisms for the deleteriousﬁ,eﬁ;ects of stress on brain maturation, although not
entirely understood in the humgg néwborn and young infant, may involve brain microglia, 32
Such stress mediators as glucé&brtjcoids and catecholamines are known to lead to pro-
inflammatory activation of nﬁ;:rdglia in experimental studies. In view of the key role of
microglia in various aspects of brain maturation in early life and the substantial number of
microglia in cggq}éfal ‘white matter in the human infant, especially in the diffuse gliosis of WMI
(see earlier), such modulation of microglia toward a pro-inflammatory state could lead to
dysmaturational events. Moreover, this modulation of microglia has been related to a potentiated

response to subsequent stress, e.g., in infancy and beyond, with the exacerbation of
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dysmaturation and the promotion of cognitive and emotional disorders. Thus, in this context,

elimination of stress would be a major neurorestorative intervention,

Parenting/educational/social factors are critical in the infant’s experience, espccially
beyond the neonatal period, and suggest opportunities for neurorestorative intervegfién (Table
5). Many studies in recent years have shown that factors relating to parenting, pa;éﬂtal education
and socio-economic context beyond the neonatal period are critical determi;:aints »ovlgultimate
neurodevelopmental outcome, especially relating to cognition, language and‘;behavior.lo’ 321-329
Initial research with MRI suggests that the anatomical substrate fdnivimpail:cd neurodevelopment
in this setting involves changeé in volumetric growth of cortex, d;qp nuclear structures and
cerebral white matter.”® **° and in fanctional network matutation.’? **' The particular
importance of early parenting behavior, particularly matg;;;ézl affective involvement, parent-
child synchrony, positive and responsive parenting;-has been delineated and could represent a

neurorestorative intervention.>> %

Although the deleterious expveric{iltial effects just described begin in the neonatal period,
their persistence into infancy and early-childhood raises the possibility that myelin development,
a posi-term event in humanbvrain,',.could be especially affected. This possibility is supported by
recent elegant studies of inféﬁts institutionally reared in orphanages under circumstances
associated with lack of parenting and neglect, including social, emotional and linguistic
deficiencies. A_lﬁthq‘u‘gh: disturbances in subsequent behavioral and cognitive functions in such
infants are well—k!no@n, impairments in macrostructural and microstructural white matter
development have been shown only recently.*****” The potential to counteract this
dysmaturation, i.e., a neurorestorative intervention, was shown by a large study of Romanian

orphans randomly selected to remain in an institution or to be placed in supervised foster care at

43

Downleaded for Anony User (n/a) at Brigham and Women's Hospital from ClinicalKey.com by Blsevier on March 17, 2019.
For personal use only. No other uses without permission, Copyright ©2019, Elsevier Inc. All rights reserved.




2 years of age.**® Studies by diffusion tensor MRI at 8 years of age showed significant

associations between neglect in early life and impaired microstructural integrity of multiple
white matter structures. Particular affection of radial diffusivity suggested impaired myelin
ensheathment of axons. Early intervention (i.e., foster care) promoted more nearly n‘(’):f.mati‘ve
white matter development among the previously neglected children. The particgil‘tfz‘;izink between
environmental enrichment and white matter development is reminiscent ofstudles of specific
skill development, e.g., musicians, which show a relation of enhanced s’i&ﬂl to induced changes in
white matter microstructure. Importantly, these changes are effectg_(‘iv:p:cgiﬁaring early sensitive
periods, e.g., in childhood, and, moreover, enhance additiona»l{_vpractice&-based changes in white
matter microstructure and performance later in life.’> Notably, a; 1érge experimental literature

supports maturational value for environmental enrichment:in many animal models.*?®

Randomized intervention studies of older infants ‘and young children in lower SES
conditions, albeit less severely neglected t}}aﬁ ihie aforementioned orphans, also show benefit for
development of language, emotional rggulat”@oh‘and cognitive skills, 2% *%3#! The anatomical
substrate of these effects remain tdbe,_e‘s’t:;glished. However, the demonstrated benefit raises

important and complex societal issues.
Conclusions

This majq; éectioﬁ Jf;)cused on interventions directed at pre-OL death and subsequent
dysmaturation’“bf white and gray matter structures. Interventions directed at protection vs. pre-
OL death, termed “neuroprotective”, discussed in detail elsewhere, were not emphasized, Of
these, only EPO has been studied in human infants, and prolonged therapy seems preferable to
brief courses. Interventions considered to be promising for amelioration or prevention of the

subsequent dysmaturation, termed “neurorestorative”, were emphasized. Promising pre-clinical
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data were reviewed. Clinical studies suggest value for EPO, optimal nutrition (concerning quality

and source of milk, breastfeeding, polyunsaturated fatty acids, iron and zinc), and critical
experiential interventions. The latter relate in the neonatal period to optimal auditory and visual
experience and reduction of pain and stress. Importance for brain maturation also can be.
attributed to such interventions in infancy and early childhood as breastfeeding, carefully
designed intervention programs, environmental enrichment and parental/e@db,ationél)social

factors.
SUMMARY/CONCLUSIONS

The principal focus of this review has been the dysmafuration of brain in infants born
prematurely, especially very preterm. The dysmaturatiqé;; detalls have been identified primarily
by advanced MRI studies. The review has delineated (a)the dysmaturational features involving
both white and gray matter structures; (b) the contextof their occurrence, i.e., the remarkable
array of developmental events in the human bliz;in during the premature period; (c) the spectrum
of the cerebral white matter injury _thaf appears to initiate the dysmaturational events; (d) the
likely mechanisms by which thewhlte matter injury, particularly the mild forms now most
prevalent in neonatal intensive‘éa..‘re facilities, lead to the dysmaturation; and (e) the potential

neurorestorative interventions suggested by a burgeoning amount of recent work, both clinical

and experimental. -
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