DIGITAL ACCESS 10 -
SCHOLARSHIP sr HARVARD T e i Schotaty Communicatin

DASH.HARVARD.EDU

iBundle: An Efficient Ascending Price Bundle
Auction

Citation

Parkes, David C. 1999. iBundle: An efficient ascending price bundle auction. In Proceedings of
the ACM Conference on Electronic Commerce (EC'99): November 3-5, 1999, Denver, Colorado,
ed. S. Feldman, and ACM Special Interest Group on Electronic Commerce, 148-157. New York:
ACM Press.

Published Version
doi:10.1145/336992.337032

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4101025

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4101025
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=iBundle:%20An%20Efficient%20Ascending%20Price%20Bundle%20Auction&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=c3f9dda5ad5dd67fde4302cf55c59572&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

:Bundle: An Efficient Ascending Price Bundle Auction
David C. Parkes

Computer and Information Science Department
University of Pennsylvania
200 South 33rd Street, Philadelphia, PA 19104
dparkes@unagi.cis.upenn.edu

ABSTRACT

Standard auction mechanisms often break down in impor-
tant e-commerce applications, where agents demand bundles
of complementary resources, i.e. “I only want B if I also get
A”. This paper describes iBundle, an ascending-price auc-
tion that is guaranteed to compute optimal bundle alloca-
tions with agents that follow a best-response bidding strat-
egy. The auction prices bundles directly and allows agents
to place additive or exclusive-or bids over collections of bun-
dles. Empirical results confirm that ‘Bundle generates effi-
cient allocations for hard resource allocation problems. Fur-
thermore, we show that {Bundle generates solutions without
complete revelation (or computation) of agent preferences.

Keywords
Iterative auction, agent-mediated electronic commerce, re-
source allocation, bundling problem, price discrimination.

1 INTRODUCTION

The popularity of Internet-based auctions continues to rise.
Auctions are dynamic and often efficient mechanisms for
selling items in complex marketplaces. Auctions are use-
ful for sellers that are poorly informed about the value
of items, for example collectibles and one-of-a-kind items
(e.g. www.ebay.com, www.zauction.com), and in markets
for time-critical items, for example electronic components
(e.g. www.fastparts.com). In addition, auctions provide a
foundation for mediation and brokering in automatic supply-
chain and procurement systems, as the trend towards disag-
gregation of services and products continues [2, 4].
However, standard auction mechanisms can generate in-
efficient allocations of resources when agents demand bun-
dles of complementary resources, i.e. “I only want B if I
also get A”. This bundling problem has been identified in
many problem domains, including auctions for take-off and
landing slots at an airport [19], distributed task-allocation
problems [20], and factory scheduling problems [24]. Similar
problems occur in procurement when products have multi-
ple attributes, e.g. quality, price, delivery time, and terms

In Proc. ACM Conference on Electronic Commerce
(EC-99), Denver, November 1999.

of payment [5], and also in supply-chain problems where
services from multiple suppliers need to be coordinated.

Auctions that price bundles as the sum price of the in-
dividual items (including sequential and simultaneous auc-
tions) fail when there are no prices that support an efficient
solution (the ezistence problem) and also when agents bid
cautiously to avoid purchasing an incomplete bundle (the
ezposure problem) [8]. These problems were both identified
in the recent FCC spectrum auction [12]. Although new con-
tract types for task (or resource) re-allocation (e.g. swap,
multilateral exchange, etc.) can support efficient allocations
in a decentralized market [1], in general, costs of negotiation
and search become too high without a central auctioneer [5].

Bundle auctions, that price bundles and allow agents to
bid for bundles of items, can provide a solution to both
the existence and exposure problems [8, 24]. Agents can
use bundle bids to directly express contingent demands
for items. However naive bundle auctions for G items
quickly become informationally and computationally infea-
sible, with 2/¢! bundles to price and O(|G|'?!) possible allo-
cations [13, 21].

iBundle is the first ascending-price bundle auction that
is guaranteed to compute optimal bundle allocations with
a best-response agent bidding strategy. Moreover, we have
proved [14] that the resulting prices correspond to a compet-
itive equilibrium for the package assignment model [6]. The
auction sells bundles for different prices to different agents
(price discrimination), when this is necessary to support an
optimal solution. Results from tests on hard resource allo-
cation problems show that sBundle often generates solutions
that are more efficient than current iterative auctions.

The auction has practical significance because it ad-
dresses the computational and informational complexity of
bundle auctions. For agents, the auction can terminate be-
fore agents have revealed (or even computed) their values
for every bundle. This can be important when agents have
hard valuation problems [15, 16]. Furthermore, the auc-
tioneer only needs to generate explicit prices on a subset
of bundles and often solves smaller winner determination
problems than in the classic sealed-bid bundle auction (the
Generalized Vickrey Auction [23]). Also relevant, because
the winner determination problem remains A P-complete,
is that the auction allows a tradeoff between performance
and computation. Increasing the minimal bid increment can
speedup termination and reduce the number of winner deter-
mination problems that the auctioneer must solve, although
perhaps at the cost of suboptimal bundle allocations.

Section 2 provides a brief introduction to the bundling

Agent | A B C AB BC AC ABC
1 60 50 0 200 50 60 220
2 0 60 50 60 200 50 220
3 50 0 75" 50 75 200 220

Table 1: Agent valuations in Problem 1.

problem. Section 3 describes iBundle, and presents a sim-
ple best-response agent bidding strategy. In section 4
we demonstrate ‘Bundle on a simple example. Section 5
presents the empirical results. Finally we present our con-
clusions, and discuss opportunities for further work.

2 THE BUNDLING PROBLEM

The bundling problem is the problem of allocating items to
agents to mazimize the sum value across the agents, allowing
agents to have non-additive values for individual items. For
example, consider a factory-scheduling problem with agents
that require labor and machine time, where receiving one
without the other has no value. The optimal solution will
allocate bundles of labor and machine time to agents to max-
imize the value of the complete schedule, for example min-
imizing the total cost of delay in completing the jobs of all
agents.

Problem 1 (Table 1) introduces a problem that we will
refer back to later in the paper." There are G = {A, B,C}
items to allocate to I = {1,2,3} agents. The table lists
the value of each agent i for each bundle of items. Let
v;(S) denote the value of agent ¢ for bundle S C G. Agents
have non-additive value for items, for example agent 1 has
v1(A) = 60,v1(B) = 50 and v1(AB) = 200. The optimal
allocation (that maximizes the sum value) is indicated with
* and allocates bundle AB to agent 1, and item C to agent
3, for a value V* = 275.

In most electronic commerce domains agents will be self-
interested, and will not reveal truthful values for bundles
to the auctioneer unless they have an incentive to do so.
The market-based approach to the bundling problem is to
prices items to provide incentives for agents to demand items
that are part of the optimal allocation. In this paper, as is
common in the auction literature, we assume that agents
are risk-neutral with utility functions that are quasi-linear
in money. Given value v;(S) for bundle S, and price p(S),
agent ¢ has utility u;(S) = v;(S)—p(S) for the bundle. Prices
support an allocation when every agent receives a bundle
that maximizes its utility, given the prices.

There are often no prices on individual items that sup-
port an optimal allocation, with prices on a bundle equal to
the sum of the price of its constituent items. It is simple
to prove this for Problem 1 (see Bykowsky et al. 1995 [8]).
However, there are always bundle prices that support the
optimal allocation [26], where the price of a bundle does not
need to be equal to the sum of the price of its constituent
items. For example, prices p(AB) = 150 and p(C) = 60
(with high enough prices on the other bundles) support the
optimal allocation in Problem 1. Furthermore, when prices
are competitive equilibrium (CE) prices the allocation is op-
timal [6].% Intuitively, for prices to be CE they must support
an allocation that both maximizes agents’ utilities and the

!The problem is derived from a problem in Bykowsky et al. [8].
2Possible competitive equilibrium bundle prices in this example
are p = {45, 60, 65, 185, 200, 190, 220}.

auctioneer’s revenue. In some problems the CE prices are
discriminatory, with a different price for the same bundle to
different agents [6].

Within this framework, one useful approach to auction
design is to try to compute CE prices from bids from self-
interested agents. We have proved [14] that :Bundle gener-
ates CE prices for agents that follow a myopic best-response
bidding strategy. Agents will behave autonomously in an
open system such as the Internet, with behaviors designed
and implemented by different companies. However, it is
often useful to show that auctions can perform well with
simple and reasonable agent bidding strategies (for exam-
ple best-response), because complex agent decision problems
can limit the performance of electronic markets [16].

3 THE :BUNDLE AUCTION

iBundle is an ascending-price bundle auction, that an-
nounces new bundle prices and provisional allocations at
the end of each round, and allows agents to bid for bundles.
The auctioneer announces ask prices. The bid price is the
price that an agent bids for a bundle, and the price an agent
must pay if it wins the bundle. In general the ask prices are
lower bounds on acceptable bid prices (although see discount
rules in section 3.1.2). Agents can place additive-or (OR)
and exclusive-or (XOR) bids for bundles. For example, a
bid (S1, P1) OR (S2, P»), indicates that an agent wants one
or both of bundles S1,S> at prices P1 and P»; while a bid
(S1, P1) XOR (S, P») indicates that an agent wants at most
one of bundles S1 and S2. Although every OR bid can be
represented as an equivalent XOR bid (that lists every com-
bination of bundles explicitly), OR bids allow more efficient
bid representations for agents that have naturally additive
values. ‘Bundle can also use a more efficient price-update
rule for OR bids than XOR bids, generating less explicit
bundle prices, and increasing prices more quickly (see sec-
tion 3.1.3).

There are three basic variations of iBundle: iBundle(2)
generates anonymous ask prices (same to every agent);
iBundle(3) generates discriminatory ask prices (possibly dif-
ferent for each agent); and iBundle(d) switches from anony-
mous to discriminatory prices dynamically, agent-by-agent,
to support efficient allocations.?

Price discrimination enables sBundle to generate efficient
allocations in all problem instances. However, discrimina-
tory prices can be more difficult to enforce than anonymous
prices (see section 3.2), and {Bundle(d) may be preferred to
iBundle(3) when efficient allocations are required but price
discrimination should be avoided when possible. In fact, we
show empirically that iBundle(2) often performs well, and
that the increase in efficiency from discriminatory prices is
often only measurable at very small bid increments.

3.1 Auction Description

We now describe the auction in detail. The components of
iBundle that are common to all variations are bidding, win-
ner determination, and termination. The price-update rules
differ across variations. The auction proceeds in rounds.

3In economic terminology, ‘first-order’ prices are linear and anony-
mous; ‘second-order’ prices are non-linear and anonymous; and ‘third-
order’ prices are non-linear and discriminatory [6]. This taxonomy
motivates the names of each variation of {Bundle (‘d’ translates to
“dynamic”).

We will describe a preprocessing step that converts every
OR bid received by the auctioneer into an equivalent set
of XOR bids. With this, we describe the winner determi-
nation, termination, and price-update rules for an auction
that receives only XOR bids. Let G be the set of items to
be auctioned, and let I be the set of agents.

3.1.1 Announce Prices and Allocation

At the start of round ¢, the auctioneer announces new prices
for a subset of bundles. The ask prices are initially zero
for every bundle (unless the seller has a reservation price).
The auctioneer only needs to announce a “minimal” set of
new prices, because the price of every bundle is implicitly
at least the maximum price of the bundles that it contains*
and never decreases between rounds. For example, if the
ask price of bundle AB increases to $5, it is not necessary
to announce that the price of bundle ABC is also increased
to $5. Let p!(S) denote the ask price for bundle S to agent
i at the start of round ¢. In general, the ask price for bundle
S might not be the same for every agent. The method to
compute new prices is described in section 3.1.6.

The auctioneer also announces a provisional allocation
of bundles to agents at the start of each round. No agents
receive any bundles in the initial allocation. Let x! =
{[{,S] | ¢ € I, S C G} represent an allocation of bun-
dles x*(i) = {S | [1, 5] € x*} to agent 4 at the start of round
t. For example, x = {[1, AB], [3, C]}, indicates that agent
1 is allocated bundle AB and agent 3 is allocated item C.
The method to compute the new allocation is described in
section 3.1.4.

3.1.2 Bidding

In each round an agent can submit either an XOR or an
OR bid for a set of bundles. For example: BF°F =
{(S1, 1), (S2, P2)}, indicates an XOR bid for bundles S;
and S» at prices P, and P, respectively; and BPR =
{(S1, P1), (S2, P»)}, indicates an OR bid for bundles S1 and
S>. Agents must repeat bids for every bundle that they
receive in the current allocation, as part of an OR bid if
they are currently allocated more than one bundle. Agents
cannot submit both XOR and OR bids in the same round.

In general, any bid for a bundle with a bid price below the
ask price is invalid, and ignored by the auctioneer. There are
two exceptions. First, an agent that is repeating a bid for a
bundle that it receives in the current allocation may repeat
the bid for the same price, even if the ask price has increased.
This rule ensures that the auctioneer receives monotonically
increasing revenue in each round of the auction, and moti-
vates agents to place credible bids because decommitment
from an allocation is only possible when the auctioneer re-
ceives bids that generate more revenue, and not arbitrarily.
Second, an agent can take an “e-discount” on the ask price
of any bundle in any round. However, the auctioneer can
detect this discount, and once an agent takes this discount
it is forbidden from bidding for the bundle if the ask price
ever increases in future rounds. This rule is designed to al-
low an agent to continue to bid for bundles that are priced
just above its value, perhaps as the result of a previous un-
successful bid from the same agent at a price just below its
value.

4Bundle S; contains bundle Sz if So C Sy.

3.1.8 Preprocessing

At the end of every round the auctioneer first transforms
every OR bid into a set of equivalent XOR bids. Given a bid
(S1, P1) OR (S2, P2) we create two new dummy agents that
each bid one of the original bundles as an XOR bid. From
the agent’s perspective the new XOR bids are equivalent
to the original OR bid.® The winner determination, price
update, and termination rules are all executed as though the
dummy agents are real agents that have placed bids. The
transformation is reversed before announcing new prices and
allocations to the real agents.

3.1.4 Winner Determination

Then the auctioneer solves the winner determination prob-
lem, computing an allocation of bundles to agents that max-
imizes revenue. The auctioneer first rejects bids from agents
with invalid bid prices, and checks that agents repeat bids
for bundles received in the current allocation. The new pro-
visional allocation x*! solves:

max > R(S) (1)
[i,Slext+?

such that by

t+1)

feasible(x A bid_consistent(x

where P;(S) is the bid price for bundle S from agent 7. Al-
location x is feasible if no item is allocated more than once:

feasible(x) © x = {[i,S]|SNS' =0 VS8 ex} (2

Allocation is bid_consistent if the auctioneer only allocates
bundles to agents that bid for them, and allocates at most
one bundle to each agent (respecting the XOR constraint):

bid_consistent(x) < x = {[5, 5] |S € B{°®,|x(3)| = 1}
(3

where S € BFOR iff agent i bids for bundle S, and |x(3)|
is the number of bundles allocated to agent i. Agents that
placed an OR bid can receive more than one bundle because
every dummy agent can receive a bundle.

The auctioneer breaks ties in favor of assigning bundles
to more agents, and then at random — except when the same
bids are received in two successive auction rounds, when
the auctioneer selects the same allocation as before and the
auction terminates.

3.1.5 Termination

The auction terminates when one of two simple rules hold,
designed to detect quiescence. The auctioneer then imple-

5We could transform an OR bid into a single XOR
bid. For example, the bid (A,2) OR (B,3) would become
(A,2) XOR (B,3) XOR (AB,5). Indeed, if we allowed agents to
only submit XOR bids, this is the kind of bid that an agent with
an additive demand over bundles would need to submit. However,
we choose to transform an OR bid into a set of XOR bids, bids
(A, 2) and (B, 3) in this case, because this allows more efficient price
updates. First, the auctioneer only needs to explicitly price the
or-terms, such as A and B, and not all combinations of bundles, such
as AB. Second, the auctioneer can increase prices more quickly. For
example, if the agent receives item A but not item B, then with a
single XOR bid we do not increase any prices because of the agent’s
bid, while with a set of XOR bids we increase the price on item B
(see the price-update rules). Hence, the OR bids are somewhat more
than “syntactic sugar” in ‘Bundle.

ments the final allocation and sells bundles to agents for the
prices that they bid. The auction terminates when either:

[T1] All agents that bid are happy, or
[T2] All agents submit the same bids in successive rounds.

where an agent is happy at the end of round ¢ when it receives
one of the bundles for which it placed an XOR bid.®

Condition [T1] implies quiescence for myopic best-
response agents, because no agent will increase its bids on
any bundle in the future, the current allocation will con-
tinue to maximize the auctioneer’s revenue, and ask prices
will not increase because agents will remain happy.”

Condition [T2] is a little stronger, and implies quiescence
for agents that compute bids deterministically, based on ask
prices and the current allocation.® Unchanged prices be-
tween rounds are not sufficient to imply quiescence unless
the allocation also remains unchanged.

3.1.6 Price Update

Finally, when the auction does not terminate, the auctioneer
updates prices. The price-update rule depends on the auc-
tion variation. Prices in {Bundle(2) are anonymous. The ask
price p(S) is increased based on bids received from agents
that are not happy (i.e. receive no bundle in the current
allocation). The ask price increases when the maximum
rejected bid price for the bundle from an unhappy agent
is within e (the minimal bid increment) of the current ask
price. Let P;(S) denote the bid price for bundle S from
agent 4, with P;(S) = 0 when the agent does not bid for the
bundle. Then, given bids BX°F the new ask price p'*1(S)
is computed as:

P (8) = max (pt(S), max P;(5) + 6) (4)

i€unhappy

where unhappy is the set of agents that are not happy with
the new provisional allocation.®

Prices in 1Bundle(3) are discriminatory, there is a set of
ask prices for every agent. Price increases to each agent are
based only on bids received from that agent. Prices only
increase when an agent (or one of its dummy agents when
it placed an OR bid) is unhappy, and then only when the
agent bid at within e of the current ask price (i.e. did not

take a discount). The new ask price p!™'(S) to agent i for

bundle S is computed as: '

p:+1(’5’) = max (pf(s)a B’Eunhappy(i) (S) + 6) (5)

6By extension, an agent that placed an OR bid is “happy” only
when it receives all the bundles in its bid. This is when the dummy
agents for that agent are all happy.

"This rule is also a useful disincentive against strategic bidding,
because it does not allow an agent to place a new bid if a bid is
accepted and every other agent is happy.

8For example, suppose that agents submit the same bids in rounds
9 and 10. The prices at the start of round 10 are computed on the
basis of the allocation selected, and the bids placed. Agents submit
the same bids in round 10 as in round 9, and the auctioneer computes
the same allocation and announces the same prices at the start of
round 11. Agents with deterministic bid strategies will place the
same bids in round 11 as in round 10, and we have quiescence.

9Notice that when an agent submits an OR bid the price is in-
creased to € above the bid price for all bundles that the agent is not
allocated, because the corresponding dummy agents are not happy.

where unhappy(7) is the set of dummy agents for agent ¢ that
are not happy (i.e. agent ¢ when agent ¢ placed an XOR bid
and received no bundle, or a dummy agent for every bundle
that agent ¢ did not receive when agent ¢ placed an OR bid).

Prices in 1Bundle(d) are initially anonymous, but can be-
come discriminatory during the auction. The auction main-
tains a set anon(t) of agents that receive anonymous prices
in round ¢, initially containing all agents. The price update
rule for the anonymous prices is the same as for iBundle(2),
except that only bids from agents that continue to receive
anonymous prices are considered. The price update rule for
the agents that receive discriminatory prices is the same as
for iBundle(3).

A simple test determines whether to start charging an
agent discriminatory prices. Once an agent starts to receive
discriminatory prices it does in all future rounds. The auc-
tioneer tests whether prices are increased on at least two
disjoint bundles as a result of a single agent’s bid (this rules
out OR bids, because each dummy agent only bids for a
single bundle, and agents that are happy). Let incr;(t)
be the set of bundles that will increase in price because
of the bids placed by agent i, i.e. incri(t) = {S | (S €
BFOR), (Pi(S) + € > p'(S))}. Agent i starts to receive dis-
criminatory prices if incr;(t) contains at least two disjoint
bundles. The agent is removed from the set anon(t+1), and
its prices are initialized to the current anonymous prices,
pt(S) = p'(S), before they are updated.

3.2 Enforcing Non-linear and
Discriminatory Prices

All variations of iBundle can generate non-linear prices for
items, for example p(S1 U S2) < p(S1) + p(S2) (subadditive
prices) and p(S1US2) > p(S1)+p(S2) (superadditive prices)
on disjoint bundles S1 and S>. Non-linear prices are often
necessary to support efficient solutions.

An auctioneer may need to enforce non-linear pricing.
Without enforcement an arbitrageur can try to profit from
subadditive prices by purchasing bundles to be “disassem-
bled” and sold to agents, or a bidding cartel of agents can
form to take advantage of bundle discounts. Similarly, a
single agent can try to avoid paying premiums on bundles
by entering the auction under multiple pseudonyms and
purchasing smaller bundles for “assembly” after purchase.
The variations of {Bundle that use discriminatory prices re-
quire that agents cannot enter an auction under multiple
pseudonyms to avoid price discrimination. Methods of en-
forcement include: (1) prevent the transfer of items between
agents (e.g. the airline industry); (2) prevent agents from
entering an auction under multiple pseudonyms, for exam-
ple through cryptographic message authentication and sig-
nature techniques [22]; (3) reduce opportunities for after-
markets.

3.3 A Best-response Agent Bidding
Strategy

We present a simple and reasonable bidding strategy for an
agent in sBundle. The bidding strategy is a myopic best-
response to the current state of the auction (prices and al-
location). The strategy is not optimal in a game-theoretic
sense, and deviations could increase an agent’s utility in
some auction scenarios. We do not consider agents with in-

formation about the other agents, that might place jump
bids or bid for less bundles to change the outcome of the
auction in their favor.

Agents with additive valuations over bundles can follow
a best-response bidding strategy that places OR bids, while
agents with general valuation functions, such as the agents
in Problem 1 (Table 1), can follow a best-response bidding
strategy that places XOR bids.

[XOR-bids] A best-response bidding strategy for agent
1, given values v;(S) and ask prices p;(S) is to place an XOR
bid, BXOR, for every bundle that has non-negative utility
and is within e of maximizing utility (we assume indifference
within €, the minimal bid increment):

BXOR

{ (8, Pi(S)) | vs(S) = Pi(S) > 0, (6)
0i(S) = Pi(S) + ¢ > max{ui(s) — A(S)} }

where P;(S) is the bid price for bundle S. The agent bids
as low a price as possible without limiting its bids in fu-
ture rounds. Therefore, the bid price is equal to the ask
price, except when the agent is repeating a bid from the
current allocation (when it repeats the same bid price), or
when the ask price is greater than the agent’s value for the
bundle (when it considers a bid price e-discounted from the
ask price). Both of these discounts from the ask price are
consistl%nt with the bidding rules of the auction (see section
3.1.2).

The bidding strategy is a myopic best-response strategy
to the current allocation and ask prices.'* Agents only bid
for bundles that maximize their utility, and maximize the
probability that one of those bundles will be in the tentative
allocation announced at the end of the round by providing
the auctioneer with as large a choice set as possible. If a
bid is unsuccessful at the lowest possible price then agents
get another chance to bid, because termination rule [T1]
requires that every agent is happy. The bidding strategy
is also safe [13], agents get bundles that are nearly optimal
relative to their valuations at the final prices and never risk
losing utility. Agents avoid the exposure problem [8].

[OR-bids] Agents that have valuation functions that are
naturally additive over bundles, e.g. v(S1 U S2) = v(S1) +
v(S2) for all disjoint bundles S1 and S for which the agent
has positive value, can submit OR bids. A best-response
strategy is to bid for all bundles with positive utility at the
current prices:

BP™ = { (S, Pi(S)) | vi(S) — Pi(S) > 0} (7)

where P;(S) (the bid price) is discounted from the ask price
in the same cases as for the XOR-bidding strategy. This is
a best-response strategy for an agent with additive value for
each bundle because the agent bids for as many bundles with
positive utility as possible, at the lowest prices possible.!?

10This strategy automatically bids for a bundle S that an agent
receives in the current allocation, because the agent can bid the same
price, the price of other bundles has not decreased, and the bundle
was in the set of utility maximizing bundles in the previous round.

UThe strategy also has a no-regret property in the sense that an
agent does not want to change its bid whatever the immediate bids
of other agents.

12T his strategy may seem suboptimal in the case that the ask price
for “superbundle” S1 U Sa is less than the total ask price for bundles
S1 and Sa2. However, an agent must repeat its bid for any bundle in
the current allocation, and the auctioneer will only select a bid for
bundle S; U S2 when the bid price is at least as great as the sum of
the bid prices for S; and Ss.

4 WORKED EXAMPLE

In this section we present a worked example of {Bundle(2)
and iBundle(3) on Problem 1. In this example discrimi-
natory prices are unnecessary to generate an efficient al-
location, and iBundle(d) is identical to {Bundle(2). Table
2 records the prices, bids, and allocation in each round of
iBundle(2) for agents that place best-response XOR bids,
with a bid increment e = 30. For each round ¢ the table
records the ask prices at the start of the round, p‘(S), the
bids placed by the agents, and the allocation at the end of
the round, x***. The bids that maximize revenue (solve the
winner determination problem) in each round are indicated
with *.

We will look at round 4 in more detail. Agent 1 was allo-
cated bundle ABC at the end of round 3. In round 4 agent
1 re-bids (ABC, 60) (for the same bid price as in round 3),
and also bids (AB, 30). The reader can check that these bids
maximize the agent’s utility given the ask prices (to within
€). Agent 2 bids (BC,60) and (ABC, 90), for utility 140 and
130 respectively. Agent 3 bids (AC,90) and (ABC,90), for
utility 110 and 130. The auctioneer maximizes revenue by
allocating bundle ABC to agent 2 (breaking the tie between
agent 2 and 3 at random). Agent 2 is happy, so the prices are
updated on the basis of the bids from agents 1 and 3. The
price of bundle AB increases to p®(AB) = P1(AB)+¢ = 60,
where P;(AB) is the bid price of agent 1 for the bundle AB;
similarly p®(AC) = P3(AC) + ¢ = 120, and p°(ABC) =
P3(ABC) + € = 120.

The auction terminates at the end of round 15 (by rule
[T2]), and the provisional allocation x'® = {[1, AB],[3, C]}
becomes the final allocation. Bundle AB is sold to agent 1
for p(AB) = 180 and bundle C is sold to agent 3 for p(C) =
60. These are approximate CE prices for the problem (see
section 2).

Table 3 records the progress of :Bundle(3) on Problem 1.
The minimal bid increment is unchanged, e = 30. For each
round t the table records the ask price, p!(S), for each agent,
the bids placed by each agent (blank entries indicate that no
bids are received), and the new provisional allocation, x***.
The winning bids are indicated with *.

The prices to agents are increased in rounds where they
bid but are allocated no bundle. For example, at the end
of round 4 agent 1 is in the provisional allocation, and has
the same prices at the start of round 5; while the prices
for BC and ABC increase for agent 2, and the prices for
AC and ABC increase for agent 3. The auction terminates
at the end of round 14 (by rule [T2]), and bundle AB is
sold to agent 1 for p;(AB) = 180, bundle C to agent 3 for
p3(C) = 60. This is the same outcome as for iBundle(2).

5 EMPIRICAL STUDY

Initial results from an empirical study of the performance of
iBundle on several hard bundling problems provide empiri-
cal support for the theoretical efficiency of iBundle. We sim-
ulated agents that follow the best-response bidding strate-
gies described in section 3.3. Typical measures of auction
performance include allocative efficiency and revenue. We
also measured the “correctness” of allocations, the average
number of times that an auction finds the optimal alloca-
tion. This is often a more sensitive measure of performance
than efficiency (although with less economic relevance).

In presenting the empirical results for iBundle we have

a dilemma, because iBundle(d) and iBundle(3) provably
generate 100% efficient and correct allocations for a small
enough bid increment and best-response agent bidding
strategies [14]. What we show is that iBundle continues
to perform well with quite large bid increments, and that
1Bundle(2) (without price discrimination) will often perform
as well as {Bundle(d) and ‘Bundle(3).

[Efficiency] Allocative efficiency, eff (x), is measured as
the ratio of the value of the final allocation x to the value V*
of the optimal allocation that maximizes total value across

the agents:
2 vi(S)
[i,S]ex
eff () = ==
where v;(S) is agent #’s value for bundle S.
[Revenue] Revenue, rev(yx), is measured as the ratio of
income to the value of the optimal solution:

2. Pi(S)
1,S]€x

L)

(8)

rev(x) = L

in recognition that an auctioneer cannot expect to sell goods
for more than agents value them, at least in the long run.

1Bundle will often terminate before agents have revealed
(or computed) complete information about their values for
bundles. We define information revelation, inf, designed to
measure the extent to which an agent has revealed its value
for each bundle to the auctioneer during the auction. This
does not necessarily correspond to computational savings.

[Information Revelation] Information revelation,
inf (i), for agent ¢ is measured as the sum of the final price
bid by the agent for all bundles in its valuation function, as
a fraction of the sum of the true value of each bundle:

> PrN(S)
__ SeBid;

inf (i) = W (10)
S€Val_fun;

where P;"**(S) is the maximum bid from agent ¢ for
bundle S during the auction; Bid; is the set of bundles that
receive bids from agent 7; and Val_fun; is the set of bundles
with positive value in agent ¢’s valuation function.'®> The
overall auction information revelation, inf, is computed as
the average information revelation over all agents.

5.1 Problem Sets

We tested iBundle on several problem sets from the litera-
ture. The problem set characteristics are summarized in Ta-
ble 4. The CalTech problem set [11] is designed to represent
a hard spatial fitting problem, and has been used to test the
AUSM and RAD bundle auctions [9]. Problem sets PS1 and
PS2 are resource allocation problems that have been used
to test the performance of a sequential auction mechanism
(SEQ) with adaptive agent bidding strategies [7]. Problem
sets 9-16 are generated from bid distributions used to test
a new winner determination algorithm for bundle auctions
[21]."* We designed problem sets 4-8 to represent different

13When an agent has a naturally additive valuation function, we
use the set of “seed” bundles with positive value, not all additive
combinations.

14We generated agent valuation functions by partitioning the bid
distributions across the agents. In problem sets 9-12 we give agents
XOR values over the bundles, in problem sets 13-16 agents have OR
values. In the “decay” bid distribution we choose parameter o = 0.55.

Problem |G| [I| Number (X)or Num Naive Naive Num

7 Name bundles / agentsin eff corr trials
per agent (O)r sol (%) (%) (%)

1 CalTech 6 5 5 X 40.0 63.2 2 50
2 PS1 12 4 3.97 X 89.0 82.1 20 50
3 PS2 12 5 4.07 X 58.4 79.3 20 50
41 O0-comp(4) |5 5 15 X 85.6 61.2 0 50
5(0.5-comp(4)| 5 b 15 X 80.8 63.2 0 50
6| 1-comp(4) |5 5 15 X 71.2 63.0 0 50
7| 2-comp(4) |5 5 15 X 49.2 653 4 50
8| 4-comp(4) |5 5 15 X 436 635 6 50
9 random 10 5 10 X 84.8 64.9 8 25
10| w-random |10 5 10 X 38.4 82.8 20 25
11 uniform 20 5 10 X 60.0 73.0 8 25
12 decay 20 5 10 X 96.0 80.2 12 25
13| random-or [10 5 10 [¢] 74.4 55.3 0 25
14|w-random-or|10 5 10 O 39.2 82.4 20 25
15| uniform-or |20 5 10 O 48.8 69.6 4 25
16| decay-or |20 5 10 O 92.8 72.5 0 25

Table 4: Problem characteristics.

levels of subadditivity and superadditivity over items.'> We
refer to these problem sets as k-comp(g). Agents have sub-
additive values for combinations of items when k£ < 1, and
superadditive values when k£ > 1. The parameter g indicates
how many items are covered by bundles with positive value
in each agent’s valuation function.

Table 4 states the number of items |G| in each problem
set, the number of agents |I|, the average number of bundles
with positive value for each agent, and whether the agents
have OR or XOR values over bundles. Table 4 also records
the average percentage of agents in the optimal allocation.
All other things being equal, we would expect a greater
proportion of agents to receive bundles as the number of
items increases, the number of agents decreases, and the
level of superadditivity decreases. For example, the number
of agents in the optimal solution falls as k increases in the
k-comp problem sets (4-8). We also computed the perfor-
mance of a naive central algorithm naive for each problem
set, to provide a baseline for the performance of the auction-
based solutions. The naive algorithm repeatedly selects an
agent at random (without replacement) and tries to allocate
bundles to the agent until it is happy, choosing bundles in
order of decreasing value.

5.2 Comparison Auction Mechanisms

We compared the performance of sBundle with reported re-
sults for other auctions. AUSM and RAD are iterative auc-
tions that allow agents to bid for bundles [11, 9], and SEQ is
a sequential auction for items with agents that have adap-
tive bidding strategies [7]. We also implemented a simple
simultaneous ascending price auction, with and without bid
withdrawal (SAA-w and SAA),'® and best-response agent
bidding strategies.'”

15Thanks to Peter Wurman for providing the initial idea for these
problem sets.

1In SAA-w agents can withdraw a bid in any round. When an
agent withdraws a bid the ask price is set to the price P of the bid
withdrawn. If the item remains unsold the agent must pay penalty P.
This approximates the rule used in the FCC spectrum auction [17].

"In SAA agents bid for items that maximize utility, assuming they
will win every bid [24]. Without budget constraints agents write-
off incomplete bundles with this strategy, in a phenomena described
by Bykowsky et al. as mutually destructive bidding [8]. The best-
response strategy in SAA-w is similar, except that agents assume that
they can decommit for free. Once an agent has withdrawn a bid, the
penalty represents a sunk cost. There is continued debate about the

Problem |[Performance[SEQ RAD AUSM|[iBundle(2)
#[Name | measure € (%)
20 5

1| CalTech eff 90.4 94 [96.4 99.7
corr 80 36 80

rev 79 71 |70.6 T7.7

2| PS1 eff 87 92.4 99.4

3| PS2 eff 80 92.8 99.7

Table 5: Performance comparison with SEQ, RAD
and AUSM on problems 1, 2 and 3. Bid increment
e (%); Efficiency eff (%); Correctness corr (%); Rev-
enue rev (%).

5.3 Experimental Results

We implemented iBundle, SAA and SAA-w in C++. A
branch-and-bound depth-first search is used to solve the
auctioneer’s winner determination problem in each round
[21]. Modules to generate random problem sets, and simu-
late agent bidding strategies were also coded in C++.

‘We normalized the minimal bid increment in the iterative
auctions (SAA, SAA-w and Bundle), to give some consis-
tency across problem sets and between single-item auctions
and bundle auctions. We adjusted the minimal bid incre-
ment € according to the effect of a price increase on the util-
ity of an agent in the final allocation.'® We report results
for bid increments of 20% and 5%.

First, we compared the performance of iBundle(2) with
reported results for AUSM and RAD [9, 11] on problem
set 1 (Table 5). The experiments reported in DeMartini
et al. [9] are with human participants, and it is possible
that software agents could perform better (or worse). This
aside, iBundle(2) achieves a higher efficiency than RAD and
AUSM, and is competitive in revenue. We also compared the
performance of ‘Bundle with SEQ [7] on problem sets 2 and
3. 7Bundle(2) generates almost perfect allocations, signifi-
cantly outperforming SEQ (results on corr and rev are not
available for SEQ). The empirical results reported for SEQ
are with agents that follow sophisticated bidding strategies,
learned over many repeated trials of the same problem in-
stance. In comparison, iBundle agents follow simple best-
response bidding strategies.

Figure 1 plots the efficiency (a) and correctness (b) of
iBundle(2) and SAA-w (with e = 5%) for each problem set,
together with the naive performance as a baseline. The
SAA auction fails in many problem sets (1, 3, 8, 10-16),
in the sense that agents lose utility through participation
when the best-response bidding strategy leaves them with
incomplete bundles.'® SAA-w allows bid withdrawal, and
mitigates the exposure problem in problem sets 12 and 13.
For the sake of analysis we substitute the efficiency and cor-
rectness of naive, and the revenue from the Generalized
Vickrey Auction (GVA), in problem sets where SAA and
SAA-w fail. >

effect of bid withdrawal on auction performance [8, 18].

18The actual increment is set so that the effect of a price increase
on every bundle in an agent’s final allocation is approximately equal
to €% of the average value.

19The efficiency of an allocation is irrelevant if it is generated with
bidding strategies that lead to utility loss, because we cannot expect
agents to follow bad bidding strategies in the long term.

20The naive central algorithm provides a useful lower bound on effi-
ciency and correctness, but revenue is undefined. The GVA provides
a lower bound on revenue, for agents that follow rational bidding
strategies in an auction that generates efficient solutions.

100

. Efficiency

80

60 \
Correct

(%)

40r

201

0 . . —A
107 107 10° 10 10
Bid Increment

Figure 2: Performance of iBundle as the bid incre-
ment e decreases. ‘4’ iBundle(2); ‘¢’ iBundle(d); ‘A’
iBundle(3). Problem set 0.5-comp(3).

It is useful to consider average performance across all
problem sets. :Bundle(2) (with ¢ = 5%) achieves an ef-
ficiency of 99%, compared to 83.3% efficiency for SAA-w,
81.6% for SAA, and 70.1% for naive. SAA-w performs well
in problem set 2 (where there is little competition for re-
sources), and sets 4, 5 and 6, where agents have subadditive,
linear-additive or slightly superadditive values on bundles.
Average correctness is 67.2% for iBundle(2), 23.9% for SAA-
w, and 7.8% for naive. Finally, iBundle(2) generates 75.6%
revenue, compared to 70.8% for SAA-w and 62.9% for the
GVA.

The increase in efficiency with iBundle(d) and
iBundle(3), compared to iBundle(2) is marginal. With
€ = 5%, Bundle(3) achieves 99.1% efficiency, compared to
99% efficiency for Bundle(2). Figure 2 compares the effi-
ciency and correctness with each auction variation for prob-
lem set 0.5-comp(3). Although price discrimination is re-
quired for 100% correctness in this problem, the efficiency
improvement is negligible. Furthermore, price discrimina-
tion only makes a difference for very small bid increments,
when the communication cost begins to increase rapidly. For
bid increment € > 0.5% the performance is almost identical.
The relationship between average number of rounds to ter-
mination and bid increment is approximately linear, with
€ = 5%,0.5%,0.06% corresponding to 6, 49, and 480 rounds
respectively. An auctioneer may choose not to operate be-
low 0.5% because of high communication costs, computation
costs, and indirect costs due to elapsed time.

The results show that iBundle can tradeoff performance
for communication, computation, and information revela-
tion costs. Bundle(2) achieves allocations that average
91.7% efficiency across all problem sets and terminates after
5.7 rounds with bid increment ¢ = 20%, down from 99%
efficiency after 18 rounds with bid increment ¢ = 5%. We
can see the tradeoff for problem 0.5-comp(3) in Figure 2.

Finally, iBundle(2) requires an average of 57.5% infor-
mation revelation at € = 20% (when the allocations are
91.7% efficient), and an average of 71% information reve-
lation at e = 5% (when the allocations are 99% efficient).
The (sealed-bid) GVA requires 100% information revelation
from agents to achieve 100% efficiency. Information reve-

10 T f W } *‘!\»
X X
X
90f x x
X
< ® ®
X | O
< 80 ® O
(&]
5 ® ®
S 70 ®
- o}
® O O ® ©
60| O
o}
50 Il Il Il
1 4 12 16

8
Problem Set
(a)

100

80y

60

40

Correct (%)

20
O ®
‘ o® ‘ ®
1 4 8 12 16
Problem Set
(b)

Figure 1: Performance of SAA-w ‘x’, iBundle(2) ‘+’, and a naive central resource allocation algorithm ‘o’.

Bid increment ¢ = 5%. (a) Efficiency. (b) Correctness.

lation may be smaller in real problems, because we provide
agents with sparse valuation functions in the first place (this
limits the size of the denominator in eq. 10).

6 DISCUSSION

The prices in 7Bundle are ascending, and updated on the
basis of bids from agents that are not accepted in the current
round of the auction. Intuitively, when an agent’s bid price
P(S) for bundle S is rejected, and the agent is allocated
no bundle, then the bid price is a lower bound on the price
than any agent must bid to receive the bundle — assuming
the auctioneer receives at least the same bids for the bundles
in the current allocation in the next round.

It is hard to provide further intuition for the idiosyn-
crasies of the price rules (e.g. the e-discount and the rule for
price discrimination) without an accompanying theoretical
analysis (see [14]). The basic idea is to increase prices until
every agent that bids is happy with its allocation, while sup-
porting bids from agents that allow the auctioneer to max-
imize its revenue at the current prices in every round. In-
creasing prices on the basis of losing bids, together with the
bid discount rules, and the decision to sometimes charge dis-
criminatory prices, all work together to enable this.?! With
a small enough bid increment we have proved that :Bundle
terminates with competitive equilibrium (CE) bundle prices
that support an optimal allocation [14]. Price discrimina-
tion is sometimes necessary for optimality, but practically
seems to have only a marginal effect on performance.

The termination rules could be relaxed for bounded-
rational agents that can make mistakes in the bids that they
place, because of auction time constraints and the complex-
ity of local valuation problems. For example, we could run
the auction without [T1] and with [T2] applied to several
consecutive rounds, to allow agents to change an allocation
by placing new bids. However, both of these changes may

21Bundle reduces to the English auction (for agents that do not
make jump bids, sometimes called the Japanese auction) for a single
item. The price in the auction is increased whenever more than one
agent bids for the item at the current ask price, and the auction
terminates when one agent remains in the auction.

increase agents’ ability to bid strategically and deviate from
best-response strategies.

Related bundle auctions have been proposed in recent
years, including AUSM [3] and Ascending k-Bundle Auction
(AkKBA) [25, chapter5]. AUSM does not generate ask prices
for bundles and requires complex agent bidding strategies,
for which theoretical analysis is very difficult [8, 13]. AKBA
is a family of auctions that are similar to sBundle, but use a
linear program to update prices, and never charge discrimi-
natory prices. A1BA, thought to be the most promising of
the family, is not believed to support optimal allocations in
all problems for any simple agent behavior. RAD [9] is an
iterative auction that allows bids for bundles of items, but
does not support non-linear bundle prices.

7 CONCLUSIONS

We have presented results on the performance of ‘Bundle, a
new iterative bundle auction. Bundle generates efficient
solutions in a reasonable number of rounds with a best-
response agent bidding strategy. Initial analysis suggests
that ‘Bundle continues to perform well without price dis-
crimination, on the basis of bundle prices alone. We believe
that its ability to tradeoff allocative efficiency for computa-
tion and communication cost will be important in practical
applications.

Iterative auctions can allow more efficient computation
than sealed-bid auctions when agents have hard valuation
problems, and this can lead to higher allocative efficiency
[15]. iBundle can generate solutions without information
from agents on their value for every bundle. Agents only
need to determine the bundles that mazimize utility given
prices to be able follow a best-response bidding strategy, and
this can be done with approzimate values for bundles.

Although iBundle can leverage new algorithms for the
winner-determination problem [10, 21], the fundamental
complexity of the bundling problem remains (the auction-
eer’s problem is A"P-complete). One future direction is to
introduce an approximation algorithm for this problem, and
study the effect on the bidding strategies of agents and the
performance of the auction. Another approach is to look

for useful decompositions of the bundling problem, and ap-
ply reduced-scope bundle (or other) auctions to parts of the
resource space.

There are several other possible extensions to this work.
These include investigating the effect of jump bids and
strategic bidding behavior on performance. A particular
goal is to understand the extent to which {Bundle addresses
the free-riding (or threshold) problem [8, 13]. We plan to
apply Bundle to a real e-commerce problem domain, and
extend the auction to environments with multiple sellers.

8 ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant SBR 96-02053. Thanks to
Pete Wurman, Fredrik Ygge, Lyle Ungar and the anonymous
reviewers for their helpful comments and suggestions.

9 REFERENCES

[1] Andersson, M., and Sandholm, T. Leveled commitment
contracts with myopic and strategic agents. In Proc.
15th National Conf. on Artificial Intelligence (AAAI-
98) (1998), pp. 38—45.

[2] Bakos, Y. Towards friction-free markets: The emerging
role of electronic marketplaces on the Internet. Comm.
ACM 41 (1998), 35-42.

[3] Banks, J. S., Ledyard, J. O., and Porter, D. Allocating
uncertain and unresponsive resources: An experimental
approach. The Rand Journal of Econ. 20 (1989), 1-25.

[4] Bichler, M., Beam, C., and Segev, A. An electronic
broker for business-to-business electronic commerce on
the Internet. Int. Journal of Cooperative Information
Systems 7 (1998), 315-331.

[5] Bichler, M., Kaukal, M., and Segev, A. Multi-attribute
auctions for electronic procurement. In Proc. 1st IBM
IAC Workshop on Internet Based Negotiation Tech-
nologies (1999). Yorktown Heights.

[6] Bikchandani, S., and Ostroy, J. M. The package assign-
ment model. Tech. rep., Anderson School of Manage-
ment and Department of Economics, UCLA, 1998.

[7] Boutilier, C., Goldszmidt, M., and Sabata, B. Sequen-
tial auctions for the allocation of resources with comple-
mentarities. In Proc. 16th Int. Joint Conf. on Artificial
Intelligence (IJCAI-99) (1999), pp. 527-534.

[8] Bykowsky, M. M., Cull, R. J., and Ledyard, J. O. Mu-
tually destructive bidding: The FCC auction design
problem. Tech. Rep. SSWP 916, CalTech, 1995. Re-
vised June 1998; November 1998.

[9] DeMartini, C., Kwasnica, A. M., Ledyard, J. O., and
Porter, D. A new and improved design for multi-object
iterative auctions. Tech. rep. SSWP 1054, CalTech,
1998. Revised March 1999.

[10] Fujishima, Y., Leyton-Brown, K., and Shoham, Y.
Taming the computational complexity of combinato-
rial auctions: Optimal and approximate approaches.
In Proc. 16th Int. Joint Conf. on Artificial Intelligence
(IJCAI-99) (1999), pp. 548-553.

[11] Ledyard, J. O., Porter, D., and Rangel, A. Experiments
testing multiobject allocation mechanisms. Journal of
Economic and Management Strategy 6 (1997), 639-675.

[12] McMillan, J. Selling spectrum rights. Journal of Eco-
nomic Perspectives 8 (1994), 145—62.

[13] Milgrom, P. Putting auction theory to work: The
simultaneous ascending auction. Journal of Political
Economy 108 (1999). To appear.

[14] Parkes, D. C. iBundle: A provably optimal ascending
price bundle auction. Tech. rep., University of Penn-
sylvania, 1999. In preparation.

[15] Parkes, D. C. Optimal auction design for agents
with hard valuation problems. In Proc. 2nd Workshop
on Agent Mediated FElectronic Commerce (AmEC-99)
(July 1999). Stockholm.

[16] Parkes, D. C., Ungar, L. H., and Foster, D. P. Ac-
counting for cognitive costs in on-line auction design.
In Agent Mediated Electronic Commerce (LNAI 1571),
P. Noriega and C. Sierra, Eds. Springer-Verlag, 1999,
pp. 25-40.

[17] Plott, C. R. Laboratory experimental testbeds: Appli-
cation to the PCS auction. Journal of Economics and
Management Strategy 6 (1997), 605-638.

[18] Porter, D. The effect of bid withdrawal in a multi-
object auction. The Review of Economic Design (1998).
To appear.

[19] Rassenti, S. J., Smith, V. L., and Bulfin, R. L. A com-
binatorial mechanism for airport time slot allocation.
Bell Journal of Economics 13 (1982), 402-417.

[20] Sandholm, T. An implementation of the Contract Net
Protocol based on marginal-cost calculations. In Proc.
11th National Conf. on Artificial Intelligence (AAAI-
93) (1993).

[21] Sandholm, T. An algorithm for optimal winner de-
termination in combinatorial auctions. In Proc. 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI-99)
(1999), pp. 542-547.

[22] Stinson, D. R. Cryptography: Theory and Practice.
CRC Press, Inc., 1995.

[23] Varian, H., and MacKie-Mason, J. K. Generalized
Vickrey auctions. Tech. rep., University of Michigan,
1995.

[24] Wellman, M. P., Walsh, W. E., Wurman, P. R., and
MacKie-Mason, J. K. Some economics of market-based
distributed scheduling. In Proc. 18th Int. Conf. on Dis-
tributed Computing Systems (1998).

[25] Wurman, P. R. Market Structure and Multidimensional
Auction Design for Computational Economies. PhD
thesis, University of Michigan, 1999.

[26] Wurman, P. R., and Wellman, M. P. Equilibrium prices
in bundle auctions. In Proc. AAAI-99 Workshop on
Artificial Intelligence for Electronic Commerce (1999),
pp. 56-61.

Round Prices Bids Allocation |Revenue
A B C AB BC AC ABC Agent 1 Agent 2 Agent 3
T 000 0 0 0 0 | (AB) (ABG,0)" (BC,0) (ABC,0) (AC,0) (ABC,0) T, ABC 0
3 [0 0 0 0 30 30 30 | (AB) (ABC,0) | (BC,30) (ABC,30)° | (AC,30) (ABC,30) 3, ABC 30
3 [0 0 0 30 30 60 60 | (AB,30) (ABC,60)° | (BC,30) (ABC,30) | (AC,60) (ABC,60) 1, ABC 60
7 |0 0 0 30 60 90 90 | (AB,30) (ABC,60) | (BC,60) (ABC,90)" | (AC,90) (ABC,90) 2, ABC 90
5 [0 0 0 60 60 120 120 (AB,60) (BC,60) (ABC,90) (C,0) (AC,120) 3, ABC 120
(ABC,120)*
6 |0 0 0 90 90 120 120 | (AB,90) (ABC,120)" | (BC,90) (ABC,120) {C,0) (AC 120) [1, ABC] 120
(ABC,120)
7 |0 0 30 90 120 150 150 | (AB,90) (ABC,120) (B,0)" (BC,120) (A,0) (C,30) [2, BI, [3, AC]| 150
(ABC,150) (AC,150)* (ABC,150)
8 |0 0 30120 120 150 150 (A,0) (B,0) (B,0) (BC,120) (A,0) (C,30)° [T, ABJ, [3, O] 150
(AB,120)* (ABC,150) (ABC,150) (AC,150) (ABC,150)
9 |0 3030120 150 150 180 | (A,0) (AB,120) (B,30) (BC,150) (A,0) (C,30) 12, B[, [3, AC]| 180
(ABC,180) (AC,150)* (ABC,180)
10 |30 30 30 150 150 150 180 | (A,30) (AB,150)" (B,30) (BC,150) (C,30)* (AC,150) |[1, ABJ, [3, C]| 180
(ABC,180) (ABC,180) (A,30) (ABC,180)
11 [30 60 30 150 180 150 210 | (A,30) (AB,150) (B,60)" (C,30) (A,30) (C,30) 12, B[, [3, AC]| 210
(BC,180) ABC(210) (AC,150)*
12|60 60 30 180 180 150 210 | (A,60)" (B,30) (C,0) (B,60) (C,30) (A,30) (C,30) [1, AL, 2, BC]| 240
(AB,180) (ABC,210) |(BC,180)* (ABC,210) (AC,150)
13 [60 60 60 180 180 180 210 (A,60) (B,30) (B,60) (C,30) (A,30) (C,60)° |[L, ABJ, [3, C]| 240
(AB,180)* (ABC,210)| (BC,180) (ABC,210) | (AC,180) (ABC,210)
14 (60 90 60 180 210 180 240 | (A,60) (AB,180)" (B,60) (C,30) (A,30) (C,60)° _ |[L, ABJ, [3, C]| 240
(ABC,210) (BC,180) (ABC,210) | (AC,180) (ABC,210)
15 (60 90 60 180 210 180 240 | (A,60) (AB,180)" (B,60) (C,30) (A,30) (C,60)° _ |[L, ABJ, [3, C]| 240
(ABC,210) (BC,180) (ABC,210) | (AC,180) (ABC,210)

Table 2: Worked example, iBundle(2) on Problem 1, Bid incr. ¢ = 30. Provisional allocations indicated *.

Round Prices Bids Allocation |Revenue
A B C ABBC ACABC|A B C AB BC AC ABC
1 Agent 1|0 0 0 0 0 O 0 0 0* [1, ABC] 0
Agent 2|0 0 0 0 0 O 0 0 0
Agent 3|0 0 0 0 0 O 0 0 0
3 |Agenti1]0 0 0 0 0 0 0 0 0 [2, ABC] 30
Agent 2|0 0 0 0 30 O 30 30 30
Agent 3|0 0 0 0 0 30 30 30 30
3 Agent 1{0 0 0 30 0 O 30 30 30 [3, ABC] 60
Agent 2|0 0 0 0 30 O 30 30 30
Agent 3|0 0 0 0 0 60 60 60 60"
4 Agent 1|0 0 0 60 0 O 60 60 60~ [1, ABC] 60
Agent 2|0 0 0 0 60 O 60 60 60
Agent 3|0 0 0 0 0 60 60 60 60
5 Agent 1{0 0 0 60 0 O 60 60 60 [2, ABC] 90
Agent 2|0 0 0 0 90 O 90 90 90*
Agent 3|0 0 0 0 0 90 90 90 90
6 Agent 1|0 0 0 90 0 O 90 90 90 [3, ABC] 120
Agent 2|0 0 0 0 90 O 90 90 90
Agent 3|0 0 0 0 0 120 120 0 0 120 120*
7 |Agent1]0 0 0 120 0 0 120 120~ 120 |[1, ABJ, [3, C]| 120
Agent 2|0 0 0 0 120 0 120 120 120
Agent 3|0 0 0 0 0 120 120 0* 0 120 120
8 |Agent1|0 0 0 120 0 0 120 120 120 | [2, ABC] 150
Agent 2|0 0 0 0 150 0 150 0 0 0 150 0 150*
Agent 3|0 0 0 0 0 120 120 0 0 120 120
9 |Agent1|0 0 0 150 0 0 150|0 0O 150~ 0 0 150 |[1, ABJ, [3, C]| 180
Agent 2|0 0 0 0 150 0 150 0 0 0 150 O 150
Agent 3|0 0 30 0 30 150 150 |0 30" 0 30 150 150
10 |Agent 1[0 O 0 150 0 O 150|0 O 150 0 0 150 [[1, AB], [2, C] 180
Agent 2/ 0 30 30 30 180 30 180 30 30* 30 180 30 180
Agent 3|0 0 30 0 30 150 150 |0 30 0 30 150 150
11 |Agent1]0 0 0 150 0 0 1500 O 150° 0 0 150 |[1, ABJ, [3, C]| 210
Agent 2|0 30 30 30 180 30 180 30 30 30 180 30 180
Agent 3|30 0 60 30 60 180 180 |30 60* 30 60 180 180
12 |Agent1]0 0 0 150 0 0 150]|0 O 150 0 0 150 |[2, B, [3, AC]| 240
Agent 2|0 60 60 60 210 60 210 [0 60* 30 60 180 30 210
Agent 3|30 0 60 30 60 180 180 |30 60 30 60 180" 180
13 [Agent 1[30 30 0 180 30 30 180 [30 30 180 30 30 180 [[1, ABJ, [3, C] 240
Agent 2|0 60 60 60 210 60 210 |0 60 30 60 180 30 210
Agent 3|30 0 60 30 60 180 180 |30 60* 30 60 180 180
14 |Agent 1|30 30 0 180 30 30 180 |30 30 180 30 30 180 [[1, ABJ, [3, C] 240
Agent 2|30 90 60 90 210 60 240 |0 60 30 60 180 30 210
Agent 3|30 0 60 30 60 180 180 |30 60* 30 60 180 180

Table 3: Worked example, :Bundle(3) on Problem 1, Bid incr. ¢ = 30. Provisional allocations indicated *.

