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Evolutionary stability on graphs

Hisashi Ohtsuki & Martin A. Nowak!+

I Program for Evolutionary Dynamics, Harvard University, i@aridge MA 02138, USA

2 Department of Organismic and Evolutionary Biology, Depsett of Mathematics,

Harvard University, Cambridge, MA 02138, USA

Abstract

Evolutionary stability is a fundamental concept in evaofry game theory. A strategy is
called an evolutionarily stable strategy (ESS), if its mmoophic population rejects the in-
vasion of any other mutant strategy. Recent studies haealey that population structure
can considerably affect evolutionary dynamics. Here wévddhe conditions of evolu-
tionary stability for games on graphs. We obtain analytamaiditions for regular graphs
of degreek > 2. Those theoretical predictions are compared with compsiteulations
for random regular graphs and for lattices. We study thréferdnt update rules: birth-
death (BD), death-birth (DB), and imitation (IM) updatirigvolutionary stability on sparse
graphs does not imply evolutionary stability in a well-ndxgopulation, nor vice versa. We

provide a geometrical interpretation of the ESS conditinrgraphs.

Key words: evolutionary game theory, evolutionary graph theory, ES@ctured

population, spatial games
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1 Introduction

Evolutionary game theory is the study of frequency depensielection (Maynard
Smith 1982, Hofbauer & Sigmund 1998, Nowak & Sigmund 2004yhlo 2006).
The fitness of an individual is not constant, but depends taractions with other
individuals. These interactions can be described by a game payoff from the
game affects fithess, which is reproductive success. Raptiot can be genetic or

cultural.

An important concept in evolutionary game dynamics is tHadro evolutionar-
ily stable strategy (ESS) (Maynard Smith & Price 1973, Magn@mith 1974,
1982). If all players of a population adopt that strateggntmo mutant strategy
can invade. The traditional ESS condition is defined for itélg large, well-mixed
populations. In a well-mixed population, every individugkracts with every other
individual equally likely. Real populations are, of counseither infinitely large nor
well-mixed. Various attempts have been made to extend ti8dé8cept to popu-
lations of finite size (Maynard Smith 1988, Schaffer 1988jdti& Pollack 2000,

Neill 2004, Nowak et al. 2004, Wild & Taylor 2004, Traulseragét 2006).

In spatial evolutionary game theory (Nowak & May 1992), theyprs of a popula-
tion are arranged on a spatial grid and interact with thearest neighbors. Spatial
games can lead to very different evolutionary dynamics treanes in well-mixed
populations (Nowak & May 1992, 1993, Wilson et al. 1992, $h 1993, Herz

1994, Lindgren & Nordahl 1994, Nowak et al. 1994, Killingka&Doebeli 1996,



Nakamaru et al. 1997, 1998, Eshel et al. 1998, 1999, Szabdke T1998, van
Baalen & Rand 1998, Szabo et al. 2000, Szabo et al. 20058001, Irwin
& Taylor 2001, Hauert et al. 2002, Szabo & Hauert 2002, LeliGal et al.
2003, Hauert & Doebeli 2004, Ifti et al. 2004, Santos & Pach@005, Santos et
al. 2006, Szab6 & Fath 2007). Spatial models have also bestied in ecology
(Levin 1974, Levin & Paine 1974, Durrett & Levin 1994, Hadslal. 1994,
Tainaka 1994, Durrett & Levin 1997, 1998, Tilman & Karieva9Z9Iwasa et al.
1998, Haraguchi & Sasaki 2000, Neuhauser 2001, Pastorr&si& Vespignani
2001, Wootton 2001, May 2006) and population genetics (Wrig943, Kimura
1953, Kimura & Weiss 1964, Maruyama 1970, 1971, Nagylaki 21 ¥pperson
2003). Literature of kin selection is useful in analyzingsal games (Taylor 1992,

Taylor & Irwin 2000, Rousset 2004, Lehmann et al. 2007, Tagtal. 2007)

Evolutionary graph theory (Lieberman et al. 2005, Ohtsuikile 2006, Ohtsuki
& Nowak 2006a,b, Pacheco et al. 2006a,b, Taylor et al. 200%)a extension
of spatial evolutionary dynamics to general graphs and owsv The members of
a population occupy the vertices of a graph. Interactiomrsiobetween connected
individuals. Many different update rules are possible. @etition for reproduction
and playing the game can be described by the same graph oolgfferent graphs
(Ohtsuki et al. 2006, Ohtsuki & Nowak 2006a,b, Ohtsuki eR@0D7a,b). A well-
mixed population is defined by a complete graph with idehtiegights. Spatial

games are typically described by regular lattices.

The purpose of this paper is to derive the ESS condition foregaon graphs.



The paper is structured as follows. In Section 2, we reviesvdéfinition of evo-
lutionary stability in a well-mixed population. In Sectid) we introduce three
different update rules and formulate the replicator equatin graphs (Ohtsuki &
Nowak 2006b). Section 4 describes our main results. We groengtrical repre-
sentations of the ESS conditions on graphs in Sections 5 aWa &ffer examples
and computer simulations in Section 7. Finally, we providiésgussion in Section

8.

2 Evolutionary stability in a well-mixed population

Consider a game between two strategiesnd B. The payoff matrix is given by

A B
Al a b

(1)
B\c¢ d

In a well-mixed population every player meets every othayet equally likely. Let
x, andzxp be the frequencies o and B players in the population. The average

payoffs of A and B players are given by

Py=axs+brp
2)
Pg =cxq+drp.
A population of A individuals is challenged by a small fraction &f invaders.

The relative abundance @ players istz = ¢, where0 < ¢ < 1. The fraction

of A players isx, = 1 — ¢e. StrategyA is evolutionary stable it?y > Py for



(xa,xp) = (1 — €,¢€). This condition leads to

(a—c)(1—€)+ (b—d)e> 0. (3)

Fore — 0, the left hand side of (3) is positive if and only if

ESS: ‘a>c¢ or ‘a=c andb>d. (4)

The conditionp > d, is only used in the knife-edge caser= c.

The evolutionary stability of a strategy in a game witlstrategies can be defined
in a similar way. A strategy is ESS if and only if condition (@lds in pairwise

comparison with each of the — 1 other strategies.

The traditional stability concept in game theory is the Nasgjilibrium (Nash
1950, Luce & Raiffa 1957, Fudenberg & Tirole 1991, Binmore949Weibull
1995, Samuelson 1997). For payoff matrix (1), stratdgg called a ‘Nash equi-
librium’ if and only if

Nash: a > c. (5)
Condition (5) implies that is a best reply to itself. In addition, strategyis called

a ‘strict Nash equilibrium’ if and only if

Strict Nash:  a > c. (6)

Condition (6) implies that! is the unique best response to itself. Note that i a

strict Nash equilibrium then itis an ESS Afis an ESS then itis a Nash equilbrium.

While the condition for a Nash equilibrium depends only oa payoff matrix, a



meaningful concept of evolutionary stability is affectgdgmpulation size (Schaf-
fer 1988, Ficici & Pollack 2000, Nowak et al. 2004, Wild & Tayl2004, Traulsen
et al. 2006) and population structure (Nowak & May 1992, 19&kamaru et al.

1997, Le Galliard et al. 2003).

3 Evolutionary game dynamics on graphs

In this section, we introduce three different update rubesf/olutionary games on
graphs (Ohtsuki et al. 2006, Ohtsuki & Nowak 2006a,b). Thendiscuss the

‘replicator equation on graphs’ (Ohtsuki & Nowak 2006b).

We consider an infinitely large population. The structureéhaef population is de-
scribed by an infinite, connected, and regular graph of @egré graph is called
‘regular’ when each node has exactly the same number of beighthat number
is called the ‘degree’ of the graph. Each node represen@yapivhose strategy is
either A or B. There are no empty nodes. In this paper, we study2. For games

on cyclesk = 2, we refer to Ohtsuki & Nowak (2006a).

Each player interacts with all neighbors, and obtains an accumulated payoff, de-
noted byP. The accumulated payoff is translated into fithessby the following
formula:

F=(1-w)+w-P (7)
Here0 < w < 1 represents the intensity of selection.uff = 0 then fitness is

constant}’ = 1, and independent of the payoff. Throughout the paper, weiden



the case of smalb, given by0 < w < 1.

Given the fitnesses of all players, we update the strategp®ptayer in each ele-
mentary time step. Therefore updating is asynchronous.offsider the following

three update rules (Ohtsuki et al. 2006, Ohtsuki & Nowak 2008

e Birth-Death (BD) updating. An individual is chosen for reproduction propor-
tional to fitness; the offspring replaces a randomly chosaghior.

e Death-Birth (DB) updating. A random individual is chosen to die; theneigh-
bors compete for the empty site proportional to their fitness

e Imitation (IM) updating. A random player is chosen for updating his strategy;
he either adopts a strategy of one of hiseighbors or remains with his own

strategy, proportional to fitness.

Using the pair approximation method (Matsuda et al. 198B2]1®lakamaru et
al. 1997, 1998, Keeling 1999, van Baalen 2000), Ohtsuki & Bloy2006b) have
shown that for smallv the frequencies of strategies on a regular graph of degree
k can be described by a differential equation. For a n game with the payoff

maitrix, [a;;], it is given by
T = T {Z zj(a;; + bij) — ¢] . (8)
j=1

Here x; denotes the frequency afth strategy, a dot represents time derivative,

and¢ = X7, zixj(ai; + bij). For each update rule, the valuetgf in eq.(8) is



calculated from the original payoff matrij;;], as

Qii + Qij — Gji — Gjj

BD: bz’j =

k—2
(k4 1)aii + ai; — aji — (k + 1)ay;

: i = 9
DB: by i+ 1)(k—2) ©)
||\/| : b _ (/{Z + B)CLM + BCLU — 3aji — (]C + 3)ajj

" (k+3)(k —2)

Interestingly, differential equation (8) has the form ofalicator equation (Taylor
& Jonker 1978, Hofbauer et al. 1979, Zeeman 1980, Weibull 519®fbauer
& Sigmund 1998, Nowak 2006) with a transformed payoff matfix; + b;;].
Therefore, many aspects of evolutionary dynamics on graphse analyzed by
studying a standard replicator equation with a transforpagbff matrix, a so-
called ‘replicatior equation on graphs’. For example, feg2 x 2 payoff matrix,

(1), Ohtsuki & Nowak (2006b) have shown that the transformagbff matrix is

A B
A a b+ h
(10)
Bl\c—nh d
The modifierh depends on the update rule. It is given by
BD: o dftb—c—d
k—2
(k+1la+b—c—(k+1)d
DB : h = 11
(k+1)(k—2) (11)
. (k+3)a+3b—3c— (k+3)d
IM : h =
(k+3)(k—2)

These results hold for infinitely large population size aod(f < w < 1. Re-

garding a finite population of siz&, Ohtsuki & Nowak (2006b) found that the



replicator equation on graphs gives a good approximatidfuif>> 1.

In the next section, we use egs.(10) and (11) to derive theegirof evolutionary

stability for graph selection.

4 ESS conditionson graphs

In order to characterize evolutionary stability on grapks,ask whether rare mu-
tants (ofe fraction) have an selective advantage over residents. rdoap to the
modified payoff matrix (10), it: > ¢ — h then rareB mutants are selected against
in an A-population. In this cased is ESS when compared to B.df< ¢ — h then
B can invaded and, therefored is not an ESS. We do not discuss the evolutionary
stability of the ‘knife-edge’ case; = ¢ — h, because it is ungeneric. Throughout
the paper we call

ESSongraphs. a > c— h. (12)

the ‘ESS condition on graphs’.

In contrast to the ESS condition on graphs, the conditiongstoict) Nash equilib-
rium on graphs are not obtained from the modified payoff mattiO). By analogy
to its counterpart in a well-mixed population, a straightfard definition of (strict)
Nash equilibrium on graphs is as follows: a strategy is ac{$tNash equilibrium
on graphs if no one gains a (strictly) higher payoff by swiighto the other strat-
egy. Therefore, the conditions for (strict) Nash equiliibmion graphs are the same

as those in a well-mixed population, egs.(5, 6). On graplspiossible that a strict



Nash equilibrium is not an ESS. It is also possible that an E3®t a Nash equi-

librium. We will discuss this issue further in Section 7.1.

For the three update rules, condition (12) is rewritten devics:

ESS on graphs (BD updating):

(k—1Da+b>(k—1)c+d (13)

ESS on graphs (DB updating):

(> = Va+b> (k> —k—1)c+ (k+1)d (14)

ESS on graphs (IM updating):

(k* 42k —3)a+3b> (k* +k —3)c+ (k+3)d (15)

All these conditions converge to > ¢ for & — oo. This makes sense, because a

well-mixed population is described by a fully connectedoira

5 Thegeometry of evolutionary stability

We can provide a beautiful geometrical representation ®B8S conditions (13-
15). Figure 1 illustrates the invasion of a homogenedympulation by arx frac-
tion of B players. Initially theB players are sprinkled randomly over the entire

population: each vertex changes frafnto B with probability ¢, which is very

10



small. The following evolutionary dynamics have two timalss: (i) on a fast
time scale the population ‘equilibrates’ locally afdclusters are formed, (ii) on a
slower time scale the global frequency 4f(and B) is changing. This separation
of time scales is a consequence of the weak intensity of tahe® < w <« 1

(Ohtsuki et al. 2006).

After the local equilibration process, we find thaf @layer, whose one neighbor is
already specified, has on average éheeighbor among his — 1 other neighbors.
Thus, in order to intuitively understand the ESS conditiongraphs, (13-15), itis
convenient to use a schematic drawing where a half-ling pfayers is embedded
in a sea ofA players (Fig. 2). If the tip of the half-line is more likely strink than

to extend, then A is ESS. Otherwise selection favors thesioveof 5.

For example, let us study the invasion dynamicsD@r updating. The half-line of
B-players extends in length by one if (i) one of tfie— 1) A-neighbors of the3-
player on the tip is chosen to die and (ii) tBeplayer, whose payoff i&k — 1)c+d,
wins the competition over the vacancy agaifist- 1) A-players, whose payoff is
ka. These events occur with a probability that is proportidoal

(1—w)+w{(k—1)c+d}

* D T (G~ Do+ @)+ (k- DI~ w) + w-kd

(16)

A similar calculation shows that the half-line Bfplayers shrinks in length by one
with a probability proportional to (up to the same constant)

(k—1D[(1 —w)+w{(k—1)a+ b}]

L (k=11 —w)+w{(k—1)a+b}+[(1 —w) +w{(k—2)c+2d}] (17

11



For smallw, it is easy to see that probability (16) being smaller thasbpbility
(17) is equivalent to the ESS condition foB updating, (14). The ESS conditions

for BD andIM updating rules, (13) and (15), can be derived in the same way.

6 Intuitive counting over one contested edge

There is a simple, intuitive way to derive the ESS conditionsgraph, (13-15).
Again we consider the tip of the half-line &f players. The trick to derive the ESS
conditions, (13-15), is to sum up the payoffs of all playexmived in the movement
of an edge extending from the tip (=a boundary betwdeand B players), but
separately ford-players and fo3-players. Then we compare these total payoffs to
see which replacement is more likely to occur at the boundétige total payoff

of strategyA exceeds that oB, then strategy! is an ESS on graphs.

Figure 3 shows the calculation for birth-deaBL)) updating. The two players at
the boundary are involved in the contest (they are markel wiitles). TheA-
player has payoffk — 1) + b. The B-player has payoffk — 1)c+ d. Comparison of

these two payoffs immediately leads to the ESS conditioB@updating, (13).

Figure 4 describes death-birtbB) updating. We focus on the movement of the

boundary which is shown as a dotted line. There are two pitiis

(i) If the A-player at the boundary dies (top panel), fis- 1) A-neighbors and

one B-neighbor compete for the empty site. Each of(the- 1) A-neighbors has

12



payoff ka, and has oné>-opponent. The3-player has payoftk — 1)c + d. He

has(k — 1) A-opponents. Therefore, his ‘weight’ is— 1.

(i) If the B-player at the boundary dies (bottom panel), ehreeighbor and one
B-neighbor (marked with circles) are relevant for the movenoéthe boundary.
Notice that otherd-neighbors are NOT involved in the movement of the bound-
ary, because if one of them replaces the vacancy a diffemmdary moves.
The A-player has payoffk — 1)a + b and has oné3-opponent. The3-player

has payoff(k — 2)c 4+ 2d and has onel-opponent.

Comparing the two weighted total payoffs reproduces our E@%lition forDB

updating, (14). Figure 5 shows how to derive the ESS conuftiol M updating.

7 Numerical examplesand computer simulations

7.1 Examples

We will now study some examples, which elucidate the difieeesbetween ESS in

well mixed populations and on sparse graphs.

13



Let us first consider the following game:

A B
Al1 3

(18)
B\2 0

In this example, strategy is not an ESS in a well-mixed population. However, it is

an ESS on a regular graph of degfee 3 for all update rulesgD, DB, andIM).

The reason for this discrepancy between well-mixed pofuiaand graph-structured
populations can be understood as follows. Imagine thategfyal dominates the
population and that @&-mutant tries toinvade it. The average payoff of the
mutant per game is 2. In a well-mixed population, the avemy®ff of A players

is 1. Hence, strategy is not evolutionarily stable. However, in a graph-struetur
population, the payoff of thel-neighbors of the3-mutant affects selection. These
A-neighbors gain payoff, 3, from the interaction with themutant, which exceeds

the mutant’s payoff, 2. Therefore, tli&mutant fails to invade the population.

The game (18) is an example where stratdgg not a Nash equilibrium, but is an

ESS on graphs.

As a second example, consider the game:

A B
Al2 0

(19)
p\1 3

StrategyA is an ESS in a well-mixed population. However, it is not an B8

14



regular graph of degree= 3 for all three update rule88p, DB, andIM).

Imagine thatd players dominate the population. Their payoff per game WEen

a B mutant invades the population, his payoff per game is 1. éfbeg, strategyl
resists invasion by stratedy in a well-mixed population. However, we notice that
A players in the neighborhood of the invadifigplayer gain payoff, 0, from the
game withB. StrategyB considerably reduces the payoff of ilsneighbors. On
graphs it can be adaptive to weaken neighbors with whom omgetes (Nakamaru

etal. 1997, Nakamaru & Iwasa 2005).

The payoff matrix (19) is an example for a game where strategg/a strict Nash

equilibrium, but is not an ESS on graphs.

As a third example, consider the Prisoner’s Dilemma gamed@Bart & Chammah
1965, Axelrod & Hamilton 1981). Cooperatio@’) costsc for the donor and yields
benefit,b, for the recipient. Defection/}) yields zero payoff to both players. The

payoff matrix is

C D

Clb—c -—c
(20)

D b 0

In a well-mixed population, defectiord)) is the unique ESS of the game. It is also
true for games on graphs undBD updating. However, as is shown in Ohtsuki
& Nowak (2006b), cooperation is the only ESS on a graph of eéegunderDB
updating wheneveér/c > k is satisfied. ForM updatingp/c > k+2is the decisive

condition for cooperation to be the unique ESS on graphs.

15



For the more general Prisoner’s Dilemma payoff matrix,

C D
c|RrR s

: (21)
p\1T P

whereT > R > P > S, itis possible that both cooperation and defection are ESSs
on graphs. It is also possible that neither of them is an ES@ahs (see Ohtsuki
& Nowak (2006b)) depending on the parameter values and tped®f the graph,

k.

7.2 Computer simulations

In order to test the validity of our analytic results, eg3-(5), we have run ex-
tensive computer simulations for each of the three upddés.riVe have studied

random regular graphs of degrées- 3,4, 5, 6 and lattices of degreds= 3, 4, 6.

We study a population of siz& = 10*. At the beginning of each runp0 random
vertices are changed fof to B. We run simulations fob generations, or equiv-
alently,5 N asynchronous updating steps. This means that each platfe pop-
ulation experiences, on averagepotential updating events. Aftérgenerations,
we count the number a8 players in the population. We conducted simulatitbis
times for each set of parameters. Each data point in ourtreguksents the average
number ofBB players afteb generations over0* runs . In studying random regular

graphs, we generate a new graph evEl¥runs, in order to avoid the effect of a

16



particular configuration of a graph. Throughout our sinmiolz, we usev = 0.01.

Therefore we havé/w = 100, which meets the requirement dfw > 1.

Figure 6 shows the result of computer simulations for randegular graphs. Note
that the analytic predictions, eqs.(13-15), agree welhwiite simulations. Each
column of panels in Figure 6 corresponds to one of the thremateprulesBD
(left), DB (center), andM (right). In the upper three panels, we study the payoff
matrix, (a, b, ¢, d) = (0, b, 1,0). Equations (13-15) predict that stratedgys an ESS

if

BD: b>k—1

DB: b>k?—k—1 (22)
2 _

IM : m>5i§—3

In the lower three panels, we stufly, b, ¢, d) = (1,0, 0, d). In this case our predic-

tions, egs.(13-15), tell us that stratedys an ESS if

d<k—1 (23)

for all three update rules.

In Figure 7, we show the results of computer simulations &ttides of degrees
k = 3 (triangular),k = 4 (square), and: = 6 (hexagonal). We find very good
agreement between the simulations and the theoreticalpigets for the triangular
lattice, fairly good for the square lattice, but no good agnent for the hexagonal

lattice.

17



The reason for this deviation can be understood as follotws Cllculations of Oht-
suki & Nowak (2006b) are based on pair approximation, whichhathematically
correct for Bethe lattices (= Cayley trees), that have npsodlowever, both ran-
dom regular graphs and lattices contain many loops. Theéegxis of loops causes
a discrepancy between simulation results and analyticitond. The precision of
the pair approximation depends on the lendthof the existing loops. The smaller

L is, the worse pair approximation tends to be.

For Bethe lattices we have = oo. Thus pair approximation is correct. For large
random regular graphg, is usually very large. For triangular, square, and hexago-
nal lattices, however, there are many loops with length 6, 4 and3, respectively
(see Figure 8). Therefore, for those lattices we expecipifeatictions based on pair

approximation do not work well.

8 Conclusion

We have derived ESS conditions for games on regular graptiegreek. A resi-

dent strategyA, can resist invasion by a small fraction Bfplayers if

BD updating: (k—1Da+b>(k—1)c+d
DB updating: (k> —Da+b> (k> —k—1)c+ (k+1)d (24)
IM updating: ~ (k* +2k —3)a+3b> (k* + k —3)c+ (k + 3)d
The parameters, b, ¢, d, denote the entries of the payoff matrix, (1), which defines

the game between strategidsand B. The ESS conditions (24) hold for a weak

18



intensity of selection) < w < 1, and for infinitely large population size.

For well-mixed populations, which are given by the complptaph,k — oo, all
three conditions converge to > ¢. Thus, for infinitek, the decisive criterion is
what does the resident get from itself,compared to what does the invader get
from the residentg. But for finite k, the payoff value$ andd also matter; it is
crucial to know, what the resident gets from the invadegnd what the invader

gets from itself.

For BD updating,a is as important as (both parameters have the same weight,
k — 1, in the ESS condition), anfdis as important ag. For DB andIM updating,
however,a is more important than, andb is less important thad. For all three
update rules, we find thatandc enter into the ESS conditions with greater weights

thanb andd.

The traditional ESS criterion of well-mixed populationsnisither necessary nor

sufficient to guarantee evolutionary stability in struetipopulations.
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Figure Legends

Figure 1 Local configuration of rard3 mutants quickly equilibrates into clusters,

without changing the total number of initi& players.

Figure 2 A schematic drawing where rafe-mutants invade the population df
players in a half-line shape. The number shown next to pleyeis payoff. When

the half-life is more likely to shrink than to extend, stigyted is an ESS.

Figure 3 A simple way to reproduce the ESS condition B> updating. The focal
boundary is drawn in a dotted line. Those who are involvetiédrhovement of the

boundary are marked in circles. Payoffs are shown next tepta

Figure4 A simple way to reproduce the ESS condition B8 updating. The focal
boundary is drawn in a dotted line. Those who are involvetiédrhovement of the
boundary are marked with circles. Payoffs are shown neXatgeps. Top: when the

A-player at the boundary dies. Bottom: when #iglayer at the boundary dies.

Figure5 A simple way to reproduce the ESS condition bt updating. The focal
boundary is drawn in a dotted line. Those who are involvetiégrhovement of the
boundary are marked with circles. Payoffs are shown nexXstgeps. Top: when the

A-player at the boundary dies. Bottom: when fhglayer at the boundary dies.

Figure 6 Computer simulation results for random regular graphs gfelesk = 3
(blue),k = 4 (green),k = 5 (orange), and: = 6 (red). Each column of panels

in the figure represents one of the three update r@dBs(panels in the left)DB
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(panels in the center), aridM (panels in the right). In the top three panels, we
study the parametér, b, c,d) = (0,b,1,0) sob is the only free parameter, which
is shown in each x-axis. In the bottom three, we study therpaters(a, b, ¢, d) =
(1,0,0,d), sod is the free parameter shown in each x-axis. The y-axis of panhbl
represents the average numberplayers after 5 generations ovel* runs. In
each small panel, the initial number Bfplayers, that is.z = 100, is shown by
the black horizontal dotted line. Thus, the numbeBoplayers after 5 generation
being below this threshold,z = 100, implies that strategyl is an ESS. For each
degreek, simulation results are plotted in a corresponding colahw’-symbols.
A colored vertical dotted line represents the theoretioadljiztion, egs.(22-23). The
simulation data show a perfect agreement with theoretieliptions if both data
plots and a vertical dotted line in the same color interseitt thie black horizontal

dotted line exactly at the same point.

Figure 7 The average number @ players afteh generations, for lattices of de-
greesk = 3 (triangular, in blue)k = 4 (square, in green), and= 6 (hexagonal,
in red). All the others conditions, such as update rules ardrpeters used, are
the same and in the same order as in Figure 6. We find thatsdeulhexagonal

lattices (in red) show a particularly poor agreement witottetical predictions.

Figure 8 The length of the minimal loopl,, is shown for triangular, square, and

hexagonal lattices, respectively.
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Figure 1

Equilibrium configuration

Initial invasion

/N_/ N_/ \N_/ N_/ \

\ \ \_/ \_/ /

000 06

QOO0 O

N/ N/ N/ N/ N/

008 006
60 0 o
00 §-0-
008 006
00000




Figure

or

extend?

Half-line of
B invaders




A is an ESS on graphs if
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Figure 6

DB updating IM updating

BD updating
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Figure 7

DB updating IM updating

BD updating
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Figure 8

triangular, L=6 square, L=4 hexagonal, L=3



