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Evolutionary stability on graphs

Hisashi Ohtsuki1 & Martin A. Nowak1,2

1 Program for Evolutionary Dynamics, Harvard University, Cambridge MA 02138, USA

2 Department of Organismic and Evolutionary Biology, Department of Mathematics,

Harvard University, Cambridge, MA 02138, USA

Abstract

Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is

called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the in-

vasion of any other mutant strategy. Recent studies have revealed that population structure

can considerably affect evolutionary dynamics. Here we derive the conditions of evolu-

tionary stability for games on graphs. We obtain analyticalconditions for regular graphs

of degreek > 2. Those theoretical predictions are compared with computersimulations

for random regular graphs and for lattices. We study three different update rules: birth-

death (BD), death-birth (DB), and imitation (IM) updating.Evolutionary stability on sparse

graphs does not imply evolutionary stability in a well-mixed population, nor vice versa. We

provide a geometrical interpretation of the ESS condition on graphs.

Key words: evolutionary game theory, evolutionary graph theory, ESS,structured

population, spatial games
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1 Introduction

Evolutionary game theory is the study of frequency dependent selection (Maynard

Smith 1982, Hofbauer & Sigmund 1998, Nowak & Sigmund 2004, Nowak 2006).

The fitness of an individual is not constant, but depends on interactions with other

individuals. These interactions can be described by a game.The payoff from the

game affects fitness, which is reproductive success. Reproduction can be genetic or

cultural.

An important concept in evolutionary game dynamics is that of an evolutionar-

ily stable strategy (ESS) (Maynard Smith & Price 1973, Maynard Smith 1974,

1982). If all players of a population adopt that strategy, then no mutant strategy

can invade. The traditional ESS condition is defined for infinitely large, well-mixed

populations. In a well-mixed population, every individualinteracts with every other

individual equally likely. Real populations are, of course, neither infinitely large nor

well-mixed. Various attempts have been made to extend the ESS concept to popu-

lations of finite size (Maynard Smith 1988, Schaffer 1988, Ficici & Pollack 2000,

Neill 2004, Nowak et al. 2004, Wild & Taylor 2004, Traulsen etal. 2006).

In spatial evolutionary game theory (Nowak & May 1992), the players of a popula-

tion are arranged on a spatial grid and interact with their nearest neighbors. Spatial

games can lead to very different evolutionary dynamics thangames in well-mixed

populations (Nowak & May 1992, 1993, Wilson et al. 1992, Ellison 1993, Herz

1994, Lindgren & Nordahl 1994, Nowak et al. 1994, Killingback & Doebeli 1996,
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Nakamaru et al. 1997, 1998, Eshel et al. 1998, 1999, Szabó & Tőke 1998, van

Baalen & Rand 1998, Szabó et al. 2000, Szabó et al. 2005, Hauert 2001, Irwin

& Taylor 2001, Hauert et al. 2002, Szabó & Hauert 2002, Le Galliard et al.

2003, Hauert & Doebeli 2004, Ifti et al. 2004, Santos & Pacheco 2005, Santos et

al. 2006, Szabó & Fáth 2007). Spatial models have also beenstudied in ecology

(Levin 1974, Levin & Paine 1974, Durrett & Levin 1994, Hassell et al. 1994,

Tainaka 1994, Durrett & Levin 1997, 1998, Tilman & Karieva 1997, Iwasa et al.

1998, Haraguchi & Sasaki 2000, Neuhauser 2001, Pastor-Satorras & Vespignani

2001, Wootton 2001, May 2006) and population genetics (Wright 1943, Kimura

1953, Kimura & Weiss 1964, Maruyama 1970, 1971, Nagylaki 1992, Epperson

2003). Literature of kin selection is useful in analyzing spatial games (Taylor 1992,

Taylor & Irwin 2000, Rousset 2004, Lehmann et al. 2007, Taylor et al. 2007)

Evolutionary graph theory (Lieberman et al. 2005, Ohtsuki et al. 2006, Ohtsuki

& Nowak 2006a,b, Pacheco et al. 2006a,b, Taylor et al. 2007) is the extension

of spatial evolutionary dynamics to general graphs and networks. The members of

a population occupy the vertices of a graph. Interactions occur between connected

individuals. Many different update rules are possible. Competition for reproduction

and playing the game can be described by the same graph or by two different graphs

(Ohtsuki et al. 2006, Ohtsuki & Nowak 2006a,b, Ohtsuki et al.2007a,b). A well-

mixed population is defined by a complete graph with identical weights. Spatial

games are typically described by regular lattices.

The purpose of this paper is to derive the ESS condition for games on graphs.
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The paper is structured as follows. In Section 2, we review the definition of evo-

lutionary stability in a well-mixed population. In Section3, we introduce three

different update rules and formulate the replicator equation on graphs (Ohtsuki &

Nowak 2006b). Section 4 describes our main results. We give geometrical repre-

sentations of the ESS conditions on graphs in Sections 5 and 6. We offer examples

and computer simulations in Section 7. Finally, we provide adiscussion in Section

8.

2 Evolutionary stability in a well-mixed population

Consider a game between two strategies,A andB. The payoff matrix is given by











A B

A a b

B c d











. (1)

In a well-mixed population every player meets every other player equally likely. Let

xA andxB be the frequencies ofA andB players in the population. The average

payoffs ofA andB players are given by

PA = axA + bxB

PB = cxA + dxB.

(2)

A population ofA individuals is challenged by a small fraction ofB invaders.

The relative abundance ofB players isxB = ǫ, where0 < ǫ ≪ 1. The fraction

of A players isxA = 1 − ǫ. StrategyA is evolutionary stable ifPA > PB for
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(xA, xB) = (1 − ǫ, ǫ). This condition leads to

(a − c)(1 − ǫ) + (b − d)ǫ > 0. (3)

For ǫ → 0, the left hand side of (3) is positive if and only if

ESS: ‘a > c’ or ‘a = c and b > d’ . (4)

The condition,b > d, is only used in the knife-edge case,a = c.

The evolutionary stability of a strategy in a game withn strategies can be defined

in a similar way. A strategy is ESS if and only if condition (4)holds in pairwise

comparison with each of then − 1 other strategies.

The traditional stability concept in game theory is the Nashequilibrium (Nash

1950, Luce & Raiffa 1957, Fudenberg & Tirole 1991, Binmore 1994, Weibull

1995, Samuelson 1997). For payoff matrix (1), strategyA is called a ‘Nash equi-

librium’ if and only if

Nash: a ≥ c. (5)

Condition (5) implies thatA is a best reply to itself. In addition, strategyA is called

a ‘strict Nash equilibrium’ if and only if

Strict Nash: a > c. (6)

Condition (6) implies thatA is the unique best response to itself. Note that ifA is a

strict Nash equilibrium then it is an ESS. IfA is an ESS then it is a Nash equilbrium.

While the condition for a Nash equilibrium depends only on the payoff matrix, a
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meaningful concept of evolutionary stability is affected by population size (Schaf-

fer 1988, Ficici & Pollack 2000, Nowak et al. 2004, Wild & Taylor 2004, Traulsen

et al. 2006) and population structure (Nowak & May 1992, 1993, Nakamaru et al.

1997, Le Galliard et al. 2003).

3 Evolutionary game dynamics on graphs

In this section, we introduce three different update rules for evolutionary games on

graphs (Ohtsuki et al. 2006, Ohtsuki & Nowak 2006a,b). Then we discuss the

‘replicator equation on graphs’ (Ohtsuki & Nowak 2006b).

We consider an infinitely large population. The structure ofthe population is de-

scribed by an infinite, connected, and regular graph of degree k. A graph is called

‘regular’ when each node has exactly the same number of neighbors; that number

is called the ‘degree’ of the graph. Each node represents a player whose strategy is

eitherA or B. There are no empty nodes. In this paper, we studyk > 2. For games

on cycles,k = 2, we refer to Ohtsuki & Nowak (2006a).

Each player interacts with allk neighbors, and obtains an accumulated payoff, de-

noted byP . The accumulated payoff is translated into fitness,F , by the following

formula:

F = (1 − w) + w · P. (7)

Here0 ≤ w ≤ 1 represents the intensity of selection. Ifw = 0 then fitness is

constant,F = 1, and independent of the payoff. Throughout the paper, we consider
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the case of smallw, given by0 < w ≪ 1.

Given the fitnesses of all players, we update the strategy of one player in each ele-

mentary time step. Therefore updating is asynchronous. We consider the following

three update rules (Ohtsuki et al. 2006, Ohtsuki & Nowak 2006a,b):

• Birth-Death (BD) updating. An individual is chosen for reproduction propor-

tional to fitness; the offspring replaces a randomly chosen neighbor.

• Death-Birth (DB) updating. A random individual is chosen to die; thek neigh-

bors compete for the empty site proportional to their fitness.

• Imitation (IM) updating. A random player is chosen for updating his strategy;

he either adopts a strategy of one of hisk neighbors or remains with his own

strategy, proportional to fitness.

Using the pair approximation method (Matsuda et al. 1987, 1992, Nakamaru et

al. 1997, 1998, Keeling 1999, van Baalen 2000), Ohtsuki & Nowak (2006b) have

shown that for smallw the frequencies of strategies on a regular graph of degree

k can be described by a differential equation. For an × n game with the payoff

matrix, [aij ], it is given by

ẋi = xi





n
∑

j=1

xj(aij + bij) − φ



 . (8)

Here xi denotes the frequency ofi-th strategy, a dot represents time derivative,

andφ =
∑n

i,j=1
xixj(aij + bij). For each update rule, the value ofbij in eq.(8) is
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calculated from the original payoff matrix,[aij ], as

BD : bij =
aii + aij − aji − ajj

k − 2

DB : bij =
(k + 1)aii + aij − aji − (k + 1)ajj

(k + 1)(k − 2)

IM : bij =
(k + 3)aii + 3aij − 3aji − (k + 3)ajj

(k + 3)(k − 2)
.

(9)

Interestingly, differential equation (8) has the form of a replicator equation (Taylor

& Jonker 1978, Hofbauer et al. 1979, Zeeman 1980, Weibull 1995, Hofbauer

& Sigmund 1998, Nowak 2006) with a transformed payoff matrix, [aij + bij ].

Therefore, many aspects of evolutionary dynamics on graphscan be analyzed by

studying a standard replicator equation with a transformedpayoff matrix, a so-

called ‘replicatior equation on graphs’. For example, for the2 × 2 payoff matrix,

(1), Ohtsuki & Nowak (2006b) have shown that the transformedpayoff matrix is











A B

A a b + h

B c − h d











. (10)

The modifierh depends on the update rule. It is given by

BD : h =
a + b − c − d

k − 2

DB : h =
(k + 1)a + b − c − (k + 1)d

(k + 1)(k − 2)

IM : h =
(k + 3)a + 3b − 3c − (k + 3)d

(k + 3)(k − 2)
.

(11)

These results hold for infinitely large population size and for 0 < w ≪ 1. Re-

garding a finite population of sizeN , Ohtsuki & Nowak (2006b) found that the
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replicator equation on graphs gives a good approximation ifNw ≫ 1.

In the next section, we use eqs.(10) and (11) to derive the concept of evolutionary

stability for graph selection.

4 ESS conditions on graphs

In order to characterize evolutionary stability on graphs,we ask whether rare mu-

tants (ofǫ fraction) have an selective advantage over residents. According to the

modified payoff matrix (10), ifa > c − h then rareB mutants are selected against

in anA-population. In this case,A is ESS when compared to B. Ifa < c − h then

B can invadeA and, therefore,A is not an ESS. We do not discuss the evolutionary

stability of the ‘knife-edge’ case,a = c − h, because it is ungeneric. Throughout

the paper we call

ESS on graphs: a > c − h. (12)

the ‘ESS condition on graphs’.

In contrast to the ESS condition on graphs, the conditions for (strict) Nash equilib-

rium on graphs are not obtained from the modified payoff matrix, (10). By analogy

to its counterpart in a well-mixed population, a straightforward definition of (strict)

Nash equilibrium on graphs is as follows: a strategy is a (strict) Nash equilibrium

on graphs if no one gains a (strictly) higher payoff by switching to the other strat-

egy. Therefore, the conditions for (strict) Nash equilibrium on graphs are the same

as those in a well-mixed population, eqs.(5, 6). On graphs, it is possible that a strict
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Nash equilibrium is not an ESS. It is also possible that an ESSis not a Nash equi-

librium. We will discuss this issue further in Section 7.1.

For the three update rules, condition (12) is rewritten as follows:

ESS on graphs (BD updating):

(k − 1)a + b > (k − 1)c + d (13)

ESS on graphs (DB updating):

(k2 − 1)a + b > (k2 − k − 1)c + (k + 1)d (14)

ESS on graphs (IM updating):

(k2 + 2k − 3)a + 3b > (k2 + k − 3)c + (k + 3)d (15)

All these conditions converge toa > c for k → ∞. This makes sense, because a

well-mixed population is described by a fully connected graph.

5 The geometry of evolutionary stability

We can provide a beautiful geometrical representation of the ESS conditions (13-

15). Figure 1 illustrates the invasion of a homogeneousA population by anǫ frac-

tion of B players. Initially theB players are sprinkled randomly over the entire

population: each vertex changes fromA to B with probability ǫ, which is very
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small. The following evolutionary dynamics have two time scales: (i) on a fast

time scale the population ‘equilibrates’ locally andB-clusters are formed, (ii) on a

slower time scale the global frequency ofA (andB) is changing. This separation

of time scales is a consequence of the weak intensity of selection, 0 < w ≪ 1

(Ohtsuki et al. 2006).

After the local equilibration process, we find that, aB player, whose one neighbor is

already specified, has on average oneB neighbor among hisk− 1 other neighbors.

Thus, in order to intuitively understand the ESS conditionson graphs, (13-15), it is

convenient to use a schematic drawing where a half-line ofB players is embedded

in a sea ofA players (Fig. 2). If the tip of the half-line is more likely toshrink than

to extend, then A is ESS. Otherwise selection favors the invasion ofB.

For example, let us study the invasion dynamics forDB updating. The half-line of

B-players extends in length by one if (i) one of the(k − 1) A-neighbors of theB-

player on the tip is chosen to die and (ii) theB-player, whose payoff is(k−1)c+d,

wins the competition over the vacancy against(k − 1) A-players, whose payoff is

ka. These events occur with a probability that is proportionalto

(k − 1) ·
(1 − w) + w{(k − 1)c + d}

[(1 − w) + w{(k − 1)c + d}] + (k − 1)[(1 − w) + w · ka]
(16)

A similar calculation shows that the half-line ofB-players shrinks in length by one

with a probability proportional to (up to the same constant)

1 ·
(k − 1)[(1 − w) + w{(k − 1)a + b}]

(k − 1)[(1 − w) + w{(k − 1)a + b}] + [(1 − w) + w{(k − 2)c + 2d}]
. (17)
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For smallw, it is easy to see that probability (16) being smaller than probability

(17) is equivalent to the ESS condition forDB updating, (14). The ESS conditions

for BD andIM updating rules, (13) and (15), can be derived in the same way.

6 Intuitive counting over one contested edge

There is a simple, intuitive way to derive the ESS conditionson graph, (13-15).

Again we consider the tip of the half-line ofB players. The trick to derive the ESS

conditions, (13-15), is to sum up the payoffs of all players involved in the movement

of an edge extending from the tip (=a boundary betweenA andB players), but

separately forA-players and forB-players. Then we compare these total payoffs to

see which replacement is more likely to occur at the boundary. If the total payoff

of strategyA exceeds that ofB, then strategyA is an ESS on graphs.

Figure 3 shows the calculation for birth-death (BD) updating. The two players at

the boundary are involved in the contest (they are marked with circles). TheA-

player has payoff(k−1)+ b. TheB-player has payoff(k−1)c+d. Comparison of

these two payoffs immediately leads to the ESS condition forBD updating, (13).

Figure 4 describes death-birth (DB) updating. We focus on the movement of the

boundary which is shown as a dotted line. There are two possibilities.

(i) If the A-player at the boundary dies (top panel), his(k − 1) A-neighbors and

oneB-neighbor compete for the empty site. Each of the(k−1) A-neighbors has
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payoff ka, and has oneB-opponent. TheB-player has payoff(k − 1)c + d. He

has(k − 1) A-opponents. Therefore, his ‘weight’ isk − 1.

(ii) If the B-player at the boundary dies (bottom panel), oneA-neighbor and one

B-neighbor (marked with circles) are relevant for the movement of the boundary.

Notice that otherA-neighbors are NOT involved in the movement of the bound-

ary, because if one of them replaces the vacancy a different boundary moves.

TheA-player has payoff(k − 1)a + b and has oneB-opponent. TheB-player

has payoff(k − 2)c + 2d and has oneA-opponent.

Comparing the two weighted total payoffs reproduces our ESScondition forDB

updating, (14). Figure 5 shows how to derive the ESS condition for IM updating.

7 Numerical examples and computer simulations

7.1 Examples

We will now study some examples, which elucidate the difference between ESS in

well mixed populations and on sparse graphs.

13



Let us first consider the following game:











A B

A 1 3

B 2 0











. (18)

In this example, strategyA is not an ESS in a well-mixed population. However, it is

an ESS on a regular graph of degreek = 3 for all update rules (BD, DB, andIM).

The reason for this discrepancy between well-mixed populations and graph-structured

populations can be understood as follows. Imagine that strategyA dominates the

population and that aB-mutant tries toinvade it. The average payoff of theB-

mutant per game is 2. In a well-mixed population, the averagepayoff of A players

is 1. Hence, strategyA is not evolutionarily stable. However, in a graph-structured

population, the payoff of theA-neighbors of theB-mutant affects selection. These

A-neighbors gain payoff, 3, from the interaction with theB-mutant, which exceeds

the mutant’s payoff, 2. Therefore, theB-mutant fails to invade the population.

The game (18) is an example where strategyA is not a Nash equilibrium, but is an

ESS on graphs.

As a second example, consider the game:











A B

A 2 0

B 1 3











. (19)

StrategyA is an ESS in a well-mixed population. However, it is not an ESSon a

14



regular graph of degreek = 3 for all three update rules (BD, DB, andIM).

Imagine thatA players dominate the population. Their payoff per game is 2.When

aB mutant invades the population, his payoff per game is 1. Therefore, strategyA

resists invasion by strategyB in a well-mixed population. However, we notice that

A players in the neighborhood of the invadingB-player gain payoff, 0, from the

game withB. StrategyB considerably reduces the payoff of itsA-neighbors. On

graphs it can be adaptive to weaken neighbors with whom one competes (Nakamaru

et al. 1997, Nakamaru & Iwasa 2005).

The payoff matrix (19) is an example for a game where strategyA is a strict Nash

equilibrium, but is not an ESS on graphs.

As a third example, consider the Prisoner’s Dilemma game (Rapoport & Chammah

1965, Axelrod & Hamilton 1981). Cooperation (C) costsc for the donor and yields

benefit,b, for the recipient. Defection (D) yields zero payoff to both players. The

payoff matrix is











C D

C b − c −c

D b 0











. (20)

In a well-mixed population, defection (D) is the unique ESS of the game. It is also

true for games on graphs underBD updating. However, as is shown in Ohtsuki

& Nowak (2006b), cooperation is the only ESS on a graph of degreek underDB

updating wheneverb/c > k is satisfied. ForIM updating,b/c > k+2 is the decisive

condition for cooperation to be the unique ESS on graphs.
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For the more general Prisoner’s Dilemma payoff matrix,











C D

C R S

D T P











, (21)

whereT > R > P > S, it is possible that both cooperation and defection are ESSs

on graphs. It is also possible that neither of them is an ESS ongraphs (see Ohtsuki

& Nowak (2006b)) depending on the parameter values and the degree of the graph,

k.

7.2 Computer simulations

In order to test the validity of our analytic results, eqs.(13-15), we have run ex-

tensive computer simulations for each of the three update rules. We have studied

random regular graphs of degreesk = 3, 4, 5, 6 and lattices of degreesk = 3, 4, 6.

We study a population of sizeN = 104. At the beginning of each run,100 random

vertices are changed forA to B. We run simulations for5 generations, or equiv-

alently,5N asynchronous updating steps. This means that each player inthe pop-

ulation experiences, on average,5 potential updating events. After5 generations,

we count the number ofB players in the population. We conducted simulations104

times for each set of parameters. Each data point in our result represents the average

number ofB players after5 generations over104 runs . In studying random regular

graphs, we generate a new graph every102 runs, in order to avoid the effect of a
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particular configuration of a graph. Throughout our simulations, we usew = 0.01.

Therefore we haveNw = 100, which meets the requirement ofNw ≫ 1.

Figure 6 shows the result of computer simulations for randomregular graphs. Note

that the analytic predictions, eqs.(13-15), agree well with the simulations. Each

column of panels in Figure 6 corresponds to one of the three update rules,BD

(left), DB (center), andIM (right). In the upper three panels, we study the payoff

matrix,(a, b, c, d) = (0, b, 1, 0). Equations (13-15) predict that strategyA is an ESS

if

BD : b > k − 1

DB : b > k2 − k − 1

IM : b >
k2 + k − 3

3
.

(22)

In the lower three panels, we study(a, b, c, d) = (1, 0, 0, d). In this case our predic-

tions, eqs.(13-15), tell us that strategyA is an ESS if

d < k − 1 (23)

for all three update rules.

In Figure 7, we show the results of computer simulations for lattices of degrees

k = 3 (triangular),k = 4 (square), andk = 6 (hexagonal). We find very good

agreement between the simulations and the theoretical predictions for the triangular

lattice, fairly good for the square lattice, but no good agreement for the hexagonal

lattice.
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The reason for this deviation can be understood as follows. The calculations of Oht-

suki & Nowak (2006b) are based on pair approximation, which is mathematically

correct for Bethe lattices (= Cayley trees), that have no loops. However, both ran-

dom regular graphs and lattices contain many loops. The existence of loops causes

a discrepancy between simulation results and analytic conditions. The precision of

the pair approximation depends on the length,L, of the existing loops. The smaller

L is, the worse pair approximation tends to be.

For Bethe lattices we haveL = ∞. Thus pair approximation is correct. For large

random regular graphs,L is usually very large. For triangular, square, and hexago-

nal lattices, however, there are many loops with lengthL = 6, 4 and3, respectively

(see Figure 8). Therefore, for those lattices we expect thatpredictions based on pair

approximation do not work well.

8 Conclusion

We have derived ESS conditions for games on regular graphs ofdegreek. A resi-

dent strategy,A, can resist invasion by a small fraction ofB players if

BD updating: (k − 1)a + b > (k − 1)c + d

DB updating: (k2 − 1)a + b > (k2 − k − 1)c + (k + 1)d

IM updating: (k2 + 2k − 3)a + 3b > (k2 + k − 3)c + (k + 3)d

(24)

The parameters,a, b, c, d, denote the entries of the payoff matrix, (1), which defines

the game between strategiesA andB. The ESS conditions (24) hold for a weak
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intensity of selection,0 < w ≪ 1, and for infinitely large population size.

For well-mixed populations, which are given by the completegraph,k → ∞, all

three conditions converge toa > c. Thus, for infinitek, the decisive criterion is

what does the resident get from itself,a, compared to what does the invader get

from the resident,c. But for finite k, the payoff valuesb andd also matter; it is

crucial to know, what the resident gets from the invader,b, and what the invader

gets from itself,d.

For BD updating,a is as important asc (both parameters have the same weight,

k − 1, in the ESS condition), andb is as important asd. ForDB andIM updating,

however,a is more important thanc, andb is less important thand. For all three

update rules, we find thata andc enter into the ESS conditions with greater weights

thanb andd.

The traditional ESS criterion of well-mixed populations isneither necessary nor

sufficient to guarantee evolutionary stability in structured populations.
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Szabó, G. & Tőke, C. (1998). Evolutionary prisoner’s dilemma game on a square

lattice.Phys. Rev. E58, 69-73.

Szabó, G., Antal, T., Szabó, P. & Droz, M. (2000). Spatial evolutionary prisoner’s

dilemma game with three strategies and external constraints. Phys. Rev. E62,

1095-1103.
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Szabó, G. & Fáth, G. (2007). Evolutionary games on graphs.Phys. Rep.446, 97-

216.

Tainaka, K. (1994). Vortices and strings in a model ecosystem. Phys. Rev. E50,

26



3401-3409.

Taylor, P. D. (1992). Altruism in viscous populations - an inclusive fitness approach.

Evol. Ecol.6, 352-356.

Taylor, P. D. & Irwin, A. J. (2000) Overlapping generations can promote altruistic

behavior.Evolution54, 1135-1141.

Taylor, P. D. & Jonker, L. (1978). Evolutionary stable strategies and game dynam-

ics.Math. Biosci.40, 145-156.

Taylor, P. D., Day, T. & Wild, G. (2007). Evolution of cooperation in a finite homo-

geneous graph.Nature447, 469-472.

Tilman, D. & Karieva, P. (1997) (eds.)Spatial ecology: the role of space in popula-

tion dynamics and interspecific interactions., Monographs in population biology,

Princeton University Press, Princeton.

Traulsen, A., Pacheco, J. M. & Imhof, L. A. (2006) Stochasticity and evolutionary

stability.Phys. Rev. E74, 021905.

van Baalen, M. & Rand, D. A. (1998). The unit of selection in viscous populations

and the evolution of altruism.J. Theor. Biol.193, 631-648.

van Baalen, M. (2000). Pair approximations for different spatial geometries., InThe

geometry of ecological interactions: simplifying spatialcomplexity(Dieckmann,

U., Law, R. and Metz, J. A. J. eds.) Cambridge University Press, Cambridge,

UK, pp. 359-387.

Weibull, Jörgen (1995).Evolutionary Game Theory, MIT Press, Cambridge.

Wild, G. & Taylor, P. D. (2004). Fitness and evolutionary stability in game theoretic

models of finite populations.Proc. R. Soc. Lond. B271, 2345-2349.

27



Wilson, D. S., Pollock, G. B. & Dugatkin, L. A. (1992). Can altruism evolve in

purely viscous populations?Evol. Ecol.6, 331-341.

Wootton, J. T. (2001). Local interactions predict large-scale pattern in empirically

derived cellular automata.Nature413, 841-844.

Wright, S. (1943). Isolation by distance.Genetics28, 114-138.

Zeeman, E. C. (1980). Population dynamics from game theory.In Proceedings of

an international conference on global theory of dynamical systems(eds. Nitecki,

A. & Robinson, C.) Lecture Notes in Mathematics 819. Springer, Berlin.

28



Figure Legends

Figure 1 Local configuration of rareB mutants quickly equilibrates into clusters,

without changing the total number of initialB players.

Figure 2 A schematic drawing where rareB-mutants invade the population ofA-

players in a half-line shape. The number shown next to playeris his payoff. When

the half-life is more likely to shrink than to extend, strategy A is an ESS.

Figure 3 A simple way to reproduce the ESS condition forBD updating. The focal

boundary is drawn in a dotted line. Those who are involved in the movement of the

boundary are marked in circles. Payoffs are shown next to players.

Figure 4 A simple way to reproduce the ESS condition forDB updating. The focal

boundary is drawn in a dotted line. Those who are involved in the movement of the

boundary are marked with circles. Payoffs are shown next to players. Top: when the

A-player at the boundary dies. Bottom: when theB-player at the boundary dies.

Figure 5 A simple way to reproduce the ESS condition forIM updating. The focal

boundary is drawn in a dotted line. Those who are involved in the movement of the

boundary are marked with circles. Payoffs are shown next to players. Top: when the

A-player at the boundary dies. Bottom: when theB-player at the boundary dies.

Figure 6 Computer simulation results for random regular graphs of degreesk = 3

(blue),k = 4 (green),k = 5 (orange), andk = 6 (red). Each column of panels

in the figure represents one of the three update rules,BD (panels in the left),DB
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(panels in the center), andIM (panels in the right). In the top three panels, we

study the parameter(a, b, c, d) = (0, b, 1, 0) sob is the only free parameter, which

is shown in each x-axis. In the bottom three, we study the parameters(a, b, c, d) =

(1, 0, 0, d), sod is the free parameter shown in each x-axis. The y-axis of eachpanel

represents the average number ofB players after 5 generations over104 runs. In

each small panel, the initial number ofB players, that isnB = 100, is shown by

the black horizontal dotted line. Thus, the number ofB players after 5 generation

being below this threshold,nB = 100, implies that strategyA is an ESS. For each

degreek, simulation results are plotted in a corresponding color with ‘x’-symbols.

A colored vertical dotted line represents the theoretical prediction, eqs.(22-23). The

simulation data show a perfect agreement with theoretical predictions if both data

plots and a vertical dotted line in the same color intersect with the black horizontal

dotted line exactly at the same point.

Figure 7 The average number ofB players after5 generations, for lattices of de-

greesk = 3 (triangular, in blue),k = 4 (square, in green), andk = 6 (hexagonal,

in red). All the others conditions, such as update rules and parameters used, are

the same and in the same order as in Figure 6. We find that results for hexagonal

lattices (in red) show a particularly poor agreement with theoretical predictions.

Figure 8 The length of the minimal loop,L, is shown for triangular, square, and

hexagonal lattices, respectively.
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