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Abstract 
 
Catastrophic epidemics, if they occur, will very likely start from localized and far smaller 
(noncatastrophic) outbreaks that grow into much greater threats. One key bulwark against 
this outcome is the ability of governments and the health sector more generally to make 
informed decisions about control measures based on accurate understanding of the current 
and future extent of the outbreak. Situation reporting is the activity of periodically 
summarizing the state of the outbreak in a (usually) public way. We delineate key classes of 
decisions whose quality depends on high-quality situation reporting, key quantities for which 
estimates are needed to inform these decisions, and the traditional and novel sources of 
data that can aid in estimating these quantities. We emphasize the important role of 
situation reports as providing public, shared planning assumptions that allow decision 
makers to harmonize the response while making explicit the uncertainties that underlie the 
scenarios outlined for planning. In this era of multiple data sources and complex factors 
informing the interpretation of these data sources, we describe four principles for situation 
reporting:1. Situation reporting should be thematic, concentrating on essential areas of 
evidence needed for decisions. 2. Situation reports should adduce evidence from multiple 
sources to address each area of evidence, along with expert assessments of  key 
parameters. 3. Situation reports should acknowledge uncertainty and attempt to estimate its 
magnitude for each assessment.4. Situation reports should contain carefully curated 
visualizations along with text and tables.  
 
 
1. Introduction 
 
Short of a massive, distributed bioterrorist attack, nearly any imaginable scenario for a 
globally catastrophic infectious disease outbreak would involve an initially small outbreak 
spreading from a few infections in a limited geographic area to infect many more people in 
many more places. It follows that efforts to prevent such catastrophic scenarios from 



materializing must include successful measures to stop or limit the spread of severe, but 
initially subcatastrophic events (Lipsitch 2017). Such measures are more likely to succeed if 
key decision makers -- and those charged with implementing their decisions -- have access 
to reliable, timely information on key parameters of an outbreak in progress.  
 
It is a characteristic of infectious disease outbreaks that information available at the early 
stages is incomplete, uncertain, and often biased in the sense that observations are initially 
made on unrepresentative samples of the population (for example those reporting to 
hospitals) that are easily observed, and only later on more representative 
populations(Lipsitch et al. 2009b, 2011). Knowledgeable public health professionals have a 
wealth of heuristics for filtering and integrating data to form early assessments of key 
quantities that are inputs to decisions – for example, current incidence and prevalence; 
forecasts of incidence and prevalence; geographic and demographic extent; and severity 
measures (Fig. 1, “Evidence”). For example, experts in influenza epidemiology know that 
viral testing and influenza-like illnesses (ILI) are both incomplete measures of incidence with 
particular biases that vary over time. They have many, often unspoken filtering heuristics 
about how to infer “true” estimates of incidence (absolute or relative) from each type of 
system.  Likewise, they have related sets of heuristics for integrating this information to 
account for biases of individual systems and to assess consistency of different indicators. 

 
Figure 1: Key decisions on pandemic response and the evidence base on which they ideally 
rest; this evidence base is built up from surveillance inputs using interpretive tools such as 
transmission-dynamic models and “pyramid” severity models. Image adapted from Lipsitch 
et al. (2011) by Lucia Ricci. 



In contrast to subject-matter experts, senior decision makers are typically generalists with 
less detailed knowledge of these aspects of any new disease. Their heuristics for 
interpreting raw data from surveillance systems, epidemiologic investigations, and novel 
data sources will be less nuanced, less informed by experience, and more variable from 
person to person. This may cause them to reach faulty conclusions about the magnitude of 
the threat, the options for and likely effects of potential responses, and the level of certainty 
surrounding each of these. We suggest in this chapter that information presented to decision 
makers, commonly known as Situation Reporting, should be tailored to give them not only 
raw data, but also synthetic expert judgment on the key characteristics of the outbreak and 
associated uncertainties. Such situation reporting would use a mixture of text and carefully 
chosen graphical presentations to convey expert estimates of key quantities and levels of 
certainty for each. In very data-poor settings (such as the early days of an epidemic of a 
novel disease) these syntheses would reflect expert judgment in interpreting the data that 
exist. For more familiar diseases, or as an epidemic of a new disease progresses, the 
presentation would include, in addition to expert interpretation, formal syntheses of 
emerging data using methods from statistics and machine learning. In all cases, modern 
situation reporting would incorporate not only traditional public health sources of data 
(mainly gathered from health systems), but also novel Internet-based data streams that can 
enhance the context, geographic extent, accuracy and timeliness of traditional sources. 
Carefully designed visualizations should be used to display spatial and temporal evolution of 
the current epidemic outbreak, geographic risk predictions, and other high-dimensional 
information. They may even include historical reconstructions of the spatio-temporal 
dynamics of previously observed outbreaks that may help contextualize the gravity of the 
ongoing public health threat. 
 
In this chapter we begin by describing the decisions that rely on good situation reporting and 
the major topics on which assessments are crucial to good decisions in nearly all outbreaks. 
Next, we review traditional and novel Internet-based sources of data that can inform these 
assessments. Motivated by these uses and the available data, we then propose and discuss 
four criteria for high-quality situation reporting in outbreaks.  
 
2. Decisions that rely on situation reporting 
 
Among the many decisions facing policy makers throughout the course of an infectious 
disease outbreak (Lipsitch et al. 2011), arguably the most important fall into two broad 
categories: first, how big should the overall response be at each place and time, and 
second, how should the response be targeted to maximize effectiveness and limit costs? 
Specifically: 
● Overall scale of the response. How many personnel, supplies, and how much money 

should be allocated to the response, given the opportunity costs of reassigning these 
personnel from other health-enhancing activities within the health sector (e.g. routine 
vaccination) and, in the case of large outbreaks, possibly opportunity costs from outside 
the health sector (eg extra health spending occasioned by the outbreak). As with many 
of the allocation decisions below, this is a question that will be reassessed repeatedly 



throughout the course of the outbreak, up to the decision to terminate the outbreak 
response after the outbreak is over. 

● Targeting of countermeasures. If countermeasures to treat or prevent infection are 
available during an outbreak, they will likely be in short supply. Such countermeasures 
may include supportive or specific anti-infective medications, personal protective 
equipment, or vaccines. A key decision for public health officials is to make 
recommendations or policies for who should receive these treatments for their own direct 
protection, based on criteria of highest effectiveness, greatest need, greatest social 
value, or population preferences, among other possible criteria. For the subset of these 
countermeasures that can prevent transmission of the infection, such as vaccines, the 
timing and the choice of recipients for the supply of countermeasures might be chosen to 
optimally reduce the transmission rate of the infection.  

 
3. Assessments that are crucial to making these decisions well 
 
Specific inputs of evidence about the nature of the disease and the state of the outbreak 
should inform each of these classes of decisions. Crucial assessments, and sources of 
uncertainty for each, include: 
 
● Disease severity. Often measured as a case-fatality proportion or case-hospitalization 

proportion, severity of the novel infection informs the magnitude and immediacy of the 
response that should be undertaken, while relative severity measures in different groups 
inform the appropriate targeting of prevention and treatment interventions. Severity 
measures may change as the natural history of the disease becomes better understood, 
as in the case of Zika virus, for which the risk of congenital malformations in the offspring 
of infected pregnant women came to be appreciated as the primary severity measure. 
Comparative severity measures in different demographic groups, defined by age or 
comorbidities for example, can enhance targeting of scarce countermeasures. 
Sources of uncertainty. Especially in the early phases of an outbreak, cases with a 
known outcome are likely unrepresentative of all cases, thus complicating the effort to 
estimate the typical severity of infection. On one hand, observed cases early on will 
typically be more severe than average, as severe cases are more likely to come to 
medical attention and be diagnosed. Typically at the start of an epidemic, it is unclear 
what fraction of cases are asymptomatic or subclinical, as these are rarely observed. 
This factor tends to cause severity to appear higher early on than it is (Lipsitch et al. 
2015). On the other hand, in a growing epidemic, it is now recognized that severity may 
be underestimated when total reported severe outcomes (eg deaths) are divided by total 
reported cases, because cases may be reported before their outcome is known and 
reported, so the denominator will include many people who have not yet entered the 
numerator, but will enter it in the future (Garske et al. 2009). The unknown balance 
between these opposing biases creates uncertainty in severity estimation. When 
calculating subgroup-specific severity measures, possible variation between subgroups 
in the probability a case is detected or reported at varying severity levels (eg 
symptomatic, hospitalized, fatal) can produce uncertainty in severity comparisons 



between subgroups (Jain et al. 2009; Lipsitch et al. 2015; Rudolf et al. 2017; Wolkewitz 
and Schumacher 2017). 

 
● Epidemic size and geographic extent. The total number of cases informs the number 

of persons affected, the number still at risk, and the resource requirements for treating 
patients and containing the outbreak. The trend in this total can be used to estimate the 
rate of spread and measures of contagiousness (such as the basic reproductive number 
R0), and to project resource needs into the future. The geographic extent of cases, and 
its trend, allow similar estimates on smaller spatial scales and may inform efforts to 
understand the routes of transmission. 
Sources of uncertainty: Not every disease case may be reported, due to limited capacity 
for surveillance. At the earliest phases of an epidemic, surveillance capacity may not be 
in place and may miss cases, while later on, there may be too many cases to count, and 
surveillance methods may need to be modified (Lipsitch et al. 2009a). These constraints 
may change over time, producing artifactual trends, and may vary from place to place, 
causing apparent differences between places that are due to surveillance capacity 
variation rather than only to variation in case numbers(White et al. 2009). In addition to 
all these factors, nearly all traditional surveillance systems have a delay between the 
occurrence of a case and its reporting, producing an artifactual decline in the epidemic 
curve as it approaches the present due to underreporting of recent cases. “Nowcasting” 
algorithms, often involving nontraditional disease surveillance data sources, can be 
particularly helpful in addressing these limitations (Höhle and an der Heiden 2014; 
Bastos et al. 2017; McGough et al. 2017; van de Kasteele et al. 2019) (see below). 

 
● Transmissibility. Crucial for any effort to predict how an epidemic will spread are two 

numbers: how many secondary cases each infected person causes, and how long it 
takes them to do so. These are known technically as the reproductive number and the 
serial interval or generation interval. In reality, each of these varies from case to case, so 
they are more accurately described as distributions, each with its own mean and 
variation around the mean (Wallinga and Lipsitch 2007).  Using these quantities and 
various types of mathematical models, spread of the infection can be projected over 
time, and the potential impact of seasonal variation in transmission, depletion of 
susceptibles by an immunizing infection, and various countermeasures (eg treatment or 
vaccination) can be estimated. 
Sources of uncertainty: At the very beginning of an outbreak, these quantities may be 
measured directly by contact tracing, so that secondary cases are traced back to primary 
cases, and generation intervals are estimated as the time between symptom onset in 
successive cases in a chain (an approximate measure of the serial interval).  As the 
epidemic expands (and sometimes from the beginning) this is impractical given limited 
resources, and these quantities must be estimated from the daily number of new cases 
(epidemic curve) (Wallinga and Teunis 2004; White and Pagano 2008). As a 
consequence, all the sources of uncertainty in case counting noted above become 
sources of uncertainty in estimating transmissibility, though there are ways to address 
these (White et al. 2009), including the use of pathogen genome sequences to provide 



independent estimates of the dynamics of the outbreak  (Fraser et al. 2009). 
Methodological errors can mask uncertainty in transmissibility estimates, but these are 
easily avoided (Magpantay and Rohani 2015). 

 
● Countermeasure availability, status, and effectiveness. Central to response planning 

and implementation is an accurate inventory of what countermeasures are available, in 
what quantities and locations, and how effective they are projected to be. 
Countermeasures include supplies to prevent transmission (vaccines, personal 
protective equipment, prophylactic antiinfective medications) and treat cases 
(medications for treatment, medical devices such as ventilators, health care disposables 
and supplies such as IV fluids (Voelker 2018)). The effectiveness of many of these 
countermeasures will be unknown at the start of an outbreak and may change over time 
(eg through the development of resistance by the pathogen causing the outbreak). 
Countermeasures also include behavioral, social and economic interventions such as 
movement restrictions (Peak et al. 2018), closing of public gatherings and venues 
(Hatchett et al. 2007), and regionally-varying factors such as opening and closing of 
schools (Chao et al. 2010; Huang et al. 2014).  
Sources of uncertainty: For novel diseases, countermeasures will have uncertain 
effectiveness because they have not been tested and may be available, if at all, in short 
supply (Lipsitch and Eyal 2017). Timetables for producing such countermeasures (eg 
vaccines) depend on logistical factors that may be independent of, or even exacerbated 
by, the outbreak itself (Voelker 2018). The situation will change rapidly, as stockpiles are 
developed, depleted and replenished (Dimitrov et al. 2011). Even for known diseases, 
such as influenza, vaccine effectiveness varies from year to year (Osterholm et al. 
2012). 

  
A number of traditional and novel data sources can inform the real-time estimation of these 
quantities and the level of uncertainty of each estimate. We next review these data sources. 
 
4. Data sources 
 
To provide evidence in the four key areas noted above, a range of traditional and novel 
Internet-based data sources are available. We highlight some of the key ones in this section. 
 
4.1. Traditional data sources 
 
Early in an outbreak, the full data on the state of the outbreak may be contained in an 
epidemiologic line list, ideally containing demographic and geographic data on cases, 
clinical data on the diagnosis, course of their illness and treatment, as well as key dates 
such as the date on which they were infected (if known), became symptomatic, were 
reported to public health authorities, and, as applicable, were hospitalized, admitted to 
intensive care, recovered/discharged, or died. Many of these elements may be unavailable, 
at least temporarily, for some cases, so several efforts have been made to define minimal 
data sets needed for basic analyses early in outbreaks (Van Kerkhove et al. 2010; Cori et al. 



2017). On the other hand, tools have been developed recently to implement more complex 
data structures that may include different elements for different cases and can incorporate 
novel types of data, including pathogen sequences when available (Grad and Lipsitch 2014; 
Jombart et al. 2014; Finnie et al. 2016). 
 
As an outbreak grows, it will likely become impossible for some jurisdictions to continue 
testing all suspected cases and/or reporting detailed data on suspected or confirmed cases 
of disease. Alternative approaches, such as reporting clinical events (emergency 
department or primary care visits meeting syndromic criteria, for example), combined with 
diagnostic test results on a fraction of these clinical cases, to maintain a quantitative picture 
of the progress of the outbreak while using fewer resources (Lipsitch et al. 2009a). In 
locations with limited resources, this strategy may be employed from the start.  
 
These epidemiologic data will be central to the first three evidence needs outlined above. 
The fourth need, to estimate countermeasure availability and effectiveness, will primarily 
require logistical and supply chain information about the production and distribution of 
vaccines, pharmaceutical treatments, and personal protective equipment. For antiinfective 
treatments, real-time data on the susceptibility of cases will be required to assess the likely 
impact of these treatments, estimate trends in resistance, and inform the optimal use of 
these and other countermeasures (Leung et al. 2017). To improve estimates of their past 
and potential effectiveness, data on the timing and geographic scope of nonpharmaceutical 
interventions, such as movement restrictions, safe burial practices (Tiffany et al. 2017) or 
school closings and openings (Chao et al. 2010; Huang et al. 2014) may be gathered by 
traditional means (surveys or administrative data) or by some of the novel means described 
below (Peak et al. 2018). 
 
4.2 Novel data sources 
 
The availability of big data sets, generated and recorded constantly due to the activities of 
millions of Internet and mobile phone users, has increased significantly and has opened up 
new ways to understand changes in human behavior. Of particular interest is the availability 
of Internet-based data that may help us detect changes in human behavior that may signal 
the emergence of a public health threat in real-time. These data may include unusual surges 
of symptom-related search activity on Internet search engines, an increase of symptom-
related posts on social media, increased sales in over the counter medications to combat 
fever or other symptoms.  
 
In fact, in the past decade, many research teams have been able to identify historical 
relationships between information contained in healthcare-based disease surveillance 
systems-- such as the number of hospitalizations and/or patients seeking medical attention 
with an array of symptoms-- and symptom-related Internet search behavior (Yang et al. 
2015), Wikipedia article views (Generous et al. 2014; McIver and Brownstein 2014), 
clinicians’ search behavior (Santillana et al. 2014), crowd-sourced symptom self-reporting 
apps (Smolinski et al. 2015; Koppeschaar et al. 2017), symptom-related Twitter posts 



(Signorini et al. 2011; Paul et al. 2014), prescription changes contained in cloud-based 
electronic health records (Santillana et al. 2016; Yang et al. 2017; Lu et al. 2019) and 
historical synchronicities in disease activity in neighboring regions (Lu et al. 2019) , weather 
patterns, etc. These studies have shown that behavior changes in human populations, often 
a consequence of (or correlated with) increased disease activity, have detectable signatures 
in systems that were not originally designed as public health surveillance systems. These 
findings suggest that monitoring Internet search and/or social media activity related to 
symptoms or specific diseases, may help confirm the presence of public health threats.  
 
Once a local disease outbreak has been identified, current and future weather patterns that 
may be conducive for such outbreak to further disseminate may be identified and may allow 
the creation of risk maps in real-time. For example, it is now well known that changes in 
ambient air moisture (relative humidity) influence the mechanistic human-to-human 
transmission of respiratory diseases such as influenza (Lowen et al. 2007; Shaman and 
Kohn 2009; Shaman et al. 2011). Drier months, such as those that happen during the colder 
seasons --in mid-latitudes-- enhance disease-transmission. Vector-borne diseases such as 
Dengue, Malaria, and Yellow Fever, can only be spread if local conditions are suitable for 
mosquitos to exist and reproduce (Kyle and Harris 2008). Thus, maps of the presence of 
vectors could be used to product risk maps in real-time (Messina et al. 2015). Mobile phone 
information can be used at the local level to map human mobility, whereas bus, train, or 
airline logs can be used to assess the likelihood of a given disease to be transmitted from 
point A to point B. Models incorporating these data have demonstrated the potential to 
predict outbreaks in new geographic locations, for example with dengue in Pakistan 
(Wesolowski et al. 2015). 
 
While many of these data sources may be helpful for disease surveillance they have clear 
limitations. For example, people with mobile phones and/or Internet access do not 
necessarily reflect the underlying demographics of the locations where they live. This fact 
introduces biases that need to be considered when using in these data sources as 
indicators of the presence of a disease. Another limitation stems from the fact that people 
are susceptible to “panic searching” when news outlets alert them of unusual flu, or dengue, 
or Ebola disease outbreaks. As a consequence, peaks of search activity and increased 
social media microblogs discussing symptoms or diseases may only signal a population’s 
surge of interest in a disease-related topic but may not reflect actual infections. One of us 
(MS) is actively developing approaches to address these limitations (Santillana et al. 2015). 
 
Finally, it has been shown that some of the uncertainties and limitations inherent to each 
individual data source may be mitigated by combining multiple data sources in order to 
assess the gravity of a disease outbreak (Santillana et al. 2015; McGough et al. 2017; Lu et 
al. 2019).  
 
5. Situation Reporting as a Source of Common Planning Assumptions 
 



A key aim of situation reporting, sometimes underappreciated, is to provide analysts and 
decision makers with a common set of facts (even if these are uncertain) so that decisions 
can be made using shared assumptions rather than unstated ones which may vary from 
person to person and thus cause confusion or error.  Publicly stating working interpretations 
of existing data in a situation report is not intended to suppress disagreements in 
interpretation but rather to make these explicit, and to note which facts can be known with 
confidence and what are the key sources of uncertainty. Two examples from the 2009 
influenza pandemic may help to illustrate the potential ofsituation reports centered on the 
four areas of critical evidence stated above to alleviate confusion and improve decisions. 
 
● In the 2009 influenza pandemic, perhaps the most important quantity on which evidence 

was needed for decision making was the severity – as measured by case-fatality and 
case-hospitalization rates. Early estimates varied by a factor of 10,000, from a raw 
estimate in Mexico of 4% based on case and death numbers on May 4, to an adjusted 
estimate of 0.0004% published in July (Wilson and Baker 2009), spanning the full range 
of the severity scale established by the US Government for pandemic planning (of 
Health et al. 2007). The first official US government publication (to our knowledge) that 
contained a specific scenario at a particular severity level was the August 2009 PCAST 
report (Executive Office of the President and ’s Council of Advisors on Science and 
Technology 2009), despite the fact that CDC investigations and surveillance had been 
producing relevant data in the US as early as April-May (Iuliano et al. 2009; Reed et al. 
2009). The act of assembling a thematic situation report that brought together diverse 
sources of evidence on severity could have helped to narrow this range of uncertainty by 
bringing together data that had been siloed in individual investigations.  

 
●  Vaccine planning in the United States proceeded in the 2009 pandemic on the 

assumption of a mid- to late-winter peak of influenza incidence, allowing time for the 
production of enough doses (160 million) [6] to cover “initial target groups” in a timely 
fashion. This view was not supported by historical evidence from pandemics [7] cited by 
NIH authors. As they predicted based on historical experience, the major wave came in 
the autumn and was largely complete in most places in the US by the time many doses 
were available.  Making an explicit projection about the likely timing of the peak of cases 
and its uncertainty -- and specifically, the incorporation of historical data to provide 
context -- could have improved the quality of assumptions used to plan vaccine rollout 
and targeting. 

 
6. Projecting the future  
 
Situation reporting is intimately connected with making projections about how an epidemic 
may unfold in the future. Indeed, some readers of a situation report may be primarily 
concerned not with how big or widespread the epidemic is now, but with how big or 
widespread it could become. Early situation reports will typically contain little in the way of 
projections, but as an epidemic develops, it may become appropriate to begin including 
some projections of its likely trajectory under various scenarios. Indeed, to achieve the goal 



of creating common planning assumptions described in the previous section, some such 
scenarios must be developed and include a forward-looking component. Planning scenarios 
may be developed even without accurate forecasts, but they will be more useful if they are 
based on the best possible forecasts that can be achieved at a particular stage in the 
epidemic. Empirically, it should be noted that even when a planning scenario is explicitly and 
repeatedly annotated as being purely that, and not a prediction, it may be reported in the lay 
press as if it were a forecast. The 2009 PCAST working group report on the US 
Government’s pandemic response repeatedly characterized its planning scenarios as “not a 
prediction” in three separate places [ref] but was reported by major news outlets as a 
prediction (for example, 
http://www.cnn.com/2009/HEALTH/08/24/us.swine.flu.projections/index.html accessed May 
2, 2019).  
 
The technical aspects of how to project disease incidence could fill an entire book, but for 
the purposes of situation reporting some crucial information should accompany any such 
projections and should be demanded by decision makers if not explicit in the situation 
report. The key question for any projection is what assumptions underlie it. In particular, 
many projections of disease cases indicate that if current trends continue, there may be x 
cases by a certain time. For infectious diseases, current trends cannot continue indefinitely. 
The simplest models may assume that the epidemic continues growing exponentially at the 
same rate as in its earliest phases. For any growing epidemic, such models can project 
arbitrarily high numbers of cases because exponential growth never ends (Meltzer et al. 
2001) -- the only question is how long the epidemic will take to reach a given number of 
cases (Meltzer et al. 2014). Such projections usually provide a near-worst case scenario, 
because typically the factors that change during an epidemic tend to moderate transmission 
rather than increase it. That said, there are important exceptions such as changing weather 
or vector density for arthropod-borne infections, which can move cyclically with the seasons. 
 
More refined projections -- not assuming “current trends continue” will incorporate factors 
that modify transmission, including behavior change induced by a desire to control the 
infection, behavior change for unrelated reasons (eg the beginning and end of school terms 
that affect directly transmitted diseases), seasonal changes that affect the suitability of 
transmission through the biology of the infectious agent or its vectors, and depletion of 
susceptible hosts as individuals previously infected become immune and thus reduce the 
opportunities for transmission. A projection should clearly state which of these factors it 
takes account of, what it assumes, and to what evidence exists (or is needed) to support 
these assumptions. Finally, efforts should be made to include uncertainty estimates (eg 
confidence intervals) around scenario-based projections that may be displayed on 
visualizations as uncertainty cones, similar to those used to monitor the likely trajectory of a 
hurricane in weather prediction systems. 
 
  
7. Principles for high-quality situation reporting. 
 



The goals of providing evidence to decision makers on key quantities relevant to responding 
to outbreaks, providing common scenarios for the purposes of planning, and highlighting 
areas of uncertainty, suggest four principles to enhance the quality of situation reporting in 
outbreaks. 
● Situation reporting should be thematic, concentrating on essential areas of 

evidence needed for decisions. Situation reports should be designed for clarity and 
value to top-level decision makers, as well as for technical scrutiny by subject-matter 
experts. Decision makers may lack the time or skills or specialized knowledge to 
interpret raw data such as case counts, Google search trends, or the like. They may not 
immediately see the relevance of each data source to the key quantities about which 
they need information. Thus, maximal value to these consumers of the report will be 
achieved by organizing data outputs by the quantity of interest  they inform, rather than 
in a simple list.  This leads to the second principle: 

● Situation reports should adduce evidence from multiple sources to address each 
area of evidence, along with expert assessments of  key parameters. Text 
describing the expert judgment about severity, numbers and geographic extent, and 
other assessments should be combined with data in the forms of tables and graphs. 
Notwithstanding the wealth of potential data sources for tracking an outbreak and the 
response to it, data alone are not sufficient to support evidence-based decisions 
reflecting a clear picture of the four areas noted above. Key data may be unavailable, 
especially in the areas hardest hit by an outbreak, and even when available they may be 
limited, confusing or even misleading. Subject-matter experts -- epidemiologists, 
clinicians, data managers, and those involved in delivering the public health response -- 
will typically have knowledge that is vital to sound interpretation of the data. A crucial 
feature of situation reporting is to make the data, as well as this expert knowledge, 
widely available to enhance the quality of evidence for decisions, and also to allow 
scrutiny and critique of the interpretation. Crucial to this presentation is the next 
principle: 

● Situation reports should acknowledge uncertainty and attempt to estimate its 
magnitude for each assessment. This prevents provisional assessments from 
becoming accepted as unchangeable facts, while acknowledging the possibility that 
estimates may change as data improve.  Finally: 

● Situation reports should contain carefully curated visualizations along with text 
and tables. These visualizations should clearly demarcate existing data from 
projections, visually represent uncertainty bounds, and be presented in intuitive ways 
that have been tested for clarity with an audience of decision makers before a crisis hits. 

 
 
8. Conclusion 
Accurate, informative, and clear situation reporting is essential for evidence-based decision 
making and planning in the midst of an outbreak that may be chaotic and full of confusing 
and contradictory information. In this chapter we have advocated for augmenting raw data 
with expert interpretation and planning scenarios to aid the decision makers by providing 
open discussion of what is and is not known and a set of shared assumptions for planning 



purposes. New data sources provide unprecedented opportunities to improve our 
understanding of epidemic dynamics as a new outbreak unfolds, and these must be 
integrated with more traditional data sources to aid decision makers in understanding the big 
picture, not only the raw data. Achieving these goals is a crucial part of minimizing the 
probability that an initially small and local outbreak grows to regionally or globally 
catastrophic proportions.  
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